WO2021261083A1 - Cell and electronic device - Google Patents

Cell and electronic device Download PDF

Info

Publication number
WO2021261083A1
WO2021261083A1 PCT/JP2021/017265 JP2021017265W WO2021261083A1 WO 2021261083 A1 WO2021261083 A1 WO 2021261083A1 JP 2021017265 W JP2021017265 W JP 2021017265W WO 2021261083 A1 WO2021261083 A1 WO 2021261083A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
fixing member
power storage
storage element
positive electrode
Prior art date
Application number
PCT/JP2021/017265
Other languages
French (fr)
Japanese (ja)
Inventor
利浩 平塚
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021261083A1 publication Critical patent/WO2021261083A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/595Tapes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to batteries and electronic devices.
  • Battery-powered electronic devices are used for various purposes and are often carried around. Therefore, there is a need for a structure of a battery or an electronic device that can withstand an external load caused by dropping or the like.
  • Patent Document 1 and Patent Document 2 disclose a lithium secondary battery or the like provided with a means for preventing deformation of the power storage element of the battery.
  • one of the objects of the present invention is to provide a battery capable of suppressing damage to an exterior member or a power storage element due to an external load, and an electronic device capable of suppressing damage to the battery.
  • the battery according to the embodiment of the present invention is A flat power storage element having a flat portion in which a positive electrode and a negative electrode are laminated or wound via a separator, Tabs derived from one end of the power storage element and The exterior laminated film that covers the power storage element and The first fixing member provided on the other end surface located on the opposite side to the one end surface from which the tab of the power storage element is derived, and It is a battery having a second fixing member provided in a flat portion of a power storage element.
  • the electronic device has a flat power storage element having a flat portion in which a positive electrode and a negative electrode are laminated or wound via a separator, a tab derived from one end surface of the power storage element, and an exterior laminated film.
  • the power storage element has a first fixing member and a second fixing member, and has.
  • the first fixing member is provided so as to cover one end surface located on the side opposite to one end surface from which the tab of the power storage element is derived.
  • the second fixing member is a battery provided in the flat portion of the power storage element and With a housing, It is an electronic device having a third fixing member for fixing a battery and a housing.
  • the present invention it is possible to provide a battery in which damage to an exterior member or a power storage element is suppressed due to an external load such as a drop, or an electronic device in which damage to the battery is suppressed. It should be noted that the contents of the present invention are not limitedly interpreted by the effects exemplified in the present specification.
  • FIG. 1 is an overview diagram of an electronic device according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view of a battery installed in a housing of an electronic device according to an embodiment.
  • FIG. 3 is an exploded perspective view of the wound battery according to the embodiment.
  • FIG. 4 is a schematic cross-sectional view of the wound battery element in one embodiment.
  • FIG. 5 is an exploded perspective view of the laminated battery according to the embodiment.
  • FIG. 6 is a schematic cross-sectional view of the laminated battery element in one embodiment.
  • 7A to 7C are a top view, a front view, and a bottom view for explaining the position of the tape attached to the wound battery element in one embodiment.
  • FIG. 1 is an overview diagram of a smartphone 1 according to an embodiment.
  • the smartphone 1 includes a housing 45.
  • a display unit 2 configured as a touch panel is provided in the central portion of one main surface of the housing 45.
  • a button 3 is provided on the lower side of the display unit 2.
  • the smartphone 1 has a function of browsing information such as a telephone directory and a website, in addition to the function of a normal telephone. For example, regarding information such as a telephone directory or a website displayed on the display unit 2, the user can move the cursor on the screen or select information by touching the display unit 2 or pressing the button 3. It can be performed.
  • the smartphone 1 is provided with a battery 4 inside the housing 45 as its power source.
  • the battery 4 is, for example, a lithium ion secondary battery.
  • the battery 4 has a thin flat shape that matches the shape of the smartphone 1.
  • FIG. 2 is a cross-sectional view schematically showing a state in which the battery 4 is housed in the housing 45.
  • tabs 11 and 12 (hereinafter, also referred to as positive electrode terminals 11 and negative electrode terminals 12) extend from the stored battery 4, and the tabs 11 and 12 are connected to the electric circuit of the smartphone 1. To. In this way, the electric power of the battery 4 is supplied to the smartphone 1 through the tabs 11 and 12, and the smartphone 1 operates using the battery 4 as a power source.
  • the battery 4 is a wound battery in which a positive electrode and a negative electrode are laminated and wound via a separator, and a laminated battery in which a positive electrode and a negative electrode are alternately laminated via a separator.
  • a wound battery in which a positive electrode and a negative electrode are laminated and wound via a separator
  • a laminated battery in which a positive electrode and a negative electrode are alternately laminated via a separator.
  • FIG. 3 is an exploded perspective view showing an example of a wound battery using a laminated material (which is an example of the battery 4 housed in the electronic device of the present invention).
  • the battery 4 shown in the figure is configured by enclosing a wound battery element 20 to which a positive electrode terminal 11 and a negative electrode terminal 12 are attached inside a film-shaped exterior member 30 (30A, 30B).
  • the positive electrode terminal 11 and the negative electrode terminal 12 are led out from the inside of the exterior member 30 toward the outside, for example, in the same direction.
  • the positive electrode terminal 11 and the negative electrode terminal 12 are each made of a metal material such as aluminum (Al), copper (Cu), nickel (Ni), or stainless steel.
  • the exterior member 30 is made of, for example, a rectangular laminated film in which a nylon film, an aluminum foil, and a polyethylene film are laminated in this order.
  • the exterior member 30 is arranged so that, for example, the polyethylene film side and the battery element 20 face each other, and the outer edge portions thereof are joined to each other by fusion or adhesive.
  • a close contact film 31 for preventing the intrusion of outside air is inserted between the exterior member 30 and the positive electrode terminal 11 and the negative electrode terminal 12.
  • the adhesion film 31 is made of a material having adhesion to the positive electrode terminal 11 and the negative electrode terminal 12, and for example, when the positive electrode terminal 11 and the negative electrode terminal 12 are made of the above-mentioned metal material, polyethylene, polypropylene, or modification is used. It is preferably composed of a polyolefin resin such as polyethylene or modified polypropylene.
  • the exterior member 30 may be formed of another structure, for example, a laminated film having no metal material, a polymer film such as polypropylene, or a metal film, instead of the above-mentioned laminated film.
  • the general configuration of the exterior member can be represented by a laminated structure of an exterior layer / metal foil / sealant layer (however, the exterior layer and the sealant layer may be composed of a plurality of layers).
  • the nylon film corresponds to the exterior layer
  • the aluminum foil corresponds to the metal foil
  • the polyethylene film corresponds to the sealant layer.
  • the metal foil it is sufficient if it functions as a moisture-permeable barrier film, and not only aluminum foil but also stainless foil, nickel foil, plated iron foil, etc. can be used, but it is thin and lightweight. Therefore, an aluminum foil having excellent workability can be preferably used.
  • FIG. 4 is a cross-sectional view of the battery element 20 shown in FIG. 3 along the I-I line.
  • the battery element 20 is wound so that the positive electrode 21 and the negative electrode 22 are positioned so as to face each other via a polymer support layer (described later) 23 and a separator 24 holding a non-aqueous electrolytic solution.
  • the outermost peripheral portion is protected by a protective tape 25.
  • FIG. 5 shows an exploded perspective view showing another example of the battery 4 housed in the electronic device of the present invention, which is a laminated battery using a laminated material.
  • the members substantially the same as those of the wound type battery described above are designated by the same reference numerals, and the description thereof will be omitted.
  • this laminated battery is substantially the same as the wound battery shown in FIG. 3, except that the laminated battery element 20'is provided in place of the wound battery element 20 described above. It has the structure of.
  • the positive electrode and the negative electrode forming a sheet are located so as to face each other via the polymer support layer and the separator holding the non-aqueous electrolytic solution as described above, for example, the negative electrode sheet. It has a laminated structure in which a polymer support layer, a separator, a polymer support layer, and a positive electrode sheet are laminated in this order.
  • the laminated battery element 20' is a sheet-shaped negative electrode (negative electrode sheet) and a sheet-shaped positive electrode (positive electrode sheet) alternately laminated via a separator. Further, a polymer support layer is disposed between the positive electrode sheet and the separator, and between the negative electrode sheet and the separator.
  • the battery 4 of the present invention will be described below again by taking the wound battery as an example again.
  • the positive electrode 21 has a structure in which, for example, the positive electrode active material layer 21B is coated on both sides or one side of a positive electrode current collector 21A having a pair of facing surfaces.
  • the positive electrode current collector 21A has a portion exposed without being covered with the positive electrode active material layer 21B at one end in the longitudinal direction, and the positive electrode terminal 11 is attached to this exposed portion.
  • the positive electrode current collector 21A is composed of a metal foil such as an aluminum foil, a nickel foil or a stainless steel foil.
  • the positive electrode active material layer 21B contains one or more of positive electrode materials capable of occluding and releasing lithium ions as the positive electrode active material, and if necessary, a conductive material and a binder. It may be included.
  • Examples of the positive electrode material include lithium-containing compounds.
  • Examples of such a lithium-containing compound include a composite oxide containing lithium and a transition metal element, and a phosphoric acid compound containing lithium and a transition metal element. From the viewpoint of obtaining a higher voltage, cobalt is particularly used. (Co), nickel (Ni), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), chromium (Cr), vanadium (V), titanium (Ti), or any mixture thereof. Is preferable.
  • Such lithium-containing compounds are typically represented by the following general formula (1) or (2).
  • Li x M I O 2 ⁇ ( 1) Li y M II PO 4 ... (2)
  • M I and M II in formula represents one or more transition metal elements, the values of x and y vary according to charge and discharge states of the battery, usually 0.05 ⁇ x ⁇ 1.10 and 0.05 ⁇ It is represented by y ⁇ 1.10)
  • the compound of the formula (1) generally has a layered structure
  • the compound of the formula (2) generally has an olivine structure.
  • the composite oxide containing lithium and a transition metal element include a lithium cobalt composite oxide (Li x CoO 2 ), a lithium nickel composite oxide (Li x NiO 2 ), and a lithium nickel cobalt composite oxide (Li x NiO 2).
  • Li x CoO 2 lithium cobalt composite oxide
  • Li x NiO 2 lithium nickel composite oxide
  • Li nickel cobalt composite oxide Li x NiO 2
  • lithium-manganese complex oxide having a spinel structure LiMn 2 O 4
  • the phosphoric acid compound containing lithium and the transition metal element include, for example, a lithium iron phosphoric acid compound (LiFePO 4 ) having an olivine structure or a lithium iron manganese phosphoric acid compound (LiFe 1-v Mn v PO 4 (v ⁇ ). 1)) can be mentioned.
  • a part of the transition metal is replaced with Al, Mg or other transition metal elements or contained in the grain boundaries, and a part of oxygen is fluorine. It can also be mentioned that it is replaced with the above.
  • at least a part of the surface of the positive electrode active material may be coated with another positive electrode active material.
  • a plurality of types of positive electrode active materials may be mixed and used.
  • the negative electrode 22 has a structure in which the negative electrode active material layer 22B is provided on both sides or one side of the negative electrode current collector 22A having a pair of facing surfaces, for example, like the positive electrode 21.
  • the negative electrode current collector 22A has a portion exposed without the negative electrode active material layer 22B provided at one end in the longitudinal direction, and the negative electrode terminal 12 is attached to this exposed portion.
  • the negative electrode current collector 22A is composed of a metal foil such as a copper foil, a nickel foil or a stainless steel foil.
  • the negative electrode active material layer 22B contains, as a negative electrode active material, one or more of a negative electrode material capable of occluding and releasing lithium ions and metallic lithium, and if necessary, a conductive material or a binder. It may contain a dressing agent.
  • the negative electrode material capable of occluding and releasing lithium include carbon materials, metal oxides and polymer compounds.
  • Examples of the carbon material include non-graphitizable carbon materials, artificial graphite materials, graphite-based materials, and more specifically, pyrolytic carbons, cokes, graphites, glassy carbons, and fired organic polymer compounds.
  • coke includes pitch coke, needle coke, petroleum coke, etc.
  • organic polymer compound calcined body is carbonized by calcining a polymer material such as phenol resin or furan resin at an appropriate temperature.
  • a polymer material such as phenol resin or furan resin
  • the metal oxide include iron oxide, ruthenium oxide and molybdenum oxide
  • the polymer compound include polyacetylene and polypyrrole.
  • examples of the negative electrode material capable of occluding and releasing lithium include a material containing at least one of a metal element and a metalloid element capable of forming an alloy with lithium as a constituent element.
  • the negative electrode material may be a simple substance, an alloy, or a compound of a metal element or a metalloid element, or may have one or more of these phases in at least a part thereof.
  • metal elements or metalloid elements examples include tin (Sn), lead (Pb), aluminum, indium (In), silicon (Si), zinc (Zn), antimony (Sb), bismuth (Bi), and the like.
  • examples thereof include gallium (Ga), germanium (Ge), arsenic (As), silver (Ag), hafnium (Hf), zirconium (Zr) and yttrium (Y).
  • group 14 metal elements or metalloid elements in the long periodic table are preferable, and silicon or tin is particularly preferable. This is because silicon and tin have a large ability to occlude and release lithium, and a high energy density can be obtained.
  • an alloy of silicon for example, as a second constituent element other than silicon, a group consisting of tin, magnesium, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony and chromium. Those containing at least one of them can be mentioned.
  • the separator 24 is a porous film made of a polyolefin-based synthetic resin such as polypropylene (melting point: around 165 ° C.) or polyethylene (melting point: around 135 ° C.), or a porous material made of an inorganic material such as a ceramic non-woven fabric. It is composed of an insulating thin film having a high ion permeability and a predetermined mechanical strength, such as a membrane, and may have a structure in which two or more of these porous membranes are laminated.
  • a polyolefin-based porous film containing a porous film is suitable because it has excellent separability between the positive electrode 21 and the negative electrode 22 and can further reduce an internal short circuit and a decrease in the open circuit voltage.
  • the polymer support 23 is arranged between at least one of the positive electrode 21 and the negative electrode 22 and the separator 24.
  • the polymer support layer 23 is made of a thermoplastic resin having a melting point lower than that of the separator 24 or a gel melting point, has ionic conductivity, and can hold a non-aqueous electrolytic solution.
  • the polymer support layer 23 is arranged on both sides of the separator 24, that is, between the separator 24 and the positive electrode 21, and between the separator 24 and the negative electrode 22. Although it is heat-fused to the interface, it does not necessarily have to be arranged on both sides of the separator 24, and is arranged only at the interface between the separator 24 and the positive electrode 21 or only at the interface between the separator 24 and the negative electrode 22 and is heat-fused. May be good.
  • the battery 4 of the present invention it is possible to reduce the excess non-aqueous electrolytic solution that is not substantially involved in the battery reaction, and the non-aqueous electrolytic solution efficiently surrounds the electrode active material. It will be supplied, and even if the amount of non-aqueous electrolyte is smaller than before, excellent cycle characteristics will be exhibited, and by using a small amount of non-aqueous electrolyte, it will also have excellent liquid leakage resistance. It becomes a thing.
  • FIG. 6 shows a cross section parallel to the winding direction of the wound battery element 20 shown in FIG. 3, that is, a cross-sectional view taken along the line II-II (laminated battery element 20'shown in FIG. 5).
  • the end portion of the separator 24 protrudes from the ends of the positive electrode 21 and the negative electrode 22 by a predetermined length E. It is arranged like this.
  • the separator 24 protrudes when the separator 24 and the electrodes 21 and 22 are heat-sealed in the battery manufacturing process. Since the ends are simultaneously heat-sealed by the thermoplastic resin of the polymer support layer 23, the battery does not have an internal short circuit even in a drop test without installing a new process or increasing man-hours. 4 can be obtained.
  • the protruding length E of the separator 24 needs to be 0.3 mm or more from the viewpoint of causing heat fusion as described above, but this heat fusion is further ensured. If the protrusion length is too large, the volume loss of that portion will be large, so it is desirable to control it within the range of 0.5 to 1.0 mm.
  • the thermoplastic resin constituting the polymer support layer 23 is particularly limited as long as it retains a non-aqueous electrolytic solution, exhibits ionic conductivity, and has a melting point lower than that of the separator 24 or a gel melting point. It is composed of, but not limited to, an acrylonitrile-based polymer having an amount of copolymerization of 50% or more, particularly 80% or more, an aromatic polyamide, an acrylonitrile / butadiene copolymer, a homopolymer or a copolymer of acrylate or methacrylate.
  • Examples thereof include an acrylic polymer, an acrylamide polymer, a fluoropolymer such as vinylidene fluoride, a polysulfone, and a polyallylsulfone.
  • a polymer having an acrylonitrile copolymerization amount of 50% or more has a CN group in its side chain, so that a polymer gel electrolyte having a high dielectric constant and high ionic conductivity can be produced.
  • acrylonitrile and vinylcarboxylic acids such as acrylic acid, methacrylic acid and itaconic acid, acrylamide, etc.
  • Methacrylic sulfonic acid, hydroxyalkylene glycol (meth) acrylate, alkoxyalkylene glycol (meth) acrylate, vinyl chloride, vinylidene chloride, vinyl acetate, various (meth) acrylates and the like are preferably copolymerized at a ratio of 50% or less, particularly 20% or less.
  • a polymerized product can also be used.
  • the aromatic polyamide is a highly heat-resistant polymer, it is a preferable polymer polymer when a polymer gel electrolyte that requires high heat resistance is required, such as an automobile battery. Further, a polymer having a crosslinked structure obtained by copolymerizing butadiene or the like can also be used.
  • a polymer containing vinylidene fluoride as a constituent component that is, a homopolymer, a copolymer and a multidimensional copolymer can be preferably used, and specifically, polyvinylidene fluoride (PVdF, melting point: 60 to 100). °C), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP, melting point: 60-100 ° C.), polyvinylidene fluoride-hexafluoropropylene-chlorotrifluoroethylene copolymer (PVdF-HFP-CTFE), etc. Can be mentioned.
  • PVdF polyvinylidene fluoride
  • PVdF-HFP melting point: 60-100 ° C.
  • PVdF-HFP-CTFE polyvinylidene fluoride-hexafluoropropylene-chlorotrifluoroethylene copolymer
  • the non-aqueous electrolyte solution may be any one containing an electrolyte salt and a non-aqueous solvent.
  • the electrolyte salt may be any salt as long as it dissolves or disperses in a non-aqueous solvent described later to generate ions, and lithium hexafluorophosphate (LiPF 6 ) can be preferably used. Needless to say, it is not limited.
  • lithium tetrafluoroborate LiBF 4
  • lithium hexafluoroarsenate LiAsF 6
  • lithium hexafluoro antimonate LiSbF 6
  • lithium perchlorate LiClO 4
  • four lithium aluminum chloride acid Inorganic lithium salts such as LiAlCl 4
  • lithium trifluoromethanesulfonate LiCF 3 SO 3
  • lithium bis (trifluoromethane sulfone) imide LiN (CF 3 SO 2 ) 2
  • lithium bis (pentafluoromethane sulfone) methide LiAlCl 4
  • lithium trifluoromethanesulfonate LiCF 3 SO 3
  • lithium bis (trifluoromethane sulfone) imide LiN (CF 3 SO 2 ) 2
  • lithium bis (pentafluoromethane sulfone) methide LiAlCl 4
  • lithium trifluoromethanesulfonate LiCF 3 SO 3
  • lithium salts of perfluoroalkane sulfonic acid derivatives such as lithium tris (trifluoromethanesulfon) methide (LiC (CF 3 SO 2 ) 3) can also be used. It is also possible to use these alone or in combination of two or more.
  • the content of such an electrolyte salt is preferably in the range of 0.1 mol to 3.0 mol, more preferably in the range of 0.5 mol to 2.0 mol with respect to 1 liter (l) of the solvent. This is because higher ionic conductivity can be obtained within this range.
  • non-aqueous solvent examples include various high dielectric constant solvents and low viscosity solvents.
  • Ethylene carbonate, propylene carbonate and the like can be preferably used as the high dielectric constant solvent, but the solvent is not limited to this, but butylene carbonate, vinylene carbonate, 4-fluoro-1,3-dioxolane-2-one.
  • Cyclic carbonates such as (fluoroethylene carbonate), 4-chloro-1,3-dioxolane-2-one (chloroethylene carbonate), and trifluoromethylethylene carbonate can be used.
  • lactones such as ⁇ -butyrolactone and ⁇ -valerolactone
  • lactams such as N-methylpyrrolidone
  • cyclic carbamate esters such as N-methyloxazolidinone
  • Sulfone compounds such as tetramethylene sulfone can also be used.
  • diethyl carbonate can be preferably used as the low-viscosity solvent, but in addition to this, chain carbonates such as dimethyl carbonate, ethyl methyl carbonate and methyl propyl carbonate, methyl acetate, ethyl acetate and methyl propionate are used.
  • chain carboxylic acid esters such as ethyl propionate, propyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate and ethyl trimethyl acetate
  • chain amides such as N, N-dimethylacetamide, N, N-diethylcarbamic acid.
  • Chain carbamate esters such as methyl and ethyl N, N-diethylcarbamate, and ethers such as 1,2-dimethoxyethane, tetrahydrofuran, tetrahydropyran and 1,3-dioxolane can be used.
  • the above-mentioned high dielectric constant solvent and low viscosity solvent can be used alone or in admixture of two or more.
  • a solvent containing 20 to 50% cyclic carbonate and a low viscosity solvent (low viscosity non-aqueous solvent) of 50 to 80% is preferable, and a chain carbonate having a boiling point of 130 ° C. or lower is particularly preferable as the low viscosity solvent.
  • the dielectric constant becomes low when the low-viscosity solvent is too large, and conversely, the viscosity becomes low when the low-viscosity solvent is too low. In either case, sufficient conductivity may not be obtained and good battery characteristics may not be obtained.
  • the filling amount of the non-aqueous electrolytic solution in the battery 4 of the present invention is in the range of 0.14 to 0.35 g per 1 cm 3 of the battery capacity. That is, if the filling amount of the non-aqueous electrolytic solution is less than 0.14 g per unit capacity, the desired battery performance cannot be obtained, and if it exceeds 0.35 g, the liquid leakage resistance tends to deteriorate.
  • the mixture was mixed, and this was added to N-methylpyrrolidone, which is a dispersion medium, to prepare a mixture slurry.
  • this mixture slurry was applied to a positive electrode current collector 21A made of aluminum having a thickness of 12 ⁇ m, dried, and pressed to form a positive electrode active material layer 21B to prepare a positive electrode.
  • the negative electrode 22 is manufactured.
  • graphite particles, a binder (SBR + CMC), and a conductive auxiliary agent were mixed as active materials at each weight ratio and diluted with water to prepare a negative electrode slurry.
  • the above slurry was uniformly applied onto a copper foil and dried to prepare an electrode. By heat-treating this electrode at 200 ° C., the binding property of the negative electrode active material was improved.
  • This electrode was slit to a width of 80 mm to form an uncoated portion, which was used as a place to attach the negative electrode terminal 12.
  • the positive electrode terminal 11 is attached to the positive electrode 21 by welding
  • the negative electrode terminal 12 is attached to the negative electrode 22 by welding.
  • An OPS tape was attached to the portion as a winding end tape to create a wound battery element 20.
  • the wound battery element 20 was pressed at a pressure of 1 N / cm 2 to shape it. With respect to the wound battery element 20, the winding is performed between the tabs on the upper part of the wound battery element 20 (see L in FIG. 7) and in the lower part of the wound battery element 20 (see K and M in FIG. 7).
  • An OPS tape was attached so as to cover the thickness direction of the battery element 20.
  • the thickness direction means the direction perpendicular to the flat portion 46 and the flat portion 46A of the wound battery element 20.
  • this wound electrode body is sandwiched between exterior members 30 (30A and 30B), and the outer peripheral edge portion excluding one side is heat-sealed to form a bag shape.
  • a non-aqueous electrolytic solution containing an electrolyte salt such as lithium hexafluorophosphate and a non-aqueous solvent such as ethyl propionate (EP) and propyl propionate (PP) was prepared, and the non-aqueous electrolytic solution was prepared from the opening of the exterior member 30. It was injected into the wound electrode body. The injected wound electrode body was impregnated by leaving it for 48 hours, heated to 60 ° C., and charged to full charge while pressurizing at 20 kgf / cm 2 , to form an adhesive layer between the separator and the electrode. .. Then, the opening of the exterior member 30 was heat-sealed and sealed. As a result, the battery 4 shown in FIGS. 3 and 4 was completed.
  • an electrolyte salt such as lithium hexafluorophosphate
  • a non-aqueous solvent such as ethyl propionate (EP) and propyl propionate (PP)
  • lithium ions are released from the positive electrode active material layer 21B and are occluded in the negative electrode active material layer 22B via the non-aqueous electrolytic solution.
  • the electric discharge lithium ions are released from the negative electrode active material layer 22B and are occluded in the positive electrode active material layer 21B via the non-aqueous electrolytic solution.
  • the present invention will be specifically described based on an example of a drop test using the battery 4 (winding type battery) manufactured as described above.
  • the present invention is not limited to the examples described below.
  • a U-shaped tape is formed on the side from which the tabs 11 and 12 are derived (hereinafter referred to as the top side) and the opposite side of the top side (hereinafter referred to as the bottom side).
  • 41 first fixing member
  • the U-shaped attachment means from the flat portion 46, which is the main surface of the wound battery element 20, to the end faces 47, 47A and the flat portion 46A, which is the main surface of the back side.
  • the tape 41 is attached so that the tape 41 has a U-shape when viewed from the side surface side of the battery 4, for example, in FIG. 2.
  • a tape 42 (second fixing member) was attached to the flat portion of the wound battery element 20 (storage element).
  • the position where the tape 42 is attached is a position where the tape 42 overlaps the winding end portion of the wound battery element 20.
  • the tape 42 which is the second fixing member, was an adhesive tape (OPS tape) using oriented polystyrene as a base material.
  • OPS tape is 3052DR manufactured by Tapex.
  • the wound battery element 20 to which the tapes 41 and 42 are attached is covered with the laminated film 43, the double-sided tape 44 (third fixing member) is attached as shown in FIG. 2, and one main surface of the laminated film 43 is the housing of the smartphone 1. It was fixed to the body 45.
  • the double-sided tape 44 (third fixing member) is provided so as to face the flat portion 46A on the opposite surface to the flat portion 46 on which the tape 42 (second fixing member) is provided.
  • FIG. 7A is a top view of the wound battery element 20
  • FIG. 7B is a front view of the wound battery element 20
  • FIG. 7C is a bottom view of the wound battery element 20.
  • the attachment positions of the tape 41 (first fixing member) attached in a U-shape to the top side and the bottom side of the wound battery element 20 are K, L, as shown in FIGS. 7A to 7C. It is the position of M.
  • the tape 41 (first fixing member) covered a part of the end faces 47, 47A of the wound battery element 20 and a part of the flat portions 46, 46A.
  • the attachment position of the tape 41 (first fixing member) on the top side is L, which is a position between the substantially center of the end surface 47 on the top side and the tabs 11 and 12 of the flat portions 46 and 46A.
  • the attachment positions of the tape 41 (first fixing member) on the bottom side are K and M, and include the left and right ends of the bottom surface 47A and the extension lines of the tabs 11 and 12 of the flat portions 46 and 46A.
  • the tape 41 at the sticking position L is stuck so as not to face the tape 41 at each of the sticking positions K and M.
  • an OPS tape or a PET tape was used as the tape 41 (first fixing member).
  • the PET tape is an adhesive tape using PET (polyethylene terephthalate) as a base material.
  • the OPS tape exhibits a predetermined adhesive force by being wetted with the non-aqueous electrolyte contained in the laminated film 43, and can fix the energy storage element 20 and the laminated film 43.
  • PET tape does not exhibit such adhesive strength. Therefore, the first fixing member in the embodiment has adhesive strength at least in part and fixes the power storage element 20 and the laminated film 43. Since the tabs 11 and 12 on the top side of the power storage element 20 are fixed to the laminated film 43 via the sealant, the tape 41 having adhesive strength is attached to at least one of the attachment positions K or M on the bottom side. Then, the laminated film 43 and the power storage element 20 are sufficiently fixed. In addition to this, it is preferable that the adhesive tape 41 is attached to the attachment position L on the top side because the fixing force between the laminated film 43 and the power storage element 20 on the top side is further increased.
  • the first fixing member does not cover the entire surface of the end faces 47 and 47A, but covers a part of the end face. As a result, the flow of the non-aqueous electrolytic solution from the top side and the bottom side can be ensured, and the charge / discharge characteristics of the battery can be improved.
  • the tabs 11 and 12 derived from the laminated film 43 are bent in the laminated film 43 and biased to either one in the thickness direction of the battery. Derived in state.
  • the second fixing member is provided on a flat portion on the opposite side of the flat portion of the power storage element 20 at a position extending from the position where the tabs 11 and 12 are derived.
  • the top side of the power storage element 20 is fixed to the laminated film 43 by fixing the tabs 11 and 12, and the power storage element 20 and the laminated film 43 are attached to the flat portion at a position relatively distant from the tabs 11 and 12.
  • the electronic device (smartphone 1) of the present embodiment includes a third fixing member for fixing the housing 45 of the smartphone 1 and the battery 4.
  • the third fixing member when the third fixing member is present, the external load is distributed to the tabs 11 and 12, and the tabs 11 and 12 are less likely to break.
  • the third fixing member when the third fixing member is provided so as to face the flat portion on the opposite surface to the flat portion provided with the second fixing member, the fixing portion between the housing 45 and the laminate film 43 and the laminate film are provided.
  • the fixing points of the 43 and the power storage element 20 are fixed on different flat surfaces, the fixing force becomes uniform, and damage to the battery can be further suppressed against an external load.
  • Example 1 to 7 and Comparative Examples 1 to 4 In the first embodiment, the OPS tape was attached to the attachment positions K and M on the bottom side, and the OPS tape was attached to the attachment position L on the top side.
  • the weight of the battery was 52 g.
  • tapes of each material were attached to each position on the bottom side and the top side as shown in Table 1.
  • the weight of the battery is also as shown in Table 1.
  • the drop test is a test in which a jig simulating a smartphone 1 including a battery 4 is dropped from a height of 0.5 m in the test machine using a rotary drum tester. A jig of the same size and weight as the smartphone 1 was prepared, a battery 4 was installed in the jig, and a drop test was performed. The drop test is repeated and the state of the battery 4 is checked every 100 times. If the laminated film 43 is damaged, the voltage is 3 V or less due to an internal short circuit, or the tabs 11 and 12 are torn and impedance measurement is impossible. Or, when a temperature abnormality occurs, it is assumed that the smartphone 1 has stopped operating, or the smartphone 1 is assumed to have shut down. The number of times. The results are shown in Table 1.
  • Examples 1 to 7 had a relatively large number of drop tests as compared with Comparative Examples 1 to 4.
  • the OPS tape was attached to the attachment positions K and M on the bottom side of the wound battery element 20, and the weight of the battery was 20 g or more and 80 g or less.
  • the tape 41 (first fixing member) is an OPS tape, and the end surface 47A on the side opposite to the side from which the tabs 11 and 12 of the wound battery element 20 are derived and the flat portion 46 of the wound battery element 20.
  • 46A is provided so as to cover a part of the end faces 47, 47A, and is attached in a U-shape.
  • the electronic device When the weight of the battery is 20 g or more and 80 g or less, the electronic device contains a battery resistant to impact. , It can be judged that electronic devices are strong against impacts such as dropping. From the results of Examples 1 to 3, it can be said that it is preferable that the tape (first fixing member) is also provided on the end face on the side where the tabs 11 and 12 are derived.
  • the tape 41 (first fixing member) and the tape 42 (second fixing member) may be double-sided tapes having adhesives on both sides, in which case the tapes 41 and 42 are also adhered to the laminated film 43 and wound.
  • the battery element 20 and the laminated film 43 may be fixed.
  • An adhesive may be arranged on the side of the tapes 41 and 42 opposite to the adhesive, and the tapes 41 and 42 may also be adhered to the laminated film 43.
  • the electronic device according to the present invention is not limited to a smartphone, and may be a wearable device, a power tool, or the like.

Abstract

A cell has: a flat-shaped power storage element having a flat part in which a positive electrode and a negative electrode are laminated or wound with a separator interposed therebetween; a tab drawn out from one end surface of the power storage element; an exterior laminate film covering the power storage element; a first fixing member provided on the other end surface, located on the opposite side from the one end surface from which the tab is drawn out, of the power storage element; and a second fixing member provided to the flat part of the power storage element.

Description

電池及び電子機器Batteries and electronic devices
 本発明は、電池及び電子機器に関する。 The present invention relates to batteries and electronic devices.
 電池を電源とした電子機器は、様々な用途に利用されており、携帯して使用されることが多い。したがって、落下などにより生じる外的負荷に耐えうる電池や電子機器の構造が必要とされている。 Battery-powered electronic devices are used for various purposes and are often carried around. Therefore, there is a need for a structure of a battery or an electronic device that can withstand an external load caused by dropping or the like.
 特許文献1及び特許文献2では、電池の蓄電素子の変形防止手段を備えるリチウム二次電池等を開示している。 Patent Document 1 and Patent Document 2 disclose a lithium secondary battery or the like provided with a means for preventing deformation of the power storage element of the battery.
特開2006-093112号公報Japanese Unexamined Patent Publication No. 2006-093112 特開2013-145678号公報Japanese Unexamined Patent Publication No. 2013-145678
 しかしながら、特許文献1と特許文献2に記載された電池では、外的負荷により外装部材または蓄電素子の損傷は、未だ十分抑制されておらず、改善の余地がある。 However, in the batteries described in Patent Document 1 and Patent Document 2, damage to the exterior member or the power storage element due to an external load has not yet been sufficiently suppressed, and there is room for improvement.
 従って、本発明は、外的負荷に起因する、外装部材または蓄電素子の損傷を抑制できる電池および電池の損傷を抑制できる電子機器を提供することを目的の一つとする。 Therefore, one of the objects of the present invention is to provide a battery capable of suppressing damage to an exterior member or a power storage element due to an external load, and an electronic device capable of suppressing damage to the battery.
 上述した課題を解決するために、本発明の一実施形態に係る電池は、
 正極と負極とがセパレータを介して積層または巻回された扁平部を有する扁平形状の蓄電素子と、
 蓄電素子の一端面から導出されたタブと、
 蓄電素子を覆う外装ラミネートフィルムと、
 蓄電素子のタブが導出される一端面とは反対側に位置する他端面に設けられた第1固定部材と、
 蓄電素子の扁平部に設けられた第2固定部材と、を有する、電池である。
In order to solve the above-mentioned problems, the battery according to the embodiment of the present invention is
A flat power storage element having a flat portion in which a positive electrode and a negative electrode are laminated or wound via a separator,
Tabs derived from one end of the power storage element and
The exterior laminated film that covers the power storage element and
The first fixing member provided on the other end surface located on the opposite side to the one end surface from which the tab of the power storage element is derived, and
It is a battery having a second fixing member provided in a flat portion of a power storage element.
 本発明の一実施形態に係る電子機器は、
 正極と負極とがセパレータを介して積層または巻回された扁平部を有する扁平形状の蓄電素子と、当該蓄電素子の一端面から導出されたタブと、外装ラミネートフィルムとを有し、
 蓄電素子は、第1固定部材と第2固定部材と、を有し、
 第1固定部材は、蓄電素子のタブが導出される一端面とは反対側に位置する一端面を覆うように設けられ、
 第2固定部材は蓄電素子の扁平部に設けられている電池と、
 筐体と、を有し、
 電池と筐体とを固定する第3固定部材と、を有する、電子機器である。
The electronic device according to the embodiment of the present invention is
It has a flat power storage element having a flat portion in which a positive electrode and a negative electrode are laminated or wound via a separator, a tab derived from one end surface of the power storage element, and an exterior laminated film.
The power storage element has a first fixing member and a second fixing member, and has.
The first fixing member is provided so as to cover one end surface located on the side opposite to one end surface from which the tab of the power storage element is derived.
The second fixing member is a battery provided in the flat portion of the power storage element and
With a housing,
It is an electronic device having a third fixing member for fixing a battery and a housing.
 本発明の少なくとも実施形態によれば、落下などによる外的負荷により、外装部材または蓄電素子の損傷を抑制した電池または電池の損傷を抑制した電子機器を提供できる。なお、本明細書で例示された効果により本発明の内容が限定して解釈されるものではない。 According to at least an embodiment of the present invention, it is possible to provide a battery in which damage to an exterior member or a power storage element is suppressed due to an external load such as a drop, or an electronic device in which damage to the battery is suppressed. It should be noted that the contents of the present invention are not limitedly interpreted by the effects exemplified in the present specification.
図1は、一実施形態における電子機器の概観図である。FIG. 1 is an overview diagram of an electronic device according to an embodiment. 図2は、一実施形態における電子機器の筐体に設置された電池の概略断面図である。FIG. 2 is a schematic cross-sectional view of a battery installed in a housing of an electronic device according to an embodiment. 図3は、一実施形態における巻回型電池の分解斜視図である。FIG. 3 is an exploded perspective view of the wound battery according to the embodiment. 図4は、一実施形態における巻回電池素子の概略断面図である。FIG. 4 is a schematic cross-sectional view of the wound battery element in one embodiment. 図5は、一実施形態における積層型電池の分解斜視図である。FIG. 5 is an exploded perspective view of the laminated battery according to the embodiment. 図6は、一実施形態における積層電池素子の概略断面図である。FIG. 6 is a schematic cross-sectional view of the laminated battery element in one embodiment. 図7Aから図7Cは、一実施形態における巻回電池素子に貼付するテープの位置を説明するための上面図と正面図と底面図である。7A to 7C are a top view, a front view, and a bottom view for explaining the position of the tape attached to the wound battery element in one embodiment.
 以下、本発明の実施形態等について図面を参照しながら説明する。なお、説明は以下の順序で行う。
<1.一実施形態>
<2.変形例>
 以下に説明する実施形態等は本発明の好適な具体例であり、本発明の内容がこれらの実施形態等に限定されるものではない。
Hereinafter, embodiments and the like of the present invention will be described with reference to the drawings. The explanation will be given in the following order.
<1. Embodiment>
<2. Modification example>
The embodiments and the like described below are suitable specific examples of the present invention, and the contents of the present invention are not limited to these embodiments and the like.
<1.一実施形態>
 本実施形態では、本発明に係る電子機器の一例としてスマートフォン(スマートフォン1)を例にして説明する。図1は、一実施形態に係るスマートフォン1の概観図である。スマートフォン1は、筐体45を備えている。筐体45の一方の主面の中央部分には、タッチパネルとして構成される表示部2が設けられている。表示部2の下側には、ボタン3が設けられている。スマートフォン1は、通常の電話としての機能以外にも、電話帳やウエブサイトなどの情報を閲覧できる機能を有している。例えば、表示部2に表示された電話帳やウエブサイトなどの情報について、利用者は、表示部2をタッチする、又は、ボタン3を押下することで、画面中のカーソルの移動や情報の選択を行うことができる。
<1. Embodiment>
In the present embodiment, a smartphone (smartphone 1) will be described as an example of the electronic device according to the present invention. FIG. 1 is an overview diagram of a smartphone 1 according to an embodiment. The smartphone 1 includes a housing 45. A display unit 2 configured as a touch panel is provided in the central portion of one main surface of the housing 45. A button 3 is provided on the lower side of the display unit 2. The smartphone 1 has a function of browsing information such as a telephone directory and a website, in addition to the function of a normal telephone. For example, regarding information such as a telephone directory or a website displayed on the display unit 2, the user can move the cursor on the screen or select information by touching the display unit 2 or pressing the button 3. It can be performed.
 スマートフォン1は、その電源として、筐体45の内部に電池4を備えている。電池4は例えば、リチウムイオン二次電池である。電池4は、スマートフォン1の形状に合わせて、薄型の扁平形状とされている。図2は、筐体45の中に電池4が収納されている様子を概略的に示す断面図である。図2に示されるように、収納された電池4からタブ11,12(以下、正極端子11、負極端子12とも称する。)が延在し、タブ11,12がスマートフォン1の電気回路に接続される。このように、タブ11,12を通して、電池4の電力がスマートフォン1に供給され、スマートフォン1が電池4を電源として動作する。 The smartphone 1 is provided with a battery 4 inside the housing 45 as its power source. The battery 4 is, for example, a lithium ion secondary battery. The battery 4 has a thin flat shape that matches the shape of the smartphone 1. FIG. 2 is a cross-sectional view schematically showing a state in which the battery 4 is housed in the housing 45. As shown in FIG. 2, tabs 11 and 12 (hereinafter, also referred to as positive electrode terminals 11 and negative electrode terminals 12) extend from the stored battery 4, and the tabs 11 and 12 are connected to the electric circuit of the smartphone 1. To. In this way, the electric power of the battery 4 is supplied to the smartphone 1 through the tabs 11 and 12, and the smartphone 1 operates using the battery 4 as a power source.
 電池4には、正極と負極とがセパレータを介して積層され巻回された巻回型電池である場合と、正極と負極とがセパレータを介して交互に積層された積層型電池である場合の2通りがある。以下で、巻回型電池と積層型電池との一般的な説明をする。 The battery 4 is a wound battery in which a positive electrode and a negative electrode are laminated and wound via a separator, and a laminated battery in which a positive electrode and a negative electrode are alternately laminated via a separator. There are two ways. The following is a general description of the wound battery and the laminated battery.
 図3は、(本発明の電子機器に収められた電池4の一例であって、)ラミネート材を用いた巻回型電池の一例を示す分解斜視図である。図に示す電池4は、正極端子11と負極端子12が取り付けられた巻回電池素子20をフィルム状の外装部材30(30A,30B)の内部に封入して構成されている。正極端子11及び負極端子12は、外装部材30の内部から外部に向かって、例えば同一方向にそれぞれ導出されている。正極端子11及び負極端子12は、例えばアルミニウム(Al)、銅(Cu)、ニッケル(Ni)、又はステンレスなどの金属材料によりそれぞれ構成される。 FIG. 3 is an exploded perspective view showing an example of a wound battery using a laminated material (which is an example of the battery 4 housed in the electronic device of the present invention). The battery 4 shown in the figure is configured by enclosing a wound battery element 20 to which a positive electrode terminal 11 and a negative electrode terminal 12 are attached inside a film-shaped exterior member 30 (30A, 30B). The positive electrode terminal 11 and the negative electrode terminal 12 are led out from the inside of the exterior member 30 toward the outside, for example, in the same direction. The positive electrode terminal 11 and the negative electrode terminal 12 are each made of a metal material such as aluminum (Al), copper (Cu), nickel (Ni), or stainless steel.
 外装部材30は、例えばナイロンフィルム、アルミニウム箔及びポリエチレンフィルムをこの順に張り合わせた矩形状のラミネートフィルムにより構成されている。外装部材30は、例えばポリエチレンフィルム側と電池素子20とが対向するように配設されており、各外縁部が融着又は接着剤により互いに接合されている。 The exterior member 30 is made of, for example, a rectangular laminated film in which a nylon film, an aluminum foil, and a polyethylene film are laminated in this order. The exterior member 30 is arranged so that, for example, the polyethylene film side and the battery element 20 face each other, and the outer edge portions thereof are joined to each other by fusion or adhesive.
 外装部材30と正極端子11及び負極端子12との間には、外気の侵入を防止するための密着フィルム31が挿入されている。密着フィルム31は、正極端子11及び負極端子12に対して密着性を有する材料により構成され、例えば正極端子11及び負極端子12が上述した金属材料から構成される場合には、ポリエチレン、ポリプロピレン、変性ポリエチレン又は変性ポリプロピレンなどのポリオレフィン樹脂により構成されることが好ましい。 A close contact film 31 for preventing the intrusion of outside air is inserted between the exterior member 30 and the positive electrode terminal 11 and the negative electrode terminal 12. The adhesion film 31 is made of a material having adhesion to the positive electrode terminal 11 and the negative electrode terminal 12, and for example, when the positive electrode terminal 11 and the negative electrode terminal 12 are made of the above-mentioned metal material, polyethylene, polypropylene, or modification is used. It is preferably composed of a polyolefin resin such as polyethylene or modified polypropylene.
 なお、外装部材30は、上述したラミネートフィルムに代えて、他の構造、例えば金属材料を有さないラミネートフィルム、ポリプロピレンなどの高分子フィルム又は金属フィルムなどにより構成してもよい。ここで、外装部材の一般的な構成は、外装層/金属箔/シーラント層の積層構造で表すことができ(但し、外装層及びシーラント層は複数層で構成されることがある。)、上記の例では、ナイロンフィルムが外装層、アルミニウム箔が金属箔、ポリエチレンフィルムがシーラント層に相当する。なお、金属箔としては、耐透湿性のバリア膜として機能すれば十分であり、アルミニウム箔のみならず、ステンレス箔、ニッケル箔及びメッキを施した鉄箔などを使用することができるが、薄く軽量で加工性に優れるアルミニウム箔を好適に用いることができる。 The exterior member 30 may be formed of another structure, for example, a laminated film having no metal material, a polymer film such as polypropylene, or a metal film, instead of the above-mentioned laminated film. Here, the general configuration of the exterior member can be represented by a laminated structure of an exterior layer / metal foil / sealant layer (however, the exterior layer and the sealant layer may be composed of a plurality of layers). In the example, the nylon film corresponds to the exterior layer, the aluminum foil corresponds to the metal foil, and the polyethylene film corresponds to the sealant layer. As the metal foil, it is sufficient if it functions as a moisture-permeable barrier film, and not only aluminum foil but also stainless foil, nickel foil, plated iron foil, etc. can be used, but it is thin and lightweight. Therefore, an aluminum foil having excellent workability can be preferably used.
 外装部材として、使用可能な構成を(外装層/金属箔/シーラント層)の形式で列挙すると、Ny(ナイロン)/Al(アルミ)/CPP(無延伸ポリプロピレン)、PET(ポリエチレンテレフタレート)/Al/CPP、PET/Al/PET/CPP、PET/Ny/Al/CPP、PET/Ny/Al/Ny/CPP、PET/Ny/Al/Ny/PE(ポリエチレン)、Ny/PE/Al/LLDPE(直鎖状低密度ポリエチレン)、PET/PE/Al/PET/LDPE(低密度ポリエチレン)、及びPET/Ny/Al/LDPE/CPPなどがある。 Listing the configurations that can be used as exterior members in the form of (exterior layer / metal foil / sealant layer), Ny (nylon) / Al (aluminum) / CPP (unstretched polypropylene), PET (polyethylene terephthalate) / Al / CPP, PET / Al / PET / CPP, PET / Ny / Al / CPP, PET / Ny / Al / Ny / CPP, PET / Ny / Al / Ny / PE (polyethylene), Ny / PE / Al / LLDPE (direct) Chain low density polyethylene), PET / PE / Al / PET / LDPE (low density polyethylene), PET / Ny / Al / LDPE / CPP and the like.
 図4は、図3に示した電池素子20のI-I線に沿った断面図である。同図において、電池素子20は、正極21と負極22とが非水電解液を保持した高分子支持体層(後述する)23及びセパレータ24を介して対向して位置し、巻回されているものであり、最外周部は保護テープ25により保護されている。 FIG. 4 is a cross-sectional view of the battery element 20 shown in FIG. 3 along the I-I line. In the figure, the battery element 20 is wound so that the positive electrode 21 and the negative electrode 22 are positioned so as to face each other via a polymer support layer (described later) 23 and a separator 24 holding a non-aqueous electrolytic solution. The outermost peripheral portion is protected by a protective tape 25.
 ここで、図5には、本発明の電子機器に収められた電池4の他の例であって、ラミネート材を用いた積層型電池を示す分解斜視図を示す。なお、上述した巻回型電池と実質的に同一の部材には同一符号を付し、その説明を省略する。図5に示すように、この積層型電池は、上記の巻回電池素子20の代わりに積層電池素子20’を備えていること以外は、図3に示した巻回型電池と実質的に同一の構成を有するものである。 Here, FIG. 5 shows an exploded perspective view showing another example of the battery 4 housed in the electronic device of the present invention, which is a laminated battery using a laminated material. The members substantially the same as those of the wound type battery described above are designated by the same reference numerals, and the description thereof will be omitted. As shown in FIG. 5, this laminated battery is substantially the same as the wound battery shown in FIG. 3, except that the laminated battery element 20'is provided in place of the wound battery element 20 described above. It has the structure of.
 積層電池素子20’は、シート状をなす正極と負極とが上述のような非水電解液を保持した高分子支持体層及びセパレータを介して対向して位置しており、例えば、負極シート、高分子支持体層、セパレータ、高分子支持体層及び正極シートの順で積層された積層構造を有している。 In the laminated battery element 20', the positive electrode and the negative electrode forming a sheet are located so as to face each other via the polymer support layer and the separator holding the non-aqueous electrolytic solution as described above, for example, the negative electrode sheet. It has a laminated structure in which a polymer support layer, a separator, a polymer support layer, and a positive electrode sheet are laminated in this order.
 図5に示す実施形態においては、積層電池素子20’は、シート状の負極(負極シート) とシート状の正極(正極シート)とがセパレータを介して交互に積層されたものである。そして更に、正極シートとセパレータ、負極シートとセパレータの間には、高分子支持体層が配設されている。この点以外については、図3に示す巻回型電池と実質的に同一の構成を有するので、以下、再び上記巻回型電池を例に採って、本発明の電池4の説明を続ける。 In the embodiment shown in FIG. 5, the laminated battery element 20'is a sheet-shaped negative electrode (negative electrode sheet) and a sheet-shaped positive electrode (positive electrode sheet) alternately laminated via a separator. Further, a polymer support layer is disposed between the positive electrode sheet and the separator, and between the negative electrode sheet and the separator. Other than this point, since it has substantially the same configuration as the wound battery shown in FIG. 3, the battery 4 of the present invention will be described below again by taking the wound battery as an example again.
 図4に示すように、正極21は、例えば対向する1対の面を有する正極集電体21Aの両面又は片面に正極活物質層21Bが被覆された構造を有している。正極集電体21Aには、長手方向における一方の端部に正極活物質層21Bが被覆されずに露出している部分があり、この露出部分に正極端子11が取り付けられている。 As shown in FIG. 4, the positive electrode 21 has a structure in which, for example, the positive electrode active material layer 21B is coated on both sides or one side of a positive electrode current collector 21A having a pair of facing surfaces. The positive electrode current collector 21A has a portion exposed without being covered with the positive electrode active material layer 21B at one end in the longitudinal direction, and the positive electrode terminal 11 is attached to this exposed portion.
 正極集電体21Aは、例えばアルミニウム箔、ニッケル箔又はステンレス箔などの金属箔により構成される。正極活物質層21Bは、正極活物質として、リチウムイオンを吸蔵及び放出することが可能な正極材料のいずれか1種又は2種以上を含んでおり、必要に応じて導電材及び結着剤を含んでいてもよい。 The positive electrode current collector 21A is composed of a metal foil such as an aluminum foil, a nickel foil or a stainless steel foil. The positive electrode active material layer 21B contains one or more of positive electrode materials capable of occluding and releasing lithium ions as the positive electrode active material, and if necessary, a conductive material and a binder. It may be included.
 正極材料としては、リチウム含有化合物が挙げられる。このようなリチウム含有化合物としては、例えばリチウムと遷移金属元素とを含む複合酸化物や、リチウムと遷移金属元素とを含むリン酸化合物が挙げられるが、より高い電圧を得る観点からは、特にコバルト(Co)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、クロム(Cr)、バナジウム(V)、チタン(Ti)、又はこれらの任意の混合物を含むものが好ましい。 Examples of the positive electrode material include lithium-containing compounds. Examples of such a lithium-containing compound include a composite oxide containing lithium and a transition metal element, and a phosphoric acid compound containing lithium and a transition metal element. From the viewpoint of obtaining a higher voltage, cobalt is particularly used. (Co), nickel (Ni), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), chromium (Cr), vanadium (V), titanium (Ti), or any mixture thereof. Is preferable.
 かかるリチウム含有化合物は、代表的には、次の一般式(1)又は(2)
            Li・・・(1)
            LiIIPO・・・(2)
(式中のM及びMIIは1種類以上の遷移金属元素を示し、x及びyの値は電池の充放電状態によって異なるが、通常0.05≦x≦1.10、0.05≦y≦1.10である。)で表され、(1)式の化合物は一般に層状構造を有し、(2)式の化合物は一般にオリビン構造を有する。
Such lithium-containing compounds are typically represented by the following general formula (1) or (2).
Li x M I O 2 ··· ( 1)
Li y M II PO 4 ... (2)
(M I and M II in formula represents one or more transition metal elements, the values of x and y vary according to charge and discharge states of the battery, usually 0.05 ≦ x ≦ 1.10 and 0.05 ≦ It is represented by y ≦ 1.10), the compound of the formula (1) generally has a layered structure, and the compound of the formula (2) generally has an olivine structure.
 また、リチウムと遷移金属元素とを含む複合酸化物の具体例としては、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルト複合酸化物(LiNi1-zCo(0<z<1)、スピネル型構造を有するリチウムマンガン複合酸化物(LiMn)などが挙げられる。 Specific examples of the composite oxide containing lithium and a transition metal element include a lithium cobalt composite oxide (Li x CoO 2 ), a lithium nickel composite oxide (Li x NiO 2 ), and a lithium nickel cobalt composite oxide (Li x NiO 2). li x Ni 1-z Co z O 2 (0 <z <1), lithium-manganese complex oxide having a spinel structure (LiMn 2 O 4), and the like.
 リチウムと遷移金属元素とを含むリン酸化合物の具体例としては、例えばオリビン構造を有するリチウム鉄リン酸化合物(LiFePO)又はリチウム鉄マンガンリン酸化合物(LiFe1-vMnPO(v<1))が挙げられる。これらの複合酸化物において、構造を安定化させる等の目的から、遷移金属の一部をAlやMgその他の遷移金属元素で置換したり結晶粒界に含ませたもの、酸素の一部をフッ素等で置換したもの等も挙げることができる。更に、正極活物質表面の少なくとも一部に他の正極活物質を被覆したものとしてもよい。また、正極活物質は、複数種類を混合して用いてもよい。 Specific examples of the phosphoric acid compound containing lithium and the transition metal element include, for example, a lithium iron phosphoric acid compound (LiFePO 4 ) having an olivine structure or a lithium iron manganese phosphoric acid compound (LiFe 1-v Mn v PO 4 (v <). 1)) can be mentioned. In these composite oxides, for the purpose of stabilizing the structure, a part of the transition metal is replaced with Al, Mg or other transition metal elements or contained in the grain boundaries, and a part of oxygen is fluorine. It can also be mentioned that it is replaced with the above. Further, at least a part of the surface of the positive electrode active material may be coated with another positive electrode active material. Further, a plurality of types of positive electrode active materials may be mixed and used.
 一方、負極22は、正極21と同様に、例えば対向する一対の面を有する負極集電体22Aの両面又は片面に負極活物質層22Bが設けられた構造を有している。負極集電体22Aには、長手方向における一方の端部に負極活物質層22Bが設けられず露出している部分があり、この露出部分に負極端子12が取り付けられている。 On the other hand, the negative electrode 22 has a structure in which the negative electrode active material layer 22B is provided on both sides or one side of the negative electrode current collector 22A having a pair of facing surfaces, for example, like the positive electrode 21. The negative electrode current collector 22A has a portion exposed without the negative electrode active material layer 22B provided at one end in the longitudinal direction, and the negative electrode terminal 12 is attached to this exposed portion.
 負極集電体22Aは、例えば銅箔、ニッケル箔又はステンレス箔などの金属箔により構成される。負極活物質層22Bは、負極活物質として、リチウムイオンを吸蔵及び放出することが可能な負極材料、金属リチウムのいずれか1種又は2種以上を含んでおり、必要に応じて導電材や結着剤を含んでいてもよい。リチウムを吸蔵及び放出することが可能な負極材料としては、例えば炭素材料、金属酸化物及び高分子化合物が挙げられる。炭素材料としては、難黒鉛化炭素材料、人造黒鉛材料や黒鉛系材料などが挙げられ、より具体的には、熱分解炭素類、コークス類、黒鉛類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭及びカーボンブラックなどがある。 The negative electrode current collector 22A is composed of a metal foil such as a copper foil, a nickel foil or a stainless steel foil. The negative electrode active material layer 22B contains, as a negative electrode active material, one or more of a negative electrode material capable of occluding and releasing lithium ions and metallic lithium, and if necessary, a conductive material or a binder. It may contain a dressing agent. Examples of the negative electrode material capable of occluding and releasing lithium include carbon materials, metal oxides and polymer compounds. Examples of the carbon material include non-graphitizable carbon materials, artificial graphite materials, graphite-based materials, and more specifically, pyrolytic carbons, cokes, graphites, glassy carbons, and fired organic polymer compounds. There are bodies, carbon fiber, activated carbon and carbon black.
 このうち、コークス類にはピッチコークス、ニードルコークス及び石油コークスなどがあり、有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂などの高分子材料を適当な温度で焼成して炭素化したものをいう。また、金属酸化物としては、酸化鉄、酸化ルテニウム及び酸化モリブデンなどが挙げられ、高分子化合物としてはポリアセチレンやポリピロールなどが挙げられる。 Among these, coke includes pitch coke, needle coke, petroleum coke, etc., and the organic polymer compound calcined body is carbonized by calcining a polymer material such as phenol resin or furan resin at an appropriate temperature. Say something. Examples of the metal oxide include iron oxide, ruthenium oxide and molybdenum oxide, and examples of the polymer compound include polyacetylene and polypyrrole.
 更に、リチウムを吸蔵及び放出することが可能な負極材料としては、リチウムと合金を形成可能な金属元素及び半金属元素のうちの少なくとも1種を構成元素として含む材料も挙げられる。この負極材料は金属元素又は半金属元素の単体でも合金でも化合物でもよく、またこれらの1種又は2種以上の相を少なくとも一部に有するようなものでもよい。 Further, examples of the negative electrode material capable of occluding and releasing lithium include a material containing at least one of a metal element and a metalloid element capable of forming an alloy with lithium as a constituent element. The negative electrode material may be a simple substance, an alloy, or a compound of a metal element or a metalloid element, or may have one or more of these phases in at least a part thereof.
 このような金属元素又は半金属元素としては、例えばスズ(Sn)、鉛(Pb)、アルミニウム、インジウム(In)、ケイ素(Si)、亜鉛(Zn)、アンチモン(Sb)、ビスマス(Bi)、ガリウム(Ga)、ゲルマニウム(Ge)、ヒ素(As)、銀(Ag)、ハフニウム(Hf)、ジルコニウム(Zr)及びイットリウム(Y)が挙げられる。中でも、長周期型周期表における14族の金属元素又は半金属元素が好ましく、特に好ましいのはケイ素又はスズである。ケイ素及びスズは、リチウムを吸蔵及び放出する能力が大きく、高いエネルギー密度を得ることができるからである。 Examples of such metal elements or metalloid elements include tin (Sn), lead (Pb), aluminum, indium (In), silicon (Si), zinc (Zn), antimony (Sb), bismuth (Bi), and the like. Examples thereof include gallium (Ga), germanium (Ge), arsenic (As), silver (Ag), hafnium (Hf), zirconium (Zr) and yttrium (Y). Among them, group 14 metal elements or metalloid elements in the long periodic table are preferable, and silicon or tin is particularly preferable. This is because silicon and tin have a large ability to occlude and release lithium, and a high energy density can be obtained.
 ケイ素の合金としては、例えばケイ素以外の第2の構成元素として、スズ、マグネシウム、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモン及びクロムから成る群のうちの少なくとも1種を含むものが挙げられる。 As an alloy of silicon, for example, as a second constituent element other than silicon, a group consisting of tin, magnesium, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony and chromium. Those containing at least one of them can be mentioned.
 また、セパレータ24は、例えばポリプロピレン(融点:165℃前後)若しくはポリエチレン(融点:135℃前後)などのポリオレフィン系の合成樹脂から成る多孔質膜、又はセラミック製の不織布などの無機材料から成る多孔質膜など、イオン透過度が大きく、所定の機械的強度を有する絶縁性の薄膜から構成されており、これら2種以上の多孔質膜を積層した構造としてもよい。特に、ポリオレフィン系の多孔質膜を含むものは、正極21と負極22との分離性に優れ、内部短絡や開回路電圧の低下をいっそう低減できるので好適である。 Further, the separator 24 is a porous film made of a polyolefin-based synthetic resin such as polypropylene (melting point: around 165 ° C.) or polyethylene (melting point: around 135 ° C.), or a porous material made of an inorganic material such as a ceramic non-woven fabric. It is composed of an insulating thin film having a high ion permeability and a predetermined mechanical strength, such as a membrane, and may have a structure in which two or more of these porous membranes are laminated. In particular, a polyolefin-based porous film containing a porous film is suitable because it has excellent separability between the positive electrode 21 and the negative electrode 22 and can further reduce an internal short circuit and a decrease in the open circuit voltage.
 本発明の電池4においては、正極21及び負極22の少なくとも一方とセパレータ24との間に高分子支持体23が配置されている。この高分子支持体層23は、セパレータ24よりも低い融点若しくはゲル融点を持つ熱可塑性樹脂から成るものであって、イオン伝導性を有し、非水電解液を保持することが可能である。 In the battery 4 of the present invention, the polymer support 23 is arranged between at least one of the positive electrode 21 and the negative electrode 22 and the separator 24. The polymer support layer 23 is made of a thermoplastic resin having a melting point lower than that of the separator 24 or a gel melting point, has ionic conductivity, and can hold a non-aqueous electrolytic solution.
 図4及び後述する図6に示す実施形態において、この高分子支持体層23は、セパレータ24の両面、すなわちセパレータ24と正極21の間と、セパレータ24と負極22の間に配置され、双方の界面に熱融着されているが、必ずしもセパレータ24の両面に配置する必要はなく、セパレータ24と正極21の界面のみ、あるいはセパレータ24と負極22の界面のみに配置され、熱融着されていてもよい。 In the embodiment shown in FIG. 4 and FIG. 6 described later, the polymer support layer 23 is arranged on both sides of the separator 24, that is, between the separator 24 and the positive electrode 21, and between the separator 24 and the negative electrode 22. Although it is heat-fused to the interface, it does not necessarily have to be arranged on both sides of the separator 24, and is arranged only at the interface between the separator 24 and the positive electrode 21 or only at the interface between the separator 24 and the negative electrode 22 and is heat-fused. May be good.
 このような熱融着により、本発明の電池4においては、電池反応に実質的に関与しない余剰の非水電解液を低減することができ、非水電解液が電極活物質の周囲に効率よく供給されることになり、非水電解液量が従来よりも少量であっても優れたサイクル特性が発揮され、使用する非水電解液量を少量とすることによって、耐漏液性にも優れたものとなる。 By such heat fusion, in the battery 4 of the present invention, it is possible to reduce the excess non-aqueous electrolytic solution that is not substantially involved in the battery reaction, and the non-aqueous electrolytic solution efficiently surrounds the electrode active material. It will be supplied, and even if the amount of non-aqueous electrolyte is smaller than before, excellent cycle characteristics will be exhibited, and by using a small amount of non-aqueous electrolyte, it will also have excellent liquid leakage resistance. It becomes a thing.
 図6は、図3に示した巻回電池素子20の巻回方向と平行な断面、すなわちII-II線に沿った断面図を示すものであって(図5に示した積層電池素子20’のIII-III線又はIV-IV線に沿った断面図も同様)、本発明の電池4においては、上記セパレータ24の端部が正極21及び負極22の端から所定の長さEだけ突出するように配置されている。 FIG. 6 shows a cross section parallel to the winding direction of the wound battery element 20 shown in FIG. 3, that is, a cross-sectional view taken along the line II-II (laminated battery element 20'shown in FIG. 5). In the battery 4 of the present invention, the end portion of the separator 24 protrudes from the ends of the positive electrode 21 and the negative electrode 22 by a predetermined length E. It is arranged like this.
 このように、セパレータ24の端部を正極21及び負極22の端から突出させておくことによって、電池の製造工程において、セパレータ24と電極21、22を熱融着させる際に、セパレータ24の突出端部同士が高分子支持体層23の熱可塑性樹脂によって同時に熱融着することになるので、工程を新設したり、工数を増したりすることなく、落下試験によっても内部短絡することのない電池4を得ることができる。 By projecting the end of the separator 24 from the ends of the positive electrode 21 and the negative electrode 22 in this way, the separator 24 protrudes when the separator 24 and the electrodes 21 and 22 are heat-sealed in the battery manufacturing process. Since the ends are simultaneously heat-sealed by the thermoplastic resin of the polymer support layer 23, the battery does not have an internal short circuit even in a drop test without installing a new process or increasing man-hours. 4 can be obtained.
 なお、セパレータ24の突出長さEとしては、上記のような熱融着を生じさせる観点から、0.3mm以上とすることが必要であるが、この熱融着をさらに確実なものとする一方、突出長さが大きすぎると、その部分の体積ロスが大きくなるので、0.5~1.0mmの範囲に制御することが望ましい。 The protruding length E of the separator 24 needs to be 0.3 mm or more from the viewpoint of causing heat fusion as described above, but this heat fusion is further ensured. If the protrusion length is too large, the volume loss of that portion will be large, so it is desirable to control it within the range of 0.5 to 1.0 mm.
 上記の高分子支持体層23を構成する熱可塑性樹脂としては、非水電解液を保持してイオン伝導性を発揮すると共に、セパレータ24よりも低い融点若しくはゲル融点を有するものである限り、特に限定されるものではないが、アクリロニトリルの共重合量が50%以上、特に80%以上のアクリロニトリル系重合体、芳香族ポリアミド、アクリロニトリル/ブタジエンコポリマー、アクリレート又はメタクリレートの単独重合体又は共重合体から成るアクリル系重合体、アクリルアミド系重合体、フッ化ビニリデン等の含フッ素ポリマー、ポリスルホン、ポリアリルスルホン等を挙げることができる。特にアクリロニトリルの共重合量が50%以上の重合体はその側鎖にCN基を有しているため誘電率が高く、イオン伝導性の高い高分子ゲル電解質を作れる。 The thermoplastic resin constituting the polymer support layer 23 is particularly limited as long as it retains a non-aqueous electrolytic solution, exhibits ionic conductivity, and has a melting point lower than that of the separator 24 or a gel melting point. It is composed of, but not limited to, an acrylonitrile-based polymer having an amount of copolymerization of 50% or more, particularly 80% or more, an aromatic polyamide, an acrylonitrile / butadiene copolymer, a homopolymer or a copolymer of acrylate or methacrylate. Examples thereof include an acrylic polymer, an acrylamide polymer, a fluoropolymer such as vinylidene fluoride, a polysulfone, and a polyallylsulfone. In particular, a polymer having an acrylonitrile copolymerization amount of 50% or more has a CN group in its side chain, so that a polymer gel electrolyte having a high dielectric constant and high ionic conductivity can be produced.
 これら重合体に対する非水電解液の担持性向上や、これら重合体から成る高分子ゲル電解質のイオン伝導性を向上させるため、アクリロニトリルとアクリル酸、メタクリル酸、イタコン酸等のビニルカルボン酸、アクリルアミド、メタクリルスルホン酸、ヒドロキシアルキレングリコール(メタ)アクリレート、アルコキシアルキレングリコール(メタ)アクリレート、塩化ビニル、塩化ビニリデン、酢酸ビニル、各種(メタ)アクリレート等を好ましくは50%以下、特に20%以下の割合で共重合したものも用いることができる。 In order to improve the supportability of the non-aqueous electrolyte solution to these polymers and the ionic conductivity of the polymer gel electrolyte composed of these polymers, acrylonitrile and vinylcarboxylic acids such as acrylic acid, methacrylic acid and itaconic acid, acrylamide, etc. Methacrylic sulfonic acid, hydroxyalkylene glycol (meth) acrylate, alkoxyalkylene glycol (meth) acrylate, vinyl chloride, vinylidene chloride, vinyl acetate, various (meth) acrylates and the like are preferably copolymerized at a ratio of 50% or less, particularly 20% or less. A polymerized product can also be used.
 また、芳香族ポリアミドは、高耐熱性ポリマーであることより、自動車用バッテリーの如く高耐熱性が要求される高分子ゲル電解質が求められる場合には好ましい高分子重合体である。また、ブタジエン等を共重合せしめ架橋構造を有する重合体も用い得る。 Further, since the aromatic polyamide is a highly heat-resistant polymer, it is a preferable polymer polymer when a polymer gel electrolyte that requires high heat resistance is required, such as an automobile battery. Further, a polymer having a crosslinked structure obtained by copolymerizing butadiene or the like can also be used.
 特に、構成成分としてフッ化ビニリデンを含む重合体、即ち単独重合体、共重合体及び多元共重合体を好ましく使用することができ、具体的には、ポリフッ化ビニリデン(PVdF、融点:60~100℃)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVdF-HFP、融点:60~100℃)、及びポリフッ化ビニリデン-ヘキサフルオロプロピレン-クロロトリフルオロエチレン共重合体(PVdF-HFP-CTFE)などを挙げることができる。 In particular, a polymer containing vinylidene fluoride as a constituent component, that is, a homopolymer, a copolymer and a multidimensional copolymer can be preferably used, and specifically, polyvinylidene fluoride (PVdF, melting point: 60 to 100). ℃), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP, melting point: 60-100 ° C.), polyvinylidene fluoride-hexafluoropropylene-chlorotrifluoroethylene copolymer (PVdF-HFP-CTFE), etc. Can be mentioned.
 非水電解液としては、電解質塩と非水溶媒を含むものであればよい。ここで、電解質塩としては、後述する非水溶媒に溶解ないしは分散してイオンを生ずるものであればよく、六フッ化リン酸リチウム(LiPF)を好適に使用することができるが、これに限定されないことはいうまでもない。 The non-aqueous electrolyte solution may be any one containing an electrolyte salt and a non-aqueous solvent. Here, the electrolyte salt may be any salt as long as it dissolves or disperses in a non-aqueous solvent described later to generate ions, and lithium hexafluorophosphate (LiPF 6 ) can be preferably used. Needless to say, it is not limited.
 すなわち、四フッ化ホウ酸リチウム(LiBF)、六フッ化ヒ酸リチウム(LiAsF)、六フッ化アンチモン酸リチウム(LiSbF)、過塩素酸リチウム(LiClO)、四塩化アルミニウム酸リチウム(LiAlCl)等の無機リチウム塩や、トリフルオロメタンスルホン酸リチウム(LiCFSO)、リチウムビス(トリフルオロメタンスルホン)イミド(LiN(CFSO)、リチウムビス(ペンタフルオロメタンスルホン)メチド(LiN(CSO)、及びリチウムトリス(トリフルオロメタンスルホン)メチド(LiC(CFSO)等のパーフルオロアルカンスルホン酸誘導体のリチウム塩なども使用可能であり、これらを1種単独で又は2種以上を組み合わせて使用することも可能である。 That is, lithium tetrafluoroborate (LiBF 4), lithium hexafluoroarsenate (LiAsF 6), lithium hexafluoro antimonate (LiSbF 6), lithium perchlorate (LiClO 4), four lithium aluminum chloride acid ( Inorganic lithium salts such as LiAlCl 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis (trifluoromethane sulfone) imide (LiN (CF 3 SO 2 ) 2 ), lithium bis (pentafluoromethane sulfone) methide. (LiN (C 2 F 5 SO 2 ) 2 ) and lithium salts of perfluoroalkane sulfonic acid derivatives such as lithium tris (trifluoromethanesulfon) methide (LiC (CF 3 SO 2 ) 3) can also be used. It is also possible to use these alone or in combination of two or more.
 なお、このような電解質塩の含有量は、溶媒1リットル(l)に対して0.1mol~3.0molの範囲内が好ましく、0.5mol~2.0molの範囲内であればより好ましい。この範囲内においてより高いイオン伝導性を得ることができるからである。 The content of such an electrolyte salt is preferably in the range of 0.1 mol to 3.0 mol, more preferably in the range of 0.5 mol to 2.0 mol with respect to 1 liter (l) of the solvent. This is because higher ionic conductivity can be obtained within this range.
 また、非水溶媒としては、各種の高誘電率溶媒や低粘度溶媒を挙げることができる。高誘電率溶媒としては、エチレンカーボネートとプロピレンカーボネート等を好適に用いることができるが、これに限定されるものではなく、ブチレンカーボネート、ビニレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート)、4-クロロ-1,3-ジオキソラン-2-オン(クロロエチレンカーボネート)、及びトリフルオロメチルエチレンカーボネートなどの環状カーボネートを用いることができる。 Further, examples of the non-aqueous solvent include various high dielectric constant solvents and low viscosity solvents. Ethylene carbonate, propylene carbonate and the like can be preferably used as the high dielectric constant solvent, but the solvent is not limited to this, but butylene carbonate, vinylene carbonate, 4-fluoro-1,3-dioxolane-2-one. Cyclic carbonates such as (fluoroethylene carbonate), 4-chloro-1,3-dioxolane-2-one (chloroethylene carbonate), and trifluoromethylethylene carbonate can be used.
 また、高誘電率溶媒として、環状カーボネートの代わりに又はこれと併用して、γ-ブチロラクトン及びγ-バレロラクトン等のラクトン、N-メチルピロリドン等のラクタム、N-メチルオキサゾリジノン等の環状カルバミン酸エステル、テトラメチレンスルホン等のスルホン化合物なども使用可能である。 Further, as a high dielectric constant solvent, instead of or in combination with the cyclic carbonate, lactones such as γ-butyrolactone and γ-valerolactone, lactams such as N-methylpyrrolidone, and cyclic carbamate esters such as N-methyloxazolidinone. , Sulfone compounds such as tetramethylene sulfone can also be used.
 一方、低粘度溶媒としては、ジエチルカーボネートを好適に使用することができるが、これ以外にも、ジメチルカーボネート、エチルメチルカーボネート及びメチルプロピルカーボネート等の鎖状カーボネート、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル及びトリメチル酢酸エチル等の鎖状カルボン酸エステル、N,N-ジメチルアセトアミド等の鎖状アミド、N,N-ジエチルカルバミン酸メチル及びN,N-ジエチルカルバミン酸エチル等の鎖状カルバミン酸エステル、並びに1,2-ジメトキシエタン、テトラヒドロフラン、テトラヒドロピラン及び1,3-ジオキソラン等のエーテルを用いることができる。 On the other hand, diethyl carbonate can be preferably used as the low-viscosity solvent, but in addition to this, chain carbonates such as dimethyl carbonate, ethyl methyl carbonate and methyl propyl carbonate, methyl acetate, ethyl acetate and methyl propionate are used. , Chain carboxylic acid esters such as ethyl propionate, propyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate and ethyl trimethyl acetate, chain amides such as N, N-dimethylacetamide, N, N-diethylcarbamic acid. Chain carbamate esters such as methyl and ethyl N, N-diethylcarbamate, and ethers such as 1,2-dimethoxyethane, tetrahydrofuran, tetrahydropyran and 1,3-dioxolane can be used.
 なお、本発明の電池4に用いる非水電解液としては、上述の高誘電率溶媒及び低粘度溶媒は、その1種を単独で又は2種以上を任意に混合して用いることができるが、20~50%の環状カーボネートと50~80%の低粘度溶媒(低粘度非水溶媒)を含むものが好ましく、特に低粘度溶媒として沸点が130℃以下の鎖状カーボネートであるものが望ましい。 As the non-aqueous electrolytic solution used for the battery 4 of the present invention, the above-mentioned high dielectric constant solvent and low viscosity solvent can be used alone or in admixture of two or more. A solvent containing 20 to 50% cyclic carbonate and a low viscosity solvent (low viscosity non-aqueous solvent) of 50 to 80% is preferable, and a chain carbonate having a boiling point of 130 ° C. or lower is particularly preferable as the low viscosity solvent.
 環状カーボネートと低粘度溶媒との比率が上述の範囲を逸脱すると、低粘度溶媒が多すぎる場合には誘電率が低くなり、逆に低粘度溶媒が少なすぎる場合には粘度が低くなってしまい、どちらの場合にも十分な伝導度が得られず、良好な電池特性が得られなくなるおそれがある。 If the ratio of the cyclic carbonate to the low-viscosity solvent deviates from the above range, the dielectric constant becomes low when the low-viscosity solvent is too large, and conversely, the viscosity becomes low when the low-viscosity solvent is too low. In either case, sufficient conductivity may not be obtained and good battery characteristics may not be obtained.
 本発明の電池4内への非水電解液の充填量については、電池容量1cmあたり0.14~0.35gの範囲とすることが望ましい。すなわち、非水電解液の充填量が単位容量あたり0.14gに満たないと、所期の電池性能が得られず、0.35gを超えると耐漏液性が劣化する傾向がある。 It is desirable that the filling amount of the non-aqueous electrolytic solution in the battery 4 of the present invention is in the range of 0.14 to 0.35 g per 1 cm 3 of the battery capacity. That is, if the filling amount of the non-aqueous electrolytic solution is less than 0.14 g per unit capacity, the desired battery performance cannot be obtained, and if it exceeds 0.35 g, the liquid leakage resistance tends to deteriorate.
 次に、上述した電池4の製造方法の一例を説明する。まず、正極21を作製する。正極21は、前記のコバルト酸リチウムの粉末と、導電材であるカーボンブラックと、バインダーであるポリフッ化ビニリデンとを、正極活物質:カーボンブラック:ポリフッ化ビニリデン=96:1:3の質量比で混合し、これを分散媒であるN-メチルピロリドンへ投入して合剤スラリーとした。その後、この合剤スラリーを厚み12μmのアルミニウムよりなる正極集電体21Aに塗布して乾燥させ、加圧して正極活物質層21Bを形成し、正極を作製した。 Next, an example of the above-mentioned manufacturing method of the battery 4 will be described. First, the positive electrode 21 is manufactured. The positive electrode 21 contains the above-mentioned lithium cobalt oxide powder, carbon black as a conductive material, and polyvinylidene fluoride as a binder in a mass ratio of positive electrode active material: carbon black: polyvinylidene fluoride = 96: 1: 3. The mixture was mixed, and this was added to N-methylpyrrolidone, which is a dispersion medium, to prepare a mixture slurry. Then, this mixture slurry was applied to a positive electrode current collector 21A made of aluminum having a thickness of 12 μm, dried, and pressed to form a positive electrode active material layer 21B to prepare a positive electrode.
 次に、負極22を作製する。負極22は、活物質として黒鉛粒子とバインダー(SBR+CMC)、導電助剤を各重量比で混合し、水で希釈して負極スラリーを作成した。上記スラリーを銅箔上に均一に塗布し乾燥させ、電極を作成した。この電極を200℃で熱処理することで、負極活物質の結着性を向上させた。この電極を、幅80mmにスリットし、非被覆部を作製し、負極端子12を取り付ける場所とした。 Next, the negative electrode 22 is manufactured. For the negative electrode 22, graphite particles, a binder (SBR + CMC), and a conductive auxiliary agent were mixed as active materials at each weight ratio and diluted with water to prepare a negative electrode slurry. The above slurry was uniformly applied onto a copper foil and dried to prepare an electrode. By heat-treating this electrode at 200 ° C., the binding property of the negative electrode active material was improved. This electrode was slit to a width of 80 mm to form an uncoated portion, which was used as a place to attach the negative electrode terminal 12.
 次いで、正極21に正極端子11を溶接により取り付けるとともに、負極22に負極端子12を溶接により取り付けた後、セパレータ24、正極21、同様のセパレータ24及び負極22を順次積層して巻回し、最外周部に巻き終わりテープとしてOPSテープを貼り、巻回電池素子20を作成した。巻回電池素子20を、1N/cmの圧力でプレスして形状を整えた。巻回電池素子20に対して、巻回電池素子20の上部のタブ間(図7のLを参照)、また、巻回電池素子20の下部(図7のK,Mを参照)に、巻回電池素子20の厚さ方向を覆うように、OPSテープを貼り付けた。なお、本明細書において、厚さ方向とは、巻回電池素子20の扁平部46及び扁平部46Aに対して垂直な方向を意味する。 Next, the positive electrode terminal 11 is attached to the positive electrode 21 by welding, and the negative electrode terminal 12 is attached to the negative electrode 22 by welding. An OPS tape was attached to the portion as a winding end tape to create a wound battery element 20. The wound battery element 20 was pressed at a pressure of 1 N / cm 2 to shape it. With respect to the wound battery element 20, the winding is performed between the tabs on the upper part of the wound battery element 20 (see L in FIG. 7) and in the lower part of the wound battery element 20 (see K and M in FIG. 7). An OPS tape was attached so as to cover the thickness direction of the battery element 20. In the present specification, the thickness direction means the direction perpendicular to the flat portion 46 and the flat portion 46A of the wound battery element 20.
 更に、この巻回電極体を外装部材30(30Aと30B)で挟み、一辺を除く外周縁部を熱融着して袋状とする。 Further, this wound electrode body is sandwiched between exterior members 30 (30A and 30B), and the outer peripheral edge portion excluding one side is heat-sealed to form a bag shape.
 しかる後、六フッ化リン酸リチウムなどの電解質塩と、プロピオン酸エチル(EP)やプロピオン酸プロピル(PP)などの非水溶媒を含む非水電解液を準備し、外装部材30の開口部から巻回電極体の内部に注入した。注液した巻回電極体は、48時間放置含浸させ、60℃に加温し、20kgf/cmで加圧しながら満充電まで充電して、セパレータと電極との間に接着層を形成させた。そして、外装部材30の開口部を熱融着し封入した。これにより、図3及び図4に示した電池4が完成した。 After that, a non-aqueous electrolytic solution containing an electrolyte salt such as lithium hexafluorophosphate and a non-aqueous solvent such as ethyl propionate (EP) and propyl propionate (PP) was prepared, and the non-aqueous electrolytic solution was prepared from the opening of the exterior member 30. It was injected into the wound electrode body. The injected wound electrode body was impregnated by leaving it for 48 hours, heated to 60 ° C., and charged to full charge while pressurizing at 20 kgf / cm 2 , to form an adhesive layer between the separator and the electrode. .. Then, the opening of the exterior member 30 was heat-sealed and sealed. As a result, the battery 4 shown in FIGS. 3 and 4 was completed.
 以上に説明した電池4では、充電を行うと、正極活物質層21Bからリチウムイオンが放出され、非水電解液を介して負極活物質層22Bに吸蔵される。放電を行うと、負極活物質層22Bからリチウムイオンが放出され、非水電解液を介して正極活物質層21Bに吸蔵される。 In the battery 4 described above, when charging is performed, lithium ions are released from the positive electrode active material layer 21B and are occluded in the negative electrode active material layer 22B via the non-aqueous electrolytic solution. When the electric discharge is performed, lithium ions are released from the negative electrode active material layer 22B and are occluded in the positive electrode active material layer 21B via the non-aqueous electrolytic solution.
 以下、上記のようにして作製した電池4(巻回型電池)を用いて、落下試験についての実施例に基づいて本発明を具体的に説明する。なお、本発明は、以下に説明する実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on an example of a drop test using the battery 4 (winding type battery) manufactured as described above. The present invention is not limited to the examples described below.
 図2に示されるように、タブ11,12が導出される側(以下、トップ側と称する。)とトップ側の反対側(以下、ボトム側と称する。)とに、U字型形状にテープ41(第1固定部材)を貼付した。U字型形状に貼付とは、図2に示されるように、巻回電池素子20の表側の主面である扁平部46から、端面47,47Aと、裏側の主面である扁平部46Aにかけて、テープ41を貼付することであり、電池4の側面側から視たとき、例えば図2において、テープ41がU字形状となるように貼付することである。U字形状に貼付することで、扁平部46と端面47との双方を同時に固定することができ、蓄電素子の変形を抑制し、外部負荷による蓄電素子の損傷をより抑制することができる。 As shown in FIG. 2, a U-shaped tape is formed on the side from which the tabs 11 and 12 are derived (hereinafter referred to as the top side) and the opposite side of the top side (hereinafter referred to as the bottom side). 41 (first fixing member) was attached. As shown in FIG. 2, the U-shaped attachment means from the flat portion 46, which is the main surface of the wound battery element 20, to the end faces 47, 47A and the flat portion 46A, which is the main surface of the back side. , The tape 41 is attached so that the tape 41 has a U-shape when viewed from the side surface side of the battery 4, for example, in FIG. 2. By attaching to a U-shape, both the flat portion 46 and the end face 47 can be fixed at the same time, deformation of the power storage element can be suppressed, and damage to the power storage element due to an external load can be further suppressed.
 巻回電池素子20(蓄電素子)の扁平部にテープ42(第2固定部材)を貼付した。なお、テープ42を貼付した位置は、巻回電池素子20の巻き終わり部に重なる位置である。第2固定部材であるテープ42は配向ポリスチレンを基材に用いた粘着テープ(OPSテープ)とした。OPSテープは、Tapex社製の3052DRである。テープ41,42を貼付した巻回電池素子20をラミネートフィルム43で覆い、図2のように両面テープ44(第3固定部材)を貼付し、ラミネートフィルム43の片方の主面をスマートフォン1の筐体45に固定した。両面テープ44(第3固定部材)は、テープ42(第2固定部材)が設けられた扁平部46と反対面の扁平部46Aと対向するように設けられている。 A tape 42 (second fixing member) was attached to the flat portion of the wound battery element 20 (storage element). The position where the tape 42 is attached is a position where the tape 42 overlaps the winding end portion of the wound battery element 20. The tape 42, which is the second fixing member, was an adhesive tape (OPS tape) using oriented polystyrene as a base material. The OPS tape is 3052DR manufactured by Tapex. The wound battery element 20 to which the tapes 41 and 42 are attached is covered with the laminated film 43, the double-sided tape 44 (third fixing member) is attached as shown in FIG. 2, and one main surface of the laminated film 43 is the housing of the smartphone 1. It was fixed to the body 45. The double-sided tape 44 (third fixing member) is provided so as to face the flat portion 46A on the opposite surface to the flat portion 46 on which the tape 42 (second fixing member) is provided.
 図7Aは巻回電池素子20の上面図であり、図7Bは巻回電池素子20の正面図であり、図7Cは巻回電池素子20の底面図である。以下では、巻回電池素子20のトップ側やボトム側にU字型形状に貼付したテープ41(第1固定部材)の貼付位置は、図7Aから図7Cに示されるように、K,L,Mの位置である。テープ41(第1固定部材)は、巻回電池素子20の端面47,47Aの一部と扁平部46,46Aの一部とを覆った。トップ側のテープ41(第1固定部材)の貼付位置はLであり、トップ側の端面47の略中央と、扁平部46,46Aのタブ11,12の間の位置である。ボトム側のテープ41(第1固定部材)の貼付位置はKとMであり、ボトム側の端面47Aの左右それぞれと、扁平部46,46Aのタブ11,12の延長線上を含んでいる。貼付位置Lのテープ41は、貼付位置K,Mのそれぞれの位置におけるテープ41とは対向しないように貼付されている。テープ41(第1固定部材)としてはOPSテープ又はPETテープを用いた。PETテープは、基材にPET(ポリエチレンテレフタレート)を用いた粘着テープである。
 ここで、OPSテープは、ラミネートフィルム43内に含まれる非水電解質に湿潤することで所定の粘着力を発現し、蓄電素子20とラミネートフィルム43との間を固定することができる。一方で、PETテープは、このような粘着力を発現しない。したがって、実施形態における第1固定部材は、少なくとも一部において、粘着力を有し、蓄電素子20とラミネートフィルム43とを固定するものである。なお、蓄電素子20のトップ側はタブ11、12がシーラントを介してラミネートフィルム43と固定されているため、ボトム側の貼付位置KまたはMの少なくとも一方に粘着力を有するテープ41が貼付されていれば、ラミネートフィルム43と蓄電素子20とは充分に固定されていることになる。これに加えて、トップ側の貼付位置Lに粘着力あるテープ41が貼付されていると、ラミネートフィルム43と蓄電素子20とのトップ側での固定力がさらに高まるため、好ましい。
7A is a top view of the wound battery element 20, FIG. 7B is a front view of the wound battery element 20, and FIG. 7C is a bottom view of the wound battery element 20. In the following, the attachment positions of the tape 41 (first fixing member) attached in a U-shape to the top side and the bottom side of the wound battery element 20 are K, L, as shown in FIGS. 7A to 7C. It is the position of M. The tape 41 (first fixing member) covered a part of the end faces 47, 47A of the wound battery element 20 and a part of the flat portions 46, 46A. The attachment position of the tape 41 (first fixing member) on the top side is L, which is a position between the substantially center of the end surface 47 on the top side and the tabs 11 and 12 of the flat portions 46 and 46A. The attachment positions of the tape 41 (first fixing member) on the bottom side are K and M, and include the left and right ends of the bottom surface 47A and the extension lines of the tabs 11 and 12 of the flat portions 46 and 46A. The tape 41 at the sticking position L is stuck so as not to face the tape 41 at each of the sticking positions K and M. As the tape 41 (first fixing member), an OPS tape or a PET tape was used. The PET tape is an adhesive tape using PET (polyethylene terephthalate) as a base material.
Here, the OPS tape exhibits a predetermined adhesive force by being wetted with the non-aqueous electrolyte contained in the laminated film 43, and can fix the energy storage element 20 and the laminated film 43. On the other hand, PET tape does not exhibit such adhesive strength. Therefore, the first fixing member in the embodiment has adhesive strength at least in part and fixes the power storage element 20 and the laminated film 43. Since the tabs 11 and 12 on the top side of the power storage element 20 are fixed to the laminated film 43 via the sealant, the tape 41 having adhesive strength is attached to at least one of the attachment positions K or M on the bottom side. Then, the laminated film 43 and the power storage element 20 are sufficiently fixed. In addition to this, it is preferable that the adhesive tape 41 is attached to the attachment position L on the top side because the fixing force between the laminated film 43 and the power storage element 20 on the top side is further increased.
 また、第1固定部材は、端面47,47Aの全面を覆うものではなく、端面の一部を覆うものである。これにより、トップ側およびボトム側からの非水電解液の流通を確保でき、電池の充放電特性を高めることができる。 Further, the first fixing member does not cover the entire surface of the end faces 47 and 47A, but covers a part of the end face. As a result, the flow of the non-aqueous electrolytic solution from the top side and the bottom side can be ensured, and the charge / discharge characteristics of the battery can be improved.
 図2に示すように、本実施形態の電池4においては、ラミネートフィルム43から導出されたタブ11、12は、ラミネートフィルム43の中で屈曲され、電池の厚さ方向のいずれか一方に偏った状態で導出されている。ここで、第2固定部材は、タブ11、12が導出された位置から伸在する位置にある蓄電素子20の扁平部とは反対側の扁平部に設けることが好ましい。前述のとおり、蓄電素子20のトップ側はタブ11、12の固定にともなってラミネートフィルム43と固定されており、そこから比較的離れた位置の扁平部で、蓄電素子20とラミネートフィルム43とを固定することで、固定力が均一化し、外部負荷に対して外装部材または蓄電素子の損傷をより抑制することができる。 As shown in FIG. 2, in the battery 4 of the present embodiment, the tabs 11 and 12 derived from the laminated film 43 are bent in the laminated film 43 and biased to either one in the thickness direction of the battery. Derived in state. Here, it is preferable that the second fixing member is provided on a flat portion on the opposite side of the flat portion of the power storage element 20 at a position extending from the position where the tabs 11 and 12 are derived. As described above, the top side of the power storage element 20 is fixed to the laminated film 43 by fixing the tabs 11 and 12, and the power storage element 20 and the laminated film 43 are attached to the flat portion at a position relatively distant from the tabs 11 and 12. By fixing, the fixing force becomes uniform, and damage to the exterior member or the power storage element can be further suppressed against an external load.
 本実施形態の電子機器(スマートフォン1)においては、スマートフォン1の筐体45と電池4との固定をする第3固定部材を含む。スマートフォン1においては、第3固定部材が存在すると、タブ11、12に外部負荷が分散し、タブ11、12が破断しにくくなる。また、第3固定部材は、第2固定部材が設けられた扁平部と反対面の扁平部と対向するように設けられていると、筐体45とラミネートフィルム43との固定箇所と、ラミネートフィルム43と蓄電素子20との固定箇所とが、異なる平坦面で固定されることになり、固定力が均一化し、外部負荷に対して電池の損傷をより抑制することが可能となる。 The electronic device (smartphone 1) of the present embodiment includes a third fixing member for fixing the housing 45 of the smartphone 1 and the battery 4. In the smartphone 1, when the third fixing member is present, the external load is distributed to the tabs 11 and 12, and the tabs 11 and 12 are less likely to break. Further, when the third fixing member is provided so as to face the flat portion on the opposite surface to the flat portion provided with the second fixing member, the fixing portion between the housing 45 and the laminate film 43 and the laminate film are provided. The fixing points of the 43 and the power storage element 20 are fixed on different flat surfaces, the fixing force becomes uniform, and damage to the battery can be further suppressed against an external load.
[実施例1~7及び比較例1~4]
 実施例1においては、ボトム側に、OPSテープを貼付位置K,Mに貼り付け、トップ側には、OPSテープを貼付位置Lに貼り付けた。電池の重量を52gとした。実施例2~7及び比較例1~4においては、表1に示すようにボトム側およびトップ側の各位置に各素材のテープを張り付けた。また電池の重量も表1のとおりとした。
[Examples 1 to 7 and Comparative Examples 1 to 4]
In the first embodiment, the OPS tape was attached to the attachment positions K and M on the bottom side, and the OPS tape was attached to the attachment position L on the top side. The weight of the battery was 52 g. In Examples 2 to 7 and Comparative Examples 1 to 4, tapes of each material were attached to each position on the bottom side and the top side as shown in Table 1. The weight of the battery is also as shown in Table 1.
[評価]
 上記の実施例及び比較例について、落下試験を行った。落下試験は回転ドラム試験機を用いて、試験機内で0.5mの高さから電池4を含むスマートフォン1を模擬した冶具を落下させる試験である。スマートフォン1と同じ大きさおよび同じ重量の治具を用意し、治具に電池4を設置して、落下試験を行った。落下試験を繰り返し、100回毎に電池4の状態を調べ、ラミネートフィルム43が損傷した場合、内部ショートにより電圧が3V以下である場合、タブ11,12が断裂してインピーダンス測定が不能である場合や、温度異常が生じた場合を、スマートフォン1が動作しなくなったと想定される場合、又は、スマートフォン1がシャットダウンしたと想定される場合であるとして、NGとし、NGが判明した回数を、落下試験回数とした。結果を表1に示す。
[evaluation]
Drop tests were performed on the above examples and comparative examples. The drop test is a test in which a jig simulating a smartphone 1 including a battery 4 is dropped from a height of 0.5 m in the test machine using a rotary drum tester. A jig of the same size and weight as the smartphone 1 was prepared, a battery 4 was installed in the jig, and a drop test was performed. The drop test is repeated and the state of the battery 4 is checked every 100 times. If the laminated film 43 is damaged, the voltage is 3 V or less due to an internal short circuit, or the tabs 11 and 12 are torn and impedance measurement is impossible. Or, when a temperature abnormality occurs, it is assumed that the smartphone 1 has stopped operating, or the smartphone 1 is assumed to have shut down. The number of times. The results are shown in Table 1.
[表1]
Figure JPOXMLDOC01-appb-I000001
[Table 1]
Figure JPOXMLDOC01-appb-I000001
 実施例1から実施例7は、比較例1から比較例4に対して落下試験回数が比較的大きかった。実施例1から実施例7は、巻回電池素子20のボトム側の貼付位置K,MにOPSテープが貼り付けられていて、電池の重量は20g以上80g以下であった。即ち、テープ41(第1固定部材)は、OPSテープであって、巻回電池素子20のタブ11,12が導出される側とは反対側の端面47A及び巻回電池素子20の扁平部46,46Aを覆うように設けられ、端面47,47Aの一部を覆い、U字型形状に貼付され、電池の重量が20g以上80g以下であるとき、電子機器は衝撃に強い電池を含んでいて、電子機器は落下などによる衝撃に強いと判断できる。なお、実施例1から実施例3の結果より、テープ(第1固定部材)は、タブ11,12が導出される側の端面にも設けられることが好ましいといえる。 Examples 1 to 7 had a relatively large number of drop tests as compared with Comparative Examples 1 to 4. In Examples 1 to 7, the OPS tape was attached to the attachment positions K and M on the bottom side of the wound battery element 20, and the weight of the battery was 20 g or more and 80 g or less. That is, the tape 41 (first fixing member) is an OPS tape, and the end surface 47A on the side opposite to the side from which the tabs 11 and 12 of the wound battery element 20 are derived and the flat portion 46 of the wound battery element 20. , 46A is provided so as to cover a part of the end faces 47, 47A, and is attached in a U-shape. When the weight of the battery is 20 g or more and 80 g or less, the electronic device contains a battery resistant to impact. , It can be judged that electronic devices are strong against impacts such as dropping. From the results of Examples 1 to 3, it can be said that it is preferable that the tape (first fixing member) is also provided on the end face on the side where the tabs 11 and 12 are derived.
<2.変形例>
 以上、本発明の一実施形態について具体的に説明したが、本発明の内容は上述した一実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。
<2. Modification example>
Although one embodiment of the present invention has been specifically described above, the content of the present invention is not limited to the above-mentioned one embodiment, and various modifications based on the technical idea of the present invention are possible.
 テープ41(第1固定部材)とテープ42(第2固定部材)は、両面に粘着剤を備えた両面テープであってもよく、その場合、テープ41,42がラミネートフィルム43とも接着され、巻回電池素子20とラミネートフィルム43とが固定されてもよい。テープ41,42の粘着剤とは反対側に接着剤が配置され、テープ41,42がラミネートフィルム43とも接着されていてもよい。 The tape 41 (first fixing member) and the tape 42 (second fixing member) may be double-sided tapes having adhesives on both sides, in which case the tapes 41 and 42 are also adhered to the laminated film 43 and wound. The battery element 20 and the laminated film 43 may be fixed. An adhesive may be arranged on the side of the tapes 41 and 42 opposite to the adhesive, and the tapes 41 and 42 may also be adhered to the laminated film 43.
 本発明に係る電子機器はスマートフォンに限定されることはなく、ウエアラブル機器、電動工具等であってもよい。 The electronic device according to the present invention is not limited to a smartphone, and may be a wearable device, a power tool, or the like.
 上述の実施形態において挙げた構成、方法、工程、形状、材料及び数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料及び数値などを用いてもよい。上述した実施形態および変形例は、適宜組み合わせることができる。 The configurations, methods, processes, shapes, materials, numerical values, etc. given in the above-described embodiments are merely examples, and different configurations, methods, processes, shapes, materials, numerical values, etc. may be used as necessary. .. The above-described embodiments and modifications can be combined as appropriate.
1・・・スマートフォン,4・・・電池,11,12・・・タブ,41・・・テープ,42・・・テープ,43・・・ラミネートフィルム,44・・・両面テープ,45・・・筐体,46,46A・・・扁平部,47,47A・・・端面 1 ... Smartphone, 4 ... Battery, 11, 12 ... Tab, 41 ... Tape, 42 ... Tape, 43 ... Laminated film, 44 ... Double-sided tape, 45 ... Housing, 46, 46A ... Flat part, 47, 47A ... End face

Claims (8)

  1.  正極と負極とがセパレータを介して積層又は巻回された扁平部を有する扁平形状の蓄電素子と、
     前記蓄電素子の一端面から導出されたタブと、
     前記蓄電素子を覆う外装ラミネートフィルムと、
     前記蓄電素子の前記タブが導出される一端面とは反対側に位置する他端面に設けられた第1固定部材と、
     前記蓄電素子の前記扁平部に設けられた第2固定部材と、を有する、電池。
    A flat-shaped power storage element having a flat portion in which a positive electrode and a negative electrode are laminated or wound via a separator,
    The tab derived from one end surface of the power storage element and
    The exterior laminated film that covers the power storage element and
    A first fixing member provided on the other end surface located on the opposite side of the one end surface from which the tab of the power storage element is derived, and
    A battery having a second fixing member provided on the flat portion of the power storage element.
  2.  前記第1固定部材は、U字型形状に貼付されている請求項1に記載の電池。 The battery according to claim 1, wherein the first fixing member is attached to a U-shape.
  3.  前記第1固定部材は、更に、前記タブが導出される側の一端面にも設けられている請求項1又は2に記載の電池。 The battery according to claim 1 or 2, wherein the first fixing member is further provided on one end surface on the side from which the tab is derived.
  4.  前記第1固定部材は、前記端面の一部を覆う請求項1から3の何れかに記載の電池。 The battery according to any one of claims 1 to 3, wherein the first fixing member covers a part of the end face.
  5.  前前記第1固定部材及び前記第2固定部材は、OPSテープである請求項1から4の何れかに記載の電池。 The battery according to any one of claims 1 to 4, wherein the first fixing member and the second fixing member are OPS tapes.
  6.  前記電池の重量が20g以上80g以下である請求項1から5の何れかに記載の電池。 The battery according to any one of claims 1 to 5, wherein the weight of the battery is 20 g or more and 80 g or less.
  7.  正極と負極とがセパレータを介して積層又は巻回された扁平部を有する扁平形状の蓄電素子と、当該蓄電素子の一端面から導出されたタブと、外装ラミネートフィルムとを有し、
     前記蓄電素子は、第1固定部材と第2固定部材と、を有し、
     前記第1固定部材は、前記蓄電素子の前記タブが導出される一端面とは反対側に位置する一端面を覆うように設けられ、
     前記第2固定部材は前記蓄電素子の前記扁平部に設けられている電池と、
     筐体と、を有し、
     前記電池と前記筐体とを固定する第3固定部材と、を有する、電子機器。
    It has a flat power storage element having a flat portion in which a positive electrode and a negative electrode are laminated or wound via a separator, a tab derived from one end surface of the power storage element, and an exterior laminated film.
    The power storage element has a first fixing member and a second fixing member.
    The first fixing member is provided so as to cover one end surface located on the side opposite to one end surface from which the tab of the power storage element is derived.
    The second fixing member includes a battery provided in the flat portion of the power storage element and a battery.
    With a housing,
    An electronic device having a third fixing member for fixing the battery and the housing.
  8.  第3固定部材は、前記第2固定部材が設けられた扁平部と反対面の扁平部と対向するように設けられている、請求項7に記載の電子機器。 The electronic device according to claim 7, wherein the third fixing member is provided so as to face the flat portion on the opposite surface to the flat portion on which the second fixing member is provided.
PCT/JP2021/017265 2020-06-24 2021-04-30 Cell and electronic device WO2021261083A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020108648 2020-06-24
JP2020-108648 2020-06-24

Publications (1)

Publication Number Publication Date
WO2021261083A1 true WO2021261083A1 (en) 2021-12-30

Family

ID=79282358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017265 WO2021261083A1 (en) 2020-06-24 2021-04-30 Cell and electronic device

Country Status (1)

Country Link
WO (1) WO2021261083A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040005242A (en) * 2002-07-09 2004-01-16 삼성에스디아이 주식회사 Jelly-roll type battery unit forming short prevention means and the lithium secondary battery applying the same
KR20060092429A (en) * 2005-02-17 2006-08-23 주식회사 엘지화학 Stability-improved secondary battery containing fixing member
JP2016039126A (en) * 2014-08-05 2016-03-22 東莞新能源科技有限公司Dongguan Amperex Technology Limited Electrochemical energy storage device
US20170309871A1 (en) * 2015-02-27 2017-10-26 Lg Chem, Ltd. Pouch-type secondary battery
KR20180041979A (en) * 2016-10-17 2018-04-25 삼성에스디아이 주식회사 Rechargeable battery
KR20190071129A (en) * 2017-12-14 2019-06-24 주식회사 엘지화학 Electrode assembly and rechargeable battery comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040005242A (en) * 2002-07-09 2004-01-16 삼성에스디아이 주식회사 Jelly-roll type battery unit forming short prevention means and the lithium secondary battery applying the same
KR20060092429A (en) * 2005-02-17 2006-08-23 주식회사 엘지화학 Stability-improved secondary battery containing fixing member
JP2016039126A (en) * 2014-08-05 2016-03-22 東莞新能源科技有限公司Dongguan Amperex Technology Limited Electrochemical energy storage device
US20170309871A1 (en) * 2015-02-27 2017-10-26 Lg Chem, Ltd. Pouch-type secondary battery
KR20180041979A (en) * 2016-10-17 2018-04-25 삼성에스디아이 주식회사 Rechargeable battery
KR20190071129A (en) * 2017-12-14 2019-06-24 주식회사 엘지화학 Electrode assembly and rechargeable battery comprising the same

Similar Documents

Publication Publication Date Title
JP6332483B2 (en) Separator and battery
US9947959B2 (en) Non-aqueous electrolyte battery having porous polymer layer between laminate film and battery device
JP5699576B2 (en) Laminated microporous membrane, battery separator and non-aqueous electrolyte battery
KR101273722B1 (en) Anode and Battery
JP4951913B2 (en) Lithium ion secondary battery
US10186691B2 (en) Battery and assembled battery
JP5168850B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP2006252895A (en) Battery
KR20140085337A (en) Lithium secondary battery
JP2008262832A (en) Nonaqueous electrolyte secondary battery
JP2008305662A (en) Nonaqueous electrolyte secondary battery
JP5509618B2 (en) Non-aqueous electrolyte composition and non-aqueous electrolyte secondary battery
JP4784730B2 (en) battery
JP2009212011A (en) Non-aqueous electrolyte secondary battery
JP4297166B2 (en) Nonaqueous electrolyte secondary battery
JP5103822B2 (en) Nonaqueous electrolyte secondary battery
US20210210789A1 (en) Secondary battery
JP5380908B2 (en) Winding electrode body and non-aqueous electrolyte secondary battery
JP6048477B2 (en) Method for producing non-aqueous electrolyte battery
JP2007194104A (en) Gelatinous electrolyte battery
US20220085411A1 (en) Secondary battery
WO2021261083A1 (en) Cell and electronic device
JP2007335166A (en) Separator and secondary battery
CN111213277B (en) Nonaqueous electrolyte secondary battery
JP2010021043A (en) Separator, manufacturing method of separator and battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP