WO2021261260A1 - Coating agent for paper base materials or plastic base materials, and paper base material, plastic base maerial, container and packaging material, each having coating layer of said coating agent - Google Patents

Coating agent for paper base materials or plastic base materials, and paper base material, plastic base maerial, container and packaging material, each having coating layer of said coating agent Download PDF

Info

Publication number
WO2021261260A1
WO2021261260A1 PCT/JP2021/022020 JP2021022020W WO2021261260A1 WO 2021261260 A1 WO2021261260 A1 WO 2021261260A1 JP 2021022020 W JP2021022020 W JP 2021022020W WO 2021261260 A1 WO2021261260 A1 WO 2021261260A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
coating agent
base material
acid
copper
Prior art date
Application number
PCT/JP2021/022020
Other languages
French (fr)
Japanese (ja)
Inventor
歳徳 石橋
敬 畦地
敏生 渡邊
俊介 河中
幸介 藤田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2021574978A priority Critical patent/JP7067683B1/en
Publication of WO2021261260A1 publication Critical patent/WO2021261260A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds

Definitions

  • the present invention relates to a water-based coating agent for a paper base material or a plastic base material, and a paper base material, a plastic base material, a container and a packaging material having a coating layer using the water-based coating agent.
  • a method of imparting functionality to the surface of these substrates a method of expressing these functions by coating is also known.
  • the coating method is highly convenient because it can be applied not only to the base material before molding or processing, but also to the base material after molding or processing, only to the desired part, but on the other hand, it is more functional than the film. In many cases, resistance is inferior.
  • a base material a film base material such as a polyester film, a nylon film, and a polyolefin film is often used, especially for food packaging and daily life coating consumer materials.
  • renewable resources are used as one of the materials with functions such as "reusable" and "biodegradable".
  • a material having antiviral properties for example, a photocatalyst is known, and for example, a cloth to which a material having antiviral properties such as a photocatalyst is adhered is known (see, for example, Patent Document 2).
  • a material having antiviral properties for example, a photocatalyst is known, and for example, a cloth to which a material having antiviral properties such as a photocatalyst is adhered is known (see, for example, Patent Document 2).
  • coating agents for paper or plastic substrates using photocatalysts are not yet known.
  • An object of the present invention is a coating agent for a paper base material or a plastic base material using an aqueous medium, which can easily impart antiviral properties to a paper base material or a plastic base material, and a coating layer of the coating agent. It is an object of the present invention to provide a paper base material, a plastic base material, a container and a packaging material having the above.
  • the present invention contains the binder resin (A), the photocatalyst (B), and the aqueous medium (C).
  • the photocatalyst (B) contains titanium oxide containing crystalline rutile-type titanium oxide and a divalent copper compound.
  • the half-value total width of the strongest diffraction peak corresponding to the rutile-type titanium oxide is 0.65 degrees or less.
  • Is titanium oxide A photocatalyst in which the content of the crystalline rutile-type titanium oxide in the titanium oxide is 50 mol% or more and the content of the anatase-type titanium oxide is less than 50 mol%.
  • a coating agent for a paper base material or a plastic base material is provided, which comprises 0.5 to 80% by mass of the photocatalyst (B) with respect to the total amount of the solid content of the coating agent.
  • the present invention also provides a paper base material or a plastic base material obtained by coating the above-mentioned coating agent on a paper base material and a film.
  • the present invention also provides a container and a packaging material using the above-mentioned paper base material or plastic base material.
  • antiviral properties can be easily imparted to base materials such as plastic materials, molded products, film base materials, paper base materials, and packaging materials by coating. Since the coating agent for a paper base material or a plastic base material of the present invention uses an aqueous medium, it is environmentally friendly and excellent in safety. Further, the coating agent for a paper base material or a plastic base material of the present invention is excellent in leveling property and foaming is suppressed, so that productivity can be improved.
  • parts means “parts by mass”, and “%” means all “% by mass”.
  • total amount of coating agent means the total amount of the coating agent containing all volatile components such as an aqueous medium and an organic solvent, and the “total amount of solid content of the coating agent” means non-volatile components containing no volatile components. Shows the total amount of ingredients only.
  • Binder resin (A) used in the coating agent for a paper substrate or a plastic substrate of the present invention is not particularly limited, and urethane resins, polyvinyl alcohols, polyvinylpyrrolidones, etc., which are used in general aqueous liquid printing inks, are used.
  • Acrylic copolymers such as polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic acid ester copolymer, acrylic acid-acrylic acid alkyl ester copolymer; styrene- Acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid alkyl ester copolymer, styrene- ⁇ -methylstyrene-acrylic acid copolymer, styrene- ⁇ -methylstyrene-acrylic acid- Styrene-acrylic acid resin such as acrylic acid alkyl ester copolymer; styrene-maleic acid; styrene-maleic anhydride; vinylnaphthalene-acrylic acid copolymer; vinylnaphthalene-maleic acid copolymer; vinyl acetate-ethylene homo
  • the binder resin it is preferable to use at least one of an acrylic resin or a urethane resin as the binder resin because it is easily available.
  • the acrylic resin is not particularly limited, and examples thereof include homopolymerization or copolymerization of (meth) acrylate and copolymers obtained by copolymerizing a vinyl monomer copolymerizable with (meth) acrylate. Further, it is preferable that the copolymer has an acid value for the purpose of imparting water dispersibility and water solubility.
  • (meth) acrylate refers to either or both of acrylate and methacrylate
  • (meth) acrylic refers to either or both of acrylic and methacrylic.
  • vinyl monomers that can be copolymerized with (meth) acrylates and (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, and t.
  • -Alkyl (meth) acrylates such as butyl (meth) acrylates, isopropyl (meth) acrylates and isobutyl (meth) acrylates; aromatic (meth) acrylates such as benzyl (meth) acrylates; 2-hydrodoxyethyl (meth) acrylates.
  • 2-Hydroxypropyl (meth) acrylate and other hydroxyl group-containing monomers methoxypolyethylene glycol mono (meth) acrylate, methoxypolypropylene glycol mono (meth) acrylate and other alkyl polyalkylene glycol mono (meth) acrylate; perfluoroalkyl ethyl (meth) ) Fluorine-based (meth) acrylates such as acrylates; styrene, styrene derivatives (p-dimethylsilylstyrene, (p-vinylphenyl) methylsulfide, p-hexynylstyrene, p-methoxystyrene, p-tert-butyldimethylsiloxystyrene) , O-Methylstyrene, p-methylstyrene, p-tert-butylstyrene,
  • one or more acidic groups selected from the group consisting of a carboxyl group and a carboxylate group in which the carboxyl group is neutralized with a basic compound, (meth) acrylic acid, crotonic acid, and itaconic acid.
  • a basic compound (meth) acrylic acid, crotonic acid, and itaconic acid.
  • the acid value can be adjusted.
  • a copolymer having can be obtained.
  • an acidic group is introduced, it is preferable to appropriately adjust the amount of the monomer so that the acid value is in a desired range, which will be described in detail later.
  • the copolymer can be produced, for example, by polymerizing various monomers in a temperature range of 50 ° C. to 180 ° C. in the presence of a polymerization initiator, and is more preferably in a temperature range of 80 ° C. to 150 ° C.
  • examples of the polymerization method include a bulk polymerization method, a solution polymerization method, a suspension polymerization method, an emulsification polymerization method and the like.
  • examples of the polymerization mode include random copolymers, block copolymers, graft copolymers, and the like.
  • the copolymer used in the present invention may be a core-shell type.
  • the core-shell type resin refers to a state in which the polymer (a2) is dispersed in an aqueous medium by the polymer (a1), and usually, the polymer (a1) is present on the outermost side of the resin particles to form a shell. In many cases, a portion is formed, and a part or all of the polymer (a2) forms a core portion.
  • the resin forming the shell portion will be referred to as a polymer (a1)
  • the resin forming the core portion will be referred to as a polymer (a2).
  • the core-shell type resin used in the present invention is one or more hydrophilic groups selected from the group consisting of a carboxyl group and a carboxylate group formed by neutralizing the carboxyl group of the polymer (a1) constituting the shell portion. It is preferable that it is composed of one containing an acrylic resin having.
  • the acid value of the shell portion is preferably in the range of 40 mgKOH / g or more and 250 mgKOH / g or less, and more preferably 120 mgKOH / g or less.
  • the carboxyl group of the polymer (a1) constituting the shell portion is neutralized with a basic compound to form a carboxylate group.
  • ammonia, triethylamine, morpholine, monoethanolamine, diethylethanolamine and the like can be used, and the use of ammonia and triethylamine can be used to withstand the temperature of the coating film. It is preferable for further improving the property, corrosion resistance and chemical resistance.
  • the monomers having a polymerizable unsaturated double bond it is preferable to use a monomer obtained by polymerizing a (meth) acrylic monomer containing a (meth) acrylic monomer having a carboxyl group.
  • a monomer obtained by polymerizing a (meth) acrylic monomer containing a (meth) acrylic monomer having a carboxyl group methyl (meth) acrylate, butyl (meth) acrylate, in order to adjust the glass transition temperature (Tg1) of the polymer (a1) to the range of 20 ° C to 100 ° C.
  • Tg1 glass transition temperature
  • the weight average molecular weight of the core portion is preferably in the range of 200,000 to 3,000,000, and more preferably 800,000 or more.
  • Tg is preferably in the range of ⁇ 30 ° C. to 30 ° C.
  • the polymer (a2) constituting the core portion a copolymer such as an acrylic monomer similar to the above-mentioned acrylic resin can be used, but it is particularly preferable to produce the polymer (a2) in an aqueous medium.
  • the monomer and the polymerization initiator and the like can be produced by collectively supplying or sequentially supplying them to a reaction vessel containing an aqueous medium for polymerization. At that time, a pre-emulsion is produced by mixing the monomer, the aqueous medium, and if necessary, a reactive surfactant or the like in advance, and the polymerization initiator or the like is supplied to the reaction vessel containing the aqueous medium. It may be polymerized.
  • Examples of the polymerization initiator that can be used in producing the polymer (a2) include radical polymerization initiators such as persulfates, organic peroxides, and hydrogen peroxide, and 4,4'-azobis (4-4'-azobis).
  • An azo initiator such as cyanovaleric acid), 2,2'-azobis (2-amidinopropane) dihydrochloride can be used.
  • the radical polymerization initiator may be used as a redox polymerization initiator in combination with a reducing agent described later.
  • persulfate for example, potassium persulfate, sodium persulfate, ammonium persulfate and the like can be used.
  • organic peroxide include benzoyl peroxide, lauroyl peroxide, decanoyle peroxide, t-butyl cumyl peroxide, dicumyl peroxide, t-butyl peroxylaurate, and t-butyl peroxybenzoate.
  • Kumen hydroperoxide, paramentan hydroperoxide, t-butyl hydroperoxide and the like can be used.
  • reducing agent examples include ascorbic acid and its salt, erythorbic acid and its salt (sodium salt, etc.), tartrate acid and its salt, citric acid and its salt, formaldehyde sulfoxylate metal salt, sodium thiosulfate, and the like.
  • Sodium disulfide, ferric chloride, etc. can be used.
  • the amount of the polymerization initiator used may be an amount that allows the polymerization to proceed smoothly, but it is preferable that the amount is small from the viewpoint of maintaining the excellent corrosion resistance of the obtained coating film, and it is preferable for the production of the vinyl polymer (a2). It is preferably 0.01% by mass to 0.5% by mass with respect to the total amount of the monomers used. Further, when the polymerization initiator is used in combination with the reducing agent, it is preferable that the total amount of the polymerization initiators used is also within the above range.
  • a reactive surfactant anionic surfactant, nonionic surfactant, cationic surfactant, amphoteric surfactant, etc. are used. May be good.
  • the acid value of the copolymer is preferably 20 mgKOH / g or more, 120 mgKOH / g or less, and more preferably 25 mgKOH or more.
  • the acid value is 20 mgKOH / g or more, the friction resistance, water friction resistance, and scratch resistance of the laminate can be improved when the curing agent is added.
  • the acid value referred to here indicates the number of milligrams of potassium hydroxide required to neutralize the acidic component contained in 1 g of the resin.
  • the weight average molecular weight of the copolymer is preferably in the range of 5,000 to 100,000.
  • the weight average molecular weight is 5,000 or more, the heat resistance of the resin film does not deteriorate, and the friction resistance and the water friction resistance of the laminate tend to be maintained. If it is 100,000 or less, the laminate tends to have both substrate adhesion and scratch resistance.
  • the glass transition temperature (Tg) of the copolymer is preferably in the range of 0 ° C to 55 ° C.
  • Tg glass transition temperature
  • the glass transition temperature (Tg1) refers to a so-called calculated glass transition temperature, and refers to a value calculated by the following method.
  • Equation 1 / Tg (K) (W1 / T1) + (W2 / T2) + ... (Wn / Tn)
  • Tg (° C.) Tg (K) -273
  • W1, W2, ... Wn in the formula 1 represent the mass% of each monomer with respect to the total mass of the monomers used for producing the polymer, and T1, T2, ... Tn are homopolymers of each monomer.
  • T1, T2, ... Tn the values described in Polymer Handbook (Fourth Edition, J.
  • the glass transition temperature of the homopolymer of each monomer is not described in the Polymer Hand Book, the glass transition temperature is based on JIS K7121 using a differential scanning calorimeter "DSC Q-100" (manufactured by TA Instrument). It was measured by the method described above. Specifically, the polymer from which the solvent has been completely removed by vacuum suction is measured for a change in calorific value in the range of -100 ° C to + 200 ° C at a heating rate of 20 ° C / min, and an extended straight line of each baseline. The point where the straight line at the same distance in the vertical axis direction and the curve of the stepwise change portion of the glass transition intersect was defined as the glass transition temperature.
  • the urethane resin has, for example, a polyol such as a polyether polyol, a polyester polyol or a polycarbonate polyol, and a hydrophilic group such as an anionic group, a cationic group, a polyoxyethylene group or a polyoxyethylene-polyoxypropylene group.
  • a polyol such as a polyether polyol, a polyester polyol or a polycarbonate polyol
  • a hydrophilic group such as an anionic group, a cationic group, a polyoxyethylene group or a polyoxyethylene-polyoxypropylene group.
  • examples thereof include a urethane resin obtained by reacting a polyol with a polyisocyanate.
  • the weight average molecular weight of the urethane resin is not particularly limited, but is generally 5,000 to 200,000, and more preferably 20,000 to 150,000.
  • polyether polyol examples include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, and neopentyl glycol.
  • Glycerin trimethylol ethane, trimethylolpropane, sorbitol, sucrose, aconit sugar, femimertic acid, phosphoric acid, ethylenediamine, diethylenetriamine, triisopropanolamine, pyrogallol, dihydroxybenzoic acid, hydroxyfutaric acid, 1,2,3-propane
  • a compound having two or more active hydrogen groups such as trithiol and an addition-polymerized cyclic ether compound such as ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, tetrahydrofuran and cyclophenylene, or the cyclic ether compound.
  • the polyester polyol is obtained by dehydration condensation reaction of diol compound, dicarboxylic acid, hydroxycarboxylic acid compound and the like, ring-opening polymerization reaction of cyclic ester compound such as ⁇ -caprolactone, and copolymerization of polyester obtained by these reactions. Be done.
  • the diol compound used as a raw material for this polyester polyol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 3-methyl-1,5-pentane.
  • dicarboxylic acid used as a raw material for the polyester polyol examples include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, maleic acid, fumaric acid, 1,3-cyclopentanedicarboxylic acid, and 1,4.
  • polycarbonate polyol for example, one obtained by reacting a carbonic acid ester with a low molecular weight polyol, preferably a linear aliphatic diol, can be used.
  • carbonic acid ester methyl carbonate, dimethyl carbonate, ethyl carbonate, diethyl carbonate, cyclocarbonate, diphenylcarbonate and the like can be used.
  • Examples of the low molecular weight polyol that can react with the carbonic acid ester include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, dipropylene glycol, 1,4-butanediol, and 1.
  • the polycarbonate structure is preferably used in the range of 10% by mass to 90% by mass with respect to the total mass of the polyol used for producing the polycarbonate urethane resin and the polyisocyanate.
  • the urethane resin has a hydrophilic group in order to impart dispersion stability in the coating agent.
  • a hydrophilic group an anionic group, a cationic group, or a nonionic group can be generally used, but it is preferable to use an anionic group or a cationic group.
  • anionic group for example, a carboxyl group, a carboxylate group, a sulfonic acid group, a sulfonate group and the like can be used, and among them, a carboxylate group partially or wholly neutralized with a basic compound or the like can be used. It is preferable to use a sulfonate group in order to maintain good water dispersibility.
  • Examples of the basic compound that can be used for neutralizing the carboxyl group and the sulfonic acid group as the anionic group include organic amines such as ammonia, triethylamine, pyridine and morpholine, alkanolamines such as monoethanolamine, and Na. Examples thereof include metal base compounds containing K, Li, Ca and the like.
  • a tertiary amino group or the like can be used as the cationic group.
  • the acid that can be used to neutralize a part or all of the tertiary amino group formic acid, acetic acid and the like can be used, for example.
  • the quaternizing agent that can be used when partially or all of the tertiary amino group is quaternized for example, dialkyl sulfates such as dimethyl sulfate and diethyl sulfate can be used.
  • the nonionic group includes, for example, a polyoxyalkylene group such as a polyoxyethylene group, a polyoxypropylene group, a polyoxybutylene group, a poly (oxyethylene-oxypropylene) group, and a polyoxyethylene-polyoxypropylene group.
  • a polyoxyalkylene group such as a polyoxyethylene group, a polyoxypropylene group, a polyoxybutylene group, a poly (oxyethylene-oxypropylene) group, and a polyoxyethylene-polyoxypropylene group.
  • a polyoxyalkylene group such as a polyoxyethylene group, a polyoxypropylene group, a polyoxybutylene group, a poly (oxyethylene-oxypropylene) group, and a polyoxyethylene-polyoxypropylene group.
  • the presence of 0.5% by mass to 30% by mass of the hydrophilic group with respect to the entire urethane resin imparts even better water dispersibility, and may be in the range of 1% by mass to 20% by mass. More preferred.
  • cross-linking agent described later can be used depending on the desired physical properties.
  • the cross-linking agent it is preferable to use the urethane resin having a functional group capable of cross-linking with the functional group of the cross-linking agent.
  • Examples of the functional group include a carboxyl group and a carboxylate group that can be used as the hydrophilic group.
  • the carboxyl groups and the like contribute to the water dispersion stability of the urethane resin in an aqueous medium, and when they undergo a crosslinking reaction, they also act as the functional groups and can partially crosslink the crosslinking agent.
  • the urethane resin When a carboxyl group or the like is used as the functional group, the urethane resin preferably has an acid value of 2 to 55, and it is preferable to use a urethane resin having an acid value of 15 to 50. It is preferable to improve.
  • the acid value referred to in the present invention is a theoretical value calculated based on the amount of the acid group-containing compound such as the carboxyl group-containing polyol used in the production of the urethane resin.
  • the urethane resin can be produced, for example, by reacting a polyol, a polyisocyanate, and a chain extender, if necessary.
  • polyamines other active hydrogen atom-containing compounds and the like can be used.
  • the polyamine include ethylenediamine, 1,2-propanediamine, 1,6-hexamethylenediamine, piperazine, 2,5-dimethylpiperazine, isophoronediamine, 4,4'-dicyclohexylmethanediamine, and 3,3'-.
  • Diamines such as dimethyl-4,4'-dicyclohexamethylenediamine, 1,4-cyclohexanediamine; N-hydroxymethylaminoethylamine, N-hydroxyethylaminoethylamine, N-hydroxypropylaminopropylamine, N-ethylaminoethylamine, N-Methylaminopropylamine; diethylenetriamine, dipropylenetriamine, triethylenetetramine; hydrazine, N, N'-dimethylhydrazine, 1,6-hexamethylenebishydrazine; dihydrazide succinate, dihydrazide adipate, dihydrazide glutarate, sebacic acid Dihydrazide, isophthalic acid dihydrazide; ⁇ -semicarbazide propionate hydrazide, 3-semicarbazid-propyl-carbazic acid ester, semicarbazid-3-semicarbazidomethyl
  • Examples of the other active hydrogen-containing compound include ethylene glycol, diethylene recall, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, hexamethylene glycol, and neo.
  • Glycos such as pentyl glycol, saccharose, methylene glycol, glycerin, sorbitol; bisphenol A, 4,4'-dihydroxydiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfone, hydrogenated bisphenol A, hydroquinone
  • the chain extender can be obtained by reacting the polyol with polyisocyanate, for example, with the equivalent amount of amino group and active hydrogen atom-containing group of the chain extender.
  • the chain extender is more preferably 0.5% by mass, and can be used during or after the reaction between the polyol and the polyisocyanate. Further, the chain extender can also be used when the urethane resin obtained above is dispersed in an aqueous medium to make it aqueous.
  • polyols other than the above include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, and 1, , 6-Hexenediol, Neopentyl Glycol, Diethylene Glycol, Triethylene Glycol, Tetraethylene Glycol, Polyethylene Glycol, Dipropylene Glycol, Tripropylene Glycol, Bishydroxyethoxybenzene, 1,4-Cyclohexanediol, 1,4-Cyclohexanedimethanol , Bisphenol A, hydrogenated bisphenol A, hydroquinone and their alkylene oxide adducts, glycerin, trimethylolethane, trimethylolpropane, sorbitol, pentaerythritol and other relatively low molecular weight polyols. These polyols can be used alone
  • polyisocyanate that reacts with the polyol to form a urethane resin examples include aromatic diisocyanates such as phenylenediisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, and naphthalenediocyanate, hexamethylene diisocyanate, lysine diisocyanate, cyclohexanediisocyanate, isophorone diisocyanate, and dicyclohexylmethane.
  • aromatic diisocyanates such as phenylenediisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, and naphthalenediocyanate, hexamethylene diisocyanate, lysine diisocyanate, cyclohexanediisocyanate, isophorone diisocyanate, and dicyclohexylmethane.
  • Aliphatic or aliphatic ring structure-containing diisocyanates such as diisocyanate, xylylene diisocyanate, and tetramethylxylylene diisocyanate can be used alone or in combination of two or more.
  • the binder resin is preferably 5 to 50% by mass in terms of solid content of the coating agent of the present invention. When it is 5% by mass or more, the strength of the coating film does not decrease, and the adhesion to the base material, the water friction resistance, and the like are kept good. On the contrary, when it is 50% by mass or less, the decrease in antiviral property and antibacterial property can be suppressed, the high viscosity can be avoided, and the workability does not decrease. Of these, 5 to 40% by mass is still more preferable, and 5 to 20% by mass is most preferable.
  • the photocatalyst (B) is a photocatalyst containing titanium oxide containing crystalline rutyl-type titanium oxide and a divalent copper compound, and the crystalline rutile-type titanium oxide is a diffraction line with respect to a diffraction angle 2 ⁇ by Cu—K ⁇ rays.
  • the half-value total width of the strongest diffraction peak corresponding to rutile-type titanium oxide is titanium oxide of 0.65 degrees or less, and the content of the crystalline rutile-type titanium oxide in the titanium oxide. It is a photocatalyst having an amount of 50 mol% or more and an anatase-type titanium oxide content of less than 50 mol%.
  • rutile-type and highly crystalline crystalline rutile-type titanium oxide and a divalent copper compound By using a combination of rutile-type and highly crystalline crystalline rutile-type titanium oxide and a divalent copper compound, a photocatalyst with excellent antiviral properties in bright and dark places and organic compound decomposition in bright places (visible). A visible light responsive photocatalyst) having photocatalytic activity such as antiviral property can be obtained in the light region. Further, since the divalent copper compound is less likely to be discolored due to oxidation like the monovalent copper compound, discoloration over time can be suppressed.
  • the "bright place” means a place where visible light exists
  • the "dark place” means a place where light does not exist.
  • the photocatalytic activity means at least one selected from photo-induced degradability and photo-induced hydrophilization.
  • Photo-induced degradability is the action of oxidatively decomposing organic substances adsorbed on the surface treated with titanium oxide
  • photo-induced hydrophilicity is the hydrophilicity of the surface treated with titanium oxide that is easily compatible with water. It is an action to become. It is considered that this photoinduced hydrophilicity is caused by the increase of hydroxyl groups on the surface of titanium oxide due to the holes generated and diffused by photoexcitation.
  • the virus means a DNA virus and an RNA virus, but also includes a bacteriophage (hereinafter, may be abbreviated as "phage") which is a virus that infects bacteria.
  • phage bacteriophage
  • the titanium oxide used in the photocatalyst (B) contains crystalline rutile-type titanium oxide.
  • the crystalline rutile-type titanium oxide is an X-ray diffraction pattern in which the diffraction line intensity with respect to the diffraction angle 2 ⁇ by Cu—K ⁇ rays is plotted, and the half-value full width of the strongest diffraction peak corresponding to the rutile-type titanium oxide is 0. It means titanium oxide of .65 degrees or less.
  • the full width at half maximum is preferably 0.6 degrees or less, more preferably 0.5 degrees or less, still more preferably 0.4 degrees or less, still more preferably 0.35 degrees. ..
  • the content of crystalline rutile-type titanium oxide in titanium oxide (hereinafter, may be referred to as "rutileization rate”) is 50 mol% or more.
  • the rutileization rate is preferably 90 mol% or more, more preferably 94 mol% or more. This rutile formation rate is a value measured by XRD as described later.
  • anatase formation rate is preferably low, and the anatase formation rate is less than 50 mol%, preferably 10 mol. %, More preferably less than 7 mol%, still more preferably 0 mol% (ie, free of anatase-type titanium oxide).
  • This anatase formation rate is also a value measured by XRD in the same manner as the rutile formation rate.
  • the specific surface area of titanium oxide is preferably 1 to 200 m 2 / g. When it is 1 m 2 / g or more, the specific surface area is large, so that the frequency of contact with viruses, fungi and organic compounds increases, and the obtained photocatalyst has antiviral properties in bright and dark places, organic compound degradability and antibacterial properties. Excellent in sex. On the other hand, when it is 200 m 2 / g or less, the handleability is excellent. From these viewpoints, the specific surface area of titanium oxide is more preferably 3 to 100 m 2 / g, further preferably 4 to 70 m 2 / g, and particularly preferably 8 to 50 m 2 / g. Here, the specific surface area is a value measured by the BET method by nitrogen adsorption.
  • Titanium oxide includes those produced by the vapor phase method and those produced by the liquid phase method, and either of them can be used, but titanium oxide produced by the vapor phase method is more preferable.
  • the gas phase method is a method of obtaining titanium oxide by a gas phase reaction with oxygen using titanium tetrachloride as a raw material. Titanium oxide obtained by the vapor phase method has a uniform particle size and at the same time has high crystallinity because it goes through a high temperature process during production. As a result, the obtained photocatalyst has good antiviral properties, organic compound decomposability and antibacterial properties in bright and dark places.
  • the liquid phase method is a method for obtaining titanium oxide by hydrolyzing or neutralizing a liquid in which a titanium oxide raw material such as titanium chloride or titanyl sulfate is dissolved.
  • Titanium oxide produced by the liquid phase method tends to have a low crystallinity of rutile and a large specific surface area. In this case, it may be calcined to obtain titanium oxide having optimum crystallinity and specific surface area.
  • the vapor phase method is more preferable because it takes time and effort.
  • titanium oxide it is more advantageous to use commercially available titanium oxide as it is, considering the process of catalyst preparation.
  • the photocatalyst (B) contains a divalent copper compound.
  • This divalent copper compound alone does not have antiviral properties in bright and dark places, organic compound degradability in bright places, and visible light responsiveness, but by combining with the above-mentioned crystalline rutile-type titanium oxide, it is possible to make bright spots. And antiviral property in the dark, organic compound decomposition property in the light place, and visible light responsiveness are sufficiently expressed. Further, since the divalent copper compound has less discoloration due to oxidation or the like than the monovalent copper compound, the photocatalyst using this divalent copper compound suppresses the discoloration.
  • the divalent copper compound is not particularly limited, and examples thereof include one or two types of a divalent copper inorganic compound and a divalent copper organic compound.
  • Divalent copper Inorganic compounds include copper sulfate, copper nitrate, copper iodide, copper perchlorate, copper oxalate, copper tetraborate, copper ammonium sulfate, copper amide sulfate and copper ammonium chloride, copper pyrophosphate, and copper carbonate. 1 selected from the group consisting of an inorganic acid salt of divalent copper, a halide of divalent copper composed of copper chloride, copper fluoride and copper bromide, and a group consisting of copper oxide, copper sulfide, azurite, malakite and copper azide. Species or two or more species are mentioned.
  • divalent copper organic compound examples include a divalent copper carboxylate.
  • carboxylate of divalent copper examples include copper formate, copper acetate, copper propionate, copper butyrate, copper valerate, copper caproate, copper enanthate, copper caprylate, copper pelargonate, copper capricate, and mistinic acid.
  • divalent copper organic compounds are selected from the group consisting of oxine copper, acetylacetone copper, ethylacetoacetate copper, trifluoromethanesulfonate copper, phthalocyanine copper, copper ethoxydo, copper isopropoxide, copper methoxyd and copper dimethyldithiocarbamate.
  • oxine copper acetylacetone copper
  • ethylacetoacetate copper trifluoromethanesulfonate copper
  • phthalocyanine copper copper ethoxydo
  • copper isopropoxide copper methoxyd and copper dimethyldithiocarbamate.
  • divalent copper compounds preferably one or more of copper oxide, a halide of divalent copper, an inorganic acid salt of divalent copper and a carboxylate of divalent copper, for example, divalent copper.
  • a halide, one or more of an inorganic acid salt of divalent copper and a carboxylate of divalent copper preferably one or more of copper oxide, a halide of divalent copper, an inorganic acid salt of divalent copper and a carboxylate of divalent copper.
  • examples of the divalent copper compound include a divalent copper compound represented by the following general formula (1).
  • X is an anion, preferably a halogen such as Cl, Br, I, a conjugate base of a carboxylic acid such as CH 3 COO, or an inorganic acid such as NO 3 , (SO 4 ) 1/2. Conjugate base, or OH.
  • divalent copper inorganic compounds are more preferable, and copper oxide is further preferable, from the viewpoint of less impurities and economic viewpoint.
  • a divalent copper compound represented by the above general formula (1) is also preferable.
  • the divalent copper compound may be anhydrous or hydrated.
  • the copper equivalent content of the divalent copper compound is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the titanium oxide.
  • the antiviral property, the organic compound decomposing property and the antibacterial property in a bright place and a dark place become good.
  • the amount is 20 parts by mass or less, the surface of titanium oxide is prevented from being covered, the function as a photocatalyst (organic compound decomposability, antibacterial property, etc.) is satisfactorily exhibited, and the antiviral performance is improved with a small amount. It can be improved and is economical.
  • the copper equivalent content of the divalent copper compound is more preferably 0.1 to 20 parts by mass, still more preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of titanium oxide. Even more preferably, it is 0.3 to 10 parts by mass.
  • the copper equivalent content of the divalent copper compound with respect to 100 parts by mass of this titanium oxide can be calculated from the charged amount of the raw material of the divalent copper compound and the raw material of titanium oxide.
  • the copper equivalent content can also be specified by measuring the photocatalyst by ICP (inductively coupled plasma) emission spectroscopy, which will be described later.
  • the photocatalyst (B) contains titanium oxide containing crystalline rutile-type titanium oxide and a divalent copper compound as essential components, but other optional components as long as the object of the present invention is not impaired. May be contained.
  • the content of the essential component in the photocatalyst (B) is preferably 90% by mass or more, more preferably 95% by mass or more, and further. It is preferably 99% by mass or more, and more preferably 100% by mass.
  • the photocatalyst (B) can be produced by carrying out a mixing step of mixing titanium oxide containing crystalline rutile-type titanium oxide and a raw material for a divalent copper compound. Further, a heat treatment step of heat-treating the mixture obtained by this mixing step may be further carried out to obtain a photocatalyst.
  • a photocatalyst can also be obtained by suspending titanium oxide in an aqueous solution of a copper compound and adsorbing it.
  • the photocatalyst (B) can be produced by the method described in Japanese Patent No. 5343176.
  • the primary particle size of the photocatalyst (B) is in the range of about 200 to 400 nm and the secondary particle size is about 3 to 10 ⁇ m, it is preferable because it can be dispersed in the coating agent and has excellent photocatalytic activity such as antiviral property.
  • the method for measuring the primary particle size is a value measured by a method of directly measuring the size of the primary particle from an electron micrograph using a transmission electron microscope (TEM).
  • the photocatalyst (B) preferably contains 0.5% by mass or more, preferably 1% by mass or more, based on the total solid content of the coating agent of the present invention in order to exhibit photocatalytic activity such as antiviral property. It is preferably contained in an amount of 5% by mass or more, preferably 10% by mass or more.
  • the photocatalyst (B) is preferably contained in an amount of 80% by mass or less, preferably 60% by mass or less, based on the total solid content of the coating agent of the present invention. It is preferably contained in an amount of 55% by mass or less, preferably 50% by mass or less, preferably 30% by mass or less, and most preferably 20% by mass or less.
  • the aqueous medium (C) used in the coating agent of the present invention is an aqueous medium containing water as a main component and may contain an organic solvent.
  • an organic solvent In the present invention, only water may be used, or a mixture of water and an organic solvent may be used, but from the viewpoint of reducing the environmental load and improving safety, it is preferable that the amount of the organic solvent used is as small as possible. ..
  • the organic solvent When the organic solvent is contained, it is preferable that the organic solvent is contained in an amount of 30% by mass or less and 5% by mass or less in the total amount of the coating agent.
  • the organic solvent that can be used is not particularly limited, but for example, an organic solvent that is miscible with water is preferable, and 1-butanol, isobutanol, 1-pentanol, 2-methyl-2-pentanol, and 3-methyl-3 are preferable.
  • -Pentanol methylethylketone
  • Monofunctional alcohols such as methanol, ethanol, n-propyl alcohol (hereinafter, also referred to as NPA), isopropyl alcohol (hereinafter, also referred to as IPA), various diols, polyhydric alcohols such as glycerin, Ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decane Diol, 1,12-dodecanediol, propylene glycol, 1,2 butanediol, 3-methyl-1,3butanediol, 1,2pentanediol, 2-methyl-1,3propanediol, 1,2hexanediol, Dipropy
  • Alicyclic diols such as bisphenol A, aromatic diols, alkylene oxides having 2 or 3 carbon atoms of bisphenol A (average number of added moles 1 or more and 16 or less), hydrogenated bisphenol A, etc.
  • NPA n-propyl alcohol
  • IPA Isopropyl alcohol
  • PGM propylene glycol
  • PGM propylene glycol monomethyl ether
  • a surfactant may be added depending on the desired physical properties.
  • a general-purpose surfactant can be used in the present technical field without particular limitation, and among them, an acetylene-based surfactant and an alcohol alkoxylate-based surfactant are preferable.
  • acetylene-based surfactant used in the present invention 2,5-dimethyl-3-hexyne-2,5-diol, 3,6-dimethyl-4-octyne-3,6-diol, 2, 4,7,9-Tetramethyl-5-decyne-4,7-diol, 3,5-dimethyl-1-hexyne-3-ol, 3-methyl-1-butyne-3-ol, 3-methyl-1 -Pentyne-3-ol, 3-hexyne-2,5-diol, 2-butyne-1,4-diol and the like can be mentioned.
  • Commercially available products include alkylene oxide-non-denatured acetylene glycol-based surfactants such as Surfinol 61, 82, 104 (all manufactured by Air Products & Chemicals).
  • alcohol alkoxylate-based surfactant used in the present invention DYNWET800 (manufactured by Big Chemie Japan) can be mentioned.
  • acetylene-based surfactants and alcohol alkoxylate-based surfactants may be used alone or in combination of two or more.
  • the total amount of these acetylene-based surfactants and / or alcohol alkoxylate-based surfactants added is 0.1 to 1% by mass of the total amount of the coating agent.
  • These acetylene-based surfactants may be used alone or in combination of two or more, and the total amount of the acetylene-based surfactant and / or the alcohol alkoxylate-based surfactant added is the total amount.
  • it is 0.1% by mass or more of the total amount of the coating agent, the coatability with the base material is improved and the adhesion with the base material can be maintained.
  • the total amount of the acetylene-based surfactant and / or the alcohol alkoxylate-based surfactant added is 1% by mass or less of the total amount of the coating agent, the wear resistance, the water-based wear resistance, and the scratch resistance are deteriorated. Nor.
  • the total amount of the surfactant used is preferably 0.1 to 1% by mass of the total amount of the coating agent.
  • wax in the present invention, wax can be added depending on the desired physical properties.
  • the wax is preferably a carbon-based wax, and the carbon wax is liquid paraffin, natural paraffin, synthetic paraffin, microcrystalline wax, polyethylene wax, fluorocarbon wax, ethylene-propylene copolymer wax, tetrafluoroethylene resin wax, Fisher. Examples include tropush wax. These waxes may be used alone or in combination of two or more, and the total amount of these waxes added is preferably 0.5 to 5% by mass of the total amount of the coating agent.
  • the total amount of wax added is 0.5% by mass or more of the total amount of ink, wear resistance, water wear resistance, and scratch resistance can be maintained, and the dispersibility of the photocatalyst (B) is improved. Can be made to.
  • the total amount of the wax added is 5% by mass or less of the total amount of the coating agent, the adhesion to the substrate, the wear resistance, the water-based wear resistance, and the scratch resistance can be maintained.
  • a curing agent can be added depending on the desired physical properties.
  • the curing agent capable of reacting with the acid used in the present invention is not particularly limited, and a known curing agent capable of reacting with an acid group that can be used in an aqueous medium can be used.
  • a known curing agent capable of reacting with an acid group that can be used in an aqueous medium can be used.
  • an epoxy-based curing agent, a carbodiimide-based curing agent, an oxazoline-based curing agent, and the like can be mentioned.
  • the epoxy-based curing agent is not particularly limited as long as it is a compound having at least one epoxy group.
  • examples of the epoxy-based curing agent include epoxy resins such as bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, novolak glycidyl ether, glycerin polyglycidyl ether, and polyglycerin polyglycidyl ether.
  • a polycarbodiimide compound having at least two or more carbodiimide groups is preferable.
  • the oxazoline-based curing agent is not particularly limited as long as it is a compound having an oxazoline skeleton. Specific examples of the oxazoline-based curing agent include the Epocross series manufactured by Nippon Shokubai Co., Ltd.
  • epoxy compound examples include bisphenol A diglycidyl ether and its oligomer, hydride bisphenol A diglycidyl ether and its oligomer, orthophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, and p-oxybenzoic acid.
  • Diglycidyl ester tetrahydrophthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, succinic acid diglycidyl ester, adipic acid diglycidyl ester, sebacic acid diglycidyl ester, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether , 1,4-Butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether and polyalkylene glycol diglycidyl ethers, trimellitic acid triglycidyl ester, triglycidyl isocyanurate, 1,4-diglycidyloxybenzene, Examples thereof include diglycidyl propylene urea, glycerol triglycidyl ether, trimethylol ethane triglycidyl ether, trimethylol propane triglycid
  • the amount of the curing agent added in the present invention is preferably 0.1 to 10.0% by mass, more preferably 0.5 to 9.0% by mass in terms of solid content of the total amount of the coating agent. If the addition amount is 0.1% by mass or more, the effect as a curing agent can be obtained, while if it is 10.0% by mass or less, the substrate adhesion, friction resistance, and water friction resistance tend to be maintained. Become.
  • extender pigments such as oleic acid amide, stearic acid amide, and erucic acid amide for imparting abrasion resistance and slipperiness, and silicon-based and non-silicon-based defoamers for suppressing foaming during coating, and Various dispersants and the like are useful for improving the dispersibility of the photocatalyst (B).
  • the coating agent of the present invention may contain a colorant.
  • the colorant include dyes, inorganic pigments, and organic pigments used in general inks, paints, recording agents, and the like. Of these, pigments such as inorganic pigments and organic pigments are preferable.
  • the coating agent for a paper base material or a plastic base material of the present invention can be obtained by stirring and mixing the binder resin (A), the photocatalyst (B) and the like in the aqueous medium (C).
  • the disperser it is manufactured by using a bead mill, an Eiger mill, a sand mill, a gamma mill, an attritor, etc., which are generally used for manufacturing gravure and flexographic printing inks.
  • the coating agent for a paper base material or a plastic base material of the present invention can be coated on a base material such as a plastic material, paper, a molded product, a film base material, and a packaging material by a general coating method, specifically.
  • Gravure roll coating gravure coater
  • flexo roll coating flexo coater
  • reverse roll coating wire bar coating, lip coating, air knife coating, curtain flow coating, spray coating, dip coating, brush coating, etc.
  • a coating layer may be provided on the base material by impregnating the base material with the overcoating agent of the present invention.
  • the viscosity may be as long as it is 7 to 40 seconds at 25 ° C. using Zahn Cup # 4 manufactured by Rigo Co., Ltd., more preferably 10 to 20 seconds. be.
  • the viscosity may be as long as it is 14 to 30 seconds at 25 ° C. using Zahn Cup # 3 manufactured by Rigo Co., Ltd., and more preferably 15 to 20. Seconds.
  • the thickness of the coating layer of the present invention can be appropriately adjusted depending on the intended use and the material of the base material, but for example, the range of 0.1 ⁇ m to 5 ⁇ m is preferable, the range of 0.3 ⁇ m to 3 ⁇ m is preferable, and the range of 0.5 to 2 ⁇ m is preferable. preferable.
  • the coating layer formed by using the coating agent tends to have a structure in which a part of the photocatalyst (B) is exposed. Therefore, the coating layer in the present invention can maximize the antiviral function.
  • the base material used in the present invention is a paper base material or a plastic base material.
  • the paper base material is manufactured by a known paper machine using natural fibers for paper making such as wood pulp, but the paper making conditions thereof are not particularly specified.
  • natural fibers for papermaking include wood pulp such as coniferous tree pulp and broadleaf tree pulp, non-wood pulp such as Manila hemp pulp, sisal hemp pulp, and flax pulp, and pulp obtained by chemically modifying these pulps.
  • thermomechanical pulp or the like obtained by a sulfate cooking method, an acidic / neutral / alkaline sulfite cooking method, a soda salt cooking method or the like can be used. Further, various commercially available high-quality papers, coated papers, backing papers, impregnated papers, cardboards, paperboards and the like can also be used.
  • the plastic base material may be any base material used for base materials such as plastic materials, molded products, film base materials, and packaging materials, and in particular, gravure roll coating (gravure coater) and flexorol coating (flexo coater). ),
  • the film substrate normally used in the gravure / flexographic printing field can be used as it is.
  • polyamide resins such as nylon 6, nylon 66, and nylon 46
  • PET polyethylene terephthalate
  • PET polyethylene naphthalate
  • polytrimethylene terephthalate polytrimethylene terephthalate
  • polytrimethylene naphthalate polybutylene terephthalate.
  • Polyester resins such as polybutylene naphthalate, polyhydroxycarboxylic acids such as polylactic acid, biodegradable resins such as aliphatic polyester resins such as poly (ethylene succinate) and poly (butylene succinate), polypropylene, polyethylene, etc.
  • films made of thermoplastic resins such as polyolefin resins, polyimide resins, polyarylate resins or mixtures thereof, and laminates thereof.
  • films made of polyethylene terephthalate (PET), polyester, polyamide, polyethylene and polypropylene. can be preferably used.
  • These base films may be unstretched films or stretched films, and the production method thereof is not limited. Further, the thickness of the base film is not particularly limited, but usually it may be in the range of 1 to 500 ⁇ m.
  • the printed surface of the base film is preferably subjected to a corona discharge treatment, and aluminum, silica, alumina, or the like may be vapor-deposited.
  • the base material is a laminated body (sometimes referred to as a laminated film) having a laminated structure in which the paper base material or the film base material is laminated by a dry laminating method, a solvent-free laminating method, or an extrusion laminating method. It doesn't matter.
  • the structure of the laminate may include a metal foil, a metal vapor deposition film layer, an inorganic vapor deposition film layer, an oxygen absorption layer, an anchor coat layer, a printing layer, a varnish layer and the like.
  • the single-layer paper base material or film base material, or the laminate having a laminated structure may be a functional film, a flexible packaging film, a shrink film, a film for daily necessities packaging, a film for pharmaceutical packaging, or a food product, depending on the industry and usage method.
  • the coating agent for a paper base material or a plastic base material of the present invention can be used without particular limitation. At this time, it is preferable that the coating agent for a paper base material or a plastic base material of the present invention is coated on the surface that becomes the outermost layer when a container or packaging material using these is used.
  • the coating agent of the present invention has the print ink layer.
  • the printing ink used for the printing ink layer is not particularly limited, and coating is possible on the printing layer such as offset flat plate ink, gravure printing ink, flexo printing ink, and inkjet printing ink.
  • gravure roll coating gravure coater
  • flexo roll coating flexo coater
  • in-line printing it is industrially preferable to combine with gravure printing ink or flexo printing ink. ..
  • the gravure printing ink and the flexographic printing ink (hereinafter referred to as liquid printing ink) are formed of a printing ink composed of a binder resin, a pigment, a solvent, and if necessary, an additive.
  • Liquid printing inks used as gravure printing inks and flexo printing inks are roughly classified into organic solvent type liquid printing inks having an organic solvent as a main solvent and water-based liquid printing inks having water as a main solvent.
  • Organic solvent type liquid printing ink in addition to the modified pigment used in the present invention, a mixture containing a binder resin, an organic solvent medium, a dispersant, a defoaming agent, etc., which will be described later, is dispersed by a disperser to obtain a pigment dispersion. .. It is obtained by adding an additive such as a resin, an aqueous medium and, if necessary, a leveling agent to the obtained pigment dispersion and stirring and mixing.
  • an additive such as a resin, an aqueous medium and, if necessary, a leveling agent to the obtained pigment dispersion and stirring and mixing.
  • the disperser As the disperser, it is manufactured by using a bead mill, an Eiger mill, a sand mill, a gamma mill, an attritor, etc., which are generally used for manufacturing gravure and flexographic printing inks.
  • the ink viscosity of the organic solvent type liquid printing ink is 10 mPa ⁇ s or more from the viewpoint of preventing the pigment from settling and appropriately dispersing it, regardless of whether it is used as a gravure ink or a flexographic ink. From the viewpoint of workability efficiency during ink production and printing, the range is preferably 1000 mPa ⁇ s or less.
  • the viscosity is a viscosity measured at 25 ° C. with a B-type viscometer manufactured by Tokimec.
  • the viscosity of the ink can be adjusted by appropriately selecting the type and amount of raw materials used, the binder resin, the pigment, the organic solvent, and the like. Further, the viscosity of the ink can be adjusted by adjusting the particle size and the particle size distribution of the pigment in the ink.
  • the organic solvent type liquid printing ink has excellent adhesion to various base materials and can be used for printing on paper, synthetic paper, thermoplastic resin film, plastic products, steel plates, etc. It is useful as an ink for gravure printing using a gravure printing plate according to the above, or for flexo printing using a flexo printing plate using a resin plate or the like.
  • the film thickness of the printing ink formed by the gravure printing method or the flexographic printing method using the organic solvent type liquid printing ink of the present invention is, for example, 10 ⁇ m or less, preferably 5 ⁇ m or less.
  • Binder resin The binder resin for the organic solvent type liquid printing ink is not particularly limited, and is not particularly limited in general. Polyurethane resin, acrylic resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride used for general liquid printing ink.
  • -Acrylic copolymer resin chlorinated polypropylene resin, cellulose resin, polyamide resin, ethylene-vinyl acetate copolymer resin, vinyl acetate resin, styrene resin, dammar resin, styrene-maleic acid copolymer resin, polyester resin, Alkid resin, polyvinyl chloride resin, rosin resin, rosin-modified maleic acid resin, terpene resin, phenol-modified terpene resin, ketone resin, cyclized rubber, rubber chloride, butyral, polyacetal resin, petroleum resin, and modified resins thereof, etc. Can be mentioned. These resins can be used alone or in admixture of two or more.
  • a binder resin containing at least one selected from the group consisting of a styrene-maleic acid copolymer resin, a dammar resin, a rosin-based resin, a rosin-modified maleic acid resin, a ketone resin and a cyclized rubber is preferable.
  • the content of the binder resin is in the range of 1 to 50% by mass in terms of solid content, more preferably 2 to 40% by mass in terms of solid content of the aqueous liquid printing ink of the present invention.
  • the organic solvent for the organic solvent type liquid printing ink is not particularly limited, but for example, aromatic hydrocarbon-based organic solvents such as toluene, xylene, Solbesso # 100 and Solbesso # 150, hexane, methylcyclohexane, heptane, octane, etc.
  • aromatic hydrocarbon-based organic solvents such as toluene, xylene, Solbesso # 100 and Solbesso # 150, hexane, methylcyclohexane, heptane, octane, etc.
  • examples thereof include aliphatic hydrocarbon-based organic solvents such as decane, and various ester-based organic solvents such as methyl acetate, ethyl acetate, isopropyl acetate, normal propyl acetate, butyl acetate, amyl acetate, ethyl formate, and butyl propionate.
  • Alcohol-based solvents such as methanol, ethanol, propanol, butanol, and isopropyl alcohol
  • ketone-based solvents such as acetone, methyl ethyl ketone, and cyclohaxanone
  • ethylene glycol (mono, di) methyl ether, and ethylene glycol (mono, di) ethyl can be used as water-mixable organic solvents.
  • Ether ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, monobutyl ether, diethylene glycol (mono, di) methyl ether, diethylene glycol (mono, di) ethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol (mono, di)
  • examples thereof include various glycol ether-based organic solvents such as di) methyl ether, propylene glycol (mono, di) methyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, and dipropylene glycol (mono, di) methyl ether. These can be used alone or in combination of two or more.
  • Organic solvent-based liquid printing inks should also contain waxes, chelate crosslinkers, extender pigments, leveling agents, defoamers, plasticizers, infrared absorbers, UV absorbers, fragrances, flame retardants, etc., as needed. You can also.
  • the organic solvent type liquid printing ink uses the modified pigment as a colorant, but in addition, an organic pigment and / or an inorganic pigment used in general inks, paints, recording agents and the like may be used in combination. ..
  • Organic pigments include soluble azo, insoluble azo, azo, phthalocyanine, halogenated phthalocyanine, anthraquinone, anthraquinone, dianthraquinonyl, anthrapyrimidine, perylene, perinone, and quinacridone.
  • Pigments such as thioindigo-based, dioxazine-based, isoindoleinone-based, quinophthalone-based, azomethine-azo-based, flavanthron-based, diketopyrrolopyrrole-based, isoindoline-based, indanslon-based, and carbon black-based pigments can be mentioned.
  • Carmin 6B, Lake Red C, Permanent Red 2B, Disazo Yellow, Pyrazolon Orange Carmin FB, Chromophthal Yellow, Chromophthal Red, Phtalocyanin Blue, Phthalussinin Green, Dioxazine Violet, Quinacridone Magenta, Kinacridone Red, Indance.
  • Examples thereof include lonblue, pyrimidine yellow, thioindigo bordeaux, thioindigo magenta, perylene red, perinone orange, isoindolinone yellow, aniline black, diketopyrrolopyrrole red, and daylight fluorescent pigments. Further, either an acid-treated pigment or an acid-treated pigment can be used.
  • the inorganic pigment examples include white inorganic pigments such as titanium oxide, zinc oxide, zinc sulfide, barium sulfate, calcium carbonate, chromium oxide, silica, lithobon, antimony white, and gypsum.
  • white inorganic pigments such as titanium oxide, zinc oxide, zinc sulfide, barium sulfate, calcium carbonate, chromium oxide, silica, lithobon, antimony white, and gypsum.
  • titanium oxide exhibits a white color and is preferable from the viewpoints of coloring power, hiding power, chemical resistance and weather resistance, and from the viewpoint of printing performance, the titanium oxide is preferably treated with silica and / or alumina.
  • non-white inorganic pigments examples include aluminum particles, mica (mica), bronze powder, chrome vermillion, chrome yellow, cadmium yellow, cadmium red, ultramarine, navy blue, red iron oxide, yellow iron oxide, iron black, and zircon.
  • aluminum is in the form of powder or paste, it is preferably used in the form of paste from the viewpoint of handleability and safety, and whether chrome yellow or non-leafing is used is appropriately selected from the viewpoint of brightness and concentration.
  • the average particle size of the pigment is preferably in the range of 10 to 200 nm, more preferably about 50 to 150 nm.
  • the pigment is in an amount sufficient to secure the concentration and coloring power of the water-based liquid printing ink, that is, 1 to 60% by mass with respect to the total mass of the ink, and 10 to 90% by mass with respect to the solid content mass ratio in the ink. It is preferably contained in proportion. In addition, these pigments can be used alone or in combination of two or more.
  • aqueous liquid printing ink In the water-based liquid printing ink, in addition to the modified pigment used in the present invention, a mixture to which a binder resin, an aqueous medium, a dispersant, a defoaming agent and the like described later are added is dispersed by a disperser to obtain a pigment dispersion. It is obtained by adding an additive such as a resin, an aqueous medium and, if necessary, a leveling agent to the obtained pigment dispersion and stirring and mixing.
  • the disperser As the disperser, it is manufactured by using a bead mill, an Eiger mill, a sand mill, a gamma mill, an attritor, etc., which are generally used for manufacturing gravure and flexographic printing inks.
  • a bead mill an Eiger mill, a sand mill, a gamma mill, an attritor, etc.
  • its viscosity may be 7 to 25 seconds at 25 ° C. using Zahn Cup # 4 manufactured by Rigo Co., Ltd., more preferably 10 to 20 seconds.
  • the surface tension of the obtained flexographic ink at 25 ° C. is preferably 25 to 50 mN / m, more preferably 33 to 43 mN / m.
  • the water-based liquid printing ink when used as a gravure ink, its viscosity may be 7 to 25 seconds at 25 ° C. using Zahn Cup # 3 manufactured by Rigo Co., Ltd., more preferably 10 to 20 seconds. ..
  • the surface tension of the obtained gravure ink at 25 ° C. is preferably 25 to 50 mN / m, more preferably 33 to 43 mN / m, as in the flexographic ink.
  • the lower the surface tension of the ink the better the wettability of the ink to the substrate such as a film. Tend to be easily connected, which tends to cause stains on the printed surface called a dot bridge.
  • the surface tension exceeds 50 mN / m the wettability of the ink on a substrate such as a film is lowered, which tends to cause repelling.
  • Aqueous liquid printing ink has excellent adhesion to various base materials and can be used for printing on paper, synthetic paper, thermoplastic resin film, plastic products, steel plates, etc., and is gravure by electronic engraving ingot. It is useful as an ink for gravure printing using a printing plate or flexographic printing using a flexographic printing plate using a resin plate or the like.
  • the film thickness of the printing ink formed by the gravure printing method or the flexographic printing method using the water-based liquid ink of the present invention is, for example, 10 ⁇ m or less, preferably 5 ⁇ m or less.
  • the binder resin for the water-based liquid printing ink is not particularly limited, and urethane resin, polyvinyl alcohols, polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, acrylic acid used in general water-based liquid printing inks.
  • Acrylic copolymers such as potassium-acrylonitrile copolymer, acrylic acid ester polymer emulsion, polyester urethane dispersion, vinyl acetate-acrylic acid ester copolymer, acrylic acid-acrylic acid alkyl ester copolymer; styrene- Acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid alkyl ester copolymer, styrene- ⁇ -methylstyrene-acrylic acid copolymer, styrene- ⁇ -methylstyrene-acrylic acid- Styrene-acrylic acid resin such as acrylic acid alkyl ester copolymer; styrene-maleic acid; styrene-maleic anhydride; vinylnaphthalene-acrylic acid copolymer; vinylnaphthalene-maleic acid copolymer; vinyl acetate-ethylene homo
  • an acrylic resin or a urethane resin as the binder resin because it is easily available, and an acrylic acid ester-based polymer emulsion and a polyester-based urethane dispersion are particularly preferable.
  • the binder resin is preferably 5 to 50% by mass in terms of solid content of the aqueous liquid printing ink of the present invention.
  • the binder resin is preferably 5 to 50% by mass in terms of solid content of the aqueous liquid printing ink of the present invention.
  • it is 5% by mass or more, the strength of the ink coating film does not decrease, and the adhesion to the base material, the water friction resistance, and the like are kept good.
  • it when it is 50% by mass or less, the decrease in coloring power can be suppressed, the high viscosity can be avoided, and the workability does not decrease.
  • 5 to 40% by mass is still more preferable, and 5 to 20% by mass is most preferable.
  • aqueous medium examples include water, an organic solvent miscible with water, and a mixture thereof.
  • organic solvent to be mixed with water include alcohol solvents such as methanol, ethanol, n-propanol and isopropanol; ketone solvents such as acetone and methyl ethyl ketone; polyalkylene glycols such as ethylene glycol, diethylene glycol and propylene glycol; polyalkylene glycols.
  • Alkyl ethers examples include lactam solvents such as N-methyl-2-pyrrolidone.
  • only water may be used, a mixture of water and an organic solvent miscible with water may be used, or only an organic solvent miscible with water may be used.
  • aqueous medium only water or a mixture of water and an organic solvent miscible with water is preferable, and only water is particularly preferable, from the viewpoint of safety and environmental load.
  • the water-based liquid printing ink can also contain the above-mentioned colorants, extender pigments, pigment dispersants, leveling agents, defoamers, plasticizers, infrared absorbers, ultraviolet absorbers, fragrances, flame retardants and the like.
  • fatty acid amides such as oleic acid amide, stearic acid amide, and erucic acid amide for imparting abrasion resistance and slipperiness
  • silicon-based, non-silicon-based defoaming agents and pigments for suppressing foaming during printing.
  • Various dispersants and the like that improve the wetting of the hydrate are useful.
  • the weight average molecular weight (in terms of polystyrene) was measured by GPC (gel permeation chromatography) in the present invention using the HLC8220 system manufactured by Tosoh Corporation under the following conditions. Separation column: Uses 4 TSKgelGMHR-N manufactured by Tosoh Corporation. Column temperature: 40 ° C. Moving layer: Tetrahydrofuran manufactured by Wako Pure Chemical Industries, Ltd. Flow rate: 1.0 ml / min. Sample concentration: 1.0% by mass. Sample injection volume: 100 microliters. Detector: Differential refractometer.
  • the acid value of the acrylic resin indicates the number of milligrams of potassium hydroxide required to neutralize the acidic component contained in 1 g of the resin, and each dried water-soluble resin is according to JIS K2501. It was calculated from the potentiometric titration with a potassium hydroxide / ethanol solution.
  • the glass transition temperature (Tg) refers to a so-called calculated glass transition temperature, and refers to a value calculated by the following method.
  • Equation 1 / Tg (K) (W1 / T1) + (W2 / T2) + ... (Wn / Tn)
  • Tg (° C.) Tg (K) -273
  • W1, W2, ... Wn in the formula 1 represent the mass% of each monomer with respect to the total mass of the monomers used for producing the polymer
  • T1, T2, ... Tn are homopolymers of each monomer.
  • T1, T2, ... Tn the values described in Polymer Handbook (Fourth Edition, J.
  • the glass transition temperature of the homopolymer of each monomer is not described in the Polymer Hand Book, the glass transition temperature is based on JIS K7121 using a differential scanning calorimeter "DSC Q-100" (manufactured by TA Instrument). It was measured by the method described above. Specifically, the polymer from which the solvent has been completely removed by vacuum suction is measured for a change in calorific value in the range of -100 ° C to + 200 ° C at a heating rate of 20 ° C / min, and an extended straight line of each baseline. The point where the straight line at the same distance in the vertical axis direction and the curve of the stepwise change portion of the glass transition intersect was defined as the glass transition temperature.
  • Burnock DN-980S manufactured by DIC, hexamethylene diisocyanate polyisocyanate, NCO content 20%
  • MEK methyl ethyl ketone
  • BET specific surface area The BET specific surface area of the titanium oxide raw material was measured using a fully automatic BET specific surface area measuring device "Macsorb, HM model-1208" manufactured by Mountech Co., Ltd.
  • Rutile content rutileization rate
  • crystallinity full width at half maximum
  • the content rutile formation rate
  • crystallinity half-value full width
  • the peak height (Hr) corresponding to the rutile type crystal, the peak height (Hb) corresponding to the brookite type crystal, and the peak height (Ha) corresponding to the anatase type crystal were obtained, and titanium oxide was calculated by the following formula.
  • the content of rutile-type titanium oxide (rutileization rate) in the rutile type was determined.
  • Rutileization rate (mol%) ⁇ Hr / (Ha + Hb + Hr) ⁇ ⁇ 100
  • content of anatase-type titanium oxide (anatase conversion rate) and the content of brookite-type titanium oxide (brookite conversion rate) in titanium oxide were calculated by the following formulas, respectively.
  • Table 1 shows the measurement results of the titanium oxide raw material used.
  • the obtained sample (photocatalyst) was heated in a hydrofluoric acid solution to completely dissolve it, and the extract was quantified by ICP emission spectroscopic analysis.
  • copper ions were 0.5 parts by mass with respect to 100 parts by mass of titanium oxide. That is, the total amount of the copper ions of the feed (CuCl 2 ⁇ 2H 2 O derived) were supported on the surface of titanium oxide.
  • the sample (photocatalyst) obtained in Production Example 1 was analyzed by the following method.
  • the powder obtained by grinding the dried photocatalyst in a mortar was used as a sample.
  • X-ray diffraction measurement was performed under the conditions of 1.0167 deg and a scanning speed of 3.3 deg / min.
  • the peak height (Hr) corresponding to the rutile type crystal, the peak height (Hb) corresponding to the brookite type crystal, and the peak height (Ha) corresponding to the anatase type crystal were obtained, and titanium oxide was calculated by the following formula.
  • the content of rutile-type titanium oxide (rutileization rate) in the rutile type was determined.
  • Rutileization rate (mol%) ⁇ Hr / (Ha + Hb + Hr) ⁇ ⁇ 100
  • the strongest diffraction peak corresponding to rutile-type titanium oxide was selected, and the full width at half maximum was measured.
  • the divalent copper compound present in the sample (photocatalyst) obtained in Production Example 1 was identified by X-ray diffraction measurement using the above measuring device and measuring conditions. The results are shown in Table 2.
  • Example 1 As shown in Table 3, 80 parts of core-shell type acrylic emulsion (Ac1), 1 part of titanium oxide obtained in Production Example 1, 16 parts of water, 2 parts of wax dispersion (polyethylene dispersion), leveling. One part of the agent (Surfinol 420: manufactured by Nisshin Kagaku Kogyo Co., Ltd.) was uniformly mixed using a dispersion stirrer (TK homodisper manufactured by Tokushu Kagaku Kogyo Co., Ltd.) to obtain a coating agent composition (1).
  • TK homodisper manufactured by Tokushu Kagaku Kogyo Co., Ltd.
  • Examples 2 to 4 According to the formulation shown in Table 3, a core-shell type acrylic emulsion (Ac1) was used, and a coating agent composition was obtained by the same procedure as in Example 1.
  • Examples 5 to 8 According to the formulation shown in Table 4, a polyurethane resin solution (Pu) was further used, and a coating agent composition was obtained by the same procedure as in Example 1.
  • the antiviral property was evaluated by the degree of inactivation of Q ⁇ phage, and the inactivation degree -2 to -5 was evaluated as having antiviral property.
  • the degree of inactivation is -1 for 90%, the degree of inactivation is -2 for 99%, and the degree of inactivation is -3 for 99.9%, indicating that the antiviral property is high.
  • the detection limit is inactivation degree -5.
  • Tables 5 and 6 show the evaluation results of the laminate using the compositions of Examples and Comparative Examples.
  • the coating agent of the present invention can impart good antiviral properties to these substrates by a simple method, that is, simply by applying it to a paper substrate or a plastic substrate, and it is possible to impart good antiviral properties to these substrates. It has become clear that it is possible to provide sex base materials, packaging materials, containers, etc.
  • the coating agent of the present invention can use an aqueous solvent and can exhibit sufficient antiviral properties while maintaining adhesion and abrasion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention provides a coating agent for paper base materials or plastic base materials, said coating agent being characterized by containing (A) a binder resin, (B) a photocatalyst and (C) an aqueous medium, while being also characterized in that: the photocatalyst (B) contains a divalent copper compound and titanium oxide containing crystalline rutile titanium oxide; the crystalline rutile titanium oxide has a full width at half maximum of 0.65 degree or less for the strongest diffraction peak corresponding to the rutile titanium oxide in an X-ray diffraction pattern plotting the diffraction line intensities relative to the diffraction angle 2θ with use of a Cu-Kα ray; the content of the crystalline rutile titanium oxide is 50% by mole or more and the content of anatase titanium oxide is less than 50% by mole in the titanium oxide in the photocatalyst; and from 0.5% by mass to 80% by mass of the photocatalyst (B) is contained relative to the total solid content of the coating agent.

Description

紙基材用又はプラスチック基材用コーティング剤、並びに該コーティング剤のコーティング層を有する紙基材、プラスチック基材、容器及び包装材A coating agent for a paper base material or a plastic base material, and a paper base material, a plastic base material, a container and a packaging material having a coating layer of the coating agent.
 本発明は、紙基材用又はプラスチック基材用の水性コーティング剤、並びに該水性コーティング剤を用いたコーティング層を有する紙基材、プラスチック基材、容器及び包装材に関する。 The present invention relates to a water-based coating agent for a paper base material or a plastic base material, and a paper base material, a plastic base material, a container and a packaging material having a coating layer using the water-based coating agent.
 近年、様々な基材表面への機能性付与が求められており、プラスチック材料、紙材料、成形品、フィルム基材、容器、包装材等の表面特性の改良に必要とされている。これらの機能を基材表面に付与する方法として、表面に各種機能を有する高分子フィルム等を貼り付けるという方法が、広く知られている。しかし、この方法は、フィルム張り付けに手間がかかり、基材との密着性、加工性も不充分な場合が多く、またコスト的にも高価であった。 In recent years, it has been required to impart functionality to the surface of various base materials, and it is required to improve the surface properties of plastic materials, paper materials, molded products, film base materials, containers, packaging materials, and the like. As a method of imparting these functions to the surface of a base material, a method of attaching a polymer film or the like having various functions to the surface is widely known. However, this method takes time and effort to attach the film, often has insufficient adhesion to the substrate and workability, and is expensive in terms of cost.
 一方、これらの基材表面への機能性付与として、コーティングによりこれらの機能を発現させる方法も知られている。コーティング法は成形や加工前の基材はもとより、成型後や加工後の基材へ、所望する部分のみへの付与も可能であることから利便性が高い、一方でフィルムに比べて機能性、耐性が劣る場合も多い。
 基材として、特に食品包装や生活コーティング消費材にはポリエステルフィルム、ナイロンフィルム、ポリオレフィンフィルム等のフィルム基材が多用されている。また、近年では、マイクロプラスチックを始めとする海洋プラスチックごみ問題がクローズアップされる中で、「再利用可能」「生分解性を有する」などの機能を持つ素材の一つとして、再生可能な資源である「木」を原料とする「紙」の利用が増加しているる。これらの基材には、撥水、撥油、防汚、帯電防止、反射防止、擦り傷防止等といった物理的機能性の他、最近では衛生的機能、例えば抗菌性、抗ウイルス性といった機能も所望され、特に新型インフルエンザやSARS(重症急性呼吸器症候群)、ノロウイルスなど、ウイルス感染対策として抗ウイルス性(ウイルス不活化性)対策は急務となっている。
抗ウイルス性能を有するコーティング剤としては、例えば銀、亜鉛及び銅から選ばれる一種以上の酸化物と、モリブデン酸化物の複塩を含有する抗ウイルス性コーティング剤が知られている(例えば特許文献1参照)。
On the other hand, as a method of imparting functionality to the surface of these substrates, a method of expressing these functions by coating is also known. The coating method is highly convenient because it can be applied not only to the base material before molding or processing, but also to the base material after molding or processing, only to the desired part, but on the other hand, it is more functional than the film. In many cases, resistance is inferior.
As a base material, a film base material such as a polyester film, a nylon film, and a polyolefin film is often used, especially for food packaging and daily life coating consumer materials. In recent years, as the problem of marine plastic waste such as microplastics has been highlighted, renewable resources are used as one of the materials with functions such as "reusable" and "biodegradable". The use of "paper" made from "wood" is increasing. In addition to physical functions such as water repellency, oil repellency, antifouling, antistatic, antireflection, and scratch prevention, these base materials have recently been desired to have hygienic functions such as antibacterial and antiviral functions. In particular, antiviral (virus inactivating) measures are urgently needed as measures against viral infections such as new influenza, SARS (severe acute respiratory syndrome), and norovirus.
As a coating agent having antiviral performance, for example, an antiviral coating agent containing one or more oxides selected from silver, zinc and copper and a double salt of molybdenum oxide is known (for example, Patent Document 1). reference).
 抗ウイルス性を有する材料としては、例えば光触媒が知られており、例えば光触媒等の抗ウイルス性を有する材料を固着させた布帛が知られている(例えば特許文献2参照)。しかしながら光触媒を使用した紙基材用又はプラスチック基材用のコーティング剤はまだ知られていない。 As a material having antiviral properties, for example, a photocatalyst is known, and for example, a cloth to which a material having antiviral properties such as a photocatalyst is adhered is known (see, for example, Patent Document 2). However, coating agents for paper or plastic substrates using photocatalysts are not yet known.
 一方、近年では、環境問題、省資源、労働安全性、及び防災等の見地から、できるだけ有機溶剤を使用しない水性タイプのコーティング剤が求められている。しかし、水性タイプのコーティング剤を、布帛に比べて浸透性の低いプラスチック又は紙にコーティングした場合、密着性や耐摩擦性に劣る傾向がある。特に、特許文献1や特許文献2に記載のような抗ウイルス剤を含有する場合は、密着性及び耐摩擦性がより低下しやすくなる。そのため、プラスチック基材や紙基材に対する密着性及び耐摩擦性に優れ、抗ウイルス性を有する水性のコーティング剤が求められている。 On the other hand, in recent years, from the viewpoints of environmental problems, resource saving, occupational safety, disaster prevention, etc., water-based coating agents that do not use organic solvents as much as possible have been demanded. However, when the water-based coating agent is coated on plastic or paper having a lower permeability than the cloth, the adhesion and abrasion resistance tend to be inferior. In particular, when an antiviral agent as described in Patent Document 1 or Patent Document 2 is contained, the adhesiveness and abrasion resistance are more likely to decrease. Therefore, there is a demand for a water-based coating agent having excellent adhesion and abrasion resistance to a plastic base material or a paper base material and having antiviral properties.
特開2018-172306号公報Japanese Unexamined Patent Publication No. 2018-172306 特開2017-155368号公報Japanese Unexamined Patent Publication No. 2017-155368
 本発明の課題は、紙基材又はプラスチック基材に対して容易に抗ウイルス性を付与可能な、水性媒体を使用した紙基材用又はプラスチック基材用コーティング剤、並びに該コーティング剤のコーティング層を有する紙基材、プラスチック基材、容器及び包装材を提供することにある。 An object of the present invention is a coating agent for a paper base material or a plastic base material using an aqueous medium, which can easily impart antiviral properties to a paper base material or a plastic base material, and a coating layer of the coating agent. It is an object of the present invention to provide a paper base material, a plastic base material, a container and a packaging material having the above.
 即ち、本発明は、バインダー樹脂(A)と、光触媒(B)及び水性媒体(C)を含有し、
前記光触媒(B)が、結晶性ルチル型酸化チタンを含む酸化チタンと2価銅化合物とを含有し、
前記結晶性ルチル型酸化チタンが、Cu-Kα線による回折角度2θに対する回折線強度をプロットしたX線回折パターンにおいて、ルチル型酸化チタンに対応する最も強い回折ピークの半値全幅が0.65度以下の酸化チタンであり、
前記酸化チタン中における前記結晶性ルチル型酸化チタンの含有量が50モル%以上、アナターゼ型酸化チタンの含有量が50モル%未満である光触媒であり、
コーティング剤固形分全量に対し、前記光触媒(B)0.5~80質量%含有することを特徴とする、紙基材用又はプラスチック基材用コーティング剤を提供する。
That is, the present invention contains the binder resin (A), the photocatalyst (B), and the aqueous medium (C).
The photocatalyst (B) contains titanium oxide containing crystalline rutile-type titanium oxide and a divalent copper compound.
In the X-ray diffraction pattern in which the crystallized rutile-type titanium oxide plots the diffraction line intensity with respect to the diffraction angle 2θ by Cu—Kα rays, the half-value total width of the strongest diffraction peak corresponding to the rutile-type titanium oxide is 0.65 degrees or less. Is titanium oxide
A photocatalyst in which the content of the crystalline rutile-type titanium oxide in the titanium oxide is 50 mol% or more and the content of the anatase-type titanium oxide is less than 50 mol%.
A coating agent for a paper base material or a plastic base material is provided, which comprises 0.5 to 80% by mass of the photocatalyst (B) with respect to the total amount of the solid content of the coating agent.
 また本発明は、前記記載のコーティング剤を紙基材及びフィルムにコーティングした紙基材又はプラスチック基材を提供する。 The present invention also provides a paper base material or a plastic base material obtained by coating the above-mentioned coating agent on a paper base material and a film.
 また本発明は、前記記載の紙基材又はプラスチック基材を使用した容器、包装材を提供する。 The present invention also provides a container and a packaging material using the above-mentioned paper base material or plastic base material.
 本発明により、プラスチック材料、成形品、フィルム基材、紙基材、包装材等の基材に、コーティングによって容易に抗ウイルス性を付与できる。本発明の紙基材用又はプラスチック基材用コーティング剤は水性媒体を用いるので、環境に優しく安全性に優れている。また、本発明の紙基材用又はプラスチック基材用コーティング剤はレベリング性に優れ、また、泡立ちが抑制されていることから、生産性を向上できる。 According to the present invention, antiviral properties can be easily imparted to base materials such as plastic materials, molded products, film base materials, paper base materials, and packaging materials by coating. Since the coating agent for a paper base material or a plastic base material of the present invention uses an aqueous medium, it is environmentally friendly and excellent in safety. Further, the coating agent for a paper base material or a plastic base material of the present invention is excellent in leveling property and foaming is suppressed, so that productivity can be improved.
 本発明について詳細に説明する。 The present invention will be described in detail.
(言葉の定義)
 本発明において「部」とは全て「質量部」を示し、「%」とは全て「質量%」を示す。また、「コーティング剤全量」とは、水性媒体、有機溶剤等の揮発性成分をすべて含んだコーティング剤の全量を示し、「コーティング剤固形分全量」とは、揮発性成分を含まない、不揮発性成分のみの全量を示す。
(Definition of words)
In the present invention, "parts" means "parts by mass", and "%" means all "% by mass". The "total amount of coating agent" means the total amount of the coating agent containing all volatile components such as an aqueous medium and an organic solvent, and the "total amount of solid content of the coating agent" means non-volatile components containing no volatile components. Shows the total amount of ingredients only.
(バインダー樹脂(A))
 本発明の紙基材用又はプラスチック基材用コーティング剤に使用するバインダー樹脂(A)としては、特に限定なく一般の水性リキッド印刷インキに使用される、ウレタン樹脂、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリロニトリル共重合体、アクリル酸カリウム-アクリロニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、アクリル酸-アクリル酸アルキルエステル共重合体などのアクリル共重合体;スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸アルキルエステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、スチレン-α-メチルスチレン-アクリル酸-アクリル酸アルキルエステル共重合体などのスチレン-アクリル酸樹脂;スチレン-マレイン酸;スチレン-無水マレイン酸;ビニルナフタレン-アクリル酸共重合体;ビニルナフタレン-マレイン酸共重合体;酢酸ビニル-エチレン共重合体、酢酸ビニル-脂肪酸ビニルエチレン共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体及びこれらの塩を使用することができる。これらは所望の物性に応じて適宜併用することもできる。
(Binder resin (A))
The binder resin (A) used in the coating agent for a paper substrate or a plastic substrate of the present invention is not particularly limited, and urethane resins, polyvinyl alcohols, polyvinylpyrrolidones, etc., which are used in general aqueous liquid printing inks, are used. Acrylic copolymers such as polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic acid ester copolymer, acrylic acid-acrylic acid alkyl ester copolymer; styrene- Acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid alkyl ester copolymer, styrene-α-methylstyrene-acrylic acid copolymer, styrene-α-methylstyrene-acrylic acid- Styrene-acrylic acid resin such as acrylic acid alkyl ester copolymer; styrene-maleic acid; styrene-maleic anhydride; vinylnaphthalene-acrylic acid copolymer; vinylnaphthalene-maleic acid copolymer; vinyl acetate-ethylene homoweight Compounds, vinyl acetate-fatty acid vinyl ethylene copolymers, vinyl acetate-maleic acid ester copolymers, vinyl acetate-crotonic acid copolymers, vinyl acetate-acrylic acid copolymers and other vinyl acetate-based copolymers and theirs. Salt can be used. These can also be used in combination as appropriate depending on the desired physical characteristics.
 なかでも、前記バインダー樹脂として、アクリル樹脂またはウレタン樹脂の少なくとも一種を使用することが、入手しやすく好ましい。 Among them, it is preferable to use at least one of an acrylic resin or a urethane resin as the binder resin because it is easily available.
(アクリル樹脂)
 前記アクリル樹脂としては、特に制限はなく、(メタ)アクリレートの単独重合または共重合、及び(メタ)アクリレートと共重合しうるビニルモノマーとを共重合させたコポリマーがあげられる。また水分散性や水溶性を付与する目的から酸価を有するコポリマーであることが好ましい。
尚本発明において「(メタ)アクリレート」はアクリレート及びメタクリレートのいずれか一方または両方を指し、「(メタ)アクリル」はアクリル及びメタクリルのいずれか一方または両方を指す。
(acrylic resin)
The acrylic resin is not particularly limited, and examples thereof include homopolymerization or copolymerization of (meth) acrylate and copolymers obtained by copolymerizing a vinyl monomer copolymerizable with (meth) acrylate. Further, it is preferable that the copolymer has an acid value for the purpose of imparting water dispersibility and water solubility.
In the present invention, "(meth) acrylate" refers to either or both of acrylate and methacrylate, and "(meth) acrylic" refers to either or both of acrylic and methacrylic.
 (メタ)アクリレートや(メタ)アクリレートと共重合しうるビニルモノマーの例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート等のアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート等の芳香族(メタ)アクリレート;2-ヒドロドキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等の水酸基含有モノマー;メトキシポリエチレングリコールモノ(メタ)アクリレート、メトキシポリプロピレングリコールモノ(メタ)アクリレート等のアルキルポリアルキレングリコールモノ(メタ)アクリレート;パーフルオロアルキルエチル(メタ)アクリレート等のフッ素系(メタ)アクリレート;スチレン、スチレン誘導体(p-ジメチルシリルスチレン、(p-ビニルフェニル)メチルスルフィド、p-ヘキシニルスチレン、p-メトキシスチレン、p-tert-ブチルジメチルシロキシスチレン、o-メチルスチレン、p-メチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン等)、ビニルナフタレン、ビニルアントラセン、1,1-ジフェニルエチレン等の芳香族ビニル化合物;グリシジル(メタ)アクリレート、エポキシ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチレングリコールテトラ(メタ)アクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニル(メタ)アクリレートトリシクロデカニル(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタン(メタ)アクリレート等の(メタ)アクリレート化合物;ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート等のアルキルアミノ基を有する(メタ)アクリレート;2-ビニルピリジン、4-ビニルピリジン、ナフチルビニルピリジン等のビニルピリジン化合物;1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-シクロヘキサジエン等の共役ジエンなどが挙げられる。これらのモノマーは、1種で用いることも2種以上併用することもできる。 Examples of vinyl monomers that can be copolymerized with (meth) acrylates and (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, and t. -Alkyl (meth) acrylates such as butyl (meth) acrylates, isopropyl (meth) acrylates and isobutyl (meth) acrylates; aromatic (meth) acrylates such as benzyl (meth) acrylates; 2-hydrodoxyethyl (meth) acrylates. , 2-Hydroxypropyl (meth) acrylate and other hydroxyl group-containing monomers; methoxypolyethylene glycol mono (meth) acrylate, methoxypolypropylene glycol mono (meth) acrylate and other alkyl polyalkylene glycol mono (meth) acrylate; perfluoroalkyl ethyl (meth) ) Fluorine-based (meth) acrylates such as acrylates; styrene, styrene derivatives (p-dimethylsilylstyrene, (p-vinylphenyl) methylsulfide, p-hexynylstyrene, p-methoxystyrene, p-tert-butyldimethylsiloxystyrene) , O-Methylstyrene, p-methylstyrene, p-tert-butylstyrene, α-methylstyrene, etc.), vinylnaphthalene, vinylanthracene, aromatic vinyl compounds such as 1,1-diphenylethylene; glycidyl (meth) acrylate, Epoxy (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethyl propanetri (meth) acrylate, tetramethylene glycol tetra (meth) acrylate, 2-hydroxy-1,3-diacryloxy Propane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxyethoxy) phenyl] propane, dicyclopentenyl (meth) acrylatetricyclodecanyl (meth) (Meta) acrylate compounds such as acrylate, tris (acryloxyethyl) isocyanurate, urethane (meth) acrylate; alkylamino such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate (Meta) acrylate having a group; Vinyl pyridine compound such as 2-vinylpyridine, 4-vinylpyridine, naphthylvinylpyridine; Conjugated diene such as 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-cyclohexadiene, etc. And so on. These monomers may be used alone or in combination of two or more.
 また、カルボキシル基及びカルボキシル基が塩基性化合物によって中和されたカルボキシレート基からなる群より選ばれる1種以上の酸性基を導入することを目的として、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、β-(メタ)アクリロイルオキシエチルハイドロゲンサクシネート、β-(メタ)アクリロイルオキシエチルハイドロゲンフタレート等のカルボキシル基を有する(メタ)アクリルモノマーを共重合させることで、酸価を有するコポリマーを得ることができる。
酸性基を導入する場合は、後述で詳細に述べるが酸価が所望の範囲となるようにモノマー量を適宜調整することが好ましい。
Further, for the purpose of introducing one or more acidic groups selected from the group consisting of a carboxyl group and a carboxylate group in which the carboxyl group is neutralized with a basic compound, (meth) acrylic acid, crotonic acid, and itaconic acid. , Maleic acid, fumaric acid, β- (meth) acryloyloxyethyl hydrogen succinate, β- (meth) acryloyloxyethyl hydrogen phthalate, etc. By copolymerizing a (meth) acrylic monomer having a carboxyl group, the acid value can be adjusted. A copolymer having can be obtained.
When an acidic group is introduced, it is preferable to appropriately adjust the amount of the monomer so that the acid value is in a desired range, which will be described in detail later.
 前記コポリマーは、例えば、重合開始剤の存在下、50℃~180℃の温度領域で各種モノマーを重合させることにより製造することができ、80℃~150℃の温度領域であればより好ましい。重合の方法は、例えば、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等が挙げられる。また、重合様式は、例えば、ランダム共重合体、ブロック共重合体、グラフト共重合体等が挙げられる。 The copolymer can be produced, for example, by polymerizing various monomers in a temperature range of 50 ° C. to 180 ° C. in the presence of a polymerization initiator, and is more preferably in a temperature range of 80 ° C. to 150 ° C. Examples of the polymerization method include a bulk polymerization method, a solution polymerization method, a suspension polymerization method, an emulsification polymerization method and the like. In addition, examples of the polymerization mode include random copolymers, block copolymers, graft copolymers, and the like.
 本発明で使用するコポリマーはコアシェル型であってもよい。本発明においてコアシェル型樹脂は、重合体(a2)が重合体(a1)によって水性媒体中に分散された状態を指し、通常、重合体(a1)が樹脂粒子の最外部に存在することでシェル部を形成し、重合体(a2)の一部または全部がコア部を形成したものであることが多い。以後本発明において、シェル部を形成する樹脂を重合体(a1)とし、コア部を形成する樹脂を重合体(a2)と称す。 The copolymer used in the present invention may be a core-shell type. In the present invention, the core-shell type resin refers to a state in which the polymer (a2) is dispersed in an aqueous medium by the polymer (a1), and usually, the polymer (a1) is present on the outermost side of the resin particles to form a shell. In many cases, a portion is formed, and a part or all of the polymer (a2) forms a core portion. Hereinafter, in the present invention, the resin forming the shell portion will be referred to as a polymer (a1), and the resin forming the core portion will be referred to as a polymer (a2).
〔シェル部を構成する重合体(a1)〕
 本発明で使用するコアシェル型樹脂は、シェル部を構成する重合体(a1)について、カルボキシル基及びそれを中和して形成されるカルボキシレート基からなる群より選ばれる1種以上の親水性基を有するアクリル樹脂を含むものによって構成されていることが好ましい。その際、シェル部の酸価は40mgKOH/g以上250mgKOH/g以下の範囲であることが好ましく、120mgKOH/g以下がなお好ましい。
[Polymer constituting the shell portion (a1)]
The core-shell type resin used in the present invention is one or more hydrophilic groups selected from the group consisting of a carboxyl group and a carboxylate group formed by neutralizing the carboxyl group of the polymer (a1) constituting the shell portion. It is preferable that it is composed of one containing an acrylic resin having. At that time, the acid value of the shell portion is preferably in the range of 40 mgKOH / g or more and 250 mgKOH / g or less, and more preferably 120 mgKOH / g or less.
 前記、シェル部を構成する重合体(a1)のカルボキシル基は、塩基性化合物によって中和されカルボキシレート基を形成することが好ましい。 It is preferable that the carboxyl group of the polymer (a1) constituting the shell portion is neutralized with a basic compound to form a carboxylate group.
 前記、中和に使用可能な塩基性化合物としては、例えばアンモニア、トリエチルアミン、モルホリン、モノエタノールアミン、ジエチルエタノールアミン等を使用することができ、アンモニア、トリエチルアミンを使用することが、塗膜の耐温水性、耐食性及び耐薬品性をより一層向上するうえで好ましい。 As the basic compound that can be used for neutralization, for example, ammonia, triethylamine, morpholine, monoethanolamine, diethylethanolamine and the like can be used, and the use of ammonia and triethylamine can be used to withstand the temperature of the coating film. It is preferable for further improving the property, corrosion resistance and chemical resistance.
 前記塩基性化合物の使用量は、得られるコアシェル型樹脂の水分散安定性をより一層向上するうえで、前記重合体(a1)が有するカルボキシル基の全量に対して[塩基性化合物/カルボキシル基]=0.2~2(モル比)となる範囲で使用することが好ましい。 The amount of the basic compound used is [basic compound / carboxyl group] with respect to the total amount of the carboxyl group of the polymer (a1) in order to further improve the water dispersion stability of the obtained core-shell type resin. It is preferable to use it in the range of = 0.2 to 2 (molar ratio).
 前記、重合性不飽和二重結合を有するモノマーのうち、カルボキシル基を有する(メタ)アクリルモノマーを含む(メタ)アクリルモノマーを重合して得られるものを使用することが好ましい。特に、前記重合体(a1)としては、前記重合体(a1)のガラス転移温度(Tg1)を20℃~100℃の範囲に調整するうえで、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリル酸等を組み合わせ重合して得られるものを使用することが、造膜性に優れ、かつ、耐温水性、耐食性及び耐薬品性に優れた塗膜を形成するうえでより好ましい。 Among the monomers having a polymerizable unsaturated double bond, it is preferable to use a monomer obtained by polymerizing a (meth) acrylic monomer containing a (meth) acrylic monomer having a carboxyl group. In particular, as the polymer (a1), methyl (meth) acrylate, butyl (meth) acrylate, in order to adjust the glass transition temperature (Tg1) of the polymer (a1) to the range of 20 ° C to 100 ° C. It is more preferable to use a polymer obtained by combining and polymerizing (meth) acrylic acid or the like in order to form a coating film having excellent film-forming property and excellent temperature water resistance, corrosion resistance and chemical resistance.
〔コア部を構成する重合体(a2)〕
 前記、コア部を構成する重合体(a2)は、前述のアクリル樹脂と同様のアクリルモノマー等のコポリマーを使用することができる。
この際、コア部の重量平均分子量は200,000~3,000,000の範囲であることが好ましく、800,000以上がなお好ましい。Tgは-30℃~30℃の範囲であることが好ましい。
[Polymer constituting the core portion (a2)]
As the polymer (a2) constituting the core portion, a copolymer such as an acrylic monomer similar to the above-mentioned acrylic resin can be used.
At this time, the weight average molecular weight of the core portion is preferably in the range of 200,000 to 3,000,000, and more preferably 800,000 or more. Tg is preferably in the range of −30 ° C. to 30 ° C.
 前記、コア部を構成する重合体(a2)は、前述のアクリル樹脂と同様のアクリルモノマー等のコポリマーを使用することができるが、中でも、水性媒体で製造することが好ましい。具体的には、前記、モノマーと重合開始剤等とを、水性媒体を含有する反応容器に一括供給または逐次供給し重合することによって製造することができる。その際、予め前記モノマーと水性媒体と必要に応じて反応性界面活性剤等とを混合することでプレエマルジョンを製造し、それと重合開始剤等とを、水性媒体を含有する反応容器に供給し重合してもよい。 As the polymer (a2) constituting the core portion, a copolymer such as an acrylic monomer similar to the above-mentioned acrylic resin can be used, but it is particularly preferable to produce the polymer (a2) in an aqueous medium. Specifically, the monomer and the polymerization initiator and the like can be produced by collectively supplying or sequentially supplying them to a reaction vessel containing an aqueous medium for polymerization. At that time, a pre-emulsion is produced by mixing the monomer, the aqueous medium, and if necessary, a reactive surfactant or the like in advance, and the polymerization initiator or the like is supplied to the reaction vessel containing the aqueous medium. It may be polymerized.
 前記、重合体(a2)を製造する際に使用可能な重合開始剤としては、例えば過硫酸塩、有機過酸化物、過酸化水素等のラジカル重合開始剤、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩等のアゾ開始剤を使用することができる。また、前記ラジカル重合開始剤は、後述する還元剤と併用しレドックス重合開始剤として使用しても良い。 Examples of the polymerization initiator that can be used in producing the polymer (a2) include radical polymerization initiators such as persulfates, organic peroxides, and hydrogen peroxide, and 4,4'-azobis (4-4'-azobis). An azo initiator such as cyanovaleric acid), 2,2'-azobis (2-amidinopropane) dihydrochloride can be used. Further, the radical polymerization initiator may be used as a redox polymerization initiator in combination with a reducing agent described later.
 前記過硫酸塩としては、例えば過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等を使用することができる。前記、有機過酸化物としては、例えば、過酸化ベンゾイル、ラウロイルパーオキサイド、デカノイルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、t-ブチルパーオキシラウレート、t-ブチルパーオキシベンゾエート、クメンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等を使用することができる。 As the persulfate, for example, potassium persulfate, sodium persulfate, ammonium persulfate and the like can be used. Examples of the organic peroxide include benzoyl peroxide, lauroyl peroxide, decanoyle peroxide, t-butyl cumyl peroxide, dicumyl peroxide, t-butyl peroxylaurate, and t-butyl peroxybenzoate. , Kumen hydroperoxide, paramentan hydroperoxide, t-butyl hydroperoxide and the like can be used.
 また、前記還元剤としては、例えば、アスコルビン酸及びその塩、エリソルビン酸及びその塩(ナトリウム塩等)、酒石酸及びその塩、クエン酸及びその塩、ホルムアルデヒドスルホキシラートの金属塩、チオ硫酸ナトリウム、重亜硫酸ナトリウム、塩化第二鉄等を使用することができる。 Examples of the reducing agent include ascorbic acid and its salt, erythorbic acid and its salt (sodium salt, etc.), tartrate acid and its salt, citric acid and its salt, formaldehyde sulfoxylate metal salt, sodium thiosulfate, and the like. Sodium disulfide, ferric chloride, etc. can be used.
 重合開始剤の使用量は、重合が円滑に進行する量を使用すれば良いが、得られる塗膜の優れた耐食性を維持する観点から、少ない方が好ましく、ビニル重合体(a2)の製造に使用するモノマーの全量に対して、0.01質量%~0.5質量%とすることが好ましい。また、前記重合開始剤を前記還元剤と併用する場合には、それらの合計量の使用量も前記した範囲内であることが好ましい。 The amount of the polymerization initiator used may be an amount that allows the polymerization to proceed smoothly, but it is preferable that the amount is small from the viewpoint of maintaining the excellent corrosion resistance of the obtained coating film, and it is preferable for the production of the vinyl polymer (a2). It is preferably 0.01% by mass to 0.5% by mass with respect to the total amount of the monomers used. Further, when the polymerization initiator is used in combination with the reducing agent, it is preferable that the total amount of the polymerization initiators used is also within the above range.
 また、前記プレエマルジョンを製造する際には、反応性界面活性剤、陰イオン性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤、両性イオン性界面活性剤等を使用してもよい。 In addition, when producing the pre-emulsion, a reactive surfactant, anionic surfactant, nonionic surfactant, cationic surfactant, amphoteric surfactant, etc. are used. May be good.
 前記コポリマーの酸価は、酸価20mgKOH/g以上、120mgKOH/g以下が好ましく、より好ましくは酸価25mgKOH以上である。酸価が20mgKOH/g以上であれば、硬化剤添加時、積層体の耐摩擦性、耐水摩擦性、及び耐スクラッチ性を向上する事が出来る。 The acid value of the copolymer is preferably 20 mgKOH / g or more, 120 mgKOH / g or less, and more preferably 25 mgKOH or more. When the acid value is 20 mgKOH / g or more, the friction resistance, water friction resistance, and scratch resistance of the laminate can be improved when the curing agent is added.
 尚、ここで言う酸価とは、樹脂1g中に含まれる酸性成分を中和するのに要する水酸化カリウムのミリグラム数を示す。 The acid value referred to here indicates the number of milligrams of potassium hydroxide required to neutralize the acidic component contained in 1 g of the resin.
 前記コポリマーの重量平均分子量は、5,000~100,000の範囲のものが好ましい。重量平均分子量5,000以上であれば、樹脂皮膜の耐熱性が低下することなく、積層体の耐摩擦性、及び耐水摩擦性を保持できる傾向にある。100,000以下であれば、積層体の基材密着性、耐スクラッチ性が兼備できる傾向にある。 The weight average molecular weight of the copolymer is preferably in the range of 5,000 to 100,000. When the weight average molecular weight is 5,000 or more, the heat resistance of the resin film does not deteriorate, and the friction resistance and the water friction resistance of the laminate tend to be maintained. If it is 100,000 or less, the laminate tends to have both substrate adhesion and scratch resistance.
 前記コポリマーのガラス転移温度(Tg)は、0℃~55℃の範囲である事が好ましい。前記コポリマーのTgが0℃以上であれば、皮膜強度が保たれ、積層体の耐水摩擦性が低下することなく、また55℃以下であれば、他の印刷層との相溶性が低下する事なく、積層体の耐摩擦性、耐水摩擦性、耐スクラッチ性が良好に保たれる傾向にある。 The glass transition temperature (Tg) of the copolymer is preferably in the range of 0 ° C to 55 ° C. When the Tg of the copolymer is 0 ° C. or higher, the film strength is maintained and the water friction resistance of the laminate is not lowered, and when the Tg is 55 ° C. or lower, the compatibility with other printing layers is lowered. However, the friction resistance, water friction resistance, and scratch resistance of the laminate tend to be kept good.
 尚、前記ガラス転移温度(Tg1)は、いわゆる計算ガラス転移温度を指し、下記の方法で算出された値を指す。
(式1) 1/Tg(K)=(W1/T1)+(W2/T2)+・・・(Wn/Tn)
(式2) Tg(℃)=Tg(K)-273
式1中のW1、W2、・・・Wnは、重合体の製造に使用したモノマーの合計質量に対する各モノマーの質量%を表し、T1、T2、・・・Tnは、各モノマーのホモポリマーのガラス転移温度(K)を表す。なお、T1、T2、・・Tnの値は、Polymer Handbook(Fourth Edition,J.Brandrup,E.H.Immergut,E.A.Grulke 編)に記載された値を用いる。
また、各モノマーのホモポリマーのガラス転移温度が前記Polymer Hand Bookに記載されていないもののガラス転移温度は、示差走査熱量計「DSC Q-100」(TA Instrument社製)を用い、JIS K7121に準拠した方法で測定した。具体的には、真空吸引して完全に溶剤を除去した重合体を、20℃/分の昇温速度で-100℃~+200℃の範囲で熱量変化を測定し、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点をガラス転移温度とした。
The glass transition temperature (Tg1) refers to a so-called calculated glass transition temperature, and refers to a value calculated by the following method.
(Equation 1) 1 / Tg (K) = (W1 / T1) + (W2 / T2) + ... (Wn / Tn)
(Equation 2) Tg (° C.) = Tg (K) -273
W1, W2, ... Wn in the formula 1 represent the mass% of each monomer with respect to the total mass of the monomers used for producing the polymer, and T1, T2, ... Tn are homopolymers of each monomer. Represents the glass transition temperature (K). As the values of T1, T2, ... Tn, the values described in Polymer Handbook (Fourth Edition, J. Brandrup, E.H. Immunogut, EA Grulke) are used.
Although the glass transition temperature of the homopolymer of each monomer is not described in the Polymer Hand Book, the glass transition temperature is based on JIS K7121 using a differential scanning calorimeter "DSC Q-100" (manufactured by TA Instrument). It was measured by the method described above. Specifically, the polymer from which the solvent has been completely removed by vacuum suction is measured for a change in calorific value in the range of -100 ° C to + 200 ° C at a heating rate of 20 ° C / min, and an extended straight line of each baseline. The point where the straight line at the same distance in the vertical axis direction and the curve of the stepwise change portion of the glass transition intersect was defined as the glass transition temperature.
(ウレタン樹脂)
 前記ウレタン樹脂としては、例えば、ポリエーテルポリオールやポリエステルポリオールやポリカーボネートポリオール等のポリオールと、アニオン性基、カチオン性基、ポリオキシエチレン基やポリオキシエチレン-ポリオキシプロピレン基である親水性基を有するポリオールと、ポリイソシアネートとを反応させて得られるウレタン樹脂等が挙げられる。また前記ウレタン樹脂の重量平均分子量は特に限定ないが、一般に5000~200000であるものであればよく20000~150000であることがより好ましい。
(Urethane resin)
The urethane resin has, for example, a polyol such as a polyether polyol, a polyester polyol or a polycarbonate polyol, and a hydrophilic group such as an anionic group, a cationic group, a polyoxyethylene group or a polyoxyethylene-polyoxypropylene group. Examples thereof include a urethane resin obtained by reacting a polyol with a polyisocyanate. The weight average molecular weight of the urethane resin is not particularly limited, but is generally 5,000 to 200,000, and more preferably 20,000 to 150,000.
 前記ポリエーテルポリオールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、ソルビトール、ショ糖、アコニット糖、フェミメリット酸、燐酸、エチレンジアミン、ジエチレントリアミン、トリイソプロパノールアミン、ピロガロール、ジヒドロキシ安息香酸、ヒドロキシフタール酸、1,2,3-プロパントリチオール等の活性水素基を2個以上有する化合物にエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド、エピクロルヒドリン、テトラヒドロフラン、シクロフェキシレン等の環状エーテル化合物を付加重合したもの、又は、前記環状エーテル化合物をカチオン触媒、プロトン酸、ルイス酸等を触媒として開環重合したものが挙げられる。 Examples of the polyether polyol include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, and neopentyl glycol. Glycerin, trimethylol ethane, trimethylolpropane, sorbitol, sucrose, aconit sugar, femimertic acid, phosphoric acid, ethylenediamine, diethylenetriamine, triisopropanolamine, pyrogallol, dihydroxybenzoic acid, hydroxyfutaric acid, 1,2,3-propane A compound having two or more active hydrogen groups such as trithiol and an addition-polymerized cyclic ether compound such as ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, tetrahydrofuran and cyclophenylene, or the cyclic ether compound. Can be mentioned by ring-opening polymerization using a cation catalyst, a protonic acid, a Lewis acid, or the like as a catalyst.
 前記ポリエステルポリオールは、ジオール化合物、ジカルボン酸、ヒドロキシカルボン酸化合物等の脱水縮合反応、ε-カプロラクトン等の環状エステル化合物の開環重合反応、及びこれらの反応によって得られるポリエステルを共重合させることによって得られる。このポリエステルポリオールの原料となるジオール化合物としては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、ビスヒドロキシエトキシベンゼン、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、ビスフェノールA、水素添加ビスフェノールA、ハイドロキノン、及びこれらのアルキレンオキサイド付加物等が挙げられる。 The polyester polyol is obtained by dehydration condensation reaction of diol compound, dicarboxylic acid, hydroxycarboxylic acid compound and the like, ring-opening polymerization reaction of cyclic ester compound such as ε-caprolactone, and copolymerization of polyester obtained by these reactions. Be done. Examples of the diol compound used as a raw material for this polyester polyol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 3-methyl-1,5-pentane. Diol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, bishydroxyethoxybenzene, 1,4-cyclohexanediol, 1 , 4-Cyclohexanedimethanol, bisphenol A, hydrogenated bisphenol A, hydroquinone, and alkylene oxide adducts thereof and the like.
 また、前記ポリエステルポリオールの原料となるジカルボン酸としては、例えば、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、マレイン酸、フマル酸、1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸等が挙げられる。 Examples of the dicarboxylic acid used as a raw material for the polyester polyol include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, maleic acid, fumaric acid, 1,3-cyclopentanedicarboxylic acid, and 1,4. -Cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (Phenoxy) ethane-p, p'-dicarboxylic acid and the like can be mentioned.
 前記ポリエステルポリオールの原料となるヒドロキシカルボン酸としては、例えば、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸等が挙げられる。 Examples of the hydroxycarboxylic acid as a raw material of the polyester polyol include p-hydroxybenzoic acid and p- (2-hydroxyethoxy) benzoic acid.
 ポリカーボネートポリオールとしては、例えば炭酸エステルと、低分子量のポリオール、好ましくは直鎖脂肪族ジオールとを反応させて得られるものを使用することができる。 As the polycarbonate polyol, for example, one obtained by reacting a carbonic acid ester with a low molecular weight polyol, preferably a linear aliphatic diol, can be used.
 前記炭酸エステルとしては、メチルカーボネートや、ジメチルカーボネート、エチルカーボネート、ジエチルカーボネート、シクロカーボネート、ジフェニルカーボネ-ト等を使用することできる。 As the carbonic acid ester, methyl carbonate, dimethyl carbonate, ethyl carbonate, diethyl carbonate, cyclocarbonate, diphenylcarbonate and the like can be used.
 前記炭酸エステルと反応しうる低分子量のポリオールとしては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,2-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、1,5-ヘキサンジオール、2,5-ヘキサンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、ハイドロキノン、レゾルシン、ビスフェノール-A、ビスフェノール-F、4,4’-ビフェノール等の比較的低分子量のジヒドロキシ化合物や、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシテトラメチレングリコール等のポリエーテルポリオールや、ポリヘキサメチレンアジペート、ポリヘキサメチレンサクシネート、ポリカプロラクトン等のポリエステルポリオール等を使用することができる。 Examples of the low molecular weight polyol that can react with the carbonic acid ester include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, dipropylene glycol, 1,4-butanediol, and 1. , 3-Butanediol, 1,2-Butanediol, 2,3-Butanediol, 1,5-Pentanediol, 1,5-hexanediol, 2,5-hexanediol, 1,6-hexanediol, 1, 7-Heptane diol, 1,8-octane diol, 1,9-nonane diol, 1,10-decane diol, 1,11-undecane diol, 1,12-dodecane diol, 1,4-cyclohexanediol, 1,4 -Relatively low molecular weight dihydroxy compounds such as cyclohexanedimethanol, hydroquinone, resorcin, bisphenol-A, bisphenol-F, 4,4'-biphenol, and polyether polyols such as polyethylene glycol, polypropylene glycol and polyoxytetramethylene glycol. Alternatively, polyester polyols such as polyhexamethylene adipate, polyhexamethylene succinate, and polycaprolactone can be used.
 ポリカーボネート構造は、ポリカーボネート系ウレタン樹脂の製造に使用するポリオール及び前記ポリイソシアネートの合計質量に対して、10質量%~90質量%の範囲で使用することが好ましい。 The polycarbonate structure is preferably used in the range of 10% by mass to 90% by mass with respect to the total mass of the polyol used for producing the polycarbonate urethane resin and the polyisocyanate.
 また、前記ウレタン樹脂は、コーティング剤中における分散安定性を付与するうえで親水性基を有する。前記親水性基としては、一般にアニオン性基やカチオン性基、ノニオン性基といわれるものを使用することができるが、なかでもアニオン性基やカチオン性基を使用することが好ましい。 Further, the urethane resin has a hydrophilic group in order to impart dispersion stability in the coating agent. As the hydrophilic group, an anionic group, a cationic group, or a nonionic group can be generally used, but it is preferable to use an anionic group or a cationic group.
 前記アニオン性基としては、例えばカルボキシル基、カルボキシレート基、スルホン酸基、スルホネート基等を使用することができ、なかでも、一部または全部が塩基性化合物等によって中和されたカルボキシレート基やスルホネート基を使用することが、良好な水分散性を維持するうえで好ましい。 As the anionic group, for example, a carboxyl group, a carboxylate group, a sulfonic acid group, a sulfonate group and the like can be used, and among them, a carboxylate group partially or wholly neutralized with a basic compound or the like can be used. It is preferable to use a sulfonate group in order to maintain good water dispersibility.
 前記アニオン性基としてのカルボキシル基やスルホン酸基の中和に使用可能な塩基性化合物としては、例えばアンモニア、トリエチルアミン、ピリジン、モルホリン等の有機アミンや、モノエタノールアミン等のアルカノールアミンや、Na、K、Li、Ca等を含む金属塩基化合物等が挙げられる。 Examples of the basic compound that can be used for neutralizing the carboxyl group and the sulfonic acid group as the anionic group include organic amines such as ammonia, triethylamine, pyridine and morpholine, alkanolamines such as monoethanolamine, and Na. Examples thereof include metal base compounds containing K, Li, Ca and the like.
 また、前記カチオン性基としては、例えば3級アミノ基等を使用することができる。前記3級アミノ基の一部又は全てを中和する際に使用することができる酸としては、例えば、蟻酸、酢酸等を使用することができる。また、前記3級アミノ基の一部又は全てを4級化する際に使用することができる4級化剤としては、例えば、ジメチル硫酸、ジエチル硫酸等のジアルキル硫酸類を使用することができる。 Further, as the cationic group, for example, a tertiary amino group or the like can be used. As the acid that can be used to neutralize a part or all of the tertiary amino group, formic acid, acetic acid and the like can be used, for example. Further, as the quaternizing agent that can be used when partially or all of the tertiary amino group is quaternized, for example, dialkyl sulfates such as dimethyl sulfate and diethyl sulfate can be used.
 また、前記ノニオン性基としては、例えばポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシブチレン基、ポリ(オキシエチレン-オキシプロピレン)基、及びポリオキシエチレン-ポリオキシプロピレン基等のポリオキシアルキレン基を使用することができる。なかでもオキシエチレン単位を有するポリオキシアルキレン基を使用することが、親水性をより一層向上させるうえで好ましい。 The nonionic group includes, for example, a polyoxyalkylene group such as a polyoxyethylene group, a polyoxypropylene group, a polyoxybutylene group, a poly (oxyethylene-oxypropylene) group, and a polyoxyethylene-polyoxypropylene group. Can be used. Among them, it is preferable to use a polyoxyalkylene group having an oxyethylene unit in order to further improve the hydrophilicity.
 前記親水性基は、前記ウレタン樹脂全体に対して0.5質量%~30質量%存在することがより一層良好な水分散性を付与し、1質量%~20質量%の範囲であることがより好ましい。 The presence of 0.5% by mass to 30% by mass of the hydrophilic group with respect to the entire urethane resin imparts even better water dispersibility, and may be in the range of 1% by mass to 20% by mass. More preferred.
 また所望される物性によって後述する架橋剤を使用することができる。前記架橋剤を使用する場合、前記ウレタン樹脂としては、前記架橋剤の有する官能基と架橋反応しうる官能基を有するものを使用することが好ましい。 Further, a cross-linking agent described later can be used depending on the desired physical properties. When the cross-linking agent is used, it is preferable to use the urethane resin having a functional group capable of cross-linking with the functional group of the cross-linking agent.
 前記官能基としては、前記親水性基として使用可能なカルボキシル基やカルボキシレート基等が挙げられる。前記カルボキシル基等は、水性媒体中においてウレタン樹脂の水分散安定性に寄与し、それらが架橋反応する際には、前記官能基としても作用し、前記架橋剤の一部架橋反応しうる。 Examples of the functional group include a carboxyl group and a carboxylate group that can be used as the hydrophilic group. The carboxyl groups and the like contribute to the water dispersion stability of the urethane resin in an aqueous medium, and when they undergo a crosslinking reaction, they also act as the functional groups and can partially crosslink the crosslinking agent.
 前記官能基としてカルボキシル基等を使用する場合、前記ウレタン樹脂としては、2~55の酸価を有するものであることが好ましく、15~50の酸価を有するものを使用することが、堅牢性を向上するうえで好ましい。なお、本発明でいう酸価は、前記ウレタン樹脂の製造に使用したカルボキシル基含有ポリオール等の酸基含有化合物の使用量に基づいて算出した理論値である。 When a carboxyl group or the like is used as the functional group, the urethane resin preferably has an acid value of 2 to 55, and it is preferable to use a urethane resin having an acid value of 15 to 50. It is preferable to improve. The acid value referred to in the present invention is a theoretical value calculated based on the amount of the acid group-containing compound such as the carboxyl group-containing polyol used in the production of the urethane resin.
 前記ウレタン樹脂は、例えばポリオールとポリイソシアネートと、必要に応じて鎖伸長剤とを反応させることによって製造することができる。 The urethane resin can be produced, for example, by reacting a polyol, a polyisocyanate, and a chain extender, if necessary.
 前記鎖伸長剤としては、ポリアミンや、その他活性水素原子含有化合物等を使用することができる。
 前記ポリアミンとしては、例えば、エチレンジアミン、1,2-プロパンジアミン、1,6-ヘキサメチレンジアミン、ピペラジン、2,5-ジメチルピペラジン、イソホロンジアミン、4,4’-ジシクロヘキシルメタンジアミン、3,3’-ジメチル-4,4’-ジシクロヘキシルメタンジアミン、1,4-シクロヘキサンジアミン等のジアミン類;N-ヒドロキシメチルアミノエチルアミン、N-ヒドロキシエチルアミノエチルアミン、N-ヒドロキシプロピルアミノプロピルアミン、N-エチルアミノエチルアミン、N-メチルアミノプロピルアミン;ジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミン;ヒドラジン、N,N’-ジメチルヒドラジン、1,6-ヘキサメチレンビスヒドラジン;コハク酸ジヒドラジッド、アジピン酸ジヒドラジド、グルタル酸ジヒドラジド、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド;β-セミカルバジドプロピオン酸ヒドラジド、3-セミカルバジッド-プロピル-カルバジン酸エステル、セミカルバジッド-3-セミカルバジドメチル-3,5,5-トリメチルシクロヘキサンを使用することができ、エチレンジアミンを使用することが好ましい。
As the chain extender, polyamines, other active hydrogen atom-containing compounds and the like can be used.
Examples of the polyamine include ethylenediamine, 1,2-propanediamine, 1,6-hexamethylenediamine, piperazine, 2,5-dimethylpiperazine, isophoronediamine, 4,4'-dicyclohexylmethanediamine, and 3,3'-. Diamines such as dimethyl-4,4'-dicyclohexamethylenediamine, 1,4-cyclohexanediamine; N-hydroxymethylaminoethylamine, N-hydroxyethylaminoethylamine, N-hydroxypropylaminopropylamine, N-ethylaminoethylamine, N-Methylaminopropylamine; diethylenetriamine, dipropylenetriamine, triethylenetetramine; hydrazine, N, N'-dimethylhydrazine, 1,6-hexamethylenebishydrazine; dihydrazide succinate, dihydrazide adipate, dihydrazide glutarate, sebacic acid Dihydrazide, isophthalic acid dihydrazide; β-semicarbazide propionate hydrazide, 3-semicarbazid-propyl-carbazic acid ester, semicarbazid-3-semicarbazidomethyl-3,5,5-trimethylcyclohexane can be used and ethylenediamine. It is preferable to use.
 前記その他活性水素含有化合物としては、例えば、エチレングリコール、ジエチレンリコール、トリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ヘキサメチレングリコール、ネオペンチルグリコール、サッカロース、メチレングリコール、グリセリン、ソルビトール等のグリコール類;ビスフェノールA、4,4’-ジヒドロキシジフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルホン、水素添加ビスフェノールA、ハイドロキノン等のフェノール類、及び水等を使用することができる
 前記鎖伸長剤は、例えば前記鎖伸長剤の有するアミノ基及び活性水素原子含有基の当量が、前記ポリオールとポリイソシアネートとを反応させて得られたウレタンプレポリマーの有するイソシアネート基の当量に対して、1.9以下(当量比)となる範囲で使用することが好ましく、0.0~1.0(当量比)の範囲で使用することがより好ましく、より好ましくは0.5質量%が好ましい
 前記鎖伸長剤は、前記ポリオールとポリイソシアネートを反応させる際、または、反応後に使用することができる。また、前記で得たウレタン樹脂を水性媒体中に分散させ水性化する際に、前記鎖伸長剤を使用することもできる。
Examples of the other active hydrogen-containing compound include ethylene glycol, diethylene recall, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, hexamethylene glycol, and neo. Glycos such as pentyl glycol, saccharose, methylene glycol, glycerin, sorbitol; bisphenol A, 4,4'-dihydroxydiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfone, hydrogenated bisphenol A, hydroquinone The chain extender can be obtained by reacting the polyol with polyisocyanate, for example, with the equivalent amount of amino group and active hydrogen atom-containing group of the chain extender. It is preferable to use it in the range of 1.9 or less (equivalent ratio) with respect to the equivalent of the isocyanate group contained in the obtained urethane prepolymer, and it should be used in the range of 0.0 to 1.0 (equivalent ratio). The chain extender is more preferably 0.5% by mass, and can be used during or after the reaction between the polyol and the polyisocyanate. Further, the chain extender can also be used when the urethane resin obtained above is dispersed in an aqueous medium to make it aqueous.
 また、上記以外のポリオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ビスヒドロキシエトキシベンゼン、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、ビスフェノールA、水素添加ビスフェノールA、ハイドロキノン及びそれらのアルキレンオキシド付加物、グリセリン、トリメチロールエタン、トリメチロールプロパン、ソルビトール、ペンタエリスリトール等の比較的低分子量のポリオールが挙げられる。これらの前記ポリオールは、単独で用いることも2種以上を併用することもできる。 Examples of polyols other than the above include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, and 1, , 6-Hexenediol, Neopentyl Glycol, Diethylene Glycol, Triethylene Glycol, Tetraethylene Glycol, Polyethylene Glycol, Dipropylene Glycol, Tripropylene Glycol, Bishydroxyethoxybenzene, 1,4-Cyclohexanediol, 1,4-Cyclohexanedimethanol , Bisphenol A, hydrogenated bisphenol A, hydroquinone and their alkylene oxide adducts, glycerin, trimethylolethane, trimethylolpropane, sorbitol, pentaerythritol and other relatively low molecular weight polyols. These polyols can be used alone or in combination of two or more.
 前記ポリオールと反応しウレタン樹脂を形成するポリイソシアネートとしては、例えばフェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート等の芳香族ジイソシアネートや、ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族または脂肪族環式構造含有ジイソシアネート等を、単独で使用または2種以上を併用して使用することができる。 Examples of the polyisocyanate that reacts with the polyol to form a urethane resin include aromatic diisocyanates such as phenylenediisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, and naphthalenediocyanate, hexamethylene diisocyanate, lysine diisocyanate, cyclohexanediisocyanate, isophorone diisocyanate, and dicyclohexylmethane. Aliphatic or aliphatic ring structure-containing diisocyanates such as diisocyanate, xylylene diisocyanate, and tetramethylxylylene diisocyanate can be used alone or in combination of two or more.
 前記バインダー樹脂は、本発明のコーティング剤の固形分換算で5~50質量%であることが好ましい。5質量%以上であれば、コーティング膜強度が低下することもなく、基材密着性、耐水摩擦性等も良好に保たれる。反対に50質量%を以下であれば、抗ウイルス性、抗菌性が低下する事が抑制でき、また高粘度となる事が避けられ、作業性が低下することもない。中でも5~40質量%であることがなお好ましく、5~20質量%であることが最も好ましい。 The binder resin is preferably 5 to 50% by mass in terms of solid content of the coating agent of the present invention. When it is 5% by mass or more, the strength of the coating film does not decrease, and the adhesion to the base material, the water friction resistance, and the like are kept good. On the contrary, when it is 50% by mass or less, the decrease in antiviral property and antibacterial property can be suppressed, the high viscosity can be avoided, and the workability does not decrease. Of these, 5 to 40% by mass is still more preferable, and 5 to 20% by mass is most preferable.
(光触媒(B))
 光触媒(B)は、結晶性ルチル型酸化チタンを含む酸化チタンと2価銅化合物とを含有する光触媒であって、前記結晶性ルチル型酸化チタンが、Cu-Kα線による回折角度2θに対する回折線強度をプロットしたX線回折パターンにおいて、ルチル型酸化チタンに対応する最も強い回折ピークの半値全幅が0.65度以下の酸化チタンであり、前記酸化チタン中における前記結晶性ルチル型酸化チタンの含有量が50モル%以上、アナターゼ型酸化チタンの含有量が50モル%未満である光触媒である。
(Photocatalyst (B))
The photocatalyst (B) is a photocatalyst containing titanium oxide containing crystalline rutyl-type titanium oxide and a divalent copper compound, and the crystalline rutile-type titanium oxide is a diffraction line with respect to a diffraction angle 2θ by Cu—Kα rays. In the X-ray diffraction pattern in which the intensity is plotted, the half-value total width of the strongest diffraction peak corresponding to rutile-type titanium oxide is titanium oxide of 0.65 degrees or less, and the content of the crystalline rutile-type titanium oxide in the titanium oxide. It is a photocatalyst having an amount of 50 mol% or more and an anatase-type titanium oxide content of less than 50 mol%.
 ルチル型でありかつ結晶性の高い結晶性ルチル型酸化チタンと2価銅化合物とを組み合せて用いることにより、明所及び暗所における抗ウイルス性、明所における有機化合物分解性に優れる光触媒(可視光領域で抗ウイルス性等の光触媒活性を有する可視光応答型光触媒)を得ることができる。また、2価銅化合物は1価銅化合物のように酸化による変色のおそれが少ないため、経時的な変色も抑制することができる。 By using a combination of rutile-type and highly crystalline crystalline rutile-type titanium oxide and a divalent copper compound, a photocatalyst with excellent antiviral properties in bright and dark places and organic compound decomposition in bright places (visible). A visible light responsive photocatalyst) having photocatalytic activity such as antiviral property can be obtained in the light region. Further, since the divalent copper compound is less likely to be discolored due to oxidation like the monovalent copper compound, discoloration over time can be suppressed.
 なお、本発明において、「明所」とは、可視光の存在する箇所のことをいい、「暗所」とは、光の存在しない箇所のことをいう。 In the present invention, the "bright place" means a place where visible light exists, and the "dark place" means a place where light does not exist.
 ここで、光触媒活性とは、光誘起分解性及び光誘起親水化性から選ばれる少なくとも1種を意味する。光誘起分解性とは、酸化チタンで処理された表面に吸着している有機物を酸化分解する作用であり、光誘起親水化性とは、酸化チタンで処理された表面が水となじみ易い親水性になる作用である。この光誘起親水化性は、光励起によって生成し、拡散してきた正孔により、酸化チタン表面の水酸基が増加することによって起こると考えられる。 Here, the photocatalytic activity means at least one selected from photo-induced degradability and photo-induced hydrophilization. Photo-induced degradability is the action of oxidatively decomposing organic substances adsorbed on the surface treated with titanium oxide, and photo-induced hydrophilicity is the hydrophilicity of the surface treated with titanium oxide that is easily compatible with water. It is an action to become. It is considered that this photoinduced hydrophilicity is caused by the increase of hydroxyl groups on the surface of titanium oxide due to the holes generated and diffused by photoexcitation.
 また、ウイルスとは、DNAウイルス及びRNAウイルスを意昧するが、細菌に感染するウイルスであるバクテリオファージ(以下、「ファージ」と略記することもある)も包含する。 The virus means a DNA virus and an RNA virus, but also includes a bacteriophage (hereinafter, may be abbreviated as "phage") which is a virus that infects bacteria.
 次に、光触媒(B)の各成分について説明する。
(酸化チタン)
 光触媒(B)に用いる酸化チタンは、結晶性ルチル型酸化チタンを含むものである。
Next, each component of the photocatalyst (B) will be described.
(Titanium oxide)
The titanium oxide used in the photocatalyst (B) contains crystalline rutile-type titanium oxide.
 本発明において、結晶性ルチル型酸化チタンとは、Cu-Kα線による回折角度2θに対する回折線強度をプロットしたX線回折パターンにおいて、ルチル型酸化チタンに対応する最も強い回折ピークの半値全幅が0.65度以下の酸化チタンのことを意味する。 In the present invention, the crystalline rutile-type titanium oxide is an X-ray diffraction pattern in which the diffraction line intensity with respect to the diffraction angle 2θ by Cu—Kα rays is plotted, and the half-value full width of the strongest diffraction peak corresponding to the rutile-type titanium oxide is 0. It means titanium oxide of .65 degrees or less.
 半値全幅が0.65度よりも大きいと、結晶性が悪くなり、暗所における抗ウイルス性が十分に発現しなくなる。この観点から、半値全幅は、好ましくは0.6度以下であり、より好ましくは0.5度以下であり、更に好ましくは0.4度以下であり、より更に好ましくは0.35度である。 If the full width at half maximum is larger than 0.65 degrees, the crystallinity deteriorates and the antiviral property in the dark is not sufficiently expressed. From this point of view, the full width at half maximum is preferably 0.6 degrees or less, more preferably 0.5 degrees or less, still more preferably 0.4 degrees or less, still more preferably 0.35 degrees. ..
 酸化チタン中における、結晶性ルチル型酸化チタンの含有量(以下、「ルチル化率」ということがある)は、50モル%以上である。含有量が50モル%以上であると、得られる光触媒の、明所及び暗所における抗ウイルス性が十分なものとなり、また、明所における有機化合物分解性や、特に可視光応答性も十分なものとなる。この観点から、ルチル化率は、好ましくは90モル%以上であり、さらに好ましくは94モル%以上である。このルチル化率は、後述するとおり、XRDによって測定した値である。 The content of crystalline rutile-type titanium oxide in titanium oxide (hereinafter, may be referred to as "rutileization rate") is 50 mol% or more. When the content is 50 mol% or more, the antiviral property of the obtained photocatalyst in a bright place and a dark place becomes sufficient, and the organic compound decomposing property in the bright place and particularly the visible light responsiveness are also sufficient. It becomes a thing. From this viewpoint, the rutileization rate is preferably 90 mol% or more, more preferably 94 mol% or more. This rutile formation rate is a value measured by XRD as described later.
 上記観点から、酸化チタン中におけるアナターゼ型酸化チタンの含有量(以下、「アナターゼ化率」ということがある)は少ないことが好ましく、アナターゼ化率は、50モル%未満であり、好ましくは10モル%未満であり、より好ましくは7モル%未満であり、更に好ましくは0モル%(すなわち、アナターゼ型酸化チタンを含まない)である。このアナターゼ化率もルチル化率と同様に、XRDによって測定した値である。 From the above viewpoint, the content of anatase-type titanium oxide in titanium oxide (hereinafter, may be referred to as “anatase formation rate”) is preferably low, and the anatase formation rate is less than 50 mol%, preferably 10 mol. %, More preferably less than 7 mol%, still more preferably 0 mol% (ie, free of anatase-type titanium oxide). This anatase formation rate is also a value measured by XRD in the same manner as the rutile formation rate.
 酸化チタンの比表面積は、好ましくは1~200m/gである。1m/g以上であると、比表面積が大きいためウイルス、菌及び有機化合物との接触頻度が大きくなり、得られる光触媒の、明所及び暗所における抗ウイルス性や、有機化合物分解性及び抗菌性が優れる。一方、200m/g以下であると、取扱性に優れている。これらの観点から、酸化チタンの比表面積は、より好ましくは3~100m/gであり、更に好ましくは4~70m/gであり、特に好ましくは8~50m/gである。ここで比表面積とは、窒素吸着によるBET法にて測定した値である。 The specific surface area of titanium oxide is preferably 1 to 200 m 2 / g. When it is 1 m 2 / g or more, the specific surface area is large, so that the frequency of contact with viruses, fungi and organic compounds increases, and the obtained photocatalyst has antiviral properties in bright and dark places, organic compound degradability and antibacterial properties. Excellent in sex. On the other hand, when it is 200 m 2 / g or less, the handleability is excellent. From these viewpoints, the specific surface area of titanium oxide is more preferably 3 to 100 m 2 / g, further preferably 4 to 70 m 2 / g, and particularly preferably 8 to 50 m 2 / g. Here, the specific surface area is a value measured by the BET method by nitrogen adsorption.
 酸化チタンには、気相法で製造されたものと液相法で製造されたものがあり、そのいずれを用いることもできるが、気相法で製造された酸化チタンがより好適である。 Titanium oxide includes those produced by the vapor phase method and those produced by the liquid phase method, and either of them can be used, but titanium oxide produced by the vapor phase method is more preferable.
 気相法は、四塩化チタンを原料として、酸素との気相反応により酸化チタンを得る方法である。気相法で得られた酸化チタンは、粒子径が均一であると同時に、製造時に高温プロセスを経由しているため、結晶性が高いものとなる。その結果、得られる光触媒の、明所及び暗所における抗ウイルス性や、有機化合物分解性及び抗菌性が良好なものとなる。 The gas phase method is a method of obtaining titanium oxide by a gas phase reaction with oxygen using titanium tetrachloride as a raw material. Titanium oxide obtained by the vapor phase method has a uniform particle size and at the same time has high crystallinity because it goes through a high temperature process during production. As a result, the obtained photocatalyst has good antiviral properties, organic compound decomposability and antibacterial properties in bright and dark places.
 一方、液相法は、塩化チタン、硫酸チタニルなどの酸化チタン原料を溶解した液を、加水分解または中和して酸化チタンを得る方法である。液相法で製造された酸化チタンは、ルチルの結晶性が低く比表面積が大きくなる傾向にあり、この場合、焼成等を行って最適な結晶性及び比表面積を有する酸化チタンにすればよいが、手間がかかるため、気相法の方がより好適である。 On the other hand, the liquid phase method is a method for obtaining titanium oxide by hydrolyzing or neutralizing a liquid in which a titanium oxide raw material such as titanium chloride or titanyl sulfate is dissolved. Titanium oxide produced by the liquid phase method tends to have a low crystallinity of rutile and a large specific surface area. In this case, it may be calcined to obtain titanium oxide having optimum crystallinity and specific surface area. The vapor phase method is more preferable because it takes time and effort.
 酸化チタンとしては、市販されている酸化チタンをそのまま使用するほうが、触媒調製の工程を考えると有利である。 As titanium oxide, it is more advantageous to use commercially available titanium oxide as it is, considering the process of catalyst preparation.
(2価銅化合物)
 光触媒(B)は、2価銅化合物を含む。この2価銅化合物単独では、明所及び暗所における抗ウイルス性、明所における有機化合物分解性、可視光応答性を有しないが、前述した結晶性ルチル型酸化チタンと組み合わせることにより、明所及び暗所における抗ウイルス性、明所における有機化合物分解性、及び可視光応答性が十分に発現する。また、この2価銅化合物は、1価銅化合物と比べて酸化等による変色が少ないため、この2価銅化合物を用いた光触媒は、変色が抑制される。
(Divalent copper compound)
The photocatalyst (B) contains a divalent copper compound. This divalent copper compound alone does not have antiviral properties in bright and dark places, organic compound degradability in bright places, and visible light responsiveness, but by combining with the above-mentioned crystalline rutile-type titanium oxide, it is possible to make bright spots. And antiviral property in the dark, organic compound decomposition property in the light place, and visible light responsiveness are sufficiently expressed. Further, since the divalent copper compound has less discoloration due to oxidation or the like than the monovalent copper compound, the photocatalyst using this divalent copper compound suppresses the discoloration.
 2価銅化合物には、特に限定はなく、2価銅無機化合物及び2価銅有機化合物の1種又は2種が挙げられる。 The divalent copper compound is not particularly limited, and examples thereof include one or two types of a divalent copper inorganic compound and a divalent copper organic compound.
 2価銅無機化合物としては、硫酸銅、硝酸銅、沃素酸銅、過塩素酸銅、シュウ酸銅、四ホウ酸銅、硫酸アンモニウム銅、アミド硫酸銅及び塩化アンモニウム銅、ピロリン酸銅、炭酸銅からなる2価銅の無機酸塩、塩化銅、フッ化銅及び臭化銅からなる2価銅のハロゲン化物、並びに酸化銅、硫化銅、アズライト、マラカイト及びアジ化銅からなる群から選択される1種又は2種以上が挙げられる。 Divalent copper Inorganic compounds include copper sulfate, copper nitrate, copper iodide, copper perchlorate, copper oxalate, copper tetraborate, copper ammonium sulfate, copper amide sulfate and copper ammonium chloride, copper pyrophosphate, and copper carbonate. 1 selected from the group consisting of an inorganic acid salt of divalent copper, a halide of divalent copper composed of copper chloride, copper fluoride and copper bromide, and a group consisting of copper oxide, copper sulfide, azurite, malakite and copper azide. Species or two or more species are mentioned.
 2価銅有機化合物としては、2価銅のカルボン酸塩が挙げられる。この2価銅のカルボン酸塩としては、蟻酸銅、酢酸銅、プロピオン酸銅、酪酸銅、吉草酸銅、カプロン酸銅、エナント酸銅、カプリル酸銅、ペラルゴン酸銅、カプリン酸銅、ミスチン酸銅、パルミチン酸銅、マルガリン酸銅、ステアリン酸銅、オレイン酸銅、乳酸銅、リンゴ酸銅、クエン酸銅、安息香酸銅、フタル酸銅、イソフタル酸銅、テレフタル酸銅、サリチル酸銅、メリト酸銅、シュウ酸銅、マロン酸銅、コハク酸銅、グルタル酸銅、アジピン酸銅、フマル酸銅、グリコール酸銅、グリセリン酸銅、グルコン酸銅、酒石酸銅、アセチルアセトン銅、エチルアセト酢酸銅、イソ吉草酸銅、β‐レゾルシル酸銅、ジアセト酢酸銅、ホルミルコハク酸銅、サリチルアミン酸銅、ビス(2-エチルヘキサン酸)銅、セバシン酸銅及びナフテン酸銅からなる群から選択される1種又は2種以上が挙げられる。その他の2価銅有機化合物としては、オキシン銅、アセチルアセトン銅、エチルアセト酢酸銅、トリフルオロメタンスルホン酸銅、フタロシアニン銅、銅エトキシド、銅イソプロポキシド、銅メトキシド、及びジメチルジチオカルバミン酸銅からなる群から選択される1種又は2種以上が挙げられる。 Examples of the divalent copper organic compound include a divalent copper carboxylate. Examples of the carboxylate of divalent copper include copper formate, copper acetate, copper propionate, copper butyrate, copper valerate, copper caproate, copper enanthate, copper caprylate, copper pelargonate, copper capricate, and mistinic acid. Copper, copper palmitate, copper margarate, copper stearate, copper oleate, copper lactate, copper malate, copper citrate, copper benzoate, copper phthalate, copper isophthalate, copper terephthalate, copper salicylate, melitonic acid Copper, copper oxalate, copper malonate, copper succinate, copper glutarate, copper adipate, copper fumarate, copper glycolate, copper glycerate, copper gluconate, copper tartrate, acetylacetone copper, ethylacetate acetate, isokichi One selected from the group consisting of copper herbate, β-resorcylate copper, diacetate acetate copper, formyl succinate copper, salicylamine acid copper, bis (2-ethylhexanoic acid) copper, sebacate copper and naphthenate copper or Two or more types can be mentioned. Other divalent copper organic compounds are selected from the group consisting of oxine copper, acetylacetone copper, ethylacetoacetate copper, trifluoromethanesulfonate copper, phthalocyanine copper, copper ethoxydo, copper isopropoxide, copper methoxyd and copper dimethyldithiocarbamate. One kind or two or more kinds are mentioned.
 上記2価銅化合物のうち、好ましくは酸化銅、2価銅のハロゲン化物、2価銅の無機酸塩及び2価銅のカルボン酸塩の1種又は2種以上であり、例えば2価銅のハロゲン化物、2価銅の無機酸塩及び2価銅のカルボン酸塩の1種又は2種以上である。 Among the above divalent copper compounds, preferably one or more of copper oxide, a halide of divalent copper, an inorganic acid salt of divalent copper and a carboxylate of divalent copper, for example, divalent copper. A halide, one or more of an inorganic acid salt of divalent copper and a carboxylate of divalent copper.
 また、2価銅化合物としては、下記一般式(1)で表される2価銅化合物が挙げられる。 Further, examples of the divalent copper compound include a divalent copper compound represented by the following general formula (1).
      Cu(OH)X          (1)

 一般式(1)において、Xは陰イオンであり、好ましくはCl、Br、I等のハロゲン、CHCOO等のカルボン酸の共役塩基、NO、(SO1/2等の無機酸の共役塩基、又はOHである。
Cu 2 (OH) 3 X (1)

In the general formula (1), X is an anion, preferably a halogen such as Cl, Br, I, a conjugate base of a carboxylic acid such as CH 3 COO, or an inorganic acid such as NO 3 , (SO 4 ) 1/2. Conjugate base, or OH.
 これらの2価銅化合物のうち、より不純物が少なく、経済的な観点から、2価銅無機化合物がより好ましく、酸化銅が更に好ましい。また、上記一般式(1)で表される2価銅化合物も好ましい。2価銅化合物は、無水物であっても水和物であってもよい。 Of these divalent copper compounds, divalent copper inorganic compounds are more preferable, and copper oxide is further preferable, from the viewpoint of less impurities and economic viewpoint. Further, a divalent copper compound represented by the above general formula (1) is also preferable. The divalent copper compound may be anhydrous or hydrated.
 2価銅化合物の銅換算含有量は、前記酸化チタン100質量部に対して、好ましくは0.01~20質量部である。0.01質量部以上であると、明所及び暗所における抗ウイルス性、有機化合物分解性及び抗菌性が良好なものとなる。また、20質量部以下であると、酸化チタン表面が被覆されてしまうことが防止されて光触媒としての機能(有機化合物分解性、抗菌性等)が良好に発現すると共に、少量で抗ウイルス性能を向上することができて経済的である。この観点から、2価銅化合物の銅換算含有量は、酸化チタン100質量部に対して、より好ましくは0.1~20質量部であり、更に好ましくは0.1~15質量部であり、より更に好ましくは0.3~10質量部である。 The copper equivalent content of the divalent copper compound is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the titanium oxide. When it is 0.01 part by mass or more, the antiviral property, the organic compound decomposing property and the antibacterial property in a bright place and a dark place become good. Further, when the amount is 20 parts by mass or less, the surface of titanium oxide is prevented from being covered, the function as a photocatalyst (organic compound decomposability, antibacterial property, etc.) is satisfactorily exhibited, and the antiviral performance is improved with a small amount. It can be improved and is economical. From this viewpoint, the copper equivalent content of the divalent copper compound is more preferably 0.1 to 20 parts by mass, still more preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of titanium oxide. Even more preferably, it is 0.3 to 10 parts by mass.
 ここで、この酸化チタン100質量部に対する2価銅化合物の銅換算含有量は、2価銅化合物の原料と酸化チタンの原料との仕込み量から算出することができる。また、この銅換算含有量は、後述するICP(誘導結合プラズマ)発光分光分析により光触媒を測定することで特定することもできる。 Here, the copper equivalent content of the divalent copper compound with respect to 100 parts by mass of this titanium oxide can be calculated from the charged amount of the raw material of the divalent copper compound and the raw material of titanium oxide. The copper equivalent content can also be specified by measuring the photocatalyst by ICP (inductively coupled plasma) emission spectroscopy, which will be described later.
 光触媒(B)は、前述のとおり、必須成分として、結晶性ルチル型酸化チタンを含む酸化チタンと2価銅化合物とを含有するが、本発明の目的を阻害しない範囲内において、他の任意成分を含有していてもよい。ただし、光触媒としての機能及び抗ウイルス性能の向上の観点から、光触媒(B)中における当該必須成分の含有量は、好ましくは90質量%以上であり、より好ましくは95質量%以上であり、更に好ましくは99質量%以上であり、更に好ましくは100質量%である。 As described above, the photocatalyst (B) contains titanium oxide containing crystalline rutile-type titanium oxide and a divalent copper compound as essential components, but other optional components as long as the object of the present invention is not impaired. May be contained. However, from the viewpoint of improving the function as a photocatalyst and the antiviral performance, the content of the essential component in the photocatalyst (B) is preferably 90% by mass or more, more preferably 95% by mass or more, and further. It is preferably 99% by mass or more, and more preferably 100% by mass.
 光触媒(B)は、結晶性ルチル型酸化チタンを含む酸化チタンと、2価銅化合物原料とを混合する混合工程を実施することにより、製造することができる。また、この混合工程によって得られた混合物を熱処理する熱処理工程を更に実施して、光触媒を得てもよい。また、銅化合物の水溶液中に酸化チタンを懸濁させて、吸着させることによって、光触媒を得ることもできる。具体的には、光触媒(B)は、特許第5343176号公報に記載の方法により製造できる。
光触媒(B)の一次粒子径は概ね200~400nmの範囲、2次粒子径は概ね3~10μ程度であると、コーティング剤に分散でき且つ抗ウイルス性等の光触媒活性に優れることから好ましい。
The photocatalyst (B) can be produced by carrying out a mixing step of mixing titanium oxide containing crystalline rutile-type titanium oxide and a raw material for a divalent copper compound. Further, a heat treatment step of heat-treating the mixture obtained by this mixing step may be further carried out to obtain a photocatalyst. A photocatalyst can also be obtained by suspending titanium oxide in an aqueous solution of a copper compound and adsorbing it. Specifically, the photocatalyst (B) can be produced by the method described in Japanese Patent No. 5343176.
When the primary particle size of the photocatalyst (B) is in the range of about 200 to 400 nm and the secondary particle size is about 3 to 10 μm, it is preferable because it can be dispersed in the coating agent and has excellent photocatalytic activity such as antiviral property.
 なお1次粒子径の測定方法は、透過型電子顕微鏡(TEM)を使用して、電子顕微鏡写真から一次粒子の大きさを直接計測する方法で測定した値である。
光触媒(B)は、抗ウイルス性等の光触媒活性を発現するために、本発明のコーティング剤固形分全量に対し、0.5質量%以上含有することが好ましく、1質量%以上含有することが好ましく、5質量%以上含有することが好ましく、10質量%以上含有することが好ましい。一方、密着性及び耐摩擦性の低下を防ぐために、光触媒(B)は本発明のコーティング剤固形分全量に対し、80質量%以下含有することが好ましく、60質量%以下含有することが好ましく、55質量%以下含有することが好ましく、50質量%以下含有することが好ましく、30質量%以下含有することが好ましく、20質量%以下含有することが最も好ましい。
The method for measuring the primary particle size is a value measured by a method of directly measuring the size of the primary particle from an electron micrograph using a transmission electron microscope (TEM).
The photocatalyst (B) preferably contains 0.5% by mass or more, preferably 1% by mass or more, based on the total solid content of the coating agent of the present invention in order to exhibit photocatalytic activity such as antiviral property. It is preferably contained in an amount of 5% by mass or more, preferably 10% by mass or more. On the other hand, in order to prevent deterioration of adhesion and abrasion resistance, the photocatalyst (B) is preferably contained in an amount of 80% by mass or less, preferably 60% by mass or less, based on the total solid content of the coating agent of the present invention. It is preferably contained in an amount of 55% by mass or less, preferably 50% by mass or less, preferably 30% by mass or less, and most preferably 20% by mass or less.
(水性媒体(C))
 本発明のコーティング剤に使用される水性媒体(C)は、水を主成分とする水性媒体であり、有機溶剤を含有してもよい。本発明では、水のみを用いても良く、また水及び有機溶剤との混合物を用いても良いが、環境負荷低減と安全性向上の観点から、有機溶剤の使用量はできる限り少ないことが好ましい。
 有機溶剤を含有する場合は、コーティング剤全量中、有機溶剤を30質量%以下で含有することが好ましく、5質量%以下で含有することが好ましい。
(Aqueous medium (C))
The aqueous medium (C) used in the coating agent of the present invention is an aqueous medium containing water as a main component and may contain an organic solvent. In the present invention, only water may be used, or a mixture of water and an organic solvent may be used, but from the viewpoint of reducing the environmental load and improving safety, it is preferable that the amount of the organic solvent used is as small as possible. ..
When the organic solvent is contained, it is preferable that the organic solvent is contained in an amount of 30% by mass or less and 5% by mass or less in the total amount of the coating agent.
 使用可能な有機溶剤としては特に限定はないが、例えば、水と混和する有機溶剤が好ましく、1-ブタノール、イソブタノール、1-ペンタノール、2-メチル-2-ペンタノール、3-メチル-3-ペンタノール、メチルエチルケトン、
メタノール、エタノール、n-プロピルアルコール(以下、NPAとも記載する)、イソプロピルアルコール(以下、IPAとも記載する)等の単官能アルコール、各種ジオール、グリセリン等の多価アルコール、
エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール、プロピレングリコール、1,2ブタンジオール、3-メチル―1,3ブタンジオール、1、2ペンタンジオール、2-メチル―1,3プロパンジオール、1,2ヘキサンジオール、ジプロピレングリコール、ジエチレングリコール等のジオール、
The organic solvent that can be used is not particularly limited, but for example, an organic solvent that is miscible with water is preferable, and 1-butanol, isobutanol, 1-pentanol, 2-methyl-2-pentanol, and 3-methyl-3 are preferable. -Pentanol, methylethylketone,
Monofunctional alcohols such as methanol, ethanol, n-propyl alcohol (hereinafter, also referred to as NPA), isopropyl alcohol (hereinafter, also referred to as IPA), various diols, polyhydric alcohols such as glycerin,
Ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decane Diol, 1,12-dodecanediol, propylene glycol, 1,2 butanediol, 3-methyl-1,3butanediol, 1,2pentanediol, 2-methyl-1,3propanediol, 1,2hexanediol, Dipropylene glycol, diols such as diethylene glycol,
ビスフェノールA、ビスフェノールAの炭素数2又は3のアルキレンオキサイド(平均付加モル数1以上16以下)付加物である芳香族ジオール、水素添加ビスフェノールA等の脂環式ジオールポリオキシプロピレン-2,2-ビス(4-ヒドロキシフェニル)プロパン、ポリオキシエチレン-2,2-ビス(4-ヒドロキシフェニル)プロパン、シクロヘキサンジオール、エチレングリコールモノメチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチル3333エーテル、エチレングリコールモノイソブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノイソブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、エチルカルビトール、γ-ブチロラクトン、等が挙げられる。これらは1種で使用してもよく複数種混合して使用してもよく限定はない。
 中でも、1-ブタノール、イソブタノール、1-ペンタノール、2-メチル-2-ペンタノール、3-メチル-3-ペンタノール、メチルエチルケトン、メタノール、エタノール、n-プロピルアルコール(以下、NPAとも記載する)、イソプロピルアルコール(以下、IPAとも記載する)、プロピレングリコール、プロピレングリコールモノメチルエーテル(1-メトキシ2-プロパノール)(PGMとも記載する)、エチレングリコールが好ましい。
Alicyclic diols such as bisphenol A, aromatic diols, alkylene oxides having 2 or 3 carbon atoms of bisphenol A (average number of added moles 1 or more and 16 or less), hydrogenated bisphenol A, etc. Polyoxypropylene-2,2- Bis (4-hydroxyphenyl) propane, polyoxyethylene-2,2-bis (4-hydroxyphenyl) propane, cyclohexanediol, ethylene glycol monomethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl 3333 ether, ethylene glycol mono Isobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monoisobutyl ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl Examples thereof include ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, ethyl carbitol, γ-butyrolactone, and the like. These may be used alone or in combination of multiple types, and there is no limitation.
Among them, 1-butanol, isobutanol, 1-pentanol, 2-methyl-2-pentanol, 3-methyl-3-pentanol, methylethylketone, methanol, ethanol, n-propyl alcohol (hereinafter, also referred to as NPA). , Isopropyl alcohol (hereinafter, also referred to as IPA), propylene glycol, propylene glycol monomethyl ether (1-methoxy2-propanol) (also referred to as PGM), and ethylene glycol are preferable.
(界面活性剤)
 本発明においては、所望の物性に応じて、界面活性剤を添加することもできる。界面活性剤としては特に限定なく本技術分野において汎用の界面活性剤を使用することができるが、中でも、アセチレン系界面活性剤やアルコールアルコキシレート系界面活性剤が好ましい。
(Surfactant)
In the present invention, a surfactant may be added depending on the desired physical properties. As the surfactant, a general-purpose surfactant can be used in the present technical field without particular limitation, and among them, an acetylene-based surfactant and an alcohol alkoxylate-based surfactant are preferable.
 本発明で使用するアセチレン系界面活性剤として具体的には、2,5-ジメチル-3-ヘキシン-2,5-ジオール、3,6-ジメチル-4-オクチン-3,6-ジオール、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール、3,5-ジメチル-1-ヘキシン-3-オール、3-メチル-1-ブチン-3-オール、3-メチル-1-ペンチン-3-オール、3-ヘキシン-2,5-ジオール、2-ブチン-1,4-ジオール等が挙げられる。又、市販品としては、サーフィノール61、82、104(いずれも、エアープロダクツ社製)等 のアルキレンオキサイド非変性アセチレングリコール系界面活性剤や、 Specifically, as the acetylene-based surfactant used in the present invention, 2,5-dimethyl-3-hexyne-2,5-diol, 3,6-dimethyl-4-octyne-3,6-diol, 2, 4,7,9-Tetramethyl-5-decyne-4,7-diol, 3,5-dimethyl-1-hexyne-3-ol, 3-methyl-1-butyne-3-ol, 3-methyl-1 -Pentyne-3-ol, 3-hexyne-2,5-diol, 2-butyne-1,4-diol and the like can be mentioned. Commercially available products include alkylene oxide-non-denatured acetylene glycol-based surfactants such as Surfinol 61, 82, 104 (all manufactured by Air Products & Chemicals).
 サーフィノール420、440、465、485、TG、2502、ダイノール604、607、サーフィノールSE、MD-20、オルフィンE1004、E1010、PD-004、EXP4300、PD-501、PD-502、SPC(いずれも、日信化学工業(株)製)、アセチレノールEH、E40、E60、E81、E100、E200(いずれも、川研ファインケミカル(株)製)等のアルキレンオキサイド変性アセチレングリコール系界面活性剤等が挙げられる。中でもアルキレンオキサイド変性アセチレングリコール系界面活性剤が好ましい。 Surfinol 420, 440, 465, 485, TG, 2502, Dynol 604, 607, Surfinol SE, MD-20, Orfin E1004, E1010, PD-004, EXP4300, PD-501, PD-502, SPC (all) , Nisshin Kagaku Kogyo Co., Ltd.), acetylenol EH, E40, E60, E81, E100, E200 (all manufactured by Kawaken Fine Chemicals Co., Ltd.) and the like are alkylene oxide-modified acetylene glycol-based surfactants and the like. .. Of these, an alkylene oxide-modified acetylene glycol-based surfactant is preferable.
 また、本発明で使用するアルコールアルコキシレート系界面活性剤として具体的には、
DYNWET800(ビックケミー・ジャパン社製)が挙げられる。
これらアセチレン系界面活性剤、アルコールアルコキシレート系界面活性剤は各々単独で使用してもよいし、2つ以上組み合わせて使用してもよい。
Further, specifically, as the alcohol alkoxylate-based surfactant used in the present invention,
DYNWET800 (manufactured by Big Chemie Japan) can be mentioned.
These acetylene-based surfactants and alcohol alkoxylate-based surfactants may be used alone or in combination of two or more.
 これらアセチレン系界面活性剤及び/又はアルコールアルコキシレート系界面活性剤の添加量の総量がコーティング剤全量の0.1~1質量%である事が好ましい。これらのアセチレン系界面活性剤は、単独で使用してもよいし、2つ以上組み合わせて使用しても良く、アセチレン系界面活性剤及び/又はアルコールアルコキシレート系界面活性剤の添加量の総量がコーティング剤全量の0.1質量%以上であれば、基材との塗れ性が向上し基材との密着性を保持する事ができる。アセチレン系界面活性剤及び/又はアルコールアルコキシレート系界面活性剤の添加量の総量がコーティング剤全量の1質量%以下であれば、耐摩耗性、耐水性摩耗性、及び耐スクラッチ性が低下する事もない。 It is preferable that the total amount of these acetylene-based surfactants and / or alcohol alkoxylate-based surfactants added is 0.1 to 1% by mass of the total amount of the coating agent. These acetylene-based surfactants may be used alone or in combination of two or more, and the total amount of the acetylene-based surfactant and / or the alcohol alkoxylate-based surfactant added is the total amount. When it is 0.1% by mass or more of the total amount of the coating agent, the coatability with the base material is improved and the adhesion with the base material can be maintained. If the total amount of the acetylene-based surfactant and / or the alcohol alkoxylate-based surfactant added is 1% by mass or less of the total amount of the coating agent, the wear resistance, the water-based wear resistance, and the scratch resistance are deteriorated. Nor.
 更に必要に応じ、その他アクリルポリマー系界面活性剤(例えばポリフローWS-314共栄社化学(株)社製)や、変性シリコーン系界面活性剤(例えばポリフローKL-401共栄社化学(株)社製)を使用してもよい。
使用する界面活性剤の総量は前記理由からコーティング剤全量の0.1~1質量%である事が好ましい。
Further, if necessary, other acrylic polymer-based surfactants (for example, Polyflow WS-314 Kyoeisha Chemical Co., Ltd.) and modified silicone-based surfactants (for example, Polyflow KL-401 Kyoeisha Chemical Co., Ltd.) are used. You may.
For the above reasons, the total amount of the surfactant used is preferably 0.1 to 1% by mass of the total amount of the coating agent.
(ワックス)
 本発明においては、所望の物性に応じて、ワックスを添加することもできる。ワックスとしては、炭素系ワックスが好ましく、炭素ワックスとしては流動パラフィン、天然パラフィン、合成パラフィン、マイクロクリスタリンワックス、ポリエチレンワックス、フルオロカーボンワックス、エチレン-プロピレン共重合体ワックス、4フッ化エチレン樹脂ワックス、フィッシャー・トロプシュワックス等が挙げられる。これらのワックスは、単独で使用してもよいし、2つ以上組み合わせて使用しても良く、これらワックスの添加量の総量がコーティング剤全量の0.5~5質量%である事が好ましい。ワックスの添加量の総量がインキ全量の0.5質量%以上であれば、耐摩耗性、耐水性摩耗性、耐スクラッチ性を保持する事ができ、且つ、光触媒(B)の分散性を向上させることができる。ワックスの添加量の総量がコーティング剤全量の5質量%以下であれば、基材との密着性、耐摩耗性、耐水性摩耗性、及び耐スクラッチ性を保持する事ができる。
(wax)
In the present invention, wax can be added depending on the desired physical properties. The wax is preferably a carbon-based wax, and the carbon wax is liquid paraffin, natural paraffin, synthetic paraffin, microcrystalline wax, polyethylene wax, fluorocarbon wax, ethylene-propylene copolymer wax, tetrafluoroethylene resin wax, Fisher. Examples include tropush wax. These waxes may be used alone or in combination of two or more, and the total amount of these waxes added is preferably 0.5 to 5% by mass of the total amount of the coating agent. When the total amount of wax added is 0.5% by mass or more of the total amount of ink, wear resistance, water wear resistance, and scratch resistance can be maintained, and the dispersibility of the photocatalyst (B) is improved. Can be made to. When the total amount of the wax added is 5% by mass or less of the total amount of the coating agent, the adhesion to the substrate, the wear resistance, the water-based wear resistance, and the scratch resistance can be maintained.
(硬化剤)
 本発明においては、所望の物性に応じて、硬化剤を添加することもできる。 本発明で使用する酸と反応しうる硬化剤としては、特に限定されることはなく水性媒体中で使用可能な酸基と反応しうる公知の硬化剤を使用することができる。例えば、エポキシ系硬化剤、カルボジイミド系硬化剤、オキサゾリン系硬化剤などが挙げられる。
(Hardener)
In the present invention, a curing agent can be added depending on the desired physical properties. The curing agent capable of reacting with the acid used in the present invention is not particularly limited, and a known curing agent capable of reacting with an acid group that can be used in an aqueous medium can be used. For example, an epoxy-based curing agent, a carbodiimide-based curing agent, an oxazoline-based curing agent, and the like can be mentioned.
 前記エポキシ系硬化剤は、少なくとも1つのエポキシ基を有する化合物であれば、特に限定されない。エポキシ系硬化剤としては、例えば、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどのエポキシ樹脂が挙げられる。   The epoxy-based curing agent is not particularly limited as long as it is a compound having at least one epoxy group. Examples of the epoxy-based curing agent include epoxy resins such as bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, novolak glycidyl ether, glycerin polyglycidyl ether, and polyglycerin polyglycidyl ether. The
 前記カルボジイミド系硬化剤は、カルボジイミド基(-N=C=N-)を少なくとも1つ有する化合物であれば、特に限定されない。カルボジイミド系硬化剤としては、カルボジイミド基を少なくとも2つ以上有するポリカルボジイミド化合物が好ましい。
 前記オキサゾリン系硬化剤は、オキサゾリン骨格を有する化合物であれば、特に限定されない。オキサゾリン系硬化剤としては、具体的には、日本触媒社製のエポクロスシリーズなどが挙げられる。 
The carbodiimide-based curing agent is not particularly limited as long as it is a compound having at least one carbodiimide group (-N = C = N-). As the carbodiimide-based curing agent, a polycarbodiimide compound having at least two or more carbodiimide groups is preferable.
The oxazoline-based curing agent is not particularly limited as long as it is a compound having an oxazoline skeleton. Specific examples of the oxazoline-based curing agent include the Epocross series manufactured by Nippon Shokubai Co., Ltd.
 前記エポキシ化合物としてはビスフェノールAのジグリシジルエーテルおよびそのオリゴマー、水素化ビスフェノールAのジグリシジルエーテルおよびそのオリゴマー、オルソフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、p-オキシ安息香酸ジグリシジルエステル、テトラハイドロフタル酸ジグリシジルエステル、ヘキサハイドロフタル酸ジグリシジルエステル、コハク酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、セバシン酸ジグリシジルエステル、エチレングリコールジグリシジルエエーテル、プロピレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテルおよびポリアルキレングリコールジグリシジルエーテル類、トリメリット酸トリグリシジルエステル、トリグリシジルイソシアヌレート、1,4-ジグリシジルオキシベンゼン、ジグリシジルプロピレン尿素、グリセロールトリグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、グリセロールアルキレンオキサイド付加物のトリグリシジルエーテルなどを挙げることができる。 Examples of the epoxy compound include bisphenol A diglycidyl ether and its oligomer, hydride bisphenol A diglycidyl ether and its oligomer, orthophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, and p-oxybenzoic acid. Diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, succinic acid diglycidyl ester, adipic acid diglycidyl ester, sebacic acid diglycidyl ester, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether , 1,4-Butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether and polyalkylene glycol diglycidyl ethers, trimellitic acid triglycidyl ester, triglycidyl isocyanurate, 1,4-diglycidyloxybenzene, Examples thereof include diglycidyl propylene urea, glycerol triglycidyl ether, trimethylol ethane triglycidyl ether, trimethylol propane triglycidyl ether, pentaerythritol tetraglycidyl ether, and triglycidyl ether as a glycerol alkylene oxide adduct.
 本発明で使用する硬化剤の添加量は、コーティング剤全量の固形分換算で0.1~10.0質量%が好ましく、より好ましくは0.5~9.0質量%の範囲である。
添加量が0.1質量%以上であれば硬化剤としての効果が得られる一方、10.0質量%以下であれば、基材密着性、耐摩擦性、耐水摩擦性が保持される傾向となる。
The amount of the curing agent added in the present invention is preferably 0.1 to 10.0% by mass, more preferably 0.5 to 9.0% by mass in terms of solid content of the total amount of the coating agent.
If the addition amount is 0.1% by mass or more, the effect as a curing agent can be obtained, while if it is 10.0% by mass or less, the substrate adhesion, friction resistance, and water friction resistance tend to be maintained. Become.
 本発明においては、その他、体質顔料、顔料分散剤、レベリング剤、消泡剤、可塑剤、赤外線吸収剤、紫外線吸収剤、芳香剤、難燃剤なども含むこともできる。中でも耐摩擦性、滑り性等を付与するためのオレイン酸アミド、ステアリン酸アミド、エルカ酸アミド等の脂肪酸アミド類及びコーティング時の発泡を抑制するためのシリコン系、非シリコン系消泡剤、及び光触媒(B)の分散性向上のために各種分散剤等が有用である。
また、本発明のコーティング剤は着色剤を含有してもよい。着色剤としては一般のインキ、塗料、及び記録剤などに使用されている染料、無機顔料、有機顔料を挙げることができる。中でも無機顔料や有機顔料等の顔料が好ましい。
In addition, in the present invention, extender pigments, pigment dispersants, leveling agents, defoaming agents, plasticizers, infrared absorbers, ultraviolet absorbers, fragrances, flame retardants and the like can also be included. Among them, fatty acid amides such as oleic acid amide, stearic acid amide, and erucic acid amide for imparting abrasion resistance and slipperiness, and silicon-based and non-silicon-based defoamers for suppressing foaming during coating, and Various dispersants and the like are useful for improving the dispersibility of the photocatalyst (B).
Further, the coating agent of the present invention may contain a colorant. Examples of the colorant include dyes, inorganic pigments, and organic pigments used in general inks, paints, recording agents, and the like. Of these, pigments such as inorganic pigments and organic pigments are preferable.
(紙基材用又はプラスチック基材用コーティング剤の製造方法)
 本発明の紙基材用又はプラスチック基材用コーティング剤は、前記バインダー樹脂(A)や光触媒(B)等を水性媒体(C)中に撹拌混合することにより得られる。分散機としてはグラビア、フレキソ印刷インキの製造に一般的に使用されているビーズミル、アイガーミル、サンドミル、ガンマミル、アトライター等を用いて製造される。
(Manufacturing method of coating agent for paper base material or plastic base material)
The coating agent for a paper base material or a plastic base material of the present invention can be obtained by stirring and mixing the binder resin (A), the photocatalyst (B) and the like in the aqueous medium (C). As the disperser, it is manufactured by using a bead mill, an Eiger mill, a sand mill, a gamma mill, an attritor, etc., which are generally used for manufacturing gravure and flexographic printing inks.
 本発明の紙基材用又はプラスチック基材用コーティング剤は、一般的なコーティング方法によりプラスチック材料、紙、成形品、フィルム基材、包装材等の基材にコーティング可能である、具体的には、グラビアロールコーティング(グラビアコーター)、フレキソロールコーティング(フレキソコーター)、リバースロールコーティング、ワイヤーバーコーティング、リップコーティング、エアナイフコーティング、カーテンフローコーティング、スプレーコーティング、浸漬コーティング、はけ塗り法等が採用できる。中でも工業的観点から、グラビアロールコーティング(グラビアコーター)、フレキソロールコーティング(フレキソコーター)を使用することが好ましい。 The coating agent for a paper base material or a plastic base material of the present invention can be coated on a base material such as a plastic material, paper, a molded product, a film base material, and a packaging material by a general coating method, specifically. , Gravure roll coating (gravure coater), flexo roll coating (flexo coater), reverse roll coating, wire bar coating, lip coating, air knife coating, curtain flow coating, spray coating, dip coating, brush coating, etc. can be adopted. Above all, from an industrial point of view, it is preferable to use a gravure roll coating (gravure coater) and a flexo roll coating (flexo coater).
 また、基材を本発明のオーバーコーティング剤に含浸させることにより、基材上にコーティング層を設けてもよい。 Further, a coating layer may be provided on the base material by impregnating the base material with the overcoating agent of the present invention.
 本発明のコーティング剤を、フレキソコーターを用いてコーティングする場合、その粘度が離合社製ザーンカップ#4を使用し25℃にて7~40秒であればよく、より好ましくは10~20秒である。 When the coating agent of the present invention is coated using a flexo coater, the viscosity may be as long as it is 7 to 40 seconds at 25 ° C. using Zahn Cup # 4 manufactured by Rigo Co., Ltd., more preferably 10 to 20 seconds. be.
 一方で本発明のコーティング剤を、グラビアコーターを用いてコーティングする場合、その粘度が離合社製ザーンカップ#3を使用し25℃にて14~30秒であればよく、より好ましくは15~20秒である。 On the other hand, when the coating agent of the present invention is coated using a gravure coater, the viscosity may be as long as it is 14 to 30 seconds at 25 ° C. using Zahn Cup # 3 manufactured by Rigo Co., Ltd., and more preferably 15 to 20. Seconds.
 本発明のコーティング層の厚みは、用途や基材の材質により適宜調整できるが、例えば0.1μm~5μmの範囲が好ましく、0.3μm~3μmの範囲が好ましく、0.5~2μmの範囲が好ましい。 The thickness of the coating layer of the present invention can be appropriately adjusted depending on the intended use and the material of the base material, but for example, the range of 0.1 μm to 5 μm is preferable, the range of 0.3 μm to 3 μm is preferable, and the range of 0.5 to 2 μm is preferable. preferable.
 本発明のコーティング剤は分散性に優れていることから、該コーティング剤を用いて形成されたコーティング層において、光触媒(B)の一部が露出される構造となりやすい。そのため、本発明におけるコーティング層は抗ウイルス機能を最大限に発揮することができる。 Since the coating agent of the present invention has excellent dispersibility, the coating layer formed by using the coating agent tends to have a structure in which a part of the photocatalyst (B) is exposed. Therefore, the coating layer in the present invention can maximize the antiviral function.
(コーティング層を有する基材、容器、包装材)
 本発明で使用する基材は、紙基材またはプラスチック基材である。
紙基材は、木材パルプ等の製紙用天然繊維を用いて公知の抄紙機にて製造されるが、その抄紙条件は特に規定されるものではない。製紙用天然繊維としては、針葉樹パルプ、広葉樹パルプ等の木材パルプ、マニラ麻パルプ、サイザル麻パルプ、亜麻パルプ等の非木材パルプ、およびそれらのパルプに化学変性を施したパルプ等が挙げられる。パルプの種類としては、硫酸塩蒸解法、酸性・中性・アルカリ性亜硫酸塩蒸解法、ソーダ塩蒸解法等による化学パルプ、グランドパルプ、ケミグランドパルプ、サーモメカニカルパルプ等を使用することができる。   
 また、市販の各種上質紙やコート紙、裏打ち紙、含浸紙、ボール紙や板紙などを用いることもできる。
(Base material, container, packaging material with coating layer)
The base material used in the present invention is a paper base material or a plastic base material.
The paper base material is manufactured by a known paper machine using natural fibers for paper making such as wood pulp, but the paper making conditions thereof are not particularly specified. Examples of natural fibers for papermaking include wood pulp such as coniferous tree pulp and broadleaf tree pulp, non-wood pulp such as Manila hemp pulp, sisal hemp pulp, and flax pulp, and pulp obtained by chemically modifying these pulps. As the type of pulp, chemical pulp, gland pulp, chemi-grand pulp, thermomechanical pulp or the like obtained by a sulfate cooking method, an acidic / neutral / alkaline sulfite cooking method, a soda salt cooking method or the like can be used.
Further, various commercially available high-quality papers, coated papers, backing papers, impregnated papers, cardboards, paperboards and the like can also be used.
 プラスチック基材としては、プラスチック材料、成形品、フィルム基材、包装材等の基材に使用される基材であればよいが、特に、グラビアロールコーティング(グラビアコーター)、フレキソロールコーティング(フレキソコーター)を使用する場合には、グラビア・フレキソ印刷分野で通常使用されているフィルム基材をそのまま使用できる。
具体的には例えば、ナイロン6、ナイロン66、ナイロン46等のポリアミド樹脂、ポリエチレンテレフタレート(以下PETと称する場合がある)、ポリエチレンナフタレート、ポリトリメチレンテレフタレート、ポリトリメチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート等のポリエステル系樹脂、ポリ乳酸等のポリヒドロキシカルボン酸、ポリ(エチレンサクシネート)、ポリ(ブチレンサクシネート)等の脂肪族ポリエステル系樹脂などの生分解性樹脂、ポリプロピレン、ポリエチレン等のポリオレフィン樹脂、ポリイミド樹脂、ポリアリレート樹脂又はそれらの混合物等の熱可塑性樹脂よりなるフィルムやこれらの積層体が挙げられるが、中でも、ポリエチレンテレフタレート(PET)、ポリエステル、ポリアミド、ポリエチレン、ポリプロピレンからなるフィルムが好適に使用できる。これらの基材フィルムは、未延伸フィルムでも延伸フィルムでもよく、その製法も限定されるものではない。また、基材フィルムの厚さも特に限定されるものではないが、通常は1~500μmの範囲であればよい。
The plastic base material may be any base material used for base materials such as plastic materials, molded products, film base materials, and packaging materials, and in particular, gravure roll coating (gravure coater) and flexorol coating (flexo coater). ), The film substrate normally used in the gravure / flexographic printing field can be used as it is.
Specifically, for example, polyamide resins such as nylon 6, nylon 66, and nylon 46, polyethylene terephthalate (hereinafter sometimes referred to as PET), polyethylene naphthalate, polytrimethylene terephthalate, polytrimethylene naphthalate, and polybutylene terephthalate. Polyester resins such as polybutylene naphthalate, polyhydroxycarboxylic acids such as polylactic acid, biodegradable resins such as aliphatic polyester resins such as poly (ethylene succinate) and poly (butylene succinate), polypropylene, polyethylene, etc. Examples thereof include films made of thermoplastic resins such as polyolefin resins, polyimide resins, polyarylate resins or mixtures thereof, and laminates thereof. Among them, films made of polyethylene terephthalate (PET), polyester, polyamide, polyethylene and polypropylene. Can be preferably used. These base films may be unstretched films or stretched films, and the production method thereof is not limited. Further, the thickness of the base film is not particularly limited, but usually it may be in the range of 1 to 500 μm.
 基材フィルムの印刷面には、コロナ放電処理がされていることが好ましく、アルミ、シリカ、アルミナ等が蒸着されていてもよい。
また基材は、前記紙基材やフィルム基材をドライラミネート法や無溶剤ラミネート法、あるいは押出ラミネート法により積層させた積層構造を有する積層体(積層フィルムと称される場合もある)であっても構わない。また該積層体の構成に、金属箔、金属蒸着膜層、無機蒸着膜層、酸素吸収層、アンカーコート層、印刷層、ニス層等があっても構わない。このような積層体は用途に応じて多種存在するが、現在食品包装用や生活用品に最も多く使用される構成は、紙基材やフィルム基材を(F)と表現し、印刷やニス層を(P)と表現し、金属箔や蒸着膜層の金属あるいは無機層を(M)と表現し、接着剤層を(AD)、ホットメルト接着剤やヒートシール剤やコールドシール剤を(AD2)と表現すると、積層フィルムの具体的態様として以下の構成が考えられるが、もちろんこれに限定されることはない。
The printed surface of the base film is preferably subjected to a corona discharge treatment, and aluminum, silica, alumina, or the like may be vapor-deposited.
The base material is a laminated body (sometimes referred to as a laminated film) having a laminated structure in which the paper base material or the film base material is laminated by a dry laminating method, a solvent-free laminating method, or an extrusion laminating method. It doesn't matter. Further, the structure of the laminate may include a metal foil, a metal vapor deposition film layer, an inorganic vapor deposition film layer, an oxygen absorption layer, an anchor coat layer, a printing layer, a varnish layer and the like. There are various types of such laminates depending on the application, but the most commonly used configurations for food packaging and daily necessities are the paper base material and film base material expressed as (F), and printing and varnish layers. Is expressed as (P), the metal or inorganic layer of the metal foil or vapor-deposited film layer is expressed as (M), the adhesive layer is expressed as (AD), and the hot melt adhesive, heat sealant or cold sealant is expressed as (AD2). ), The following configuration can be considered as a specific embodiment of the laminated film, but of course, the present invention is not limited to this.
(F)/(P)/(F)
(F)/(P)/(AD)/(F)、
(F)/(P)/(AD)/(F)/(AD)/(F)、
(F)/(P)/(AD)/(M)/(AD)/(F)、
(F)/(P)/(AD)/(M)、
(F)/(P)/(AD)/(F)/(AD)/(M)/(AD)/(F)、
(F)/(P)/(AD)/(M)/(AD)/(F)/(AD)/(F)、
(M)/(P)/(AD)/(M)、
(M)/(P)/(AD)/(F)/(AD)/(M)、
(P)/(F)
(P)/(F)/(P)
(P)/(F)/(AD)/(F)、
(P)/(F)/(AD)/(F)/(AD)/(F)、
(F)/(P)/(F)/(AD2)
(F)/(P)/(AD2)
(F)/(P)/(AD)/(M)/(AD2)
(F) / (P) / (F)
(F) / (P) / (AD) / (F),
(F) / (P) / (AD) / (F) / (AD) / (F),
(F) / (P) / (AD) / (M) / (AD) / (F),
(F) / (P) / (AD) / (M),
(F) / (P) / (AD) / (F) / (AD) / (M) / (AD) / (F),
(F) / (P) / (AD) / (M) / (AD) / (F) / (AD) / (F),
(M) / (P) / (AD) / (M),
(M) / (P) / (AD) / (F) / (AD) / (M),
(P) / (F)
(P) / (F) / (P)
(P) / (F) / (AD) / (F),
(P) / (F) / (AD) / (F) / (AD) / (F),
(F) / (P) / (F) / (AD2)
(F) / (P) / (AD2)
(F) / (P) / (AD) / (M) / (AD2)
 前記単層の紙基材あるいはフィルム基材、積層構造を有する積層体は、業界や使用方法等により、機能性フィルム、軟包装フィルム、シュリンクフィルム、生活用品包装用フィルム、医薬品包装用フィルム、食品包装用フィルム、、カートン、ポスター、チラシ、CDジャケット、ダイレクトメール、パンフレット、化粧品や飲料、医薬品、おもちゃ、機器等のパッケージ等に用いられる上質紙、コート紙、アート紙、模造紙、薄紙、厚紙等の紙、各種合成紙等様々な表現がなされているが、本発明の紙基材又はプラスチック基材用コーティング剤は特に限定なく使用することができる。この際本発明の紙基材又はプラスチック基材用コーティング剤は、これらを使用した容器や包装材とした際に最表層となる面にコーティングされることが好ましい。 The single-layer paper base material or film base material, or the laminate having a laminated structure may be a functional film, a flexible packaging film, a shrink film, a film for daily necessities packaging, a film for pharmaceutical packaging, or a food product, depending on the industry and usage method. High-quality paper, coated paper, art paper, imitation paper, thin paper, thick paper used for packaging of packaging films, cartons, posters, leaflets, CD jackets, direct mail, brochures, cosmetics and beverages, pharmaceuticals, toys, equipment, etc. Although various expressions such as paper such as paper and various synthetic papers are used, the coating agent for a paper base material or a plastic base material of the present invention can be used without particular limitation. At this time, it is preferable that the coating agent for a paper base material or a plastic base material of the present invention is coated on the surface that becomes the outermost layer when a container or packaging material using these is used.
 前述の通り、積層構造を有する積層体として、紙基材やフィルム基材には印刷層が施された印刷層を有する積層体も多いが、本発明のコーティング剤は、該印刷インキ層を有する基材上にコーティングすることももちろんでき好ましい。
印刷インキ層に使用される印刷インキには特に限定はなく、オフセット平版インキ、グラビア印刷インキ、フレキソ印刷インキ、インクジェット印刷インキ等の印刷層上にコーティングは可能である。特に、コーティング方法ついてグラビアロールコーティング(グラビアコーター)、フレキソロールコーティング(フレキソコーター)を使用する場合には、インライン印刷が可能であり、グラビア印刷インキやフレキソ印刷インキと組み合わせることが、工業的に好ましい。
グラビア印刷インキやフレキソ印刷インキ(以後リキッド印刷インキと称する)は、バインダー樹脂、顔料、溶剤、必要に応じて添加剤からなる印刷インキから形成される。
As described above, as a laminate having a laminated structure, many laminates have a print layer on which a print layer is applied to a paper substrate or a film substrate, but the coating agent of the present invention has the print ink layer. Of course, it is also preferable to coat it on the substrate.
The printing ink used for the printing ink layer is not particularly limited, and coating is possible on the printing layer such as offset flat plate ink, gravure printing ink, flexo printing ink, and inkjet printing ink. In particular, when gravure roll coating (gravure coater) or flexo roll coating (flexo coater) is used for the coating method, in-line printing is possible, and it is industrially preferable to combine with gravure printing ink or flexo printing ink. ..
The gravure printing ink and the flexographic printing ink (hereinafter referred to as liquid printing ink) are formed of a printing ink composed of a binder resin, a pigment, a solvent, and if necessary, an additive.
(リキッド印刷インキ)
 グラビア印刷インキやフレキソ印刷インキとして使用されるリキッド印刷インキは、有機溶剤を主溶媒とする有機溶剤型リキッド印刷インキと、水を主溶媒とする水性リキッド印刷インキとに大別される。
(Liquid printing ink)
Liquid printing inks used as gravure printing inks and flexo printing inks are roughly classified into organic solvent type liquid printing inks having an organic solvent as a main solvent and water-based liquid printing inks having water as a main solvent.
(有機溶剤型リキッド印刷インキ)
 有機溶剤型リキッド印刷インキは、本発明で使用する変性顔料の他、後述のバインダー樹脂、有機溶剤媒体、分散剤、消泡剤等を添加した混合物を分散機で分散し、顔料分散体を得る。得られた顔料分散体に樹脂、水性媒体、必要に応じてレベリング剤等の添加剤を加え、撹拌混合することで得られる。分散機としてはグラビア、フレキソ印刷インキの製造に一般的に使用されているビーズミル、アイガーミル、サンドミル、ガンマミル、アトライター等を用いて製造される。
(Organic solvent type liquid printing ink)
In the organic solvent type liquid printing ink, in addition to the modified pigment used in the present invention, a mixture containing a binder resin, an organic solvent medium, a dispersant, a defoaming agent, etc., which will be described later, is dispersed by a disperser to obtain a pigment dispersion. .. It is obtained by adding an additive such as a resin, an aqueous medium and, if necessary, a leveling agent to the obtained pigment dispersion and stirring and mixing. As the disperser, it is manufactured by using a bead mill, an Eiger mill, a sand mill, a gamma mill, an attritor, etc., which are generally used for manufacturing gravure and flexographic printing inks.
 有機溶剤型リキッド印刷インキのインキ粘度は、グラビアインキとして使用する場合であっても、フレキソインキとして使用する場合であっても、顔料の沈降を防ぎ、適度に分散させる観点から10mPa・s以上、インキ製造時や印刷時の作業性効率の観点から1000mPa・s以下の範囲であることが好ましい。尚、上記粘度はトキメック社製B型粘度計で25℃において測定された粘度である。 The ink viscosity of the organic solvent type liquid printing ink is 10 mPa · s or more from the viewpoint of preventing the pigment from settling and appropriately dispersing it, regardless of whether it is used as a gravure ink or a flexographic ink. From the viewpoint of workability efficiency during ink production and printing, the range is preferably 1000 mPa · s or less. The viscosity is a viscosity measured at 25 ° C. with a B-type viscometer manufactured by Tokimec.
 インキの粘度は、使用される原材料の種類や量、バインダー樹脂、顔料、有機溶剤などを適宜選択することにより調整することができる。また、インキ中の顔料の粒度および粒度分布を調節することによりインキの粘度を調整することもできる。 The viscosity of the ink can be adjusted by appropriately selecting the type and amount of raw materials used, the binder resin, the pigment, the organic solvent, and the like. Further, the viscosity of the ink can be adjusted by adjusting the particle size and the particle size distribution of the pigment in the ink.
(印刷物の作成)
 有機溶剤型リキッド印刷インキは、各種の基材と密着性に優れ、紙、合成紙、熱可塑性樹脂フィルム、プラスチック製品、鋼板等への印刷に使用することができるものであり、電子彫刻凹版等によるグラビア印刷版を用いたグラビア印刷用、又は樹脂版等によるフレキソ印刷版を用いたフレキソ印刷用のインキとして有用である。
(Creation of printed matter)
The organic solvent type liquid printing ink has excellent adhesion to various base materials and can be used for printing on paper, synthetic paper, thermoplastic resin film, plastic products, steel plates, etc. It is useful as an ink for gravure printing using a gravure printing plate according to the above, or for flexo printing using a flexo printing plate using a resin plate or the like.
 本発明の有機溶剤型リキッド印刷インキを用いてグラビア印刷方式やフレキソ印刷方式から形成される印刷インキの膜厚は、例えば10μm以下、好ましくは5μm以下である。 The film thickness of the printing ink formed by the gravure printing method or the flexographic printing method using the organic solvent type liquid printing ink of the present invention is, for example, 10 μm or less, preferably 5 μm or less.
(バインダー樹脂)
 有機溶剤型リキッド印刷インキ用のバインダー樹脂としては特に限定なく、一般の特に限定なく一般のリキッド印刷インキに使用される、ポリウレタン系樹脂、アクリル樹脂、塩化ビニル-酢酸ビニル系共重合樹脂、塩化ビニル-アクリル系共重合体樹脂、塩素化ポリプロピレン樹脂、セルロース系樹脂、ポリアミド樹脂、エチレン-酢酸ビニル共重合体樹脂、酢酸ビニル樹脂、スチレン樹脂、ダンマル樹脂、スチレン-マレイン酸共重合樹脂、ポリエステル樹脂、アルキッド樹脂、ポリ塩化ビニル樹脂、ロジン系樹脂、ロジン変性マレイン酸樹脂、テルペン樹脂、フェノール変性テルペン樹脂、ケトン樹脂、環化ゴム、塩化ゴム、ブチラール、ポリアセタール樹脂、石油樹脂、およびこれらの変性樹脂などを挙げることができる。これらの樹脂は、単独で、または2種以上を混合して用いることができる。
(Binder resin)
The binder resin for the organic solvent type liquid printing ink is not particularly limited, and is not particularly limited in general. Polyurethane resin, acrylic resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride used for general liquid printing ink. -Acrylic copolymer resin, chlorinated polypropylene resin, cellulose resin, polyamide resin, ethylene-vinyl acetate copolymer resin, vinyl acetate resin, styrene resin, dammar resin, styrene-maleic acid copolymer resin, polyester resin, Alkid resin, polyvinyl chloride resin, rosin resin, rosin-modified maleic acid resin, terpene resin, phenol-modified terpene resin, ketone resin, cyclized rubber, rubber chloride, butyral, polyacetal resin, petroleum resin, and modified resins thereof, etc. Can be mentioned. These resins can be used alone or in admixture of two or more.
 上記の中でも、ポリウレタン系樹脂、セルロース系樹脂、ポリアミド樹脂、塩化ビニル-酢酸ビニル共重合樹脂、塩化ビニル-アクリル共重合樹脂、エチレン-酢酸ビニル共重合体樹脂、酢酸ビニル樹脂、アクリル樹脂、スチレン樹脂、スチレン-マレイン酸共重合樹脂、ダンマル樹脂、ロジン系樹脂、ロジン変性マレイン酸樹脂、ケトン樹脂および環化ゴムからなる群より選ばれる少なくとも一種を含むバインダー樹脂が好ましい。
バインダー樹脂の含有量は、本発明の水性リキッド印刷インキの固形分換算で固形分換算で1~50質量%の範囲であり、更に好ましくは2~40質量%である。
Among the above, polyurethane resin, cellulose resin, polyamide resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride-acrylic copolymer resin, ethylene-vinyl acetate copolymer resin, vinyl acetate resin, acrylic resin, styrene resin. , A binder resin containing at least one selected from the group consisting of a styrene-maleic acid copolymer resin, a dammar resin, a rosin-based resin, a rosin-modified maleic acid resin, a ketone resin and a cyclized rubber is preferable.
The content of the binder resin is in the range of 1 to 50% by mass in terms of solid content, more preferably 2 to 40% by mass in terms of solid content of the aqueous liquid printing ink of the present invention.
 (有機溶剤)
 有機溶剤型リキッド印刷インキ用の有機溶剤としては、特に制限はないが、たとえばトルエン、キシレン、ソルベッソ#100、ソルベッソ#150等の芳香族炭化水素系有機溶剤、ヘキサン、メチルシクロヘキサン、ヘプタン、オクタン、デカン等の脂肪族炭化水素系有機溶剤、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ノルマルプロピル、酢酸ブチル、酢酸アミル、ギ酸エチル、プロピオン酸ブチル等のエステル系の各種有機溶剤が挙げられる。また水混和性有機溶剤としてメタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール等のアルコール系、アセトン、メチルエチルケトン、シクロハキサノン等のケトン系、エチレングリコール(モノ,ジ)メチルエーテル、エチレングリコール(モノ,ジ)エチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、モノブチルエーテル、ジエチレングリコール(モノ,ジ)メチルエーテル、ジエチレングリコール(モノ,ジ)エチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール(モノ,ジ)メチルエーテル、プロピレングリコール(モノ,ジ)メチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコール(モノ,ジ)メチルエーテル等のグリコールエーテル系の各種有機溶剤が挙げられる。これらを単独または2種以上を混合しても用いることができる。
(Organic solvent)
The organic solvent for the organic solvent type liquid printing ink is not particularly limited, but for example, aromatic hydrocarbon-based organic solvents such as toluene, xylene, Solbesso # 100 and Solbesso # 150, hexane, methylcyclohexane, heptane, octane, etc. Examples thereof include aliphatic hydrocarbon-based organic solvents such as decane, and various ester-based organic solvents such as methyl acetate, ethyl acetate, isopropyl acetate, normal propyl acetate, butyl acetate, amyl acetate, ethyl formate, and butyl propionate. Alcohol-based solvents such as methanol, ethanol, propanol, butanol, and isopropyl alcohol, ketone-based solvents such as acetone, methyl ethyl ketone, and cyclohaxanone, ethylene glycol (mono, di) methyl ether, and ethylene glycol (mono, di) ethyl can be used as water-mixable organic solvents. Ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, monobutyl ether, diethylene glycol (mono, di) methyl ether, diethylene glycol (mono, di) ethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol (mono, di) Examples thereof include various glycol ether-based organic solvents such as di) methyl ether, propylene glycol (mono, di) methyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, and dipropylene glycol (mono, di) methyl ether. These can be used alone or in combination of two or more.
 有機溶剤型リキッド印刷インキでは更に必要に応じて、ワックス、キレート系架橋剤、体質顔料、レベリング剤、消泡剤、可塑剤、赤外線吸収剤、紫外線吸収剤、芳香剤、難燃剤なども含むこともできる。 Organic solvent-based liquid printing inks should also contain waxes, chelate crosslinkers, extender pigments, leveling agents, defoamers, plasticizers, infrared absorbers, UV absorbers, fragrances, flame retardants, etc., as needed. You can also.
 (着色剤)
 有機溶剤型リキッド印刷インキは、着色剤として前記変性顔料を使用するが、そのほかに、一般のインキ、塗料、及び記録剤などに使用されている有機顔料及び/または無機顔料を併用してもよい。
 有機顔料としては、溶性アゾ系、不溶性アゾ系、アゾ系、フタロシアニン系、ハロゲン化フタロシアニン系、アントラキノン系、アンサンスロン系、ジアンスラキノニル系、アンスラピリミジン系、ペリレン系、ペリノン系、キナクリドン系、チオインジゴ系、ジオキサジン系、イソインドリノン系、キノフタロン系、アゾメチンアゾ系、フラバンスロン系、ジケトピロロピロール系、イソインドリン系、インダンスロン系、カーボンブラック系などの顔料が挙げられる。また、例えば、カーミン6B、レーキレッドC、パーマネントレッド2B、ジスアゾイエロー、ピラゾロンオレンジ、カーミンFB、クロモフタルイエロー、クロモフタルレッド、フタロシアニンブルー、フタロシアニングリーン、ジオキサジンバイオレット、キナクリドンマゼンタ、キナクリドンレッド、インダンスロンブルー、ピリミジンイエロー、チオインジゴボルドー、チオインジゴマゼンタ、ペリレンレッド、ペリノンオレンジ、イソインドリノンイエロー、アニリンブラック、ジケトピロロピロールレッド、昼光蛍光顔料等が挙げられる。また未酸性処理顔料、酸性処理顔料のいずれも使用することができる。
(Colorant)
The organic solvent type liquid printing ink uses the modified pigment as a colorant, but in addition, an organic pigment and / or an inorganic pigment used in general inks, paints, recording agents and the like may be used in combination. ..
Organic pigments include soluble azo, insoluble azo, azo, phthalocyanine, halogenated phthalocyanine, anthraquinone, anthraquinone, dianthraquinonyl, anthrapyrimidine, perylene, perinone, and quinacridone. Pigments such as thioindigo-based, dioxazine-based, isoindoleinone-based, quinophthalone-based, azomethine-azo-based, flavanthron-based, diketopyrrolopyrrole-based, isoindoline-based, indanslon-based, and carbon black-based pigments can be mentioned. Also, for example, Carmin 6B, Lake Red C, Permanent Red 2B, Disazo Yellow, Pyrazolon Orange, Carmin FB, Chromophthal Yellow, Chromophthal Red, Phtalocyanin Blue, Phthalussinin Green, Dioxazine Violet, Quinacridone Magenta, Kinacridone Red, Indance. Examples thereof include lonblue, pyrimidine yellow, thioindigo bordeaux, thioindigo magenta, perylene red, perinone orange, isoindolinone yellow, aniline black, diketopyrrolopyrrole red, and daylight fluorescent pigments. Further, either an acid-treated pigment or an acid-treated pigment can be used.
 無機顔料としては、酸化チタン、酸化亜鉛、硫化亜鉛、硫酸バリウム、炭酸カルシウム、酸化クロム、シリカ、リトボン、アンチモンホワイト、石膏などの白色無機顔料が挙げられる。無機顔料の中では酸化チタンの使用が特に好ましい。酸化チタンは白色を呈し、着色力、隠ぺい力、耐薬品性、耐候性の点から好ましく、印刷性能の観点から該酸化チタンはシリカおよび/またはアルミナ処理を施されているものが好ましい。  
 白色以外の無機顔料としては、例えば、アルミニウム粒子、マイカ(雲母)、ブロンズ粉、クロムバーミリオン、黄鉛、カドミウムイエロー、カドミウムレッド、群青、紺青、ベンガラ、黄色酸化鉄、鉄黒、ジルコンが挙げられ、アルミニウムは粉末またはペースト状であるが、取扱い性および安全性の面からペースト状で使用するのが好ましく、リーフィングまたはノンリーフィングを使用するかは輝度感および濃度の点から適宜選択される。   
 前記顔料の平均粒子径は、10~200nmの範囲にあるものが好ましくより好ましくは50~150nm程度のものである。
 前記顔料は、水性リキッド印刷インキの濃度・着色力を確保するのに充分な量、すなわちインキの総質量に対して1~60質量%、インキ中の固形分質量比では10~90質量%の割合で含まれることが好ましい。また、これらの顔料は単独で、または2種以上を併用して用いることができる。
Examples of the inorganic pigment include white inorganic pigments such as titanium oxide, zinc oxide, zinc sulfide, barium sulfate, calcium carbonate, chromium oxide, silica, lithobon, antimony white, and gypsum. Among the inorganic pigments, the use of titanium oxide is particularly preferable. Titanium oxide exhibits a white color and is preferable from the viewpoints of coloring power, hiding power, chemical resistance and weather resistance, and from the viewpoint of printing performance, the titanium oxide is preferably treated with silica and / or alumina.
Examples of non-white inorganic pigments include aluminum particles, mica (mica), bronze powder, chrome vermillion, chrome yellow, cadmium yellow, cadmium red, ultramarine, navy blue, red iron oxide, yellow iron oxide, iron black, and zircon. Although aluminum is in the form of powder or paste, it is preferably used in the form of paste from the viewpoint of handleability and safety, and whether chrome yellow or non-leafing is used is appropriately selected from the viewpoint of brightness and concentration.
The average particle size of the pigment is preferably in the range of 10 to 200 nm, more preferably about 50 to 150 nm.
The pigment is in an amount sufficient to secure the concentration and coloring power of the water-based liquid printing ink, that is, 1 to 60% by mass with respect to the total mass of the ink, and 10 to 90% by mass with respect to the solid content mass ratio in the ink. It is preferably contained in proportion. In addition, these pigments can be used alone or in combination of two or more.
(水性リキッド印刷インキ)
 水性リキッド印刷インキは、本発明で使用する変性顔料の他、後述のバインダー樹脂、水性媒体、分散剤、消泡剤等を添加した混合物を分散機で分散し、顔料分散体を得る。得られた顔料分散体に樹脂、水性媒体、必要に応じてレベリング剤等の添加剤を加え、撹拌混合することで得られる。分散機としてはグラビア、フレキソ印刷インキの製造に一般的に使用されているビーズミル、アイガーミル、サンドミル、ガンマミル、アトライター等を用いて製造される。
 水性リキッド印刷インキを、フレキソインキとして使用する場合、その粘度が離合社製ザーンカップ#4を使用し25℃にて7~25秒であればよく、より好ましくは10~20秒である。また、得られたフレキソインキの25℃における表面張力は、25~50mN/mが好ましく、33~43mN/mであればより好ましい。インキの表面張力が低いほどフィルム等の基材へのインキの濡れ性は向上するが、表面張力が25mN/mを下回るとインキの濡れ広がりにより、中間調の網点部分で隣り合う網点どうしが繋がり易い傾向にあり、ドットブリッジと呼ばれる印刷面の汚れの原因と成りやすい。一方、表面張力が50mN/mを上回るとフィルム等の基材へのインキの濡れ性が低下し、ハジキの原因と成り易い。
(Aqueous liquid printing ink)
In the water-based liquid printing ink, in addition to the modified pigment used in the present invention, a mixture to which a binder resin, an aqueous medium, a dispersant, a defoaming agent and the like described later are added is dispersed by a disperser to obtain a pigment dispersion. It is obtained by adding an additive such as a resin, an aqueous medium and, if necessary, a leveling agent to the obtained pigment dispersion and stirring and mixing. As the disperser, it is manufactured by using a bead mill, an Eiger mill, a sand mill, a gamma mill, an attritor, etc., which are generally used for manufacturing gravure and flexographic printing inks.
When the water-based liquid printing ink is used as a flexographic ink, its viscosity may be 7 to 25 seconds at 25 ° C. using Zahn Cup # 4 manufactured by Rigo Co., Ltd., more preferably 10 to 20 seconds. The surface tension of the obtained flexographic ink at 25 ° C. is preferably 25 to 50 mN / m, more preferably 33 to 43 mN / m. The lower the surface tension of the ink, the better the wettability of the ink to the substrate such as a film. Tend to be easily connected, which tends to cause stains on the printed surface called a dot bridge. On the other hand, when the surface tension exceeds 50 mN / m, the wettability of the ink on a substrate such as a film is lowered, which tends to cause repelling.
 一方で水性リキッド印刷インキを、グラビアインキとして使用する場合、その粘度が離合社製ザーンカップ#3を使用し25℃にて7~25秒であればよく、より好ましくは10~20秒である。また、得られたグラビアインキの25℃における表面張力は、フレキソインキと同様に25~50mN/mが好ましく、33~43mN/mであればより好ましい。インキの表面張力が低いほどフィルム等の基材へのインキの濡れ性は向上するが、表面張力が25mN/mを下回るとインキの濡れ広がりにより、中間調の網点部分で隣り合う網点どうしが繋がり易い傾向にあり、ドットブリッジと呼ばれる印刷面の汚れの原因と成りやすい。一方、表面張力が50mN/mを上回るとフィルム等の基材へのインキの濡れ性が低下し、ハジキの原因と成り易い。 On the other hand, when the water-based liquid printing ink is used as a gravure ink, its viscosity may be 7 to 25 seconds at 25 ° C. using Zahn Cup # 3 manufactured by Rigo Co., Ltd., more preferably 10 to 20 seconds. .. The surface tension of the obtained gravure ink at 25 ° C. is preferably 25 to 50 mN / m, more preferably 33 to 43 mN / m, as in the flexographic ink. The lower the surface tension of the ink, the better the wettability of the ink to the substrate such as a film. Tend to be easily connected, which tends to cause stains on the printed surface called a dot bridge. On the other hand, when the surface tension exceeds 50 mN / m, the wettability of the ink on a substrate such as a film is lowered, which tends to cause repelling.
(印刷物の作成)
 水性リキッド印刷インキは、各種の基材と密着性に優れ、紙、合成紙、熱可塑性樹脂フィルム、プラスチック製品、鋼板等への印刷に使用することができるものであり、電子彫刻凹版等によるグラビア印刷版を用いたグラビア印刷用、又は樹脂版等によるフレキソ印刷版を用いたフレキソ印刷用のインキとして有用である。
(Creation of printed matter)
Aqueous liquid printing ink has excellent adhesion to various base materials and can be used for printing on paper, synthetic paper, thermoplastic resin film, plastic products, steel plates, etc., and is gravure by electronic engraving ingot. It is useful as an ink for gravure printing using a printing plate or flexographic printing using a flexographic printing plate using a resin plate or the like.
 本発明の水性リキッドインキを用いてグラビア印刷方式やフレキソ印刷方式から形成される印刷インキの膜厚は、例えば10μm以下、好ましくは5μm以下である。 The film thickness of the printing ink formed by the gravure printing method or the flexographic printing method using the water-based liquid ink of the present invention is, for example, 10 μm or less, preferably 5 μm or less.
(バインダー樹脂)
 水性リキッド印刷インキ用のバインダー樹脂としては特に限定なく、一般の水性リキッド印刷インキに使用される、ウレタン樹脂、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリロニトリル共重合体、アクリル酸カリウム-アクリロニトリル共重合体、アクリル酸エステル系重合体エマルジョン、ポリエステル系ウレタンディスパージョン、酢酸ビニル-アクリル酸エステル共重合体、アクリル酸-アクリル酸アルキルエステル共重合体などのアクリル共重合体;スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸アルキルエステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、スチレン-α-メチルスチレン-アクリル酸-アクリル酸アルキルエステル共重合体などのスチレン-アクリル酸樹脂;スチレン-マレイン酸;スチレン-無水マレイン酸;ビニルナフタレン-アクリル酸共重合体;ビニルナフタレン-マレイン酸共重合体;酢酸ビニル-エチレン共重合体、酢酸ビニル-脂肪酸ビニルエチレン共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体及びこれらの塩を使用することができる。これらのバインダ―樹脂は、単独で、または2種以上を混合して用いることができる。
(Binder resin)
The binder resin for the water-based liquid printing ink is not particularly limited, and urethane resin, polyvinyl alcohols, polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, acrylic acid used in general water-based liquid printing inks. Acrylic copolymers such as potassium-acrylonitrile copolymer, acrylic acid ester polymer emulsion, polyester urethane dispersion, vinyl acetate-acrylic acid ester copolymer, acrylic acid-acrylic acid alkyl ester copolymer; styrene- Acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid alkyl ester copolymer, styrene-α-methylstyrene-acrylic acid copolymer, styrene-α-methylstyrene-acrylic acid- Styrene-acrylic acid resin such as acrylic acid alkyl ester copolymer; styrene-maleic acid; styrene-maleic anhydride; vinylnaphthalene-acrylic acid copolymer; vinylnaphthalene-maleic acid copolymer; vinyl acetate-ethylene homoweight Compounds, vinyl acetate-fatty acid vinyl ethylene copolymers, vinyl acetate-maleic acid ester copolymers, vinyl acetate-crotonic acid copolymers, vinyl acetate-acrylic acid copolymers and other vinyl acetate-based copolymers and theirs. Salt can be used. These binder resins can be used alone or in admixture of two or more.
 なかでも、前記バインダー樹脂としては、アクリル樹脂またはウレタン樹脂を使用することが、入手しやすく好ましく、特にアクリル酸エステル系重合体エマルジョン、ポリエステル系ウレタンディスパージョンが好ましい。 Among them, it is preferable to use an acrylic resin or a urethane resin as the binder resin because it is easily available, and an acrylic acid ester-based polymer emulsion and a polyester-based urethane dispersion are particularly preferable.
 前記バインダー樹脂は、本発明の水性リキッド印刷インキの固形分換算で5~50質量%であることが好ましい。5質量%以上であれば、インキ塗膜強度が低下することもなく、基材密着性、耐水摩擦性等も良好に保たれる。反対に50質量%を以下であれば、着色力が低下する事が抑制でき、また高粘度となる事が避けられ、作業性が低下することもない。中でも5~40質量%であることがなお好ましく、5~20質量%であることが最も好ましい。 The binder resin is preferably 5 to 50% by mass in terms of solid content of the aqueous liquid printing ink of the present invention. When it is 5% by mass or more, the strength of the ink coating film does not decrease, and the adhesion to the base material, the water friction resistance, and the like are kept good. On the contrary, when it is 50% by mass or less, the decrease in coloring power can be suppressed, the high viscosity can be avoided, and the workability does not decrease. Of these, 5 to 40% by mass is still more preferable, and 5 to 20% by mass is most preferable.
(水性媒体)
 水性リキッド印刷インキ用の水性媒体としては、例えば、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール及びイソプロパノール等のアルコール溶剤;アセトン、メチルエチルケトン等のケトン溶剤;エチレングリコール、ジエチレングリコール、プロピレングリコール等のポリアルキレングリコール類;ポリアルキレングリコールのアルキルエーテル類;N-メチル-2-ピロリドン等のラクタム溶剤などが挙げられる。本発明では、水のみを用いても良く、また水及び水と混和する有機溶剤との混合物を用いても良く、水と混和する有機溶剤のみを用いても良い。また、水性媒体としては、安全性や環境に対する負荷の点から、水のみ、または、水及び水と混和する有機溶剤との混合物が好ましく、水のみが特に好ましい。
(Aqueous medium)
Examples of the aqueous medium for the aqueous liquid printing ink include water, an organic solvent miscible with water, and a mixture thereof. Examples of the organic solvent to be mixed with water include alcohol solvents such as methanol, ethanol, n-propanol and isopropanol; ketone solvents such as acetone and methyl ethyl ketone; polyalkylene glycols such as ethylene glycol, diethylene glycol and propylene glycol; polyalkylene glycols. Alkyl ethers; examples include lactam solvents such as N-methyl-2-pyrrolidone. In the present invention, only water may be used, a mixture of water and an organic solvent miscible with water may be used, or only an organic solvent miscible with water may be used. Further, as the aqueous medium, only water or a mixture of water and an organic solvent miscible with water is preferable, and only water is particularly preferable, from the viewpoint of safety and environmental load.
 水性リキッド印刷インキは、その他、前述の着色剤、体質顔料、顔料分散剤、レベリング剤、消泡剤、可塑剤、赤外線吸収剤、紫外線吸収剤、芳香剤、難燃剤なども含むこともできる。中でも耐摩擦性、滑り性等を付与するためのオレイン酸アミド、ステアリン酸アミド、エルカ酸アミド等の脂肪酸アミド類及び印刷時の発泡を抑制するためのシリコン系、非シリコン系消泡剤及び顔料の濡れを向上させる各種分散剤等が有用である。 The water-based liquid printing ink can also contain the above-mentioned colorants, extender pigments, pigment dispersants, leveling agents, defoamers, plasticizers, infrared absorbers, ultraviolet absorbers, fragrances, flame retardants and the like. Among them, fatty acid amides such as oleic acid amide, stearic acid amide, and erucic acid amide for imparting abrasion resistance and slipperiness, and silicon-based, non-silicon-based defoaming agents and pigments for suppressing foaming during printing. Various dispersants and the like that improve the wetting of the hydrate are useful.
 以下実施例により、本発明をより詳しく説明する。尚、実施例中の「部」は「質量部」を、「%」は「質量%」をそれぞれ表す。 The present invention will be described in more detail with reference to the following examples. In the examples, "part" represents "parts by mass" and "%" represents "% by mass".
 尚、本発明におけるGPC(ゲルパーミエーションクロマトグラフィー)による重量平均分子量(ポリスチレン換算)の測定は東ソー(株)社製HLC8220システムを用い以下の条件で行った。
分離カラム:東ソー(株)製TSKgelGMHHR-Nを4本使用。カラム温度:40℃。移動層:和光純薬工業(株)製テトラヒドロフラン。流速:1.0ml/分。試料濃度:1.0質量%。試料注入量:100マイクロリットル。検出器:示差屈折計。
The weight average molecular weight (in terms of polystyrene) was measured by GPC (gel permeation chromatography) in the present invention using the HLC8220 system manufactured by Tosoh Corporation under the following conditions.
Separation column: Uses 4 TSKgelGMHR-N manufactured by Tosoh Corporation. Column temperature: 40 ° C. Moving layer: Tetrahydrofuran manufactured by Wako Pure Chemical Industries, Ltd. Flow rate: 1.0 ml / min. Sample concentration: 1.0% by mass. Sample injection volume: 100 microliters. Detector: Differential refractometer.
 また、アクリル樹脂の酸価は、樹脂1g中に含まれる酸性成分を中和するのに要する水酸化カリウムのミリグラム数を示すものであり、各々乾燥させた水溶性樹脂を、JIS K2501に準じた水酸化カリウム・エタノール溶液による電位差滴定から算出した。 The acid value of the acrylic resin indicates the number of milligrams of potassium hydroxide required to neutralize the acidic component contained in 1 g of the resin, and each dried water-soluble resin is according to JIS K2501. It was calculated from the potentiometric titration with a potassium hydroxide / ethanol solution.
 また、ガラス転移温度(Tg)は、いわゆる計算ガラス転移温度を指し、下記の方法で算出された値を指す。
(式1) 1/Tg(K)=(W1/T1)+(W2/T2)+・・・(Wn/Tn)
(式2) Tg(℃)=Tg(K)-273
式1中のW1、W2、・・・Wnは、重合体の製造に使用したモノマーの合計質量に対する各モノマーの質量%を表し、T1、T2、・・・Tnは、各モノマーのホモポリマーのガラス転移温度(K)を表す。なお、T1、T2、・・Tnの値は、Polymer Handbook(Fourth Edition,J.Brandrup,E.H.Immergut,E.A.Grulke 編)に記載された値を用いる。
また、各モノマーのホモポリマーのガラス転移温度が前記Polymer Hand Bookに記載されていないもののガラス転移温度は、示差走査熱量計「DSC Q-100」(TA Instrument社製)を用い、JIS K7121に準拠した方法で測定した。具体的には、真空吸引して完全に溶剤を除去した重合体を、20℃/分の昇温速度で-100℃~+200℃の範囲で熱量変化を測定し、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点をガラス転移温度とした。
Further, the glass transition temperature (Tg) refers to a so-called calculated glass transition temperature, and refers to a value calculated by the following method.
(Equation 1) 1 / Tg (K) = (W1 / T1) + (W2 / T2) + ... (Wn / Tn)
(Equation 2) Tg (° C.) = Tg (K) -273
W1, W2, ... Wn in the formula 1 represent the mass% of each monomer with respect to the total mass of the monomers used for producing the polymer, and T1, T2, ... Tn are homopolymers of each monomer. Represents the glass transition temperature (K). As the values of T1, T2, ... Tn, the values described in Polymer Handbook (Fourth Edition, J. Brandrup, E.H. Immunogut, EA Grulke) are used.
Although the glass transition temperature of the homopolymer of each monomer is not described in the Polymer Hand Book, the glass transition temperature is based on JIS K7121 using a differential scanning calorimeter "DSC Q-100" (manufactured by TA Instrument). It was measured by the method described above. Specifically, the polymer from which the solvent has been completely removed by vacuum suction is measured for a change in calorific value in the range of -100 ° C to + 200 ° C at a heating rate of 20 ° C / min, and an extended straight line of each baseline. The point where the straight line at the same distance in the vertical axis direction and the curve of the stepwise change portion of the glass transition intersect was defined as the glass transition temperature.
〔合成例1:シェル部アクリル樹脂(重合体a1)の作製〕
 反応容器に攪拌器、温度計、滴下ロート、還流管を備え、酢酸n-プロピル60.0部を仕込む。窒素雰囲気下で攪拌しながら、温度90℃まで昇温した。一方でメチルメタクリレート36.0部、エチルメタクリレート10.0部、n-ブチルメタクリレート20.0部、イソブチルメタクリレート10.0部、2-エチルヘキシルアクリレート10.0部、アクリル酸14.0部、アゾビスイソブチロニトリル1.0部を酢酸n-プロピル40.0部に溶解し、滴下ロートを用いて4時間かけて滴下した。滴下終了後、更に6時間反応させた。反応終了後に冷却を行い、得られたアクリル樹脂溶液に30%アンモニア水を8.0部加えて中和した。更にイオン交換水を加えて加熱しながら溶剤置換を行い、固形分55%のアクリル樹脂の水溶液を得た。酸価は105 mgKOH/g、Tgは65℃、重量平均分子量は16,000であった。
[Synthesis Example 1: Preparation of Shell Acrylic Resin (Polymer a1)]
The reaction vessel is equipped with a stirrer, a thermometer, a dropping funnel, and a reflux tube, and 60.0 parts of n-propyl acetate is charged. The temperature was raised to 90 ° C. while stirring in a nitrogen atmosphere. On the other hand, 36.0 parts of methyl methacrylate, 10.0 parts of ethyl methacrylate, 20.0 parts of n-butyl methacrylate, 10.0 parts of isobutyl methacrylate, 10.0 parts of 2-ethylhexyl acrylate, 14.0 parts of acrylic acid, and azobis. 1.0 part of isobutyronitrile was dissolved in 40.0 parts of n-propyl acetate and added dropwise over 4 hours using a dropping funnel. After the completion of the dropping, the reaction was carried out for another 6 hours. After completion of the reaction, the mixture was cooled and neutralized by adding 8.0 parts of 30% aqueous ammonia to the obtained acrylic resin solution. Further, ion-exchanged water was added and solvent substitution was performed while heating to obtain an aqueous solution of an acrylic resin having a solid content of 55%. The acid value was 105 mgKOH / g, Tg was 65 ° C., and the weight average molecular weight was 16,000.
〔合成例2:コア-シェル型アクリルエマルジョン(Ac1)の作製〕 
 合成例1で調製したアクリル樹脂水溶液121.2部を仕込んだ反応容器に、攪拌器、温度計、滴下ロート、還流管を備え、イオン交換水195.5部を加える。窒素雰囲気下で攪拌を行いながら温度75℃まで昇温した。続いて滴下ロートを用いてメチルメタクリレート30.0部、エチルメタクリレート20.0部、n-ブチルアクリレート25.0部、2-エチルヘキシルアクリレート25.0部、30%過硫酸アンモニウム3.3部を4時間かけて滴下した。滴下完了後、更に6時間反応を行い、固形分40%のコア-シェル型アクリルエマルジョン水溶液を得た。酸価は42mgKOH/g、Tgは10℃、重量平均分子量は1,200,000であった。
[Synthesis Example 2: Preparation of Core-Shell Type Acrylic Emulsion (Ac1)]
A stirrer, a thermometer, a dropping funnel, and a reflux tube are provided in a reaction vessel containing 121.2 parts of the acrylic resin aqueous solution prepared in Synthesis Example 1, and 195.5 parts of ion-exchanged water is added. The temperature was raised to 75 ° C. while stirring in a nitrogen atmosphere. Subsequently, using a dropping funnel, 30.0 parts of methyl methacrylate, 20.0 parts of ethyl methacrylate, 25.0 parts of n-butyl acrylate, 25.0 parts of 2-ethylhexyl acrylate, and 3.3 parts of 30% ammonium persulfate were added for 4 hours. Dropped over. After the dropping was completed, the reaction was further carried out for 6 hours to obtain a core-shell type acrylic emulsion aqueous solution having a solid content of 40%. The acid value was 42 mgKOH / g, Tg was 10 ° C., and the weight average molecular weight was 1,200,000.
〔合成例3:ポリウレタン樹脂溶液(Pu)の作製〕
 PLACCEL 212(ダイセル化学工業(株)製、ポリカプロラクトンジオール、水酸基価90 mgKOH/g)の186.9部およびイソホロジイソシアネート(IPDIと略す)の100.0部を仕込んだ。これを攪拌しながら、110℃に加熱した。1時間後、80℃まで冷却し、ジメチロールプロピオン酸(DMPAと略す)の20.1部、ジブチル錫ジラウレートの0.3部および酢酸エチルの76.8部を加え、80℃で2時間反応させた。ここに、バーノック DN-980S(DIC社製、ヘキサメチレンジイソシアネート系ポリイソシアネート、NCO含量20%)の18.1部とメチルエチルケトン(MEKと略す)の408部を加えた。この時のNCO基含有量は固形分換算で4.9%であった。
これを30℃以下まで冷却し、トリエチルアミンの15.2部を加え、次いでイオン交換水の1293部を加えて水中油滴(O/W)型のエマルジョンを得た。続いてジエチレントリアミン5%水溶液の234部を徐々に加え、加え終わった後60℃に昇温して30分攪拌を続けた。
次いで、減圧下において、蒸留を行い、溶剤と水の一部を除去せしめた。
このものはやや乳白色を呈する半透明液体であり、少量を試験管に取ってテトラヒドロフラン(THFと略す)を加えると濁りを呈し、架橋して不溶解になっていることを示した。不揮発分39.6%で、粘度が160cpsで、pHが7.7で、平均粒子径が28.5nmであった。
[Synthesis Example 3: Preparation of Polyurethane Resin Solution (Pu)]
186.9 parts of PLACCEL 212 (polycaprolactone diol manufactured by Daicel Chemical Industries, Ltd., hydroxyl value 90 mgKOH / g) and 100.0 parts of isophorone diisocyanate (abbreviated as IPDI) were charged. While stirring this, it was heated to 110 ° C. After 1 hour, the mixture was cooled to 80 ° C., 20.1 parts of dimethylolpropionic acid (abbreviated as DMPA), 0.3 part of dibutyltin dilaurate and 76.8 parts of ethyl acetate were added, and the reaction was carried out at 80 ° C. for 2 hours. I let you. To this, 18.1 part of Burnock DN-980S (manufactured by DIC, hexamethylene diisocyanate polyisocyanate, NCO content 20%) and 408 parts of methyl ethyl ketone (abbreviated as MEK) were added. The NCO group content at this time was 4.9% in terms of solid content.
This was cooled to 30 ° C. or lower, 15.2 parts of triethylamine was added, and then 1293 parts of ion-exchanged water was added to obtain an oil droplet (O / W) type emulsion in water. Subsequently, 234 parts of a 5% aqueous solution of diethylenetriamine was gradually added, and after the addition was completed, the temperature was raised to 60 ° C. and stirring was continued for 30 minutes.
Then, distillation was carried out under reduced pressure to remove a part of the solvent and water.
This is a translucent liquid with a slightly milky white color, and when a small amount was taken in a test tube and tetrahydrofuran (abbreviated as THF) was added, it became turbid and cross-linked to be insoluble. The non-volatile content was 39.6%, the viscosity was 160 cps, the pH was 7.7, and the average particle size was 28.5 nm.
<光触媒の調製>
 まず、使用する酸化チタン原料(昭和電工セラミックス株式会社製)について、次のとおり性状を測定した。
<Preparation of photocatalyst>
First, the properties of the titanium oxide raw material (manufactured by Showa Denko Ceramics Co., Ltd.) used were measured as follows.
(BET比表面積)
 酸化チタン原料のBET比表面積は、株式会社マウンテック製の全自動BET比表面積測定装置「Macsorb,HM model-1208」を用いて測定した。
(酸化チタン原料中のルチル含有量(ルチル化率)及び結晶性(半値全幅))
 酸化チタン原料中におけるルチル型酸化チタンの含有量(ルチル化率)及び結晶性(半値全幅)は、粉末X線回折法により測定した。
(BET specific surface area)
The BET specific surface area of the titanium oxide raw material was measured using a fully automatic BET specific surface area measuring device "Macsorb, HM model-1208" manufactured by Mountech Co., Ltd.
(Rutile content (rutileization rate) and crystallinity (full width at half maximum) in titanium oxide raw material)
The content (rutile formation rate) and crystallinity (half-value full width) of rutile-type titanium oxide in the titanium oxide raw material were measured by powder X-ray diffraction method.
 すなわち、乾燥させた酸化チタン原料について、測定装置としてPANalytical社製「X’pertPRO」を用い、銅ターゲットを用い、Cu-Kα1線を用いて、管電圧45kV、管電流40mA、測定範囲2θ=20~100deg、サンプリング幅0.0167deg、走査速度3.3deg/minの条件でX線回折測定を行った。 That is, for the dried titanium oxide raw material, using PANalytical's "X'pertPRO" as a measuring device, using a copper target, and using a Cu-Kα1 wire, a tube voltage of 45 kV, a tube current of 40 mA, and a measurement range of 2θ = 20. X-ray diffraction measurement was performed under the conditions of ~ 100 deg, sampling width 0.0167 deg, and scanning speed 3.3 deg / min.
 ルチル型結晶に対応するピーク高さ(Hr)、ブルッカイト型結晶に対応するピーク高さ(Hb)、及びアナターゼ型結晶に対応するピーク高さ(Ha)を求め、以下の計算式により、酸化チタン中におけるルチル型酸化チタンの含有量(ルチル化率)を求めた。 The peak height (Hr) corresponding to the rutile type crystal, the peak height (Hb) corresponding to the brookite type crystal, and the peak height (Ha) corresponding to the anatase type crystal were obtained, and titanium oxide was calculated by the following formula. The content of rutile-type titanium oxide (rutileization rate) in the rutile type was determined.
      ルチル化率(モル%)={Hr/(Ha+Hb+Hr)}×100
 また、酸化チタン中における、アナターゼ型酸化チタンの含有量(アナターゼ化率)及びブルッカイト型酸化チタンの含有量(ブルッカイト化率)を、それぞれ以下の計算式により求めた。
Rutileization rate (mol%) = {Hr / (Ha + Hb + Hr)} × 100
In addition, the content of anatase-type titanium oxide (anatase conversion rate) and the content of brookite-type titanium oxide (brookite conversion rate) in titanium oxide were calculated by the following formulas, respectively.
      アナターゼ化率(モル%)={Ha/(Ha+Hb+Hr)}×100
      ブルッカイト化率(モル%)={Hb/(Ha+Hb+Hr)}×100
 上記X線回折測定によって得られたX線回折パターンにおいて、ルチル型酸化チタンに対応する最も強い回折ピークを選択し、半値全幅を測定した。
Anatase formation rate (mol%) = {Ha / (Ha + Hb + Hr)} × 100
Brookite conversion rate (mol%) = {Hb / (Ha + Hb + Hr)} x 100
In the X-ray diffraction pattern obtained by the above X-ray diffraction measurement, the strongest diffraction peak corresponding to rutile-type titanium oxide was selected, and the full width at half maximum was measured.
(一次粒子径)
 平均1次粒子径(DBET)(nm)は、BET1点法により、酸化チタンの比表面積S(m/g)を測定し、下式
      DBET=6000/(S×ρ)
より算出した。ここでρは酸化チタンの密度(g/cm)を示す。
(Primary particle size)
For the average primary particle size (DBET) (nm), the specific surface area S (m 2 / g) of titanium oxide was measured by the BET one-point method, and the following formula DBET = 6000 / (S × ρ).
Calculated from. Here, ρ indicates the density of titanium oxide (g / cm 3 ).
 使用した酸化チタン原料の測定結果を表1に示す。 Table 1 shows the measurement results of the titanium oxide raw material used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(製造例1)
 蒸留水100mLに6g(100質量部)の酸化チタン原料(昭和電工セラミックス株式会社製)を懸濁させ、0.0805g(銅換算で0.5質量部)のCuCl・2HO(関東化学株式会社製)を添加して、10分攪拌した。pHが10になるように、1mol/Lの水酸化ナトリウム(関東化学株式会社製)水溶液を添加し、30分間攪拌混合を行ってスラリーを得た。このスラリーをろ過し、得られた粉体を純水で洗浄し、80℃で乾燥し、ミキサーで解砕し、試料(光触媒)を得た。
(Manufacturing Example 1)
Distilled water 100mL to suspend the 6 g (manufactured by Showa Denko Ceramics Co.) titanium oxide material (100 parts by weight), CuCl 2 · 2H 2 O ( Kanto Chemical of 0.0805G (0.5 part by weight of copper equivalent) (Manufactured by Co., Ltd.) was added and stirred for 10 minutes. A 1 mol / L sodium hydroxide (manufactured by Kanto Chemical Co., Inc.) aqueous solution was added so that the pH became 10, and the mixture was stirred and mixed for 30 minutes to obtain a slurry. The slurry was filtered, the obtained powder was washed with pure water, dried at 80 ° C., and crushed with a mixer to obtain a sample (photocatalyst).
 得られた試料(光触媒)をフッ酸溶液中で加熱して全溶解し、抽出液をICP発光分光分析により定量した。その結果、酸化チタン100質量部に対して、銅イオンが0.5質量部であった。すなわち、仕込みの銅イオン(CuCl・2HO由来)の全量が酸化チタン表面に担持されていた。 The obtained sample (photocatalyst) was heated in a hydrofluoric acid solution to completely dissolve it, and the extract was quantified by ICP emission spectroscopic analysis. As a result, copper ions were 0.5 parts by mass with respect to 100 parts by mass of titanium oxide. That is, the total amount of the copper ions of the feed (CuCl 2 · 2H 2 O derived) were supported on the surface of titanium oxide.
 製造例1により得られた試料(光触媒)を以下の方法により分析した。 The sample (photocatalyst) obtained in Production Example 1 was analyzed by the following method.
(ルチル型酸化チタンの含有量(ルチル化率)及び結晶性(半値全幅))
 製造例1により得られた試料(光触媒)について、酸化チタン中におけるルチル型酸化チタンの含有量(ルチル化率)及び結晶性(半値全幅)を、粉末X線回折法により測定した。
(Rutilated titanium oxide content (rutileization rate) and crystallinity (full width at half maximum))
With respect to the sample (photocatalyst) obtained in Production Example 1, the content (rutileization rate) and crystallinity (half-value full width) of rutile-type titanium oxide in titanium oxide were measured by powder X-ray diffraction method.
 すなわち、乾燥させた光触媒を、乳鉢で擦り潰した粉末を試料とした。この試料について、測定装置としてPANalytical社製「X’pertPRO」を用い、銅ターゲットを用い、Cu-Kα1線を用いて、管電圧45kV、管電流40mA、測定範囲2θ=20~100deg、サンプリング幅0.0167deg、走査速度3.3deg/minの条件でX線回折測定を行った。 That is, the powder obtained by grinding the dried photocatalyst in a mortar was used as a sample. For this sample, using PANalytical's "X'pertPRO" as a measuring device, using a copper target, and using a Cu-Kα1 wire, a tube voltage of 45 kV, a tube current of 40 mA, a measurement range of 2θ = 20 to 100 deg, and a sampling width of 0. X-ray diffraction measurement was performed under the conditions of 1.0167 deg and a scanning speed of 3.3 deg / min.
 ルチル型結晶に対応するピーク高さ(Hr)、ブルッカイト型結晶に対応するピーク高さ(Hb)、及びアナターゼ型結晶に対応するピーク高さ(Ha)を求め、以下の計算式により、酸化チタン中におけるルチル型酸化チタンの含有量(ルチル化率)を求めた。 The peak height (Hr) corresponding to the rutile type crystal, the peak height (Hb) corresponding to the brookite type crystal, and the peak height (Ha) corresponding to the anatase type crystal were obtained, and titanium oxide was calculated by the following formula. The content of rutile-type titanium oxide (rutileization rate) in the rutile type was determined.
      ルチル化率(モル%)={Hr/(Ha+Hb+Hr)}×100
 上記X線回折測定によって得られたX線回折パターンにおいて、ルチル型酸化チタンに対応する最も強い回折ピークを選択し、半値全幅を測定した。
(2価銅化合物の同定)
  製造例1により得られた試料(光触媒)中に存在する2価銅化合物を、上記の測定装置及び測定条件にて、X線回折測定で同定した。結果を表2に示した。
Rutileization rate (mol%) = {Hr / (Ha + Hb + Hr)} × 100
In the X-ray diffraction pattern obtained by the above X-ray diffraction measurement, the strongest diffraction peak corresponding to rutile-type titanium oxide was selected, and the full width at half maximum was measured.
(Identification of divalent copper compound)
The divalent copper compound present in the sample (photocatalyst) obtained in Production Example 1 was identified by X-ray diffraction measurement using the above measuring device and measuring conditions. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 〔実施例1〕
 表3に示す配合のように、コア-シェル型アクリルエマルジョン(Ac1)80部、製造例1で得られた酸化チタン1部、水16部、ワックス分散液(ポリエチレン分散液)を2部、レベリング剤(サーフィノール420:日信化学工業(株)社製)1部を分散攪拌機(特殊機化工業製 TKホモディスパー)を用いて均一に混合してコーティング剤組成物(1)を得た。
[Example 1]
As shown in Table 3, 80 parts of core-shell type acrylic emulsion (Ac1), 1 part of titanium oxide obtained in Production Example 1, 16 parts of water, 2 parts of wax dispersion (polyethylene dispersion), leveling. One part of the agent (Surfinol 420: manufactured by Nisshin Kagaku Kogyo Co., Ltd.) was uniformly mixed using a dispersion stirrer (TK homodisper manufactured by Tokushu Kagaku Kogyo Co., Ltd.) to obtain a coating agent composition (1).
〔実施例2~4〕
 表3に示す配合に従い、コア-シェル型アクリルエマルジョン(Ac1)を用い、実施例1と同様の手順にてコーティング剤組成物を得た。
[Examples 2 to 4]
According to the formulation shown in Table 3, a core-shell type acrylic emulsion (Ac1) was used, and a coating agent composition was obtained by the same procedure as in Example 1.
〔実施例5~8〕
 表4に示す配合に従い、ポリウレタン樹脂溶液(Pu)を更に用い、実施例1と同様の手順にてコーティング剤組成物を得た。
[Examples 5 to 8]
According to the formulation shown in Table 4, a polyurethane resin solution (Pu) was further used, and a coating agent composition was obtained by the same procedure as in Example 1.
〔比較例1~2〕
 表3,4に示す配合に従い、製造例1で得られた酸化チタンを用いずにコア-シェル型アクリルエマルジョン(Ac1)を添加し、実施例1と同様の手順にて比較例のコーティング剤を得た。
[Comparative Examples 1 and 2]
According to the formulations shown in Tables 3 and 4, the core-shell type acrylic emulsion (Ac1) was added without using the titanium oxide obtained in Production Example 1, and the coating agent of Comparative Example was prepared by the same procedure as in Example 1. Obtained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 <コーティング層を有する積層体の作製>
〔グラビアコーティング作成〕
 得られた実施例1-6のコーティング剤の粘度を水/エタノール=80/20(質量比)の混合溶剤でザーンカップ#3(離合社製)で16秒(25℃)に調整し、版深35μmグラビア版を備えたグラビア校正機により、実施例1-4はコートボール紙へ、実施例5-8はPETフィルムへ印刷した積層体を1日放置し、評価用積層体とした。
<Manufacturing of a laminated body having a coating layer>
[Creating a gravure coating]
The viscosity of the obtained coating agent of Example 1-6 was adjusted to 16 seconds (25 ° C.) with Zahn Cup # 3 (manufactured by Rigosha) with a mixed solvent of water / ethanol = 80/20 (mass ratio), and the plate was prepared. A laminate printed on coated cardboard in Example 1-4 and on PET film in Example 5-8 was left for one day by a gravure calibrator equipped with a gravure plate having a depth of 35 μm to prepare a laminate for evaluation.
 〔フレキソコーティング作成〕
 得られた実施例1-6のコーティング剤の粘度を水にてザーンカップ#4(離合社製)で10秒(25℃)に調整し、120線/cmアニロックスロールを備えたフレキソ校正機により、コートボール紙及びPETフィルムへ印刷した積層体を1日放置し、評価用積層体とした。
[Flexographic coating creation]
The viscosity of the obtained coating agent of Example 1-6 was adjusted with water in Zahn Cup # 4 (manufactured by Rigo Co., Ltd.) for 10 seconds (25 ° C.), and a flexo calibrator equipped with a 120-wire / cm anilox roll was used. , The laminated body printed on the coated cardboard and the PET film was left for one day to prepare a laminated body for evaluation.
 得られた積層体(コーティング層を有する基材)を用い、密着性、耐摩擦性、抗ウイルス性の評価を行った。 Using the obtained laminate (base material having a coating layer), adhesion, abrasion resistance, and antiviral property were evaluated.
 〔評価項目1:密着性〕
 印刷面にセロハンテープ(ニチバン製12mm幅)を貼り付け、これを急速に剥がした
ときの印刷皮膜の外観の状態を次の5段階で目視判定した。
コートボール紙へ印刷した場合
5:紙が剥け、コート剤層間の剥離がない
4:紙が剥け、コート剤層間の剥離が25未満
3:紙が剥け、コート剤層間の剥離が25-75%
2:紙が剥け、コート剤層間の剥離が75%以上
1:紙が剥けない
 フィルムへ印刷した場合
5:フィルムからコート剤が剥離しない
4:コート剤剥離が25%未満
3:コート剤剥離が25-50%
2:コート剤剥離が50-75%
1:コート剤剥離が75-100%
[Evaluation item 1: Adhesion]
A cellophane tape (Nichiban 12 mm width) was attached to the printed surface, and the appearance of the printed film when the tape was rapidly peeled off was visually determined in the following five stages.
When printing on coated cardboard 5: Paper peeling, no peeling between coating agent layers 4: Paper peeling, peeling between coating agent layers less than 25 3: Paper peeling, peeling between coating agent layers 25-75%
2: Paper peels off, peeling between coating agent layers is 75% or more 1: Paper does not peel off When printing on film 5: Coating agent does not peel off from film 4: Coating agent peeling is less than 25% 3: Coating agent peeling 25-50%
2: 50-75% of coating agent peeling
1: Coating agent peeling is 75-100%
 〔評価項目2:耐摩擦性〕
 作成した印刷物を堅牢型学振試験機を用いて耐摩擦性を評価した。摩擦子はコピー用紙を使用し、500gの荷重、100往復させたあとの印刷物表面の状態を次の5段階で目視判定した。
5:印刷表面が変化していない
4:印刷物表面の傷が少ない
3:印刷物表面の傷が多い
2:コート剤の一部が剥がれ、基材が見えている
1:コート剤が剥がれ、基材のみになっている
[Evaluation item 2: Friction resistance]
The friction resistance of the produced printed matter was evaluated using a robust Gakushin tester. As the friction element, copy paper was used, and the state of the surface of the printed matter after a load of 500 g and 100 reciprocations was visually determined in the following five stages.
5: The printed surface has not changed 4: There are few scratches on the printed matter surface 3: There are many scratches on the printed matter surface 2: Part of the coating agent has peeled off and the base material is visible 1: The coating agent has peeled off and the base material Is only
 (評価項目3 抗ウイルス性の評価)
 上記で得られた評価用印刷物について、抗ファージウイルス試験(JIS  R1756を参照)を実施した。
1)光照射条件は、白色蛍光灯の光をN113フィルターによって紫外線をカットし、照度1000ルクスとした。
2)5cm×5cmの評価用印刷物に濃度既知の100μLのQβファージ溶液を垂らした後、5cm×5cmのガラス板で挟んだ。
3)2時間光照射したサンプルを、SCDLP液で回収し、適度に希釈したものを大腸菌と感染させ、寒天培地に塗布し、培養後のコロニー数をカウントすることで評価した。抗ウイルス性はQβファージの不活化度で評価し、不活化度-2~-5を抗ウイルス性有と評価した。
不活化度が-1が90%、不活化度が-2が99%、不活化度が-3が99.9%不活化していることになり、抗ウイルス性が高いことを示す。検出限界は不活化度-5である。
(Evaluation item 3 Evaluation of antiviral property)
An anti-phage virus test (see JIS R1756) was performed on the evaluation printed matter obtained above.
1) As for the light irradiation conditions, the light of the white fluorescent lamp was cut off from ultraviolet rays by the N113 filter, and the illuminance was set to 1000 lux.
2) A 100 μL Qβ phage solution having a known concentration was dropped on a 5 cm × 5 cm evaluation printed matter, and then sandwiched between 5 cm × 5 cm glass plates.
3) Samples irradiated with light for 2 hours were collected with SCDLP solution, appropriately diluted, infected with Escherichia coli, applied to an agar medium, and evaluated by counting the number of colonies after culturing. The antiviral property was evaluated by the degree of inactivation of Qβ phage, and the inactivation degree -2 to -5 was evaluated as having antiviral property.
The degree of inactivation is -1 for 90%, the degree of inactivation is -2 for 99%, and the degree of inactivation is -3 for 99.9%, indicating that the antiviral property is high. The detection limit is inactivation degree -5.
 実施例及び比較例の組成物を用いた積層体の評価結果を表5、6に示す。 Tables 5 and 6 show the evaluation results of the laminate using the compositions of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以上の結果から、本発明のコーティング剤は、簡便な方法により、すなわち、紙基材又はプラスチック基材に塗布するだけで、これら基材に良好な抗ウイルス性を付与することができ、抗ウイルス性基材、包装材、容器等を提供できることが明らかとなった。また、本発明のコーティング剤は、水性溶媒を使用でき、且つ、密着性及び耐摩耗性を保持しつつ、十分な抗ウイルス性を発現することができる。 From the above results, the coating agent of the present invention can impart good antiviral properties to these substrates by a simple method, that is, simply by applying it to a paper substrate or a plastic substrate, and it is possible to impart good antiviral properties to these substrates. It has become clear that it is possible to provide sex base materials, packaging materials, containers, etc. In addition, the coating agent of the present invention can use an aqueous solvent and can exhibit sufficient antiviral properties while maintaining adhesion and abrasion resistance.

Claims (5)

  1. バインダー樹脂(A)と、光触媒(B)及び水性媒体(C)を含有し、
    前記光触媒(B)が、結晶性ルチル型酸化チタンを含む酸化チタンと2価銅化合物とを含有し、
    前記結晶性ルチル型酸化チタンが、Cu-Kα線による回折角度2θに対する回折線強度をプロットしたX線回折パターンにおいて、ルチル型酸化チタンに対応する最も強い回折ピークの半値全幅が0.65度以下の酸化チタンであり、
    前記酸化チタン中における前記結晶性ルチル型酸化チタンの含有量が50モル%以上、アナターゼ型酸化チタンの含有量が50モル%未満である光触媒であり、
    コーティング剤固形分全量に対し、前記光触媒(B)0.5~80質量%含有することを特徴とする、紙基材用又はプラスチック基材用コーティング剤。
    It contains a binder resin (A), a photocatalyst (B) and an aqueous medium (C).
    The photocatalyst (B) contains titanium oxide containing crystalline rutile-type titanium oxide and a divalent copper compound.
    In the X-ray diffraction pattern in which the crystallized rutile-type titanium oxide plots the diffraction line intensity with respect to the diffraction angle 2θ by Cu—Kα rays, the half-value total width of the strongest diffraction peak corresponding to the rutile-type titanium oxide is 0.65 degrees or less. Is titanium oxide
    A photocatalyst in which the content of the crystalline rutile-type titanium oxide in the titanium oxide is 50 mol% or more and the content of the anatase-type titanium oxide is less than 50 mol%.
    Coating agent A coating agent for a paper substrate or a plastic substrate, which comprises 0.5 to 80% by mass of the photocatalyst (B) with respect to the total amount of solid content.
  2.  前記バインダー樹脂(A)としてアクリル樹脂又はウレタン樹脂の少なくとも1種を含有する請求項1に記載のコーティング剤。 The coating agent according to claim 1, which contains at least one of an acrylic resin or a urethane resin as the binder resin (A).
  3.  請求項1又は2に記載のコーティング剤のコーティング層を有する紙基材又はプラスチック基材。 A paper base material or a plastic base material having the coating layer of the coating agent according to claim 1 or 2.
  4. 前記紙基材又はプラスチック基材が、印刷インキ層を更に有する請求項3に記載の紙基材又はプラスチック基材。 The paper base material or plastic base material according to claim 3, wherein the paper base material or plastic base material further has a printing ink layer.
  5. 請求項3又は4に記載の紙基材又はプラスチック基材を使用した容器、包装材。 A container or packaging material using the paper base material or plastic base material according to claim 3 or 4.
PCT/JP2021/022020 2020-06-25 2021-06-10 Coating agent for paper base materials or plastic base materials, and paper base material, plastic base maerial, container and packaging material, each having coating layer of said coating agent WO2021261260A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021574978A JP7067683B1 (en) 2020-06-25 2021-06-10 Coating agent for paper base material or plastic base material, and paper base material, plastic base material, container and packaging material having a coating layer of the coating agent.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020109479 2020-06-25
JP2020-109479 2020-06-25

Publications (1)

Publication Number Publication Date
WO2021261260A1 true WO2021261260A1 (en) 2021-12-30

Family

ID=79281123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022020 WO2021261260A1 (en) 2020-06-25 2021-06-10 Coating agent for paper base materials or plastic base materials, and paper base material, plastic base maerial, container and packaging material, each having coating layer of said coating agent

Country Status (2)

Country Link
JP (1) JP7067683B1 (en)
WO (1) WO2021261260A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005075912A (en) * 2003-08-29 2005-03-24 Gifu Seratsuku Seizosho:Kk Coating agent, building material, paper, film, food-packaging material, food-packaging container, and tableware
WO2013094573A1 (en) * 2011-12-22 2013-06-27 昭和電工株式会社 Copper-and-titanium-containing composition and production method therefor
WO2014196108A1 (en) * 2013-06-04 2014-12-11 パナソニックIpマネジメント株式会社 Ordinary temperature-curable photocatalytic coating material, ordinary temperature-curable coating composition, and interior material
JP2015205254A (en) * 2014-04-22 2015-11-19 昭和電工株式会社 Photocatalyst composition, antiviral agent and antibacterial agent
JP2015226858A (en) * 2012-09-27 2015-12-17 Toto株式会社 Photocatalytic coating composition
JP2017155368A (en) * 2016-03-03 2017-09-07 Dic株式会社 Resin composition for fiber processing and fabric using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005075912A (en) * 2003-08-29 2005-03-24 Gifu Seratsuku Seizosho:Kk Coating agent, building material, paper, film, food-packaging material, food-packaging container, and tableware
WO2013094573A1 (en) * 2011-12-22 2013-06-27 昭和電工株式会社 Copper-and-titanium-containing composition and production method therefor
JP2015226858A (en) * 2012-09-27 2015-12-17 Toto株式会社 Photocatalytic coating composition
WO2014196108A1 (en) * 2013-06-04 2014-12-11 パナソニックIpマネジメント株式会社 Ordinary temperature-curable photocatalytic coating material, ordinary temperature-curable coating composition, and interior material
JP2015205254A (en) * 2014-04-22 2015-11-19 昭和電工株式会社 Photocatalyst composition, antiviral agent and antibacterial agent
JP2017155368A (en) * 2016-03-03 2017-09-07 Dic株式会社 Resin composition for fiber processing and fabric using the same

Also Published As

Publication number Publication date
JPWO2021261260A1 (en) 2021-12-30
JP7067683B1 (en) 2022-05-16

Similar Documents

Publication Publication Date Title
JP5586466B2 (en) Laser sensitive coating composition
JP4839666B2 (en) Gravure printing ink composition for surface printing
JP5062502B2 (en) Aqueous urethane resin composition, coating agent containing the same, adhesive, binder for inkjet printing ink, ink for inkjet printing, and printed matter
WO2016136638A1 (en) Laminate film for three-dimensional molded article decoration used for vacuum molding, method for producing same, and three-dimensional molded article decoration method
JP6065036B2 (en) Printing ink laminate
JP6821874B2 (en) Laminated body and its manufacturing method
JP2016130297A (en) Ink composition for soft packaging laminate
CN102575116A (en) Aqueous coating composition
JP2010053194A (en) Binder for printing ink, printing ink composition using the same binder, as well as covering material using the same printing ink
TWI537126B (en) Water - based resin coating laminated metal plate
JP6979584B2 (en) Aqueous liquid printing inks, printed matter, and laminates
JP2017007109A (en) Laminate film for decorating three-dimensional molded article for vacuum molding, method for decorating three-dimensional molded article and decorative molded article
JP2013142117A (en) Printing ink composition
JP7067683B1 (en) Coating agent for paper base material or plastic base material, and paper base material, plastic base material, container and packaging material having a coating layer of the coating agent.
JP7160298B1 (en) Aqueous coating agent, laminate, and package or container
JP7131722B2 (en) Coating agent for paper substrates or plastic substrates, and paper substrates, plastic substrates, containers and packaging materials having coating layers of the coating agents
JP2024008083A (en) Coating agent for paper substrates or plastic substrates, and paper substrate, plastic substrate, container, and packaging material each including coating layer of coating agent
CN114456630A (en) Aqueous composition of titanium oxide supporting metal compound
JP7019940B2 (en) Aqueous polyurethane resin dispersion and its use
WO2024122293A1 (en) Coating agent for paper substrate or plastic substrate, and paper substrate, plastic substrate, container, and packaging material having coating layer of said coating agent
JP7174198B1 (en) Coating agent for paper substrates or plastic substrates, and paper substrates, plastic substrates, containers and packaging materials having coating layers of the coating agents
JP7529953B2 (en) Laminate and manufacturing method thereof
JP7423269B2 (en) Water-based liquid printing inks, printed materials, and packaging materials
JP7423392B2 (en) Liquid printing inks, printed materials, and laminates
JP7195494B1 (en) Laminate with printed layer of water-based liquid ink

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021574978

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828099

Country of ref document: EP

Kind code of ref document: A1