WO2021261261A1 - Coating agent for paper substrates or plastic substrates, and paper substrates, plastic substrates, containers, and packaging material that have coating layer of said coating agent - Google Patents

Coating agent for paper substrates or plastic substrates, and paper substrates, plastic substrates, containers, and packaging material that have coating layer of said coating agent Download PDF

Info

Publication number
WO2021261261A1
WO2021261261A1 PCT/JP2021/022021 JP2021022021W WO2021261261A1 WO 2021261261 A1 WO2021261261 A1 WO 2021261261A1 JP 2021022021 W JP2021022021 W JP 2021022021W WO 2021261261 A1 WO2021261261 A1 WO 2021261261A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
titanium oxide
resin
acid
coating agent
Prior art date
Application number
PCT/JP2021/022021
Other languages
French (fr)
Japanese (ja)
Inventor
友貴 本郷
克郎 小田
雅之 寺川
亜莉奈 岡
敏生 渡邊
俊介 河中
幸介 藤田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2021574976A priority Critical patent/JP7131722B2/en
Publication of WO2021261261A1 publication Critical patent/WO2021261261A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds

Definitions

  • the present invention relates to a coating agent for a paper base material or a plastic base material that can be used as a gravure ink for flexible packaging or a flexographic ink.
  • the coating method is highly convenient because it can be applied not only to the base material before molding or processing, but also to the base material after molding or processing, only to the desired part, but on the other hand, it is more functional than the film. In many cases, resistance is inferior.
  • film base materials such as polyester film, nylon film, and polyolefin film, which are often used for food packaging and daily life coating consumer materials, are water repellent, oil repellent, antifouling, antistatic, antireflection, scratch prevention, etc.
  • recently hygienic functions such as antibacterial and antiviral functions are also desired, and antiviral (especially) antiviral as a countermeasure against viral infections such as new influenza, SARS (severe acute respiratory syndrome), and norovirus.
  • an antiviral coating agent containing one or more oxides selected from silver, zinc and copper and a double salt of molybdenum oxide is known (for example, Patent Document 1). reference).
  • a material having antiviral properties for example, a photocatalyst is known, and for example, a cloth to which a material having antiviral properties such as a photocatalyst is adhered is known (see, for example, Patent Document 1).
  • coating agents using photocatalysts are not yet known.
  • the present invention is to provide a coating agent for a paper base material or a plastic base material that can easily impart antiviral properties to a base material such as a plastic material, a molded product, a film base material, and a packaging material.
  • the present invention contains a binder resin (A), a photocatalyst (B), and an organic solvent, and the photocatalyst (B) contains titanium oxide containing crystalline rutyl-type titanium oxide and a divalent copper compound.
  • the half-value total width of the strongest diffraction peak corresponding to the rutile-type titanium oxide is 0.65 degrees or less.
  • Titanium oxide is a photocatalyst in which the content of the crystalline rutyl-type titanium oxide in the titanium oxide is 50 mol% or more and the content of anatase-type titanium oxide is less than 50 mol%, and the total amount of the coating agent solid content is
  • a coating agent for a paper base material or a plastic base material containing 0.5 to 80% by mass of the photocatalyst (B) is provided.
  • the present invention also provides a paper base material or a plastic base material obtained by coating the above-mentioned coating agent on a paper base material and a film.
  • the present invention also provides a container and a packaging material using the above-mentioned paper base material or plastic base material.
  • antiviral properties can be easily imparted to base materials such as plastic materials, molded products, film base materials, paper base materials, and packaging materials by coating.
  • parts means “parts by mass”
  • total amount of coating agent means the total amount of ink containing all volatile components such as organic solvent
  • total amount of coating agent solid content means. , Shows the total amount of non-volatile components only, without volatile components.
  • Binder resin (A) examples of the binder resin (A) used for the coating agent for the paper base material or the plastic base material of the present invention include nitrified cotton, cellulose acetate propionate (CAP), cellulose acetate butironate (CAB), and other cellulose-based resins.
  • Fiber resin examples include cellulose acetate propionate, cellulose acetate butyrate and other cellulose ester resins, nitrocellulose (also referred to as vitrified cotton), hydroxyalkyl cellulose, and carboxyalkyl cellulose.
  • the cellulose ester resin preferably has an alkyl group, and examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, a hexyl group and the like, and further, an alkyl group. May have a substituent.
  • cellulose acetate propionate, cellulose acetate butyrate, and nitrocellulose are preferable as the cellulosic resin. Particularly preferred is nitrocellulose.
  • the molecular weight preferably has a weight average molecular weight of 5,000 to 200,000, and more preferably 10,000 to 50,000. Further, it is preferable that the glass transition temperature is 120 ° C to 180 ° C.
  • the combined use of the polyurethane resin (A) of the present invention is expected to improve blocking resistance, scratch resistance and other ink film physical properties.
  • Nitrocellulose (nitrated cotton) is obtained as a nitrate ester obtained by reacting natural cellulose with nitric acid and substituting three hydroxyl groups in the 6-membered ring of anhydrous glucopyranose group in natural cellulose with nitric acid group. preferable.
  • nitrocellulose nitrated cotton
  • the nitrocellulose (nitrated cotton) preferably has a nitrogen content of 10 to 13% by mass and an average degree of polymerization of 30 to 500, and more preferably has a nitrogen content of 10 to 13% by mass and an average degree of polymerization of 45 to 290. ..
  • the amount of nitrocellulose (nitrated cotton) added is preferably 0.15 to 40% by mass, more preferably 1.0 to 35% by mass, based on the total amount of ink.
  • the polyamide resin is, for example, a thermoplastic polyamide that is soluble in an organic solvent and can be obtained by polycondensing a polybasic acid and a polyvalent amine.
  • a polyamide resin containing a reaction product of an acid component containing a polymerized fatty acid and / or dimer acid and an aliphatic and / or aromatic polyamine, and further containing a part of primary and secondary monoamines. is preferable.
  • the polybasic acid used as a raw material for a polyamide resin is not limited to the following, but is limited to adipic acid, sebacic acid, azelaic acid, phthalic acid anhydride, isophthalic acid, suberic acid, glutaric acid, fumaric acid, and pimerin.
  • a polyamide resin containing a main component (50% by mass or more in the polyamide resin) of a structure derived from a fatty acid is preferable.
  • the polymerized fatty acid is obtained by a cyclization reaction of an unsaturated fatty acid fatty acid or the like, and includes a monobasic fatty acid, a dimerized fatty acid (dimeric acid), a trimerized fatty acid and the like.
  • fatty acid constituting dimer acid or polymerized fatty acid those derived from natural oil such as soybean oil, palm oil and rice bran oil can be preferably mentioned, and those obtained from oleic acid and linoleic acid are preferable.
  • a monocarboxylic acid can also be used in combination with the polybasic acid. Examples of the monocarboxylic acid used in combination include acetic acid, propionic acid, lauric acid, palmitic acid, benzoic acid, cyclohexanecarboxylic acid and the like.
  • Examples of the polyvalent amine include polyamines, primary or secondary monoamines, and the like.
  • Examples of the polyamine used for the polyamide resin include aliphatic diamines such as ethylenediamine, propylenediamine, hexamethylenediamine and methylaminopropylamine, and aliphatic polyamines such as diethylenetriamine and triethylenetetramine.
  • Examples of the alicyclic polyamines include aliphatic polyamines. , Cyclohexylenediamine, isophoronediamine and the like.
  • examples of the aromatic aliphatic polyamine include xylylenediamine, and examples of the aromatic polyamine include phenylenediamine and diaminodiphenylmethane.
  • examples of the primary and secondary monoamines include n-butylamine, octylamine, diethylamine, monoethanolamine, monopropanolamine, diethanolamine, dipropanolamine and the like.
  • the amount of the polyamide resin added is preferably 0.15 to 40% by mass, more preferably 1.0 to 35% by mass, based on the total amount of the ink.
  • the urethane resin is not particularly limited as long as it is a polyurethane resin obtained by reacting a polyol with polyisocyanate.
  • the polyol for example, various known polyols generally used for producing a polyurethane resin can be used, and one kind or two or more kinds may be used in combination. For example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2-ethyl-2butyl-1,3-propanediol, 1,3-butanediol.
  • 1,4-Butandiol Neopentyl Glycol, Pentandiol, 3-Methyl-1,5 Pentandiol, Hexadiol, Octanediol, 1,4-Butindiol, 1,4-butylenediol, Diethylene Glycol, Triethylene Glycol , Dipropylene glycol, glycerin, trimethylolpropane, trimethylolethane, 1,2,6-hexanetriol, 1,2,4-butanetriol, sorbitol, pentaeslitol and other saturated or unsaturated low molecular weight polyols.
  • Polyvalent carboxylic acids such as spellic acid, azelaic acid, trimellitic acid, pyromellitic acid or polyester polyols obtained by dehydration condensation or polymerization of these anhydrides (2); cyclic ester compounds such as polycaprolactone, Polyester polyols (3) obtained by ring-opening polymerization of lactones such as polyvalerolactone and poly ( ⁇ -methyl- ⁇ -valerolactone); the low molecular weight polyols (1) and the like, for example, dimethyl carbonate, etc.
  • Polycarbonate polyols (4) obtained by reaction with diphenyl carbonate, ethylene carbonate, phosgen, etc .; polybutadiene glycols (5); glycols obtained by adding ethylene oxide or propylene oxide to bisphenol A (6); 1 molecule Acrylic obtained by copolymerizing one or more hydroxyethyl, hydroxypropurate acrylate, acrylic hydroxybutyl, etc., or their corresponding methacrylic acid derivatives, with, for example, acrylic acid, methacrylic acid, or an ester thereof.
  • Examples include the polyol (7).
  • polyisocyanate examples include various known aromatic diisocyanates, aliphatic diisocyanates, and alicyclic diisocyanates generally used for producing polyurethane resins.
  • Aliphatic compounds such as diisocyanate or alicyclic polyisocyanates can be used. These polyisocyanates may be used alone or in combination of two or more. Among these, these diisocyanate compounds can be used alone or in combination of two or more.
  • chain extender examples include ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, isophoronediamine, dicyclohexylmethane-4,4'-diamine, etc., as well as 2-hydroxyethylethylenediamine and 2-hydroxyethylpropyldiamine.
  • 2-Hydroxyethyl propylenediamine di-2-hydroxyethylethylenediamine, di-2-hydroxyethylenediamine, di-2-hydroxyethylpropylenediamine, 2-hydroxypyrropyrethylenediamine, di-2-hydroxypyrropyrethylenediamine, di- Amines having a hydroxyl group in the molecule, such as 2-hydroxypropylethylenediamine, can also be used.
  • chain extenders can be used alone or in admixture of two or more.
  • a monovalent active hydrogen compound can also be used as a terminal blocking agent for the purpose of stopping the reaction.
  • examples of such compounds include dialkylamines such as di-n-butylamine and alcohols such as ethanol and isopropyl alcohol.
  • amino acids such as glycine and L-alanine can be used as a reaction terminator.
  • These terminal blockers can be used alone or in admixture of two or more.
  • the weight average molecular weight of the urethane resin is preferably 10,000 to 100,000, more preferably 15,000 to 80,000.
  • the amount of the urethane resin added is preferably 0.15 to 40% by mass, more preferably 1.0 to 35% by mass, based on the total amount of the ink.
  • the acrylic resin is not particularly limited as long as it is a copolymer of a polymerizable monomer containing a (meth) acrylic acid ester as a main component.
  • the polymerizable monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and n.
  • -Octyl (meth) acrylate iso-octyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, iso-nonyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, methoxyethyl ( Examples thereof include meth) acrylate, ethoxyethyl (meth) acrylate, and phenoxyethyl (meth) acrylate.
  • the polymerization method is not particularly limited, and those obtained by known bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization and the like can be used.
  • the weight average molecular weight of the acrylic resin is preferably 5,000 to 200,000, more preferably 10,000 to 100,000.
  • the amount of the acrylic resin added is preferably 0.15 to 40% by mass, more preferably 1.0 to 35% by mass, based on the total amount of the ink.
  • the polyester resin is not particularly limited as long as it is a polyester resin obtained by reacting an alcohol and a carboxylic acid using a known esterification polymerization reaction.
  • alcohols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2-ethyl-2butyl-1,3 propanediol, and 1,3-butane.
  • the carboxylic acids include formic acid, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, hepanoic acid, hexanoic acid, heptanic acid, octanoic acid, nonanoic acid, decanoic acid, oleic acid, linoleic acid, oxalic acid and malonic acid.
  • the weight average molecular weight of the polyester resin is preferably 500 to 6000. It is more preferably 1400 to 5500, and the amount of the polyester resin added is preferably 0.15 to 40% by mass, more preferably 1.0 to 35% by mass, based on the total amount of the ink.
  • the vinyl chloride-vinyl acetate copolymer resin is not particularly limited as long as it is a copolymer of vinyl chloride and vinyl acetate.
  • the molecular weight preferably has a weight average molecular weight of 5,000 to 100,000, and more preferably 10,000 to 70,000.
  • the structure derived from the vinyl acetate monomer is preferably 1 to 30% by mass, and the structure derived from the vinyl chloride monomer is preferably 70 to 95% by mass in the solid content of the vinyl chloride-vinyl acetate copolymer resin in an amount of 100% by mass.
  • the solubility in an organic solvent is improved, and the adhesion to the substrate, the physical characteristics of the film, the scratch resistance and the like are improved. Further, from the viewpoint of solubility in an organic solvent, those containing a hydroxyl group derived from a vinyl alcohol structure are also preferable.
  • the hydroxyl value is preferably 20 to 200 mgKOH / g.
  • the glass transition temperature is preferably 50 ° C to 90 ° C.
  • the amount of the vinyl chloride-vinyl acetate copolymer resin added is preferably 0.15 to 40% by mass, more preferably 1.0 to 35% by mass, based on the total amount of the ink.
  • the rosin-based resin is not particularly limited as long as it is a resin having a rosin skeleton, but rosin-modified maleic acid resin, rosin ester, rosin phenol, polymerized rosin and the like are preferable.
  • the softening point (by the ring-and-ball method) is preferably 90 to 200 ° C.
  • fibrin-based resins, polyamide-based resins, urethane-based resins, acrylic-based resins, and vinyl chloride-based resins are preferable.
  • the binder resin contains at least two kinds of resins.
  • a combination selected from urethane-based resin / vinyl chloride-based resin, urethane-based resin / fibrous-based resin, polyamide-based resin / fibrous-based resin, acrylic resin / fibrous-based resin, and binder resin (A) is preferable.
  • the total content of the two resins in 100% by mass is preferably 80 to 100% by mass, more preferably 90 to 100% by mass.
  • urethane-based resin / vinyl chloride-based resin, urethane-based resin / fiber-based resin, polyamide-based resin / fiber-based resin, and acrylic-based resin / fiber-based resin are 95/5 to 20/80 by mass ratio, respectively. Is preferable. More preferably, the mass ratio is 90/10 to 50/50. This combination is excellent in abrasion resistance, blocking resistance, heat resistance, oil resistance and the like, which are the basic performances desired for the coating agent.
  • a curing agent may be used in combination with the binder resin (A).
  • a general-purpose curing agent may be used for organic solvent-based gravure ink, but the most commonly used is an isocyanate-based curing agent.
  • the amount of the isocyanate compound added is preferably in the range of 0.3% by mass to 10.0% by mass, and 1.0% by mass to 7.0% by mass, based on the solid content of the liquid printing ink from the viewpoint of curing efficiency. More preferred.
  • the binder resin (A) is preferably in the range of 0.15 to 50% by mass, preferably in the range of 1 to 40% by mass, based on the coating agent for paper base materials or plastic base materials of the present invention. Is the most preferable.
  • the photocatalyst (B) is a photocatalyst containing titanium oxide containing crystalline rutyl-type titanium oxide and a divalent copper compound, and the crystalline rutile-type titanium oxide is a diffraction line with respect to a diffraction angle 2 ⁇ by Cu—K ⁇ rays.
  • the half-value total width of the strongest diffraction peak corresponding to rutile-type titanium oxide is titanium oxide of 0.65 degrees or less, and the content of the crystalline rutile-type titanium oxide in the titanium oxide. It is a photocatalyst having an amount of 50 mol% or more and an anatase-type titanium oxide content of less than 50 mol%.
  • rutile-type and highly crystalline crystalline rutile-type titanium oxide and a divalent copper compound By using a combination of rutile-type and highly crystalline crystalline rutile-type titanium oxide and a divalent copper compound, a photocatalyst with excellent antiviral properties in bright and dark places and organic compound decomposition in bright places (visible). A visible light responsive photocatalyst) having photocatalytic activity such as antiviral property can be obtained in the light region. Further, since the divalent copper compound is less likely to be discolored due to oxidation like the monovalent copper compound, discoloration over time can be suppressed.
  • the "bright place” means a place where visible light exists
  • the "dark place” means a place where light does not exist.
  • the photocatalytic activity means at least one selected from photo-induced degradability and photo-induced hydrophilization.
  • Photo-induced degradability is the action of oxidatively decomposing organic substances adsorbed on the surface treated with titanium oxide
  • photo-induced hydrophilicity is the hydrophilicity of the surface treated with titanium oxide that is easily compatible with water. It is an action to become. It is considered that this photoinduced hydrophilicity is caused by the increase of hydroxyl groups on the surface of titanium oxide due to the holes generated and diffused by photoexcitation.
  • the virus means a DNA virus and an RNA virus, but also includes a bacteriophage (hereinafter, may be abbreviated as "phage") which is a virus that infects bacteria.
  • phage bacteriophage
  • the titanium oxide used in the photocatalyst (B) contains crystalline rutile-type titanium oxide.
  • the crystalline rutile-type titanium oxide is an X-ray diffraction pattern in which the diffraction line intensity with respect to the diffraction angle 2 ⁇ by Cu—K ⁇ rays is plotted, and the half-value full width of the strongest diffraction peak corresponding to the rutile-type titanium oxide is 0. It means titanium oxide of .65 degrees or less.
  • the full width at half maximum is preferably 0.6 degrees or less, more preferably 0.5 degrees or less, still more preferably 0.4 degrees or less, still more preferably 0.35 degrees. ..
  • the content of crystalline rutile-type titanium oxide in titanium oxide (hereinafter, may be referred to as "rutileization rate”) is 50 mol% or more.
  • the rutileization rate is preferably 90 mol% or more, more preferably 94 mol% or more. This rutile formation rate is a value measured by XRD as described later.
  • anatase formation rate is preferably low, and the anatase formation rate is less than 50 mol%, preferably 10 mol. %, More preferably less than 7 mol%, still more preferably 0 mol% (ie, free of anatase-type titanium oxide).
  • This anatase formation rate is also a value measured by XRD in the same manner as the rutile formation rate.
  • the specific surface area of titanium oxide is preferably 1 to 200 m 2 / g. When it is 1 m 2 / g or more, the specific surface area is large, so that the frequency of contact with viruses, fungi and organic compounds increases, and the obtained photocatalyst has antiviral properties in bright and dark places, organic compound degradability and antibacterial properties. Excellent in sex. On the other hand, when it is 200 m 2 / g or less, the handleability is excellent. From these viewpoints, the specific surface area of titanium oxide is more preferably 3 to 100 m 2 / g, further preferably 4 to 70 m 2 / g, and particularly preferably 8 to 50 m 2 / g. Here, the specific surface area is a value measured by the BET method by nitrogen adsorption.
  • Titanium oxide includes those produced by the vapor phase method and those produced by the liquid phase method, and either of them can be used, but titanium oxide produced by the vapor phase method is more preferable.
  • the gas phase method is a method of obtaining titanium oxide by a gas phase reaction with oxygen using titanium tetrachloride as a raw material. Titanium oxide obtained by the vapor phase method has a uniform particle size and at the same time has high crystallinity because it goes through a high temperature process during production. As a result, the obtained photocatalyst has good antiviral properties, organic compound decomposability and antibacterial properties in bright and dark places.
  • the liquid phase method is a method for obtaining titanium oxide by hydrolyzing or neutralizing a liquid in which a titanium oxide raw material such as titanium chloride or titanyl sulfate is dissolved.
  • Titanium oxide produced by the liquid phase method tends to have a low crystallinity of rutile and a large specific surface area. In this case, it may be calcined to obtain titanium oxide having optimum crystallinity and specific surface area.
  • the vapor phase method is more preferable because it takes time and effort.
  • titanium oxide it is more advantageous to use commercially available titanium oxide as it is, considering the process of catalyst preparation.
  • the photocatalyst (B) contains a divalent copper compound.
  • This divalent copper compound alone does not have antiviral properties in bright and dark places, organic compound degradability in bright places, and visible light responsiveness, but by combining with the above-mentioned crystalline rutile-type titanium oxide, it is possible to make bright spots. And antiviral property in the dark, organic compound decomposition property in the light place, and visible light responsiveness are sufficiently expressed. Further, since the divalent copper compound has less discoloration due to oxidation or the like than the monovalent copper compound, the photocatalyst using this divalent copper compound suppresses the discoloration.
  • the divalent copper compound is not particularly limited, and examples thereof include one or two types of a divalent copper inorganic compound and a divalent copper organic compound.
  • Divalent copper Inorganic compounds include copper sulfate, copper nitrate, copper iodide, copper perchlorate, copper oxalate, copper tetraborate, copper ammonium sulfate, copper amide sulfate and copper ammonium chloride, copper pyrophosphate, and copper carbonate. 1 selected from the group consisting of an inorganic acid salt of divalent copper, a halide of divalent copper composed of copper chloride, copper fluoride and copper bromide, and a group consisting of copper oxide, copper sulfide, azurite, malakite and copper azide. Species or two or more species are mentioned.
  • divalent copper organic compound examples include a divalent copper carboxylate.
  • carboxylate of divalent copper examples include copper formate, copper acetate, copper propionate, copper butyrate, copper valerate, copper caproate, copper enanthate, copper caprylate, copper pelargonate, copper capricate, and mistinic acid.
  • divalent copper organic compounds are selected from the group consisting of oxine copper, acetylacetone copper, ethylacetoacetate copper, trifluoromethanesulfonate copper, phthalocyanine copper, copper ethoxydo, copper isopropoxide, copper methoxyde, and copper dimethyldithiocarbamate.
  • oxine copper acetylacetone copper
  • ethylacetoacetate copper trifluoromethanesulfonate copper
  • phthalocyanine copper copper ethoxydo
  • copper isopropoxide copper methoxyde
  • copper dimethyldithiocarbamate copper dimethyldithiocarbamate.
  • divalent copper compounds preferably one or more of copper oxide, a halide of divalent copper, an inorganic acid salt of divalent copper and a carboxylate of divalent copper, for example, divalent copper.
  • a halide, one or more of an inorganic acid salt of divalent copper and a carboxylate of divalent copper preferably one or more of copper oxide, a halide of divalent copper, an inorganic acid salt of divalent copper and a carboxylate of divalent copper.
  • examples of the divalent copper compound include a divalent copper compound represented by the following general formula (1).
  • X is an anion, preferably a halogen such as Cl, Br, I, a conjugate base of a carboxylic acid such as CH 3 COO, or an inorganic acid such as NO 3 , (SO 4 ) 1/2. Conjugate base, or OH.
  • divalent copper inorganic compounds are more preferable, and copper oxide is further preferable, from the viewpoint of less impurities and economic viewpoint.
  • a divalent copper compound represented by the above general formula (1) is also preferable.
  • the divalent copper compound may be anhydrous or hydrated.
  • the copper equivalent content of the divalent copper compound is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the titanium oxide.
  • the antiviral property, the organic compound decomposing property and the antibacterial property in a bright place and a dark place become good.
  • the amount is 20 parts by mass or less, the surface of titanium oxide is prevented from being covered, the function as a photocatalyst (organic compound decomposability, antibacterial property, etc.) is satisfactorily exhibited, and the antiviral performance is improved with a small amount. It can be improved and is economical.
  • the copper equivalent content of the divalent copper compound is more preferably 0.1 to 20 parts by mass, still more preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of titanium oxide. Even more preferably, it is 0.3 to 10 parts by mass.
  • the copper equivalent content of the divalent copper compound with respect to 100 parts by mass of this titanium oxide can be calculated from the charged amount of the raw material of the divalent copper compound and the raw material of titanium oxide.
  • the copper equivalent content can also be specified by measuring the photocatalyst by ICP (inductively coupled plasma) emission spectroscopy, which will be described later.
  • the photocatalyst (B) contains titanium oxide containing crystalline rutile-type titanium oxide and a divalent copper compound as essential components, but other optional components as long as the object of the present invention is not impaired. May be contained.
  • the content of the essential component in the photocatalyst (B) is preferably 90% by mass or more, more preferably 95% by mass or more, and further. It is preferably 99% by mass or more, and more preferably 100% by mass.
  • the photocatalyst (B) can be produced by carrying out a mixing step of mixing titanium oxide containing crystalline rutile-type titanium oxide and a raw material for a divalent copper compound. Further, a heat treatment step of heat-treating the mixture obtained by this mixing step may be further carried out to obtain a photocatalyst.
  • a photocatalyst can also be obtained by suspending titanium oxide in an aqueous solution of a copper compound and adsorbing it.
  • the photocatalyst (B) can be produced by the method described in Japanese Patent No. 5343176.
  • the primary particle size of the photocatalyst (B) is in the range of about 200 to 400 nm and the secondary particle size is about 3 to 10 ⁇ m, it is preferable because it can be dispersed in the coating agent and has excellent photocatalytic activity such as antiviral property.
  • the method for measuring the primary particle size is a value measured by a method of directly measuring the size of the primary particle from an electron micrograph using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the photocatalyst (B) is preferably contained in an amount of 0.5% by mass or more based on the total solid content of the coating agent for paper base material or plastic base material of the present invention in order to exhibit photocatalytic activity such as antiviral property.
  • the photocatalyst (B) is preferably contained in an amount of 1% by mass or more, preferably 5% by mass or more, and preferably 10% by mass or more.
  • the photocatalyst (B) is preferably contained in an amount of 80% by mass or less based on the total solid content of the coating agent for paper base material or plastic base material of the present invention. It is preferably contained in an amount of 5% by mass or less, preferably 55% by mass or less, preferably 50% by mass or less, preferably 30% by mass or less, and most preferably 20% by mass or less.
  • Organic solvent (C) used in the coating agent for a paper base material or a plastic base material of the present invention is not particularly limited, but is an aromatic hydrocarbon-based solvent such as toluene, xylene, Solbesso # 100, and Solbesso # 150.
  • Examples thereof include various ester-based organic solvents.
  • Alcohol-based solvents such as methanol, ethanol, propanol, butanol, and isopropyl alcohol
  • ketone-based solvents such as acetone, methyl ethyl ketone, and cyclohaxanone
  • ethylene glycol (mono, di) methyl ether, and ethylene glycol (mono, di) ethyl can be used as water-mixable organic solvents.
  • Ether ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, monobutyl ether, diethylene glycol (mono, di) methyl ether, diethylene glycol (mono, di) ethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol (mono, di)
  • examples thereof include various glycol ether-based organic solvents such as di) methyl ether, propylene glycol (mono, di) methyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, and dipropylene glycol (mono, di) methyl ether. These can be used alone or in combination of two or more.
  • the coating agent for a paper base material or a plastic base material of the present invention also has a wax, a chelate cross-linking agent, an extender pigment, a leveling agent, a defoaming agent, for the purpose of imparting the desired basic physical properties to the coating agent. It can also contain plasticizers, infrared absorbers, ultraviolet absorbers, fragrances, flame retardants and the like.
  • the coating agent for a paper base material or a plastic base material of the present invention can be produced by dissolving and / or dispersing the binder resin (A), the photocatalyst (B), or the like in an organic solvent.
  • the disperser commonly used examples such as a roller mill, a ball mill, a pebble mill, an attritor, and a sand mill can be used.
  • the coating agent for a paper base material or a plastic base material of the present invention can be coated on a base material such as a plastic material, a molded product, a film base material, and a packaging material by a general coating method, specifically, gravure.
  • Roll coating gravure coater
  • flexo roll coating flexo coater
  • reverse roll coating wire bar coating, lip coating, air knife coating, curtain flow coating, spray coating, dip coating, brush coating, etc.
  • a coating layer may be provided on the base material by impregnating the base material with the overcoating agent of the present invention.
  • the viscosity may be 12 to 30 seconds at 25 ° C. using Zahn Cup # 3 manufactured by Rigo Co., Ltd., more preferably 15 to 20 seconds. be.
  • the viscosity may be as long as it is 7 to 40 seconds at 25 ° C. using Zahn Cup # 4 manufactured by Rigo Co., Ltd., and more preferably 10 to 20. Seconds.
  • the thickness of the coating layer of the present invention can be appropriately adjusted depending on the intended use and the material of the base material, but for example, the range of 0.1 ⁇ m to 5 ⁇ m is preferable, the range of 0.3 ⁇ m to 3 ⁇ m is preferable, and the range of 0.5 to 2 ⁇ m is preferable. preferable.
  • the coating layer formed by using the coating agent has a structure in which a part of the photocatalyst (B) is exposed. Cheap. Therefore, the coating layer in the present invention can maximize the antiviral function.
  • the base material used in the present invention is a paper base material or a plastic base material.
  • the paper base material is manufactured by a known paper machine using natural fibers for paper making such as wood pulp, but the paper making conditions thereof are not particularly specified.
  • natural fibers for papermaking include wood pulp such as coniferous tree pulp and broadleaf tree pulp, non-wood pulp such as Manila hemp pulp, sisal hemp pulp, and flax pulp, and pulp obtained by chemically modifying these pulps.
  • wood pulp such as coniferous tree pulp and broadleaf tree pulp
  • non-wood pulp such as Manila hemp pulp, sisal hemp pulp, and flax pulp
  • pulp obtained by chemically modifying these pulps As the type of pulp, chemical pulp, gland pulp, chemi-grand pulp, thermomechanical pulp or the like obtained by a sulfate cooking method, an acidic / neutral / alkaline sulfite cooking method, a soda salt cooking method or the like can be used.
  • various commercially available high-quality papers, coated papers, backing papers, impregnated papers, cardboards, paperboards and the like can also be used.
  • the plastic base material may be any base material used for base materials such as plastic materials, molded products, film base materials, and packaging materials, and in particular, gravure roll coating (gravure coater) and flexorol coating (flexo coater).
  • the film base material usually used in the field of gravure / flexo printing can be used as it is.
  • polyamide resins such as nylon 6, nylon 66, and nylon 46
  • PET polyethylene terephthalate
  • PET polyethylene naphthalate
  • polytrimethylene terephthalate polytrimethylene terephthalate
  • polytrimethylene naphthalate polybutylene terephthalate.
  • Polyester resins such as polybutylene naphthalate, polyhydroxycarboxylic acids such as polylactic acid, biodegradable resins such as aliphatic polyester resins such as poly (ethylene succinate) and poly (butylene succinate), polypropylene, polyethylene, etc.
  • thermoplastic resins such as polyolefin resins, polyimide resins, polyarylate resins or mixtures thereof, and laminates thereof.
  • films made of polyethylene terephthalate (PET), polyester, polyamide, polyethylene and polypropylene. can be preferably used. These base films may be unstretched films or stretched films, and the production method thereof is not limited.
  • the thickness of the base film is not particularly limited, but usually it may be in the range of 1 to 500 ⁇ m. Further, the base film is preferably subjected to a corona discharge treatment, and aluminum, silica, alumina or the like may be vapor-deposited.
  • the base material is a laminated body (sometimes referred to as a laminated film) having a laminated structure in which the paper base material or the film base material is laminated by a dry laminating method, a solvent-free laminating method, or an extrusion laminating method. It doesn't matter.
  • the structure of the laminate may include a metal foil, a metal vapor deposition film layer, an inorganic vapor deposition film layer, an oxygen absorption layer, an anchor coat layer, a printing layer, a varnish layer and the like.
  • F paper base material and film base material expressed as (F), and printing and varnish layers.
  • the single-layer paper base material or film base material, or the laminate having a laminated structure may be a functional film, a flexible packaging film, a shrink film, a film for daily necessities packaging, a film for pharmaceutical packaging, or a food product, depending on the industry and usage method.
  • the coating agent for a paper base material or a plastic base material of the present invention can be used without particular limitation. At this time, it is preferable that the coating agent for a paper base material or a plastic base material of the present invention is coated on the surface that becomes the outermost layer when a container or packaging material using these is used.
  • a laminated body having a laminated structure many laminated bodies have a printed layer on which a printed layer is applied to a paper base material or a film base material, but the coating for a paper base material or a plastic base material of the present invention is used.
  • the agent can also be coated on the substrate having the printing ink layer, which is preferable.
  • the printing ink used for the printing ink layer is not particularly limited, and coating is possible on the printing layer such as offset flat plate ink, gravure printing ink, flexo printing ink, and inkjet printing ink.
  • gravure roll coating gravure coater
  • flexo roll coating flexo coater
  • in-line printing it is industrially possible to combine it with gravure printing ink or flexo printing ink.
  • the gravure printing ink and the flexographic printing ink (hereinafter referred to as liquid printing ink) are formed of a printing ink composed of a binder resin, a pigment, a solvent, and if necessary, an additive.
  • Liquid printing inks used as gravure printing inks and flexo printing inks are roughly classified into organic solvent type liquid printing inks having an organic solvent as a main solvent and water-based liquid printing inks having water as a main solvent.
  • Organic solvent type liquid printing ink in addition to the modified pigment used in the present invention, a mixture containing a binder resin, an organic solvent medium, a dispersant, a defoaming agent, etc., which will be described later, is dispersed by a disperser to obtain a pigment dispersion. .. It is obtained by adding an additive such as a resin, an aqueous medium and, if necessary, a leveling agent to the obtained pigment dispersion and stirring and mixing.
  • an additive such as a resin, an aqueous medium and, if necessary, a leveling agent to the obtained pigment dispersion and stirring and mixing.
  • the disperser As the disperser, it is manufactured by using a bead mill, an Eiger mill, a sand mill, a gamma mill, an attritor, etc., which are generally used for manufacturing gravure and flexographic printing inks.
  • the ink viscosity of the organic solvent type liquid printing ink is 10 mPa ⁇ s or more from the viewpoint of preventing the pigment from settling and appropriately dispersing it, regardless of whether it is used as a gravure ink or a flexographic ink. From the viewpoint of workability efficiency during ink production and printing, the range is preferably 1000 mPa ⁇ s or less.
  • the viscosity is a viscosity measured at 25 ° C. with a B-type viscometer manufactured by Tokimec.
  • the viscosity of the ink can be adjusted by appropriately selecting the type and amount of raw materials used, the binder resin, the pigment, the organic solvent, and the like. Further, the viscosity of the ink can be adjusted by adjusting the particle size and the particle size distribution of the pigment in the ink.
  • the organic solvent type liquid printing ink has excellent adhesion to various base materials and can be used for printing on paper, synthetic paper, thermoplastic resin film, plastic products, steel plates, etc. It is useful as an ink for gravure printing using a gravure printing plate according to the above, or for flexo printing using a flexo printing plate using a resin plate or the like.
  • the film thickness of the printing ink formed by the gravure printing method or the flexographic printing method using the organic solvent type liquid printing ink of the present invention is, for example, 10 ⁇ m or less, preferably 5 ⁇ m or less.
  • Binder resin The binder resin for the organic solvent type liquid printing ink is not particularly limited, and is not particularly limited in general. Polyurethane resin, acrylic resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride used for general liquid printing ink.
  • -Acrylic copolymer resin chlorinated polypropylene resin, cellulose resin, polyamide resin, ethylene-vinyl acetate copolymer resin, vinyl acetate resin, styrene resin, dammar resin, styrene-maleic acid copolymer resin, polyester resin, Alkid resin, polyvinyl chloride resin, rosin resin, rosin-modified maleic acid resin, terpene resin, phenol-modified terpene resin, ketone resin, cyclized rubber, rubber chloride, butyral, polyacetal resin, petroleum resin, and modified resins thereof, etc. Can be mentioned. These resins can be used alone or in admixture of two or more.
  • a binder resin containing at least one selected from the group consisting of a styrene-maleic acid copolymer resin, a dammar resin, a rosin-based resin, a rosin-modified maleic acid resin, a ketone resin and a cyclized rubber is preferable.
  • the content of the binder resin is in the range of 1 to 50% by mass in terms of solid content, more preferably 2 to 40% by mass in terms of solid content of the aqueous liquid printing ink of the present invention.
  • the organic solvent for the organic solvent type liquid printing ink is not particularly limited, but for example, aromatic hydrocarbon-based organic solvents such as toluene, xylene, Solbesso # 100 and Solbesso # 150, hexane, methylcyclohexane, heptane, octane, etc.
  • aromatic hydrocarbon-based organic solvents such as toluene, xylene, Solbesso # 100 and Solbesso # 150, hexane, methylcyclohexane, heptane, octane, etc.
  • examples thereof include aliphatic hydrocarbon-based organic solvents such as decane, and various ester-based organic solvents such as methyl acetate, ethyl acetate, isopropyl acetate, normal propyl acetate, butyl acetate, amyl acetate, ethyl formate, and butyl propionate.
  • Alcohol-based solvents such as methanol, ethanol, propanol, butanol, and isopropyl alcohol
  • ketone-based solvents such as acetone, methyl ethyl ketone, and cyclohaxanone
  • ethylene glycol (mono, di) methyl ether, and ethylene glycol (mono, di) ethyl can be used as water-mixable organic solvents.
  • Ether ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, monobutyl ether, diethylene glycol (mono, di) methyl ether, diethylene glycol (mono, di) ethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol (mono, di)
  • examples thereof include various glycol ether-based organic solvents such as di) methyl ether, propylene glycol (mono, di) methyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, and dipropylene glycol (mono, di) methyl ether. These can be used alone or in combination of two or more.
  • Organic solvent-based liquid printing inks should also contain waxes, chelate crosslinkers, extender pigments, leveling agents, defoamers, plasticizers, infrared absorbers, UV absorbers, fragrances, flame retardants, etc., as needed. You can also.
  • the organic solvent type liquid printing ink uses the modified pigment as a colorant, but in addition, an organic pigment and / or an inorganic pigment used in general inks, paints, recording agents and the like may be used in combination. ..
  • Organic pigments include soluble azo, insoluble azo, azo, phthalocyanine, halogenated phthalocyanine, anthraquinone, anthraquinone, dianthraquinonyl, anthrapyrimidine, perylene, perinone, and quinacridone.
  • Pigments such as thioindigo-based, dioxazine-based, isoindoleinone-based, quinophthalone-based, azomethine-azo-based, flavanthron-based, diketopyrrolopyrrole-based, isoindoline-based, indanslon-based, and carbon black-based pigments can be mentioned.
  • Carmin 6B, Lake Red C, Permanent Red 2B, Disazo Yellow, Pyrazolon Orange Carmin FB, Chromophthal Yellow, Chromophthal Red, Phtalocyanin Blue, Phthalussinin Green, Dioxazine Violet, Quinacridone Magenta, Kinacridone Red, Indance.
  • Examples thereof include lonblue, pyrimidine yellow, thioindigo bordeaux, thioindigo magenta, perylene red, perinone orange, isoindolinone yellow, aniline black, diketopyrrolopyrrole red, and daylight fluorescent pigments. Further, either an acid-treated pigment or an acid-treated pigment can be used.
  • the inorganic pigment examples include white inorganic pigments such as titanium oxide, zinc oxide, zinc sulfide, barium sulfate, calcium carbonate, chromium oxide, silica, lithobon, antimony white, and gypsum.
  • white inorganic pigments such as titanium oxide, zinc oxide, zinc sulfide, barium sulfate, calcium carbonate, chromium oxide, silica, lithobon, antimony white, and gypsum.
  • titanium oxide exhibits a white color and is preferable from the viewpoints of coloring power, hiding power, chemical resistance and weather resistance, and from the viewpoint of printing performance, the titanium oxide is preferably treated with silica and / or alumina.
  • non-white inorganic pigments examples include aluminum particles, mica (mica), bronze powder, chrome vermillion, chrome yellow, cadmium yellow, cadmium red, ultramarine, navy blue, red iron oxide, yellow iron oxide, iron black, and zircon.
  • aluminum is in the form of powder or paste, it is preferably used in the form of paste from the viewpoint of handleability and safety, and whether chrome yellow or non-leafing is used is appropriately selected from the viewpoint of brightness and concentration.
  • the average particle size of the pigment is preferably in the range of 10 to 200 nm, more preferably about 50 to 150 nm.
  • the pigment is in an amount sufficient to secure the concentration and coloring power of the water-based liquid printing ink, that is, 1 to 60% by mass with respect to the total mass of the ink, and 10 to 90% by mass with respect to the solid content mass ratio in the ink. It is preferably contained in proportion. In addition, these pigments can be used alone or in combination of two or more.
  • aqueous liquid printing ink In the water-based liquid printing ink, in addition to the modified pigment used in the present invention, a mixture to which a binder resin, an aqueous medium, a dispersant, a defoaming agent and the like described later are added is dispersed by a disperser to obtain a pigment dispersion. It is obtained by adding an additive such as a resin, an aqueous medium and, if necessary, a leveling agent to the obtained pigment dispersion and stirring and mixing.
  • a water-based liquid printing ink manufactured using a bead mill, Eiger mill, sand mill, gamma mill, attritor, etc. which is generally used for manufacturing gravure and flexo printing inks as a disperser
  • the viscosity may be as long as 7 to 25 seconds at 25 ° C. using Zahn Cup # 4 manufactured by Rigo Co., Ltd., and more preferably 10 to 20 seconds.
  • the surface tension of the obtained flexographic ink at 25 ° C. is preferably 25 to 50 mN / m, more preferably 33 to 43 mN / m. The lower the surface tension of the ink, the better the wettability of the ink to the substrate such as a film.
  • the water-based liquid printing ink when used as a gravure ink, its viscosity may be 7 to 25 seconds at 25 ° C. using Zahn Cup # 3 manufactured by Rigo Co., Ltd., more preferably 10 to 20 seconds. ..
  • the surface tension of the obtained gravure ink at 25 ° C. is preferably 25 to 50 mN / m, more preferably 33 to 43 mN / m, as in the flexographic ink.
  • the lower the surface tension of the ink the better the wettability of the ink to the substrate such as a film. Tend to be easily connected, which tends to cause stains on the printed surface called a dot bridge.
  • the surface tension exceeds 50 mN / m the wettability of the ink on a substrate such as a film is lowered, which tends to cause repelling.
  • Aqueous liquid printing ink has excellent adhesion to various base materials and can be used for printing on paper, synthetic paper, thermoplastic resin film, plastic products, steel plates, etc., and is gravure by electronic engraving ingot. It is useful as an ink for gravure printing using a printing plate or flexographic printing using a flexographic printing plate using a resin plate or the like.
  • the film thickness of the printing ink formed by the gravure printing method or the flexographic printing method using the water-based liquid ink of the present invention is, for example, 10 ⁇ m or less, preferably 5 ⁇ m or less.
  • the binder resin for the water-based liquid printing ink is not particularly limited, and urethane resin, polyvinyl alcohols, polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, acrylic acid used in general water-based liquid printing inks.
  • Acrylic copolymers such as potassium-acrylonitrile copolymer, acrylic acid ester polymer emulsion, polyester urethane dispersion, vinyl acetate-acrylic acid ester copolymer, acrylic acid-acrylic acid alkyl ester copolymer; styrene- Acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid alkyl ester copolymer, styrene- ⁇ -methylstyrene-acrylic acid copolymer, styrene- ⁇ -methylstyrene-acrylic acid- Styrene-acrylic acid resin such as acrylic acid alkyl ester copolymer; styrene-maleic acid; styrene-maleic anhydride; vinylnaphthalene-acrylic acid copolymer; vinylnaphthalene-maleic acid copolymer; vinyl acetate-ethylene homo
  • an acrylic resin or a urethane resin as the binder resin because it is easily available, and an acrylic acid ester-based polymer emulsion and a polyester-based urethane dispersion are particularly preferable.
  • the binder resin is preferably 5 to 50% by mass in terms of solid content of the aqueous liquid printing ink of the present invention.
  • the binder resin is preferably 5 to 50% by mass in terms of solid content of the aqueous liquid printing ink of the present invention.
  • it is 5% by mass or more, the strength of the ink coating film does not decrease, and the adhesion to the base material, the water friction resistance, and the like are kept good.
  • it when it is 50% by mass or less, the decrease in coloring power can be suppressed, the high viscosity can be avoided, and the workability does not decrease.
  • 5 to 40% by mass is still more preferable, and 5 to 20% by mass is most preferable.
  • aqueous medium examples include water, an organic solvent miscible with water, and a mixture thereof.
  • organic solvent to be mixed with water include alcohol solvents such as methanol, ethanol, n-propanol and isopropanol; ketone solvents such as acetone and methyl ethyl ketone; polyalkylene glycols such as ethylene glycol, diethylene glycol and propylene glycol; polyalkylene glycols.
  • Alkyl ethers examples include lactam solvents such as N-methyl-2-pyrrolidone.
  • only water may be used, a mixture of water and an organic solvent miscible with water may be used, or only an organic solvent miscible with water may be used.
  • aqueous medium only water or a mixture of water and an organic solvent miscible with water is preferable, and only water is particularly preferable, from the viewpoint of safety and environmental load.
  • the water-based liquid printing ink can also contain the above-mentioned colorants, extender pigments, pigment dispersants, leveling agents, defoamers, plasticizers, infrared absorbers, ultraviolet absorbers, fragrances, flame retardants and the like.
  • fatty acid amides such as oleic acid amide, stearic acid amide, and erucic acid amide for imparting abrasion resistance and slipperiness
  • silicon-based, non-silicon-based defoaming agents and pigments for suppressing foaming during printing.
  • Various dispersants and the like that improve the wetting of the hydrate are useful.
  • the present invention will be described in more detail with reference to Examples.
  • both “part” and “%” are based on the mass standard.
  • the weight average molecular weight (in terms of polystyrene) was measured by GPC (gel permeation chromatography) in the present invention using the HLC8220 system manufactured by Tosoh Corporation under the following conditions. Separation column: Uses 4 TSKgelGMHR-N manufactured by Tosoh Corporation. Column temperature: 40 ° C. Moving layer: Tetrahydrofuran manufactured by Wako Pure Chemical Industries, Ltd. Flow rate: 1.0 ml / min. Sample concentration: 0.4% by mass. Sample injection volume: 100 microliters. Detector: Differential refractometer. The viscosity was measured at 25 ° C. with a Tokimec B-type viscometer.
  • the acid value of the wax indicates the number of milligrams of potassium hydroxide required to neutralize the acidic component contained in 1 g of the wax solid content, and each dried resin wax is subjected to potassium hydroxide according to JIS K2501. -Calculated from potentiometric titration with an ethanol solution.
  • dimer acid-modified polyamide resin solution Pa 100 parts of dimer acid (Haridimer 270S; manufactured by Harima Kasei Co., Ltd.), tall oil fatty acid (Hartol FA-1; Harima Kasei (Harima Kasei)) in a four-necked flask equipped with a stirrer, thermometer, recirculation cooler and nitrogen gas introduction tube.
  • BET specific surface area The BET specific surface area of the titanium oxide raw material was measured using a fully automatic BET specific surface area measuring device "Macsorb, HM model-1208" manufactured by Mountech Co., Ltd.
  • Rutile content rutileization rate
  • crystallinity full width at half maximum
  • the content rutile formation rate
  • crystallinity half-value full width
  • the peak height (Hr) corresponding to the rutile type crystal, the peak height (Hb) corresponding to the brookite type crystal, and the peak height (Ha) corresponding to the anatase type crystal were obtained, and titanium oxide was calculated by the following formula.
  • the content of rutile-type titanium oxide (rutileization rate) in the rutile type was determined.
  • Rutileization rate (mol%) ⁇ Hr / (Ha + Hb + Hr) ⁇ ⁇ 100
  • content of anatase-type titanium oxide (anatase conversion rate) and the content of brookite-type titanium oxide (brookite conversion rate) in titanium oxide were calculated by the following formulas, respectively.
  • Table 1 shows the measurement results of the titanium oxide raw material used.
  • the obtained sample (photocatalyst) was heated in a hydrofluoric acid solution to completely dissolve it, and the extract was quantified by ICP emission spectroscopic analysis.
  • copper ions were 0.5 parts by mass with respect to 100 parts by mass of titanium oxide. That is, the total amount of the copper ions of the feed (CuCl 2 ⁇ 2H 2 O derived) were supported on the surface of titanium oxide.
  • the sample (photocatalyst) obtained in Production Example 1 was analyzed by the following method.
  • the powder obtained by grinding the dried photocatalyst in a mortar was used as a sample.
  • X-ray diffraction measurement was performed under the conditions of 1.0167 deg and a scanning speed of 3.3 deg / min.
  • the peak height (Hr) corresponding to the rutile type crystal, the peak height (Hb) corresponding to the brookite type crystal, and the peak height (Ha) corresponding to the anatase type crystal were obtained, and titanium oxide was calculated by the following formula.
  • the content of rutile-type titanium oxide (rutileization rate) in the rutile type was determined.
  • Rutileization rate (mol%) ⁇ Hr / (Ha + Hb + Hr) ⁇ ⁇ 100
  • the strongest diffraction peak corresponding to rutile-type titanium oxide was selected, and the full width at half maximum was measured.
  • the divalent copper compound present in the sample (photocatalyst) obtained in Production Example 1 was identified by X-ray diffraction measurement using the above measuring device and measuring conditions. The results are shown in Table 2.
  • Friction resistance The friction resistance of the produced printed matter was evaluated using a robust Gakushin tester. As the friction element, copy paper was used, and the state of the surface of the printed matter after a load of 500 g and 100 reciprocations was visually determined in the following five stages.
  • the antiviral property was evaluated by the degree of inactivation of Q ⁇ phage, and the inactivation degree -2 to -5 was evaluated as having antiviral property.
  • the degree of inactivation is -1 for 90%, the degree of inactivation is -2 for 99%, and the degree of inactivation is -3 for 99.9%, indicating that the antiviral property is high.
  • the detection limit is inactivation degree -5.
  • Tables 4 to 6 show the evaluation results of the laminate using the compositions of Examples and Comparative Examples. The blanks indicate unblended.
  • the raw material names in the table are as follows. Chlorinated polyolefin solution Ep: Supercron 360T (manufactured by Nippon Paper Industries, Ltd.) Hydrophobic silica: Syricia 350D (manufactured by Fuji Silysia Chemical Ltd.) Wax 1: Mitsui High Wax 220MP (manufactured by Mitsui Chemicals, Inc.) Wax 2: Amide AP-1 (manufactured by Mitsubishi Chemical Corporation) Plasticizer 1: Eposizer W-100EL (manufactured by DIC Corporation) Plasticizer 2: ATBC Chelating agent: Olga Chix TC-100 (manufactured by Matsumoto Fine Chemical Co., Ltd.) Polyester: Barnock D-50-75 (manufactured by DIC Corporation)
  • the coating agent of the present invention can impart good antiviral properties to these substrates by a simple method, that is, simply by applying it to a paper substrate or a plastic substrate, and it is possible to impart good antiviral properties to these substrates. It has become clear that it is possible to provide sex base materials, packaging materials, containers, etc. In addition, the coating agent of the present invention can exhibit sufficient antiviral properties while maintaining adhesion and abrasion resistance.

Abstract

Provided is a coating agent for paper substrates or plastic substrates that comprises a binder resin (A), a photocatalyst (B), and an organic solvent. The photocatalyst (B) contains a divalent copper compound and a titanium oxide containing crystalline rutile titanium oxide, the crystalline rutile titanium oxide exhibiting a full width at half maximum of 0.65° or less for the most intense diffraction peak attributed to rutile titanium oxide, in a Cu-Kα line X-ray diffraction pattern, which is obtained by plotting the intensity of the diffraction line with respect to the diffraction angle 2θ, the crystalline rutile titanium oxide content in the titanium oxide being at least 50 mol%, and the anatase titanium oxide content in the titanium oxide being less than 50 mol%. The coating agent contains 0.5-80 mass% of the photocatalyst (B) with respect to the total solid content of the coating agent.

Description

紙基材用又はプラスチック基材用コーティング剤、並びに該コーティング剤のコーティング層を有する紙基材、プラスチック基材、容器及び包装材A coating agent for a paper base material or a plastic base material, and a paper base material, a plastic base material, a container and a packaging material having a coating layer of the coating agent.
 本発明は、軟包装用グラビアインキやフレキソインキとして使用可能な紙基材又はプラスチック基材用コーティング剤に関する。 The present invention relates to a coating agent for a paper base material or a plastic base material that can be used as a gravure ink for flexible packaging or a flexographic ink.
 近年、様々な基材表面への機能性付与が求められており、プラスチック材料、成形品、紙基材、フィルム基材、包装材等の表面特性の改良に必要とされている。これらの機能を基材表面に付与する方法として、表面に各種機能を有する高分子フィルム等を貼り付けるという方法が、広く知られている。しかし、この方法は、フィルム張り付けに手間がかかり、基材との密着性、加工性も不充分な場合が多く、またコスト的にも高価であった。
一方、これらの基材表面への機能性付与として、コーティングによりこれらの機能を発現させる方法も知られている。コーティング法は成形や加工前の基材はもとより、成型後や加工後の基材へ、所望する部分のみへの付与も可能であることから利便性が高い、一方で
フィルムに比べて機能性、耐性が劣る場合も多い。
 基材として、特に食品包装や生活コーティング消費材に多用されるポリエステルフィルム、ナイロンフィルム、ポリオレフィンフィルム等のフィルム基材は、撥水、撥油、防汚、帯電防止、反射防止、擦り傷防止等といった物理的機能性の他、最近では衛生的機能、例えば抗菌性、抗ウイルス性といった機能も所望され、特に新型インフルエンザやSARS(重症急性呼吸器症候群)、ノロウイルスなど、ウイルス感染対策として抗ウイルス性(ウイルス不活化性)対策は急務となっている。
 抗ウイルス性能を有するコーティング剤としては、例えば銀、亜鉛及び銅から選ばれる一種以上の酸化物と、モリブデン酸化物の複塩を含有する抗ウイルス性コーティング剤が知られている(例えば特許文献1参照)。
In recent years, it has been required to impart functionality to the surfaces of various base materials, and it is required to improve the surface properties of plastic materials, molded products, paper base materials, film base materials, packaging materials and the like. As a method of imparting these functions to the surface of a base material, a method of attaching a polymer film or the like having various functions to the surface is widely known. However, this method takes time and effort to attach the film, often has insufficient adhesion to the substrate and workability, and is expensive in terms of cost.
On the other hand, as a method of imparting functionality to the surface of these substrates, a method of expressing these functions by coating is also known. The coating method is highly convenient because it can be applied not only to the base material before molding or processing, but also to the base material after molding or processing, only to the desired part, but on the other hand, it is more functional than the film. In many cases, resistance is inferior.
As a base material, film base materials such as polyester film, nylon film, and polyolefin film, which are often used for food packaging and daily life coating consumer materials, are water repellent, oil repellent, antifouling, antistatic, antireflection, scratch prevention, etc. In addition to physical functionality, recently hygienic functions such as antibacterial and antiviral functions are also desired, and antiviral (especially) antiviral as a countermeasure against viral infections such as new influenza, SARS (severe acute respiratory syndrome), and norovirus. Measures against virus inactivation) are urgently needed.
As a coating agent having antiviral performance, for example, an antiviral coating agent containing one or more oxides selected from silver, zinc and copper and a double salt of molybdenum oxide is known (for example, Patent Document 1). reference).
 抗ウイルス性を有する材料としては、例えば光触媒が知られており、例えば光触媒等の抗ウイルス性を有する材料を固着させた布帛が知られている(例えば特許文献1参照)。しかしながら光触媒を使用したコーティング剤はまだ知られていない。 As a material having antiviral properties, for example, a photocatalyst is known, and for example, a cloth to which a material having antiviral properties such as a photocatalyst is adhered is known (see, for example, Patent Document 1). However, coating agents using photocatalysts are not yet known.
特開2018-172306号公報Japanese Unexamined Patent Publication No. 2018-172306 特開2017-155368号公報Japanese Unexamined Patent Publication No. 2017-155368
 本発明は、プラスチック材料、成形品、フィルム基材、包装材等の基材に容易に抗ウイルス性を付与可能な紙基材又はプラスチック基材用コーティング剤を提供することにある。 The present invention is to provide a coating agent for a paper base material or a plastic base material that can easily impart antiviral properties to a base material such as a plastic material, a molded product, a film base material, and a packaging material.
 即ち本発明は、バインダー樹脂(A)、光触媒(B)、及び有機溶剤を含有し、前記光触媒(B)が、結晶性ルチル型酸化チタンを含む酸化チタンと2価銅化合物とを含有し、前記結晶性ルチル型酸化チタンが、Cu-Kα線による回折角度2θに対する回折線強度をプロットしたX線回折パターンにおいて、ルチル型酸化チタンに対応する最も強い回折ピークの半値全幅が0.65度以下の酸化チタンであり、前記酸化チタン中における前記結晶性ルチル型酸化チタンの含有量が50モル%以上、アナターゼ型酸化チタンの含有量が50モル%未満である光触媒であり、コーティング剤固形分全量に対し、前記光触媒(B)0.5~80質量%含有する紙基材又はプラスチック基材用コーティング剤を提供する。 That is, the present invention contains a binder resin (A), a photocatalyst (B), and an organic solvent, and the photocatalyst (B) contains titanium oxide containing crystalline rutyl-type titanium oxide and a divalent copper compound. In the X-ray diffraction pattern in which the crystalline rutile-type titanium oxide plots the diffraction line intensity with respect to the diffraction angle 2θ by Cu—Kα rays, the half-value total width of the strongest diffraction peak corresponding to the rutile-type titanium oxide is 0.65 degrees or less. Titanium oxide is a photocatalyst in which the content of the crystalline rutyl-type titanium oxide in the titanium oxide is 50 mol% or more and the content of anatase-type titanium oxide is less than 50 mol%, and the total amount of the coating agent solid content is However, a coating agent for a paper base material or a plastic base material containing 0.5 to 80% by mass of the photocatalyst (B) is provided.
 また本発明は、前記記載のコーティング剤を紙基材及びフィルムにコーティングした紙基材又はプラスチック基材を提供する。 The present invention also provides a paper base material or a plastic base material obtained by coating the above-mentioned coating agent on a paper base material and a film.
 また本発明は、前記記載の紙基材又はプラスチック基材を使用した容器、包装材を提供する。 The present invention also provides a container and a packaging material using the above-mentioned paper base material or plastic base material.
 本発明により、プラスチック材料、成形品、フィルム基材、紙基材、包装材等の基材に、コーティングによって容易に抗ウイルス性を付与できる。 According to the present invention, antiviral properties can be easily imparted to base materials such as plastic materials, molded products, film base materials, paper base materials, and packaging materials by coating.
(言葉の定義)
 本発明において「部」とは全て「質量部」を示し、「コーティング剤全量」とは、有機溶剤等の揮発性成分をすべて含んだインキの全量を示し、「コーティング剤固形分全量」とは、揮発性成分を含まない、不揮発性成分のみの全量を示す。
(Definition of words)
In the present invention, "parts" means "parts by mass", "total amount of coating agent" means the total amount of ink containing all volatile components such as organic solvent, and "total amount of coating agent solid content" means. , Shows the total amount of non-volatile components only, without volatile components.
 (バインダー樹脂(A))
 本発明の紙基材又はプラスチック基材用コーティング剤に使用するバインダー樹脂(A)としては、硝化綿、セルロースアセテートプロピオネート(CAP)やセルロースアセテートブチロネート(CAB)などセルロース系樹脂等の繊維素系樹脂、ポリアミド系樹脂、ウレタン系樹脂、アクリル系樹脂、塩化ビニル-酢酸ビニル共重合樹脂、塩素化ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体樹脂、酢酸ビニル樹脂、ポリ塩化ビニル樹脂などの塩化ビニル系樹脂、ポリエステル樹脂、アルキッド樹脂、ロジン系樹脂、ロジン変性マレイン酸樹脂、ケトン樹脂、環化ゴム、塩化ゴム、ブチラール、石油樹脂などを挙げることができる。
(Binder resin (A))
Examples of the binder resin (A) used for the coating agent for the paper base material or the plastic base material of the present invention include nitrified cotton, cellulose acetate propionate (CAP), cellulose acetate butironate (CAB), and other cellulose-based resins. Fiber element resin, polyamide resin, urethane resin, acrylic resin, vinyl chloride-vinyl acetate copolymer resin, chlorinated polypropylene resin, ethylene-vinyl acetate copolymer resin, vinyl acetate resin, polyvinyl chloride resin, etc. Examples thereof include vinyl chloride resin, polyester resin, alkyd resin, rosin resin, rosin modified maleic acid resin, ketone resin, cyclized rubber, rubber chloride, butyral, and petroleum resin.
 (繊維素系樹脂)
 繊維素系樹脂としては、例えばセルロースアセテートプロピオネート、セルロースアセテートブチレートその他のセルロースエステル樹脂、ニトロセルロース(硝化綿ともいう)、ヒドロキシアルキルセルロース、およびカルボキシアルキルセルロース等が挙げられる。セルロースエステル樹脂はアルキル基を有することが好ましく、当該アルキル基は、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基等が挙げられ、更にアルキル基が置換基を有していてもよい。
 セルロース系樹脂としては、上記のうちセルロースアセテートプロピオネート、セルロースアセテートブチレート、およびニトロセルロースが好ましい。特に好ましくはニトロセルロースである。分子量としては重量平均分子量で5,000~200,000のものが好ましく、10,000~50,000が更に好ましい。また、ガラス転移温度が120℃~180℃であるものが好ましい。本発明のポリウレタン樹脂(A)の併用では、耐ブロッキング性、耐擦傷性その他のインキ被膜物性が向上することが期待できる。
 ニトロセルロース(硝化綿)は、天然セルロースと硝酸とを反応させて、天然セルロース中の無水グルコピラノース基の6員環中の3個の水酸基を、硝酸基に置換した硝酸エステルとして得られるものが好ましい。
(Fibrin resin)
Examples of the fiber-based resin include cellulose acetate propionate, cellulose acetate butyrate and other cellulose ester resins, nitrocellulose (also referred to as vitrified cotton), hydroxyalkyl cellulose, and carboxyalkyl cellulose. The cellulose ester resin preferably has an alkyl group, and examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, a hexyl group and the like, and further, an alkyl group. May have a substituent.
Of the above, cellulose acetate propionate, cellulose acetate butyrate, and nitrocellulose are preferable as the cellulosic resin. Particularly preferred is nitrocellulose. The molecular weight preferably has a weight average molecular weight of 5,000 to 200,000, and more preferably 10,000 to 50,000. Further, it is preferable that the glass transition temperature is 120 ° C to 180 ° C. The combined use of the polyurethane resin (A) of the present invention is expected to improve blocking resistance, scratch resistance and other ink film physical properties.
Nitrocellulose (nitrated cotton) is obtained as a nitrate ester obtained by reacting natural cellulose with nitric acid and substituting three hydroxyl groups in the 6-membered ring of anhydrous glucopyranose group in natural cellulose with nitric acid group. preferable.
 ニトロセルロース(硝化綿)を使用する事で、顔料への高い分散性が得られる事から、特に表刷り用コーティング剤として使用すれば、印刷インキ塗膜の強度を向上させることができ好適である。前記ニトロセルロース(硝化綿)としては、窒素含有量が10~13質量%、平均重合度30~500が好ましく、より好ましくは窒素含有量が10~13質量%、平均重合度45~290である。 Since high dispersibility in pigments can be obtained by using nitrocellulose (nitrated cotton), it is preferable to use it as a coating agent for front printing because it can improve the strength of the printing ink coating film. .. The nitrocellulose (nitrated cotton) preferably has a nitrogen content of 10 to 13% by mass and an average degree of polymerization of 30 to 500, and more preferably has a nitrogen content of 10 to 13% by mass and an average degree of polymerization of 45 to 290. ..
 ニトロセルロース(硝化綿)の添加量としては、インキ全量に対し0.15~40質量%であることが好ましく、さらに好ましくは1.0~35質量%である。 The amount of nitrocellulose (nitrated cotton) added is preferably 0.15 to 40% by mass, more preferably 1.0 to 35% by mass, based on the total amount of ink.
 (ポリアミド樹脂)   
 ポリアミド樹脂としては、例えば多塩基酸と多価アミンとを重縮合して得ることができる有機溶剤に可溶な熱可塑性ポリアミドである。特に、重合脂肪酸および/またはダイマー酸を含有する酸成分と、脂肪族および/または芳香族ポリアミンの反応物を含むポリアミド樹脂であることが好ましく、更には一級および二級モノアミンを一部含有するものが好ましい。   
 ポリアミド樹脂の原料で使用される多塩基酸としては、以下に限定されるものではないが、アジピン酸、セバシン酸、アゼライン酸、無水フタル酸、イソフタル酸、スベリン酸、グルタル酸、フマル酸、ピメリン酸、シュウ酸、マロン酸、コハク酸、マレイン酸、テレフタル酸、1、4-シクロヘキシルジカルボン酸、トリメリット酸、ダイマー酸、水添ダイマー酸、重合脂肪酸などが挙げられ、その中でもダイマー酸あるいは重合脂肪酸に由来する構造を主成分(ポリアミド樹脂中に50質量%以上)含有するポリアミド樹脂が好ましい。ここで、重合脂肪酸とは、不飽和脂肪酸脂肪酸の環化反応等により得られるもので、一塩基性脂肪酸、二量化重合脂肪酸(ダイマー酸)、三量化重合脂肪酸等を含むものである。なお、ダイマー酸あるいは重合脂肪酸を構成する脂肪酸は大豆油由来、パーム油由来、米糠油由来など天然油に由来するものを好適に挙げることができ、オレイン酸およびリノール酸から得られるものが好ましい。   
多塩基酸には、モノカルボン酸を併用することもできる。併用されるモノカルボン酸としては、酢酸、プロピオン酸、ラウリン酸、パルミチン酸、安息香酸、シクロヘキサンカルボン酸等が挙げられる。  
(Polyamide resin)
The polyamide resin is, for example, a thermoplastic polyamide that is soluble in an organic solvent and can be obtained by polycondensing a polybasic acid and a polyvalent amine. In particular, a polyamide resin containing a reaction product of an acid component containing a polymerized fatty acid and / or dimer acid and an aliphatic and / or aromatic polyamine, and further containing a part of primary and secondary monoamines. Is preferable.
The polybasic acid used as a raw material for a polyamide resin is not limited to the following, but is limited to adipic acid, sebacic acid, azelaic acid, phthalic acid anhydride, isophthalic acid, suberic acid, glutaric acid, fumaric acid, and pimerin. Acids, oxalic acids, malonic acids, succinic acids, maleic acids, terephthalic acids, 1,4-cyclohexyldicarboxylic acids, trimellitic acids, dimer acids, hydrogenated dimer acids, polymerized fatty acids, etc., among which dimer acids or polymerizations A polyamide resin containing a main component (50% by mass or more in the polyamide resin) of a structure derived from a fatty acid is preferable. Here, the polymerized fatty acid is obtained by a cyclization reaction of an unsaturated fatty acid fatty acid or the like, and includes a monobasic fatty acid, a dimerized fatty acid (dimeric acid), a trimerized fatty acid and the like. As the fatty acid constituting dimer acid or polymerized fatty acid, those derived from natural oil such as soybean oil, palm oil and rice bran oil can be preferably mentioned, and those obtained from oleic acid and linoleic acid are preferable.
A monocarboxylic acid can also be used in combination with the polybasic acid. Examples of the monocarboxylic acid used in combination include acetic acid, propionic acid, lauric acid, palmitic acid, benzoic acid, cyclohexanecarboxylic acid and the like.
 多価アミンとしては、ポリアミン、一級または二級モノアミンなど挙げることができる。ポリアミド樹脂に使用されるポリアミンとしてはエチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、メチルアミノプロピルアミン等の脂肪族ジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族ポリアミンを挙げることができ、脂環族ポリアミンとしては、シクロヘキシレンジアミン、イソホロンジアミン等を挙げることができる。また、芳香脂肪族ポリアミンとしてはキシリレンジアミン、芳香族ポリアミンとしてはフェニレンジアミン、ジアミノジフェニルメタン等を挙げることができる。さらに、一級及び二級モノアミンとしては、n-ブチルアミン、オクチルアミン、ジエチルアミン、モノエタノールアミン、モノプロパノールアミン、ジエタノールアミン、ジプロパノールアミンなどを挙げることができる。
 ポリアミド樹脂の添加量としては、インキ全量に対し、0.15~40質量%であることが好ましく、さらに好ましくは1.0~35質量%である。
Examples of the polyvalent amine include polyamines, primary or secondary monoamines, and the like. Examples of the polyamine used for the polyamide resin include aliphatic diamines such as ethylenediamine, propylenediamine, hexamethylenediamine and methylaminopropylamine, and aliphatic polyamines such as diethylenetriamine and triethylenetetramine. Examples of the alicyclic polyamines include aliphatic polyamines. , Cyclohexylenediamine, isophoronediamine and the like. Further, examples of the aromatic aliphatic polyamine include xylylenediamine, and examples of the aromatic polyamine include phenylenediamine and diaminodiphenylmethane. Further, examples of the primary and secondary monoamines include n-butylamine, octylamine, diethylamine, monoethanolamine, monopropanolamine, diethanolamine, dipropanolamine and the like.
The amount of the polyamide resin added is preferably 0.15 to 40% by mass, more preferably 1.0 to 35% by mass, based on the total amount of the ink.
 (ウレタン樹脂)
 ウレタン樹脂としては、ポリオールとポリイソシアネートを反応させて得たポリウレタン樹脂であれば特に限定されない。ポリオールとしては例えば、ポリウレタン樹脂の製造に一般的に用いられる各種公知のポリオールを用いることができ、1種または2種以上を併用してもよい。例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2-エチル-2ブチル-1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ペンタンジオール、3-メチル-1,5ペンタンジオール、ヘキサンジオール、オクタンジオール、1,4-ブチンジオール、1,4―ブチレンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン、トリメチロールエタン、1,2,6-ヘキサントリオール、1,2,4-ブタントリオール、ソルビトール、ペンタエスリトールなどの飽和または不飽和の低分子ポリオール類(1)、これらの低分子ポリオール類(1)と、セバシン酸、アジピン酸、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、フマル酸、こはく酸、しゅう酸、マロン酸、グルタル酸、ピメリン酸、スペリン酸、アゼライン酸、トリメリット酸、ピロメリット酸などの多価カルボン酸あるいはこれらの無水物とを脱水縮合または重合させて得られるポリエステルポリオール類(2);環状エステル化合物、例えばポリカプロラクトン、ポリバレロラクトン、ポリ(β-メチル-γ-バレロラクトン)等のラクトン類、を開環重合して得られるポリエステルポリオール類(3);前記低分子ポリオール類(1)などと、例えばジメチルカーボネート、ジフェニルカーボネート、エチレンカーボネート、ホスゲン等との反応によって得られるポリカーボネートポリオール類(4);ポリブタジエングリコール類(5);ビスフェノールAに酸化エチレンまたは酸化プロピレンを付加して得られるグリコール類(6);1分子中に1個以上のヒドロキシエチル、アクリル酸ヒドロキシプロプル、アクリルヒドロキシブチル等、或いはこれらの対応するメタクリル酸誘導体等と、例えばアクリル酸、メタクリル酸又はそのエステルとを共重合することによって得られるアクリルポリオール(7)などが挙げられる。
(Urethane resin)
The urethane resin is not particularly limited as long as it is a polyurethane resin obtained by reacting a polyol with polyisocyanate. As the polyol, for example, various known polyols generally used for producing a polyurethane resin can be used, and one kind or two or more kinds may be used in combination. For example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2-ethyl-2butyl-1,3-propanediol, 1,3-butanediol. , 1,4-Butandiol, Neopentyl Glycol, Pentandiol, 3-Methyl-1,5 Pentandiol, Hexadiol, Octanediol, 1,4-Butindiol, 1,4-butylenediol, Diethylene Glycol, Triethylene Glycol , Dipropylene glycol, glycerin, trimethylolpropane, trimethylolethane, 1,2,6-hexanetriol, 1,2,4-butanetriol, sorbitol, pentaeslitol and other saturated or unsaturated low molecular weight polyols. (1), These low-molecular-weight polyols (1), sebacic acid, adipic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, fumaric acid, succinic acid, oxalic acid, malonic acid, glutaric acid, and pimelic acid. , Polyvalent carboxylic acids such as spellic acid, azelaic acid, trimellitic acid, pyromellitic acid or polyester polyols obtained by dehydration condensation or polymerization of these anhydrides (2); cyclic ester compounds such as polycaprolactone, Polyester polyols (3) obtained by ring-opening polymerization of lactones such as polyvalerolactone and poly (β-methyl-γ-valerolactone); the low molecular weight polyols (1) and the like, for example, dimethyl carbonate, etc. Polycarbonate polyols (4) obtained by reaction with diphenyl carbonate, ethylene carbonate, phosgen, etc .; polybutadiene glycols (5); glycols obtained by adding ethylene oxide or propylene oxide to bisphenol A (6); 1 molecule Acrylic obtained by copolymerizing one or more hydroxyethyl, hydroxypropurate acrylate, acrylic hydroxybutyl, etc., or their corresponding methacrylic acid derivatives, with, for example, acrylic acid, methacrylic acid, or an ester thereof. Examples include the polyol (7).
 ポリイソシアネートとしては、ポリウレタン樹脂の製造に一般的に用いられる各種公知の芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネートなどが挙げられる。例えば、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、1-メチル-2,4-フェニレンジイソシアネート、1-メチル-2,6-フェニレンジイソシアネート、1-メチル-2,5-フェニレンジイソシアネート、1-メチル-2,6-フェニレンジイソシアネート、1-メチル-3,5-フェニレンジイソシアネート、1-エチル-2,4-フェニレンジイソシアネート、1-イソプロピル-2,4-フェニレンジイソシアネート、1,3-ジメチル-2,4-フェニレンジイソシアネート、1,3-ジメチル-4,6-フェニレンジイソシアネート、1,4-ジメチル-2,5-フェニレンジイソシアネート、ジエチルベンゼンジイソシアネート、ジイソプロピルベンゼンジイソシアネート、1-メチル-3,5-ジエチルベンゼンジイソシアネート、3-メチル-1,5-ジエチルベンゼン-2,4-ジイソシアネート、1,3,5-トリエチルベンゼン-2,4-ジイソシアネート、ナフタレン-1,4-ジイソシアネート、ナフタレン-1,5-ジイソシアネート、1-メチル-ナフタレン-1,5-ジイソシアネート、ナフタレン-2,6-ジイソシアネート、ナフタレン-2,7-ジイソシアネート、1,1-ジナフチル-2,2’-ジイソシアネート、ビフェニル-2,4’-ジイソシアネート、ビフェニル-4,4’-ジイソシアネート、3-3’-ジメチルビフェニル-4,4’-ジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、ジフェニルメタン-2,4-ジイソシアネート等の芳香族ポリイソシアネート;テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、1,3-シクロペンチレンジイソシアネート、1,3-シクロヘキシレンジイソシアネート、1,4-シクロヘキシレンジイソシアネート、1,3-ジ(イソシアネートメチル)シクロヘキサン、1,4-ジ(イソシアネートメチル)シクロヘキサン、リジンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、2,4’-ジシクロヘキシルメタンジイソシアネート、2,2’-ジシクロヘキシルメタンジイソシアネート、3,3’-ジメチル-4,4’-ジシクロヘキシルメタンジイソシアネート等の脂肪族又は脂環式ポリイソシアネートなどを用いることができる。これらのポリイソシアネートは単独で用いても2種以上を併用してもよい。これらの中でも、これらのジイソシアネート化合物は単独で、または2種以上を混合して用いることができる。 Examples of the polyisocyanate include various known aromatic diisocyanates, aliphatic diisocyanates, and alicyclic diisocyanates generally used for producing polyurethane resins. For example, 1,3-phenylenedis isocyanate, 1,4-phenylenedi isocyanate, 1-methyl-2,4-phenylenedi isocyanate, 1-methyl-2,6-phenylenediisocyanate, 1-methyl-2,5-phenylenediisocyanate, 1 -Methyl-2,6-phenylene diisocyanate, 1-methyl-3,5-phenylenedi isocyanate, 1-ethyl-2,4-phenylenedi isocyanate, 1-isopropyl-2,4-phenylenediisocyanate, 1,3-dimethyl-2 , 4-Hexamethylene diisocyanate, 1,3-dimethyl-4,6-phenylenediisocyanis, 1,4-dimethyl-2,5-phenylenediisocyanate, diethylbenzene diisocyanate, diisopropylbenzene diisocyanate, 1-methyl-3,5-diethylbenzene diisocyanate, 3-Methyl-1,5-diethylbenzene-2,4-diisocyanate, 1,3,5-triethylbenzene-2,4-diisocyanate, naphthalene-1,4-diisocyanate, naphthalene-1,5-diisocyanate, 1-methyl -Naphthalene-1,5-diisocyanate, naphthalene-2,6-diisocyanate, naphthalene-2,7-diisocyanate, 1,1-dinaphthyl-2,2'-diisocyanate, biphenyl-2,4'-diisocyanate, biphenyl-4 , 4'-Diisocyanate, 3-3'-dimethylbiphenyl-4,4'-diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, diphenylmethane-2,4-diisocyanate and other aromatic polyisocyanes Texamethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, trimethylhexamethylene diisocyanate, 1,3-cyclopentylene diisocyanate, 1,3-cyclohexamethylene diisocyanate, 1,4-cyclohexamethylene diisocyanate, 1,3-di (isocyanis). Methyl) cyclohexane, 1,4-di (hexamethylene) cyclohexane, lysine diisocyanis, isophoron diisocyanis, 4,4'-dicyclohexamethylene diisocyanate, 2,4'-dicyclohexammethane diisocyanate, 2,2'-dicyclohexammethane diisocyanis, 3, 3'-dimethyl-4,4'-dicyclohexamethylene Aliphatic compounds such as diisocyanate or alicyclic polyisocyanates can be used. These polyisocyanates may be used alone or in combination of two or more. Among these, these diisocyanate compounds can be used alone or in combination of two or more.
 また鎖伸長剤を使用することもできる。鎖伸長剤としては例えば、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、イソホロンジアミン、ジシクロヘキシルメタン-4,4’-ジアミンなどの他、2-ヒドロキシエチルエチレンジアミン、2-ヒドロキシエチルプロピルジアミン、2-ヒドロキシエチルプロピレンジアミン、ジ-2-ヒドロキシエチルエチレンジアミン、ジ-2-ヒドロキシエチレンジアミン、ジ-2-ヒドロキシエチルプロピレンジアミン、2-ヒドロキシピロピルエチレンジアミン、ジ-2-ヒドロキシピロピルエチレンジアミン、ジ-2-ヒドロキシプロピルエチレンジアミンなど分子内に水酸基を有するアミン類も用いることが出来る。これらの鎖伸長剤は単独で、または2種以上を混合して用いることができる。 It is also possible to use a chain extender. Examples of the chain extender include ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, isophoronediamine, dicyclohexylmethane-4,4'-diamine, etc., as well as 2-hydroxyethylethylenediamine and 2-hydroxyethylpropyldiamine. , 2-Hydroxyethyl propylenediamine, di-2-hydroxyethylethylenediamine, di-2-hydroxyethylenediamine, di-2-hydroxyethylpropylenediamine, 2-hydroxypyrropyrethylenediamine, di-2-hydroxypyrropyrethylenediamine, di- Amines having a hydroxyl group in the molecule, such as 2-hydroxypropylethylenediamine, can also be used. These chain extenders can be used alone or in admixture of two or more.
 また、反応停止を目的とした末端封鎖剤として、一価の活性水素化合物を用いることもできる。かかる化合物としてはたとえば、ジ-n-ブチルアミン等のジアルキルアミン類やエタノール、イソプロピルアルコール等のアルコール類があげられる。更に、特にポリウレタン樹脂中にカルボキシル基を導入したいときには、グリシン、L-アラニン等のアミノ酸を反応停止剤として用いることができる。これらの末端封鎖剤は単独で、または2種以上を混合して用いることができる。
ウレタン樹脂の重量平均分子量は10,000~100,000であることが好ましく、より好ましくは15,000~80,000の範囲である。
また、ウレタン樹脂の添加量としては、インキ全量に対し0.15~40質量%であることが好ましく、さらに好ましくは1.0~35質量%である。
Further, a monovalent active hydrogen compound can also be used as a terminal blocking agent for the purpose of stopping the reaction. Examples of such compounds include dialkylamines such as di-n-butylamine and alcohols such as ethanol and isopropyl alcohol. Further, especially when it is desired to introduce a carboxyl group into the polyurethane resin, amino acids such as glycine and L-alanine can be used as a reaction terminator. These terminal blockers can be used alone or in admixture of two or more.
The weight average molecular weight of the urethane resin is preferably 10,000 to 100,000, more preferably 15,000 to 80,000.
The amount of the urethane resin added is preferably 0.15 to 40% by mass, more preferably 1.0 to 35% by mass, based on the total amount of the ink.
 (アクリル樹脂)
 アクリル樹脂としては、(メタ)アクリル酸エステルを主成分とする重合性モノマーが共重合したものであれば特段限定されない。重合性モノマーとしては例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、iso-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、iso-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、iso-ノニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等が挙げられる。重合法も特に限定なく公知の塊状重合、溶液重合、乳化重合、懸濁重合法等で得たものを使用することができる。
 アクリル樹脂の重量平均分子量は5,000~200,000であることが好ましく、より好ましくは10,000~100,000の範囲である。
また、アクリル樹脂の添加量としては、インキ全量に対し0.15~40質量%であることが好ましく、さらに好ましくは1.0~35質量%である。
(acrylic resin)
The acrylic resin is not particularly limited as long as it is a copolymer of a polymerizable monomer containing a (meth) acrylic acid ester as a main component. Examples of the polymerizable monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and n. -Octyl (meth) acrylate, iso-octyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, iso-nonyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, methoxyethyl ( Examples thereof include meth) acrylate, ethoxyethyl (meth) acrylate, and phenoxyethyl (meth) acrylate. The polymerization method is not particularly limited, and those obtained by known bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization and the like can be used.
The weight average molecular weight of the acrylic resin is preferably 5,000 to 200,000, more preferably 10,000 to 100,000.
The amount of the acrylic resin added is preferably 0.15 to 40% by mass, more preferably 1.0 to 35% by mass, based on the total amount of the ink.
 (ポリエステル樹脂)
 ポリエステル樹脂としては、アルコールとカルボン酸とを公知のエステル化重合反応を用いて反応させてなるポリエステル樹脂であれば特段限定されない。
 アルコールとしては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2-エチル-2ブチル-1,3プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,2-ペンタンジオール、3-メチル-1,5-ペンタンジオール、ヘキサンジオール、オクタンジオール、1,4-ブチンジオール、1,4-ブチレンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン、トリメチロールエタン、1,2,6-ヘキサントリオール、1,2,4-ブタントリオール、ソルビトール、ペンタエスリトール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、スピログリコール、イソソルビド等が挙げられる。これらは単独で、または2種以上を混合して用いることができる。中でも多官能アルコールが好ましい。
 カルボン酸としては、ギ酸、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、オレイン酸、リノール酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、1,4-シクロヘキサンジカルボン酸等が挙げられる。これらは単独で、または2種以上を混合して用いることができる。中でも多官能カルボン酸が好ましい。
 ポリエステル樹脂の重量平均分子量は500~6000であることが好ましい。さらに好ましくは1400~5500である
また、ポリエステル樹脂の添加量としては、インキ全量に対し0.15~40質量%であることが好ましく、さらに好ましくは1.0~35質量%である。
(Polyester resin)
The polyester resin is not particularly limited as long as it is a polyester resin obtained by reacting an alcohol and a carboxylic acid using a known esterification polymerization reaction.
Examples of alcohols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2-ethyl-2butyl-1,3 propanediol, and 1,3-butane. Diol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,2-pentanediol, 3-methyl-1,5-pentanediol, hexanediol, octanediol, 1,4-butinediol , 1,4-butylenediol, diethylene glycol, triethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, trimethylolethane, 1,2,6-hexanetriol, 1,2,4-butanetriol, sorbitol, pentaes Examples thereof include ritol, 1,4-cyclohexanediol, 1,2-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, spiroglycol, isosorbide and the like. These can be used alone or in admixture of two or more. Of these, polyfunctional alcohols are preferable.
The carboxylic acids include formic acid, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, hepanoic acid, hexanoic acid, heptanic acid, octanoic acid, nonanoic acid, decanoic acid, oleic acid, linoleic acid, oxalic acid and malonic acid. , Succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, 1,4-cyclohexanedicarboxylic acid and the like. These can be used alone or in admixture of two or more. Of these, polyfunctional carboxylic acid is preferable.
The weight average molecular weight of the polyester resin is preferably 500 to 6000. It is more preferably 1400 to 5500, and the amount of the polyester resin added is preferably 0.15 to 40% by mass, more preferably 1.0 to 35% by mass, based on the total amount of the ink.
 (塩化ビニル-酢酸ビニル共重合樹脂)  
 塩化ビニル-酢酸ビニル共重合樹脂としては、塩化ビニルと酢酸ビニルが共重合したものであれば、特段限定されない。分子量としては重量平均分子量で5,000~100,000のものが好ましく、10,000~70,000が更に好ましい。塩化ビニル-酢酸ビニル共重合樹脂の固形分100質量%中、酢酸ビニルモノマー由来の構造は1~30質量%が好ましく、塩化ビニルモノマー由来の構造は70~95質量%であることが好ましい。この場合有機溶剤への溶解性が向上、更に基材への密着性、被膜物性、耐擦傷性等が良好となる。 
 また有機溶剤への溶解性の観点からビニルアルコール構造由来の水酸基を含むものも好ましい。水酸基価としては20~200mgKOH/gであることが好ましい。また、ガラス転移温度は50℃~90℃であることが好ましい。  
また塩化ビニル-酢酸ビニル共重合樹脂の添加量としては、インキ全量に対し0.15~40質量%であることが好ましく、さらに好ましくは1.0~35質量%である。
(Vinyl chloride-vinyl acetate copolymer resin)
The vinyl chloride-vinyl acetate copolymer resin is not particularly limited as long as it is a copolymer of vinyl chloride and vinyl acetate. The molecular weight preferably has a weight average molecular weight of 5,000 to 100,000, and more preferably 10,000 to 70,000. The structure derived from the vinyl acetate monomer is preferably 1 to 30% by mass, and the structure derived from the vinyl chloride monomer is preferably 70 to 95% by mass in the solid content of the vinyl chloride-vinyl acetate copolymer resin in an amount of 100% by mass. In this case, the solubility in an organic solvent is improved, and the adhesion to the substrate, the physical characteristics of the film, the scratch resistance and the like are improved.
Further, from the viewpoint of solubility in an organic solvent, those containing a hydroxyl group derived from a vinyl alcohol structure are also preferable. The hydroxyl value is preferably 20 to 200 mgKOH / g. The glass transition temperature is preferably 50 ° C to 90 ° C.
The amount of the vinyl chloride-vinyl acetate copolymer resin added is preferably 0.15 to 40% by mass, more preferably 1.0 to 35% by mass, based on the total amount of the ink.
 (ロジン系樹脂)
 ロジン系樹脂は、ロジン骨格を有する樹脂であれば特に限定されないが、ロジン変性マレイン酸樹脂、ロジンエステル、ロジンフェノール、重合ロジンなどが好ましい。軟化点(環球法による)が90~200℃であることが好ましい。
中でも、繊維素系樹脂、ポリアミド系樹脂、ウレタン系樹脂、アクリル系樹脂、塩化ビニル系樹脂が好ましい。特にバインダー樹脂を少なくとも二種の樹脂を含有することが好ましい。
 好ましくは、ウレタン系樹脂/塩化ビニル系樹脂、ウレタン系樹脂/繊維素系樹脂、ポリアミド系樹脂/繊維素系樹脂、アクリル系樹脂/繊維素系樹脂から選ばれる組み合わせであり、バインダー樹脂(A)100質量%中、二種の樹脂が合計で80~100質量%含むことが好ましく、さらに好ましくは90~100質量%であることが最も好ましい。
(Rosin resin)
The rosin-based resin is not particularly limited as long as it is a resin having a rosin skeleton, but rosin-modified maleic acid resin, rosin ester, rosin phenol, polymerized rosin and the like are preferable. The softening point (by the ring-and-ball method) is preferably 90 to 200 ° C.
Of these, fibrin-based resins, polyamide-based resins, urethane-based resins, acrylic-based resins, and vinyl chloride-based resins are preferable. In particular, it is preferable that the binder resin contains at least two kinds of resins.
A combination selected from urethane-based resin / vinyl chloride-based resin, urethane-based resin / fibrous-based resin, polyamide-based resin / fibrous-based resin, acrylic resin / fibrous-based resin, and binder resin (A) is preferable. The total content of the two resins in 100% by mass is preferably 80 to 100% by mass, more preferably 90 to 100% by mass.
 更に、ウレタン系樹脂/塩化ビニル系樹脂、ウレタン系樹脂/繊維素系樹脂、ポリアミド系樹脂/繊維素系樹脂、アクリル系樹脂/繊維素系樹脂は、それぞれ質量比で95/5~20/80であることが好ましい。より好ましくは質量比で90/10~50/50である。この組み合わせにより、コーティング剤に所望される基本性能である耐摩擦性、耐ブロッキング性、耐熱性、耐油等に優れる。 Furthermore, urethane-based resin / vinyl chloride-based resin, urethane-based resin / fiber-based resin, polyamide-based resin / fiber-based resin, and acrylic-based resin / fiber-based resin are 95/5 to 20/80 by mass ratio, respectively. Is preferable. More preferably, the mass ratio is 90/10 to 50/50. This combination is excellent in abrasion resistance, blocking resistance, heat resistance, oil resistance and the like, which are the basic performances desired for the coating agent.
 (硬化剤)
 また、バインダー樹脂(A)に硬化剤を併用してもよい。硬化剤としては有機溶剤系のグラビアインキで汎用の硬化剤を使用すればよいが、最もよく使用されるのはイソシアネート系の硬化剤である。
 イソシアネート化合物の添加量としては、硬化効率の観点からリキッド印刷インキ固形分に対し0.3質量%~10.0質量%の範囲が好ましく、1.0質量%~7.0質量%であればより好ましい。
 バインダー樹脂(A)は、本発明の紙基材用又はプラスチック基材用コーティング剤に対して0.15~50質量%の範囲であることが好ましく、1~40質量%の範囲で使用することが最も好ましい。
(Hardener)
Further, a curing agent may be used in combination with the binder resin (A). As the curing agent, a general-purpose curing agent may be used for organic solvent-based gravure ink, but the most commonly used is an isocyanate-based curing agent.
The amount of the isocyanate compound added is preferably in the range of 0.3% by mass to 10.0% by mass, and 1.0% by mass to 7.0% by mass, based on the solid content of the liquid printing ink from the viewpoint of curing efficiency. More preferred.
The binder resin (A) is preferably in the range of 0.15 to 50% by mass, preferably in the range of 1 to 40% by mass, based on the coating agent for paper base materials or plastic base materials of the present invention. Is the most preferable.
 (光触媒(B))
 光触媒(B)は、結晶性ルチル型酸化チタンを含む酸化チタンと2価銅化合物とを含有する光触媒であって、前記結晶性ルチル型酸化チタンが、Cu-Kα線による回折角度2θに対する回折線強度をプロットしたX線回折パターンにおいて、ルチル型酸化チタンに対応する最も強い回折ピークの半値全幅が0.65度以下の酸化チタンであり、前記酸化チタン中における前記結晶性ルチル型酸化チタンの含有量が50モル%以上、アナターゼ型酸化チタンの含有量が50モル%未満である光触媒である。
(Photocatalyst (B))
The photocatalyst (B) is a photocatalyst containing titanium oxide containing crystalline rutyl-type titanium oxide and a divalent copper compound, and the crystalline rutile-type titanium oxide is a diffraction line with respect to a diffraction angle 2θ by Cu—Kα rays. In the X-ray diffraction pattern in which the intensity is plotted, the half-value total width of the strongest diffraction peak corresponding to rutile-type titanium oxide is titanium oxide of 0.65 degrees or less, and the content of the crystalline rutile-type titanium oxide in the titanium oxide. It is a photocatalyst having an amount of 50 mol% or more and an anatase-type titanium oxide content of less than 50 mol%.
 ルチル型でありかつ結晶性の高い結晶性ルチル型酸化チタンと2価銅化合物とを組み合せて用いることにより、明所及び暗所における抗ウイルス性、明所における有機化合物分解性に優れる光触媒(可視光領域で抗ウイルス性等の光触媒活性を有する可視光応答型光触媒)を得ることができる。また、2価銅化合物は1価銅化合物のように酸化による変色のおそれが少ないため、経時的な変色も抑制することができる。 By using a combination of rutile-type and highly crystalline crystalline rutile-type titanium oxide and a divalent copper compound, a photocatalyst with excellent antiviral properties in bright and dark places and organic compound decomposition in bright places (visible). A visible light responsive photocatalyst) having photocatalytic activity such as antiviral property can be obtained in the light region. Further, since the divalent copper compound is less likely to be discolored due to oxidation like the monovalent copper compound, discoloration over time can be suppressed.
 なお、本発明において、「明所」とは、可視光の存在する箇所のことをいい、「暗所」とは、光の存在しない箇所のことをいう。 In the present invention, the "bright place" means a place where visible light exists, and the "dark place" means a place where light does not exist.
 ここで、光触媒活性とは、光誘起分解性及び光誘起親水化性から選ばれる少なくとも1種を意味する。光誘起分解性とは、酸化チタンで処理された表面に吸着している有機物を酸化分解する作用であり、光誘起親水化性とは、酸化チタンで処理された表面が水となじみ易い親水性になる作用である。この光誘起親水化性は、光励起によって生成し、拡散してきた正孔により、酸化チタン表面の水酸基が増加することによって起こると考えられる。 Here, the photocatalytic activity means at least one selected from photo-induced degradability and photo-induced hydrophilization. Photo-induced degradability is the action of oxidatively decomposing organic substances adsorbed on the surface treated with titanium oxide, and photo-induced hydrophilicity is the hydrophilicity of the surface treated with titanium oxide that is easily compatible with water. It is an action to become. It is considered that this photoinduced hydrophilicity is caused by the increase of hydroxyl groups on the surface of titanium oxide due to the holes generated and diffused by photoexcitation.
 また、ウイルスとは、DNAウイルス及びRNAウイルスを意昧するが、細菌に感染するウイルスであるバクテリオファージ(以下、「ファージ」と略記することもある)も包含する。 The virus means a DNA virus and an RNA virus, but also includes a bacteriophage (hereinafter, may be abbreviated as "phage") which is a virus that infects bacteria.
 次に、光触媒(B)の各成分について説明する。
(酸化チタン)
 光触媒(B)に用いる酸化チタンは、結晶性ルチル型酸化チタンを含むものである。
Next, each component of the photocatalyst (B) will be described.
(Titanium oxide)
The titanium oxide used in the photocatalyst (B) contains crystalline rutile-type titanium oxide.
 本発明において、結晶性ルチル型酸化チタンとは、Cu-Kα線による回折角度2θに対する回折線強度をプロットしたX線回折パターンにおいて、ルチル型酸化チタンに対応する最も強い回折ピークの半値全幅が0.65度以下の酸化チタンのことを意味する。 In the present invention, the crystalline rutile-type titanium oxide is an X-ray diffraction pattern in which the diffraction line intensity with respect to the diffraction angle 2θ by Cu—Kα rays is plotted, and the half-value full width of the strongest diffraction peak corresponding to the rutile-type titanium oxide is 0. It means titanium oxide of .65 degrees or less.
 半値全幅が0.65度よりも大きいと、結晶性が悪くなり、暗所における抗ウイルス性が十分に発現しなくなる。この観点から、半値全幅は、好ましくは0.6度以下であり、より好ましくは0.5度以下であり、更に好ましくは0.4度以下であり、より更に好ましくは0.35度である。 If the full width at half maximum is larger than 0.65 degrees, the crystallinity deteriorates and the antiviral property in the dark is not sufficiently expressed. From this point of view, the full width at half maximum is preferably 0.6 degrees or less, more preferably 0.5 degrees or less, still more preferably 0.4 degrees or less, still more preferably 0.35 degrees. ..
 酸化チタン中における、結晶性ルチル型酸化チタンの含有量(以下、「ルチル化率」ということがある)は、50モル%以上である。含有量が50モル%以上であると、得られる光触媒の、明所及び暗所における抗ウイルス性が十分なものとなり、また、明所における有機化合物分解性や、特に可視光応答性も十分なものとなる。この観点から、ルチル化率は、好ましくは90モル%以上であり、さらに好ましくは94モル%以上である。このルチル化率は、後述するとおり、XRDによって測定した値である。 The content of crystalline rutile-type titanium oxide in titanium oxide (hereinafter, may be referred to as "rutileization rate") is 50 mol% or more. When the content is 50 mol% or more, the antiviral property of the obtained photocatalyst in a bright place and a dark place becomes sufficient, and the organic compound decomposing property in the bright place and particularly the visible light responsiveness are also sufficient. It becomes a thing. From this viewpoint, the rutileization rate is preferably 90 mol% or more, more preferably 94 mol% or more. This rutile formation rate is a value measured by XRD as described later.
 上記観点から、酸化チタン中におけるアナターゼ型酸化チタンの含有量(以下、「アナターゼ化率」ということがある)は少ないことが好ましく、アナターゼ化率は、50モル%未満であり、好ましくは10モル%未満であり、より好ましくは7モル%未満であり、更に好ましくは0モル%(すなわち、アナターゼ型酸化チタンを含まない)である。このアナターゼ化率もルチル化率と同様に、XRDによって測定した値である。 From the above viewpoint, the content of anatase-type titanium oxide in titanium oxide (hereinafter, may be referred to as “anatase formation rate”) is preferably low, and the anatase formation rate is less than 50 mol%, preferably 10 mol. %, More preferably less than 7 mol%, still more preferably 0 mol% (ie, free of anatase-type titanium oxide). This anatase formation rate is also a value measured by XRD in the same manner as the rutile formation rate.
 酸化チタンの比表面積は、好ましくは1~200m/gである。1m/g以上であると、比表面積が大きいためウイルス、菌及び有機化合物との接触頻度が大きくなり、得られる光触媒の、明所及び暗所における抗ウイルス性や、有機化合物分解性及び抗菌性が優れる。一方、200m/g以下であると、取扱性に優れている。これらの観点から、酸化チタンの比表面積は、より好ましくは3~100m/gであり、更に好ましくは4~70m/gであり、特に好ましくは8~50m/gである。ここで比表面積とは、窒素吸着によるBET法にて測定した値である。 The specific surface area of titanium oxide is preferably 1 to 200 m 2 / g. When it is 1 m 2 / g or more, the specific surface area is large, so that the frequency of contact with viruses, fungi and organic compounds increases, and the obtained photocatalyst has antiviral properties in bright and dark places, organic compound degradability and antibacterial properties. Excellent in sex. On the other hand, when it is 200 m 2 / g or less, the handleability is excellent. From these viewpoints, the specific surface area of titanium oxide is more preferably 3 to 100 m 2 / g, further preferably 4 to 70 m 2 / g, and particularly preferably 8 to 50 m 2 / g. Here, the specific surface area is a value measured by the BET method by nitrogen adsorption.
 酸化チタンには、気相法で製造されたものと液相法で製造されたものがあり、そのいずれを用いることもできるが、気相法で製造された酸化チタンがより好適である。 Titanium oxide includes those produced by the vapor phase method and those produced by the liquid phase method, and either of them can be used, but titanium oxide produced by the vapor phase method is more preferable.
 気相法は、四塩化チタンを原料として、酸素との気相反応により酸化チタンを得る方法である。気相法で得られた酸化チタンは、粒子径が均一であると同時に、製造時に高温プロセスを経由しているため、結晶性が高いものとなる。その結果、得られる光触媒の、明所及び暗所における抗ウイルス性や、有機化合物分解性及び抗菌性が良好なものとなる。 The gas phase method is a method of obtaining titanium oxide by a gas phase reaction with oxygen using titanium tetrachloride as a raw material. Titanium oxide obtained by the vapor phase method has a uniform particle size and at the same time has high crystallinity because it goes through a high temperature process during production. As a result, the obtained photocatalyst has good antiviral properties, organic compound decomposability and antibacterial properties in bright and dark places.
 一方、液相法は、塩化チタン、硫酸チタニルなどの酸化チタン原料を溶解した液を、加水分解または中和して酸化チタンを得る方法である。液相法で製造された酸化チタンは、ルチルの結晶性が低く比表面積が大きくなる傾向にあり、この場合、焼成等を行って最適な結晶性及び比表面積を有する酸化チタンにすればよいが、手間がかかるため、気相法の方がより好適である。 On the other hand, the liquid phase method is a method for obtaining titanium oxide by hydrolyzing or neutralizing a liquid in which a titanium oxide raw material such as titanium chloride or titanyl sulfate is dissolved. Titanium oxide produced by the liquid phase method tends to have a low crystallinity of rutile and a large specific surface area. In this case, it may be calcined to obtain titanium oxide having optimum crystallinity and specific surface area. The vapor phase method is more preferable because it takes time and effort.
 酸化チタンとしては、市販されている酸化チタンをそのまま使用するほうが、触媒調製の工程を考えると有利である。 As titanium oxide, it is more advantageous to use commercially available titanium oxide as it is, considering the process of catalyst preparation.
(2価銅化合物)
 光触媒(B)は、2価銅化合物を含む。この2価銅化合物単独では、明所及び暗所における抗ウイルス性、明所における有機化合物分解性、可視光応答性を有しないが、前述した結晶性ルチル型酸化チタンと組み合わせることにより、明所及び暗所における抗ウイルス性、明所における有機化合物分解性、及び可視光応答性が十分に発現する。また、この2価銅化合物は、1価銅化合物と比べて酸化等による変色が少ないため、この2価銅化合物を用いた光触媒は、変色が抑制される。
(Divalent copper compound)
The photocatalyst (B) contains a divalent copper compound. This divalent copper compound alone does not have antiviral properties in bright and dark places, organic compound degradability in bright places, and visible light responsiveness, but by combining with the above-mentioned crystalline rutile-type titanium oxide, it is possible to make bright spots. And antiviral property in the dark, organic compound decomposition property in the light place, and visible light responsiveness are sufficiently expressed. Further, since the divalent copper compound has less discoloration due to oxidation or the like than the monovalent copper compound, the photocatalyst using this divalent copper compound suppresses the discoloration.
 2価銅化合物には、特に限定はなく、2価銅無機化合物及び2価銅有機化合物の1種又は2種が挙げられる。 The divalent copper compound is not particularly limited, and examples thereof include one or two types of a divalent copper inorganic compound and a divalent copper organic compound.
 2価銅無機化合物としては、硫酸銅、硝酸銅、沃素酸銅、過塩素酸銅、シュウ酸銅、四ホウ酸銅、硫酸アンモニウム銅、アミド硫酸銅及び塩化アンモニウム銅、ピロリン酸銅、炭酸銅からなる2価銅の無機酸塩、塩化銅、フッ化銅及び臭化銅からなる2価銅のハロゲン化物、並びに酸化銅、硫化銅、アズライト、マラカイト及びアジ化銅からなる群から選択される1種又は2種以上が挙げられる。 Divalent copper Inorganic compounds include copper sulfate, copper nitrate, copper iodide, copper perchlorate, copper oxalate, copper tetraborate, copper ammonium sulfate, copper amide sulfate and copper ammonium chloride, copper pyrophosphate, and copper carbonate. 1 selected from the group consisting of an inorganic acid salt of divalent copper, a halide of divalent copper composed of copper chloride, copper fluoride and copper bromide, and a group consisting of copper oxide, copper sulfide, azurite, malakite and copper azide. Species or two or more species are mentioned.
 2価銅有機化合物としては、2価銅のカルボン酸塩が挙げられる。この2価銅のカルボン酸塩としては、蟻酸銅、酢酸銅、プロピオン酸銅、酪酸銅、吉草酸銅、カプロン酸銅、エナント酸銅、カプリル酸銅、ペラルゴン酸銅、カプリン酸銅、ミスチン酸銅、パルミチン酸銅、マルガリン酸銅、ステアリン酸銅、オレイン酸銅、乳酸銅、リンゴ酸銅、クエン酸銅、安息香酸銅、フタル酸銅、イソフタル酸銅、テレフタル酸銅、サリチル酸銅、メリト酸銅、シュウ酸銅、マロン酸銅、コハク酸銅、グルタル酸銅、アジピン酸銅、フマル酸銅、グリコール酸銅、グリセリン酸銅、グルコン酸銅、酒石酸銅、アセチルアセトン銅、エチルアセト酢酸銅、イソ吉草酸銅、β‐レゾルシル酸銅、ジアセト酢酸銅、ホルミルコハク酸銅、サリチルアミン酸銅、ビス(2-エチルヘキサン酸)銅、セバシン酸銅及びナフテン酸銅からなる群から選択される1種又は2種以上が挙げられる。その他の2価銅有機化合物としては、オキシン銅、アセチルアセトン銅、エチルアセト酢酸銅、トリフルオロメタンスルホン酸銅、フタロシアニン銅、銅エトキシド、銅イソプロポキシド、銅メトキシド、及びジメチルジチオカルバミン酸銅からなる群から選択される1種又は2種以上が挙げられる。 Examples of the divalent copper organic compound include a divalent copper carboxylate. Examples of the carboxylate of divalent copper include copper formate, copper acetate, copper propionate, copper butyrate, copper valerate, copper caproate, copper enanthate, copper caprylate, copper pelargonate, copper capricate, and mistinic acid. Copper, copper palmitate, copper margarate, copper stearate, copper oleate, copper lactate, copper malate, copper citrate, copper benzoate, copper phthalate, copper isophthalate, copper terephthalate, copper salicylate, melitonic acid Copper, copper oxalate, copper malonate, copper succinate, copper glutarate, copper adipate, copper fumarate, copper glycolate, copper glycerate, copper gluconate, copper tartrate, acetylacetone copper, ethylacetate acetate, isokichi One selected from the group consisting of copper herbate, β-resorcylate copper, diacetate acetate copper, formyl succinate copper, salicylamine acid copper, bis (2-ethylhexanoic acid) copper, sebacate copper and naphthenate copper or Two or more types can be mentioned. Other divalent copper organic compounds are selected from the group consisting of oxine copper, acetylacetone copper, ethylacetoacetate copper, trifluoromethanesulfonate copper, phthalocyanine copper, copper ethoxydo, copper isopropoxide, copper methoxyde, and copper dimethyldithiocarbamate. One kind or two or more kinds are mentioned.
 上記2価銅化合物のうち、好ましくは酸化銅、2価銅のハロゲン化物、2価銅の無機酸塩及び2価銅のカルボン酸塩の1種又は2種以上であり、例えば2価銅のハロゲン化物、2価銅の無機酸塩及び2価銅のカルボン酸塩の1種又は2種以上である。 Among the above divalent copper compounds, preferably one or more of copper oxide, a halide of divalent copper, an inorganic acid salt of divalent copper and a carboxylate of divalent copper, for example, divalent copper. A halide, one or more of an inorganic acid salt of divalent copper and a carboxylate of divalent copper.
 また、2価銅化合物としては、下記一般式(1)で表される2価銅化合物が挙げられる。
      Cu(OH)X          (1)

 一般式(1)において、Xは陰イオンであり、好ましくはCl、Br、I等のハロゲン、CHCOO等のカルボン酸の共役塩基、NO、(SO1/2等の無機酸の共役塩基、又はOHである。
Further, examples of the divalent copper compound include a divalent copper compound represented by the following general formula (1).
Cu 2 (OH) 3 X (1)

In the general formula (1), X is an anion, preferably a halogen such as Cl, Br, I, a conjugate base of a carboxylic acid such as CH 3 COO, or an inorganic acid such as NO 3 , (SO 4 ) 1/2. Conjugate base, or OH.
 これらの2価銅化合物のうち、より不純物が少なく、経済的な観点から、2価銅無機化合物がより好ましく、酸化銅が更に好ましい。また、上記一般式(1)で表される2価銅化合物も好ましい。2価銅化合物は、無水物であっても水和物であってもよい。 Of these divalent copper compounds, divalent copper inorganic compounds are more preferable, and copper oxide is further preferable, from the viewpoint of less impurities and economic viewpoint. Further, a divalent copper compound represented by the above general formula (1) is also preferable. The divalent copper compound may be anhydrous or hydrated.
 2価銅化合物の銅換算含有量は、前記酸化チタン100質量部に対して、好ましくは0.01~20質量部である。0.01質量部以上であると、明所及び暗所における抗ウイルス性、有機化合物分解性及び抗菌性が良好なものとなる。また、20質量部以下であると、酸化チタン表面が被覆されてしまうことが防止されて光触媒としての機能(有機化合物分解性、抗菌性等)が良好に発現すると共に、少量で抗ウイルス性能を向上することができて経済的である。この観点から、2価銅化合物の銅換算含有量は、酸化チタン100質量部に対して、より好ましくは0.1~20質量部であり、更に好ましくは0.1~15質量部であり、より更に好ましくは0.3~10質量部である。 The copper equivalent content of the divalent copper compound is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the titanium oxide. When it is 0.01 part by mass or more, the antiviral property, the organic compound decomposing property and the antibacterial property in a bright place and a dark place become good. Further, when the amount is 20 parts by mass or less, the surface of titanium oxide is prevented from being covered, the function as a photocatalyst (organic compound decomposability, antibacterial property, etc.) is satisfactorily exhibited, and the antiviral performance is improved with a small amount. It can be improved and is economical. From this viewpoint, the copper equivalent content of the divalent copper compound is more preferably 0.1 to 20 parts by mass, still more preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of titanium oxide. Even more preferably, it is 0.3 to 10 parts by mass.
 ここで、この酸化チタン100質量部に対する2価銅化合物の銅換算含有量は、2価銅化合物の原料と酸化チタンの原料との仕込み量から算出することができる。また、この銅換算含有量は、後述するICP(誘導結合プラズマ)発光分光分析により光触媒を測定することで特定することもできる。 Here, the copper equivalent content of the divalent copper compound with respect to 100 parts by mass of this titanium oxide can be calculated from the charged amount of the raw material of the divalent copper compound and the raw material of titanium oxide. The copper equivalent content can also be specified by measuring the photocatalyst by ICP (inductively coupled plasma) emission spectroscopy, which will be described later.
 光触媒(B)は、前述のとおり、必須成分として、結晶性ルチル型酸化チタンを含む酸化チタンと2価銅化合物とを含有するが、本発明の目的を阻害しない範囲内において、他の任意成分を含有していてもよい。ただし、光触媒としての機能及び抗ウイルス性能の向上の観点から、光触媒(B)中における当該必須成分の含有量は、好ましくは90質量%以上であり、より好ましくは95質量%以上であり、更に好ましくは99質量%以上であり、更に好ましくは100質量%である。 As described above, the photocatalyst (B) contains titanium oxide containing crystalline rutile-type titanium oxide and a divalent copper compound as essential components, but other optional components as long as the object of the present invention is not impaired. May be contained. However, from the viewpoint of improving the function as a photocatalyst and the antiviral performance, the content of the essential component in the photocatalyst (B) is preferably 90% by mass or more, more preferably 95% by mass or more, and further. It is preferably 99% by mass or more, and more preferably 100% by mass.
 光触媒(B)は、結晶性ルチル型酸化チタンを含む酸化チタンと、2価銅化合物原料とを混合する混合工程を実施することにより、製造することができる。また、この混合工程によって得られた混合物を熱処理する熱処理工程を更に実施して、光触媒を得てもよい。また、銅化合物の水溶液中に酸化チタンを懸濁させて、吸着させることによって、光触媒を得ることもできる。具体的には、光触媒(B)は、特許第5343176号公報に記載の方法により製造できる。 The photocatalyst (B) can be produced by carrying out a mixing step of mixing titanium oxide containing crystalline rutile-type titanium oxide and a raw material for a divalent copper compound. Further, a heat treatment step of heat-treating the mixture obtained by this mixing step may be further carried out to obtain a photocatalyst. A photocatalyst can also be obtained by suspending titanium oxide in an aqueous solution of a copper compound and adsorbing it. Specifically, the photocatalyst (B) can be produced by the method described in Japanese Patent No. 5343176.
 光触媒(B)の一次粒子径は概ね200~400nmの範囲、2次粒子径は概ね3~10μ程度であると、コーティング剤に分散でき且つ抗ウイルス性等の光触媒活性に優れることから好ましい。
 なお1次粒子径の測定方法は、透過型電子顕微鏡(TEM)を使用して、電子顕微鏡写真から一次粒子の大きさを直接計測する方法で測定した値である。
 光触媒(B)は、抗ウイルス性等の光触媒活性を発現するために、本発明の紙基材用又はプラスチック基材用コーティング剤固形分全量に対し、0.5質量%以上含有することが好ましく、1質量%以上含有することが好ましく、5質量%以上含有することが好ましく、10質量%以上含有することが好ましい。一方、密着性及び耐摩擦性の低下を防ぐために、光触媒(B)は本発明の紙基材用又はプラスチック基材用コーティング剤固形分全量に対し、80質量%以下含有することが好ましく、60質量%以下含有することが好ましく、55質量%以下含有することが好ましく、50質量%以下含有することが好ましく、30質量%以下含有することが好ましく、20質量%以下含有することが最も好ましい。
When the primary particle size of the photocatalyst (B) is in the range of about 200 to 400 nm and the secondary particle size is about 3 to 10 μm, it is preferable because it can be dispersed in the coating agent and has excellent photocatalytic activity such as antiviral property.
The method for measuring the primary particle size is a value measured by a method of directly measuring the size of the primary particle from an electron micrograph using a transmission electron microscope (TEM).
The photocatalyst (B) is preferably contained in an amount of 0.5% by mass or more based on the total solid content of the coating agent for paper base material or plastic base material of the present invention in order to exhibit photocatalytic activity such as antiviral property. It is preferably contained in an amount of 1% by mass or more, preferably 5% by mass or more, and preferably 10% by mass or more. On the other hand, in order to prevent deterioration of adhesion and abrasion resistance, the photocatalyst (B) is preferably contained in an amount of 80% by mass or less based on the total solid content of the coating agent for paper base material or plastic base material of the present invention. It is preferably contained in an amount of 5% by mass or less, preferably 55% by mass or less, preferably 50% by mass or less, preferably 30% by mass or less, and most preferably 20% by mass or less.
 (有機溶剤(C))
 本発明の紙基材用又はプラスチック基材用コーティング剤で使用する有機溶剤(C)としては、特に制限はないが、たとえばトルエン、キシレン、ソルベッソ#100、ソルベッソ#150等の芳香族炭化水素系有機溶剤、ヘキサン、メチルシクロヘキサン、ヘプタン、オクタン、デカン等の脂肪族炭化水素系有機溶剤、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ノルマルプロピル、酢酸ブチル、酢酸アミル、ギ酸エチル、プロピオン酸ブチル等のエステル系の各種有機溶剤が挙げられる。また水混和性有機溶剤としてメタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール等のアルコール系、アセトン、メチルエチルケトン、シクロハキサノン等のケトン系、エチレングリコール(モノ,ジ)メチルエーテル、エチレングリコール(モノ,ジ)エチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、モノブチルエーテル、ジエチレングリコール(モノ,ジ)メチルエーテル、ジエチレングリコール(モノ,ジ)エチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール(モノ,ジ)メチルエーテル、プロピレングリコール(モノ,ジ)メチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコール(モノ,ジ)メチルエーテル等のグリコールエーテル系の各種有機溶剤が挙げられる。これらを単独または2種以上を混合しても用いることができる。
(Organic solvent (C))
The organic solvent (C) used in the coating agent for a paper base material or a plastic base material of the present invention is not particularly limited, but is an aromatic hydrocarbon-based solvent such as toluene, xylene, Solbesso # 100, and Solbesso # 150. Organic solvents, hexane, methylcyclohexane, heptane, octane, decane and other aliphatic hydrocarbon organic solvents, methyl acetate, ethyl acetate, isopropyl acetate, normal propyl acetate, butyl acetate, amyl acetate, ethyl formate, butyl propionate and the like. Examples thereof include various ester-based organic solvents. Alcohol-based solvents such as methanol, ethanol, propanol, butanol, and isopropyl alcohol, ketone-based solvents such as acetone, methyl ethyl ketone, and cyclohaxanone, ethylene glycol (mono, di) methyl ether, and ethylene glycol (mono, di) ethyl can be used as water-mixable organic solvents. Ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, monobutyl ether, diethylene glycol (mono, di) methyl ether, diethylene glycol (mono, di) ethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol (mono, di) Examples thereof include various glycol ether-based organic solvents such as di) methyl ether, propylene glycol (mono, di) methyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, and dipropylene glycol (mono, di) methyl ether. These can be used alone or in combination of two or more.
 尚、印刷時の作業衛生性と包装材料の有害性の両面から、酢酸エチル、酢酸プロピル、イソプロパノール、ノルマルプロパノールなどを使用し、トルエン等の芳香族溶剤やメチルエチルケトン等のケトン系溶剤を使用しない事がより好ましい。 In terms of work hygiene during printing and harmfulness of packaging materials, use ethyl acetate, propyl acetate, isopropanol, normal propanol, etc., and do not use aromatic solvents such as toluene or ketone solvents such as methyl ethyl ketone. Is more preferable.
 中でもポリウレタン樹脂、硝化綿への溶解性の観点から、イソプロピルアルコール/酢酸エチル/メトキシプロパノールの混合液がより好ましい。また、乾燥調整のためにインキ全量の10質量%未満であればグリコールエーテル類を添加する事も出来る。
本発明の紙基材用又はプラスチック基材用コーティング剤は、その他、コーティング剤に所望される基本物性を付与することを目的として、ワックス、キレート架橋剤、体質顔料、レベリング剤、消泡剤、可塑剤、赤外線吸収剤、紫外線吸収剤、芳香剤、難燃剤なども含むこともできる。
Of these, a mixed solution of isopropyl alcohol / ethyl acetate / methoxypropanol is more preferable from the viewpoint of solubility in polyurethane resin and nitrified cotton. Further, glycol ethers can be added as long as it is less than 10% by mass of the total amount of ink for drying adjustment.
The coating agent for a paper base material or a plastic base material of the present invention also has a wax, a chelate cross-linking agent, an extender pigment, a leveling agent, a defoaming agent, for the purpose of imparting the desired basic physical properties to the coating agent. It can also contain plasticizers, infrared absorbers, ultraviolet absorbers, fragrances, flame retardants and the like.
 (紙基材用又はプラスチック基材用コーティング剤の製造方法)
 本発明の紙基材用又はプラスチック基材用コーティング剤は、前記バインダー樹脂(A)や光触媒(B)等を有機溶剤中に溶解及び/又は分散することにより製造することができる。分散機としては、一般に使用される、例えば、ローラーミル、ボールミル、ペブルミル、アトライター、サンドミルなどを用いることができる。
(Manufacturing method of coating agent for paper base material or plastic base material)
The coating agent for a paper base material or a plastic base material of the present invention can be produced by dissolving and / or dispersing the binder resin (A), the photocatalyst (B), or the like in an organic solvent. As the disperser, commonly used examples such as a roller mill, a ball mill, a pebble mill, an attritor, and a sand mill can be used.
 本発明の紙基材用又はプラスチック基材用コーティング剤は、一般的なコーティング方法によりプラスチック材料、成形品、フィルム基材、包装材等の基材にコーティング可能である、具体的には、グラビアロールコーティング(グラビアコーター)、フレキソロールコーティング(フレキソコーター)、リバースロールコーティング、ワイヤーバーコーティング、リップコーティング、エアナイフコーティング、カーテンフローコーティング、スプレーコーティング、浸漬コーティング、はけ塗り法等が採用できる。中でも工業的観点から、グラビアロールコーティング(グラビアコーター)、フレキソロールコーティング(フレキソコーター)を使用することが好ましい。 The coating agent for a paper base material or a plastic base material of the present invention can be coated on a base material such as a plastic material, a molded product, a film base material, and a packaging material by a general coating method, specifically, gravure. Roll coating (gravure coater), flexo roll coating (flexo coater), reverse roll coating, wire bar coating, lip coating, air knife coating, curtain flow coating, spray coating, dip coating, brush coating, etc. can be adopted. Above all, from an industrial point of view, it is preferable to use a gravure roll coating (gravure coater) and a flexo roll coating (flexo coater).
 また、基材を本発明のオーバーコーティング剤に含浸させることにより、基材上にコーティング層を設けてもよい。
 本発明のコーティング剤を、グラビアコーターを用いてコーティングする場合、その粘度が離合社製ザーンカップ#3を使用し25℃にて12~30秒であればよく、より好ましくは15~20秒である。
 また、本発明のコーティング剤を、フレキソコーターを用いてコーティングする場合、その粘度が離合社製ザーンカップ#4を使用し25℃にて7~40秒であればよく、より好ましくは10~20秒である。
Further, a coating layer may be provided on the base material by impregnating the base material with the overcoating agent of the present invention.
When the coating agent of the present invention is coated using a gravure coater, the viscosity may be 12 to 30 seconds at 25 ° C. using Zahn Cup # 3 manufactured by Rigo Co., Ltd., more preferably 15 to 20 seconds. be.
Further, when the coating agent of the present invention is coated using a flexo coater, the viscosity may be as long as it is 7 to 40 seconds at 25 ° C. using Zahn Cup # 4 manufactured by Rigo Co., Ltd., and more preferably 10 to 20. Seconds.
 本発明のコーティング層の厚みは、用途や基材の材質により適宜調整できるが、例えば0.1μm~5μmの範囲が好ましく、0.3μm~3μmの範囲が好ましく、0.5~2μmの範囲が好ましい。 The thickness of the coating layer of the present invention can be appropriately adjusted depending on the intended use and the material of the base material, but for example, the range of 0.1 μm to 5 μm is preferable, the range of 0.3 μm to 3 μm is preferable, and the range of 0.5 to 2 μm is preferable. preferable.
 本発明の紙基材用又はプラスチック基材用コーティング剤は分散性に優れていることから、該コーティング剤を用いて形成されたコーティング層において、光触媒(B)の一部が露出される構造となりやすい。そのため、本発明におけるコーティング層は抗ウイルス機能を最大限に発揮することができる。   Since the coating agent for a paper base material or a plastic base material of the present invention has excellent dispersibility, the coating layer formed by using the coating agent has a structure in which a part of the photocatalyst (B) is exposed. Cheap. Therefore, the coating layer in the present invention can maximize the antiviral function. The
(本発明の紙基材用又はプラスチック基材用コーティング剤)
 本発明で使用する基材は、紙基材またはプラスチック基材である。
(Coating agent for paper base material or plastic base material of the present invention)
The base material used in the present invention is a paper base material or a plastic base material.
(紙基材)
 紙基材は、木材パルプ等の製紙用天然繊維を用いて公知の抄紙機にて製造されるが、その抄紙条件は特に規定されるものではない。製紙用天然繊維としては、針葉樹パルプ、広葉樹パルプ等の木材パルプ、マニラ麻パルプ、サイザル麻パルプ、亜麻パルプ等の非木材パルプ、およびそれらのパルプに化学変性を施したパルプ等が挙げられる。パルプの種類としては、硫酸塩蒸解法、酸性・中性・アルカリ性亜硫酸塩蒸解法、ソーダ塩蒸解法等による化学パルプ、グランドパルプ、ケミグランドパルプ、サーモメカニカルパルプ等を使用することができる。   
 また、市販の各種上質紙やコート紙、裏打ち紙、含浸紙、ボール紙や板紙などを用いることもできる。
(Paper base material)
The paper base material is manufactured by a known paper machine using natural fibers for paper making such as wood pulp, but the paper making conditions thereof are not particularly specified. Examples of natural fibers for papermaking include wood pulp such as coniferous tree pulp and broadleaf tree pulp, non-wood pulp such as Manila hemp pulp, sisal hemp pulp, and flax pulp, and pulp obtained by chemically modifying these pulps. As the type of pulp, chemical pulp, gland pulp, chemi-grand pulp, thermomechanical pulp or the like obtained by a sulfate cooking method, an acidic / neutral / alkaline sulfite cooking method, a soda salt cooking method or the like can be used.
Further, various commercially available high-quality papers, coated papers, backing papers, impregnated papers, cardboards, paperboards and the like can also be used.
 (プラスチック基材)
 プラスチック基材は、プラスチック材料、成形品、フィルム基材、包装材等の基材に使用される基材であればよいが、特に、グラビアロールコーティング(グラビアコーター)、フレキソロールコーティング(フレキソコーター)を使用する場合には、グラビア・フレキソ印刷分野で通常使用されているフィルム基材をそのまま使用できる。
 具体的には例えば、ナイロン6、ナイロン66、ナイロン46等のポリアミド樹脂、ポリエチレンテレフタレート(以下PETと称する場合がある)、ポリエチレンナフタレート、ポリトリメチレンテレフタレート、ポリトリメチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート等のポリエステル系樹脂、ポリ乳酸等のポリヒドロキシカルボン酸、ポリ(エチレンサクシネート)、ポリ(ブチレンサクシネート)等の脂肪族ポリエステル系樹脂などの生分解性樹脂、ポリプロピレン、ポリエチレン等のポリオレフィン樹脂、ポリイミド樹脂、ポリアリレート樹脂又はそれらの混合物等の熱可塑性樹脂よりなるフィルムやこれらの積層体が挙げられるが、中でも、ポリエチレンテレフタレート(PET)、ポリエステル、ポリアミド、ポリエチレン、ポリプロピレンからなるフィルムが好適に使用できる。これらの基材フィルムは、未延伸フィルムでも延伸フィルムでもよく、その製法も限定されるものではない。また、基材フィルムの厚さも特に限定されるものではないが、通常は1~500μmの範囲であればよい。また基材フィルムにはコロナ放電処理がされていることが好ましく、アルミ、シリカ、アルミナ等が蒸着されていてもよい。
(Plastic base material)
The plastic base material may be any base material used for base materials such as plastic materials, molded products, film base materials, and packaging materials, and in particular, gravure roll coating (gravure coater) and flexorol coating (flexo coater). When using, the film base material usually used in the field of gravure / flexo printing can be used as it is.
Specifically, for example, polyamide resins such as nylon 6, nylon 66, and nylon 46, polyethylene terephthalate (hereinafter sometimes referred to as PET), polyethylene naphthalate, polytrimethylene terephthalate, polytrimethylene naphthalate, and polybutylene terephthalate. Polyester resins such as polybutylene naphthalate, polyhydroxycarboxylic acids such as polylactic acid, biodegradable resins such as aliphatic polyester resins such as poly (ethylene succinate) and poly (butylene succinate), polypropylene, polyethylene, etc. Examples thereof include films made of thermoplastic resins such as polyolefin resins, polyimide resins, polyarylate resins or mixtures thereof, and laminates thereof. Among them, films made of polyethylene terephthalate (PET), polyester, polyamide, polyethylene and polypropylene. Can be preferably used. These base films may be unstretched films or stretched films, and the production method thereof is not limited. Further, the thickness of the base film is not particularly limited, but usually it may be in the range of 1 to 500 μm. Further, the base film is preferably subjected to a corona discharge treatment, and aluminum, silica, alumina or the like may be vapor-deposited.
 また基材は、前記紙基材やフィルム基材をドライラミネート法や無溶剤ラミネート法、あるいは押出ラミネート法により積層させた積層構造を有する積層体(積層フィルムと称される場合もある)であっても構わない。また該積層体の構成に、金属箔、金属蒸着膜層、無機蒸着膜層、酸素吸収層、アンカーコート層、印刷層、ニス層等があっても構わない。このような積層体は用途に応じて多種存在するが、現在食品包装用や生活用品に最も多く使用される構成は、紙基材やフィルム基材を(F)と表現し、印刷やニス層を(P)と表現し、金属箔や蒸着膜層の金属あるいは無機層を(M)と表現し、接着剤層を(AD)、ホットメルト接着剤やヒートシール剤やコールドシール剤を(AD2)と表現すると、積層フィルムの具体的態様として以下の構成が考えられるが、もちろんこれに限定されることはない。 The base material is a laminated body (sometimes referred to as a laminated film) having a laminated structure in which the paper base material or the film base material is laminated by a dry laminating method, a solvent-free laminating method, or an extrusion laminating method. It doesn't matter. Further, the structure of the laminate may include a metal foil, a metal vapor deposition film layer, an inorganic vapor deposition film layer, an oxygen absorption layer, an anchor coat layer, a printing layer, a varnish layer and the like. There are various types of such laminates depending on the application, but the most commonly used configurations for food packaging and daily necessities are the paper base material and film base material expressed as (F), and printing and varnish layers. Is expressed as (P), the metal or inorganic layer of the metal foil or vapor-deposited film layer is expressed as (M), the adhesive layer is expressed as (AD), and the hot melt adhesive, heat sealant or cold sealant is expressed as (AD2). ), The following configuration can be considered as a specific embodiment of the laminated film, but of course, the present invention is not limited to this.
(F)/(P)/(F)
(F)/(P)/(AD)/(F)、
(F)/(P)/(AD)/(F)/(AD)/(F)、
(F)/(P)/(AD)/(M)/(AD)/(F)、
(F)/(P)/(AD)/(M)、
(F)/(P)/(AD)/(F)/(AD)/(M)/(AD)/(F)、
(F)/(P)/(AD)/(M)/(AD)/(F)/(AD)/(F)、
(M)/(P)/(AD)/(M)、
(M)/(P)/(AD)/(F)/(AD)/(M)、
(P)/(F)
(P)/(F)/(P)
(P)/(F)/(AD)/(F)、
(P)/(F)/(AD)/(F)/(AD)/(F)
(F)/(P)/(F)/(AD2)
(F)/(P)/(AD2)
(F)/(P)/(AD)/(M)/(AD2)
(F) / (P) / (F)
(F) / (P) / (AD) / (F),
(F) / (P) / (AD) / (F) / (AD) / (F),
(F) / (P) / (AD) / (M) / (AD) / (F),
(F) / (P) / (AD) / (M),
(F) / (P) / (AD) / (F) / (AD) / (M) / (AD) / (F),
(F) / (P) / (AD) / (M) / (AD) / (F) / (AD) / (F),
(M) / (P) / (AD) / (M),
(M) / (P) / (AD) / (F) / (AD) / (M),
(P) / (F)
(P) / (F) / (P)
(P) / (F) / (AD) / (F),
(P) / (F) / (AD) / (F) / (AD) / (F)
(F) / (P) / (F) / (AD2)
(F) / (P) / (AD2)
(F) / (P) / (AD) / (M) / (AD2)
 前記単層の紙基材あるいはフィルム基材、積層構造を有する積層体は、業界や使用方法等により、機能性フィルム、軟包装フィルム、シュリンクフィルム、生活用品包装用フィルム、医薬品包装用フィルム、食品包装用フィルム、、カートン、ポスター、チラシ、CDジャケット、ダイレクトメール、パンフレット、化粧品や飲料、医薬品、おもちゃ、機器等のパッケージ等に用いられる上質紙、コート紙、アート紙、模造紙、薄紙、厚紙等の紙、各種合成紙等様々な表現がなされているが、本発明の紙基材又はプラスチック基材用コーティング剤は特に限定なく使用することができる。この際本発明の紙基材又はプラスチック基材用コーティング剤は、これらを使用した容器や包装材とした際に最表層となる面にコーティングされることが好ましい。 The single-layer paper base material or film base material, or the laminate having a laminated structure may be a functional film, a flexible packaging film, a shrink film, a film for daily necessities packaging, a film for pharmaceutical packaging, or a food product, depending on the industry and usage method. High-quality paper, coated paper, art paper, imitation paper, thin paper, thick paper used for packaging of packaging films, cartons, posters, leaflets, CD jackets, direct mail, brochures, cosmetics and beverages, pharmaceuticals, toys, equipment, etc. Although various expressions such as paper such as paper and various synthetic papers are used, the coating agent for a paper base material or a plastic base material of the present invention can be used without particular limitation. At this time, it is preferable that the coating agent for a paper base material or a plastic base material of the present invention is coated on the surface that becomes the outermost layer when a container or packaging material using these is used.
 前述の通り、積層構造を有する積層体として、紙基材やフィルム基材には印刷層が施された印刷層を有する積層体も多いが、本発明の紙基材用又はプラスチック基材用コーティング剤は、該印刷インキ層を有する基材上にコーティングすることももちろんでき好ましい。 As described above, as a laminated body having a laminated structure, many laminated bodies have a printed layer on which a printed layer is applied to a paper base material or a film base material, but the coating for a paper base material or a plastic base material of the present invention is used. Of course, the agent can also be coated on the substrate having the printing ink layer, which is preferable.
 印刷インキ層に使用される印刷インキには特に限定はなく、オフセット平版インキ、グラビア印刷インキ、フレキソ印刷インキ、インクジェット印刷インキ等の印刷層上にコーティングは可能である。特に、コーティング方法つぃてグラビアロールコーティング(グラビアコーター)、フレキソロールコーティング(フレキソコーター)を使用する場合には、インライン印刷が可能であることからグラビア印刷インキやフレキソ印刷インキと組み合わせることが、工業的に好ましい。
 グラビア印刷インキやフレキソ印刷インキ(以後リキッド印刷インキと称する)は、バインダー樹脂、顔料、溶剤、必要に応じて添加剤からなる印刷インキから形成される。
The printing ink used for the printing ink layer is not particularly limited, and coating is possible on the printing layer such as offset flat plate ink, gravure printing ink, flexo printing ink, and inkjet printing ink. In particular, when using gravure roll coating (gravure coater) or flexo roll coating (flexo coater) as the coating method, in-line printing is possible, so it is industrially possible to combine it with gravure printing ink or flexo printing ink. Is preferable.
The gravure printing ink and the flexographic printing ink (hereinafter referred to as liquid printing ink) are formed of a printing ink composed of a binder resin, a pigment, a solvent, and if necessary, an additive.
 (リキッド印刷インキ)
 グラビア印刷インキやフレキソ印刷インキとして使用されるリキッド印刷インキは、有機溶剤を主溶媒とする有機溶剤型リキッド印刷インキと、水を主溶媒とする水性リキッド印刷インキとに大別される。
(Liquid printing ink)
Liquid printing inks used as gravure printing inks and flexo printing inks are roughly classified into organic solvent type liquid printing inks having an organic solvent as a main solvent and water-based liquid printing inks having water as a main solvent.
 (有機溶剤型リキッド印刷インキ)
 有機溶剤型リキッド印刷インキは、本発明で使用する変性顔料の他、後述のバインダー樹脂、有機溶剤媒体、分散剤、消泡剤等を添加した混合物を分散機で分散し、顔料分散体を得る。得られた顔料分散体に樹脂、水性媒体、必要に応じてレベリング剤等の添加剤を加え、撹拌混合することで得られる。分散機としてはグラビア、フレキソ印刷インキの製造に一般的に使用されているビーズミル、アイガーミル、サンドミル、ガンマミル、アトライター等を用いて製造される。
(Organic solvent type liquid printing ink)
In the organic solvent type liquid printing ink, in addition to the modified pigment used in the present invention, a mixture containing a binder resin, an organic solvent medium, a dispersant, a defoaming agent, etc., which will be described later, is dispersed by a disperser to obtain a pigment dispersion. .. It is obtained by adding an additive such as a resin, an aqueous medium and, if necessary, a leveling agent to the obtained pigment dispersion and stirring and mixing. As the disperser, it is manufactured by using a bead mill, an Eiger mill, a sand mill, a gamma mill, an attritor, etc., which are generally used for manufacturing gravure and flexographic printing inks.
 有機溶剤型リキッド印刷インキのインキ粘度は、グラビアインキとして使用する場合であっても、フレキソインキとして使用する場合であっても、顔料の沈降を防ぎ、適度に分散させる観点から10mPa・s以上、インキ製造時や印刷時の作業性効率の観点から1000mPa・s以下の範囲であることが好ましい。尚、上記粘度はトキメック社製B型粘度計で25℃において測定された粘度である。 The ink viscosity of the organic solvent type liquid printing ink is 10 mPa · s or more from the viewpoint of preventing the pigment from settling and appropriately dispersing it, regardless of whether it is used as a gravure ink or a flexographic ink. From the viewpoint of workability efficiency during ink production and printing, the range is preferably 1000 mPa · s or less. The viscosity is a viscosity measured at 25 ° C. with a B-type viscometer manufactured by Tokimec.
 インキの粘度は、使用される原材料の種類や量、バインダー樹脂、顔料、有機溶剤などを適宜選択することにより調整することができる。また、インキ中の顔料の粒度および粒度分布を調節することによりインキの粘度を調整することもできる。 The viscosity of the ink can be adjusted by appropriately selecting the type and amount of raw materials used, the binder resin, the pigment, the organic solvent, and the like. Further, the viscosity of the ink can be adjusted by adjusting the particle size and the particle size distribution of the pigment in the ink.
 (印刷物の作成)
 有機溶剤型リキッド印刷インキは、各種の基材と密着性に優れ、紙、合成紙、熱可塑性樹脂フィルム、プラスチック製品、鋼板等への印刷に使用することができるものであり、電子彫刻凹版等によるグラビア印刷版を用いたグラビア印刷用、又は樹脂版等によるフレキソ印刷版を用いたフレキソ印刷用のインキとして有用である。
(Creation of printed matter)
The organic solvent type liquid printing ink has excellent adhesion to various base materials and can be used for printing on paper, synthetic paper, thermoplastic resin film, plastic products, steel plates, etc. It is useful as an ink for gravure printing using a gravure printing plate according to the above, or for flexo printing using a flexo printing plate using a resin plate or the like.
 本発明の有機溶剤型リキッド印刷インキを用いてグラビア印刷方式やフレキソ印刷方式から形成される印刷インキの膜厚は、例えば10μm以下、好ましくは5μm以下である。 The film thickness of the printing ink formed by the gravure printing method or the flexographic printing method using the organic solvent type liquid printing ink of the present invention is, for example, 10 μm or less, preferably 5 μm or less.
 (バインダー樹脂)
 有機溶剤型リキッド印刷インキ用のバインダー樹脂としては特に限定なく、一般の特に限定なく一般のリキッド印刷インキに使用される、ポリウレタン系樹脂、アクリル樹脂、塩化ビニル-酢酸ビニル系共重合樹脂、塩化ビニル-アクリル系共重合体樹脂、塩素化ポリプロピレン樹脂、セルロース系樹脂、ポリアミド樹脂、エチレン-酢酸ビニル共重合体樹脂、酢酸ビニル樹脂、スチレン樹脂、ダンマル樹脂、スチレン-マレイン酸共重合樹脂、ポリエステル樹脂、アルキッド樹脂、ポリ塩化ビニル樹脂、ロジン系樹脂、ロジン変性マレイン酸樹脂、テルペン樹脂、フェノール変性テルペン樹脂、ケトン樹脂、環化ゴム、塩化ゴム、ブチラール、ポリアセタール樹脂、石油樹脂、およびこれらの変性樹脂などを挙げることができる。これらの樹脂は、単独で、または2種以上を混合して用いることができる。
(Binder resin)
The binder resin for the organic solvent type liquid printing ink is not particularly limited, and is not particularly limited in general. Polyurethane resin, acrylic resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride used for general liquid printing ink. -Acrylic copolymer resin, chlorinated polypropylene resin, cellulose resin, polyamide resin, ethylene-vinyl acetate copolymer resin, vinyl acetate resin, styrene resin, dammar resin, styrene-maleic acid copolymer resin, polyester resin, Alkid resin, polyvinyl chloride resin, rosin resin, rosin-modified maleic acid resin, terpene resin, phenol-modified terpene resin, ketone resin, cyclized rubber, rubber chloride, butyral, polyacetal resin, petroleum resin, and modified resins thereof, etc. Can be mentioned. These resins can be used alone or in admixture of two or more.
 上記の中でも、ポリウレタン系樹脂、セルロース系樹脂、ポリアミド樹脂、塩化ビニル-酢酸ビニル共重合樹脂、塩化ビニル-アクリル共重合樹脂、エチレン-酢酸ビニル共重合体樹脂、酢酸ビニル樹脂、アクリル樹脂、スチレン樹脂、スチレン-マレイン酸共重合樹脂、ダンマル樹脂、ロジン系樹脂、ロジン変性マレイン酸樹脂、ケトン樹脂および環化ゴムからなる群より選ばれる少なくとも一種を含むバインダー樹脂が好ましい。
バインダー樹脂の含有量は、本発明の水性リキッド印刷インキの固形分換算で固形分換算で1~50質量%の範囲であり、更に好ましくは2~40質量%である。
Among the above, polyurethane resin, cellulose resin, polyamide resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride-acrylic copolymer resin, ethylene-vinyl acetate copolymer resin, vinyl acetate resin, acrylic resin, styrene resin. , A binder resin containing at least one selected from the group consisting of a styrene-maleic acid copolymer resin, a dammar resin, a rosin-based resin, a rosin-modified maleic acid resin, a ketone resin and a cyclized rubber is preferable.
The content of the binder resin is in the range of 1 to 50% by mass in terms of solid content, more preferably 2 to 40% by mass in terms of solid content of the aqueous liquid printing ink of the present invention.
  (有機溶剤)
 有機溶剤型リキッド印刷インキ用の有機溶剤としては、特に制限はないが、たとえばトルエン、キシレン、ソルベッソ#100、ソルベッソ#150等の芳香族炭化水素系有機溶剤、ヘキサン、メチルシクロヘキサン、ヘプタン、オクタン、デカン等の脂肪族炭化水素系有機溶剤、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ノルマルプロピル、酢酸ブチル、酢酸アミル、ギ酸エチル、プロピオン酸ブチル等のエステル系の各種有機溶剤が挙げられる。また水混和性有機溶剤としてメタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール等のアルコール系、アセトン、メチルエチルケトン、シクロハキサノン等のケトン系、エチレングリコール(モノ,ジ)メチルエーテル、エチレングリコール(モノ,ジ)エチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、モノブチルエーテル、ジエチレングリコール(モノ,ジ)メチルエーテル、ジエチレングリコール(モノ,ジ)エチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール(モノ,ジ)メチルエーテル、プロピレングリコール(モノ,ジ)メチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコール(モノ,ジ)メチルエーテル等のグリコールエーテル系の各種有機溶剤が挙げられる。これらを単独または2種以上を混合しても用いることができる。
(Organic solvent)
The organic solvent for the organic solvent type liquid printing ink is not particularly limited, but for example, aromatic hydrocarbon-based organic solvents such as toluene, xylene, Solbesso # 100 and Solbesso # 150, hexane, methylcyclohexane, heptane, octane, etc. Examples thereof include aliphatic hydrocarbon-based organic solvents such as decane, and various ester-based organic solvents such as methyl acetate, ethyl acetate, isopropyl acetate, normal propyl acetate, butyl acetate, amyl acetate, ethyl formate, and butyl propionate. Alcohol-based solvents such as methanol, ethanol, propanol, butanol, and isopropyl alcohol, ketone-based solvents such as acetone, methyl ethyl ketone, and cyclohaxanone, ethylene glycol (mono, di) methyl ether, and ethylene glycol (mono, di) ethyl can be used as water-mixable organic solvents. Ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, monobutyl ether, diethylene glycol (mono, di) methyl ether, diethylene glycol (mono, di) ethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol (mono, di) Examples thereof include various glycol ether-based organic solvents such as di) methyl ether, propylene glycol (mono, di) methyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, and dipropylene glycol (mono, di) methyl ether. These can be used alone or in combination of two or more.
 有機溶剤型リキッド印刷インキでは更に必要に応じて、ワックス、キレート系架橋剤、体質顔料、レベリング剤、消泡剤、可塑剤、赤外線吸収剤、紫外線吸収剤、芳香剤、難燃剤なども含むこともできる。 Organic solvent-based liquid printing inks should also contain waxes, chelate crosslinkers, extender pigments, leveling agents, defoamers, plasticizers, infrared absorbers, UV absorbers, fragrances, flame retardants, etc., as needed. You can also.
 (着色剤)
有機溶剤型リキッド印刷インキは、着色剤として前記変性顔料を使用するが、そのほかに、一般のインキ、塗料、及び記録剤などに使用されている有機顔料及び/または無機顔料を併用してもよい。
有機顔料としては、溶性アゾ系、不溶性アゾ系、アゾ系、フタロシアニン系、ハロゲン化フタロシアニン系、アントラキノン系、アンサンスロン系、ジアンスラキノニル系、アンスラピリミジン系、ペリレン系、ペリノン系、キナクリドン系、チオインジゴ系、ジオキサジン系、イソインドリノン系、キノフタロン系、アゾメチンアゾ系、フラバンスロン系、ジケトピロロピロール系、イソインドリン系、インダンスロン系、カーボンブラック系などの顔料が挙げられる。また、例えば、カーミン6B、レーキレッドC、パーマネントレッド2B、ジスアゾイエロー、ピラゾロンオレンジ、カーミンFB、クロモフタルイエロー、クロモフタルレッド、フタロシアニンブルー、フタロシアニングリーン、ジオキサジンバイオレット、キナクリドンマゼンタ、キナクリドンレッド、インダンスロンブルー、ピリミジンイエロー、チオインジゴボルドー、チオインジゴマゼンタ、ペリレンレッド、ペリノンオレンジ、イソインドリノンイエロー、アニリンブラック、ジケトピロロピロールレッド、昼光蛍光顔料等が挙げられる。また未酸性処理顔料、酸性処理顔料のいずれも使用することができる。
(Colorant)
The organic solvent type liquid printing ink uses the modified pigment as a colorant, but in addition, an organic pigment and / or an inorganic pigment used in general inks, paints, recording agents and the like may be used in combination. ..
Organic pigments include soluble azo, insoluble azo, azo, phthalocyanine, halogenated phthalocyanine, anthraquinone, anthraquinone, dianthraquinonyl, anthrapyrimidine, perylene, perinone, and quinacridone. Pigments such as thioindigo-based, dioxazine-based, isoindoleinone-based, quinophthalone-based, azomethine-azo-based, flavanthron-based, diketopyrrolopyrrole-based, isoindoline-based, indanslon-based, and carbon black-based pigments can be mentioned. Also, for example, Carmin 6B, Lake Red C, Permanent Red 2B, Disazo Yellow, Pyrazolon Orange, Carmin FB, Chromophthal Yellow, Chromophthal Red, Phtalocyanin Blue, Phthalussinin Green, Dioxazine Violet, Quinacridone Magenta, Kinacridone Red, Indance. Examples thereof include lonblue, pyrimidine yellow, thioindigo bordeaux, thioindigo magenta, perylene red, perinone orange, isoindolinone yellow, aniline black, diketopyrrolopyrrole red, and daylight fluorescent pigments. Further, either an acid-treated pigment or an acid-treated pigment can be used.
 無機顔料としては、酸化チタン、酸化亜鉛、硫化亜鉛、硫酸バリウム、炭酸カルシウム、酸化クロム、シリカ、リトボン、アンチモンホワイト、石膏などの白色無機顔料が挙げられる。無機顔料の中では酸化チタンの使用が特に好ましい。酸化チタンは白色を呈し、着色力、隠ぺい力、耐薬品性、耐候性の点から好ましく、印刷性能の観点から該酸化チタンはシリカおよび/またはアルミナ処理を施されているものが好ましい。  
 白色以外の無機顔料としては、例えば、アルミニウム粒子、マイカ(雲母)、ブロンズ粉、クロムバーミリオン、黄鉛、カドミウムイエロー、カドミウムレッド、群青、紺青、ベンガラ、黄色酸化鉄、鉄黒、ジルコンが挙げられ、アルミニウムは粉末またはペースト状であるが、取扱い性および安全性の面からペースト状で使用するのが好ましく、リーフィングまたはノンリーフィングを使用するかは輝度感および濃度の点から適宜選択される。   
 前記顔料の平均粒子径は、10~200nmの範囲にあるものが好ましくより好ましくは50~150nm程度のものである。
 前記顔料は、水性リキッド印刷インキの濃度・着色力を確保するのに充分な量、すなわちインキの総質量に対して1~60質量%、インキ中の固形分質量比では10~90質量%の割合で含まれることが好ましい。また、これらの顔料は単独で、または2種以上を併用して用いることができる。
Examples of the inorganic pigment include white inorganic pigments such as titanium oxide, zinc oxide, zinc sulfide, barium sulfate, calcium carbonate, chromium oxide, silica, lithobon, antimony white, and gypsum. Among the inorganic pigments, the use of titanium oxide is particularly preferable. Titanium oxide exhibits a white color and is preferable from the viewpoints of coloring power, hiding power, chemical resistance and weather resistance, and from the viewpoint of printing performance, the titanium oxide is preferably treated with silica and / or alumina.
Examples of non-white inorganic pigments include aluminum particles, mica (mica), bronze powder, chrome vermillion, chrome yellow, cadmium yellow, cadmium red, ultramarine, navy blue, red iron oxide, yellow iron oxide, iron black, and zircon. Although aluminum is in the form of powder or paste, it is preferably used in the form of paste from the viewpoint of handleability and safety, and whether chrome yellow or non-leafing is used is appropriately selected from the viewpoint of brightness and concentration.
The average particle size of the pigment is preferably in the range of 10 to 200 nm, more preferably about 50 to 150 nm.
The pigment is in an amount sufficient to secure the concentration and coloring power of the water-based liquid printing ink, that is, 1 to 60% by mass with respect to the total mass of the ink, and 10 to 90% by mass with respect to the solid content mass ratio in the ink. It is preferably contained in proportion. In addition, these pigments can be used alone or in combination of two or more.
 (水性リキッド印刷インキ)
 水性リキッド印刷インキは、本発明で使用する変性顔料の他、後述のバインダー樹脂、水性媒体、分散剤、消泡剤等を添加した混合物を分散機で分散し、顔料分散体を得る。得られた顔料分散体に樹脂、水性媒体、必要に応じてレベリング剤等の添加剤を加え、撹拌混合することで得られる。分散機としてはグラビア、フレキソ印刷インキの製造に一般的に使用されているビーズミル、アイガーミル、サンドミル、ガンマミル、アトライター等を用いて製造される
 水性リキッド印刷インキを、フレキソインキとして使用する場合、その粘度が離合社製ザーンカップ#4を使用し25℃にて7~25秒であればよく、より好ましくは10~20秒である。また、得られたフレキソインキの25℃における表面張力は、25~50mN/mが好ましく、33~43mN/mであればより好ましい。インキの表面張力が低いほどフィルム等の基材へのインキの濡れ性は向上するが、表面張力が25mN/mを下回るとインキの濡れ広がりにより、中間調の網点部分で隣り合う網点どうしが繋がり易い傾向にあり、ドットブリッジと呼ばれる印刷面の汚れの原因と成りやすい。一方、表面張力が50mN/mを上回るとフィルム等の基材へのインキの濡れ性が低下し、ハジキの原因と成り易い。
(Aqueous liquid printing ink)
In the water-based liquid printing ink, in addition to the modified pigment used in the present invention, a mixture to which a binder resin, an aqueous medium, a dispersant, a defoaming agent and the like described later are added is dispersed by a disperser to obtain a pigment dispersion. It is obtained by adding an additive such as a resin, an aqueous medium and, if necessary, a leveling agent to the obtained pigment dispersion and stirring and mixing. When a water-based liquid printing ink manufactured using a bead mill, Eiger mill, sand mill, gamma mill, attritor, etc., which is generally used for manufacturing gravure and flexo printing inks as a disperser, is used as flexographic ink. The viscosity may be as long as 7 to 25 seconds at 25 ° C. using Zahn Cup # 4 manufactured by Rigo Co., Ltd., and more preferably 10 to 20 seconds. The surface tension of the obtained flexographic ink at 25 ° C. is preferably 25 to 50 mN / m, more preferably 33 to 43 mN / m. The lower the surface tension of the ink, the better the wettability of the ink to the substrate such as a film. Tend to be easily connected, which tends to cause stains on the printed surface called a dot bridge. On the other hand, when the surface tension exceeds 50 mN / m, the wettability of the ink on a substrate such as a film is lowered, which tends to cause repelling.
 一方で水性リキッド印刷インキを、グラビアインキとして使用する場合、その粘度が離合社製ザーンカップ#3を使用し25℃にて7~25秒であればよく、より好ましくは10~20秒である。また、得られたグラビアインキの25℃における表面張力は、フレキソインキと同様に25~50mN/mが好ましく、33~43mN/mであればより好ましい。インキの表面張力が低いほどフィルム等の基材へのインキの濡れ性は向上するが、表面張力が25mN/mを下回るとインキの濡れ広がりにより、中間調の網点部分で隣り合う網点どうしが繋がり易い傾向にあり、ドットブリッジと呼ばれる印刷面の汚れの原因と成りやすい。一方、表面張力が50mN/mを上回るとフィルム等の基材へのインキの濡れ性が低下し、ハジキの原因と成り易い。 On the other hand, when the water-based liquid printing ink is used as a gravure ink, its viscosity may be 7 to 25 seconds at 25 ° C. using Zahn Cup # 3 manufactured by Rigo Co., Ltd., more preferably 10 to 20 seconds. .. The surface tension of the obtained gravure ink at 25 ° C. is preferably 25 to 50 mN / m, more preferably 33 to 43 mN / m, as in the flexographic ink. The lower the surface tension of the ink, the better the wettability of the ink to the substrate such as a film. Tend to be easily connected, which tends to cause stains on the printed surface called a dot bridge. On the other hand, when the surface tension exceeds 50 mN / m, the wettability of the ink on a substrate such as a film is lowered, which tends to cause repelling.
 (印刷物の作成)
 水性リキッド印刷インキは、各種の基材と密着性に優れ、紙、合成紙、熱可塑性樹脂フィルム、プラスチック製品、鋼板等への印刷に使用することができるものであり、電子彫刻凹版等によるグラビア印刷版を用いたグラビア印刷用、又は樹脂版等によるフレキソ印刷版を用いたフレキソ印刷用のインキとして有用である。
(Creation of printed matter)
Aqueous liquid printing ink has excellent adhesion to various base materials and can be used for printing on paper, synthetic paper, thermoplastic resin film, plastic products, steel plates, etc., and is gravure by electronic engraving ingot. It is useful as an ink for gravure printing using a printing plate or flexographic printing using a flexographic printing plate using a resin plate or the like.
 本発明の水性リキッドインキを用いてグラビア印刷方式やフレキソ印刷方式から形成される印刷インキの膜厚は、例えば10μm以下、好ましくは5μm以下である。 The film thickness of the printing ink formed by the gravure printing method or the flexographic printing method using the water-based liquid ink of the present invention is, for example, 10 μm or less, preferably 5 μm or less.
 (バインダー樹脂)
 水性リキッド印刷インキ用のバインダー樹脂としては特に限定なく、一般の水性リキッド印刷インキに使用される、ウレタン樹脂、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリロニトリル共重合体、アクリル酸カリウム-アクリロニトリル共重合体、アクリル酸エステル系重合体エマルジョン、ポリエステル系ウレタンディスパージョン、酢酸ビニル-アクリル酸エステル共重合体、アクリル酸-アクリル酸アルキルエステル共重合体などのアクリル共重合体;スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸アルキルエステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、スチレン-α-メチルスチレン-アクリル酸-アクリル酸アルキルエステル共重合体などのスチレン-アクリル酸樹脂;スチレン-マレイン酸;スチレン-無水マレイン酸;ビニルナフタレン-アクリル酸共重合体;ビニルナフタレン-マレイン酸共重合体;酢酸ビニル-エチレン共重合体、酢酸ビニル-脂肪酸ビニルエチレン共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体及びこれらの塩を使用することができる。これらのバインダ―樹脂は、単独で、または2種以上を混合して用いることができる。
(Binder resin)
The binder resin for the water-based liquid printing ink is not particularly limited, and urethane resin, polyvinyl alcohols, polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, acrylic acid used in general water-based liquid printing inks. Acrylic copolymers such as potassium-acrylonitrile copolymer, acrylic acid ester polymer emulsion, polyester urethane dispersion, vinyl acetate-acrylic acid ester copolymer, acrylic acid-acrylic acid alkyl ester copolymer; styrene- Acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid alkyl ester copolymer, styrene-α-methylstyrene-acrylic acid copolymer, styrene-α-methylstyrene-acrylic acid- Styrene-acrylic acid resin such as acrylic acid alkyl ester copolymer; styrene-maleic acid; styrene-maleic anhydride; vinylnaphthalene-acrylic acid copolymer; vinylnaphthalene-maleic acid copolymer; vinyl acetate-ethylene homoweight Compounds, vinyl acetate-fatty acid vinyl ethylene copolymers, vinyl acetate-maleic acid ester copolymers, vinyl acetate-crotonic acid copolymers, vinyl acetate-acrylic acid copolymers and other vinyl acetate-based copolymers and theirs. Salt can be used. These binder resins can be used alone or in admixture of two or more.
 なかでも、前記バインダー樹脂としては、アクリル樹脂またはウレタン樹脂を使用することが、入手しやすく好ましく、特にアクリル酸エステル系重合体エマルジョン、ポリエステル系ウレタンディスパージョンが好ましい。 Among them, it is preferable to use an acrylic resin or a urethane resin as the binder resin because it is easily available, and an acrylic acid ester-based polymer emulsion and a polyester-based urethane dispersion are particularly preferable.
 前記バインダー樹脂は、本発明の水性リキッド印刷インキの固形分換算で5~50質量%であることが好ましい。5質量%以上であれば、インキ塗膜強度が低下することもなく、基材密着性、耐水摩擦性等も良好に保たれる。反対に50質量%を以下であれば、着色力が低下する事が抑制でき、また高粘度となる事が避けられ、作業性が低下することもない。中でも5~40質量%であることがなお好ましく、5~20質量%であることが最も好ましい。 The binder resin is preferably 5 to 50% by mass in terms of solid content of the aqueous liquid printing ink of the present invention. When it is 5% by mass or more, the strength of the ink coating film does not decrease, and the adhesion to the base material, the water friction resistance, and the like are kept good. On the contrary, when it is 50% by mass or less, the decrease in coloring power can be suppressed, the high viscosity can be avoided, and the workability does not decrease. Of these, 5 to 40% by mass is still more preferable, and 5 to 20% by mass is most preferable.
 (水性媒体)
 水性リキッド印刷インキ用の水性媒体としては、例えば、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール及びイソプロパノール等のアルコール溶剤;アセトン、メチルエチルケトン等のケトン溶剤;エチレングリコール、ジエチレングリコール、プロピレングリコール等のポリアルキレングリコール類;ポリアルキレングリコールのアルキルエーテル類;N-メチル-2-ピロリドン等のラクタム溶剤などが挙げられる。本発明では、水のみを用いても良く、また水及び水と混和する有機溶剤との混合物を用いても良く、水と混和する有機溶剤のみを用いても良い。また、水性媒体としては、安全性や環境に対する負荷の点から、水のみ、または、水及び水と混和する有機溶剤との混合物が好ましく、水のみが特に好ましい。
(Aqueous medium)
Examples of the aqueous medium for the aqueous liquid printing ink include water, an organic solvent miscible with water, and a mixture thereof. Examples of the organic solvent to be mixed with water include alcohol solvents such as methanol, ethanol, n-propanol and isopropanol; ketone solvents such as acetone and methyl ethyl ketone; polyalkylene glycols such as ethylene glycol, diethylene glycol and propylene glycol; polyalkylene glycols. Alkyl ethers; examples include lactam solvents such as N-methyl-2-pyrrolidone. In the present invention, only water may be used, a mixture of water and an organic solvent miscible with water may be used, or only an organic solvent miscible with water may be used. Further, as the aqueous medium, only water or a mixture of water and an organic solvent miscible with water is preferable, and only water is particularly preferable, from the viewpoint of safety and environmental load.
 水性リキッド印刷インキは、その他、前述の着色剤、体質顔料、顔料分散剤、レベリング剤、消泡剤、可塑剤、赤外線吸収剤、紫外線吸収剤、芳香剤、難燃剤なども含むこともできる。中でも耐摩擦性、滑り性等を付与するためのオレイン酸アミド、ステアリン酸アミド、エルカ酸アミド等の脂肪酸アミド類及び印刷時の発泡を抑制するためのシリコン系、非シリコン系消泡剤及び顔料の濡れを向上させる各種分散剤等が有用である。 The water-based liquid printing ink can also contain the above-mentioned colorants, extender pigments, pigment dispersants, leveling agents, defoamers, plasticizers, infrared absorbers, ultraviolet absorbers, fragrances, flame retardants and the like. Among them, fatty acid amides such as oleic acid amide, stearic acid amide, and erucic acid amide for imparting abrasion resistance and slipperiness, and silicon-based, non-silicon-based defoaming agents and pigments for suppressing foaming during printing. Various dispersants and the like that improve the wetting of the hydrate are useful.
 本発明を実施例によりさらに具体的に説明する。以下、「部」及び「%」は、いずれも質量基準によるものとする。
 なお、本発明におけるGPC(ゲルパーミエーションクロマトグラフィー)による重量平均分子量(ポリスチレン換算)の測定は東ソー(株)社製HLC8220システムを用い以下の条件で行った。
分離カラム:東ソー(株)製TSKgelGMHHR-Nを4本使用。
カラム温度:40℃。
移動層:和光純薬工業(株)製テトラヒドロフラン。
流速:1.0ml/分。
試料濃度:0.4質量%。
試料注入量:100マイクロリットル。
検出器:示差屈折計。
粘度はトキメック社製B型粘度計で25℃において測定した。
The present invention will be described in more detail with reference to Examples. Hereinafter, both "part" and "%" are based on the mass standard.
The weight average molecular weight (in terms of polystyrene) was measured by GPC (gel permeation chromatography) in the present invention using the HLC8220 system manufactured by Tosoh Corporation under the following conditions.
Separation column: Uses 4 TSKgelGMHR-N manufactured by Tosoh Corporation.
Column temperature: 40 ° C.
Moving layer: Tetrahydrofuran manufactured by Wako Pure Chemical Industries, Ltd.
Flow rate: 1.0 ml / min.
Sample concentration: 0.4% by mass.
Sample injection volume: 100 microliters.
Detector: Differential refractometer.
The viscosity was measured at 25 ° C. with a Tokimec B-type viscometer.
 ワックスの酸価は、ワックス固形分1g中に含まれる酸性成分を中和するのに要する水酸化カリウムのミリグラム数を示すものであり、各々乾燥させた樹脂ワックスを、JISK2501に準じた水酸化カリウム・エタノール溶液による電位差滴定から算出した。 The acid value of the wax indicates the number of milligrams of potassium hydroxide required to neutralize the acidic component contained in 1 g of the wax solid content, and each dried resin wax is subjected to potassium hydroxide according to JIS K2501. -Calculated from potentiometric titration with an ethanol solution.
 (ニトロセルロース樹脂溶液Nの調整)
 工業用硝化綿L1/8(ニトロセルロース、固形分30%、JIS K-6703により溶液濃度25.0%における粘度1.6~2.9%品 太平化学製品株式会社製)37.5部に、イソプロピルアルコール/酢酸エチル/酢酸ノルマルプロピル/メチルシクロヘキサン(重量比で25/25/13/10の比率)の混合液を62.5部加え、充分混合しニトロセルロース樹脂溶液Nを作製した。
(Adjustment of nitrocellulose resin solution N)
Industrial vitrified cotton L1 / 8 (nitrocellulose, solid content 30%, viscosity 1.6-2.9% at a solution concentration of 25.0% by JIS K-6703, manufactured by Taihei Chemicals Limited) in 37.5 parts , 62.5 parts of a mixed solution of isopropyl alcohol / ethyl acetate / normal propyl acetate / methyl cyclohexane (ratio of 25/25/13/10 by weight) was added and sufficiently mixed to prepare a nitrocellulose resin solution N.
 (セルロースエステル樹脂溶液C1の調整)
 セルロースアセテートプロピオネートCAP482-0.5(Eastman Chemical社製)20部に、イソプロピルアルコール/酢酸エチル/酢酸ノルマルプロピル/メチルシクロヘキサン(重量比で25/25/13/10の比率)の混合液を80部加え、充分混合しセルロースエステル樹脂溶液C1を作製した。
(Preparation of Cellulose Ester Resin Solution C1)
20 parts of cellulose acetate propionate CAP482-0.5 (manufactured by Eastman Chemical Co., Ltd.) is mixed with a mixed solution of isopropyl alcohol / ethyl acetate / normal propyl acetate / methylcyclohexane (25/25/13/10 by weight). 80 parts were added and mixed well to prepare a cellulose ester resin solution C1.
 (セルロースエステル樹脂溶液C2の調整)
 セルロースアセテートブチロネートCAB381-0.5(Eastman Chemical社製)20部に、イソプロピルアルコール/酢酸エチル/酢酸ノルマルプロピル/メチルシクロヘキサン(重量比で25/25/13/10の比率)の混合液を80部加え、充分混合しセルロースエステル樹脂溶液C2を作製した。
(Preparation of Cellulose Ester Resin Solution C2)
20 parts of cellulose acetate butyronate CAB381-0.5 (manufactured by Eastman Chemical Co., Ltd.) is mixed with a mixed solution of isopropyl alcohol / ethyl acetate / normal propyl acetate / methylcyclohexane (25/25/13/10 by weight). 80 parts were added and mixed well to prepare a cellulose ester resin solution C2.
 (ダイマー酸変性ポリアミド樹脂溶液Paの調製)
 攪拌機、温度計、環流冷却器および窒素ガス導入管を備えた4つ口フラスコに、ダイマー酸(ハリダイマー270S;ハリマ化成(株)製)100部、トール油脂肪酸(ハートールFA-1;ハリマ化成(株)製)1部、セバシン酸5部、エチレンジアミン10部、ヘキサメチレンジアミン5部、及びトリフェニルホスフィン0.24部を入れ、系内を窒素雰囲気とし、さらに、窒素気流下均一化の攪拌しながら200℃までゆっくりと昇温する。続いて攪拌しながら200℃にて5時間脱水縮合を行い、固形分20%、軟化点123℃、アミン価2、酸価8、数平均分子量10,000のトール脂肪酸由来のダイマー酸変性ポリアミド樹脂溶液Paを得た。
(Preparation of dimer acid-modified polyamide resin solution Pa)
100 parts of dimer acid (Haridimer 270S; manufactured by Harima Kasei Co., Ltd.), tall oil fatty acid (Hartol FA-1; Harima Kasei (Harima Kasei)) in a four-necked flask equipped with a stirrer, thermometer, recirculation cooler and nitrogen gas introduction tube. (Manufactured by Co., Ltd.) 1 part, 5 parts of sebacic acid, 10 parts of ethylenediamine, 5 parts of hexamethylenediamine, and 0.24 parts of triphenylphosphine were added to create a nitrogen atmosphere in the system, and further, stirring for homogenization under a nitrogen stream was performed. While slowly raising the temperature to 200 ° C. Subsequently, dehydration condensation was carried out at 200 ° C. for 5 hours with stirring, and a dimer acid-modified polyamide resin derived from a toll fatty acid having a solid content of 20%, a softening point of 123 ° C., an amine value of 2, an acid value of 8, and a number average molecular weight of 10,000. Solution Pa was obtained.
 (ポリウレタン樹脂溶液Puの調製) 
 攪拌機、温度計、還流冷却器および窒素ガス導入管を備えた四つロフラスコにアジピン酸とネオペンチルグリコールから得られるMn2,000のポリエステルポリオール(DIC製:ポリライトOD-X-2044)162.58部とポリプロピレングリコール(三井化学製:アクトコールD-1000)40.65部、イソホロンジイソシアネート66.23部、酢酸エチル50部、DICNATE 425(DIC製)0.03部を仕込み、窒素気流下に75℃で3時間反応させた。その後、数平均分子量(Mn)160.3の2-ブチル-2-エチルプロパンジオール2.17部を加え、更に75℃で3時間反応させた。反応終了後、酢酸ノルマルプロピル200部を加え、反応溶液を希釈した。反応液を45℃以下に冷却した後、イソプロピルアルコール200部を加えた。反応液を約35~40℃に保ち、イソホロンジアミン23.53部を酢酸エチル100部に溶解して滴下し、攪枠下に50℃で3時間反応させた。その後、シクロヘキシルアミン4.84部を添加し、攪枠下に50℃で30分反応させた。最後に酢酸エチル150部を加え、不揮発分30.0%、ガードナー粘度V(25℃)、Mw40,000のポリウレタン樹脂溶液(Pu)を得た。
(Preparation of polyurethane resin solution Pu)
162.58 parts of Mn2,000 polyester polyol (DIC: Polylite OD-X-2044) obtained from adipic acid and neopentyl glycol in four flasks equipped with a stirrer, thermometer, reflux condenser and nitrogen gas introduction tube. And polypropylene glycol (manufactured by Mitsui Chemicals, Actol D-1000) 40.65 parts, isophorone diisocyanate 66.23 parts, ethyl acetate 50 parts, DICNAME 425 (manufactured by DIC) 0.03 parts, and 75 ° C. under a nitrogen stream. Was reacted for 3 hours. Then, 2.17 parts of 2-butyl-2-ethylpropanediol having a number average molecular weight (Mn) of 160.3 was added, and the mixture was further reacted at 75 ° C. for 3 hours. After completion of the reaction, 200 parts of normal propyl acetate was added to dilute the reaction solution. After cooling the reaction solution to 45 ° C. or lower, 200 parts of isopropyl alcohol was added. The reaction mixture was kept at about 35 to 40 ° C., 23.53 parts of isophorone diamine was dissolved in 100 parts of ethyl acetate and added dropwise, and the mixture was reacted at 50 ° C. for 3 hours under a stirring frame. Then, 4.84 parts of cyclohexylamine was added and reacted at 50 ° C. for 30 minutes under a stirring frame. Finally, 150 parts of ethyl acetate was added to obtain a polyurethane resin solution (Pu) having a non-volatile content of 30.0%, a Gardner viscosity V (25 ° C.) and Mw 40,000.
 (アクリル系樹脂溶液Acの調整)
 固形アクリル樹脂(三菱ケミカル(株)製ダイヤナールBR-90)を酢酸エチルにて攪拌溶解して30%溶液とし、これをアクリル系樹脂溶液Acとした。
(Adjustment of acrylic resin solution Ac)
A solid acrylic resin (Dianal BR-90 manufactured by Mitsubishi Chemical Corporation) was stirred and dissolved with ethyl acetate to prepare a 30% solution, which was used as an acrylic resin solution Ac.
(塩化ビニル酢酸ビニル共重合樹脂溶液Evの調整)
 水酸基を有する塩化ビニル酢酸ビニル共重合樹脂(樹脂モノマー組成が質量%で塩化ビニル/酢酸ビニル/ビニルアルコール=92/3/5、水酸基価(mgKOH)=64)を酢酸エチルで25%溶液とし、これを塩化ビニル酢酸ビニル共重合樹脂溶液Evとした。
(Adjustment of vinyl chloride vinyl acetate copolymer resin solution Ev)
A 25% solution of vinyl chloride vinyl acetate copolymer resin having a hydroxyl group (resin monomer composition is by mass%, vinyl chloride / vinyl acetate / vinyl alcohol = 92/3/5, hydroxyl value (mgKOH) = 64) is prepared with ethyl acetate. This was designated as a vinyl chloride vinyl acetate copolymer resin solution Ev.
<光触媒の調製>
 まず、使用する酸化チタン原料(昭和電工セラミックス株式会社製)について、次のとおり性状を測定した。
<Preparation of photocatalyst>
First, the properties of the titanium oxide raw material (manufactured by Showa Denko Ceramics Co., Ltd.) used were measured as follows.
(BET比表面積)
 酸化チタン原料のBET比表面積は、株式会社マウンテック製の全自動BET比表面積測定装置「Macsorb,HM model-1208」を用いて測定した。
(酸化チタン原料中のルチル含有量(ルチル化率)及び結晶性(半値全幅))
 酸化チタン原料中におけるルチル型酸化チタンの含有量(ルチル化率)及び結晶性(半値全幅)は、粉末X線回折法により測定した。
(BET specific surface area)
The BET specific surface area of the titanium oxide raw material was measured using a fully automatic BET specific surface area measuring device "Macsorb, HM model-1208" manufactured by Mountech Co., Ltd.
(Rutile content (rutileization rate) and crystallinity (full width at half maximum) in titanium oxide raw material)
The content (rutile formation rate) and crystallinity (half-value full width) of rutile-type titanium oxide in the titanium oxide raw material were measured by powder X-ray diffraction method.
 すなわち、乾燥させた酸化チタン原料について、測定装置としてPANalytical社製「X’pertPRO」を用い、銅ターゲットを用い、Cu-Kα1線を用いて、管電圧45kV、管電流40mA、測定範囲2θ=20~100deg、サンプリング幅0.0167deg、走査速度3.3deg/minの条件でX線回折測定を行った。 That is, for the dried titanium oxide raw material, using PANalytical's "X'pertPRO" as a measuring device, using a copper target, and using a Cu-Kα1 wire, a tube voltage of 45 kV, a tube current of 40 mA, and a measurement range of 2θ = 20. X-ray diffraction measurement was performed under the conditions of ~ 100 deg, sampling width 0.0167 deg, and scanning speed 3.3 deg / min.
 ルチル型結晶に対応するピーク高さ(Hr)、ブルッカイト型結晶に対応するピーク高さ(Hb)、及びアナターゼ型結晶に対応するピーク高さ(Ha)を求め、以下の計算式により、酸化チタン中におけるルチル型酸化チタンの含有量(ルチル化率)を求めた。 The peak height (Hr) corresponding to the rutile type crystal, the peak height (Hb) corresponding to the brookite type crystal, and the peak height (Ha) corresponding to the anatase type crystal were obtained, and titanium oxide was calculated by the following formula. The content of rutile-type titanium oxide (rutileization rate) in the rutile type was determined.
      ルチル化率(モル%)={Hr/(Ha+Hb+Hr)}×100
 また、酸化チタン中における、アナターゼ型酸化チタンの含有量(アナターゼ化率)及びブルッカイト型酸化チタンの含有量(ブルッカイト化率)を、それぞれ以下の計算式により求めた。
Rutileization rate (mol%) = {Hr / (Ha + Hb + Hr)} × 100
In addition, the content of anatase-type titanium oxide (anatase conversion rate) and the content of brookite-type titanium oxide (brookite conversion rate) in titanium oxide were calculated by the following formulas, respectively.
      アナターゼ化率(モル%)={Ha/(Ha+Hb+Hr)}×100
      ブルッカイト化率(モル%)={Hb/(Ha+Hb+Hr)}×100
 上記X線回折測定によって得られたX線回折パターンにおいて、ルチル型酸化チタンに対応する最も強い回折ピークを選択し、半値全幅を測定した。
Anatase formation rate (mol%) = {Ha / (Ha + Hb + Hr)} × 100
Brookite conversion rate (mol%) = {Hb / (Ha + Hb + Hr)} x 100
In the X-ray diffraction pattern obtained by the above X-ray diffraction measurement, the strongest diffraction peak corresponding to rutile-type titanium oxide was selected, and the full width at half maximum was measured.
(一次粒子径)
 平均1次粒子径(DBET)(nm)は、BET1点法により、酸化チタンの比表面積S(m/g)を測定し、下式
      DBET=6000/(S×ρ)
より算出した。ここでρは酸化チタンの密度(g/cm)を示す。
(Primary particle size)
For the average primary particle size (DBET) (nm), the specific surface area S (m 2 / g) of titanium oxide was measured by the BET one-point method, and the following formula DBET = 6000 / (S × ρ).
Calculated from. Here, ρ indicates the density of titanium oxide (g / cm 3 ).
 使用した酸化チタン原料の測定結果を表1に示す。 Table 1 shows the measurement results of the titanium oxide raw material used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(製造例1)
 蒸留水100mLに6g(100質量部)の酸化チタン原料(昭和電工セラミックス株式会社製)を懸濁させ、0.0805g(銅換算で0.5質量部)のCuCl・2HO(関東化学株式会社製)を添加して、10分攪拌した。pHが10になるように、1mol/Lの水酸化ナトリウム(関東化学株式会社製)水溶液を添加し、30分間攪拌混合を行ってスラリーを得た。このスラリーをろ過し、得られた粉体を純水で洗浄し、80℃で乾燥し、ミキサーで解砕し、試料(光触媒)を得た。
(Manufacturing Example 1)
Distilled water 100mL to suspend the 6 g (manufactured by Showa Denko Ceramics Co.) titanium oxide material (100 parts by weight), CuCl 2 · 2H 2 O ( Kanto Chemical of 0.0805G (0.5 part by weight of copper equivalent) (Manufactured by Co., Ltd.) was added and stirred for 10 minutes. A 1 mol / L sodium hydroxide (manufactured by Kanto Chemical Co., Inc.) aqueous solution was added so that the pH became 10, and the mixture was stirred and mixed for 30 minutes to obtain a slurry. The slurry was filtered, the obtained powder was washed with pure water, dried at 80 ° C., and crushed with a mixer to obtain a sample (photocatalyst).
 得られた試料(光触媒)をフッ酸溶液中で加熱して全溶解し、抽出液をICP発光分光分析により定量した。その結果、酸化チタン100質量部に対して、銅イオンが0.5質量部であった。すなわち、仕込みの銅イオン(CuCl・2HO由来)の全量が酸化チタン表面に担持されていた。 The obtained sample (photocatalyst) was heated in a hydrofluoric acid solution to completely dissolve it, and the extract was quantified by ICP emission spectroscopic analysis. As a result, copper ions were 0.5 parts by mass with respect to 100 parts by mass of titanium oxide. That is, the total amount of the copper ions of the feed (CuCl 2 · 2H 2 O derived) were supported on the surface of titanium oxide.
 製造例1により得られた試料(光触媒)を以下の方法により分析した。 The sample (photocatalyst) obtained in Production Example 1 was analyzed by the following method.
(ルチル型酸化チタンの含有量(ルチル化率)及び結晶性(半値全幅))
 製造例1により得られた試料(光触媒)について、酸化チタン中におけるルチル型酸化チタンの含有量(ルチル化率)及び結晶性(半値全幅)を、粉末X線回折法により測定した。
(Rutilated titanium oxide content (rutileization rate) and crystallinity (full width at half maximum))
With respect to the sample (photocatalyst) obtained in Production Example 1, the content (rutileization rate) and crystallinity (half-value full width) of rutile-type titanium oxide in titanium oxide were measured by powder X-ray diffraction method.
 すなわち、乾燥させた光触媒を、乳鉢で擦り潰した粉末を試料とした。この試料について、測定装置としてPANalytical社製「X’pertPRO」を用い、銅ターゲットを用い、Cu-Kα1線を用いて、管電圧45kV、管電流40mA、測定範囲2θ=20~100deg、サンプリング幅0.0167deg、走査速度3.3deg/minの条件でX線回折測定を行った。 That is, the powder obtained by grinding the dried photocatalyst in a mortar was used as a sample. For this sample, using PANalytical's "X'pertPRO" as a measuring device, using a copper target, and using a Cu-Kα1 wire, a tube voltage of 45 kV, a tube current of 40 mA, a measurement range of 2θ = 20 to 100 deg, and a sampling width of 0. X-ray diffraction measurement was performed under the conditions of 1.0167 deg and a scanning speed of 3.3 deg / min.
 ルチル型結晶に対応するピーク高さ(Hr)、ブルッカイト型結晶に対応するピーク高さ(Hb)、及びアナターゼ型結晶に対応するピーク高さ(Ha)を求め、以下の計算式により、酸化チタン中におけるルチル型酸化チタンの含有量(ルチル化率)を求めた。 The peak height (Hr) corresponding to the rutile type crystal, the peak height (Hb) corresponding to the brookite type crystal, and the peak height (Ha) corresponding to the anatase type crystal were obtained, and titanium oxide was calculated by the following formula. The content of rutile-type titanium oxide (rutileization rate) in the rutile type was determined.
      ルチル化率(モル%)={Hr/(Ha+Hb+Hr)}×100
 上記X線回折測定によって得られたX線回折パターンにおいて、ルチル型酸化チタンに対応する最も強い回折ピークを選択し、半値全幅を測定した。
Rutileization rate (mol%) = {Hr / (Ha + Hb + Hr)} × 100
In the X-ray diffraction pattern obtained by the above X-ray diffraction measurement, the strongest diffraction peak corresponding to rutile-type titanium oxide was selected, and the full width at half maximum was measured.
(2価銅化合物の同定)
  製造例1により得られた試料(光触媒)中に存在する2価銅化合物を、上記の測定装置及び測定条件にて、X線回折測定で同定した。結果を表2に示した。
(Identification of divalent copper compound)
The divalent copper compound present in the sample (photocatalyst) obtained in Production Example 1 was identified by X-ray diffraction measurement using the above measuring device and measuring conditions. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 〔実施例及び比較例〕
 表3に示す配合に従い、バインダー樹脂、光触媒、及び有機溶剤をビーズミルにて均一に混合しコーティング剤組成物を得た。
[Examples and Comparative Examples]
According to the formulation shown in Table 3, the binder resin, the photocatalyst, and the organic solvent were uniformly mixed with a bead mill to obtain a coating agent composition.
 <コーティング層を有する積層体の作製>
〔グラビアコーティング作成〕
 得られた実施例及び比較例のコーティング剤の粘度を、表  に記載の混合溶剤A~Dのいずれかによりザーンカップ#3(離合社製)で16秒(25℃)に調整し、版深35μmグラビア版を備えたグラビア校正機により、実施例1~4は2軸延伸ポリプロピレンフィルム(OPPフィルム)に、実施例5~9はポリエチレンテレフタレートフィルム(PETフィルム)に、実施例10~  はコートボール紙に印刷した積層体を1日放置し、評価用積層体とした。
<Manufacturing of a laminated body having a coating layer>
[Creating a gravure coating]
The viscosity of the obtained coating agents of Examples and Comparative Examples was adjusted to 16 seconds (25 ° C.) with Zahn Cup # 3 (manufactured by Rigosha) using any of the mixed solvents A to D shown in the table, and the plate depth was adjusted. Examples 1 to 4 are biaxially stretched polypropylene films (OPP films), Examples 5 to 9 are polyethylene terephthalate films (PET films), and Examples 10 to are coated balls by a gravure calibrator equipped with a 35 μm gravure plate. The laminate printed on paper was left for one day to prepare a laminate for evaluation.
〔フレキソコーティング作成〕
 得られた実施例及び比較例のコーティング剤の粘度を表3に記載の混合溶剤A~Dのいずれかによりザーンカップ#3(離合社製)で20秒(25℃)に調整し、120線/cmアニロックスロールを備えたフレキソ校正機により、コートボール紙及びPETフィルムへ印刷した積層体を1日放置し、評価用積層体とした。
[Flexographic coating creation]
The viscosity of the obtained coating agents of Examples and Comparative Examples was adjusted to 20 seconds (25 ° C.) with Zahn Cup # 3 (manufactured by Rigosha) using any of the mixed solvents A to D shown in Table 3, and 120 wires were used. The laminate printed on coated cardboard and PET film was left for one day by a flexographic calibrator equipped with a / cm anilox roll to prepare a laminate for evaluation.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3中、数字は部である。 In Table 3, the numbers are parts.
 得られた積層体(コーティング層を有する基材)を用い、密着性、耐摩擦性、抗ウイルス性の評価を行った。 Using the obtained laminate (base material having a coating layer), adhesion, abrasion resistance, and antiviral property were evaluated.
〔評価項目1:密着性〕
 印刷面にセロハンテープ(ニチバン製12mm幅)を貼り付け、これを急速に剥がした
ときの印刷皮膜の外観の状態を次の5段階で目視判定した。
 コートボール紙へ印刷した場合
5:紙が剥け、コート剤層間の剥離がない
4:紙が剥け、コート剤層間の剥離が25未満
3:紙が剥け、コート剤層間の剥離が25-75%
2:紙が剥け、コート剤層間の剥離が75%以上
1:紙が剥けない
 フィルムへ印刷した場合
5:フィルムからコート剤が剥離しない
4:コート剤剥離が25%未満
3:コート剤剥離が25-50%
2:コート剤剥離が50-75%
1:コート剤剥離が75-100%
[Evaluation item 1: Adhesion]
A cellophane tape (Nichiban 12 mm width) was attached to the printed surface, and the appearance of the printed film when the tape was rapidly peeled off was visually determined in the following five stages.
When printing on coated cardboard 5: Paper peeling, no peeling between coating agent layers 4: Paper peeling, peeling between coating agent layers less than 25 3: Paper peeling, peeling between coating agent layers 25-75%
2: Paper peels off, peeling between coating agent layers is 75% or more 1: Paper does not peel off When printing on film 5: Coating agent does not peel off from film 4: Coating agent peeling is less than 25% 3: Coating agent peeling 25-50%
2: 50-75% of coating agent peeling
1: Coating agent peeling is 75-100%
 〔評価項目2:耐摩擦性〕
 作製した印刷物を堅牢型学振試験機を用いて耐摩擦性を評価した。摩擦子はコピー用紙を使用し、500gの荷重、100往復させたあとの印刷物表面の状態を次の5段階で目視判定した。
[Evaluation item 2: Friction resistance]
The friction resistance of the produced printed matter was evaluated using a robust Gakushin tester. As the friction element, copy paper was used, and the state of the surface of the printed matter after a load of 500 g and 100 reciprocations was visually determined in the following five stages.
5:印刷表面が変化していない
4:印刷物表面の傷が少ない
3:印刷物表面の傷が多い
2:コート剤の一部が剥がれ、基材が見えている
1:コート剤が剥がれ、基材のみになっている
5: The printed surface has not changed 4: There are few scratches on the printed matter surface 3: There are many scratches on the printed matter surface 2: Part of the coating agent has peeled off and the base material is visible 1: The coating agent has peeled off and the base material Is only
 (評価項目3 抗ウイルス性の評価)
 上記で得られた評価用印刷物について、抗ファージウイルス試験(JIS  R1756を参照)を実施した。
1)光照射条件は、白色蛍光灯の光をN113フィルターによって紫外線をカットし、照度1000ルクスとした。
2)5cm×5cmの評価用印刷物に濃度既知の100μLのQβファージ溶液を垂らした後、5cm×5cmのガラス板で挟んだ。
3)2時間光照射したサンプルを、SCDLP液で回収し、適度に希釈したものを大腸菌と感染させ、寒天培地に塗布し、培養後のコロニー数をカウントすることで評価した。抗ウイルス性はQβファージの不活化度で評価し、不活化度-2~-5を抗ウイルス性有と評価した。
不活化度が-1が90%、不活化度が-2が99%、不活化度が-3が99.9%不活化していることになり、抗ウイルス性が高いことを示す。検出限界は不活化度-5である。
(Evaluation item 3 Evaluation of antiviral property)
An anti-phage virus test (see JIS R1756) was performed on the evaluation printed matter obtained above.
1) As for the light irradiation conditions, the light of the white fluorescent lamp was cut off from ultraviolet rays by the N113 filter, and the illuminance was set to 1000 lux.
2) A 100 μL Qβ phage solution having a known concentration was dropped on a 5 cm × 5 cm evaluation printed matter, and then sandwiched between 5 cm × 5 cm glass plates.
3) Samples irradiated with light for 2 hours were collected with SCDLP solution, appropriately diluted, infected with Escherichia coli, applied to an agar medium, and evaluated by counting the number of colonies after culturing. The antiviral property was evaluated by the degree of inactivation of Qβ phage, and the inactivation degree -2 to -5 was evaluated as having antiviral property.
The degree of inactivation is -1 for 90%, the degree of inactivation is -2 for 99%, and the degree of inactivation is -3 for 99.9%, indicating that the antiviral property is high. The detection limit is inactivation degree -5.
 実施例及び比較例の組成物を用いた積層体の評価結果を表4~表6に示す。
なお空欄は未配合を表す。
Tables 4 to 6 show the evaluation results of the laminate using the compositions of Examples and Comparative Examples.
The blanks indicate unblended.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表中の原料名は次の通りである。
塩素化ポリオレフィン溶液Ep:スーパークロン 360T(日本製紙株式会社製)
疎水性シリカ:サイリシア 350D(富士シリシア化学株式会社製)
ワックス1:三井ハイワックス 220MP(三井化学株式会社製)
ワックス2:アマイドAP-1(三菱化学株式会社製)
可塑剤1:エポサイザー W-100EL(DIC株式会社製)
可塑剤2:ATBC    
キレート剤:オルガチックス TC-100(マツモトファインケミカル株式会社製)
ポリエステル:バーノックD-50-75(DIC株式会社製)
The raw material names in the table are as follows.
Chlorinated polyolefin solution Ep: Supercron 360T (manufactured by Nippon Paper Industries, Ltd.)
Hydrophobic silica: Syricia 350D (manufactured by Fuji Silysia Chemical Ltd.)
Wax 1: Mitsui High Wax 220MP (manufactured by Mitsui Chemicals, Inc.)
Wax 2: Amide AP-1 (manufactured by Mitsubishi Chemical Corporation)
Plasticizer 1: Eposizer W-100EL (manufactured by DIC Corporation)
Plasticizer 2: ATBC
Chelating agent: Olga Chix TC-100 (manufactured by Matsumoto Fine Chemical Co., Ltd.)
Polyester: Barnock D-50-75 (manufactured by DIC Corporation)
 以上の結果から、本発明のコーティング剤は、簡便な方法により、すなわち、紙基材又はプラスチック基材に塗布するだけで、これら基材に良好な抗ウイルス性を付与することができ、抗ウイルス性基材、包装材、容器等を提供できることが明らかとなった。また、本発明のコーティング剤は、密着性及び耐摩耗性を保持しつつ、十分な抗ウイルス性を発現することができる。 From the above results, the coating agent of the present invention can impart good antiviral properties to these substrates by a simple method, that is, simply by applying it to a paper substrate or a plastic substrate, and it is possible to impart good antiviral properties to these substrates. It has become clear that it is possible to provide sex base materials, packaging materials, containers, etc. In addition, the coating agent of the present invention can exhibit sufficient antiviral properties while maintaining adhesion and abrasion resistance.

Claims (6)

  1. バインダー樹脂(A)、光触媒(B)、及び有機溶剤を含有し、
    前記光触媒(B)が、結晶性ルチル型酸化チタンを含む酸化チタンと2価銅化合物とを含有し、
    前記結晶性ルチル型酸化チタンが、Cu-Kα線による回折角度2θに対する回折線強度をプロットしたX線回折パターンにおいて、ルチル型酸化チタンに対応する最も強い回折ピークの半値全幅が0.65度以下の酸化チタンであり、
    前記酸化チタン中における前記結晶性ルチル型酸化チタンの含有量が50モル%以上、アナターゼ型酸化チタンの含有量が50モル%未満である光触媒であり、
    コーティング剤固形分全量に対し、前記光触媒(B)0.5~80質量%含有することを特徴とする、紙基材又はプラスチック基材用コーティング剤。
    Containing a binder resin (A), a photocatalyst (B), and an organic solvent,
    The photocatalyst (B) contains titanium oxide containing crystalline rutile-type titanium oxide and a divalent copper compound.
    In the X-ray diffraction pattern in which the crystallized rutile-type titanium oxide plots the diffraction line intensity with respect to the diffraction angle 2θ by Cu—Kα rays, the half-value total width of the strongest diffraction peak corresponding to the rutile-type titanium oxide is 0.65 degrees or less. Is titanium oxide
    A photocatalyst in which the content of the crystalline rutile-type titanium oxide in the titanium oxide is 50 mol% or more and the content of the anatase-type titanium oxide is less than 50 mol%.
    Coating agent A coating agent for a paper base material or a plastic base material, which comprises 0.5 to 80% by mass of the photocatalyst (B) with respect to the total amount of solid content.
  2. 前記バインダー樹脂(A)が、繊維素系樹脂、ポリアミド系樹脂、ウレタン系樹脂、アクリル系樹脂、又は塩化ビニル系樹脂を含有する請求項1に記載の紙基材又はプラスチック基材用コーティング剤。 The coating agent for a paper base material or a plastic base material according to claim 1, wherein the binder resin (A) contains a fibrous resin, a polyamide resin, a urethane resin, an acrylic resin, or a vinyl chloride resin.
  3. 前記バインダー樹脂が、ウレタン系樹脂/塩化ビニル系樹脂、ウレタン系樹脂/繊維素系樹脂、ポリアミド系樹脂/繊維素系樹脂、アクリル系樹脂/繊維素系樹脂から選ばれる組み合わせである請求項1又は2に記載の紙基材又はプラスチック基材用コーティング剤。 Claim 1 or claim 1, wherein the binder resin is a combination selected from a urethane-based resin / vinyl chloride-based resin, a urethane-based resin / fiber-based resin, a polyamide-based resin / fiber-based resin, and an acrylic resin / fiber-based resin. 2. The coating agent for a paper base material or a plastic base material according to 2.
  4. 請求項1~3の何れかに記載のコーティング剤を紙基材及びフィルムにコーティングした紙基材又はプラスチック基材。 A paper base material or a plastic base material obtained by coating a paper base material and a film with the coating agent according to any one of claims 1 to 3.
  5. 前記紙基材又はプラスチック基材が、印刷インキ層を更に有する請求項4に記載の紙基材又はプラスチック基材。 The paper base material or plastic base material according to claim 4, wherein the paper base material or plastic base material further has a printing ink layer.
  6. 請求項4又は5に記載の紙基材又はプラスチック基材を使用した容器、包装材。 A container or packaging material using the paper base material or plastic base material according to claim 4 or 5.
PCT/JP2021/022021 2020-06-25 2021-06-10 Coating agent for paper substrates or plastic substrates, and paper substrates, plastic substrates, containers, and packaging material that have coating layer of said coating agent WO2021261261A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021574976A JP7131722B2 (en) 2020-06-25 2021-06-10 Coating agent for paper substrates or plastic substrates, and paper substrates, plastic substrates, containers and packaging materials having coating layers of the coating agents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020109480 2020-06-25
JP2020-109480 2020-06-25

Publications (1)

Publication Number Publication Date
WO2021261261A1 true WO2021261261A1 (en) 2021-12-30

Family

ID=79281121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022021 WO2021261261A1 (en) 2020-06-25 2021-06-10 Coating agent for paper substrates or plastic substrates, and paper substrates, plastic substrates, containers, and packaging material that have coating layer of said coating agent

Country Status (2)

Country Link
JP (1) JP7131722B2 (en)
WO (1) WO2021261261A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005075912A (en) * 2003-08-29 2005-03-24 Gifu Seratsuku Seizosho:Kk Coating agent, building material, paper, film, food-packaging material, food-packaging container, and tableware
WO2012017846A1 (en) * 2010-08-06 2012-02-09 Dic株式会社 One-pack coating composition, photocatalyst employing same, coating film of same, and method for manufacturing same
WO2013094573A1 (en) * 2011-12-22 2013-06-27 昭和電工株式会社 Copper-and-titanium-containing composition and production method therefor
WO2014196108A1 (en) * 2013-06-04 2014-12-11 パナソニックIpマネジメント株式会社 Ordinary temperature-curable photocatalytic coating material, ordinary temperature-curable coating composition, and interior material
JP2015226858A (en) * 2012-09-27 2015-12-17 Toto株式会社 Photocatalytic coating composition
JP2017155368A (en) * 2016-03-03 2017-09-07 Dic株式会社 Resin composition for fiber processing and fabric using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005075912A (en) * 2003-08-29 2005-03-24 Gifu Seratsuku Seizosho:Kk Coating agent, building material, paper, film, food-packaging material, food-packaging container, and tableware
WO2012017846A1 (en) * 2010-08-06 2012-02-09 Dic株式会社 One-pack coating composition, photocatalyst employing same, coating film of same, and method for manufacturing same
WO2013094573A1 (en) * 2011-12-22 2013-06-27 昭和電工株式会社 Copper-and-titanium-containing composition and production method therefor
JP2015226858A (en) * 2012-09-27 2015-12-17 Toto株式会社 Photocatalytic coating composition
WO2014196108A1 (en) * 2013-06-04 2014-12-11 パナソニックIpマネジメント株式会社 Ordinary temperature-curable photocatalytic coating material, ordinary temperature-curable coating composition, and interior material
JP2017155368A (en) * 2016-03-03 2017-09-07 Dic株式会社 Resin composition for fiber processing and fabric using the same

Also Published As

Publication number Publication date
JPWO2021261261A1 (en) 2021-12-30
JP7131722B2 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
JP7407159B2 (en) Solvent-type gravure printing ink composition for back printing, printing layer, and laminate
TWI289541B (en) Titanium dioxide pigment and method for producing the same, and resin composition using the same
JP5586466B2 (en) Laser sensitive coating composition
JP6363941B2 (en) Gravure white ink composition
JP4839666B2 (en) Gravure printing ink composition for surface printing
JP6402434B2 (en) Gravure ink, printed matter and laminate using the same
JP2016130297A (en) Ink composition for soft packaging laminate
JP7057236B2 (en) Ink composition for laser marking, ink layer for laser marking, laminate, laser marking method
JP2013142117A (en) Printing ink composition
JP7131722B2 (en) Coating agent for paper substrates or plastic substrates, and paper substrates, plastic substrates, containers and packaging materials having coating layers of the coating agents
JP2020002259A (en) Ink composition for laser marking, ink layer for laser marking, laminate, and laser marking method
JP2019001932A (en) Liquid ink composition
JPWO2018101123A1 (en) Laser marking ink composition
JP6663929B2 (en) Organic solvent-based high solid ink composition for gravure printing and gravure printing method
JP2020180259A (en) Printing ink composition for black gravure laminate
CN114456630A (en) Aqueous composition of titanium oxide supporting metal compound
JP7067683B1 (en) Coating agent for paper base material or plastic base material, and paper base material, plastic base material, container and packaging material having a coating layer of the coating agent.
JP7174198B1 (en) Coating agent for paper substrates or plastic substrates, and paper substrates, plastic substrates, containers and packaging materials having coating layers of the coating agents
JP7078026B2 (en) Liquid printing ink composition and printed matter
JP6460612B1 (en) LASER RECORDING INK COMPOSITION, LASER RECORDING LAMINATE, LASER RECORDING LAMINATE MANUFACTURING METHOD, AND RECORDER
JP6066677B2 (en) Liquid ink
JP2020200441A (en) Liquid printing ink, printed matter, and packaging material
JP7022016B2 (en) Ink composition for laser marking, ink layer for laser marking, laminate, laser marking method
TW201518125A (en) Printed matter
JP7296496B1 (en) Oxygen-absorbing gravure ink composition, oxygen-absorbing printed matter, laminate, method for producing oxygen-absorbing printed matter, method for producing laminate, packaging bag, packaging container

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021574976

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828786

Country of ref document: EP

Kind code of ref document: A1