WO2021261247A1 - Electric vehicle control device - Google Patents

Electric vehicle control device Download PDF

Info

Publication number
WO2021261247A1
WO2021261247A1 PCT/JP2021/021870 JP2021021870W WO2021261247A1 WO 2021261247 A1 WO2021261247 A1 WO 2021261247A1 JP 2021021870 W JP2021021870 W JP 2021021870W WO 2021261247 A1 WO2021261247 A1 WO 2021261247A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
electric vehicle
rotation speed
control unit
power
Prior art date
Application number
PCT/JP2021/021870
Other languages
French (fr)
Japanese (ja)
Inventor
雅大 水野
喬紀 杉本
憲彦 生駒
壮佑 南部
亮 清水
聖悟 山崎
琢矢 佐藤
航輝 宮下
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to CN202180045203.0A priority Critical patent/CN115803240A/en
Priority to JP2021563226A priority patent/JP7115647B2/en
Publication of WO2021261247A1 publication Critical patent/WO2021261247A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present disclosure relates to a control device for an electric vehicle equipped with a generator driven by an internal combustion engine.
  • a control device for an electric vehicle having a parallel mode, a series mode, and an EV mode is known (see, for example, Patent Document 2).
  • the control device for the electric vehicle of Patent Document 2 when the target rotation speed of the generator is increasing in the series mode, the inner shuttlek is added to the required torque required for the internal combustion engine.
  • the amount of power generation is stabilized by adding the inertia shuttlek to the required torque required for the internal combustion engine. As a result, the acceleration performance of the electric vehicle is improved.
  • An object of the present disclosure is to provide a control device for an electric vehicle that can suppress deterioration of fuel efficiency of the electric vehicle and improve acceleration performance at the same time.
  • the control device for an electric vehicle is a control device for an electric vehicle having an internal combustion engine mounted on the electric vehicle, a generator, a motor, and a drive battery.
  • the generator is driven by an internal combustion engine.
  • the motor drives the drive shaft of the electric vehicle.
  • the drive battery supplies electric power to the motor.
  • the control device for the electric vehicle includes a traveling mode control unit, a battery output shortage determination unit, and a power generation control unit.
  • the travel mode control unit switches to a series mode in which the electric vehicle is driven by the first electric power supplied from the generator to the motor and the second electric power supplied from the drive battery to the motor.
  • the battery output shortage determination unit determines whether or not the second power is insufficient.
  • the power generation control unit controls the internal combustion engine and the generator based on the first electric power.
  • the power generation control unit includes a first control mode and a second control mode.
  • the first control mode controls the internal combustion engine to change the rotation speed of the internal combustion engine.
  • the second control mode controls the generator to change the rotation speed of the internal combustion engine.
  • the power generation control unit causes the internal combustion engine to rapidly change the rotation speed by itself according to the first control mode.
  • the first electric power supplied from the generator to the motor changes rapidly. Therefore, the motor is promptly supplied with the first electric power even when the second electric power is insufficient during the series mode traveling. As a result, the acceleration performance of the electric vehicle is improved.
  • the power generation control unit controls the generator by the second control mode to change the rotation speed of the internal combustion engine. Controlling the generator may reduce the first power.
  • the internal combustion engine does not need to increase the rotation by itself, the fuel efficiency is improved. That is, according to this control device for the electric vehicle, it is possible to suppress deterioration of the fuel efficiency of the electric vehicle and improve the acceleration performance at the same time.
  • the power generation control unit may calculate the target rotation speed, which is the target rotation speed of the internal combustion engine, based on the first electric power, and set the lower limit value of the target rotation speed.
  • the power generation control unit may perform correction control to raise the lower limit value. ..
  • the power generation control unit can increase the rotation speed from the state where the rotation speed of the internal combustion engine is high. This makes it easier for the internal combustion engine to reach higher revolutions faster. Therefore, the generator can supply the first electric power to the motor faster. As a result, the acceleration performance of the electric vehicle is improved even when the second electric power is reduced.
  • the power generation control unit may correct the lower limit value to a larger value as the speed of the electric vehicle increases.
  • the speed is low, the rotation speed of the internal combustion engine is low, so that the sound and vibration due to the rotation of the internal combustion engine can be reduced.
  • the power generation control unit may calculate the target rotation speed, which is the target rotation speed of the internal combustion engine, based on the first electric power.
  • the power generation control unit may calculate the increase rate of the target rotation speed and set the first limit value of the increase rate.
  • the power generation control unit is switched to the series mode by the traveling mode control unit and the battery output shortage determination unit determines that the second power is insufficient, the power generation control unit is set to a second limit value larger than the first limit value. Correction control for correction may be performed.
  • the second limit value may be a smaller value as the target rotation speed is higher.
  • the power generation control unit can quickly increase the rotation speed of the internal combustion engine. This makes it easier for the internal combustion engine to reach higher revolutions faster. Therefore, the generator can supply the first electric power to the motor faster. As a result, the acceleration performance of the electric vehicle is improved even when the second electric power is insufficient.
  • the battery output shortage determination unit may include a battery temperature acquisition unit that acquires the temperature of the drive battery.
  • the battery output shortage determination unit may determine that the second power is insufficient when the temperature acquired by the battery temperature acquisition unit is equal to or lower than the first predetermined temperature or equal to or higher than the second predetermined temperature.
  • the battery output of the drive battery may be limited in high temperature conditions.
  • the battery output of the drive battery may decrease in a low temperature state. According to this configuration, the motor can promptly receive the first electric power in any state.
  • the second limit value may be smaller when the temperature of the drive battery acquired by the output shortage determination unit is equal to or higher than the first predetermined temperature than when the temperature is equal to or higher than the first predetermined temperature.
  • the second limit value when the temperature of the drive battery is in a high temperature state such as the second predetermined temperature or higher, the second limit value is suppressed to be low.
  • the rotation speed of the internal combustion engine rises slower than when the drive battery is in a low temperature state.
  • the sound and vibration caused by the rotation of the internal combustion engine can be reduced.
  • the rotation speed of the internal combustion engine of the drive battery rises faster than in the high temperature state.
  • the power generation control unit may calculate a rotation increase torque that increases the rotation speed of the internal combustion engine.
  • the power generation control unit may acquire the actual rotation speed, which is the actual rotation speed of the internal combustion engine.
  • the power generation control unit may suppress the rotation increase torque according to the actual rotation speed.
  • the power generation control unit may suppress the rotation increase torque when the actual rotation speed is larger than the target rotation speed.
  • the power generation control unit may suppress the rotation increase torque as the actual rotation speed increases.
  • the control device for the electric vehicle may further include an accelerator opening degree determining unit for determining the accelerator opening degree.
  • the power generation control unit may switch from the first control mode to the second control mode.
  • the battery output shortage determination unit may determine that the second power is insufficient when the speed of the electric vehicle is equal to or higher than the first predetermined speed.
  • the acceleration performance is improved when the speed of the electric vehicle is high.
  • the first predetermined temperature may be calculated based on either one or both of the deterioration of the drive battery and the charge rate of the drive battery.
  • the power generation control unit may calculate the target power generation amount, which is the target power generation amount of the generator, based on the first power generation.
  • the power generation control unit may acquire the actual power generation amount, which is the actual power generation amount of the generator. When the actual power generation amount is smaller than the target power generation amount, the power generation control unit may switch from the second control mode to the first control mode.
  • the internal combustion engine causes the internal combustion engine to rapidly increase the rotation speed by the first control mode.
  • the first electric power supplied from the generator to the motor is rapidly increased. Therefore, even when the second electric power is insufficient, the acceleration performance of the electric vehicle is improved.
  • the power generation control unit calculates the target rotation speed, which is the target rotation speed of the internal combustion engine, sets the upper limit value of the target rotation speed, and is switched to the series mode by the traveling mode control unit. Moreover, when it is determined by the battery output shortage determination unit that the second power is insufficient, the upper limit value may be limited to the predetermined rotation speed or less.
  • the predetermined rotation speed may be a change point of the output characteristics of the internal combustion engine.
  • the power generation control unit can increase the rotation speed of the internal combustion engine up to the rotation speed output with a substantially constant inclination with respect to the increase in the rotation speed of the internal combustion engine.
  • the power generation control unit can efficiently use the output of the internal combustion engine to generate power in the generator.
  • the power generation control unit may limit the upper limit value to the predetermined rotation speed or less.
  • vibration / noise can be set to a level corresponding to the second predetermined speed.
  • the power generation control unit may increase the upper limit value as the speed increases.
  • the number of revolutions of the internal combustion engine can be increased while suppressing the feeling of free running.
  • the system diagram of the electric vehicle according to the embodiment of this disclosure.
  • the block diagram which shows the structure of the control device of the electric vehicle by embodiment of this disclosure.
  • the figure which shows an example of the 3D map by embodiment of this disclosure.
  • the figure which shows the change of the target engine rotation speed Ert with respect to the accelerator opening by embodiment of this disclosure.
  • the graph which shows an example of the relationship between the increase rate limit value dErtLim and the target engine speed Ert by the embodiment of this disclosure.
  • the graph which shows an example of the relationship between the rotation speed rise torque UTq and the engine rotation speed deviation by embodiment of this disclosure.
  • the graph which shows an example of the relationship between the rotation rise torque UTq and the actual engine rotation speed Erq by the embodiment of this disclosure.
  • the flowchart which shows the control procedure of the control apparatus by embodiment of this disclosure.
  • a timing chart showing a change in the target engine speed Ert when the upper limit value of the target engine speed Ert according to the embodiment of the present disclosure is changed.
  • the graph which shows an example of the output characteristic of the internal combustion engine by embodiment of this disclosure.
  • the electric vehicle 1 is a four-wheel drive type hybrid vehicle.
  • the electric vehicle 1 includes an internal combustion engine (ENG) 2, a generator (GEN) 4, a front motor (FrM) 6, a rear motor (RM) 8, a drive battery (BT) 10, and a control device (HVECU). It has 20 and an accelerator pedal 21.
  • the front motor 6 drives the front wheel drive shaft 12a of the front wheels 12 via the transaxle 16.
  • the rear motor 8 drives the rear wheel drive shaft 14a of the rear wheel 14 via the speed reducer 8c.
  • the front motor 6 is connected to the drive battery 10 via the front inverter 18, and electric power (second electric power) is supplied from the drive battery 10.
  • the front inverter 18 has a front motor control device (FrMCU) 6a and a generator control device (GCU) 4a that controls the generator 4.
  • the front motor control device 6a acquires a signal from the control device 20 and controls the regeneration and power running of the front motor 6 so that the front motor 6 is in a desired operating state.
  • the rear motor 8 is also connected to the drive battery 10 via the rear inverter 8b, and electric power (second electric power) is supplied from the drive battery 10.
  • the rear inverter 8b has a rear motor control unit (RMCU) 8a.
  • the rear motor control device 8a acquires a signal from the control device 20 and controls the regeneration and power running of the rear motor 8 so that the rear motor 8 is in a desired operating state.
  • the internal combustion engine 2 drives the generator 4 via the transaxle 16.
  • the internal combustion engine 2 is driven by burning the fuel supplied from the fuel tank (Fuel TANK) 22.
  • Various devices and various sensors of the internal combustion engine 2 are electrically connected to the engine control device (ENG-ECU) 2a.
  • the engine control device 2a acquires a signal from the control device 20 and controls the internal combustion engine 2 so as to be in a desired operating state.
  • the transaxle 16 amplifies the rotational speed of the internal combustion engine 2 and transmits it to the generator 4.
  • the transaxle 16 of the present embodiment has a clutch 16a that transmits and disconnects power between the internal combustion engine 2 and the front motor 6 and between the internal combustion engine 2 and the front wheel drive shaft 12a.
  • the internal combustion engine 2 is connected to the front wheel drive shaft 12a via the clutch 16a of the transaxle 16 and drives the front wheel drive shaft 12a.
  • the generator 4 generates electricity by being driven by the internal combustion engine 2.
  • the electric power (first electric power) generated by the generator 4 can charge the drive battery 10, and the front motor 6 and the rear motor 8 (hereinafter, with each motor in the present specification) via the front inverter 18 and the rear inverter 8b. It can be supplied to (Note).
  • the generator 4 is a motor generator, and the internal combustion engine 2 can be rotationally driven in addition to power generation.
  • the generator 4 drives and starts the internal combustion engine 2 by supplying electric power from the drive battery 10 and running the power.
  • the generator 4 is controlled by the generator control device 4a provided in the front inverter 18.
  • the generator control device 4a is electrically connected to the control device 20, acquires a signal from the control device 20, and controls power generation and power running so that the generator 4 is in a desired operating state.
  • the drive battery 10 is composed of a secondary battery such as a lithium ion battery, and has a battery module (not shown) composed of a plurality of battery cells collectively.
  • the drive battery 10 functions as a power source for each motor. Further, the drive battery 10 detects the charge rate of the battery module (State Of Charge, hereinafter SOC), the deterioration state of the battery module (State Of Health, hereinafter SOH), the voltage Bv of the battery module, and the battery temperature Btmp. It has a battery monitoring unit (BMU) 10a to perform.
  • the battery monitoring unit 10a acquires the battery temperature Btmp of the drive battery 10 and transmits it to the control device 20.
  • the control device 20 is actually composed of a microprocessor including an arithmetic unit, a memory, an input / output buffer, and the like.
  • the control device 20 controls each device so that the electric vehicle 1 is in a desired operating state based on the signals from each sensor and various devices, and the map and the program stored in the memory.
  • various control devices including an engine control device 2a, a generator control device 4a, a front motor control device 6a, a rear motor control device 8a, and a battery monitoring unit 10a are provided separately from the control device 20.
  • Each of the various control devices is electrically connected to the control device 20.
  • various control devices may be provided integrally with the control device 20.
  • each control device is composed of a microprocessor including an arithmetic unit, a memory, an input / output buffer, and the like.
  • the control device 20 includes a traveling mode control unit 30, a battery output shortage determination unit 32, a power generation control unit 34, and an accelerator opening degree determination unit 36.
  • the travel mode control unit 30, the battery output shortage determination unit 32, the power generation control unit 34, and the accelerator opening degree determination unit 36 are functional configurations realized by software stored in the control device 20. However, various controls are not limited to software processing, but can also be processed by dedicated hardware (electronic circuits).
  • the control device 20 acquires the rotation speeds of the front wheels 12 and the rear wheels 14 by a wheel speed sensor (not shown), and the speed calculation unit 38 calculates the speed V of the electric vehicle 1 based on the rotation speed of the wheel speed sensor.
  • the accelerator pedal 21 is a pedal that controls acceleration / deceleration of the electric vehicle 1 by being depressed by the driver of the electric vehicle 1.
  • the accelerator pedal 21 is provided with an accelerator position sensor 21a that detects the depressed position.
  • the accelerator position sensor 21a is electrically connected to the control device 20 and transmits the accelerator depression position (accelerator opening degree) to the control device 20.
  • the accelerator opening degree determining unit 36 includes a driver required torque calculation unit 36a.
  • the driver required torque calculation unit 36a calculates the driver required torque DTq of the electric vehicle 1 based on the accelerator opening degree Th acquired from the accelerator position sensor 21a.
  • the travel mode control unit 30 controls the clutch 16a based on information such as speed V, SOC, and accelerator opening Th, and is one of parallel mode, series mode, and EV mode. Switch to driving mode.
  • the traveling mode control unit 30 connects the clutch 16a and drives the front wheel drive shaft 12a by both the internal combustion engine 2 and the front motor 6.
  • the front motor 6 is supplied with either one or both of the electric power from the drive battery 10 (second electric power) and the electric power generated by the generator 4 (first electric power).
  • the rear motor 8 is supplied with either or both of the electric power from the drive battery 10 (second electric power) and the electric power generated by the generator 4 (first electric power) to drive the rear wheel drive shaft 14a. ..
  • the traveling mode control unit 30 releases the clutch 16a and supplies the electric power (second electric power) of the drive battery 10 to each motor, and each motor supplies the front wheel drive shaft 12a and the rear wheel drive shaft 14a (hereinafter referred to as the rear wheel drive shaft 14a).
  • Each drive shaft is referred to in the specification).
  • the traveling mode control unit 30 releases the clutch 16a, drives the generator 4 with the internal combustion engine 2, and supplies the first electric power generated by the generator 4 to each motor. Further, when the driving force for driving each drive shaft is insufficient depending on the first electric power, the traveling mode control unit 30 also supplies the second electric power to each motor from the drive battery 10. That is, the traveling mode control unit 30 drives the electric vehicle 1 by the first electric power and the second electric power in the series mode. As described above, in the series mode, the traveling mode control unit 30 adds the second power supplied from the drive battery 10 to each motor to the first power supplied from the generator 4 to each motor to control the internal combustion engine 2. It is possible to improve the acceleration performance of the electric vehicle 1 while operating efficiently and reducing the fuel consumption when the internal combustion engine 2 generates the generator 4.
  • the travel mode control unit 30 includes a drive shaft torque calculation unit 30a, a front-rear distribution calculation unit 30b, a front motor engine torque distribution calculation unit 30c, a power conversion calculation unit 30d, and a drive shaft torque limit value calculation unit 30e.
  • the drive shaft torque calculation unit 30a acquires the driver required torque DTq and the upper limit drive shaft torque TqLim.
  • the drive shaft torque calculation unit 30a calculates a target drive shaft torque FRTq to be generated in each drive shaft based on the driver required torque DTq and the upper limit drive shaft torque TqLim.
  • the upper limit drive shaft torque TqLim is obtained by subtracting the auxiliary power consumption consumed by the electronic devices mounted on the electric vehicle 1 and the loss in each motor from the power generation amount GWi based on the battery upper limit power W2 and the capacity of the generator 4, which will be described later. , They may be divided by the speed V and then multiplied by the unit conversion coefficient to calculate.
  • the upper limit drive shaft torque TqLim may be calculated by the drive shaft torque limit value calculation unit 30e.
  • the target drive shaft torque FRTq is not limited to these calculation methods, and for example, a map or the like may be used.
  • the drive shaft torque calculation unit 30a transmits the target drive shaft torque FRTq to the power conversion calculation unit 30d.
  • the power conversion calculation unit 30d converts the target drive shaft torque FRTq into the target power generation power W1 and transmits it to the power generation control unit 34.
  • the front-rear distribution calculation unit 30b acquires the road surface condition and the like, and distributes the target drive shaft torque FRTq to the front wheel drive shaft 12a and the rear wheel drive shaft 14a based on the road surface condition and the like.
  • the wheel axle torque RTq is calculated and transmitted to the front motor control device 6a and the rear motor control device 8a.
  • the front motor engine torque distribution calculation unit 30c calculates the parallel engine torque PETq required for the internal combustion engine 2 in the parallel mode.
  • the battery output shortage determination unit 32 determines whether or not the second power supplied from the drive battery 10 to each motor is insufficient.
  • the battery output shortage determination unit 32 includes a battery output calculation unit 32a.
  • the battery output calculation unit 32a acquires the SOC, SOH, battery temperature Btmp, voltage Bv, etc. of the drive battery 10 from the battery monitoring unit 10a, and the upper limit value of the second power that the drive battery 10 can supply to each motor.
  • the battery upper limit power W2 is calculated. When the battery upper limit power W2 of the drive battery 10 is lower than the battery upper limit power W2 in the normal state, the battery output shortage determination unit 32 determines that the second power is insufficient.
  • the battery output shortage determination unit 32 includes the battery temperature acquisition unit 32b.
  • the battery temperature acquisition unit 32b acquires the battery temperature Btmp from the battery monitoring unit 10a.
  • the battery output shortage determination unit 32 determines that the second power is insufficient when the battery temperature Btmp is equal to or lower than the first predetermined temperature T1.
  • the first predetermined temperature T1 is a temperature predetermined in the map based on SOC and SOH. More specifically, as in the example of the three-dimensional map shown in FIG. 3, the battery output shortage determination unit 32 can output a value (State Of Power, hereinafter) that the drive battery 10 can output based on the SOC and the battery temperature Btmp.
  • a map on one side that defines SOP) is stored on multiple sides for each SOH.
  • the battery output shortage determination unit 32 acquires the SOH and SOC, compares the acquired SOH and SOC with the three-dimensional map, and determines that the battery output is low. Is obtained from the 3D map.
  • the battery output shortage determination unit 32 can also acquire an actual SOP (hereinafter referred to as an actual SOP).
  • the actual SOP may be corrected according to the decrease in the voltage Bv in order to suppress the prevention of over-discharging of the drive battery 10. Therefore, when the battery output shortage determination unit 32 determines the battery output decrease by comparing the actual SOP and the reference SOP, it may not be able to correctly determine.
  • the battery output shortage determination unit 32 accurately and quickly determines the decrease in the battery upper limit power W2 of the drive battery 10 by acquiring the battery temperature Btmp which is the reference SOP.
  • the battery output shortage determination unit 32 may determine that the battery upper limit power W2 has decreased due to the outside air temperature or the like instead of the battery temperature Btmp. Further, the battery output shortage determination unit 32 does not acquire SOH and SOC with the first predetermined temperature T1 as the extremely low temperature (for example, ⁇ 20 ° C.), and when the first predetermined temperature T1 or less, the battery upper limit power W2 is uniformly applied. May be determined to be decreasing.
  • the battery output shortage determination unit 32 may determine a decrease in the battery upper limit power W2 based on a two-dimensional map showing the relationship between either SOH or SOC and the battery temperature Btmp and SOP. Further, the battery upper limit power W2 may be calculated by the battery monitoring unit (BMU) 10a.
  • BMU battery monitoring unit
  • the battery output shortage determination unit 32 determines that the second power is insufficient when the battery temperature Btmp is the second predetermined temperature T2 or higher. More specifically, when the battery temperature Btmp is the second predetermined temperature T2 or higher, the battery output shortage determination unit 32 of the control device 20 suppresses the temperature rise of the drive battery 10 by suppressing the battery upper limit power W2. do. As a result, the second electric power that can be supplied from the drive battery 10 to each motor is reduced. When the drive battery 10 suppresses the battery upper limit power W2 in such a high temperature state, the battery output shortage determination unit 32 determines that the second power is insufficient.
  • the battery output shortage determination unit 32 acquires the speed V, and when the speed V is equal to or higher than the first predetermined speed Vt, determines that the second power is insufficient. That is, when the electric vehicle 1 is traveling at high speed, the energy required for accelerating becomes large. Therefore, more first power and second power are required at the first predetermined speed Vt or higher than at less than the first predetermined speed Vt. Therefore, the battery output shortage determination unit 32 determines that the second power is insufficient when the first predetermined speed Vt or more, so that the first power can be quickly supplied to each motor.
  • the battery output shortage determination unit 32 does not have a decrease in the battery upper limit power W2, and even if the battery upper limit power W2 is not suppressed, the second power is insufficient when the first predetermined speed Vt or more. Judge that you are doing.
  • the power generation control unit 34 controls the internal combustion engine 2 and the generator 4 based on the target power generation power W1 calculated by the drive shaft torque calculation unit 30a and the power conversion calculation unit 30d.
  • the target generated power W1 is a target value of the first power that the generator 4 should supply to each motor.
  • the power generation control unit 34 drives the generator 4 with the internal combustion engine 2 to generate the engine required torque ETq required for the internal combustion engine 2 in each calculation unit described later in order to generate the target power generation power W1. Calculate.
  • the power generation control unit 34 includes a power calculation unit 34a, a target engine rotation speed calculation unit 34b, an engine torque calculation unit 34c, and a generator torque calculation unit 34d.
  • the power calculation unit 34a calculates the target power generation amount GW required for the generator 4 based on the target power generation power W1 in consideration of the transmission loss generated when the first power is supplied from the generator 4 to each motor. do.
  • the transmission loss may be calculated based on a map recording the relationship between the amount of power generated by the generator 4 and the transmission loss.
  • the target power generation amount GW is calculated by taking into account the power for charging the drive battery 10, other power required for the equipment of the electric vehicle 1, and the upper limit of the power generation amount for protecting each motor. May be good.
  • the target engine rotation speed calculation unit 34b acquires the target power generation amount GW, and based on the target power generation amount GW, the target engine rotation speed (target rotation speed) which is the target value of the rotation speed at which the internal combustion engine 2 drives the generator 4. ) Calculate the Engine.
  • the target engine rotation speed calculation unit 34b refers to the map recording the fuel injection amount and the ignition timing of the internal combustion engine 2, and calculates the target engine rotation speed Ert so that the internal combustion engine 2 has the best fuel efficiency. May be good. This improves the fuel efficiency of the electric vehicle 1.
  • the target engine rotation speed calculation unit 34b may acquire the speed V and calculate the target engine rotation speed Ert according to the speed V. As a result, when the electric vehicle 1 accelerates, it is possible to prevent the rotation speed of the internal combustion engine 2 from becoming excessively high with respect to the speed V.
  • the power generation control unit 34 sets the lower limit value minErt of the target engine speed Ert. Further, when the power generation control unit 34 is switched to the series mode by the traveling mode control unit 30 and the battery output shortage determination unit 32 determines that the second power is insufficient, the lower limit value minErt is set to a large value. Correction is performed to control the internal combustion engine 2 (hereinafter, this correction control is referred to as a lower limit value correction control in the specification and FIG. 8). As shown in FIG. 4, the lower limit value minErt is the target engine speed Ert from the time T0 when the accelerator pedal 21 is not depressed to the time T1. In the present embodiment, the target engine rotation speed calculation unit 34b acquires the target engine rotation speed Ert and sets the initial value of the lower limit value minErt.
  • the initial value may be a value stored in advance.
  • the target engine rotation speed calculation unit 34b corrects the lower limit value minErt of the target engine rotation speed Ert to a value larger than the initial value. Perform the calculation (see Fig. 4 Engine at the time of correction).
  • the target engine rotation speed calculation unit 34b acquires the target engine rotation speed Ert and the speed V, and performs a correction operation to set the lower limit value minErt of the target engine rotation speed Ert to a value larger than the initial value as the speed V increases. You may go. As a result, the first electric power supplied from the generator 4 to each motor is rapidly increased. Therefore, the acceleration performance of the electric vehicle 1 is improved. Further, the higher the speed V of the electric vehicle 1, the faster the actual engine rotation speed Erq, which will be described later, is reached. On the other hand, when the speed V is low, the actual engine rotation speed Erq, which will be described later, is low, so that noise and vibration due to the rotation of the internal combustion engine 2 can be reduced.
  • the power generation control unit 34 sets the increase rate limit value dErtLim of the target engine rotation speed Ert.
  • the increase rate limit value dErtLim is set to a large value. Correction is performed to control the internal combustion engine 2 (hereinafter, this correction control is referred to as limit value correction control in the specification and FIG. 8).
  • the increase rate limit value dErtLim is an upper limit value of the rate of change of the target engine speed Ert per unit time when the accelerator pedal 21 is depressed. That is, in FIG. 4, it corresponds to the upper limit of the inclination of the target engine speed Ert from the time T1 to the time T2.
  • the target engine rotation speed calculation unit 34b sets the increase rate limit value dErtLim of the target engine rotation speed Ert.
  • the target engine rotation speed calculation unit 34b sets an initial value (first limit value) of the increase rate limit value dErtLim from the time T1 to the time T2.
  • the initial value may be a value stored in advance.
  • the target engine rotation speed calculation unit 34b performs a correction calculation for correcting the increase rate limit value dErtLim to a second limit value larger than the initial value.
  • the power generation control unit 34 can quickly increase the actual engine speed Erq, which will be described later. Therefore, the actual engine speed Erq, which will be described later, tends to reach a higher speed quickly.
  • the generator 4 can supply the first electric power to each motor faster, and the acceleration of the electric vehicle 1 is improved.
  • the target engine rotation speed calculation unit 34b lowers the second limit value as the target engine rotation speed Ert increases.
  • the second limit value of the increase rate limit value dErtLim is set to be lower than 4000 rpm or less, so that the target engine speed Ert at the time of correction (FIG. 4). Ert) at the time of correction of is gradually increased. As a result, it is easy to suppress an excessive rise of the actual engine speed Erq, which will be described later.
  • the target engine rotation speed calculation unit 34b may set the second limit value to a smaller value when the temperature of the drive battery 10 is high than when the temperature of the drive battery 10 is low. More specifically, as shown in FIG. 5, the increase rate limit value dErtLim when the battery temperature Btmp is the second predetermined temperature T2 or more is the increase rate limit value when the battery temperature Btmp is the first predetermined temperature T1 or less. It is a value smaller than dErtLim. That is, the battery temperature Btmp may be higher than the second predetermined temperature T2 even when the outside air temperature is normal temperature (about 10 ° C to 25 ° C).
  • the target engine speed calculation unit 34b sets the increase rate limit value dErtLim when the drive battery 10 generated more frequently is in a high temperature state than when the drive battery 10 is in a low temperature state. Set to a small value.
  • the rotation speed of the internal combustion engine 2 slows down and rises.
  • the sound and vibration due to the rotation of the internal combustion engine 2 can be reduced.
  • the rotation speed of the internal combustion engine 2 rises faster than when the drive battery 10 is in a high temperature state.
  • the engine torque calculation unit 34c acquires the target power generation amount GW and the target engine rotation speed Ert, and calculates the engine required torque ETq required for the internal combustion engine 2 based on the target power generation amount GW and the target engine rotation speed Ert. More specifically, the engine torque calculation unit 34c calculates the engine torque ETq1 by dividing the target engine rotation speed Ert from the target power generation amount GW, and adds the torque for changing the rotation speed of the internal combustion engine 2. If necessary, this torque is added to calculate the engine required torque ETq. The engine torque calculation unit 34c transmits the engine required torque ETq to the engine control device 2a.
  • the engine control device 2a calculates the actual engine torque ETqr based on the actual engine rotation speed (actual rotation speed) Erq acquired from various sensors such as the crank angle sensor (not shown) of the internal combustion engine 2.
  • the engine control device 2a acquires the engine required torque ETq and controls the internal combustion engine 2 so that the actual engine torque ETqr becomes the engine required torque ETq.
  • the engine control device 2a transmits the actual engine speed Erq to the engine torque calculation unit 34c.
  • the engine torque calculation unit 34c acquires the actual engine rotation speed Erq and corrects the engine required torque ETq so as to be the target engine rotation speed Ert.
  • the generator torque calculation unit 34d acquires the engine required torque ETq and calculates the target load torque LTq, which is the target load torque of the generator 4, based on the engine required torque ETq. More specifically, the generator torque calculation unit 34d calculates the target load torque LTq by adding or subtracting the torque for changing the rotation speed of the internal combustion engine 2 to the load torque LTq1 that is balanced with the engine required torque ETq. The generator torque calculation unit 34d may calculate the target load torque LTq based on the map recording the relationship between the engine required torque ETq and the target load torque LTq. The generator torque calculation unit 34d transmits the target load torque LTq to the generator control device 4a.
  • the generator control device 4a detects the actual power generation amount GWr, which is the actual power generation amount of the generator 4, and the rotation speed of the generator 4, and calculates the actual load torque LTqr from the actual power generation amount GWr and the rotation speed of the generator 4. Then, the generator 4 is controlled so that the actual load torque LTqr becomes the target load torque LTq. Further, the generator control device 4a transmits the actual power generation amount GWr to the engine torque calculation unit 34c via the generator torque calculation unit 34d.
  • the power generation control unit 34 includes a first control mode and a second control mode.
  • the power generation control unit 34 is switched to the series mode by the travel mode control unit 30, the battery output shortage determination unit 32 determines that the second power is insufficient, and the accelerator opening Th is a predetermined opening Tht or more.
  • the second control mode is switched to the first control mode. That is, when the battery upper limit power W2 is low even though the driver requests acceleration, the power generation control unit 34 switches from the second control mode to the first control mode.
  • the power generation control unit 34 controls the first from the second control mode when the actual power generation amount GWr is smaller than the target power generation amount GW, that is, when the actual power generation amount GWr is insufficient with respect to the target power generation amount GW. You may switch to the mode.
  • the power generation control unit 34 controls the internal combustion engine 2 to change the actual engine speed Erq of the internal combustion engine 2. More specifically, in the first control mode, the power generation control unit 34 calculates the engine required torque ETq including the rotation increase torque UTq required when increasing the target engine rotation speed Ert. That is, the engine torque calculation unit 34c calculates the engine required torque ETq by adding the rotation increase torque UTq to the engine torque ETq1 obtained based on the target power generation amount GW.
  • the rotation increase torque UTq is a torque preset for each target engine rotation speed Ert in consideration of the friction loss of the internal combustion engine 2 and the generator 4, the inertial force of the crank shaft of the internal combustion engine 2 and the rotation shaft of the generator 4. Is.
  • the power generation control unit 34 controls the generator 4 to change the actual engine speed Erq of the internal combustion engine 2. More specifically, in the second control mode, the power generation control unit 34 calculates the target load torque LTq including the rotation rise torque UTq. That is, the generator torque calculation unit 34d calculates the target load torque LTq by subtracting the rotation rise torque UTq from the load torque LTq1 that balances with the engine required torque ETq.
  • the internal combustion engine 2 itself raises the actual engine rotation speed Erq, so that the intake air amount and the fuel injection amount of the internal combustion engine 2 increase as compared with the second control mode.
  • the fuel consumption of the internal combustion engine 2 deteriorates.
  • the first electric power supplied from the generator 4 to each motor does not decrease. As a result, the acceleration performance of the electric vehicle 1 is improved.
  • the generator torque calculation unit 34d subtracts the rotation rise torque UTq, so that the actual power generation amount GWr of the generator 4 decreases.
  • the generator 4 reduces the actual power generation amount GWr, the actual engine speed Erq of the internal combustion engine 2 increases while the internal combustion engine 2 maintains the output. As a result, the fuel efficiency of the internal combustion engine 2 is maintained.
  • the target engine speed Ert decreases, the actual engine speed Erq decreases by increasing the target load torque LTq in the second control mode.
  • the power generation control unit 34 suppresses the rotation increase torque UTq according to the actual engine speed Erq in the first control mode. More specifically, the power generation control unit 34 may suppress the rotation increase torque UTq when the actual engine speed Erq is larger than the target engine speed Ert. That is, as shown in FIG. 6, the deviation (difference) between the target engine rotation speed Ert and the actual engine rotation speed Erq is calculated, and the smaller the deviation is, the smaller the rotation increase torque UTq is. In the graph showing the relationship between the rotation increase torque UTq and the difference shown in FIG.
  • the value of the rotation increase torque UTq is reduced when the deviation is smaller than 300 rpm, and the rotation increase torque UTq is set to zero when the deviation is zero or less. .. As a result, it is possible to prevent the actual engine speed Erq from rising excessively.
  • the power generation control unit 34 may suppress the rotation increase torque UTq as the actual engine speed Erq increases. That is, as shown in FIG. 7, for example, when the actual engine speed Erq is 4000 rpm or more, the power generation control unit 34 reduces the rotation increase torque UTq as the actual engine speed Erq increases. Even in this case, it is possible to prevent the actual engine speed Erq from rising excessively.
  • the power generation control unit 34 starts a control operation when an ignition switch (not shown) is turned on. Further, the power generation control unit 34 starts the control operation in the state of the second control mode.
  • the power generation control unit 34 determines whether or not the travel mode is switched to the series mode by the travel mode control unit 30. When the power generation control unit 34 of the control device 20 determines that the mode has been switched to the series mode (S1 Yes), the process proceeds to S2.
  • S2 to S4 are processes performed by the battery output shortage determination unit 32.
  • the battery output shortage determination unit 32 determines whether or not the second power is insufficient.
  • the battery output shortage determination unit 32 determines whether or not the battery temperature Btmp is equal to or less than the first predetermined temperature T1.
  • the battery temperature Btmp is larger than the first predetermined temperature T1 (S2 No)
  • the battery output shortage determination unit 32 proceeds to S3.
  • the battery output shortage determination unit 32 determines that the second power is insufficient and transmits the determination result to the power generation control unit 34.
  • the power generation control unit 34 acquires the determination result of the battery output shortage determination unit 32, and proceeds to the process in S10.
  • the power generation control unit 34 performs lower limit value correction control.
  • the power generation control unit 34 acquires the speed V (km / h), and performs lower limit value correction control to increase the lower limit value minErt of the target engine rotation speed Ert as the speed V becomes higher.
  • the lower limit value minErt may be corrected to 1000 rpm.
  • the power generation control unit 34 may appropriately correct the lower limit value minErt to a value larger than 1000 rpm as the speed V increases.
  • the power generation control unit 34 uses the initial value of the lower limit value minErt (see FIG. 4). When the power generation control unit 34 performs the lower limit value correction control, the process proceeds to S5.
  • the battery output shortage determination unit 32 determines whether or not the battery temperature Btmp is equal to or higher than the second predetermined temperature T2. When the battery output shortage determination unit 32 determines that the battery temperature Btmp is less than the second predetermined temperature T2 (S3 No), the process proceeds to S4. On the other hand, when the battery output shortage determination unit 32 determines that the battery temperature Btmp is equal to or higher than the second predetermined temperature T2 (S3 Yes), the battery output shortage determination unit 32 determines that the second power is insufficient, and determines the determination result as the power generation control unit 34. Send to. The power generation control unit 34 acquires the determination result of the battery output shortage determination unit 32, and proceeds to S5.
  • the battery output shortage determination unit 32 acquires the speed V of the electric vehicle 1 and determines whether or not the speed V is Vt or more. When the battery output shortage determination unit 32 determines that the speed V is Vt or higher (S4 Yes), it determines that the second power is insufficient and transmits the determination result to the power generation control unit 34. That is, when any of the conditions S2 to S4 is satisfied, the battery output shortage determination unit 32 determines that the second power is insufficient. The power generation control unit 34 acquires the determination result of the battery output shortage determination unit 32, and proceeds to S5.
  • the battery output shortage determination unit 32 determines that the speed V is less than Vt (S4 No), it determines that none of the conditions S2 to S4 is satisfied, and the second power is not insufficient. Judge. The battery output shortage determination unit 32 transmits this determination result to the power generation control unit 34. The power generation control unit 34 acquires the determination result of the battery output shortage determination unit 32, and proceeds to S5.
  • the power generation control unit 34 determines whether or not the accelerator opening Th is equal to or greater than the predetermined opening Tht. When the power generation control unit 34 determines that the accelerator opening Th is equal to or greater than the predetermined opening Tht (S4 Yes), the power generation control unit 34 proceeds to S6. In S6, the power generation control unit 34 switches from the second control mode to the first control mode. After switching to the first control mode, the power generation control unit 34 proceeds to S7. In S5, the power generation control unit 34 may determine whether or not the actual power generation amount GWr is less than (smaller than) the target power generation amount GW. When the power generation control unit 34 determines that the actual power generation amount GWr is less than the target power generation amount GW, the process may proceed to S6.
  • the power generation control unit 34 determines whether or not the target engine speed Ert has increased.
  • the power generation control unit 34 determines that the target engine speed Ert is increasing (S7 Yes)
  • the power generation control unit 34 proceeds to process in S8.
  • the case where the target engine speed Ert is increased is a case where the accelerator pedal 21 is depressed, the driver required torque DTq increases, the target generated power W1 also increases, and the target power generation amount GW increases. That is, the electric vehicle 1 is in the accelerated state.
  • the power generation control unit 34 may determine that the target engine speed Ert has increased. That is, the power generation control unit 34 may simultaneously determine in S5 whether or not the target engine speed Ert has increased. Further, when the actual power generation amount GWr is smaller than the target power generation amount GW, it may be determined that the target engine speed Ert has increased.
  • the power generation control unit 34 performs limit value correction control.
  • the power generation control unit 34 may make a correction to set the value to a value larger than 20%.
  • the initial value of the increase rate limit value dErtLim is used.
  • the power generation control unit 34 acquires the accelerator opening degree Th from the accelerator opening degree determination unit 36, and determines whether or not the accelerator opening degree Th is zero (accelerator off). When the power generation control unit 34 determines that the accelerator is off (S9 Yes), both the lower limit value correction and the increase rate limit correction are completed, and the process proceeds to S11. In S11, the power generation control unit 34 switches from the first control mode to the second control mode, and proceeds with the process before S1.
  • the power generation control unit 34 determines that the mode is not in the series mode (S1 No)
  • the power generation control unit 34 returns the processing before S1.
  • the process proceeds to S11, the second control mode is maintained, and the process is returned before S1.
  • the power generation control unit 34 returns the process before S5 when it is determined that the target engine speed Ert has not increased (S7 No) and when it is determined that the accelerator has not been turned off (S9 No). As a result, the first control mode is maintained until the accelerator opening Th is smaller than the predetermined opening Tht.
  • control device 220 of the electric vehicle 201 of the second embodiment of the present disclosure will be described with reference to the drawings. Since the system configurations of the electric vehicle 1 and the control device 220 in the second embodiment are the same as those in the first embodiment, the description thereof will be omitted. Further, the control performed by the control device 220 in the second embodiment will be described only in that it differs from the control in the first embodiment.
  • the control device 220 in the second embodiment is different from the control device 20 in the first embodiment in that the power generation control unit 234 sets the upper limit value maxErt in addition to the lower limit value minErt of the target engine rotation speed Ert.
  • the timing chart of the present embodiment shows an example in which the battery temperature Btmp acquired by the battery temperature acquisition unit 32a gradually increases and the second electric power is insufficient.
  • the speed V of the electric vehicle 201 increases and the battery temperature Btmp increases.
  • the target engine speed Ert increases from time 0 to time A, and the increase rate limit value dErtLim increases at the first limit value.
  • the traveling mode control unit 30 switches the traveling mode to the series mode.
  • the battery temperature Btmp does not decrease between the time A and the time B.
  • the battery temperature Btmp becomes the second predetermined temperature T2 or more at the time B, the battery output shortage determination unit 32 determines that the second power is insufficient.
  • the power generation control unit 234 When the power generation control unit 234 is switched to the series mode by the traveling mode control unit 30 and the battery output shortage determination unit 32 determines that the second power is insufficient, the limit for correcting the increase rate limit value dErtLim.
  • the value correction control is executed (see ON of the limit value correction control in FIG. 9).
  • the power generation control unit 234 may further execute at least one of the lower limit value correction control and the switching from the second control mode to the first control mode.
  • NV reduction control vibration / noise reduction control
  • the power generation control unit 234 limits the upper limit value maxErt to a predetermined rotation speed R1 or less.
  • the power generation control unit 234 sets the increase rate limit value dErtLim to the increase rate limit value dErtLim from the first limit value until the target engine speed Ert reaches the predetermined speed R1.
  • a large second limit is used to increase the target engine speed Ert.
  • the power generation control unit 234 suppresses deterioration of vibration and noise due to an increase in the rotation speed of the internal combustion engine 2 while suppressing deterioration of fuel efficiency of the electric vehicle 201 and improving acceleration performance.
  • the predetermined rotation speed R1 may be a change point of the output characteristics of the internal combustion engine 2.
  • FIG. 10 is a graph showing the output characteristics of the internal combustion engine 2.
  • the maximum engine output of the internal combustion engine 2 has a substantially constant inclination up to the predetermined rotation speed R1, and when the predetermined rotation speed R1 is exceeded, the inclination of the maximum engine output decreases.
  • the power generation control unit 234 raises the target engine rotation speed Ert by using the second limit value as the increase rate limit value dErtLim up to the predetermined rotation speed R1. As a result, the power generation control unit 234 quickly supplies the first electric power to the motor while efficiently using the output of the internal combustion engine 2.
  • the power generation control unit 234 lacks the second power by the battery output shortage determination unit 32 in a situation where the target engine rotation speed Ert is equal to or higher than the predetermined rotation speed R1. If it is determined, the NV reduction control is executed after waiting until the target engine rotation speed Ert reaches the predetermined rotation speed R1.
  • the power generation control unit 234 limits the target engine rotation speed Ert to the predetermined rotation speed R1 or less.
  • the speed V of the electric vehicle 201 continues to increase from time D to time E. During this period, the power generation control unit 234 limits the upper limit value maxErt of the target engine rotation speed Ert by maintaining the target engine rotation speed Ert at the predetermined rotation speed R1.
  • the increase rate limit value dErtLim is high, so that the target engine speed Ert rises quickly, so that the actual engine speed Erq also rises quickly.
  • the actual engine rotation speed Erq of the internal combustion engine 2 is higher than the speed V of the electric vehicle 201
  • the user of the electric vehicle 201 feels uncomfortable with the large vibration and noise of the electric vehicle 201, or the electric vehicle 201 feels uncomfortable. It may cause a feeling of strangeness (feeling of idling) as if it were idling.
  • the power generation control unit 234 limits the upper limit value maxErt of the target engine rotation speed Ert to the predetermined rotation speed R1 when the second predetermined speed is less than V2, such a feeling of strangeness is unlikely to occur. Further, from time D to time E, the power generation control unit 234 maintains the target engine speed Ert while the speed V of the electric vehicle 201 is increasing. As a result, the power generation control unit 234 can suppress the occurrence of a sense of discomfort caused by the sudden decrease in the actual engine speed Erq.
  • the power generation control unit 234 increases the upper limit value as the speed V increases. Relax maxErt.
  • the third predetermined speed V3 is a higher value than the second predetermined speed V2.
  • the power generation control unit 234 refers to a map in which the upper limit value maxErt of the target engine rotation speed Ert gradually increases as the speed V increases.
  • the power generation control unit 234 relaxes the upper limit value maxErt by increasing the upper limit value maxErt of the target engine speed Ert according to the speed V.
  • the actual power generation amount GWr also increases as the speed V increases. As a result, the shortage of battery output can be compensated for while suppressing the feeling of free running, and the acceleration performance of the electric vehicle 201 can be improved.
  • the power generation control unit 234 releases the limitation of the upper limit value maxErt at the third predetermined speed V3 or higher.
  • the power generation control unit 234 since the speed V of the electric vehicle 201 increases even after the time F, the power generation control unit 234 maintains the maximum rotation speed Rmax at which the target engine rotation speed Ert is the maximum value of the target engine rotation speed Ert. After that, when the accelerator pedal 21 is released and the electric vehicle 201 decelerates, the power generation control unit 234 lowers the target engine speed Ert. When the target engine rotation speed Ert finally falls below the predetermined rotation speed R1, the power generation control unit 234 ends the NV reduction control.
  • control devices 20 and 220 of the electric vehicles 1,201 of the present disclosure it is possible to suppress the deterioration of the fuel efficiency of the electric vehicles 1,201 and improve the acceleration performance at the same time.
  • the power generation control unit 34 when the power generation control unit 34 determines that the accelerator opening Th is equal to or greater than the predetermined opening Tht, the power generation control unit 34 switches to the first control mode, but the present disclosure is not limited to this.
  • the power generation control unit 34 may acquire the determination result and immediately switch to the first control mode.
  • the power generation control unit 34 performs the lower limit value correction control before switching to the first control mode.
  • the lower limit value correction control may be performed after switching to the first control mode.
  • the power generation control unit 34 when the battery output shortage determination unit 32 determines that the second power is insufficient, the power generation control unit 34 performs lower limit value correction control and switches to the first mode. , And the example of performing limit value correction control has been described, but the present disclosure is not limited to this. Even if it is determined by the battery output shortage determination unit 32 that the second power is insufficient, the power generation control unit 34 controls the lower limit value correction when the user of the electric vehicle 1 selects the eco mode. Switching to one mode and / or limit value correction control may not be performed. As a result, fuel efficiency can be prioritized in the eco mode.
  • the power generation control unit 34 may have a selection unit that allows the user of the electric vehicle 1 to select one of the lower limit value correction control, the switching to the first mode, and the limit value correction control. This allows the user to selectively prioritize either acceleration or fuel economy. Further, the power generation control unit 34 is interlocked with the navigation system of the electric vehicle 1, and when the electric vehicle 1 is traveling in a residential area, the lower limit value correction control may not be performed. As a result, the electric vehicle 1 can quietly travel in the residential area.
  • the electric vehicles 1,201 can be a plug-in hybrid car, and may have a power supply function of supplying power from the drive battery 10 to an external device (for example, a home electric appliance).

Abstract

Provided is an electric vehicle control device that, for an electric vehicle, enables both suppression of fuel economy deterioration and improvement of acceleration performance. A control device (20) is for an electric vehicle (1) that includes an internal combustion engine (2), a generator (4), a front motor (6) and a rear motor (8), and a drive battery (10). The generator (4) is driven by the internal combustion engine (2). The motors drive a drive shaft of the electric vehicle (1). The drive battery (10) supplies electric power to the motors. The control device (20) for the electric vehicle (1) is provided with: a travel mode control unit (30); a battery output deficiency determination unit (32); and a power generation control unit (34). The power generation control unit (34) controls the internal combustion engine (2) and the generator (4) on the basis of a first electric power. The power generation control unit (34) has a first control mode and a second control mode. The first control mode involves controlling the internal combustion engine (2) to change the rotation speed of the internal combustion engine (2). The second control mode involves controlling the generator (4) to change the rotation speed of the internal combustion engine (2). If the travel mode control unit (30) has switched to a series mode and the battery output deficiency determination unit (32) has determined that a second electric power is deficient, then the power generation control unit (34) switches from the second control mode to the first control mode.

Description

電動車両の制御装置Control device for electric vehicles
 本開示は、内燃機関で駆動される発電機を備える電動車両の制御装置に関する。 The present disclosure relates to a control device for an electric vehicle equipped with a generator driven by an internal combustion engine.
 従来、内燃機関で駆動される発電機によって発電し、発電した電力をモータに供給し、モータが駆動軸を駆動するシリーズハイブリッド型の電動車両の制御装置が知られている(例えば、特許文献1参照)。特許文献1の電動車両の制御装置では、発電機に要求される発電量が増加したことによって発電機の回転数を増加させる場合、発電機の回転数を上昇させるために必要なイナーシャトルクを内燃機関に要求する要求トルクに加算する。このように、特許文献1の電動車両の制御装置では、内燃機関に要求する要求トルクに、イナーシャトルクを加算することによって、発電機の回転数を速やかに上昇させる。この結果、電動車両の加速性能が向上する。 Conventionally, there is known a control device for a series hybrid type electric vehicle in which power is generated by a generator driven by an internal combustion engine, the generated power is supplied to a motor, and the motor drives a drive shaft (for example, Patent Document 1). reference). In the control device for an electric vehicle of Patent Document 1, when the rotation speed of the generator is increased due to an increase in the amount of power generation required for the generator, the inner shuttle torque required to increase the rotation speed of the generator is internally built. Add to the required torque required for the engine. As described above, in the control device for the electric vehicle of Patent Document 1, the rotation speed of the generator is rapidly increased by adding the inner shuttlek to the required torque required for the internal combustion engine. As a result, the acceleration performance of the electric vehicle is improved.
 また、従来、パラレルモードと、シリーズモードと、EVモードと、を有する電動車両の制御装置が知られている(例えば、特許文献2参照)。特許文献2の電動車両の制御装置では、シリーズモード中において、発電機の目標回転数が増加している場合、イナーシャトルクを内燃機関に要求する要求トルクに加算する。このように、特許文献1の電動車両の制御装置では、内燃機関に要求する要求トルクに、イナーシャトルクを加算することで、発電量を安定させる。この結果、電動車両の加速性能が向上する。 Further, conventionally, a control device for an electric vehicle having a parallel mode, a series mode, and an EV mode is known (see, for example, Patent Document 2). In the control device for the electric vehicle of Patent Document 2, when the target rotation speed of the generator is increasing in the series mode, the inner shuttlek is added to the required torque required for the internal combustion engine. As described above, in the control device for the electric vehicle of Patent Document 1, the amount of power generation is stabilized by adding the inertia shuttlek to the required torque required for the internal combustion engine. As a result, the acceleration performance of the electric vehicle is improved.
特開2003-20972号公報Japanese Unexamined Patent Publication No. 2003-20972 特開2016-124318号公報Japanese Unexamined Patent Publication No. 2016-12438
 しかし、特許文献1および特許文献2の電動車両の制御装置では、内燃機関に要求する要求トルクに、発電機の回転数を増加させるためのイナーシャトルクを加算する。このため、内燃機関がイナーシャトルク分のトルクを出力する必要がある。これによって、内燃機関の燃料噴射量が増加し、燃費が悪化する。 However, in the control device for the electric vehicle of Patent Document 1 and Patent Document 2, an inner shuttlek for increasing the rotation speed of the generator is added to the required torque required for the internal combustion engine. Therefore, it is necessary for the internal combustion engine to output the torque equivalent to the inertial shuttle. As a result, the fuel injection amount of the internal combustion engine increases and the fuel consumption deteriorates.
 本開示の課題は、電動車両の燃費の悪化の抑制と、加速性能の向上と、を両立できる電動車両の制御装置を提供することにある。 An object of the present disclosure is to provide a control device for an electric vehicle that can suppress deterioration of fuel efficiency of the electric vehicle and improve acceleration performance at the same time.
 本開示に係る電動車両の制御装置は、電動車両に搭載される内燃機関と、発電機と、モータと、駆動用電池と、を有する電動車両の制御装置である。発電機は、内燃機関によって駆動される。モータは、電動車両の駆動軸を駆動する。駆動用電池は、モータに電力を供給する。電動車両の制御装置は、走行モード制御部と、電池出力不足判断部と、発電制御部と、を備える。走行モード制御部は、発電機からモータに供給する第1電力と、駆動用電池からモータに供給する第2電力と、によって電動車両を走行させるシリーズモードに切り替える。電池出力不足判断部は、第2電力が不足しているか否か判断する。発電制御部は、第1電力に基づいて、内燃機関と発電機を制御する。発電制御部は、第1制御モードと、第2制御モードと、を含む。第1制御モードは、内燃機関を制御して、内燃機関の回転数を変化させる。第2制御モードは、発電機を制御して、内燃機関の回転数を変化させる。発電制御部は、走行モード制御部によってシリーズモードに切り替えられ、かつ、電池出力不足判断部によって第2電力が不足していると判断された場合、第2制御モードから第1制御モードに切り替える。 The control device for an electric vehicle according to the present disclosure is a control device for an electric vehicle having an internal combustion engine mounted on the electric vehicle, a generator, a motor, and a drive battery. The generator is driven by an internal combustion engine. The motor drives the drive shaft of the electric vehicle. The drive battery supplies electric power to the motor. The control device for the electric vehicle includes a traveling mode control unit, a battery output shortage determination unit, and a power generation control unit. The travel mode control unit switches to a series mode in which the electric vehicle is driven by the first electric power supplied from the generator to the motor and the second electric power supplied from the drive battery to the motor. The battery output shortage determination unit determines whether or not the second power is insufficient. The power generation control unit controls the internal combustion engine and the generator based on the first electric power. The power generation control unit includes a first control mode and a second control mode. The first control mode controls the internal combustion engine to change the rotation speed of the internal combustion engine. The second control mode controls the generator to change the rotation speed of the internal combustion engine. When the drive mode control unit switches to the series mode and the battery output shortage determination unit determines that the second power is insufficient, the power generation control unit switches from the second control mode to the first control mode.
 この電動車両の制御装置によれば、駆動用電池からモータに供給する第2電力が不足した場合、発電制御部は、第1制御モードよって、内燃機関が自ら回転数を速やかに変化させる。これによって、発電機からモータに供給する第1電力が速やかに変化する。このため、モータは、シリーズモード走行中において第2電力が不足した場合であっても、すみやかに第1電力の供給を受ける。この結果、電動車両の加速性能が向上する。一方、第2電力が不足していない場合、発電制御部は、第2制御モードによって、発電機を制御して、内燃機関の回転数を変化させる。発電機を制御すると、第1電力が減少する場合もある。しかし、内燃機関は自ら回転を上昇させる必要がないため、燃費はよくなる。すなわち、この電動車両の制御装置によれば、電動車両の燃費の悪化の抑制と、加速性能の向上と、を両立できる。 According to this electric vehicle control device, when the second electric power supplied from the drive battery to the motor is insufficient, the power generation control unit causes the internal combustion engine to rapidly change the rotation speed by itself according to the first control mode. As a result, the first electric power supplied from the generator to the motor changes rapidly. Therefore, the motor is promptly supplied with the first electric power even when the second electric power is insufficient during the series mode traveling. As a result, the acceleration performance of the electric vehicle is improved. On the other hand, when the second electric power is not insufficient, the power generation control unit controls the generator by the second control mode to change the rotation speed of the internal combustion engine. Controlling the generator may reduce the first power. However, since the internal combustion engine does not need to increase the rotation by itself, the fuel efficiency is improved. That is, according to this control device for the electric vehicle, it is possible to suppress deterioration of the fuel efficiency of the electric vehicle and improve the acceleration performance at the same time.
 発電制御部は、第1電力に基づいて、内燃機関の目標とする回転数である目標回転数を演算し、目標回転数の下限値を設定してもよい。発電制御部は、走行モード制御部によってシリーズモードに切り替えられ、かつ、電池出力不足判断部によって第2電力が不足していると判断された場合、下限値を高くする補正制御を行ってもよい。 The power generation control unit may calculate the target rotation speed, which is the target rotation speed of the internal combustion engine, based on the first electric power, and set the lower limit value of the target rotation speed. When the power generation control unit is switched to the series mode by the traveling mode control unit and the battery output shortage determination unit determines that the second power is insufficient, the power generation control unit may perform correction control to raise the lower limit value. ..
 この構成によれば、発電制御部は、内燃機関の回転数が高い状態から回転数を上昇させることができる。これによって、内燃機関は、より高い回転数に早く到達しやすい。このため、発電機は、第1電力をより早くモータに供給できる。この結果、第2電力が低下している場合であっても、電動車両の加速性能が向上する。 According to this configuration, the power generation control unit can increase the rotation speed from the state where the rotation speed of the internal combustion engine is high. This makes it easier for the internal combustion engine to reach higher revolutions faster. Therefore, the generator can supply the first electric power to the motor faster. As a result, the acceleration performance of the electric vehicle is improved even when the second electric power is reduced.
 発電制御部は、電動車両の速度が高いほど下限値を大きい値に補正してもよい。 The power generation control unit may correct the lower limit value to a larger value as the speed of the electric vehicle increases.
 この構成によれば、電動車両の速度が高いほど、内燃機関はより高い回転数に早く到達しやすい。一方、速度が低い場合、内燃機関の回転数が低くなるため、内燃機関の回転による音や振動を低減できる。 According to this configuration, the higher the speed of the electric vehicle, the easier it is for the internal combustion engine to reach a higher rotation speed. On the other hand, when the speed is low, the rotation speed of the internal combustion engine is low, so that the sound and vibration due to the rotation of the internal combustion engine can be reduced.
 発電制御部は、第1電力に基づいて内燃機関の目標とする回転数である目標回転数を演算してもよい。発電制御部は、目標回転数が上昇している場合、目標回転数の増加率を演算するとともに増加率の第1制限値を設定してもよい。発電制御部は、走行モード制御部によってシリーズモードに切り替えられ、かつ、電池出力不足判断部によって第2電力が不足していると判断された場合、第1制限値よりも大きい第2制限値に補正する補正制御を行ってもよい。 The power generation control unit may calculate the target rotation speed, which is the target rotation speed of the internal combustion engine, based on the first electric power. When the target rotation speed is increasing, the power generation control unit may calculate the increase rate of the target rotation speed and set the first limit value of the increase rate. When the power generation control unit is switched to the series mode by the traveling mode control unit and the battery output shortage determination unit determines that the second power is insufficient, the power generation control unit is set to a second limit value larger than the first limit value. Correction control for correction may be performed.
 第2制限値は、目標回転数が高いほど小さい値であってもよい。 The second limit value may be a smaller value as the target rotation speed is higher.
 この構成によれば、発電制御部は、内燃機関の回転数を早く上昇させることができる。これによって、内燃機関はより高い回転数に早く到達しやすい。このため、発電機は、第1電力をより早くモータに供給できる。この結果、第2電力が不足している場合であっても、電動車両の加速性能が向上する。 According to this configuration, the power generation control unit can quickly increase the rotation speed of the internal combustion engine. This makes it easier for the internal combustion engine to reach higher revolutions faster. Therefore, the generator can supply the first electric power to the motor faster. As a result, the acceleration performance of the electric vehicle is improved even when the second electric power is insufficient.
 電池出力不足判断部は、駆動用電池の温度を取得する電池温度取得部を含んでもよい。電池出力不足判断部は、電池温度取得部によって取得した温度が第1所定温度以下の場合、または第2所定温度以上の場合、第2電力が不足していると判断してもよい。 The battery output shortage determination unit may include a battery temperature acquisition unit that acquires the temperature of the drive battery. The battery output shortage determination unit may determine that the second power is insufficient when the temperature acquired by the battery temperature acquisition unit is equal to or lower than the first predetermined temperature or equal to or higher than the second predetermined temperature.
 駆動用電池は、高温状態において電池出力が制限される場合もある。また、駆動用電池は、低温状態において電池出力が低下する場合もある。この構成によれば、いずれの状態であっても、モータは、すみやかに第1電力の供給を受けることができる。 The battery output of the drive battery may be limited in high temperature conditions. In addition, the battery output of the drive battery may decrease in a low temperature state. According to this configuration, the motor can promptly receive the first electric power in any state.
 第2制限値は、出力不足判定部により取得された駆動用電池の温度が第1所定温度以下の場合よりも第2所定温度以上の場合の方が小さい値であってもよい。 The second limit value may be smaller when the temperature of the drive battery acquired by the output shortage determination unit is equal to or higher than the first predetermined temperature than when the temperature is equal to or higher than the first predetermined temperature.
 この構成によれば、駆動用電池の温度が第2所定温度以上のように高温状態の場合、第2制限値が低く抑制される。これによって、駆動用電池が高温状態においては、駆動用電池が低温状態よりも内燃機関の回転数が遅く上昇する。この結果、内燃機関の回転による音や振動を低減できる。一方、駆動用電池の温度が第1所定温度以下のように低温状態においては、駆動用電池が高温状態よりも内燃機関の回転数が早く上昇する。 According to this configuration, when the temperature of the drive battery is in a high temperature state such as the second predetermined temperature or higher, the second limit value is suppressed to be low. As a result, when the drive battery is in a high temperature state, the rotation speed of the internal combustion engine rises slower than when the drive battery is in a low temperature state. As a result, the sound and vibration caused by the rotation of the internal combustion engine can be reduced. On the other hand, in a low temperature state such that the temperature of the drive battery is equal to or lower than the first predetermined temperature, the rotation speed of the internal combustion engine of the drive battery rises faster than in the high temperature state.
 発電制御部は、内燃機関の回転数を上昇させる回転上昇トルクを演算してもよい。発電制御部は、内燃機関の実際の回転数である実回転数を取得してもよい。発電制御部は、第1制御モードにおいて、実回転数に応じて回転上昇トルクを抑制してもよい。 The power generation control unit may calculate a rotation increase torque that increases the rotation speed of the internal combustion engine. The power generation control unit may acquire the actual rotation speed, which is the actual rotation speed of the internal combustion engine. In the first control mode, the power generation control unit may suppress the rotation increase torque according to the actual rotation speed.
 発電制御部は、実回転数が目標回転数よりも大きい場合、回転上昇トルクを抑制してもよい。 The power generation control unit may suppress the rotation increase torque when the actual rotation speed is larger than the target rotation speed.
 発電制御部は、実回転数が上昇するにつれて回転上昇トルクを抑制してもよい。 The power generation control unit may suppress the rotation increase torque as the actual rotation speed increases.
 この構成によれば、内燃機関の回転数が上昇する際の、過度な回転上昇を抑制できる。 According to this configuration, it is possible to suppress an excessive increase in rotation when the rotation speed of the internal combustion engine increases.
 電動車両の制御装置は、アクセル開度を判断するアクセル開度判断部をさらに備えてもよい。発電制御部は、アクセルオフの場合、第1制御モードから第2制御モードに切り替えてもよい。 The control device for the electric vehicle may further include an accelerator opening degree determining unit for determining the accelerator opening degree. When the accelerator is off, the power generation control unit may switch from the first control mode to the second control mode.
 この構成によれば、アクセルが踏み込まれていない状態では、第2制御モードによって、内燃機関の回転数が変化する。これによって、燃費が向上する。 According to this configuration, when the accelerator is not depressed, the rotation speed of the internal combustion engine changes depending on the second control mode. This improves fuel economy.
 電池出力不足判断部は、電動車両の速度が第1所定速度以上の場合、第2電力が不足していると判断してもよい。 The battery output shortage determination unit may determine that the second power is insufficient when the speed of the electric vehicle is equal to or higher than the first predetermined speed.
 この構成によれば、電動車両の速度が速い場合における加速性能が向上する。 According to this configuration, the acceleration performance is improved when the speed of the electric vehicle is high.
 第1所定温度は、駆動用電池の劣化および駆動用電池の充電率のいずれか一方、または両方に基づいて演算されてもよい。 The first predetermined temperature may be calculated based on either one or both of the deterioration of the drive battery and the charge rate of the drive battery.
 この構成によれば、駆動用電池の劣化および充電率のいずれか一方、または両方に基づいた第1所定温度を用いて、第2電力の不足を迅速に判断できる。 According to this configuration, it is possible to quickly determine the shortage of the second power by using the first predetermined temperature based on either one or both of the deterioration of the drive battery and the charge rate.
 発電制御部は、第1電力に基づいて、発電機の目標とする発電量である目標発電量を演算してもよい。発電制御部は、発電機の実際の発電量である、実発電量を取得してもよい。発電制御部は、実発電量が目標発電量よりも小さい場合、第2制御モードから第1制御モードに切り替えてもよい。 The power generation control unit may calculate the target power generation amount, which is the target power generation amount of the generator, based on the first power generation. The power generation control unit may acquire the actual power generation amount, which is the actual power generation amount of the generator. When the actual power generation amount is smaller than the target power generation amount, the power generation control unit may switch from the second control mode to the first control mode.
 この構成によれば、発電制御部は、実発電量が目標発電量よりも小さい場合、第1制御モードによって、内燃機関が自ら回転数を速やかに上昇させる。これによって、発電機からモータに供給する第1電力が速やかに上昇する。このため、第2電力が不足している場合であっても、電動車両の加速性能が向上する。 According to this configuration, when the actual power generation amount is smaller than the target power generation amount, the internal combustion engine causes the internal combustion engine to rapidly increase the rotation speed by the first control mode. As a result, the first electric power supplied from the generator to the motor is rapidly increased. Therefore, even when the second electric power is insufficient, the acceleration performance of the electric vehicle is improved.
 発電制御部は、第1電力に基づいて、内燃機関の目標とする回転数である目標回転数を演算し、目標回転数の上限値を設定し、走行モード制御部によってシリーズモードに切り替えられ、かつ、電池出力不足判断部によって第2電力が不足していると判断された場合、上限値を所定回転数以下に制限してもよい。 The power generation control unit calculates the target rotation speed, which is the target rotation speed of the internal combustion engine, sets the upper limit value of the target rotation speed, and is switched to the series mode by the traveling mode control unit. Moreover, when it is determined by the battery output shortage determination unit that the second power is insufficient, the upper limit value may be limited to the predetermined rotation speed or less.
 この構成によれば、電動車両の燃費の悪化の抑制と、加速性能の向上を図りながら内燃機関の回転数上昇に伴う振動・騒音の悪化を抑制できる。 According to this configuration, it is possible to suppress the deterioration of the fuel efficiency of the electric vehicle and the deterioration of vibration and noise due to the increase in the rotation speed of the internal combustion engine while improving the acceleration performance.
 所定回転数は、内燃機関の出力特性の変化点であってもよい。 The predetermined rotation speed may be a change point of the output characteristics of the internal combustion engine.
 この構成によれば、例えば、内燃機関の回転数上昇に対して略一定の傾きで出力される回転数までは、発電制御部は内燃機関の回転数を上昇させることができる。これによって、発電制御部は、内燃機関の出力を効率よく使用し発電機に発電させることができる。 According to this configuration, for example, the power generation control unit can increase the rotation speed of the internal combustion engine up to the rotation speed output with a substantially constant inclination with respect to the increase in the rotation speed of the internal combustion engine. As a result, the power generation control unit can efficiently use the output of the internal combustion engine to generate power in the generator.
 また、発電制御部は、電動車両の速度が第2所定速度未満の場合、上限値を所定回転数以下に制限してもよい。 Further, when the speed of the electric vehicle is less than the second predetermined speed, the power generation control unit may limit the upper limit value to the predetermined rotation speed or less.
 この構成によれば、振動・騒音を第2所定速度に応じたレベルにすることができる。 According to this configuration, vibration / noise can be set to a level corresponding to the second predetermined speed.
 発電制御部は、電動車両の速度が第2所定速度以上の場合、速度が上昇するにつれて上限値を上昇させてもよい。 When the speed of the electric vehicle is equal to or higher than the second predetermined speed, the power generation control unit may increase the upper limit value as the speed increases.
 この構成によれば、空走感を抑制しながら内燃機関の回転数を上昇させることができる。 According to this configuration, the number of revolutions of the internal combustion engine can be increased while suppressing the feeling of free running.
 本開示によれば、電動車両の燃費の悪化の抑制と、加速性能の向上と、を両立できる電動車両の制御装置を提供できる。 According to the present disclosure, it is possible to provide a control device for an electric vehicle that can suppress deterioration of fuel efficiency of the electric vehicle and improve acceleration performance at the same time.
本開示の実施形態による電動車両のシステム図。The system diagram of the electric vehicle according to the embodiment of this disclosure. 本開示の実施形態による電動車両の制御装置の構成を示すブロック図。The block diagram which shows the structure of the control device of the electric vehicle by embodiment of this disclosure. 本開示の実施形態による3次元マップの一例を示す図。The figure which shows an example of the 3D map by embodiment of this disclosure. 本開示の実施形態によるアクセル開度に対する目標エンジン回転数Ertの変化を示す図。The figure which shows the change of the target engine rotation speed Ert with respect to the accelerator opening by embodiment of this disclosure. 本開示の実施形態による増加率制限値dErtLimと目標エンジン回転数Ertの関係の一例を示すグラフ。The graph which shows an example of the relationship between the increase rate limit value dErtLim and the target engine speed Ert by the embodiment of this disclosure. 本開示の実施形態による回転上昇トルクUTqとエンジン回転数偏差の関係の一例を示すグラフ。The graph which shows an example of the relationship between the rotation speed rise torque UTq and the engine rotation speed deviation by embodiment of this disclosure. 本開示の実施形態による回転上昇トルクUTqと実エンジン回転数Erqの関係の一例を示すグラフ。The graph which shows an example of the relationship between the rotation rise torque UTq and the actual engine rotation speed Erq by the embodiment of this disclosure. 本開示の実施形態による制御装置の制御手順を示すフローチャート。The flowchart which shows the control procedure of the control apparatus by embodiment of this disclosure. 本開示の実施形態による目標エンジン回転数Ertの上限値を変化させた場合に目標エンジン回転数Ertの変化を示すタイミングチャート。A timing chart showing a change in the target engine speed Ert when the upper limit value of the target engine speed Ert according to the embodiment of the present disclosure is changed. 本開示の実施形態による内燃機関の出力特性の一例を示すグラフ。The graph which shows an example of the output characteristic of the internal combustion engine by embodiment of this disclosure.
<第1実施形態>
 以下、本開示の第1実施形態の電動車両1の制御装置20について、図面を参照しながら説明する。図1に示すように、本実施形態による電動車両1は、四輪駆動型のハイブリッド自動車である。電動車両1は、内燃機関(ENG)2と、発電機(GEN)4と、フロントモータ(FrM)6と、リアモータ(RM)8と、駆動用電池(BT)10と、制御装置(HVECU)20と、アクセルペダル21と、を有する。本実施形態の電動車両1は、フロントモータ6がトランスアクスル16を介して前輪12の前輪駆動軸12aを駆動する。リアモータ8は、減速機8cを介して後輪14の後輪駆動軸14aを駆動する。フロントモータ6は、フロントインバータ18を介して駆動用電池10と接続され、駆動用電池10から電力(第2電力)が供給される。フロントインバータ18は、フロントモータ制御装置(FrMCU)6aと、発電機4を制御する発電機制御装置(GCU)4aと、を有する。フロントモータ制御装置6aは、制御装置20から信号を取得し、フロントモータ6が所望の運転状態となるようにフロントモータ6の回生と力行を制御する。リアモータ8も同様に、リアインバータ8bを介して駆動用電池10と接続され、駆動用電池10から電力(第2電力)が供給される。リアインバータ8bは、リアモータ制御装置(RMCU)8aを有する。リアモータ制御装置8aは、制御装置20から信号を取得し、リアモータ8が所望の運転状態となるようにリアモータ8の回生と力行を制御する。
<First Embodiment>
Hereinafter, the control device 20 of the electric vehicle 1 according to the first embodiment of the present disclosure will be described with reference to the drawings. As shown in FIG. 1, the electric vehicle 1 according to the present embodiment is a four-wheel drive type hybrid vehicle. The electric vehicle 1 includes an internal combustion engine (ENG) 2, a generator (GEN) 4, a front motor (FrM) 6, a rear motor (RM) 8, a drive battery (BT) 10, and a control device (HVECU). It has 20 and an accelerator pedal 21. In the electric vehicle 1 of the present embodiment, the front motor 6 drives the front wheel drive shaft 12a of the front wheels 12 via the transaxle 16. The rear motor 8 drives the rear wheel drive shaft 14a of the rear wheel 14 via the speed reducer 8c. The front motor 6 is connected to the drive battery 10 via the front inverter 18, and electric power (second electric power) is supplied from the drive battery 10. The front inverter 18 has a front motor control device (FrMCU) 6a and a generator control device (GCU) 4a that controls the generator 4. The front motor control device 6a acquires a signal from the control device 20 and controls the regeneration and power running of the front motor 6 so that the front motor 6 is in a desired operating state. Similarly, the rear motor 8 is also connected to the drive battery 10 via the rear inverter 8b, and electric power (second electric power) is supplied from the drive battery 10. The rear inverter 8b has a rear motor control unit (RMCU) 8a. The rear motor control device 8a acquires a signal from the control device 20 and controls the regeneration and power running of the rear motor 8 so that the rear motor 8 is in a desired operating state.
 内燃機関2は、トランスアクスル16を介して発電機4を駆動する。内燃機関2は、燃料タンク(Fuel TANK)22から供給される燃料が燃焼することで駆動する。内燃機関2の各種装置および各種センサは、エンジン制御装置(ENG-ECU)2aと電気的に接続される。エンジン制御装置2aは、制御装置20からの信号を取得し、内燃機関2が所望の運転状態となるように制御する。トランスアクスル16は、内燃機関2の回転速度を増幅し発電機4に伝達する。また、本実施形態のトランスアクスル16は、内燃機関2とフロントモータ6との間および内燃機関2と前輪駆動軸12aとの間で動力を伝達および遮断するクラッチ16aを有する。内燃機関2は、トランスアクスル16のクラッチ16aを介して前輪駆動軸12aに接続され、前輪駆動軸12aを駆動する。 The internal combustion engine 2 drives the generator 4 via the transaxle 16. The internal combustion engine 2 is driven by burning the fuel supplied from the fuel tank (Fuel TANK) 22. Various devices and various sensors of the internal combustion engine 2 are electrically connected to the engine control device (ENG-ECU) 2a. The engine control device 2a acquires a signal from the control device 20 and controls the internal combustion engine 2 so as to be in a desired operating state. The transaxle 16 amplifies the rotational speed of the internal combustion engine 2 and transmits it to the generator 4. Further, the transaxle 16 of the present embodiment has a clutch 16a that transmits and disconnects power between the internal combustion engine 2 and the front motor 6 and between the internal combustion engine 2 and the front wheel drive shaft 12a. The internal combustion engine 2 is connected to the front wheel drive shaft 12a via the clutch 16a of the transaxle 16 and drives the front wheel drive shaft 12a.
 発電機4は、内燃機関2で駆動されることによって発電する。発電機4によって発電された電力(第1電力)は、駆動用電池10を充電可能であるとともに、フロントインバータ18およびリアインバータ8bを介してフロントモータ6およびリアモータ8(以下明細書において各モータと記す)に供給可能である。本実施形態では、発電機4はモータジェネレータであり、発電に加えて内燃機関2を回転駆動することができる。発電機4は、内燃機関2から駆動される場合、発電機4に負荷を与えることで発電する。一方、発電機4は、駆動用電池10から電力が供給され力行することによって内燃機関2を駆動し始動させる。発電機4は、フロントインバータ18に設けられた発電機制御装置4aによって制御される。発電機制御装置4aは、制御装置20と電気的に接続され、制御装置20からの信号を取得し、発電機4が所望の運転状態となるように発電と力行を制御する。 The generator 4 generates electricity by being driven by the internal combustion engine 2. The electric power (first electric power) generated by the generator 4 can charge the drive battery 10, and the front motor 6 and the rear motor 8 (hereinafter, with each motor in the present specification) via the front inverter 18 and the rear inverter 8b. It can be supplied to (Note). In the present embodiment, the generator 4 is a motor generator, and the internal combustion engine 2 can be rotationally driven in addition to power generation. When the generator 4 is driven from the internal combustion engine 2, the generator 4 generates electricity by applying a load to the generator 4. On the other hand, the generator 4 drives and starts the internal combustion engine 2 by supplying electric power from the drive battery 10 and running the power. The generator 4 is controlled by the generator control device 4a provided in the front inverter 18. The generator control device 4a is electrically connected to the control device 20, acquires a signal from the control device 20, and controls power generation and power running so that the generator 4 is in a desired operating state.
 駆動用電池10は、リチウムイオン電池等の二次電池で構成され、複数の電池セルをまとめて構成された図示しない電池モジュールを有する。駆動用電池10は、各モータの電源として機能する。さらに駆動用電池10は、電池モジュールの充電率(State Of Charge、以下、SOC)の算出、電池モジュールの劣化状態(State Of Health 以下 SOH)、および電池モジュールの電圧Bvおよび電池温度Btmpの検出を行う電池モニタリングユニット(BMU)10aを有する。電池モニタリングユニット10aは、駆動用電池10の電池温度Btmpを取得し、制御装置20に送信する。 The drive battery 10 is composed of a secondary battery such as a lithium ion battery, and has a battery module (not shown) composed of a plurality of battery cells collectively. The drive battery 10 functions as a power source for each motor. Further, the drive battery 10 detects the charge rate of the battery module (State Of Charge, hereinafter SOC), the deterioration state of the battery module (State Of Health, hereinafter SOH), the voltage Bv of the battery module, and the battery temperature Btmp. It has a battery monitoring unit (BMU) 10a to perform. The battery monitoring unit 10a acquires the battery temperature Btmp of the drive battery 10 and transmits it to the control device 20.
 制御装置20は、実際には、演算装置と、メモリと、入出力バッファ等と、を含むマイクロコンピュータによって構成される。制御装置20は、各センサおよび各種装置からの信号、ならびにメモリに格納されたマップおよびプログラムに基づいて、電動車両1が、所望の運転状態となるように各装置を制御する。 The control device 20 is actually composed of a microprocessor including an arithmetic unit, a memory, an input / output buffer, and the like. The control device 20 controls each device so that the electric vehicle 1 is in a desired operating state based on the signals from each sensor and various devices, and the map and the program stored in the memory.
 本実施形態では、エンジン制御装置2a、発電機制御装置4a、フロントモータ制御装置6a、リアモータ制御装置8a、および電池モニタリングユニット10aを含む各種制御装置が、それぞれ制御装置20と別に設けられる。各種制御装置は、それぞれ制御装置20と電気的に接続される。しかし、各種制御装置は、制御装置20と一体で設けられてもよい。各制御装置は、制御装置20と同様に、演算装置と、メモリと、入出力バッファ等と、を含むマイクロコンピュータによって構成される。 In the present embodiment, various control devices including an engine control device 2a, a generator control device 4a, a front motor control device 6a, a rear motor control device 8a, and a battery monitoring unit 10a are provided separately from the control device 20. Each of the various control devices is electrically connected to the control device 20. However, various control devices may be provided integrally with the control device 20. Like the control device 20, each control device is composed of a microprocessor including an arithmetic unit, a memory, an input / output buffer, and the like.
 図2に示すように、制御装置20は、走行モード制御部30と、電池出力不足判断部32と、発電制御部34と、アクセル開度判断部36と、を有する。走行モード制御部30、電池出力不足判断部32、発電制御部34、およびアクセル開度判断部36は、制御装置20に記憶されるソフトウェアによって実現される機能構成である。しかし、各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)により処理することも可能である。また、制御装置20は、図示しない車輪速センサで前輪12および後輪14の回転数を取得し、速度演算部38によって車輪速センサの回転数に基づいて電動車両1の速度Vを演算する。 As shown in FIG. 2, the control device 20 includes a traveling mode control unit 30, a battery output shortage determination unit 32, a power generation control unit 34, and an accelerator opening degree determination unit 36. The travel mode control unit 30, the battery output shortage determination unit 32, the power generation control unit 34, and the accelerator opening degree determination unit 36 are functional configurations realized by software stored in the control device 20. However, various controls are not limited to software processing, but can also be processed by dedicated hardware (electronic circuits). Further, the control device 20 acquires the rotation speeds of the front wheels 12 and the rear wheels 14 by a wheel speed sensor (not shown), and the speed calculation unit 38 calculates the speed V of the electric vehicle 1 based on the rotation speed of the wheel speed sensor.
 アクセルペダル21は、電動車両1のドライバが踏み込み操作することで、電動車両1の加減速を制御するペダルである。アクセルペダル21には、踏み込み位置を検知するアクセルポジションセンサ21aが設けられる。アクセルポジションセンサ21aは、制御装置20と電気的に接続され、制御装置20にアクセル踏み込み位置(アクセル開度)を送信する。アクセル開度判断部36は、ドライバ要求トルク演算部36aを含む。ドライバ要求トルク演算部36aは、アクセルポジションセンサ21aから取得したアクセル開度Thに基づいて、電動車両1のドライバ要求トルクDTqを演算する。 The accelerator pedal 21 is a pedal that controls acceleration / deceleration of the electric vehicle 1 by being depressed by the driver of the electric vehicle 1. The accelerator pedal 21 is provided with an accelerator position sensor 21a that detects the depressed position. The accelerator position sensor 21a is electrically connected to the control device 20 and transmits the accelerator depression position (accelerator opening degree) to the control device 20. The accelerator opening degree determining unit 36 includes a driver required torque calculation unit 36a. The driver required torque calculation unit 36a calculates the driver required torque DTq of the electric vehicle 1 based on the accelerator opening degree Th acquired from the accelerator position sensor 21a.
 走行モード制御部30は、速度V、SOC、およびアクセル開度Thなどの情報に基づいて、クラッチ16aを制御することによって、パラレルモード、シリーズモード、およびEVモードの中から、いずれかにひとつの走行モードに切り替える。パラレルモードでは、走行モード制御部30は、クラッチ16aを接続し、内燃機関2とフロントモータ6の両方よって前輪駆動軸12aを駆動する。このとき、フロントモータ6には、駆動用電池10からの電力(第2電力)、および発電機4で発電した電力(第1電力)のいずれか一方、または両方が供給される。リアモータ8も同様に駆動用電池10からの電力(第2電力)、および発電機4で発電した電力(第1電力)のいずれか一方、または両方が供給され、後輪駆動軸14aを駆動する。EVモードでは、走行モード制御部30は、クラッチ16aを開放し、駆動用電池10の電力(第2電力)を各モータに供給し、各モータが前輪駆動軸12aおよび後輪駆動軸14a(以下明細書において各駆動軸と記す)を駆動する。 The travel mode control unit 30 controls the clutch 16a based on information such as speed V, SOC, and accelerator opening Th, and is one of parallel mode, series mode, and EV mode. Switch to driving mode. In the parallel mode, the traveling mode control unit 30 connects the clutch 16a and drives the front wheel drive shaft 12a by both the internal combustion engine 2 and the front motor 6. At this time, the front motor 6 is supplied with either one or both of the electric power from the drive battery 10 (second electric power) and the electric power generated by the generator 4 (first electric power). Similarly, the rear motor 8 is supplied with either or both of the electric power from the drive battery 10 (second electric power) and the electric power generated by the generator 4 (first electric power) to drive the rear wheel drive shaft 14a. .. In the EV mode, the traveling mode control unit 30 releases the clutch 16a and supplies the electric power (second electric power) of the drive battery 10 to each motor, and each motor supplies the front wheel drive shaft 12a and the rear wheel drive shaft 14a (hereinafter referred to as the rear wheel drive shaft 14a). Each drive shaft is referred to in the specification).
 シリーズモードでは、走行モード制御部30は、クラッチ16aを開放し、内燃機関2で発電機4を駆動し、発電機4で発電した第1電力を各モータに供給する。また、走行モード制御部30は、第1電力によっては各モータが各駆動軸を駆動する駆動力が不足する場合、駆動用電池10からも各モータに第2電力を供給する。すなわち、走行モード制御部30は、シリーズモードにおいて、第1電力と、第2電力と、によって電動車両1を走行させる。このように、走行モード制御部30は、シリーズモードにおいて、発電機4から各モータに供給する第1電力に駆動用電池10から各モータに供給する第2電力を加えることで、内燃機関2を効率的に運転し、内燃機関2が発電機4を発電する際の消費燃料を減らしながら、電動車両1の加速性能を向上させることができる。 In the series mode, the traveling mode control unit 30 releases the clutch 16a, drives the generator 4 with the internal combustion engine 2, and supplies the first electric power generated by the generator 4 to each motor. Further, when the driving force for driving each drive shaft is insufficient depending on the first electric power, the traveling mode control unit 30 also supplies the second electric power to each motor from the drive battery 10. That is, the traveling mode control unit 30 drives the electric vehicle 1 by the first electric power and the second electric power in the series mode. As described above, in the series mode, the traveling mode control unit 30 adds the second power supplied from the drive battery 10 to each motor to the first power supplied from the generator 4 to each motor to control the internal combustion engine 2. It is possible to improve the acceleration performance of the electric vehicle 1 while operating efficiently and reducing the fuel consumption when the internal combustion engine 2 generates the generator 4.
 走行モード制御部30は、駆動軸トルク演算部30aと、前後分配演算部30bと、フロントモータエンジントルク分配演算部30cと、電力変換演算部30dと、駆動軸トルク制限値演算部30eと、を含む。駆動軸トルク演算部30aは、ドライバ要求トルクDTqと、上限駆動軸トルクTqLimを取得する。駆動軸トルク演算部30aは、ドライバ要求トルクDTqと、上限駆動軸トルクTqLimと、に基づいて各駆動軸に発生させるべき目標駆動軸トルクFRTqを演算する。 The travel mode control unit 30 includes a drive shaft torque calculation unit 30a, a front-rear distribution calculation unit 30b, a front motor engine torque distribution calculation unit 30c, a power conversion calculation unit 30d, and a drive shaft torque limit value calculation unit 30e. include. The drive shaft torque calculation unit 30a acquires the driver required torque DTq and the upper limit drive shaft torque TqLim. The drive shaft torque calculation unit 30a calculates a target drive shaft torque FRTq to be generated in each drive shaft based on the driver required torque DTq and the upper limit drive shaft torque TqLim.
 上限駆動軸トルクTqLimは、後述する電池上限電力W2および発電機4の能力に基づく発電量GWiから、電動車両1に搭載される電子機器などが消費する補器消費電力および各モータにおける損失を差し引き、それらを速度Vで除算したのち単位変換係数を掛け合わせて演算してもよい。上限駆動軸トルクTqLimは、駆動軸トルク制限値演算部30eにおいて演算してもよい。しかし、目標駆動軸トルクFRTqは、これら演算方法に限定されるものではなく、例えば、マップなどを用いてもよい。駆動軸トルク演算部30aは、これら演算を行った後、目標駆動軸トルクFRTqを電力変換演算部30dに送信する。電力変換演算部30dは、目標駆動軸トルクFRTqを目標発電電力W1に変換演算し、発電制御部34に送信する。 The upper limit drive shaft torque TqLim is obtained by subtracting the auxiliary power consumption consumed by the electronic devices mounted on the electric vehicle 1 and the loss in each motor from the power generation amount GWi based on the battery upper limit power W2 and the capacity of the generator 4, which will be described later. , They may be divided by the speed V and then multiplied by the unit conversion coefficient to calculate. The upper limit drive shaft torque TqLim may be calculated by the drive shaft torque limit value calculation unit 30e. However, the target drive shaft torque FRTq is not limited to these calculation methods, and for example, a map or the like may be used. After performing these calculations, the drive shaft torque calculation unit 30a transmits the target drive shaft torque FRTq to the power conversion calculation unit 30d. The power conversion calculation unit 30d converts the target drive shaft torque FRTq into the target power generation power W1 and transmits it to the power generation control unit 34.
 前後分配演算部30bは、路面状況などを取得し、路面状況などに基づいて目標駆動軸トルクFRTqを前輪駆動軸12aに分配する目標前輪軸トルクFTq、および後輪駆動軸14aに分配する目標後輪軸トルクRTqを演算し、フロントモータ制御装置6aおよびリアモータ制御装置8aに送信する。フロントモータエンジントルク分配演算部30cは、パラレルモード中の内燃機関2に要求するパラレルエンジントルクPETqを演算する。 The front-rear distribution calculation unit 30b acquires the road surface condition and the like, and distributes the target drive shaft torque FRTq to the front wheel drive shaft 12a and the rear wheel drive shaft 14a based on the road surface condition and the like. The wheel axle torque RTq is calculated and transmitted to the front motor control device 6a and the rear motor control device 8a. The front motor engine torque distribution calculation unit 30c calculates the parallel engine torque PETq required for the internal combustion engine 2 in the parallel mode.
 電池出力不足判断部32は、駆動用電池10から各モータに供給する第2電力が不足しているか否か判断する。電池出力不足判断部32は、電池出力演算部32aを含む。電池出力演算部32aは、電池モニタリングユニット10aから駆動用電池10のSOC、SOH、電池温度Btmp、および電圧Bvなどを取得し、駆動用電池10が各モータに供給可能な第2電力の上限値である電池上限電力W2を演算する。電池出力不足判断部32は、駆動用電池10の電池上限電力W2が、正常状態における電池上限電力W2よりも低下した場合、第2電力が不足していると判断する。 The battery output shortage determination unit 32 determines whether or not the second power supplied from the drive battery 10 to each motor is insufficient. The battery output shortage determination unit 32 includes a battery output calculation unit 32a. The battery output calculation unit 32a acquires the SOC, SOH, battery temperature Btmp, voltage Bv, etc. of the drive battery 10 from the battery monitoring unit 10a, and the upper limit value of the second power that the drive battery 10 can supply to each motor. The battery upper limit power W2 is calculated. When the battery upper limit power W2 of the drive battery 10 is lower than the battery upper limit power W2 in the normal state, the battery output shortage determination unit 32 determines that the second power is insufficient.
 本実施形態では、電池出力不足判断部32は、電池温度取得部32bを含む。電池温度取得部32bは、電池モニタリングユニット10aから電池温度Btmpを取得する。電池出力不足判断部32は、電池温度Btmpが第1所定温度T1以下の場合、第2電力が不足していると判断する。第1所定温度T1は、SOCおよびSOHに基づいて、予めマップに定めた温度である。より具体的には、図3に示す3次元マップの一例のように、電池出力不足判断部32は、SOCと電池温度Btmpに基づいて駆動用電池10が出力可能な値(State Of Power、以下 SOP)を定めた一面のマップを、SOH毎に複数面記憶している。図3の矢印が示すように、駆動用電池10が新品状態(例えば、SOH=100%)の場合、SOPが15kwとなるのは、SOCが20%であり、電池温度Btmpがマイナス20℃である。一方、駆動用電池10が劣化状態(例えば、SOH=30%)の場合、SOPが15kwとなるのは、SOCが20%であり、電池温度Btmpが0℃である。 In the present embodiment, the battery output shortage determination unit 32 includes the battery temperature acquisition unit 32b. The battery temperature acquisition unit 32b acquires the battery temperature Btmp from the battery monitoring unit 10a. The battery output shortage determination unit 32 determines that the second power is insufficient when the battery temperature Btmp is equal to or lower than the first predetermined temperature T1. The first predetermined temperature T1 is a temperature predetermined in the map based on SOC and SOH. More specifically, as in the example of the three-dimensional map shown in FIG. 3, the battery output shortage determination unit 32 can output a value (State Of Power, hereinafter) that the drive battery 10 can output based on the SOC and the battery temperature Btmp. A map on one side that defines SOP) is stored on multiple sides for each SOH. As shown by the arrow in FIG. 3, when the drive battery 10 is in a new state (for example, SOH = 100%), the SOP is 15 kW when the SOC is 20% and the battery temperature is -20 ° C. be. On the other hand, when the drive battery 10 is in a deteriorated state (for example, SOH = 30%), the SOP is 15 kW when the SOC is 20% and the battery temperature Btmp is 0 ° C.
 このように、電池出力不足判断部32は、SOHおよびSOCを取得し、取得したSOHおよびSOCを3次元マップに照らし合わせて、電池出力低下と判断するSOP(以下基準SOP)となる電池温度Btmpを3次元マップから取得する。ここで電池出力不足判断部32は、実際のSOP(以下実SOP)を取得することも可能である。しかし、実SOPは、駆動用電池10の過放電防止を抑制するために、電圧Bvの低下に応じて補正されることがある。このため、電池出力不足判断部32は、実SOPと基準SOPとを比較して電池出力低下を判断した場合、正しく判断できないおそれがある。そこで、電池出力不足判断部32は、基準SOPとなる電池温度Btmpを取得することで、駆動用電池10の電池上限電力W2の低下を正確、かつ、迅速に判断する。なお、電池出力不足判断部32は、電池温度Btmpに変えて外気温などから、電池上限電力W2が低下していると判断してもよい。また、電池出力不足判断部32は、第1所定温度T1を極低温温度(例えば―20℃)として、SOHおよびSOCを取得せず、第1所定温度T1以下の場合、一律に電池上限電力W2が低下していると判断してもよい。さらに、電池出力不足判断部32は、SOHおよびSOCのいずれか一方と、電池温度BtmpおよびSOPの関係を示した2次元マップに基づいて、電池上限電力W2の低下を判断してもよい。また、電池上限電力W2は、電池モニタリングユニット(BMU)10aで演算してもよい。 In this way, the battery output shortage determination unit 32 acquires the SOH and SOC, compares the acquired SOH and SOC with the three-dimensional map, and determines that the battery output is low. Is obtained from the 3D map. Here, the battery output shortage determination unit 32 can also acquire an actual SOP (hereinafter referred to as an actual SOP). However, the actual SOP may be corrected according to the decrease in the voltage Bv in order to suppress the prevention of over-discharging of the drive battery 10. Therefore, when the battery output shortage determination unit 32 determines the battery output decrease by comparing the actual SOP and the reference SOP, it may not be able to correctly determine. Therefore, the battery output shortage determination unit 32 accurately and quickly determines the decrease in the battery upper limit power W2 of the drive battery 10 by acquiring the battery temperature Btmp which is the reference SOP. The battery output shortage determination unit 32 may determine that the battery upper limit power W2 has decreased due to the outside air temperature or the like instead of the battery temperature Btmp. Further, the battery output shortage determination unit 32 does not acquire SOH and SOC with the first predetermined temperature T1 as the extremely low temperature (for example, −20 ° C.), and when the first predetermined temperature T1 or less, the battery upper limit power W2 is uniformly applied. May be determined to be decreasing. Further, the battery output shortage determination unit 32 may determine a decrease in the battery upper limit power W2 based on a two-dimensional map showing the relationship between either SOH or SOC and the battery temperature Btmp and SOP. Further, the battery upper limit power W2 may be calculated by the battery monitoring unit (BMU) 10a.
 また、電池出力不足判断部32は、電池温度Btmpが第2所定温度T2以上の場合、第2電力が不足していると判断する。より具体的には、電池温度Btmpが第2所定温度T2以上の場合、制御装置20の電池出力不足判断部32は、電池上限電力W2を抑制することで、駆動用電池10の温度上昇を抑制する。この結果、駆動用電池10から各モータに供給できる第2電力が低下する。電池出力不足判断部32は、このように駆動用電池10が高温状態において電池上限電力W2を抑制する場合、第2電力が不足していると判断する。 Further, the battery output shortage determination unit 32 determines that the second power is insufficient when the battery temperature Btmp is the second predetermined temperature T2 or higher. More specifically, when the battery temperature Btmp is the second predetermined temperature T2 or higher, the battery output shortage determination unit 32 of the control device 20 suppresses the temperature rise of the drive battery 10 by suppressing the battery upper limit power W2. do. As a result, the second electric power that can be supplied from the drive battery 10 to each motor is reduced. When the drive battery 10 suppresses the battery upper limit power W2 in such a high temperature state, the battery output shortage determination unit 32 determines that the second power is insufficient.
 さらに、電池出力不足判断部32は、速度Vを取得し、速度Vが第1所定速度Vt以上の場合、第2電力が不足していると判断する。すなわち、電動車両1が高速で走行している場合、加速するために必要なエネルギーが大きくなる。このため、第1所定速度Vt以上では第1所定速度Vt未満よりも、より多くの第1電力および第2電力が必要となる。このため、電池出力不足判断部32は、第1所定速度Vt以上の場合、第2電力が不足していると判断することで、各モータに第1電力を素早く供給できるようにする。すなわち、電池出力不足判断部32は、電池上限電力W2の低下がなく、電池上限電力W2の抑制を行っていない場合であっても、第1所定速度Vt以上の場合は、第2電力が不足していると判断する。 Further, the battery output shortage determination unit 32 acquires the speed V, and when the speed V is equal to or higher than the first predetermined speed Vt, determines that the second power is insufficient. That is, when the electric vehicle 1 is traveling at high speed, the energy required for accelerating becomes large. Therefore, more first power and second power are required at the first predetermined speed Vt or higher than at less than the first predetermined speed Vt. Therefore, the battery output shortage determination unit 32 determines that the second power is insufficient when the first predetermined speed Vt or more, so that the first power can be quickly supplied to each motor. That is, the battery output shortage determination unit 32 does not have a decrease in the battery upper limit power W2, and even if the battery upper limit power W2 is not suppressed, the second power is insufficient when the first predetermined speed Vt or more. Judge that you are doing.
 発電制御部34は、駆動軸トルク演算部30aおよび電力変換演算部30dによって演算した目標発電電力W1に基づいて内燃機関2と、発電機4を制御する。ここで、目標発電電力W1は、発電機4が各モータに供給すべき第1電力の目標値である。本実施形態では、発電制御部34は、内燃機関2で発電機4を駆動し、目標発電電力W1の発電を行うために、後述する各演算部において内燃機関2に要求するエンジン要求トルクETqを演算する。 The power generation control unit 34 controls the internal combustion engine 2 and the generator 4 based on the target power generation power W1 calculated by the drive shaft torque calculation unit 30a and the power conversion calculation unit 30d. Here, the target generated power W1 is a target value of the first power that the generator 4 should supply to each motor. In the present embodiment, the power generation control unit 34 drives the generator 4 with the internal combustion engine 2 to generate the engine required torque ETq required for the internal combustion engine 2 in each calculation unit described later in order to generate the target power generation power W1. Calculate.
 発電制御部34は、電力演算部34aと、目標エンジン回転数演算部34bと、エンジントルク演算部34cと、発電機トルク演算部34dと、を含む。電力演算部34aは、目標発電電力W1に基づいて、発電機4から各モータに第1電力を供給する場合に発生する送電損失など加味して、発電機4に要求する目標発電量GWを演算する。送電損失は、発電機4の発電量と送電損失の関係を記録したマップに基づいて演算してもよい。また、目標発電量GWは、駆動用電池10に充電する電力、その他電動車両1の機器に必要とされる電力、および各モータを保護するための発電量の上限値を加味して演算してもよい。 The power generation control unit 34 includes a power calculation unit 34a, a target engine rotation speed calculation unit 34b, an engine torque calculation unit 34c, and a generator torque calculation unit 34d. The power calculation unit 34a calculates the target power generation amount GW required for the generator 4 based on the target power generation power W1 in consideration of the transmission loss generated when the first power is supplied from the generator 4 to each motor. do. The transmission loss may be calculated based on a map recording the relationship between the amount of power generated by the generator 4 and the transmission loss. Further, the target power generation amount GW is calculated by taking into account the power for charging the drive battery 10, other power required for the equipment of the electric vehicle 1, and the upper limit of the power generation amount for protecting each motor. May be good.
 目標エンジン回転数演算部34bは、目標発電量GWを取得し、目標発電量GWに基づいて、内燃機関2が発電機4を駆動する回転数の目標値である目標エンジン回転数(目標回転数)Ertを演算する。このとき、目標エンジン回転数演算部34bは、内燃機関2の燃料噴射量および点火時期を記録したマップを参照し、内燃機関2が最良の燃費となるように目標エンジン回転数Ertを演算してもよい。これによって、電動車両1の燃費が向上する。また、目標エンジン回転数演算部34bは、速度Vを取得し、速度Vに応じた目標エンジン回転数Ertとなるように演算してもよい。これによって、電動車両1が加速する際に、速度Vに対して内燃機関2の回転数が過度に高くなることを抑制できる。 The target engine rotation speed calculation unit 34b acquires the target power generation amount GW, and based on the target power generation amount GW, the target engine rotation speed (target rotation speed) which is the target value of the rotation speed at which the internal combustion engine 2 drives the generator 4. ) Calculate the Engine. At this time, the target engine rotation speed calculation unit 34b refers to the map recording the fuel injection amount and the ignition timing of the internal combustion engine 2, and calculates the target engine rotation speed Ert so that the internal combustion engine 2 has the best fuel efficiency. May be good. This improves the fuel efficiency of the electric vehicle 1. Further, the target engine rotation speed calculation unit 34b may acquire the speed V and calculate the target engine rotation speed Ert according to the speed V. As a result, when the electric vehicle 1 accelerates, it is possible to prevent the rotation speed of the internal combustion engine 2 from becoming excessively high with respect to the speed V.
 発電制御部34は、目標エンジン回転数Ertの下限値minErtを設定する。また、発電制御部34は、走行モード制御部30によってシリーズモードに切り替えられ、かつ、電池出力不足判断部32によって第2電力が不足していると判断された場合、下限値minErtを大きい値に補正し、内燃機関2を制御する補正制御を行う(以下明細書および図8において、この補正制御を下限値補正制御と記す)。図4に示すように、下限値minErtはアクセルペダル21が踏み込まれていない時刻T0から時刻T1までの目標エンジン回転数Ertである。本実施形態では、目標エンジン回転数演算部34bが目標エンジン回転数Ertを取得し、下限値minErtの初期値を設定する。初期値は、予め記憶した値であってもよい。目標エンジン回転数演算部34bは、電池出力不足判断部32によって第2電力が不足していると判断された場合、目標エンジン回転数Ertの下限値minErtを初期値よりも大きい値に補正する補正演算を行う(図4 補正時Ert参照)。 The power generation control unit 34 sets the lower limit value minErt of the target engine speed Ert. Further, when the power generation control unit 34 is switched to the series mode by the traveling mode control unit 30 and the battery output shortage determination unit 32 determines that the second power is insufficient, the lower limit value minErt is set to a large value. Correction is performed to control the internal combustion engine 2 (hereinafter, this correction control is referred to as a lower limit value correction control in the specification and FIG. 8). As shown in FIG. 4, the lower limit value minErt is the target engine speed Ert from the time T0 when the accelerator pedal 21 is not depressed to the time T1. In the present embodiment, the target engine rotation speed calculation unit 34b acquires the target engine rotation speed Ert and sets the initial value of the lower limit value minErt. The initial value may be a value stored in advance. When the battery output shortage determination unit 32 determines that the second power is insufficient, the target engine rotation speed calculation unit 34b corrects the lower limit value minErt of the target engine rotation speed Ert to a value larger than the initial value. Perform the calculation (see Fig. 4 Engine at the time of correction).
 また、目標エンジン回転数演算部34bは、目標エンジン回転数Ertおよび速度Vを取得し、速度Vが高いほど目標エンジン回転数Ertの下限値minErtを初期値よりも大きい値に設定する補正演算を行ってもよい。これによって、発電機4から各モータに供給する第1電力が速やかに上昇する。このため、電動車両1の加速性能が向上する。また、電動車両1の速度Vが高いほど、後述する実エンジン回転数Erqが高い回転数に早く到達しやすい。一方、速度Vが低い場合、後述する実エンジン回転数Erqが低くなるため、内燃機関2の回転による音や振動を低減できる。 Further, the target engine rotation speed calculation unit 34b acquires the target engine rotation speed Ert and the speed V, and performs a correction operation to set the lower limit value minErt of the target engine rotation speed Ert to a value larger than the initial value as the speed V increases. You may go. As a result, the first electric power supplied from the generator 4 to each motor is rapidly increased. Therefore, the acceleration performance of the electric vehicle 1 is improved. Further, the higher the speed V of the electric vehicle 1, the faster the actual engine rotation speed Erq, which will be described later, is reached. On the other hand, when the speed V is low, the actual engine rotation speed Erq, which will be described later, is low, so that noise and vibration due to the rotation of the internal combustion engine 2 can be reduced.
 発電制御部34は、目標発電電力W1に基づいて目標発電量GWが増加している場合、目標エンジン回転数Ertの増加率制限値dErtLimを設定する。発電制御部34は、走行モード制御部30によってシリーズモードに切り替えられ、かつ、電池出力不足判断部32によって第2電力が不足していると判断された場合、増加率制限値dErtLimを大きい値に補正し、内燃機関2を制御する補正制御を行う(以下明細書および図8において、この補正制御を制限値補正制御と記す)。増加率制限値dErtLimは、アクセルペダル21が踏み込まれた場合の、目標エンジン回転数Ertの単位時間あたりの変化率の上限値である。すなわち、図4においては、時刻T1から時刻T2までの目標エンジン回転数Ertの傾きの上限値に相当する。 When the target power generation amount GW is increasing based on the target power generation power W1, the power generation control unit 34 sets the increase rate limit value dErtLim of the target engine rotation speed Ert. When the power generation control unit 34 is switched to the series mode by the traveling mode control unit 30 and the battery output shortage determination unit 32 determines that the second power is insufficient, the increase rate limit value dErtLim is set to a large value. Correction is performed to control the internal combustion engine 2 (hereinafter, this correction control is referred to as limit value correction control in the specification and FIG. 8). The increase rate limit value dErtLim is an upper limit value of the rate of change of the target engine speed Ert per unit time when the accelerator pedal 21 is depressed. That is, in FIG. 4, it corresponds to the upper limit of the inclination of the target engine speed Ert from the time T1 to the time T2.
 本実施形態では、目標エンジン回転数演算部34bが目標エンジン回転数Ertの増加率制限値dErtLimを設定する。目標エンジン回転数演算部34bは、時刻T1から時刻T2まで増加率制限値dErtLimの初期値(第1制限値)を設定する。初期値は、予め記憶した値であってもよい。目標エンジン回転数演算部34bは、増加率制限値dErtLimを初期値よりも大きい第2制限値に補正する補正演算を行う。これによって、発電制御部34は、後述する実エンジン回転数Erqを早く上昇させることができる。このため、後述する実エンジン回転数Erqは、より高い回転数に早く到達しやすい。この結果、発電機4は、第1電力をより早く各モータに供給でき、電動車両1の加速がよくなる。 In the present embodiment, the target engine rotation speed calculation unit 34b sets the increase rate limit value dErtLim of the target engine rotation speed Ert. The target engine rotation speed calculation unit 34b sets an initial value (first limit value) of the increase rate limit value dErtLim from the time T1 to the time T2. The initial value may be a value stored in advance. The target engine rotation speed calculation unit 34b performs a correction calculation for correcting the increase rate limit value dErtLim to a second limit value larger than the initial value. As a result, the power generation control unit 34 can quickly increase the actual engine speed Erq, which will be described later. Therefore, the actual engine speed Erq, which will be described later, tends to reach a higher speed quickly. As a result, the generator 4 can supply the first electric power to each motor faster, and the acceleration of the electric vehicle 1 is improved.
 また、本実施形態では、目標エンジン回転数演算部34bは、目標エンジン回転数Ertが高くなるにつれて、第2制限値を低くする。図4および図5に示すように、例えば、4000rpmから5000rpmの間では、増加率制限値dErtLimの第2制限値を4000rpm以下よりも低くすることによって、補正時の目標エンジン回転数Ert(図4の補正時Ert)が緩やかに上昇する。これによって、後述する実エンジン回転数Erqの過度な吹き上がりを抑制しやすい。 Further, in the present embodiment, the target engine rotation speed calculation unit 34b lowers the second limit value as the target engine rotation speed Ert increases. As shown in FIGS. 4 and 5, for example, between 4000 rpm and 5000 rpm, the second limit value of the increase rate limit value dErtLim is set to be lower than 4000 rpm or less, so that the target engine speed Ert at the time of correction (FIG. 4). Ert) at the time of correction of is gradually increased. As a result, it is easy to suppress an excessive rise of the actual engine speed Erq, which will be described later.
 さらに、目標エンジン回転数演算部34bは、第2制限値を駆動用電池10の温度が低い場合よりも駆動用電池10の温度が高い場合の方が小さい値に設定してもよい。より具体的には、図5に示すように、電池温度Btmpが第2所定温度T2以上の場合の増加率制限値dErtLimは、電池温度Btmpが第1所定温度T1以下の場合の増加率制限値dErtLimよりも小さい値である。すなわち、電池温度Btmpは、外気温が常温(概ね10℃から25℃程度)であっても、第2所定温度T2以上となる場合がある。したがって、電池温度Btmpが第2所定温度T2以上となる頻度は、電池温度Btmpが第1所定温度T1以下となる頻度より多い。目標エンジン回転数演算部34bは、このように、より高頻度で発生する駆動用電池10が高温状態である場合は、駆動用電池10が低温状態である場合よりも、増加率制限値dErtLimを小さい値とする。これによって、内燃機関2の回転数が遅く上昇する。この結果、内燃機関2の回転による音や振動を低減できる。一方、駆動用電池10が低温状態においては駆動用電池10が高温状態よりも内燃機関2の回転数が早く上昇する。 Further, the target engine rotation speed calculation unit 34b may set the second limit value to a smaller value when the temperature of the drive battery 10 is high than when the temperature of the drive battery 10 is low. More specifically, as shown in FIG. 5, the increase rate limit value dErtLim when the battery temperature Btmp is the second predetermined temperature T2 or more is the increase rate limit value when the battery temperature Btmp is the first predetermined temperature T1 or less. It is a value smaller than dErtLim. That is, the battery temperature Btmp may be higher than the second predetermined temperature T2 even when the outside air temperature is normal temperature (about 10 ° C to 25 ° C). Therefore, the frequency at which the battery temperature Btmp becomes the second predetermined temperature T2 or more is higher than the frequency at which the battery temperature Btmp becomes the first predetermined temperature T1 or less. In this way, the target engine speed calculation unit 34b sets the increase rate limit value dErtLim when the drive battery 10 generated more frequently is in a high temperature state than when the drive battery 10 is in a low temperature state. Set to a small value. As a result, the rotation speed of the internal combustion engine 2 slows down and rises. As a result, the sound and vibration due to the rotation of the internal combustion engine 2 can be reduced. On the other hand, when the drive battery 10 is in a low temperature state, the rotation speed of the internal combustion engine 2 rises faster than when the drive battery 10 is in a high temperature state.
 エンジントルク演算部34cは、目標発電量GWおよび目標エンジン回転数Ertを取得し、目標発電量GWおよび目標エンジン回転数Ertに基づいて、内燃機関2に要求するエンジン要求トルクETqを演算する。より具体的には、エンジントルク演算部34cは、目標発電量GWから目標エンジン回転数Ertを除算してエンジントルクETq1を演算するとともに、内燃機関2の回転数を変化させるためのトルクを加算する必要がある場合はこのトルクを加算してエンジン要求トルクETqを演算する。エンジントルク演算部34cは、エンジン要求トルクETqをエンジン制御装置2aに送信する。エンジン制御装置2aは、内燃機関2のクランク角センサ(図示せず)などの各種センサから取得する実エンジン回転数(実回転数)Erqに基づいて実エンジントルクETqrを演算する。エンジン制御装置2aは、エンジン要求トルクETqを取得し、実エンジントルクETqrがエンジン要求トルクETqとなるように、内燃機関2を制御する。このとき、エンジン制御装置2aは、実エンジン回転数Erqをエンジントルク演算部34cに送信する。エンジントルク演算部34cは、実エンジン回転数Erqを取得し、目標エンジン回転数Ertとなるようにエンジン要求トルクETqを補正する。 The engine torque calculation unit 34c acquires the target power generation amount GW and the target engine rotation speed Ert, and calculates the engine required torque ETq required for the internal combustion engine 2 based on the target power generation amount GW and the target engine rotation speed Ert. More specifically, the engine torque calculation unit 34c calculates the engine torque ETq1 by dividing the target engine rotation speed Ert from the target power generation amount GW, and adds the torque for changing the rotation speed of the internal combustion engine 2. If necessary, this torque is added to calculate the engine required torque ETq. The engine torque calculation unit 34c transmits the engine required torque ETq to the engine control device 2a. The engine control device 2a calculates the actual engine torque ETqr based on the actual engine rotation speed (actual rotation speed) Erq acquired from various sensors such as the crank angle sensor (not shown) of the internal combustion engine 2. The engine control device 2a acquires the engine required torque ETq and controls the internal combustion engine 2 so that the actual engine torque ETqr becomes the engine required torque ETq. At this time, the engine control device 2a transmits the actual engine speed Erq to the engine torque calculation unit 34c. The engine torque calculation unit 34c acquires the actual engine rotation speed Erq and corrects the engine required torque ETq so as to be the target engine rotation speed Ert.
 発電機トルク演算部34dは、エンジン要求トルクETqを取得し、エンジン要求トルクETqに基づいて、発電機4の目標となる負荷トルクである目標負荷トルクLTqを演算する。より具体的には、発電機トルク演算部34dは、エンジン要求トルクETqに対して釣り合う負荷トルクLTq1に内燃機関2の回転数を変化させるためのトルクを加減算して目標負荷トルクLTqを演算する。発電機トルク演算部34dは、エンジン要求トルクETqと目標負荷トルクLTqの関係を記録したマップに基づいて目標負荷トルクLTqを演算してもよい。発電機トルク演算部34dは、目標負荷トルクLTqを発電機制御装置4aに送信する。発電機制御装置4aは、発電機4の実際の発電量である実発電量GWrおよび発電機4の回転数を検知し、実発電量GWrと発電機4の回転数から実負荷トルクLTqrを演算し、実負荷トルクLTqrが目標負荷トルクLTqとなるように発電機4を制御する。また、発電機制御装置4aは、実発電量GWrを、発電機トルク演算部34dを介してエンジントルク演算部34cに送信する。 The generator torque calculation unit 34d acquires the engine required torque ETq and calculates the target load torque LTq, which is the target load torque of the generator 4, based on the engine required torque ETq. More specifically, the generator torque calculation unit 34d calculates the target load torque LTq by adding or subtracting the torque for changing the rotation speed of the internal combustion engine 2 to the load torque LTq1 that is balanced with the engine required torque ETq. The generator torque calculation unit 34d may calculate the target load torque LTq based on the map recording the relationship between the engine required torque ETq and the target load torque LTq. The generator torque calculation unit 34d transmits the target load torque LTq to the generator control device 4a. The generator control device 4a detects the actual power generation amount GWr, which is the actual power generation amount of the generator 4, and the rotation speed of the generator 4, and calculates the actual load torque LTqr from the actual power generation amount GWr and the rotation speed of the generator 4. Then, the generator 4 is controlled so that the actual load torque LTqr becomes the target load torque LTq. Further, the generator control device 4a transmits the actual power generation amount GWr to the engine torque calculation unit 34c via the generator torque calculation unit 34d.
 発電制御部34は、第1制御モードと、第2制御モードと、を含む。発電制御部34は、走行モード制御部30によってシリーズモードに切り替えられ、電池出力不足判断部32によって第2電力が不足していると判断され、かつ、アクセル開度Thが所定開度Tht以上の場合、第2制御モードから第1制御モードに切り替える。すなわち、発電制御部34は、ドライバが加速を要求しているにも関わらず、電池上限電力W2が低下している場合、第2制御モードから第1制御モードに切り替える。なお、発電制御部34は、実発電量GWrが目標発電量GWよりも小さい場合、すなわち、実発電量GWrが目標発電量GWに対して不足している場合、第2制御モードから第1制御モードに切り替えてもよい。 The power generation control unit 34 includes a first control mode and a second control mode. The power generation control unit 34 is switched to the series mode by the travel mode control unit 30, the battery output shortage determination unit 32 determines that the second power is insufficient, and the accelerator opening Th is a predetermined opening Tht or more. In this case, the second control mode is switched to the first control mode. That is, when the battery upper limit power W2 is low even though the driver requests acceleration, the power generation control unit 34 switches from the second control mode to the first control mode. The power generation control unit 34 controls the first from the second control mode when the actual power generation amount GWr is smaller than the target power generation amount GW, that is, when the actual power generation amount GWr is insufficient with respect to the target power generation amount GW. You may switch to the mode.
 第1制御モードでは、発電制御部34は、内燃機関2を制御して内燃機関2の実エンジン回転数Erqを変化させる。より具体的には、発電制御部34は、第1制御モードでは、エンジン要求トルクETqに目標エンジン回転数Ertを上昇させる場合に必要な回転上昇トルクUTqを含んで演算する。すなわち、エンジントルク演算部34cは、目標発電量GWに基づいて求めたエンジントルクETq1に回転上昇トルクUTqを加算してエンジン要求トルクETqを演算する。回転上昇トルクUTqは、内燃機関2および発電機4の摩擦損失、内燃機関2のクランク軸および発電機4の回転軸の慣性力などを加味し、目標エンジン回転数Ert毎に予め設定されるトルクである。 In the first control mode, the power generation control unit 34 controls the internal combustion engine 2 to change the actual engine speed Erq of the internal combustion engine 2. More specifically, in the first control mode, the power generation control unit 34 calculates the engine required torque ETq including the rotation increase torque UTq required when increasing the target engine rotation speed Ert. That is, the engine torque calculation unit 34c calculates the engine required torque ETq by adding the rotation increase torque UTq to the engine torque ETq1 obtained based on the target power generation amount GW. The rotation increase torque UTq is a torque preset for each target engine rotation speed Ert in consideration of the friction loss of the internal combustion engine 2 and the generator 4, the inertial force of the crank shaft of the internal combustion engine 2 and the rotation shaft of the generator 4. Is.
 一方、第2制御モードでは、発電制御部34は、発電機4を制御して内燃機関2の実エンジン回転数Erqを変化させる。より具体的には、発電制御部34は、第2制御モードでは、目標負荷トルクLTqに回転上昇トルクUTqを含んで演算する。すなわち、発電機トルク演算部34dは、エンジン要求トルクETqと釣り合う負荷トルクLTq1から回転上昇トルクUTqを減算して目標負荷トルクLTqを演算する。 On the other hand, in the second control mode, the power generation control unit 34 controls the generator 4 to change the actual engine speed Erq of the internal combustion engine 2. More specifically, in the second control mode, the power generation control unit 34 calculates the target load torque LTq including the rotation rise torque UTq. That is, the generator torque calculation unit 34d calculates the target load torque LTq by subtracting the rotation rise torque UTq from the load torque LTq1 that balances with the engine required torque ETq.
 このように、第1制御モードでは、内燃機関2が自ら実エンジン回転数Erqを上昇させるため、内燃機関2の吸入空気量および燃料噴射量が第2制御モードよりも増加する。この結果、第1制御モードでは、内燃機関2の燃費は悪化する。しかし、発電機4の発電量は減少しないため、発電機4から各モータに供給する第1電力は減少しない。この結果、電動車両1の加速性能は向上する。 As described above, in the first control mode, the internal combustion engine 2 itself raises the actual engine rotation speed Erq, so that the intake air amount and the fuel injection amount of the internal combustion engine 2 increase as compared with the second control mode. As a result, in the first control mode, the fuel consumption of the internal combustion engine 2 deteriorates. However, since the amount of power generated by the generator 4 does not decrease, the first electric power supplied from the generator 4 to each motor does not decrease. As a result, the acceleration performance of the electric vehicle 1 is improved.
 一方、第2制御モードでは、発電機トルク演算部34dが回転上昇トルクUTqを減算するため、発電機4の実発電量GWrは減少する。しかし、発電機4が実発電量GWrを減らすため、内燃機関2が出力を維持しながら、内燃機関2の実エンジン回転数Erqが上昇する。この結果、内燃機関2の燃費は維持される。なお、目標エンジン回転数Ertが下降する場合、第2制御モードによって、目標負荷トルクLTqを増加させることで、実エンジン回転数Erqが下降する。 On the other hand, in the second control mode, the generator torque calculation unit 34d subtracts the rotation rise torque UTq, so that the actual power generation amount GWr of the generator 4 decreases. However, since the generator 4 reduces the actual power generation amount GWr, the actual engine speed Erq of the internal combustion engine 2 increases while the internal combustion engine 2 maintains the output. As a result, the fuel efficiency of the internal combustion engine 2 is maintained. When the target engine speed Ert decreases, the actual engine speed Erq decreases by increasing the target load torque LTq in the second control mode.
 なお、図6および図7に示すように、本実施形態では、発電制御部34は、第1制御モードにおいて、実エンジン回転数Erqに応じて回転上昇トルクUTqを抑制する。より具体的には、発電制御部34は、実エンジン回転数Erqが目標エンジン回転数Ertよりも大きい場合、回転上昇トルクUTqを抑制してもよい。すなわち、図6に示すように、目標エンジン回転数Ertと実エンジン回転数Erqとの偏差(差分)を演算し、偏差が小さい値になるほど回転上昇トルクUTqを小さくする。図6に示す回転上昇トルクUTqと差分の関係を示すグラフにおいては、偏差が300rpmより小さい場合に回転上昇トルクUTqの値を小さくし、偏差がゼロ以下の場合、回転上昇トルクUTqをゼロにする。これによって、実エンジン回転数Erqが過度に吹き上がることを抑制できる。 As shown in FIGS. 6 and 7, in the present embodiment, the power generation control unit 34 suppresses the rotation increase torque UTq according to the actual engine speed Erq in the first control mode. More specifically, the power generation control unit 34 may suppress the rotation increase torque UTq when the actual engine speed Erq is larger than the target engine speed Ert. That is, as shown in FIG. 6, the deviation (difference) between the target engine rotation speed Ert and the actual engine rotation speed Erq is calculated, and the smaller the deviation is, the smaller the rotation increase torque UTq is. In the graph showing the relationship between the rotation increase torque UTq and the difference shown in FIG. 6, the value of the rotation increase torque UTq is reduced when the deviation is smaller than 300 rpm, and the rotation increase torque UTq is set to zero when the deviation is zero or less. .. As a result, it is possible to prevent the actual engine speed Erq from rising excessively.
 さらに、発電制御部34は、実エンジン回転数Erqが上昇するにつれて回転上昇トルクUTqを抑制してもよい。すなわち、図7に示すように、発電制御部34は、例えば、実エンジン回転数Erqが4000rpm以上の場合、実エンジン回転数Erqが高くなるにつれて、回転上昇トルクUTqを小さくする。この場合であっても、実エンジン回転数Erqが過度に吹き上がることを抑制できる。 Further, the power generation control unit 34 may suppress the rotation increase torque UTq as the actual engine speed Erq increases. That is, as shown in FIG. 7, for example, when the actual engine speed Erq is 4000 rpm or more, the power generation control unit 34 reduces the rotation increase torque UTq as the actual engine speed Erq increases. Even in this case, it is possible to prevent the actual engine speed Erq from rising excessively.
 次に、図8のフローチャートを用いて、本実施形態の制御装置20の発電制御部34および電池出力不足判断部32の制御手順について説明する。発電制御部34は、図示しないイグニッションスイッチがオンされることで、制御動作を開始する。また、発電制御部34は、第2制御モードの状態で制御動作を開始する。 Next, the control procedure of the power generation control unit 34 and the battery output shortage determination unit 32 of the control device 20 of the present embodiment will be described with reference to the flowchart of FIG. The power generation control unit 34 starts a control operation when an ignition switch (not shown) is turned on. Further, the power generation control unit 34 starts the control operation in the state of the second control mode.
 S1では、発電制御部34は、走行モード制御部30によって走行モードがシリーズモードに切り替えられているか否か判断する。制御装置20の発電制御部34は、シリーズモードに切り替えられていると判断した場合(S1 Yes)、S2に処理を進める。 In S1, the power generation control unit 34 determines whether or not the travel mode is switched to the series mode by the travel mode control unit 30. When the power generation control unit 34 of the control device 20 determines that the mode has been switched to the series mode (S1 Yes), the process proceeds to S2.
 S2からS4は、電池出力不足判断部32が行う処理である。S2からS4において、電池出力不足判断部32は、第2電力が不足しているか否か判断する。S2では電池出力不足判断部32は、電池温度Btmpが第1所定温度T1以下か否か判断する。電池出力不足判断部32は、電池温度Btmpが第1所定温度T1より大きい場合(S2 No)、S3に処理を進める。一方、電池出力不足判断部32は、電池温度Btmpが第1所定温度T1以下の場合(S2 Yes)、第2電力が不足していると判断し、判断結果を発電制御部34に送信する。発電制御部34は、電池出力不足判断部32の判断結果を取得し、S10に処理を進める。 S2 to S4 are processes performed by the battery output shortage determination unit 32. In S2 to S4, the battery output shortage determination unit 32 determines whether or not the second power is insufficient. In S2, the battery output shortage determination unit 32 determines whether or not the battery temperature Btmp is equal to or less than the first predetermined temperature T1. When the battery temperature Btmp is larger than the first predetermined temperature T1 (S2 No), the battery output shortage determination unit 32 proceeds to S3. On the other hand, when the battery temperature Btmp is equal to or lower than the first predetermined temperature T1 (S2 Yes), the battery output shortage determination unit 32 determines that the second power is insufficient and transmits the determination result to the power generation control unit 34. The power generation control unit 34 acquires the determination result of the battery output shortage determination unit 32, and proceeds to the process in S10.
 S10では、発電制御部34は、下限値補正制御を行う。発電制御部34は、速度V(km/h)を取得し、速度Vが高くなるほど目標エンジン回転数Ertの下限値minErtを大きい値にする下限値補正制御を行う。このとき、例えば、下限値minErtの初期値が0rpmの場合、下限値minErtを1000rpmに補正すればよい。また、発電制御部34は、速度Vが高いほど、下限値minErtを1000rpmよりも大きい値に適宜補正すればよい。なお、第2制御モードでは、発電制御部34は、下限値minErtの初期値を使用する(図4参照)。発電制御部34は、下限値補正制御を行うと、S5に処理を進める。 In S10, the power generation control unit 34 performs lower limit value correction control. The power generation control unit 34 acquires the speed V (km / h), and performs lower limit value correction control to increase the lower limit value minErt of the target engine rotation speed Ert as the speed V becomes higher. At this time, for example, when the initial value of the lower limit value minErt is 0 rpm, the lower limit value minErt may be corrected to 1000 rpm. Further, the power generation control unit 34 may appropriately correct the lower limit value minErt to a value larger than 1000 rpm as the speed V increases. In the second control mode, the power generation control unit 34 uses the initial value of the lower limit value minErt (see FIG. 4). When the power generation control unit 34 performs the lower limit value correction control, the process proceeds to S5.
 S3では、電池出力不足判断部32は、電池温度Btmpが第2所定温度T2以上か否か判断する。電池出力不足判断部32は、電池温度Btmpが第2所定温度T2未満と判断した場合(S3 No)、S4に処理を進める。一方、電池出力不足判断部32は、電池温度Btmpが第2所定温度T2以上であると判断した場合(S3 Yes)、第2電力が不足していると判断し、判断結果を発電制御部34に送信する。発電制御部34は、電池出力不足判断部32の判断結果を取得し、S5に処理を進める。 In S3, the battery output shortage determination unit 32 determines whether or not the battery temperature Btmp is equal to or higher than the second predetermined temperature T2. When the battery output shortage determination unit 32 determines that the battery temperature Btmp is less than the second predetermined temperature T2 (S3 No), the process proceeds to S4. On the other hand, when the battery output shortage determination unit 32 determines that the battery temperature Btmp is equal to or higher than the second predetermined temperature T2 (S3 Yes), the battery output shortage determination unit 32 determines that the second power is insufficient, and determines the determination result as the power generation control unit 34. Send to. The power generation control unit 34 acquires the determination result of the battery output shortage determination unit 32, and proceeds to S5.
 S4では、電池出力不足判断部32は、電動車両1の速度Vを取得し、速度VがVt以上であるか否か判断する。電池出力不足判断部32は、速度VがVt以上であると判断した場合(S4 Yes)、第2電力が不足していると判断し、判断結果を発電制御部34に送信する。すなわち、電池出力不足判断部32は、S2からS4までの条件のいずれかが成立した場合、第2電力が不足していると判断する。発電制御部34は、電池出力不足判断部32の判断結果を取得し、S5に処理を進める。一方、電池出力不足判断部32は、速度VがVt未満であると判断した場合(S4 No)、S2からS4の条件のいずれも成立していないと判断し、第2電力が不足していないと判断する。電池出力不足判断部32は、この判断結果を発電制御部34に送信する。発電制御部34は、電池出力不足判断部32の判断結果を取得し、S5に処理を進める。 In S4, the battery output shortage determination unit 32 acquires the speed V of the electric vehicle 1 and determines whether or not the speed V is Vt or more. When the battery output shortage determination unit 32 determines that the speed V is Vt or higher (S4 Yes), it determines that the second power is insufficient and transmits the determination result to the power generation control unit 34. That is, when any of the conditions S2 to S4 is satisfied, the battery output shortage determination unit 32 determines that the second power is insufficient. The power generation control unit 34 acquires the determination result of the battery output shortage determination unit 32, and proceeds to S5. On the other hand, when the battery output shortage determination unit 32 determines that the speed V is less than Vt (S4 No), it determines that none of the conditions S2 to S4 is satisfied, and the second power is not insufficient. Judge. The battery output shortage determination unit 32 transmits this determination result to the power generation control unit 34. The power generation control unit 34 acquires the determination result of the battery output shortage determination unit 32, and proceeds to S5.
 S5では、発電制御部34は、アクセル開度Thが所定開度Tht以上か否か判断する。発電制御部34は、アクセル開度Thが所定開度Tht以上と判断した場合(S4 Yes)、S6に処理を進める。S6では、発電制御部34は、第2制御モードから第1制御モードに切り替える。発電制御部34は、第1制御モードに切り替えた後、S7に処理を進める。なお、S5において、発電制御部34は、実発電量GWrが目標発電量GW未満(よりも小さい)か否か判断してもよい。発電制御部34は、実発電量GWrが目標発電量GW未満と判断した場合、S6に処理を進めてもよい。 In S5, the power generation control unit 34 determines whether or not the accelerator opening Th is equal to or greater than the predetermined opening Tht. When the power generation control unit 34 determines that the accelerator opening Th is equal to or greater than the predetermined opening Tht (S4 Yes), the power generation control unit 34 proceeds to S6. In S6, the power generation control unit 34 switches from the second control mode to the first control mode. After switching to the first control mode, the power generation control unit 34 proceeds to S7. In S5, the power generation control unit 34 may determine whether or not the actual power generation amount GWr is less than (smaller than) the target power generation amount GW. When the power generation control unit 34 determines that the actual power generation amount GWr is less than the target power generation amount GW, the process may proceed to S6.
 S7では、発電制御部34は、目標エンジン回転数Ertが上昇しているか否か判断する。発電制御部34は、目標エンジン回転数Ertが上昇していると判断した場合(S7 Yes)、S8に処理を進める。目標エンジン回転数Ertが上昇している場合とは、アクセルペダル21が踏み込まれ、ドライバ要求トルクDTqが増加し、目標発電電力W1も増加し、目標発電量GWが増加している場合である。すなわち、電動車両1が加速状態である。発電制御部34は、アクセル開度Thが所定開度Tht以上の場合、目標エンジン回転数Ertが上昇していると判断してもよい。すなわち、発電制御部34は、S5において、目標エンジン回転数Ertが上昇しているか否かを同時に判断してもよい。また、実発電量GWrが目標発電量GWよりも小さい場合、目標エンジン回転数Ertが上昇していると判断してもよい。 In S7, the power generation control unit 34 determines whether or not the target engine speed Ert has increased. When the power generation control unit 34 determines that the target engine speed Ert is increasing (S7 Yes), the power generation control unit 34 proceeds to process in S8. The case where the target engine speed Ert is increased is a case where the accelerator pedal 21 is depressed, the driver required torque DTq increases, the target generated power W1 also increases, and the target power generation amount GW increases. That is, the electric vehicle 1 is in the accelerated state. When the accelerator opening Th is equal to or higher than the predetermined opening Tht, the power generation control unit 34 may determine that the target engine speed Ert has increased. That is, the power generation control unit 34 may simultaneously determine in S5 whether or not the target engine speed Ert has increased. Further, when the actual power generation amount GWr is smaller than the target power generation amount GW, it may be determined that the target engine speed Ert has increased.
 S8では、発電制御部34は、制限値補正制御を行う。ここで、例えば、発電制御部34は、増加率制限値dErtLimの初期値が20%であれば、20%よりも大きい値に設定する補正を行えばよい。なお、第2制御モードでは、増加率制限値dErtLimの初期値を使用する。S7で制限値補正制御を行うと、S9に処理を進める。 In S8, the power generation control unit 34 performs limit value correction control. Here, for example, if the initial value of the increase rate limit value dErtLim is 20%, the power generation control unit 34 may make a correction to set the value to a value larger than 20%. In the second control mode, the initial value of the increase rate limit value dErtLim is used. When the limit value correction control is performed in S7, the process proceeds to S9.
 S9では、発電制御部34は、アクセル開度判断部36からアクセル開度Thを取得し、アクセル開度Thがゼロ(アクセルオフ)であるか否かを判断する。発電制御部34は、アクセルオフと判断した場合(S9 Yes)、下限値補正、増加率制限補正も共に終了し、処理をS11に進める。S11では、発電制御部34は、第1制御モードから第2制御モードに切り替え、S1の前に処理を進める。 In S9, the power generation control unit 34 acquires the accelerator opening degree Th from the accelerator opening degree determination unit 36, and determines whether or not the accelerator opening degree Th is zero (accelerator off). When the power generation control unit 34 determines that the accelerator is off (S9 Yes), both the lower limit value correction and the increase rate limit correction are completed, and the process proceeds to S11. In S11, the power generation control unit 34 switches from the first control mode to the second control mode, and proceeds with the process before S1.
 発電制御部34は、シリーズモードでないと判断した場合(S1 No)、S1の前に処理を戻す。アクセル開度Thが所定開度Thtより小さいと判断した場合(S5 No)、S11に処理を進めて、第2制御モードを維持し、S1の前に処理を戻す。 When the power generation control unit 34 determines that the mode is not in the series mode (S1 No), the power generation control unit 34 returns the processing before S1. When it is determined that the accelerator opening Th is smaller than the predetermined opening Tht (S5 No), the process proceeds to S11, the second control mode is maintained, and the process is returned before S1.
 発電制御部34は、目標エンジン回転数Ertが上昇していないと判断した場合(S7 No)、およびアクセルオフされていないと判断した場合(S9 No)、S5の前に処理を戻す。これにより、アクセル開度Thが所定開度Thtより小さくなるまで、第1制御モードを維持する。 The power generation control unit 34 returns the process before S5 when it is determined that the target engine speed Ert has not increased (S7 No) and when it is determined that the accelerator has not been turned off (S9 No). As a result, the first control mode is maintained until the accelerator opening Th is smaller than the predetermined opening Tht.
 次に本開示の第2実施形態の電動車両201の制御装置220について、図面を参照しながら説明する。なお、第2実施形態における電動車両1および制御装置220のシステム構成は、第1実施形態と同一であるため説明を省略する。また、第2実施形態における制御装置220が行う制御については、第1実施形態との制御と異なる点のみ説明する。 Next, the control device 220 of the electric vehicle 201 of the second embodiment of the present disclosure will be described with reference to the drawings. Since the system configurations of the electric vehicle 1 and the control device 220 in the second embodiment are the same as those in the first embodiment, the description thereof will be omitted. Further, the control performed by the control device 220 in the second embodiment will be described only in that it differs from the control in the first embodiment.
 第2実施形態における制御装置220は、発電制御部234が目標エンジン回転数Ertの下限値minErtに加えて、上限値maxErtを設定する点が第1実施形態における制御装置20と異なる。 The control device 220 in the second embodiment is different from the control device 20 in the first embodiment in that the power generation control unit 234 sets the upper limit value maxErt in addition to the lower limit value minErt of the target engine rotation speed Ert.
 図9に示すように、本実施形態のタイミングチャートでは、電池温度取得部32aによって取得した電池温度Btmpが段階的に上昇し、第2電力が不足する例について示す。図9の時刻0から時刻Aまでに示すように、電動車両201の速度Vが上昇するとともに、電池温度Btmpが上昇する。目標エンジン回転数Ertは、時刻0から時刻Aまでの間、増加率制限値dErtLimは第1制限値で増加する。時刻Aを超えると、時刻Bに向けて速度Vが下がり、走行モード制御部30によって走行モードがシリーズモードに切り替えられる。一方、電池温度Btmpは、時刻Aから時刻Bの間も低下しない。時刻Bにおいて、電池温度Btmpが第2所定温度T2以上となると、電池出力不足判断部32は、第2電力が不足していると判断する。 As shown in FIG. 9, the timing chart of the present embodiment shows an example in which the battery temperature Btmp acquired by the battery temperature acquisition unit 32a gradually increases and the second electric power is insufficient. As shown from time 0 to time A in FIG. 9, the speed V of the electric vehicle 201 increases and the battery temperature Btmp increases. The target engine speed Ert increases from time 0 to time A, and the increase rate limit value dErtLim increases at the first limit value. When the time A is exceeded, the speed V decreases toward the time B, and the traveling mode control unit 30 switches the traveling mode to the series mode. On the other hand, the battery temperature Btmp does not decrease between the time A and the time B. When the battery temperature Btmp becomes the second predetermined temperature T2 or more at the time B, the battery output shortage determination unit 32 determines that the second power is insufficient.
 発電制御部234は、走行モード制御部30によってシリーズモードに切り替えられ、かつ、電池出力不足判断部32によって第2電力が不足していると判断された場合、増加率制限値dErtLimを補正する制限値補正制御を実行する(図9の制限値補正制御のON参照)。発電制御部234は、制限値補正制御に加えて、さらに下限値補正制御および第2制御モードから第1制御モードへの切り替えの少なくともいずれか一方を実行してもよい。 When the power generation control unit 234 is switched to the series mode by the traveling mode control unit 30 and the battery output shortage determination unit 32 determines that the second power is insufficient, the limit for correcting the increase rate limit value dErtLim. The value correction control is executed (see ON of the limit value correction control in FIG. 9). In addition to the limit value correction control, the power generation control unit 234 may further execute at least one of the lower limit value correction control and the switching from the second control mode to the first control mode.
 図9の時刻Cから時刻Dでは、電動車両201のユーザによってアクセルペダル21が再び踏まれた状態を示す。その間、電池温度Btmpが低下せず、引き続きシリーズモードが継続している。このような場合、発電制御部234は、振動・騒音低減制御(以下明細書においてNV低減制御と記す。NVはNoise,Vibrationの略である)を実行する。より具体的には、発電制御部234は、上限値maxErtを所定回転数R1以下に制限する。時刻Cから時刻Dの目標エンジン回転数Ertのグラフに示すように、発電制御部234は、目標エンジン回転数Ertが所定回転数R1となるまで、増加率制限値dErtLimに第1制限値よりも大きい第2制限値を用いて目標エンジン回転数Ertを増加させる。これによって、発電制御部234は、電動車両201の燃費の悪化の抑制と、加速性能の向上を図りながら内燃機関2の回転数上昇に伴う振動・騒音の悪化を抑制する。 From time C to time D in FIG. 9, the state in which the accelerator pedal 21 is depressed again by the user of the electric vehicle 201 is shown. During that time, the battery temperature Btmp did not drop, and the series mode continued. In such a case, the power generation control unit 234 executes vibration / noise reduction control (hereinafter referred to as NV reduction control; NV is an abbreviation for Noise, Vibration). More specifically, the power generation control unit 234 limits the upper limit value maxErt to a predetermined rotation speed R1 or less. As shown in the graph of the target engine speed Ert from time C to time D, the power generation control unit 234 sets the increase rate limit value dErtLim to the increase rate limit value dErtLim from the first limit value until the target engine speed Ert reaches the predetermined speed R1. A large second limit is used to increase the target engine speed Ert. As a result, the power generation control unit 234 suppresses deterioration of vibration and noise due to an increase in the rotation speed of the internal combustion engine 2 while suppressing deterioration of fuel efficiency of the electric vehicle 201 and improving acceleration performance.
 ここで、所定回転数R1は、内燃機関2の出力特性の変化点であってもよい。図10は、内燃機関2の出力特性を示すグラフである。図10に示すように、内燃機関2のエンジン最大出力は、所定回転数R1までは略一定の傾きであり、所定回転数R1を超えると、エンジン最大出力の傾きが低下する。発電制御部234は、所定回転数R1まで増加率制限値dErtLimとして第2制限値を用いて目標エンジン回転数Ertを上昇させる。これによって、発電制御部234は、内燃機関2の出力を効率よく使用しながら素早く第1電力をモータに供給する。 Here, the predetermined rotation speed R1 may be a change point of the output characteristics of the internal combustion engine 2. FIG. 10 is a graph showing the output characteristics of the internal combustion engine 2. As shown in FIG. 10, the maximum engine output of the internal combustion engine 2 has a substantially constant inclination up to the predetermined rotation speed R1, and when the predetermined rotation speed R1 is exceeded, the inclination of the maximum engine output decreases. The power generation control unit 234 raises the target engine rotation speed Ert by using the second limit value as the increase rate limit value dErtLim up to the predetermined rotation speed R1. As a result, the power generation control unit 234 quickly supplies the first electric power to the motor while efficiently using the output of the internal combustion engine 2.
 なお、図9の時刻BからCに示すように、発電制御部234は、目標エンジン回転数Ertが所定回転数R1以上である状況において電池出力不足判断部32によって第2電力が不足していると判断された場合、目標エンジン回転数Ertが所定回転数R1となるまで待ってから、NV低減制御を実行する。 As shown from time B to C in FIG. 9, the power generation control unit 234 lacks the second power by the battery output shortage determination unit 32 in a situation where the target engine rotation speed Ert is equal to or higher than the predetermined rotation speed R1. If it is determined, the NV reduction control is executed after waiting until the target engine rotation speed Ert reaches the predetermined rotation speed R1.
 図9の時刻Dから時刻Eに示すように、発電制御部234は、電動車両201の速度Vが第2所定速度V2未満の場合、目標エンジン回転数Ertを所定回転数R1以下に制限する。本実施形態では、時刻Dから時刻Eまでの間、電動車両201の速度Vが上昇を続ける。発電制御部234は、この間、目標エンジン回転数Ertを所定回転数R1に維持することによって、目標エンジン回転数Ertの上限値maxErtを制限する。 As shown from time D to time E in FIG. 9, when the speed V of the electric vehicle 201 is less than the second predetermined speed V2, the power generation control unit 234 limits the target engine rotation speed Ert to the predetermined rotation speed R1 or less. In the present embodiment, the speed V of the electric vehicle 201 continues to increase from time D to time E. During this period, the power generation control unit 234 limits the upper limit value maxErt of the target engine rotation speed Ert by maintaining the target engine rotation speed Ert at the predetermined rotation speed R1.
 また、時刻Cから時刻Eまでの区間では、増加率制限値dErtLimが高いため、目標エンジン回転数Ertが素早く上昇することによって、実エンジン回転数Erqも早く上昇する。一方、電動車両201の速度Vに比較して内燃機関2の実エンジン回転数Erqが高い場合、電動車両201のユーザは、電動車両201の振動・騒音が大きいことに対する違和感、または電動車両201が空走しているかのような違和感(空走感)を生じることがある。しかし、発電制御部234は、第2所定速度V2未満は、目標エンジン回転数Ertの上限値maxErtを所定回転数R1に制限するため、このような違和感が生じにくい。さらに、時刻Dから時刻Eでは、発電制御部234は、電動車両201の速度Vが上昇している間は、目標エンジン回転数Ertを維持する。これによって発電制御部234は、実エンジン回転数Erqが急激に低下することによって生じる違和感の発生を抑制できる。 Further, in the section from time C to time E, the increase rate limit value dErtLim is high, so that the target engine speed Ert rises quickly, so that the actual engine speed Erq also rises quickly. On the other hand, when the actual engine rotation speed Erq of the internal combustion engine 2 is higher than the speed V of the electric vehicle 201, the user of the electric vehicle 201 feels uncomfortable with the large vibration and noise of the electric vehicle 201, or the electric vehicle 201 feels uncomfortable. It may cause a feeling of strangeness (feeling of idling) as if it were idling. However, since the power generation control unit 234 limits the upper limit value maxErt of the target engine rotation speed Ert to the predetermined rotation speed R1 when the second predetermined speed is less than V2, such a feeling of strangeness is unlikely to occur. Further, from time D to time E, the power generation control unit 234 maintains the target engine speed Ert while the speed V of the electric vehicle 201 is increasing. As a result, the power generation control unit 234 can suppress the occurrence of a sense of discomfort caused by the sudden decrease in the actual engine speed Erq.
 図9の時刻Eから時刻Fに示すように、発電制御部234は、電動車両201の速度Vが第2所定速度V2以上から第3所定速度V3未満の場合、速度Vが上昇するにつれて上限値maxErtを緩和する。第3所定速度V3は、第2所定速度V2よりも高い値である。本実施形態では、発電制御部234は、速度Vが上昇するにつれて目標エンジン回転数Ertの上限値maxErtが段階的に上昇するマップを参照する。発電制御部234は、目標エンジン回転数Ertの上限値maxErtを速度Vに応じて高くすることによって、上限値maxErtを緩和する。これによって、速度Vの増加に合わせて実発電量GWrも増加する。この結果、空走感を抑制しながら電池出力不足を補い、電動車両201の加速性能の向上が図れる。 As shown from time E to time F in FIG. 9, when the speed V of the electric vehicle 201 is from the second predetermined speed V2 or more to less than the third predetermined speed V3, the power generation control unit 234 increases the upper limit value as the speed V increases. Relax maxErt. The third predetermined speed V3 is a higher value than the second predetermined speed V2. In the present embodiment, the power generation control unit 234 refers to a map in which the upper limit value maxErt of the target engine rotation speed Ert gradually increases as the speed V increases. The power generation control unit 234 relaxes the upper limit value maxErt by increasing the upper limit value maxErt of the target engine speed Ert according to the speed V. As a result, the actual power generation amount GWr also increases as the speed V increases. As a result, the shortage of battery output can be compensated for while suppressing the feeling of free running, and the acceleration performance of the electric vehicle 201 can be improved.
 図9の時刻F以降に示すように、発電制御部234は、第3所定速度V3以上では、上限値maxErtの制限を解除する。本実施形態では、電動車両201は時刻F以降も速度Vが上昇するため、発電制御部234は、目標エンジン回転数Ertが目標エンジン回転数Ertの最大値である最大回転数Rmaxを維持する。その後、アクセルペダル21が離され電動車両201が減速すると、発電制御部234は、目標エンジン回転数Ertを下げる。発電制御部234は、最終的に目標エンジン回転数Ertが所定回転数R1を下回った場合、NV低減制御を終了する。 As shown after the time F in FIG. 9, the power generation control unit 234 releases the limitation of the upper limit value maxErt at the third predetermined speed V3 or higher. In the present embodiment, since the speed V of the electric vehicle 201 increases even after the time F, the power generation control unit 234 maintains the maximum rotation speed Rmax at which the target engine rotation speed Ert is the maximum value of the target engine rotation speed Ert. After that, when the accelerator pedal 21 is released and the electric vehicle 201 decelerates, the power generation control unit 234 lowers the target engine speed Ert. When the target engine rotation speed Ert finally falls below the predetermined rotation speed R1, the power generation control unit 234 ends the NV reduction control.
 以上説明した通り、本開示の電動車両1,201の制御装置20,220によれば、電動車両1,201の燃費の悪化の抑制と、加速性能の向上を両立できる。 As described above, according to the control devices 20 and 220 of the electric vehicles 1,201 of the present disclosure, it is possible to suppress the deterioration of the fuel efficiency of the electric vehicles 1,201 and improve the acceleration performance at the same time.
 <他の実施形態>
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の変形例は必要に応じて任意に組合せ可能である。
<Other embodiments>
Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments, and various changes can be made without departing from the gist of the invention. In particular, the plurality of modifications described in the present specification can be arbitrarily combined as needed.
 (a)上記第1実施形態では、発電制御部34は、アクセル開度Thが所定開度Tht以上と判断した場合、第1制御モードに切り替えたが、本開示はこれに限定されない。発電制御部34は、S2からS4において電池出力不足判断部32によって第2電力が不足していると判断した場合、判断結果を取得し第1制御モードに即座に切り替えてもよい。 (A) In the first embodiment, when the power generation control unit 34 determines that the accelerator opening Th is equal to or greater than the predetermined opening Tht, the power generation control unit 34 switches to the first control mode, but the present disclosure is not limited to this. When the power generation control unit 34 determines in S2 to S4 that the second power is insufficient by the battery output shortage determination unit 32, the power generation control unit 34 may acquire the determination result and immediately switch to the first control mode.
 (b)上記第1実施形態では、発電制御部34は、S2において駆動用電池10が第1所定温度T1以下の場合(S2 Yes)、第1制御モードに切り替える前に下限値補正制御を実施する例を用いて説明したが、本開示はこれに限定されない。下限値補正制御は、第1制御モードに切り替えた後に実施してもよい。 (B) In the first embodiment, when the drive battery 10 is at least the first predetermined temperature T1 in S2 (S2 Yes), the power generation control unit 34 performs the lower limit value correction control before switching to the first control mode. However, the present disclosure is not limited to this. The lower limit value correction control may be performed after switching to the first control mode.
 (c)上記第1実施形態では、発電制御部34は、電池出力不足判断部32によって第2電力が不足していると判断された場合、下限値補正制御を行い、第1モードへの切り替え、および制限値補正制御行う例を用いて説明したが、本開示はこれに限定されない。発電制御部34は、電池出力不足判断部32によって第2電力が不足していると判断された場合であっても、電動車両1のユーザがエコモードを選択した場合、下限値補正制御、第1モードへの切り替え、および制限値補正制御のいずれか、または全てを行わないようにしてもよい。これによって、エコモードの場合、燃費を優先できる。また、発電制御部34は、電動車両1のユーザが下限値補正制御、第1モードへの切り替え、および制限値補正制御のいずれかを行うように選択できる選択部を有してもよい。これによって、ユーザが選択的に加速および燃費のいずれか一方を優先できる。また、発電制御部34は、電動車両1のナビゲーションシステムと連動し、電動車両1が住宅街を走行している場合、下限値補正制御を、行わなくてもよい。これによって、電動車両1が静かに住宅街を走行できる。 (C) In the first embodiment, when the battery output shortage determination unit 32 determines that the second power is insufficient, the power generation control unit 34 performs lower limit value correction control and switches to the first mode. , And the example of performing limit value correction control has been described, but the present disclosure is not limited to this. Even if it is determined by the battery output shortage determination unit 32 that the second power is insufficient, the power generation control unit 34 controls the lower limit value correction when the user of the electric vehicle 1 selects the eco mode. Switching to one mode and / or limit value correction control may not be performed. As a result, fuel efficiency can be prioritized in the eco mode. Further, the power generation control unit 34 may have a selection unit that allows the user of the electric vehicle 1 to select one of the lower limit value correction control, the switching to the first mode, and the limit value correction control. This allows the user to selectively prioritize either acceleration or fuel economy. Further, the power generation control unit 34 is interlocked with the navigation system of the electric vehicle 1, and when the electric vehicle 1 is traveling in a residential area, the lower limit value correction control may not be performed. As a result, the electric vehicle 1 can quietly travel in the residential area.
 (d)上記第1実施形態、および第2実施形態では、電動車両1,201が四輪駆動型のハイブリッド自動車であり場合を例に説明したが、本開示はこれに限定されない。電動車両1,201はプラグインハイブリッドカーとすることができ、駆動用電池10から外部機器(例えば家電機器等)に給電する給電機能を有してもよい。 (D) In the first embodiment and the second embodiment described above, the case where the electric vehicles 1,201 are four-wheel drive hybrid vehicles has been described as an example, but the present disclosure is not limited to this. The electric vehicles 1,201 can be a plug-in hybrid car, and may have a power supply function of supplying power from the drive battery 10 to an external device (for example, a home electric appliance).
1,201:電動車両,2:内燃機関,4:発電機
6:フロントモータ,8:リアモータ,10:駆動用電池
12a:前輪駆動軸,14a:後輪駆動軸,20,220:制御装置
21:アクセルペダル,21a:アクセルポジションセンサ
30:走行モード制御部,32:電池出力不足判断部
32a:電池温度取得部,34,234:発電制御部
36:アクセル開度判断部,Btmp:電池温度
Ert:目標エンジン回転数(目標回転数),Erq:実エンジン回転数(実回転数)
GW:目標発電量,GWr:実発電量
T:所定温度,V:速度
minErt:下限値,dErtLim:増加率制限値
1,201: Electric vehicle, 2: Internal engine, 4: Generator 6: Front motor, 8: Rear motor, 10: Drive battery 12a: Front wheel drive shaft, 14a: Rear wheel drive shaft, 20, 220: Control device 21 : Accelerator pedal, 21a: Accelerator position sensor 30: Driving mode control unit, 32: Battery output shortage determination unit 32a: Battery temperature acquisition unit, 34,234: Power generation control unit 36: Accelerator opening determination unit, Btp: Battery temperature Engine : Target engine rotation speed (target rotation speed), Erq: Actual engine rotation speed (actual rotation speed)
GW: target power generation amount, GWr: actual power generation amount T: predetermined temperature, V: speed minErt: lower limit value, dErtLim: increase rate limit value

Claims (18)

  1.  電動車両に搭載される内燃機関と、前記内燃機関によって駆動される発電機と、前記電動車両の駆動軸を駆動するモータと、前記モータに電力を供給する駆動用電池と、を有する電動車両の制御装置であって、
     前記発電機から前記モータに供給する第1電力と、前記駆動用電池から前記モータに供給する第2電力と、によって前記電動車両を走行させるシリーズモードに切り替える走行モード制御部と、
     前記第2電力が不足しているか否か判断する電池出力不足判断部と、
     前記第1電力に基づいて前記内燃機関と前記発電機とを制御する発電制御部と、
    を備え、
     前記発電制御部は、
     前記内燃機関を制御して、前記内燃機関の回転数を変化させる第1制御モードと、
     前記発電機を制御して、前記内燃機関の回転数を変化させる第2制御モードと、
    を含み、
     前記走行モード制御部によって前記シリーズモードに切り替えられ、かつ、前記電池出力不足判断部によって前記第2電力が不足していると判断された場合、前記第2制御モードから前記第1制御モードに切り替える、
    電動車両の制御装置。
    An electric vehicle having an internal combustion engine mounted on the electric vehicle, a generator driven by the internal combustion engine, a motor for driving a drive shaft of the electric vehicle, and a drive battery for supplying power to the motor. It ’s a control device,
    A traveling mode control unit that switches to a series mode in which the electric vehicle is driven by the first electric power supplied from the generator to the motor and the second electric power supplied from the driving battery to the motor.
    The battery output shortage determination unit that determines whether or not the second power is insufficient, and
    A power generation control unit that controls the internal combustion engine and the generator based on the first electric power.
    Equipped with
    The power generation control unit
    A first control mode in which the internal combustion engine is controlled to change the rotation speed of the internal combustion engine,
    A second control mode that controls the generator to change the rotation speed of the internal combustion engine,
    Including
    When the drive mode control unit switches to the series mode and the battery output shortage determination unit determines that the second power is insufficient, the second control mode is switched to the first control mode. ,
    Control device for electric vehicles.
  2.  前記発電制御部は、前記第1電力に基づいて、前記内燃機関の目標とする回転数である目標回転数を演算し、前記目標回転数の下限値を設定し、前記走行モード制御部によって前記シリーズモードに切り替えられ、かつ、前記電池出力不足判断部によって前記第2電力が不足していると判断された場合、前記下限値を高くする補正制御を行う、請求項1に記載の電動車両の制御装置。 Based on the first electric power, the power generation control unit calculates a target rotation speed, which is a target rotation speed of the internal combustion engine, sets a lower limit value of the target rotation speed, and is described by the traveling mode control unit. The electric vehicle according to claim 1, wherein when the mode is switched to the series mode and the battery output shortage determination unit determines that the second power is insufficient, the correction control for increasing the lower limit is performed. Control device.
  3.  前記発電制御部は、前記電動車両の速度が高いほど前記下限値を大きい値に補正する、
    請求項2に記載の電動車両の制御装置。
    The power generation control unit corrects the lower limit value to a larger value as the speed of the electric vehicle increases.
    The control device for an electric vehicle according to claim 2.
  4.  前記発電制御部は、前記第1電力に基づいて前記内燃機関の目標とする回転数である目標回転数を演算し、前記目標回転数が上昇している場合、前記目標回転数の増加率を演算するとともに、前記増加率の第1制限値を設定し、前記走行モード制御部によって前記シリーズモードに切り替えられ、かつ、前記電池出力不足判断部によって前記第2電力が不足していると判断された場合、前記増加率を前記第1制限値よりも大きい第2制限値に補正する補正制御を行う、
    請求項1から3のいずれか1項に記載の電動車両の制御装置。
    The power generation control unit calculates a target rotation speed, which is a target rotation speed of the internal combustion engine, based on the first electric power, and when the target rotation speed is increasing, the rate of increase of the target rotation speed is calculated. Along with the calculation, the first limit value of the increase rate is set, the mode is switched to the series mode by the traveling mode control unit, and it is determined by the battery output shortage determination unit that the second power is insufficient. If this is the case, correction control is performed to correct the increase rate to a second limit value larger than the first limit value.
    The control device for an electric vehicle according to any one of claims 1 to 3.
  5.  前記第2制限値は、前記目標回転数が高いほど小さい値である、
    請求項4に記載の電動車両の制御装置。
    The second limit value is a smaller value as the target rotation speed is higher.
    The control device for an electric vehicle according to claim 4.
  6.  前記電池出力不足判断部は、前記駆動用電池の温度を取得する電池温度取得部を含み、
     前記電池出力不足判断部は、前記電池温度取得部によって取得した温度が第1所定温度以下の場合、または第2所定温度以上の場合、前記第2電力が不足していると判断する、
    請求項1から5のいずれか1項に記載の電動車両の制御装置。
    The battery output shortage determination unit includes a battery temperature acquisition unit that acquires the temperature of the drive battery.
    The battery output shortage determination unit determines that the second power is insufficient when the temperature acquired by the battery temperature acquisition unit is equal to or lower than the first predetermined temperature or equal to or higher than the second predetermined temperature.
    The control device for an electric vehicle according to any one of claims 1 to 5.
  7.  前記電池出力不足判断部は、前記駆動用電池の温度を取得する電池温度取得部を含み、
     前記電池出力不足判断部は、前記電池温度取得部によって取得した温度が第1所定温度以下の場合、または第2所定温度以上の場合、前記第2電力が不足していると判断し、
     前記第2制限値は、前記電池出力不足判断部によって取得された前記駆動用電池の温度が前記第1所定温度以下の場合よりも前記第2所定温度以上の場合の方が小さい値である、
    請求項4または5に記載の電動車両の制御装置。
    The battery output shortage determination unit includes a battery temperature acquisition unit that acquires the temperature of the drive battery.
    The battery output shortage determination unit determines that the second power is insufficient when the temperature acquired by the battery temperature acquisition unit is equal to or lower than the first predetermined temperature or equal to or higher than the second predetermined temperature.
    The second limit value is smaller when the temperature of the drive battery acquired by the battery output shortage determination unit is equal to or higher than the first predetermined temperature than when the temperature is equal to or higher than the first predetermined temperature.
    The control device for an electric vehicle according to claim 4 or 5.
  8.  前記発電制御部は、前記内燃機関の回転数を上昇させる回転上昇トルクを演算し、
     前記内燃機関の実際の回転数である実回転数を取得し、
     前記第1制御モードにおいて、前記実回転数に応じて前記回転上昇トルクを抑制する、
    請求項1から7のいずれか1項に記載の電動車両の制御装置。
    The power generation control unit calculates a rotation increase torque that increases the rotation speed of the internal combustion engine.
    Obtaining the actual rotation speed, which is the actual rotation speed of the internal combustion engine,
    In the first control mode, the rotation increase torque is suppressed according to the actual rotation speed.
    The control device for an electric vehicle according to any one of claims 1 to 7.
  9.  前記発電制御部は、前記実回転数が前記目標回転数よりも大きい場合、前記回転上昇トルクを抑制する、
    請求項8に記載の電動車両の制御装置。
    When the actual rotation speed is larger than the target rotation speed, the power generation control unit suppresses the rotation increase torque.
    The control device for an electric vehicle according to claim 8.
  10.  前記発電制御部は、前記実回転数が上昇するにつれて前記回転上昇トルクを抑制する、
    請求項8または9に記載の電動車両の制御装置。
    The power generation control unit suppresses the rotation increase torque as the actual rotation speed increases.
    The control device for an electric vehicle according to claim 8 or 9.
  11.  アクセル開度を判断するアクセル開度判断部をさらに備え、
     前記発電制御部は、前記アクセル開度がゼロの場合、前記第1制御モードから前記第2制御モードに切り替える、
    請求項1から10のいずれか1項に記載の電動車両の制御装置。
    Further equipped with an accelerator opening determination unit for determining the accelerator opening,
    When the accelerator opening degree is zero, the power generation control unit switches from the first control mode to the second control mode.
    The control device for an electric vehicle according to any one of claims 1 to 10.
  12.  前記電池出力不足判断部は、前記電動車両の速度が第1所定速度以上の場合、前記第2電力が不足していると判断する、
    請求項1から11のいずれか1項に記載の電動車両の制御装置。
    When the speed of the electric vehicle is equal to or higher than the first predetermined speed, the battery output shortage determination unit determines that the second power is insufficient.
    The control device for an electric vehicle according to any one of claims 1 to 11.
  13.  前記第1所定温度は、前記駆動用電池の劣化および前記駆動用電池の充電率のいずれか一方、または、両方に基づいて演算される、
    請求項6または7に記載の電動車両の制御装置。
    The first predetermined temperature is calculated based on one or both of the deterioration of the drive battery and the charge rate of the drive battery.
    The control device for an electric vehicle according to claim 6 or 7.
  14.  前記発電制御部は、前記第1電力に基づいて、前記発電機の目標とする発電量である目標発電量を演算し、前記発電機の実際の発電量である実発電量を取得し、
     前記実発電量が前記目標発電量よりも小さい場合、前記第2制御モードから前記第1制御モードに切り替える、
    請求項1から13のいずれか1項に記載の電動車両の制御装置。
    The power generation control unit calculates the target power generation amount, which is the target power generation amount of the generator, based on the first power generation, and acquires the actual power generation amount, which is the actual power generation amount of the generator.
    When the actual power generation amount is smaller than the target power generation amount, the second control mode is switched to the first control mode.
    The control device for an electric vehicle according to any one of claims 1 to 13.
  15.  前記発電制御部は、前記第1電力に基づいて、前記内燃機関の目標とする回転数である目標回転数を演算し、前記目標回転数の上限値を設定し、前記走行モード制御部によって前記シリーズモードに切り替えられ、かつ、前記電池出力不足判断部によって前記第2電力が不足していると判断された場合、前記上限値を所定回転数以下に制限する、
    請求項1から14のいずれか1項に記載の電動車両の制御装置。
    The power generation control unit calculates a target rotation speed, which is a target rotation speed of the internal combustion engine, sets an upper limit value of the target rotation speed based on the first electric power, and the traveling mode control unit determines the target rotation speed. When the mode is switched to the series mode and the battery output shortage determination unit determines that the second power is insufficient, the upper limit is limited to a predetermined number of revolutions or less.
    The control device for an electric vehicle according to any one of claims 1 to 14.
  16.  前記所定回転数は、前記内燃機関の出力特性の変化点である、
    請求項15に記載の電動車両の制御装置。
    The predetermined rotation speed is a change point of the output characteristics of the internal combustion engine.
    The control device for an electric vehicle according to claim 15.
  17.  前記発電制御部は、前記電動車両の速度が第2所定速度未満の場合、前記上限値を前記所定回転数以下に制限する、
    請求項15または16に記載の電動車両の制御装置。
    When the speed of the electric vehicle is less than the second predetermined speed, the power generation control unit limits the upper limit value to the predetermined rotation speed or less.
    The control device for an electric vehicle according to claim 15 or 16.
  18.  前記発電制御部は、前記電動車両の速度が第2所定速度以上の場合、前記速度が上昇するにつれて前記上限値を上昇させる、
    請求項15から17のいずれか1項に記載の電動車両の制御装置。
    When the speed of the electric vehicle is equal to or higher than the second predetermined speed, the power generation control unit raises the upper limit value as the speed increases.
    The control device for an electric vehicle according to any one of claims 15 to 17.
PCT/JP2021/021870 2020-06-25 2021-06-09 Electric vehicle control device WO2021261247A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180045203.0A CN115803240A (en) 2020-06-25 2021-06-09 Control device for electric vehicle
JP2021563226A JP7115647B2 (en) 2020-06-25 2021-06-09 electric vehicle controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-109244 2020-06-25
JP2020109244 2020-06-25

Publications (1)

Publication Number Publication Date
WO2021261247A1 true WO2021261247A1 (en) 2021-12-30

Family

ID=79282586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021870 WO2021261247A1 (en) 2020-06-25 2021-06-09 Electric vehicle control device

Country Status (3)

Country Link
JP (1) JP7115647B2 (en)
CN (1) CN115803240A (en)
WO (1) WO2021261247A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020972A (en) * 2001-07-04 2003-01-24 Hitachi Unisia Automotive Ltd Power generation control device of hybrid vehicle
WO2013098943A1 (en) * 2011-12-27 2013-07-04 トヨタ自動車株式会社 Hybrid automobile
JP2016124318A (en) * 2014-12-26 2016-07-11 三菱自動車工業株式会社 Control device of hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020972A (en) * 2001-07-04 2003-01-24 Hitachi Unisia Automotive Ltd Power generation control device of hybrid vehicle
WO2013098943A1 (en) * 2011-12-27 2013-07-04 トヨタ自動車株式会社 Hybrid automobile
JP2016124318A (en) * 2014-12-26 2016-07-11 三菱自動車工業株式会社 Control device of hybrid vehicle

Also Published As

Publication number Publication date
JPWO2021261247A1 (en) 2021-12-30
CN115803240A (en) 2023-03-14
JP7115647B2 (en) 2022-08-09

Similar Documents

Publication Publication Date Title
JP5799127B2 (en) Control device for hybrid vehicle
WO2011136076A1 (en) Hybrid vehicle control device and hybrid vehicle equipped with same
US10322714B2 (en) Hybrid vehicle and control method for same
GB2519841A (en) Hybrid electric vehicle controller and method
WO2011125865A1 (en) Control device for hybrid vehicle
KR20140135246A (en) Electric power generation control system for hybrid automobile
KR20160034773A (en) Apparatus and method of controlling motor of electric vehicle for reducing vibration
EP3036120B1 (en) Hybrid electric vehicle controller and method
US20130024061A1 (en) Control unit for hybrid vehicle
WO2012101796A1 (en) Vehicle, and vehicle control method
JP7135476B2 (en) Vehicle power generation control device
JP2007186038A (en) Controller of motor drive vehicle
WO2021261247A1 (en) Electric vehicle control device
JP2012111450A (en) Hybrid vehicle
JP7143880B2 (en) Power generation control device for hybrid vehicle
JP6227465B2 (en) Engine control device and hybrid vehicle
JP6791070B2 (en) Hybrid car
JP6848826B2 (en) Hybrid car
JP2013001131A (en) Control device of hybrid vehicle
JP2021154812A (en) Vehicular travel control apparatus
JP7126531B2 (en) Hybrid vehicle control device
JP2014043183A (en) Hybrid vehicle
JP2016060321A (en) Hybrid automobile
JP2020163914A (en) Hybrid vehicle
WO2020183960A1 (en) Hybrid vehicle

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021563226

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21830201

Country of ref document: EP

Kind code of ref document: A1