WO2021260939A1 - Light source control device, light source control method, image display device, program, and recording medium - Google Patents

Light source control device, light source control method, image display device, program, and recording medium Download PDF

Info

Publication number
WO2021260939A1
WO2021260939A1 PCT/JP2020/025327 JP2020025327W WO2021260939A1 WO 2021260939 A1 WO2021260939 A1 WO 2021260939A1 JP 2020025327 W JP2020025327 W JP 2020025327W WO 2021260939 A1 WO2021260939 A1 WO 2021260939A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
source control
value
control value
region
Prior art date
Application number
PCT/JP2020/025327
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 吉井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/025327 priority Critical patent/WO2021260939A1/en
Priority to JP2022532223A priority patent/JP7361922B2/en
Publication of WO2021260939A1 publication Critical patent/WO2021260939A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present disclosure relates to a light source control device, a light source control method, and an image display device.
  • the disclosure also relates to programs and recording media.
  • the backlight is divided into multiple areas for the main purpose of improving contrast and reducing power consumption, and local dimming is performed to control the emission brightness for each area.
  • a technique called is used.
  • the brightness of the light source corresponding to the divided area is calculated based on the gradation value for each area of the input image, and the average value (average light source brightness) of the brightness of a plurality of light sources is calculated.
  • the correction coefficient is calculated based on the average light source brightness, and the brightness of each light source is corrected using the correction coefficient.
  • the correction coefficient is 1 when the average light source brightness is small, and is decreased as the average light source brightness increases (for example, Patent Document 1).
  • the brightness of each light source is corrected by using the correction coefficient calculated from the average light source brightness. Therefore, for example, an all-gray image (an image in which all pixels have intermediate gradation values) and a part of the image are bright.
  • the correction coefficient is the same value. Therefore, there is a problem that a bright portion (a portion having a high gradation value) is not sufficiently brightly displayed in a partially bright image (a part of an image having a high gradation value).
  • the brightness of each light source when an all-gray image is input is corrected to be higher than the brightness of each light source when an all-white image is input. This is not appropriate from the viewpoint of reducing power consumption.
  • the present disclosure is for solving the above-mentioned problems, and aims to display with sufficient brightness according to the input image and to suppress power consumption.
  • the light source control device is In a light source control device that controls a backlight that can control brightness in multiple areas A feature amount calculation unit that calculates a feature amount indicating the brightness or brightness of an image for each of the regions from an input image signal, and a feature amount calculation unit. A light source control value calculation unit that calculates a light source control value for each region of the backlight based on the feature amount of the region, and a light source control value calculation unit. A comparison unit that compares the light source control value for each region with the brightness index of the input image signal and outputs the comparison result for the region.
  • a correction strength calculation unit that calculates the correction strength from the brightness index, It is provided with a light source control value correction unit that generates a correction light source control value for the region from the comparison result for each region and the correction intensity.
  • the light source control value of each region calculated by the light source control value calculation unit is larger as the brightness or brightness of the image represented by the feature amount for the region is larger.
  • the correction strength calculated by the correction strength calculation unit is larger as the brightness index is smaller.
  • the light source control value correction unit is When the comparison unit determines that the light source control value is larger than the brightness index, the brightness is obtained by multiplying the value obtained by subtracting the brightness index from the light source control value in the region by the correction intensity. The value obtained by adding the index is output as the correction light source control value.
  • the comparison unit determines that the light source control value in each region is equal to or less than the brightness index, the light source control value in the region is output as the correction light source control value in the region.
  • the value obtained by subtracting the average light source control value from the light source control value in the region is multiplied by the correction intensity.
  • the value obtained by adding the average light source control value is output as the correction light source control value in the region. Therefore, when an all-gray image (an image of uniform overall and intermediate level) is input, the brightness of the backlight is not corrected. Therefore, the amount of light emitted from the backlight is smaller than that in the case of an all-white image (an image in which the entire image is white), whereby power consumption can be suppressed (energy saving is achieved). Further, in an image in which a part is bright, the bright part is displayed sufficiently bright.
  • FIG. It is a block diagram which shows the structure of the image display device which concerns on Embodiment 1.
  • FIG. It is a figure which shows an example of the arrangement of the region formed by dividing a backlight.
  • FIG. It is a block diagram which shows the structure of the light source control apparatus which concerns on Embodiment 1.
  • FIG. It is a graph which shows an example of the relationship between the average light source control value and the correction intensity. It is a graph which shows an example of the relationship between the difference between a light source control value and an average light source control value, and a comparison value. It is a graph which shows the relationship between the light source control value and the correction light source control value. It is a table which shows the relationship between the content of an image and a correction light source control value.
  • FIG. 1 It is a table which shows the correction light source control value for the region which has a light source control value different from each other of an image.
  • FIG. 2 It is a block diagram which shows the structure of the light source control apparatus which concerns on Embodiment 2.
  • FIG. It is a figure which shows an example of the light source control value of each area of a backlight. It is a figure which shows the other example of the light source control value of each area of a backlight.
  • FIG. It is a block diagram which shows the structure of the light source control apparatus which concerns on Embodiment 3.
  • FIG. It is a block diagram which shows the structure of the image display device which concerns on Embodiment 4.
  • FIG. It is a block diagram which shows the structure of the light source control apparatus which concerns on Embodiment 4.
  • FIG. It is a block diagram which shows the structure of the image display device which concerns on Embodiment 5.
  • It is a flowchart which shows the procedure of the process in the case of performing the same light source control as the light source control apparatus of Embodiment 1 with the configuration of FIG.
  • It is a flowchart which shows the procedure of the process in the case of performing the same light source control as the light source control apparatus of Embodiment 4 with the same structure as FIG.
  • FIG. 1 shows the configuration of the image display device according to the first embodiment.
  • the image display device shown in FIG. 1 includes an image input terminal 1, a light source control device 100, an image signal processing unit 200, a display panel 300, and a backlight 400.
  • the display panel 300 is, for example, a liquid crystal display panel, but any panel may be used as long as the transmittance can be controlled for each pixel.
  • the backlight 400 is divided into a plurality of regions A1, A2, ... As shown in FIG. 2, for example, and the emission brightness, that is, the brightness can be controlled for each of the plurality of regions.
  • the backlight 400 is divided into 9 in the vertical direction and 8 in the horizontal direction to form 72 regions A1 to A72 in total.
  • the number of regions is not limited to 72 in this example. In the following, it is assumed that the areas A1 to A72 have the same area.
  • the backlight 400 may have one light emitter for each region, that is, a light source.
  • the number of regions and the number of light sources may or may not match.
  • the light source may be an LED.
  • the light source is driven by the light source driving device 402.
  • the light source driving device 402 includes, for example, a plurality of driving circuits provided corresponding to each of the plurality of light sources. The power consumption in each region of the backlight 400 is limited by the drive capability of each drive circuit.
  • An image signal (input image signal) Da is input to the image input terminal 1.
  • the input image signal Da is a set of pixel signals for each of the plurality of pixels.
  • the pixel signal may be referred to as an image signal for each pixel.
  • the image signal for each pixel has, for example, red, green and blue component values.
  • the light source control device 100 calculates a light source control value LSi for each Ai (i is any of 1 to 72) in each of the plurality of regions A1 to A72 from the input image signal Da, and corrects the light source based on the light source control value LSi.
  • the control value LSCi is calculated.
  • the light source control device 100 outputs a light source control value (first light source control value) LSi and a correction light source control value (second light source control value) LSCi.
  • the image signal processing unit 200 performs signal processing on the input image signal Da based on the light source control value LSi of each region output from the light source control device 100, and outputs the corrected image signal Db.
  • This signal processing includes gradation correction for the image signal for each pixel. The above gradation correction is performed in order to compensate for the change in the intensity of the light emitted by the backlight 400 due to the change in the light source control value.
  • the display panel 300 controls the light transmittance of each pixel based on the corrected image signal Db output from the image signal processing unit 200.
  • the backlight 400 controls the brightness of the region based on the corrected light source control value LSSi of each region output from the light source control device 100.
  • the brightness of each area is controlled by controlling the amount of light emitted from the light source that affects the brightness of each area.
  • FIG. 3 shows a configuration example of the light source control device 100 of FIG.
  • the illustrated light source control device 100 includes a feature amount calculation unit 101, a light source control value calculation unit 102, an average value calculation unit 103, a correction intensity calculation unit 104, a comparison unit 105, and a light source control value correction unit 106. Be prepared.
  • the feature amount calculation unit 101 calculates the feature amount FQi for each of the plurality of regions A1 to A72 from the input image signal Da.
  • the light source control value calculation unit 102 calculates the light source control value (first light source control value) LSi for the region from the feature quantity FQi for each region calculated by the feature quantity calculation unit 101.
  • the average value calculation unit 103 calculates the average value LSave of the light source control value LSi calculated by the light source control value calculation unit 102 over the entire backlight 400.
  • the correction intensity calculation unit 104 calculates the correction intensity G from the average light source control value LSave calculated by the average value calculation unit 103.
  • the comparison unit 105 compares the light source control value LSi of each region calculated by the light source control value calculation unit 102 with the average light source control value LSave calculated by the average value calculation unit 103, and obtains a comparison value Ci indicating the comparison result. Output.
  • the light source control value correction unit 106 has a correction intensity G calculated by the correction intensity calculation unit 104, a comparison value Ci for each region output from the comparison unit 105, and an average light source control calculated by the average value calculation unit 103. Based on the value LSave, the light source control value LSi of each region is corrected, and the corrected light source control value (second light source control value) LSCi for the region is output.
  • the light source control value LSi may be referred to as the light source control value before correction.
  • one or more delay sections shall be provided at necessary locations to delay the image signal.
  • the image represented by the input image signal Da may be a still image or a moving image, and may or may not be accompanied by sound.
  • moving images are also called images, they are referred to as images in the present specification.
  • the average value has the same meaning as the total value (sum) due to its nature.
  • the average value of a plurality of light source control values is the total value of the plurality of light source control values divided by the number of the light source control values.
  • the average value can be replaced with the total value.
  • a value proportional to the total value obtained by shifting the bits, deleting the lower bits, rounding up, rounding, or the like may have the same meaning as the average value. In that case, such a value can be used instead of the average value.
  • the feature amount calculation unit 101 calculates the feature amount FQi for each region from the input image signal Da.
  • the feature amount FQi for example, luminance or lightness is used.
  • the input image signal Da is composed of, for example, red, green and blue component values.
  • the brightness is obtained by adding the component values of red, green, and blue with predetermined weights.
  • the brightness can be the largest of the red, green, and blue component values in each pixel.
  • the light source control value calculation unit 102 is calculated from the peak value or average value of the feature amount FQi for each region calculated by the feature amount calculation unit 101, or the mixed value of the peak value and the average value (calculated from the peak value and the average value).
  • the light source control value LSi for each region is calculated from the value) and the like.
  • the peak value of the brightness in each region may be used as the light source control value LSi in that region. Then, the backlight 400 is controlled to emit bright light in a region in which a portion having a large component value of one or more colors occupies at least a part.
  • the feature amount FQi of a part or all of the region around the region of interest may also be taken into consideration.
  • the light source control value LS10 of one region of FIG. 2, for example, the region A10 is not only the region A10 but also the regions A1, the region A2, the region A3, the region A9, the region A11, the region A17, the region A18, and the regions adjacent to the region A10. It may be calculated by weighting and adding the feature amount of the area A19.
  • each feature amount in the surrounding area may be weighted according to the distance from the area of interest A10. For example, a region closer to the region of interest A10 (for example, a distance between the centers of the regions) may be given a larger weight to the feature amount of the region.
  • the peripheral region not only an adjacent region as in the above example but also a region within a wider range may be used. For example, 5 ⁇ 5 regions may be used centering on the region of interest.
  • the correction intensity calculation unit 104 calculates the correction intensity G from the average light source control value LSave.
  • the correction strength G is calculated by the following equations (1) and (2).
  • G 1 / LSave ... Equation (1) However, G ⁇ 2 ... Equation (2)
  • FIG. 4 shows the relationship between LSave and G according to the above equations (1) and (2).
  • the maximum value of the average light source control value LSave (the maximum value within the range of possible values) is 1.
  • the comparison unit 105 compares the light source control value LSi of each region with the average light source control value LSave, and outputs the comparison value Ci for the region showing the result of the comparison.
  • the comparative value Ci is obtained by, for example, the following equations (3) and (4).
  • Ci LSi-LSave ... Equation (3)
  • Ci 0 ... Equation (4)
  • FIG. 5 shows the relationship between LSi-LSave and Ci according to the above equations (3) and (4).
  • the light source control value correction unit 106 corrects the light source control value (first light source control value) LSi in the region based on the correction intensity G, the comparison value Ci for each region, and the average light source control value LSave. ,
  • the corrected light source control value (second light source control value) LSCi for the relevant region is output.
  • the calculation for correction is expressed by the following equations (5) and (6).
  • LSSi Ci ⁇ G + LSave... Equation (5)
  • LSCi and LSi The relationship between LSCi and LSi obtained by the above equations (5) and (6) is shown in FIG. 6 with LSave as a parameter. That is, in FIG. 6, when the value of LSave is 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8. The relationship between LSCi and LSi is shown for each of the cases of and 1.0.
  • equations (4) and (6) are defined as constraints on equations (3) and (5).
  • LSCi may exceed 255, as can be seen from the equation (5). Therefore, it is better to configure LSCi to be represented by a value of 9 bits or more. In the following, it is assumed to be represented by a 9-bit value. In this case, in order to make the comparison with LSi easy to understand, here, it is assumed that the 9-bit value 255 corresponds to 1, and the value larger than 255 corresponds to the value larger than 1.
  • the light source control value LSi in each region is assumed to be equal to the average value of the brightness in the region. Further, in FIG. 7, it is assumed that LSi and LSave take a value from 0 to 1. Further, in the column of Ci in FIG. 7, the values enclosed in parentheses are values obtained by the calculation of the equation (3) and not adopted by the proviso of the equation (4). Similarly, in the column of LSCi, the values enclosed in parentheses are the values obtained by the calculation of the equation (5) and not adopted by the proviso of the equation (6).
  • the light source control value LSi in each region is a maximum value of 1 (255 for an 8-bit value), and the corrected light source control value LSSi is also a value equal to the above maximum value 1.
  • the 9-bit value is 255).
  • the light source control value LSi for each region is 0.5 (128 for an 8-bit value), which is corrected.
  • the light source control value LSCi is also 0.5 (128 with a 9-bit value).
  • one half (for example, the left half) is black, that is, the brightness value is the minimum value 0 (even an 8-bit value is 0), and the other half (for example, the right half) is white, that is, the brightness value is the maximum value 1 (8).
  • the light source control value LSi in each region of the left half is 0 (0 even with an 8-bit value)
  • the correction light source control value LSCi is also 0 (0 even with a 9-bit value)
  • the right half The light source control value LSi in each region is 1.0 (255 with an 8-bit value), while the correction light source control value LSCi is 1.5 (about 384 with a 9-bit value).
  • the correction light source control value LSSi is suppressed to be lower in the all-gray image than in the case of the all-white image. Further, in an image in which the left half is black and the right half is white, which has the same average light source control value LSave as the all gray image, the correction light source control value LSCi is higher for the right half than in the case of the all white image.
  • the backlight 400 has seven regions Aa to Ag (unlike the example of FIG. 2), the luminance values of all the pixels in each region are equal to each other, and the average luminance values between the regions are equal to each other.
  • the light source control value LSi and the corrected light source control value LSCi in each region are shown.
  • LSi and LSave take a value from 0 to 1.
  • the light source control value LSi in each region is assumed to be equal to the average value of the brightness in the region.
  • FIG. 8 the light source control value LSi in each region is assumed to be equal to the average value of the brightness in the region.
  • the values enclosed in parentheses in the Ci column are the values obtained by the calculation of the equation (3) and not adopted by the proviso of the equation (4), and are enclosed in parentheses in the LSCi column.
  • the obtained value is a value obtained by the calculation of the equation (5) and is not adopted by the proviso of the equation (6).
  • the correction light source is used in Ad, Ae, Af, and Ag.
  • the control value LSCi is equal to the light source control value LSi.
  • the corrected light source control value LSSi is the light source control. It is larger than the value LSi, and the ratio of the increase of the correction light source control value LSCi to the increase of the light source control value LSi is 2, that is, equal to the correction intensity G.
  • the relationship between the light source control value LSi and the correction light source control value LSCi shown in FIG. 8 is the same as the relationship shown by the curve when LSave is 0.5 in FIG.
  • the image signal processing unit 200 performs signal processing on the input image signal Da based on the light source control value LSi in each region.
  • This signal processing includes gradation correction.
  • this gradation correction for example, in the region where the light source control value LSi is large, the gradation value of the image signal becomes small, and in the region where the light source control value LSi is small, the gradation value of the image signal is controlled to be large. It will be done.
  • a small gradation value of an image signal means that the image is dark, and a large gradation value of an image signal means that the image is bright.
  • processing may be performed so that the image becomes brighter in any region or the same brightness is maintained.
  • the boundary is adjacent to the light source control value of each region.
  • the control may be performed based on the mixed value with the light source control value in the region to be controlled.
  • the brightness of each of the light sources constituting the backlight 400 tends to gradually decrease as the distance from the center thereof increases, and the overall brightness distribution of the backlight 400 composed of a plurality of light sources is not always uniform. Taking these points into consideration, for example, in a place where the brightness is low, an additional process such as increasing the light source control value by correction may be performed.
  • the backlight when an image including a dark part is input, the backlight is darkened in the dark part as compared with the case where an all-white image is input, thereby suppressing power consumption (energy saving). Can be planned). Further, since the gradation value of the image signal is increased in the portion where the backlight is darkened, the brightness of the displayed image is the same as when the backlight is not darkened and the image signal is not corrected. Become. Further, in a partially bright image, the bright part is displayed sufficiently bright (equal to or better than the case where the backlight is not dimmed and the image signal is not corrected). Therefore, it is possible to display a high-contrast image.
  • the upper limit value of the correction strength G is 2, but the upper limit value of the correction strength G may be a value other than 2. If generalized, the correction strength G may be limited to an arbitrary set value M (M is a value larger than 1) or less.
  • the correction intensity G By limiting the correction intensity G to the set value M or less, it is possible to adjust so that the correction of the emission brightness does not become too strong.
  • the correction of the emission luminance can be adjusted so as not to be too strong.
  • a strong correction may be applied according to the user's preference, usage conditions, etc., but it can be adjusted so that the correction does not become too strong when the image is dark as a whole.
  • the upper limit of the correction intensity G can be determined based on the driving method of the light source controlled by the light source control device 100. For example, when normal driving (driving when the light source control value is not corrected) is performed with 1/2 or less of the capacity of each of the drive circuits constituting the light source driving device 402, the upper limit value of the correction intensity G should be set to 2. For example, the correction light source control value LSCi does not become a value that exceeds the capacity of each drive circuit (a value that requires driving with a capacity that exceeds the capacity of the drive circuit).
  • FIG. 9 shows a light source control device according to the second embodiment.
  • the light source control device 100b shown in FIG. 9 is generally the same as the light source control device 100 of FIG. However, instead of the correction intensity calculation unit 104 and the light source control value correction unit 106 in FIG. 3, a correction intensity calculation unit 104b and a light source control value correction unit 106b are provided.
  • the correction strength calculation unit 104b calculates the correction strength G by the following formula (7).
  • G 1 / LSave + 1 ... Equation (7)
  • the calculation of the comparison value Ci in the comparison unit 105 is the same as that in the first embodiment.
  • the light source control value correction unit 106b calculates the correction light source control value LSCi by the above equations (5) and (6) in the same manner as the light source control value correction unit 106 of FIG.
  • twice the LSmax is defined as LSSi. That is, the restriction of the following equation (8) is set for LSCi.
  • LSSi ⁇ 2 ⁇ LSmax... Equation (8)
  • the maximum value LSmax of the light source control value is the light source control value of the region when all the pixels in one region are white pixels.
  • the white pixel means a pixel having a maximum brightness or brightness (the largest value within the range of possible values, for example, 255 for an 8-bit value).
  • the limitation by equation (8) can be realized in digital data processing by expressing LSCi with a value with a bit number that is one more than LSi and clipping at the maximum value. For example, if LSi is an 8-bit value, LSCi is set to a 9-bit value, and the limitation by the equation (8) can be realized by clipping to the maximum value 511.
  • the correction for the light source control value can be strengthened as compared with the first embodiment, and the following conditions (a1) and (b) can be strengthened.
  • the light source control value is corrected so as to satisfy the above conditions.
  • A1 No matter what image is input, the average value (or total value) of the correction light source control value LSCi is driven by the power consumption exceeding the power consumption of the entire backlight when the all-white image is input. Does not require.
  • B) The corrected light source control value LSSi in each region does not exceed twice the maximum value LSmax of the light source control value.
  • the corrected light source control value LSSi when the all-white image is input is equal to the maximum value LSmax of the light source control value, like the light source control value LSi.
  • the above conditions (a1) and (b) are necessary from, for example, the capacity of the power supply for driving all the light sources of the backlight, the capacity of each of the plurality of light sources (rated values, etc.), the driving method of the light sources, and the like. Will be done.
  • the capacity of the power supply to drive all the light sources of the backlight is limited by, for example, the cost of the image display device including the backlight. No matter what the input image is, it is necessary to ensure that the sum of the corrected light source control values over the entire backlight does not require driving with a capacity larger than the capacity of the power supply.
  • the light source control value LSi when the all-white image is input is determined to match the capacity of the power supply. As described above, the light source control value LSi when the all-white image is input and the corrected light source control value LSSi are equal to the maximum value LSmax of the light source control value. Therefore, the light source control value corresponding to the power consumption by the entire backlight when the all-white image is input corresponds to the maximum value LSmax of the light source control value. From the above, the above condition (a1) can be paraphrased as the following condition (a2). (A2) No matter what kind of image is input, the average value LS Save over the entire backlight of the corrected light source control value LSSi does not exceed the maximum value LSmax of the light source control value.
  • each drive circuit (a plurality of drive circuits constituting the light source drive device 402) is used. ) Is to be driven by 1/2 of the capacity. Then, if the above condition (b) is satisfied, driving with a capacity exceeding the capacity of each light source and the capacity of each drive circuit is not required. Therefore, the above condition (b) is imposed on the calculation of the corrected light source control value LSSi.
  • the correction of the light source control value is made as strong as possible. That is, the following condition (c) is satisfied. (C) Increase the degree of correction for the light source control value as much as possible. That is, the correction light source control value LSSi is made as large as possible as a whole.
  • the backlight 400 includes a region where the light source control value LSi is the maximum value LSmax and a region where the light source control value LSi is 0.
  • the ratio of the region where the light source control value LSi is the maximum value LSmax is Rm
  • the ratio of the region where the light source control value LSi is 0 is Ro.
  • the above ratios Rm and Ro mean the ratio of the total area of the corresponding area to the total area of the area of the backlight 400. Assuming that the areas of the respective regions are equal to each other, the above ratios Rm and Ro are equal to Im / I and Io / I, respectively.
  • I represents the total number of regions
  • Im represents the number of regions where the light source control value LSi is the maximum value LSmax
  • Io represents the number of regions where the light source control value LSi is 0.
  • FIG. 10 shows an example of a combination of regions satisfying the above condition (d).
  • FIG. 10 is an example of the light source control values before correction in the 72 regions A1 to A72 similar to those shown in FIG.
  • the numerical values in the figure are light source control values in each region.
  • the region where the light source control value LSi is the maximum value LSmax is concentrated in the five columns on the right side, and the region where the light source control value LSi is 0 is concentrated in the three columns on the left side.
  • the region where the light source control value LSi is the maximum value LSmax forms one block
  • the region where the light source control value LSi is 0 forms another block.
  • this point has no particular significance, and for example, as shown in FIG. 11, a region in which the light source control value LSi is the maximum value LSmax and a region in which the light source control value LSi is 0 may be mixed.
  • the corrected light source control value LSCm in the region where the light source control value LSi is the maximum value LSmax is given by the following equation (11) from the equations (3) and (5).
  • LSCm ((LSmax-LSave) ⁇ G + LSave)... Equation (11)
  • the correction is performed as much as possible by determining the correction intensity by the equation (7) and determining the correction light source control value by using the equations (3), (4), (5), and (6). It can be strengthened (the corrected light source control value in each area is made as large as possible), and the average value LS Save of the corrected light source control value is larger than the average value LS Save of the light source control value when the all-white image is input. There is no. That is, the above condition (a2) and condition (c) can be satisfied. The above is the reason why the equation (7) is used for calculating the correction strength G.
  • the correction light source control value LSCi in each region becomes too large, and is larger than twice the light source control value when all the pixels in the corresponding region are white pixels. May be. Therefore, as shown in the equation (8), an upper limit is set for the correction light source control value. The above is the reason for limiting the equation (8).
  • the calculation of the corrected light source control value LSCi is limited by the equation (8), but the corrected light source control value LSCi is set to the largest value within the range of the limit. Therefore, it can be said that the correction light source control value is set as large as possible within the constraint of the equation (8).
  • the correction intensity G may be limited to an arbitrary set value M or less, and further adjustment may be made so that the correction of the emission brightness is not too strong.
  • equations (3) and (5) are used to calculate the corrected light source control value LSSi, when the light source control value takes a value other than 0 or LSmax, the average value LSave of the light source control values and each region.
  • the difference between the light source control values, that is, the value calculated by the equation (3) is relatively small, and therefore the average value of the corrected light source control values is smaller than when an image satisfying the above condition (d) is input. .. Therefore, the power consumption is smaller than the power consumption when the all-white image is input.
  • the correction intensity G is calculated based on the equation (7) and the correction light source control value is calculated using the equations (3), (4), (5), (6) and (8).
  • the power consumption required by the correction light source control value does not become larger than the power consumption when the all-white image is input, and it is possible to control the backlight 400 to emit light with the maximum brightness. Is.
  • FIG. 12 shows the configuration of the image display device according to the third embodiment.
  • the image display device shown in FIG. 12 is generally the same as the image display device described with reference to FIG. 1 with respect to the first embodiment.
  • the light source control device 100c is provided instead of the light source control device 100
  • the image signal processing unit 200c is provided instead of the image signal processing unit 200.
  • FIG. 13 shows the configuration of the light source control device 100c.
  • the light source control device 100c shown in FIG. 13 is generally the same as the light source control device 100 shown in FIG.
  • the light source control value LSi output from the light source control value calculation unit 102 is not output to the outside of the light source control device 100c, and instead, the correction light source control value LSCi output from the light source control value correction unit 106 is an image. It is supplied to the signal processing unit 200c.
  • the content of the processing in the light source control device 100c is the same as that described with respect to the light source control device 100 in the first embodiment.
  • the image signal processing unit 200c performs signal processing on the input image signal Da based on the correction light source control value LSCi of each region input from the light source control device 100c.
  • the corrected light source control value LSSi may be larger than the maximum value LSmax of the light source control value.
  • the corrected light source control value LSCi is the maximum value of the light source control value in the region where the corrected light source control value LSCi exceeds the maximum value LSmax of the light source control value in the entire area constituting the backlight 400. It is possible to perform signal processing different from the region that does not exceed LSmax.
  • the signal processing intensity is changed by the difference in the light source control value from the region where the maximum value LSmax of the peripheral light source control value is not exceeded. .. Therefore, signal processing can be continuously optimized in the region where the corrected light source control value LSCi exceeds the maximum value LSmax of the light source control value and the region where the corrected light source control value LSCi does not exceed the maximum value LSmax of the light source control value. , The displayed image can be made to look more natural.
  • FIG. 14 shows the configuration of the image display device according to the fourth embodiment.
  • the image display device shown in FIG. 14 is generally the same as the image display device described with reference to FIG. 1 with respect to the first embodiment.
  • the light source control device 100d is provided in place of the light source control device 100
  • the image signal processing unit 200d is provided in place of the image signal processing unit 200.
  • the image signal processing unit 200d has the same internal configuration as the image signal processing unit 200, but outputs the average gradation value APL of the input image signal Da.
  • the average gradation value APL is an average value of the brightness, brightness, etc. of the input image signal Da, and is calculated in the image signal processing unit 200d.
  • the average gradation value APL is supplied to the light source control device 100d.
  • FIG. 15 shows the configuration of the light source control device 100d.
  • the light source control device 100d shown in FIG. 15 is generally the same as the light source control device 100 shown in FIG. However, the average value calculation unit 103 is not provided, and instead of the correction intensity calculation unit 104, the comparison unit 105, and the light source control value correction unit 106, the correction intensity calculation unit 104d, the comparison unit 105d, and the light source control value correction unit are used. A portion 106d is provided.
  • the comparison unit 105d makes a comparison using the average gradation value APL instead of the average light source control value LSave. That is, the comparison unit 105d compares the light source control value LSi of each region calculated by the light source control value calculation unit 102 with the average gradation value APL, and outputs a comparison value Ci indicating the comparison result.
  • Ci LSi-APL ... Equation (23)
  • Ci 0 ... Equation (24)
  • the light source control value correction unit 106d is a light source control value calculation unit 102 based on the comparison value Ci output from the comparison unit 105d, the correction intensity G calculated by the correction intensity calculation unit 104d, and the average gradation value APL.
  • the calculated light source control value LSi of each region is corrected, and the corrected light source control value LSCi is output.
  • the following equations (25) and (26) are used to generate the corrected light source control value LSSi.
  • LSSi Ci ⁇ G + APL... Equation (25)
  • the average gradation value APL is a value equal to or less than the average light source control value LSave calculated by the average value calculation unit 103 described with reference to FIG. 3 in the first embodiment.
  • the light source control value calculation unit 102 uses, for example, a peak value or an average value such as brightness and brightness of each region, or a mixed value of the peak value and the average value as the light source control value LSi. However, it is not smaller than the average gradation value APL. That is, when the peak value of luminance or brightness is the light source control value LSi, the average gradation value APL is equal to or smaller than the average light source control value LSave.
  • the average gradation value APL is equal to the average light source control value LSave. Even when the mixed value of the peak value of luminance or brightness and the average value is set as the light source control value LSi, the average gradation value APL is equal to or smaller than the average light source control value LSave.
  • the correction intensity G is the figure with respect to the first embodiment.
  • the value is equal to or greater than the correction intensity G calculated by the light source control device of 3.
  • the correction intensity G when the average gradation value APL is used is not smaller than the correction intensity G when the average light source control value LSave is used, and the correction light source control value when the average gradation value APL is used.
  • FIG. 16 shows the configuration of the image display device according to the fifth embodiment.
  • the image display device shown in FIG. 16 is generally the same as the image display device described with reference to FIG. 14 with respect to the fourth embodiment.
  • the light source control device 100e is provided in place of the light source control device 100d
  • the image signal processing unit 200e is provided in place of the image signal processing unit 200d.
  • FIG. 17 shows the configuration of the light source control device 100e.
  • the light source control device 100e shown in FIG. 17 is generally the same as the light source control device 100d shown in FIG.
  • the light source control value LSi output from the light source control value calculation unit 102 is not output to the outside of the light source control device 100e, and instead, the corrected light source control value LSCi output from the light source control value correction unit 106d is an image. It is supplied to the signal processing unit 200e.
  • the content of the processing in the light source control device 100e is the same as that described with respect to the light source control device 100d in the fourth embodiment.
  • the image signal processing unit 200e outputs the average gradation value APL to the light source control device 100e, as in the image signal processing unit 200d of the fourth embodiment.
  • the image signal processing unit 200e performs signal processing on the input image signal Da based on the corrected light source control value LSCi of each region input from the light source control device 100e.
  • the content of the signal processing in the image signal processing unit 200e is the same as that described with respect to the image signal processing unit 200c in the third embodiment.
  • the average gradation value APL is used for the calculation of the correction intensity in the correction intensity calculation unit 104d and the comparison with the light source control value in the comparison unit 105d, the same effect as that of the fourth embodiment can be obtained. .. Further, since the image signal processing unit 200e performs signal processing on the image signal using the corrected light source control value LSSi, the same effect as that of the third embodiment can be obtained.
  • the average light source control value LSave is used for the calculation of the correction intensity G in the correction intensity calculation unit, the calculation of the comparison value Ci in the comparison unit, and the calculation of the correction light source control value LSCi in the light source control value correction unit. It is used, and in the fourth and fifth embodiments, the average gradation value APL is used.
  • the average light source control value LSave and the average gradation value APL are common in that they are brightness indexes of the input image. Therefore, in all of the first to fifth embodiments, the input image is used for the calculation of the correction intensity G in the correction intensity calculation unit, the calculation of the comparison value Ci in the comparison unit, and the calculation of the correction light source control value LSCi in the light source control value correction unit. It can be said that the brightness index of is used.
  • Each of the light source control devices 100, 100b, 100c, 100d, and 100e described in the first to fifth embodiments may be partially or wholly composed of a processing circuit.
  • the functions of each part of the light source control device may be realized by separate processing circuits, or the functions of a plurality of parts may be collectively realized by one processing circuit.
  • the processing circuit may be composed of hardware or software, that is, a programmed computer.
  • a part may be realized by hardware and the other part may be realized by software.
  • FIG. 18 shows an example of a configuration in which the function of the light source control device 100 of the first embodiment is realized by a computer 900 including a single processor, together with an image signal processing unit 200, a display panel 300, and a backlight 400. show.
  • the computer 900 has a processor 910 and a memory 920.
  • the memory 920 stores a program for realizing the functions of each part of the display control device.
  • the processor 910 uses, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microprocessor, a DSP (Digital Signal Processor), or the like.
  • the memory 920 may be, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Memory Disk Memory), an EEPROM (Electrically Memory, etc.), or an EEPROM.
  • a photomagnetic disk or the like is used.
  • the processor 910 and the memory 920 may be realized by an LSI (Large Scale Integration) integrated with each other.
  • the processor 910 realizes the function of the light source control device by executing the program stored in the memory 920.
  • the function of the light source control device includes the control of the brightness of the backlight 400 as described above.
  • the program may be provided through a network, or may be recorded and provided on a recording medium, such as a non-temporary recording medium. That is, the program may be provided, for example, as a program product.
  • the process shown in FIG. 19 is repeated every time one frame of image signal is input. That is, it is repeatedly performed for the time-series input of the image signal.
  • step ST10 one frame of image signal Da is received.
  • step ST11 the feature amount FQi is calculated for the input image signal. This process corresponds to the process in the feature amount calculation unit 101 of FIG.
  • step ST12 the light source control value LSi of each region of the backlight 400 is calculated. This process corresponds to the process in the light source control value calculation unit 102 of FIG.
  • step ST13 the average light source control value LSave is calculated from the light source control value LSi in all regions of the backlight 400. This process corresponds to the process in the average value calculation unit 103 of FIG.
  • step ST14 the correction intensity G is calculated from the average light source control value LSave.
  • step ST15 the comparison value Ci of the region is calculated from the light source control value LSi of each region and the average light source control value LSave. This process corresponds to the process in the comparison unit 105 of FIG.
  • the processing of step ST14 and the processing of step ST15 can be performed in parallel.
  • step ST16 the correction light source control value LSSi of the region is calculated from the correction intensity G, the comparison value Ci of each region, and the average light source control value LSave. This process corresponds to the process in the light source control value correction unit 106 of FIG.
  • step ST17 it is determined whether or not the processing should be continued.
  • the input of the image signal Da continues, that is, when the image signal of the next frame is input and there is no particular need to end, it is determined that the continuation should be performed, and the process returns to step ST10. If not, the process ends.
  • the process may be performed by the procedure shown in FIG. 20, for example.
  • step ST13 is not provided, and steps ST14, ST15, and ST16 are replaced with steps ST14d, ST15d, and ST16d.
  • step ST14d the correction intensity G is calculated from the average gradation value APL.
  • step ST15d the comparison value Ci of the region is calculated from the light source control value LSi of each region and the average gradation value APL.
  • step ST16d the correction light source control value LSCi in the region is calculated from the correction intensity G, the comparison value Ci in each region, and the average gradation value APL.
  • step ST16d the correction light source control value LSCi in the region is calculated from the correction intensity G, the comparison value Ci in each region, and the average gradation value APL.
  • This process corresponds to the process in the light source control value correction unit 106d of FIG.
  • the light source control device has been described above, it is also possible to implement the light source control method by using the light source control device, and it is also possible to have a computer execute the processing in the light source control device or the light source control method by a program. ..
  • Image input terminal 100, 100b, 100c, 100d, 100e Light source control device, 101 feature amount calculation unit, 102 light source control value calculation unit, 103 average value calculation unit, 104, 104b, 104d correction strength calculation unit, 105, 105d Comparison unit, 106, 106d light source control value correction unit, 200, 200c, 200d, 200e image signal processing unit, 300 display panel, 400 backlight, 402 light source drive device, 900 computer, 910 processor, 920 memory.

Abstract

Provided is a light source control device for controlling a backlight, the brightness of which can be controlled in a plurality of regions, wherein a light source control value for each region is calculated from an input image signal (Da). Furthermore, a correction intensity (G) that increases as a brightness index of the input image signal (Da) decreases is calculated. When a light source control value (LSi) is greater than the brightness index for each region, a value, obtained by multiplying the correction intensity (G) by a value obtained by subtracting the brightness index from the light source control value (LSi) and adding the brightness index, is set as a correction light source control value (LSCi). When the light source control value (LSi) is equal to or less than the brightness index, the light source control value (LSi) is used as the correction light source control value (LSCi). Display can be performed with sufficient brightness according to an input image, and power consumption can be suppressed.

Description

光源制御装置、光源制御方法、及び画像表示装置、並びにプログラム及び記録媒体Light source control device, light source control method, and image display device, as well as programs and recording media.
 本開示は、光源制御装置、光源制御方法、及び画像表示装置に関する。本開示はまた、プログラム及び記録媒体に関する。 The present disclosure relates to a light source control device, a light source control method, and an image display device. The disclosure also relates to programs and recording media.
 液晶表示装置など、バックライトを備えた画像表示装置では、コントラストの向上と消費電力の低減とを主な目的として、バックライトを複数の領域に分割し、領域毎に発光輝度を制御するローカルディミングと呼ばれる技術が用いられてきた。 In an image display device equipped with a backlight, such as a liquid crystal display device, the backlight is divided into multiple areas for the main purpose of improving contrast and reducing power consumption, and local dimming is performed to control the emission brightness for each area. A technique called is used.
 従来の画像表示装置の一例では、入力画像の領域毎の階調値に基づいて分割領域に対応する光源の輝度を算出し、複数の光源の輝度の平均値(平均光源輝度)を算出し、平均光源輝度に基づいて補正係数を算出し、補正係数を用いて各光源の輝度を補正する。補正係数は、平均光源輝度が小さいときに1であり、平均光源輝度が大きくなるに従い小さくされる(例えば特許文献1)。 In an example of the conventional image display device, the brightness of the light source corresponding to the divided area is calculated based on the gradation value for each area of the input image, and the average value (average light source brightness) of the brightness of a plurality of light sources is calculated. The correction coefficient is calculated based on the average light source brightness, and the brightness of each light source is corrected using the correction coefficient. The correction coefficient is 1 when the average light source brightness is small, and is decreased as the average light source brightness increases (for example, Patent Document 1).
特許第4818351号明細書(段落0007、段落0043)Japanese Patent No. 4818351 (paragraph 0007, paragraph 0043)
 特許文献1の方法では、平均光源輝度から算出した補正係数に用いて各光源の輝度を補正するので、例えば、全グレー画像(全画素が中間階調値の画像)と、一部が明るく、全画素の階調値の平均値が全グレー画像と同一の画像とでは、補正係数は同一の値となる。そのため、一部が明るい画像(一部の階調値が高い画像)において明るい部分(階調値が高い部分)が十分に明るく表示されないという問題があった。
 また、特許文献1の方法では、例えば、全グレー画像が入力されたときの各光源の輝度が全白画像が入力されたときの各光源の輝度よりも高くなるように補正される。これは、消費電力抑制の観点から適切ではない。
In the method of Patent Document 1, the brightness of each light source is corrected by using the correction coefficient calculated from the average light source brightness. Therefore, for example, an all-gray image (an image in which all pixels have intermediate gradation values) and a part of the image are bright. When the average value of the gradation values of all the pixels is the same as that of the all gray image, the correction coefficient is the same value. Therefore, there is a problem that a bright portion (a portion having a high gradation value) is not sufficiently brightly displayed in a partially bright image (a part of an image having a high gradation value).
Further, in the method of Patent Document 1, for example, the brightness of each light source when an all-gray image is input is corrected to be higher than the brightness of each light source when an all-white image is input. This is not appropriate from the viewpoint of reducing power consumption.
 本開示は、上記のような問題点を解決するためのものであり、入力される画像に応じて十分な輝度で表示を行なうとともに、消費電力を抑制することを目的としている。 The present disclosure is for solving the above-mentioned problems, and aims to display with sufficient brightness according to the input image and to suppress power consumption.
 本開示に係る光源制御装置は、
 複数の領域で明るさの制御が可能なバックライトを制御する光源制御装置において、
 入力画像信号から前記領域の各々について画像の輝度又は明度を示す特徴量を算出する特徴量算出部と、
 前記バックライトの各領域についての光源制御値を当該領域の特徴量に基づいて算出する光源制御値算出部と、
 各領域についての前記光源制御値と前記入力画像信号の明るさ指標とを比較し、当該領域についての比較結果を出力する比較部と、
 前記明るさ指標から補正強度を算出する補正強度算出部と、
 各領域についての前記比較結果と前記補正強度とから当該領域についての補正光源制御値を生成する光源制御値補正部とを備え、
 前記光源制御値算出部で算出される各領域の前記光源制御値は、当該領域についての前記特徴量で表される前記画像の輝度又は明度が大きいほど大きく、
 前記補正強度算出部で算出される前記補正強度は、前記明るさ指標が小さいほど大きく、
 前記光源制御値補正部は、
 前記比較部で前記光源制御値が前記明るさ指標よりも大きいと判定された場合には、当該領域の前記光源制御値から前記明るさ指標を減算した値に前記補正強度を乗じて前記明るさ指標を加算した値を、前記補正光源制御値として出力し、
 前記比較部で各領域の前記光源制御値が前記明るさ指標以下であると判定された場合には、当該領域の前記光源制御値を、当該領域の前記補正光源制御値として出力する。
The light source control device according to the present disclosure is
In a light source control device that controls a backlight that can control brightness in multiple areas
A feature amount calculation unit that calculates a feature amount indicating the brightness or brightness of an image for each of the regions from an input image signal, and a feature amount calculation unit.
A light source control value calculation unit that calculates a light source control value for each region of the backlight based on the feature amount of the region, and a light source control value calculation unit.
A comparison unit that compares the light source control value for each region with the brightness index of the input image signal and outputs the comparison result for the region.
A correction strength calculation unit that calculates the correction strength from the brightness index,
It is provided with a light source control value correction unit that generates a correction light source control value for the region from the comparison result for each region and the correction intensity.
The light source control value of each region calculated by the light source control value calculation unit is larger as the brightness or brightness of the image represented by the feature amount for the region is larger.
The correction strength calculated by the correction strength calculation unit is larger as the brightness index is smaller.
The light source control value correction unit is
When the comparison unit determines that the light source control value is larger than the brightness index, the brightness is obtained by multiplying the value obtained by subtracting the brightness index from the light source control value in the region by the correction intensity. The value obtained by adding the index is output as the correction light source control value.
When the comparison unit determines that the light source control value in each region is equal to or less than the brightness index, the light source control value in the region is output as the correction light source control value in the region.
 本開示によれば、各領域の前記光源制御値が前記平均光源制御値よりも大きい場合には、当該領域の前記光源制御値から前記平均光源制御値を減算した値に前記補正強度を乗じて前記平均光源制御値を加算した値が、当該領域の前記補正光源制御値として出力される。このため、全グレー画像(全体が均一で、中間レベルの画像)が入力されたときには、バックライトの輝度は補正されない。従って、全白画像(全体が白色である画像)の場合と比べ、バックライトの発光量は少なくなり、これにより、消費電力を抑制する(省エネルギーを図る)ことができる。また、一部が明るい画像は、明るい部分が十分に明るく表示される。 According to the present disclosure, when the light source control value in each region is larger than the average light source control value, the value obtained by subtracting the average light source control value from the light source control value in the region is multiplied by the correction intensity. The value obtained by adding the average light source control value is output as the correction light source control value in the region. Therefore, when an all-gray image (an image of uniform overall and intermediate level) is input, the brightness of the backlight is not corrected. Therefore, the amount of light emitted from the backlight is smaller than that in the case of an all-white image (an image in which the entire image is white), whereby power consumption can be suppressed (energy saving is achieved). Further, in an image in which a part is bright, the bright part is displayed sufficiently bright.
実施の形態1に係る画像表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the image display device which concerns on Embodiment 1. FIG. バックライトを分割することで形成される領域の配置の一例を示す図である。It is a figure which shows an example of the arrangement of the region formed by dividing a backlight. 実施の形態1に係る光源制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the light source control apparatus which concerns on Embodiment 1. FIG. 平均光源制御値と補正強度との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the average light source control value and the correction intensity. 光源制御値と平均光源制御値との差と、比較値との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the difference between a light source control value and an average light source control value, and a comparison value. 光源制御値と補正光源制御値との関係を示すグラフである。It is a graph which shows the relationship between the light source control value and the correction light source control value. 画像の内容と補正光源制御値との関係を示す表である。It is a table which shows the relationship between the content of an image and a correction light source control value. 画像の互いに異なる光源制御値を有する領域についての補正光源制御値を示す表である。It is a table which shows the correction light source control value for the region which has a light source control value different from each other of an image. 実施の形態2に係る光源制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the light source control apparatus which concerns on Embodiment 2. FIG. バックライトの各領域の光源制御値の一例を示す図である。It is a figure which shows an example of the light source control value of each area of a backlight. バックライトの各領域の光源制御値の他の例を示す図である。It is a figure which shows the other example of the light source control value of each area of a backlight. 実施の形態3に係る画像表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the image display device which concerns on Embodiment 3. FIG. 実施の形態3に係る光源制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the light source control apparatus which concerns on Embodiment 3. FIG. 実施の形態4に係る画像表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the image display device which concerns on Embodiment 4. FIG. 実施の形態4に係る光源制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the light source control apparatus which concerns on Embodiment 4. FIG. 実施の形態5に係る画像表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the image display device which concerns on Embodiment 5. 実施の形態5に係る光源制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the light source control apparatus which concerns on Embodiment 5. 単一のプロセッサを含むコンピュータで実施の形態1の光源制御装置の機能を実現する場合の構成の一例を示すブロック図である。It is a block diagram which shows an example of the configuration in the case where the function of the light source control device of Embodiment 1 is realized by the computer including a single processor. 図18の構成で実施の形態1の光源制御装置と同様の光源制御を行なう場合の処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process in the case of performing the same light source control as the light source control apparatus of Embodiment 1 with the configuration of FIG. 図18と同様の構成で実施の形態4の光源制御装置と同様の光源制御を行なう場合の処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process in the case of performing the same light source control as the light source control apparatus of Embodiment 4 with the same structure as FIG.
実施の形態1.
 図1は、実施の形態1に係る画像表示装置の構成を示す。図1に示される画像表示装置は、画像入力端子1と、光源制御装置100と、画像信号処理部200と、表示パネル300と、バックライト400とを備える。
Embodiment 1.
FIG. 1 shows the configuration of the image display device according to the first embodiment. The image display device shown in FIG. 1 includes an image input terminal 1, a light source control device 100, an image signal processing unit 200, a display panel 300, and a backlight 400.
 表示パネル300は、例えば、液晶表示パネルであるが、画素毎に透過率を制御制可能なパネルであれば、どのようなものでも良い。 The display panel 300 is, for example, a liquid crystal display panel, but any panel may be used as long as the transmittance can be controlled for each pixel.
 バックライト400は、例えば図2に示されるように複数の領域A1、A2、…に分割されており、複数の領域の各々につき発光輝度即ち明るさを制御することができるものである。 The backlight 400 is divided into a plurality of regions A1, A2, ... As shown in FIG. 2, for example, and the emission brightness, that is, the brightness can be controlled for each of the plurality of regions.
 図2に示される例では、バックライト400が縦方向に9分割され、横方向に8分割されて、全部で72個の領域A1~A72が形成されている。しかし、領域の数はこの例の72に限定されない。以下では、領域A1~A72は面積が互いに等しいものとする。 In the example shown in FIG. 2, the backlight 400 is divided into 9 in the vertical direction and 8 in the horizontal direction to form 72 regions A1 to A72 in total. However, the number of regions is not limited to 72 in this example. In the following, it is assumed that the areas A1 to A72 have the same area.
 バックライト400は、領域毎に1個の発光体、即ち光源を有するものであっても良い。領域の数と光源の数は一致しても一致しなくても良い。例えば、一つの領域に複数の光源を有するものであっても良い。光源はLEDであっても良い。光源は光源駆動装置402によって駆動される。光源駆動装置402は例えば、複数の光源にそれぞれ対応して設けられた複数の駆動回路を含む。バックライト400の各領域における消費電力は、各駆動回路の駆動能力によって制限される。 The backlight 400 may have one light emitter for each region, that is, a light source. The number of regions and the number of light sources may or may not match. For example, it may have a plurality of light sources in one area. The light source may be an LED. The light source is driven by the light source driving device 402. The light source driving device 402 includes, for example, a plurality of driving circuits provided corresponding to each of the plurality of light sources. The power consumption in each region of the backlight 400 is limited by the drive capability of each drive circuit.
 画像入力端子1には、画像信号(入力画像信号)Daが入力される。入力画像信号Daは、複数の画素の各々についての画素信号の集合である。画素信号を各画素についての画像信号と言うことがある。各画素についての画像信号は例えば、赤、緑及び青の成分値を持つ。 An image signal (input image signal) Da is input to the image input terminal 1. The input image signal Da is a set of pixel signals for each of the plurality of pixels. The pixel signal may be referred to as an image signal for each pixel. The image signal for each pixel has, for example, red, green and blue component values.
 光源制御装置100は、入力画像信号Daから、複数の領域A1~A72の各々Ai(iは1から72のいずれか)についての光源制御値LSiを算出し、光源制御値LSiに基づいて補正光源制御値LSCiを算出する。
 光源制御装置100は、光源制御値(第1の光源制御値)LSiと補正光源制御値(第2の光源制御値)LSCiとを出力する。
The light source control device 100 calculates a light source control value LSi for each Ai (i is any of 1 to 72) in each of the plurality of regions A1 to A72 from the input image signal Da, and corrects the light source based on the light source control value LSi. The control value LSCi is calculated.
The light source control device 100 outputs a light source control value (first light source control value) LSi and a correction light source control value (second light source control value) LSCi.
 画像信号処理部200は、光源制御装置100から出力された各領域の光源制御値LSiに基づいて、入力画像信号Daに対して信号処理を行なって、補正画像信号Dbとして出力する。この信号処理には、各画素についての画像信号に対する階調補正が含まれる。上記の階調補正は、光源制御値の変化に伴うバックライト400が発する光の強さの変化を補償するために行われる。 The image signal processing unit 200 performs signal processing on the input image signal Da based on the light source control value LSi of each region output from the light source control device 100, and outputs the corrected image signal Db. This signal processing includes gradation correction for the image signal for each pixel. The above gradation correction is performed in order to compensate for the change in the intensity of the light emitted by the backlight 400 due to the change in the light source control value.
 表示パネル300は、画像信号処理部200から出力された各画素についての補正画像信号Dbに基づいて当該画素の光の透過率を制御する。 The display panel 300 controls the light transmittance of each pixel based on the corrected image signal Db output from the image signal processing unit 200.
 バックライト400は、光源制御装置100から出力された各領域の補正光源制御値LSCiに基づいて当該領域の明るさを制御する。各領域の明るさの制御は各領域の明るさに影響を与える光源の発光量を制御することで行われる。 The backlight 400 controls the brightness of the region based on the corrected light source control value LSSi of each region output from the light source control device 100. The brightness of each area is controlled by controlling the amount of light emitted from the light source that affects the brightness of each area.
 図3は、図1の光源制御装置100の構成例を示す。図示の光源制御装置100は、特徴量算出部101と、光源制御値算出部102と、平均値算出部103と、補正強度算出部104と、比較部105と、光源制御値補正部106とを備える。 FIG. 3 shows a configuration example of the light source control device 100 of FIG. The illustrated light source control device 100 includes a feature amount calculation unit 101, a light source control value calculation unit 102, an average value calculation unit 103, a correction intensity calculation unit 104, a comparison unit 105, and a light source control value correction unit 106. Be prepared.
 特徴量算出部101は、入力画像信号Daから複数の領域A1~A72の各々Aiについての特徴量FQiを算出する。 The feature amount calculation unit 101 calculates the feature amount FQi for each of the plurality of regions A1 to A72 from the input image signal Da.
 光源制御値算出部102は、特徴量算出部101で算出された各領域についての特徴量FQiから当該領域についての光源制御値(第1の光源制御値)LSiを算出する。 The light source control value calculation unit 102 calculates the light source control value (first light source control value) LSi for the region from the feature quantity FQi for each region calculated by the feature quantity calculation unit 101.
 平均値算出部103は、光源制御値算出部102で算出された光源制御値LSiの、バックライト400の全体に亘る平均値LSaveを算出する。 The average value calculation unit 103 calculates the average value LSave of the light source control value LSi calculated by the light source control value calculation unit 102 over the entire backlight 400.
 補正強度算出部104は、平均値算出部103で算出された平均光源制御値LSaveから補正強度Gを算出する。 The correction intensity calculation unit 104 calculates the correction intensity G from the average light source control value LSave calculated by the average value calculation unit 103.
 比較部105は、光源制御値算出部102で算出された各領域の光源制御値LSiと平均値算出部103で算出された平均光源制御値LSaveとを比較し、比較結果を示す比較値Ciを出力する。 The comparison unit 105 compares the light source control value LSi of each region calculated by the light source control value calculation unit 102 with the average light source control value LSave calculated by the average value calculation unit 103, and obtains a comparison value Ci indicating the comparison result. Output.
 光源制御値補正部106は、補正強度算出部104で算出された補正強度Gと、比較部105から出力された各領域についての比較値Ciと、平均値算出部103で算出された平均光源制御値LSaveとに基づいて、各領域の光源制御値LSiを補正して、当該領域についての、補正光源制御値(第2の光源制御値)LSCiを出力する。 The light source control value correction unit 106 has a correction intensity G calculated by the correction intensity calculation unit 104, a comparison value Ci for each region output from the comparison unit 105, and an average light source control calculated by the average value calculation unit 103. Based on the value LSave, the light source control value LSi of each region is corrected, and the corrected light source control value (second light source control value) LSCi for the region is output.
 補正光源制御値LSCiとの区別のため、光源制御値LSiを補正前の光源制御値と言うことがある。 To distinguish from the corrected light source control value LSCi, the light source control value LSi may be referred to as the light source control value before correction.
 画像信号に基づく種々の値の算出等にかかる時間に合わせるため、画像信号を遅延する必要があれば、1以上の遅延部(図示しない)を必要な箇所に設けて、遅延するものとする。 If it is necessary to delay the image signal in order to match the time required for calculation of various values based on the image signal, one or more delay sections (not shown) shall be provided at necessary locations to delay the image signal.
 入力画像信号Daで表される画像は、静止画でも動画でも良く、音声が伴うものでも、伴わないものでも良い。特に、動画は映像とも言われるが、本明細書では画像と表記する。 The image represented by the input image signal Da may be a still image or a moving image, and may or may not be accompanied by sound. In particular, although moving images are also called images, they are referred to as images in the present specification.
 なお、平均値は、その性質上、合計値(和)と同様の意味を持つ。例えば、複数の光源制御値の平均値は、当該複数の光源制御値の合計値を、当該光源制御値の数で除算したものであり、装置の構成上、除算を省略した方が良い場合は、平均値を合計値で代えることもできる。また、デジタルデータ処理において、ビットをシフトし、下位ビットを削除し、或いは切り上げ、四捨五入等により得られた、合計値に比例する値が平均値と同様の意味を持つ場合がある。その場合、そのような値を平均値の代わりに用いることができる。 The average value has the same meaning as the total value (sum) due to its nature. For example, the average value of a plurality of light source control values is the total value of the plurality of light source control values divided by the number of the light source control values. , The average value can be replaced with the total value. Further, in digital data processing, a value proportional to the total value obtained by shifting the bits, deleting the lower bits, rounding up, rounding, or the like may have the same meaning as the average value. In that case, such a value can be used instead of the average value.
 以下、光源制御装置100の各部の動作をより詳しく説明する。
 特徴量算出部101は、入力画像信号Daから、領域毎の特徴量FQiを算出する。特徴量FQiとしては、例えば、輝度又は明度が用いられる。
Hereinafter, the operation of each part of the light source control device 100 will be described in more detail.
The feature amount calculation unit 101 calculates the feature amount FQi for each region from the input image signal Da. As the feature amount FQi, for example, luminance or lightness is used.
 入力画像信号Daは、例えば赤、緑及び青の成分値で構成されている。その場合、輝度は、赤、緑及び青の成分値を予め定められた重みを付けて加算することで求められる。明度は、各画素での、赤、緑及び青の成分値のうちの最も大きな値とすることができる。 The input image signal Da is composed of, for example, red, green and blue component values. In that case, the brightness is obtained by adding the component values of red, green, and blue with predetermined weights. The brightness can be the largest of the red, green, and blue component values in each pixel.
 光源制御値算出部102は、特徴量算出部101で算出された領域毎の特徴量FQiのピーク値若しくは平均値、又はピーク値と平均値との混合値(ピーク値と平均値とから算出される値)等から領域毎の光源制御値LSiを算出する。 The light source control value calculation unit 102 is calculated from the peak value or average value of the feature amount FQi for each region calculated by the feature amount calculation unit 101, or the mixed value of the peak value and the average value (calculated from the peak value and the average value). The light source control value LSi for each region is calculated from the value) and the like.
 例えば、各領域の明度のピーク値をその領域の光源制御値LSiとしても良い。そうすれば、1つ以上の色の成分値が大きい部分が少なくとも一部を占める領域ではバックライト400は明るく発光するように制御される。 For example, the peak value of the brightness in each region may be used as the light source control value LSi in that region. Then, the backlight 400 is controlled to emit bright light in a region in which a portion having a large component value of one or more colors occupies at least a part.
 各領域(注目領域)の光源制御値LSiを求めるに当たり、当該注目領域の周辺の領域の一部又は全部の特徴量FQiをも考慮してもよい。
 例えば図2の一つの領域、例えば領域A10の光源制御値LS10を、当該領域A10のみならず、それに隣接する領域A1、領域A2、領域A3、領域A9、領域A11、領域A17、領域A18、及び領域A19の特徴量を重み付け加算することで算出しても良い。
In obtaining the light source control value LSi of each region (attention region), the feature amount FQi of a part or all of the region around the region of interest may also be taken into consideration.
For example, the light source control value LS10 of one region of FIG. 2, for example, the region A10, is not only the region A10 but also the regions A1, the region A2, the region A3, the region A9, the region A11, the region A17, the region A18, and the regions adjacent to the region A10. It may be calculated by weighting and adding the feature amount of the area A19.
 上記の重み付け加算に当たり、周辺の領域の各々の特徴量に対して注目領域A10からの距離に応じた重みを付けることとしても良い。例えば、注目領域A10との距離(例えば領域の中心間の距離)が近い領域ほど、当該領域の特徴量に対してより大きい重みを付けることとしても良い。
 周辺の領域としては、上記の例のように隣接する領域のみならず、より広い範囲内の領域を用いても良い。例えば、注目領域を中心として、5×5個の領域を用いても良い。
In the above weighting addition, each feature amount in the surrounding area may be weighted according to the distance from the area of interest A10. For example, a region closer to the region of interest A10 (for example, a distance between the centers of the regions) may be given a larger weight to the feature amount of the region.
As the peripheral region, not only an adjacent region as in the above example but also a region within a wider range may be used. For example, 5 × 5 regions may be used centering on the region of interest.
 平均値算出部103は、それぞれの領域の光源制御値LSi(i=1~72)の平均値LSaveを算出する。 The average value calculation unit 103 calculates the average value LSave of the light source control value LSi (i = 1 to 72) in each region.
 補正強度算出部104は、平均光源制御値LSaveから補正強度Gを算出する。補正強度Gの算出は下記の式(1)及び式(2)により行われる。
 G=1/LSave  …式(1)
 但し、 G≦2    …式(2)
The correction intensity calculation unit 104 calculates the correction intensity G from the average light source control value LSave. The correction strength G is calculated by the following equations (1) and (2).
G = 1 / LSave ... Equation (1)
However, G ≤ 2 ... Equation (2)
 上記の式(2)により、Gは2以下に制限され、LSaveが0.5以下のときG=2となる。 According to the above equation (2), G is limited to 2 or less, and G = 2 when LSave is 0.5 or less.
 上記の式(1)及び式(2)による、LSaveとGとの関係を図4に示す。 FIG. 4 shows the relationship between LSave and G according to the above equations (1) and (2).
 光源制御値LSiを0から1までの範囲の値で表す場合、平均光源制御値LSaveの最大値(取り得る値の範囲内の最大値)は1である。光源制御値LSiを8ビット値で表す場合、平均光源制御値LSaveも8ビット値で表され、その最大値は255である。その場合、式(1)の代わりに下記の式(1a)が用いられる。
 G=255/LSave …式(1a)
When the light source control value LSi is represented by a value in the range of 0 to 1, the maximum value of the average light source control value LSave (the maximum value within the range of possible values) is 1. When the light source control value LSi is represented by an 8-bit value, the average light source control value LSave is also represented by an 8-bit value, and the maximum value is 255. In that case, the following formula (1a) is used instead of the formula (1).
G = 255 / LSave ... Equation (1a)
 また、デジタルデータ処理において、補正強度Gをも8ビット値で表し、式(1)又は式(1a)で表される補正強度Gが1のとき、補正強度Gを表す8ビット値が128となるようにすると処理が容易になる場合がある。その場合、式(1)又は式(1a)の代わりに下記の式(1b)が用いられる。
 G=128×255/LSave  …式(1b)
Further, in digital data processing, the correction strength G is also represented by an 8-bit value, and when the correction strength G represented by the formula (1) or the formula (1a) is 1, the 8-bit value representing the correction strength G is 128. This may facilitate processing. In that case, the following formula (1b) is used instead of the formula (1) or the formula (1a).
G = 128 × 255 / LSave ... Equation (1b)
 比較部105は、各領域の光源制御値LSiと平均光源制御値LSaveとを比較し、比較の結果を示す当該領域についての比較値Ciを出力する。比較値Ciは例えば下記の式(3)及び式(4)により求められる。
 Ci=LSi-LSave           …式(3)
 但し、 LSi<LSaveのとき、Ci=0  …式(4)
 上記の式(3)及び式(4)による、LSi-LSaveとCiとの関係を図5に示す。
The comparison unit 105 compares the light source control value LSi of each region with the average light source control value LSave, and outputs the comparison value Ci for the region showing the result of the comparison. The comparative value Ci is obtained by, for example, the following equations (3) and (4).
Ci = LSi-LSave ... Equation (3)
However, when LSi <LSave, Ci = 0 ... Equation (4)
FIG. 5 shows the relationship between LSi-LSave and Ci according to the above equations (3) and (4).
 光源制御値補正部106は、補正強度Gと、各領域についての比較値Ciと、平均光源制御値LSaveとに基づいて、当該領域の光源制御値(第1の光源制御値)LSiを補正し、当該領域についての、補正光源制御値(第2の光源制御値)LSCiを出力する。補正のための演算は、下記の式(5)及び式(6)で表される。
 LSCi=Ci×G+LSave       …式(5)
 但し、 Ci=0のとき、LSCi=LSi  …式(6)
The light source control value correction unit 106 corrects the light source control value (first light source control value) LSi in the region based on the correction intensity G, the comparison value Ci for each region, and the average light source control value LSave. , The corrected light source control value (second light source control value) LSCi for the relevant region is output. The calculation for correction is expressed by the following equations (5) and (6).
LSSi = Ci × G + LSave… Equation (5)
However, when Ci = 0, LSCi = LSi ... Equation (6)
 上記の式(5)及び式(6)で求められるLSCiとLSiとの関係を、LSaveをパラメータとして図6に示す。即ち、図6には、LSaveの値が0.2のとき、0.3のとき、0.4のとき、0.5のとき、0.6のとき、0.7のとき、0.8のとき、及び1.0のときのそれぞれについての、LSCiとLSiとの関係が示されている。 The relationship between LSCi and LSi obtained by the above equations (5) and (6) is shown in FIG. 6 with LSave as a parameter. That is, in FIG. 6, when the value of LSave is 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8. The relationship between LSCi and LSi is shown for each of the cases of and 1.0.
 上記の例では、式(3)及び式(5)に対する制約として式(4)及び式(6)のように定められる。しかし、式(5)が適用されるのは、LSi≧LSaveの場合であり、LSi<LSaveの場合には、LSCi=LSiであり、つまり補正されないということを意味している。 In the above example, equations (4) and (6) are defined as constraints on equations (3) and (5). However, the equation (5) is applied in the case of LSi ≧ LSave, and in the case of LSi <LSave, LSCi = LSi, that is, it is not corrected.
 従って、比較部105は、LSi<LSaveの場合には、Ci=0とするのではなく、LSi<LSaveという比較結果を出力し、光源制御値補正部106で、LSi<LSaveの場合に、LSCi=LSiとしても良い。 Therefore, the comparison unit 105 outputs the comparison result of LSi <LSave instead of setting Ci = 0 in the case of LSi <LSave, and the light source control value correction unit 106 outputs the comparison result in the case of LSi <LSave. = LSi may be used.
 なお、LSaveが8ビット値である場合は、式(5)からわかるように、LSCiは255を超える場合がある。そこでLSCiを9ビット以上の値で表さすように構成しておくのが良い。以下では、9ビット値で表されるものとする。この場合、LSiとの比較を分かりやすくするため、ここでは、9ビット値の255が1に対応するものとし、255よりも大きい値は、1より大きい値に対応するものとしている。 If LSave is an 8-bit value, LSCi may exceed 255, as can be seen from the equation (5). Therefore, it is better to configure LSCi to be represented by a value of 9 bits or more. In the following, it is assumed to be represented by a 9-bit value. In this case, in order to make the comparison with LSi easy to understand, here, it is assumed that the 9-bit value 255 corresponds to 1, and the value larger than 255 corresponds to the value larger than 1.
 上記のように光源制御値を補正する場合、画像の内容によって補正光源制御値LSCiがどのように変わるかを図7を参照して説明する。
 図7では、各領域の光源制御値LSiは、当該領域の輝度の平均値に等しいものとしている。また、図7では、LSi及びLSaveが0から1までの値を取るものとする。さらに、図7のCiの欄で、括弧で括られた値は、式(3)の計算で求められ、式(4)の但し書きによって採用されない値である。同様に、LSCiの欄で、括弧で括られた値は、式(5)の計算で求められ、式(6)の但し書きによって採用されない値である。
When the light source control value is corrected as described above, how the corrected light source control value LSCi changes depending on the content of the image will be described with reference to FIG. 7.
In FIG. 7, the light source control value LSi in each region is assumed to be equal to the average value of the brightness in the region. Further, in FIG. 7, it is assumed that LSi and LSave take a value from 0 to 1. Further, in the column of Ci in FIG. 7, the values enclosed in parentheses are values obtained by the calculation of the equation (3) and not adopted by the proviso of the equation (4). Similarly, in the column of LSCi, the values enclosed in parentheses are the values obtained by the calculation of the equation (5) and not adopted by the proviso of the equation (6).
 全白画像(全体が白色である画像)では、各領域の光源制御値LSiは、最大値1(8ビット値では255)となり、補正光源制御値LSCiも、上記の最大値1に等しい値(9ビット値の255)となる。
 全グレー画像(全画素について輝度値が中間値0.5(8ビット値で128)である画像)の場合、各領域の光源制御値LSiは0.5(8ビット値で128)となり、補正光源制御値LSCiも0.5(9ビット値で128)となる。
In an all-white image (an image in which the whole is white), the light source control value LSi in each region is a maximum value of 1 (255 for an 8-bit value), and the corrected light source control value LSSi is also a value equal to the above maximum value 1. The 9-bit value is 255).
In the case of an all-gray image (an image in which the luminance value is an intermediate value of 0.5 (128 for an 8-bit value) for all pixels), the light source control value LSi for each region is 0.5 (128 for an 8-bit value), which is corrected. The light source control value LSCi is also 0.5 (128 with a 9-bit value).
 また、一半部(例えば左半分)が黒、即ち、輝度値が最小値0(8ビット値でも0)であり、他半部(例えば右半分)が白、即ち輝度値が最大値1(8ビット値で255)である画像では、左半分の各領域の光源制御値LSiは0(8ビット値でも0)となり、補正光源制御値LSCiも0(9ビット値でも0)となり、右半分の各領域の光源制御値LSiは1.0(8ビット値で255)となるが、補正光源制御値LSCiは、1.5(9ビット値で約384)となる。 Further, one half (for example, the left half) is black, that is, the brightness value is the minimum value 0 (even an 8-bit value is 0), and the other half (for example, the right half) is white, that is, the brightness value is the maximum value 1 (8). In the image with a bit value of 255), the light source control value LSi in each region of the left half is 0 (0 even with an 8-bit value), the correction light source control value LSCi is also 0 (0 even with a 9-bit value), and the right half. The light source control value LSi in each region is 1.0 (255 with an 8-bit value), while the correction light source control value LSCi is 1.5 (about 384 with a 9-bit value).
 このように、補正光源制御値LSCiは、全グレー画像では、全白画像の場合よりも低く抑えられる。また、全グレー画像と同じ平均光源制御値LSaveの、左半分が黒で右半分が白の画像では、右半分については、全白画像のときよりも高い補正光源制御値LSCiとなる。 In this way, the correction light source control value LSSi is suppressed to be lower in the all-gray image than in the case of the all-white image. Further, in an image in which the left half is black and the right half is white, which has the same average light source control value LSave as the all gray image, the correction light source control value LSCi is higher for the right half than in the case of the all white image.
 図8は、バックライト400が(図2の例とは異なり)7つの領域Aa~Agを有し、各領域内では全ての画素の輝度値が互いに等しく、領域相互間では輝度の平均値が互いに異なる場合について、各領域の光源制御値LSi及び補正光源制御値LSCiを示す。図8でも、LSi及びLSaveが0から1までの値を取るものとする。また、図8でも各領域の光源制御値LSiは、当該領域の輝度の平均値に等しいものとする。さらに、図8でも、Ciの欄で、括弧で括られた値は、式(3)の計算で求められ、式(4)の但し書きによって採用されない値であり、LSCiの欄で、括弧で括られた値は、式(5)の計算で求められ、式(6)の但し書きによって採用されない値である。 In FIG. 8, the backlight 400 has seven regions Aa to Ag (unlike the example of FIG. 2), the luminance values of all the pixels in each region are equal to each other, and the average luminance values between the regions are equal to each other. When they are different from each other, the light source control value LSi and the corrected light source control value LSCi in each region are shown. Also in FIG. 8, it is assumed that LSi and LSave take a value from 0 to 1. Further, also in FIG. 8, the light source control value LSi in each region is assumed to be equal to the average value of the brightness in the region. Further, also in FIG. 8, the values enclosed in parentheses in the Ci column are the values obtained by the calculation of the equation (3) and not adopted by the proviso of the equation (4), and are enclosed in parentheses in the LSCi column. The obtained value is a value obtained by the calculation of the equation (5) and is not adopted by the proviso of the equation (6).
 図8から分かるように、輝度の平均値が画像全体の輝度の平均値以下である領域(光源制御値LSiが平均光源制御値LSave以下である領域)Ad、Ae、Af、Agでは、補正光源制御値LSCiが、光源制御値LSiに等しい。一方、輝度の平均値が画像全体の輝度の平均値よりも大きい領域(光源制御値LSiが平均光源制御値LSaveよりも大きい領域)Aa、Ab、Acでは、補正光源制御値LSCiが、光源制御値LSiよりも大きく、光源制御値LSiの増加分に対する補正光源制御値LSCiの増加分の比は2、即ち補正強度Gに等しい。 As can be seen from FIG. 8, in the region where the average luminance value is equal to or less than the average luminance value of the entire image (the region where the light source control value LSi is equal to or less than the average light source control value LSave), the correction light source is used in Ad, Ae, Af, and Ag. The control value LSCi is equal to the light source control value LSi. On the other hand, in the region where the average brightness value is larger than the average value of the brightness of the entire image (the region where the light source control value LSi is larger than the average light source control value LSave) Aa, Ab, and Ac, the corrected light source control value LSSi is the light source control. It is larger than the value LSi, and the ratio of the increase of the correction light source control value LSCi to the increase of the light source control value LSi is 2, that is, equal to the correction intensity G.
 図8に示される光源制御値LSiと補正光源制御値LSCiとの関係は、図6において、LSaveが0.5であるときの曲線で示される関係と同じである。 The relationship between the light source control value LSi and the correction light source control value LSCi shown in FIG. 8 is the same as the relationship shown by the curve when LSave is 0.5 in FIG.
 上記のように、画像信号処理部200は、各領域の光源制御値LSiに基づいて入力画像信号Daに対する信号処理を行なう。この信号処理には、階調補正が含まれる。
 この階調補正においては、例えば、光源制御値LSiが大きい領域では、画像信号の階調値が小さくなり、光源制御値LSiが小さい領域では、画像信号の階調値が大きくなるように制御が行われる。画像信号の階調値が小さいことは、画像が暗いことを意味し、画像信号の階調値が大きいことは、画像が明るいことを意味する。
As described above, the image signal processing unit 200 performs signal processing on the input image signal Da based on the light source control value LSi in each region. This signal processing includes gradation correction.
In this gradation correction, for example, in the region where the light source control value LSi is large, the gradation value of the image signal becomes small, and in the region where the light source control value LSi is small, the gradation value of the image signal is controlled to be large. It will be done. A small gradation value of an image signal means that the image is dark, and a large gradation value of an image signal means that the image is bright.
 なお、光源制御値LSiが大きい領域において、画像が暗くなるような処理をしないこととしても良い。即ち、どのような領域でも画像がより明るくなるか、或いは同じ明るさが維持されるように処理をしても良い。 In the region where the light source control value LSi is large, it may be possible not to perform processing that makes the image dark. That is, processing may be performed so that the image becomes brighter in any region or the same brightness is maintained.
 領域相互間の境界部で画像信号の処理が不連続又は急激に変化することによる画質の低下(視聴者に違和感を与える)を防止するために境界部においては、各領域の光源制御値と隣接する領域における光源制御値との混合値に基づいて制御を行なうこととしても良い。 In order to prevent deterioration of image quality (giving the viewer a sense of discomfort) due to discontinuity or sudden change in image signal processing at the boundary between regions, the boundary is adjacent to the light source control value of each region. The control may be performed based on the mixed value with the light source control value in the region to be controlled.
 また、バックライト400を構成する光源の各々の明るさは、その中心から離れるに従って次第に弱くなる傾向があり、複数の光源から成るバックライト400の全体による明るさの分布も均一とは限らない。それらの点を考慮に入れ、例えば明るさの低い箇所では、補正により光源制御値をより大きくすると言った処理を追加的に行うこととしても良い。 Further, the brightness of each of the light sources constituting the backlight 400 tends to gradually decrease as the distance from the center thereof increases, and the overall brightness distribution of the backlight 400 composed of a plurality of light sources is not always uniform. Taking these points into consideration, for example, in a place where the brightness is low, an additional process such as increasing the light source control value by correction may be performed.
 上記の画像表示装置では、暗い部分を含む画像が入力された場合には、全白画像が入力された場合と比べ、暗い部分ではバックライトが暗くされ、これにより消費電力を抑制する(省エネルギーを図る)ことができる。また、バックライトが暗くされた部分では、画像信号の階調値が大きくされるので、表示される画像の明るさは、バックライトが暗くされずかつ画像信号に補正を加えないときと同等となる。さらに、一部が明るい画像は、明るい部分が十分に明るく(バックライトが暗くされずかつ画像信号に補正を加えない場合と同等以上に)表示される。従って、高コントラストの画像表示が可能である。 In the above image display device, when an image including a dark part is input, the backlight is darkened in the dark part as compared with the case where an all-white image is input, thereby suppressing power consumption (energy saving). Can be planned). Further, since the gradation value of the image signal is increased in the portion where the backlight is darkened, the brightness of the displayed image is the same as when the backlight is not darkened and the image signal is not corrected. Become. Further, in a partially bright image, the bright part is displayed sufficiently bright (equal to or better than the case where the backlight is not dimmed and the image signal is not corrected). Therefore, it is possible to display a high-contrast image.
 なお、上記の例では、補正強度Gの上限値を2としているが、補正強度Gの上限値を2以外の値としても良い。一般化すれば、補正強度Gが任意の設定値M(Mは1より大きい値)以下に制限されることとすれば良い。 In the above example, the upper limit value of the correction strength G is 2, but the upper limit value of the correction strength G may be a value other than 2. If generalized, the correction strength G may be limited to an arbitrary set value M (M is a value larger than 1) or less.
 補正強度Gを設定値M以下に制限することで、発光輝度の補正が強くなり過ぎないように調整することができる。
 例えば、平均光源制御値LSaveが小さいとき、つまり画像が全体的に暗いとき(画像信号の階調値が小さいとき)の発光輝度の補正が強くなり過ぎないように調整することができる。特に例えば、使用者の好み、使用状況等に応じて、強い補正を掛ける場合があるが、画像が全体的に暗いときの補正が強くなり過ぎないように調整することができる。
By limiting the correction intensity G to the set value M or less, it is possible to adjust so that the correction of the emission brightness does not become too strong.
For example, when the average light source control value LSave is small, that is, when the image is dark as a whole (when the gradation value of the image signal is small), the correction of the emission luminance can be adjusted so as not to be too strong. In particular, for example, a strong correction may be applied according to the user's preference, usage conditions, etc., but it can be adjusted so that the correction does not become too strong when the image is dark as a whole.
 補正強度Gの上限値は、光源制御装置100が制御する光源の駆動方法に基づいて決定することができる。例えば通常の駆動(光源制御値を補正しない場合の駆動)を、光源駆動装置402を構成する駆動回路の各々の能力の1/2以下で行う場合は、補正強度Gの上限値を2としておけば、補正光源制御値LSCiが各駆動回路の能力を超える値(駆動回路の能力を超える能力での駆動を要求する値)となることはない。 The upper limit of the correction intensity G can be determined based on the driving method of the light source controlled by the light source control device 100. For example, when normal driving (driving when the light source control value is not corrected) is performed with 1/2 or less of the capacity of each of the drive circuits constituting the light source driving device 402, the upper limit value of the correction intensity G should be set to 2. For example, the correction light source control value LSCi does not become a value that exceeds the capacity of each drive circuit (a value that requires driving with a capacity that exceeds the capacity of the drive circuit).
実施の形態2.
 図9は、実施の形態2に係る光源制御装置を示す。図9に示される光源制御装置100bは、図3の光源制御装置100と概して同じである。但し、図3の補正強度算出部104の及び光源制御値補正部106の代わりに、補正強度算出部104b及び光源制御値補正部106bが設けられている。
Embodiment 2.
FIG. 9 shows a light source control device according to the second embodiment. The light source control device 100b shown in FIG. 9 is generally the same as the light source control device 100 of FIG. However, instead of the correction intensity calculation unit 104 and the light source control value correction unit 106 in FIG. 3, a correction intensity calculation unit 104b and a light source control value correction unit 106b are provided.
 補正強度算出部104bは、補正強度Gを下記の式(7)により算出する。
 G=1/LSave+1  …式(7)
The correction strength calculation unit 104b calculates the correction strength G by the following formula (7).
G = 1 / LSave + 1 ... Equation (7)
 比較部105における比較値Ciの計算は実施の形態1と同じである。 The calculation of the comparison value Ci in the comparison unit 105 is the same as that in the first embodiment.
 光源制御値補正部106bは、図3の光源制御値補正部106と同様に、上記の式(5)及び式(6)により補正光源制御値LSCiを算出する。
 但し、式(5)及び式(6)により算出された補正光源制御値LSCiが光源制御値の最大値LSmaxの2倍を超えるときは、LSmaxの2倍をLSCiとする。即ち、LSCiに対して下記の式(8)の制限を設ける。
 LSCi≦2×LSmax  …式(8)
 光源制御値の最大値LSmaxは、1つの領域内の画素がすべて白色の画素であるときの当該領域の光源制御値である。
 ここで白色の画素とは、輝度又は明度が最大値(取り得る値の範囲内の最も大きい値、例えば8ビット値では255)を取る画素を意味する。
The light source control value correction unit 106b calculates the correction light source control value LSCi by the above equations (5) and (6) in the same manner as the light source control value correction unit 106 of FIG.
However, when the corrected light source control value LSSi calculated by the equations (5) and (6) exceeds twice the maximum value LSmax of the light source control value, twice the LSmax is defined as LSSi. That is, the restriction of the following equation (8) is set for LSCi.
LSSi ≦ 2 × LSmax… Equation (8)
The maximum value LSmax of the light source control value is the light source control value of the region when all the pixels in one region are white pixels.
Here, the white pixel means a pixel having a maximum brightness or brightness (the largest value within the range of possible values, for example, 255 for an 8-bit value).
 なお、式(8)による制限はデジタルデータ処理では、LSCiをLSiよりも1だけ多いビット数の値で表現し、その最大値でクリップすることで実現できる。例えばLSiが8ビット値であれば、LSCiを9ビット値とし、その最大値511にクリップすることで式(8)による制限を実現できる。 Note that the limitation by equation (8) can be realized in digital data processing by expressing LSCi with a value with a bit number that is one more than LSi and clipping at the maximum value. For example, if LSi is an 8-bit value, LSCi is set to a 9-bit value, and the limitation by the equation (8) can be realized by clipping to the maximum value 511.
 実施の形態2では、上記のようにして補正光源制御値を算出することで、実施の形態1よりも光源制御値に対する補正を強めることができ、しかも、下記の条件(a1)及び(b)を満たすように光源制御値の補正が行われる。
(a1) どのような画像を入力しても、補正光源制御値LSCiの平均値(若しくは合計値)が、全白画像が入力されたときのバックライト全体による消費電力を超える消費電力での駆動を要求するものとはならない。
(b) 各領域の補正光源制御値LSCiは、光源制御値の最大値LSmaxの2倍を超えない。
In the second embodiment, by calculating the corrected light source control value as described above, the correction for the light source control value can be strengthened as compared with the first embodiment, and the following conditions (a1) and (b) can be strengthened. The light source control value is corrected so as to satisfy the above conditions.
(A1) No matter what image is input, the average value (or total value) of the correction light source control value LSCi is driven by the power consumption exceeding the power consumption of the entire backlight when the all-white image is input. Does not require.
(B) The corrected light source control value LSSi in each region does not exceed twice the maximum value LSmax of the light source control value.
 上記の条件(a1)に関し、全白画像が入力されたときの補正光源制御値LSCiは、光源制御値LSiと同じく、光源制御値の最大値LSmaxに等しくされる。
 上記の条件(a1)及び(b)は、例えばバックライトの全光源を駆動するための電源の能力、及び複数の光源の各々の能力(定格値など)、並びに光源の駆動方法等から必要とされる。
Regarding the above condition (a1), the corrected light source control value LSSi when the all-white image is input is equal to the maximum value LSmax of the light source control value, like the light source control value LSi.
The above conditions (a1) and (b) are necessary from, for example, the capacity of the power supply for driving all the light sources of the backlight, the capacity of each of the plurality of light sources (rated values, etc.), the driving method of the light sources, and the like. Will be done.
 バックライトの全光源を駆動するための電源の能力は、例えば、当該バックライトを含む画像表示装置のコストにより制約を受ける。入力される画像がどのようなものであっても、補正光源制御値のバックライト全体に亘る合計が、電源の能力よりも大きい能力での駆動を要求するものとならないようにする必要がある。 The capacity of the power supply to drive all the light sources of the backlight is limited by, for example, the cost of the image display device including the backlight. No matter what the input image is, it is necessary to ensure that the sum of the corrected light source control values over the entire backlight does not require driving with a capacity larger than the capacity of the power supply.
 一般には、全白画像が入力されたときの光源制御値LSiが、電源の能力に合致するように定められる。上記のように、全白画像が入力されたときの光源制御値LSiと、補正光源制御値LSCiとは、光源制御値の最大値LSmaxに等しい。従って、全白画像が入力されたときのバックライト全体による消費電力に対応する光源制御値は、光源制御値の最大値LSmaxに一致する。以上より、上記の条件(a1)は、下記の条件(a2)の如く言い換えることができる。
(a2) どのような画像を入力しても、補正光源制御値LSCiのバックライト全体に亘る平均値LSCaveが、光源制御値の最大値LSmaxを超えない。
Generally, the light source control value LSi when the all-white image is input is determined to match the capacity of the power supply. As described above, the light source control value LSi when the all-white image is input and the corrected light source control value LSSi are equal to the maximum value LSmax of the light source control value. Therefore, the light source control value corresponding to the power consumption by the entire backlight when the all-white image is input corresponds to the maximum value LSmax of the light source control value. From the above, the above condition (a1) can be paraphrased as the following condition (a2).
(A2) No matter what kind of image is input, the average value LS Save over the entire backlight of the corrected light source control value LSSi does not exceed the maximum value LSmax of the light source control value.
 また、実施の形態2では、全白画像が入力されたとき、各光源の能力(定格値など)の1/2で、かつ各駆動回路(光源駆動装置402を構成する複数の駆動回路の各々)の能力の1/2で駆動することとしている。そうしておけば、上記の条件(b)が満たされれば、各光源の能力及び各駆動回路の能力を超える能力での駆動が要求されることがない。そこで、補正光源制御値LSCiの算出に関し、上記の条件(b)を課すこととする。 Further, in the second embodiment, when the all-white image is input, the capacity (rated value, etc.) of each light source is halved, and each drive circuit (a plurality of drive circuits constituting the light source drive device 402) is used. ) Is to be driven by 1/2 of the capacity. Then, if the above condition (b) is satisfied, driving with a capacity exceeding the capacity of each light source and the capacity of each drive circuit is not required. Therefore, the above condition (b) is imposed on the calculation of the corrected light source control value LSSi.
 また、本実施の形態では、光源制御値の補正をできるだけ強くすることとしている。即ち、下記の条件(c)を満たすようにしている。
(c) 光源制御値に対する補正の程度をできるだけ大きくする。即ち、補正光源制御値LSCiが全体としてできるだけ大きくなるようにする。
Further, in the present embodiment, the correction of the light source control value is made as strong as possible. That is, the following condition (c) is satisfied.
(C) Increase the degree of correction for the light source control value as much as possible. That is, the correction light source control value LSSi is made as large as possible as a whole.
 以下に、補正強度算出部104b及び光源制御値補正部106bにおいて上記のように処理を行なうことで、上記の条件(a2)、(b)及び(c)が満たされる理由を説明する。 The reason why the above conditions (a2), (b) and (c) are satisfied by performing the processing as described above in the correction intensity calculation unit 104b and the light source control value correction unit 106b will be described below.
 まず、補正強度Gの算出に式(7)を用いることで上記の条件(a2)及び(c)が満たされる理由を説明する。但し、ここでは、比較部105及び光源制御値補正部106bの動作が実施の形態1における比較部105及び光源制御値補正部106の動作と同じであることを前提としている。 First, the reason why the above conditions (a2) and (c) are satisfied by using the equation (7) for calculating the correction strength G will be described. However, here, it is premised that the operation of the comparison unit 105 and the light source control value correction unit 106b is the same as the operation of the comparison unit 105 and the light source control value correction unit 106 in the first embodiment.
 上記の条件(a2)に関し、補正光源制御値の平均値が最も大きくなるのは、下記の条件(d)が満たされる場合である。
(d) バックライト400が、光源制御値LSiが最大値LSmaxである領域と、光源制御値LSiが0である領域とから成る。
Regarding the above condition (a2), the average value of the corrected light source control values becomes the largest when the following condition (d) is satisfied.
(D) The backlight 400 includes a region where the light source control value LSi is the maximum value LSmax and a region where the light source control value LSi is 0.
 上記の条件(d)に関し、光源制御値LSiが最大値LSmaxである領域の割合をRmとし、光源制御値LSiが0である領域の割合をRoとする。
 上記の割合Rm、Roは、バックライト400の領域の総面積に対する該当する領域の面積の合計の比を意味する。それぞれの領域の面積は互いに等しい場合を想定している場合、上記の割合Rm及びRoは、それぞれIm/I及びIo/Iに等しい。ここで、Iは領域の総数、Imは光源制御値LSiが最大値LSmaxである領域の数、Ioは、光源制御値LSiが0である領域の数を表す。
 上記の割合Rmと、光源制御値の平均値LSave及び光源制御値の最大値LSmaxとの間には下記の式(9)で表されの関係があり、
 上記の割合Roと、光源制御値の平均値LSave及び光源制御値の最大値LSmaxとの間には下記の式(10)で表される関係がある。
 Rm=LSave/LSmax  …式(9)
 Ro=(LSmax-LSave)/LSmax  …式(10)
Regarding the above condition (d), the ratio of the region where the light source control value LSi is the maximum value LSmax is Rm, and the ratio of the region where the light source control value LSi is 0 is Ro.
The above ratios Rm and Ro mean the ratio of the total area of the corresponding area to the total area of the area of the backlight 400. Assuming that the areas of the respective regions are equal to each other, the above ratios Rm and Ro are equal to Im / I and Io / I, respectively. Here, I represents the total number of regions, Im represents the number of regions where the light source control value LSi is the maximum value LSmax, and Io represents the number of regions where the light source control value LSi is 0.
There is a relationship expressed by the following equation (9) between the above ratio Rm and the average value LSave of the light source control value and the maximum value LSmax of the light source control value.
There is a relationship represented by the following equation (10) between the above ratio Ro and the average value LSave of the light source control value and the maximum value LSmax of the light source control value.
Rm = LSave / LSmax ... Equation (9)
Ro = (LSmax-LSave) / LSmax ... Equation (10)
 図10は上記の条件(d)を満たす領域の組み合わせの一例を示す。図10は、図2に示されるのと同様の72個の領域A1~A72の、補正前の光源制御値の一例である。図中の数値はそれぞれの領域の光源制御値である。
 なお、図10において、光源制御値LSiが最大値LSmaxである領域の数が45であり、光源制御値LSiが0である領域の数が27であるが、これはRm=Im/I=45/72である場合を想定していると言える。
FIG. 10 shows an example of a combination of regions satisfying the above condition (d). FIG. 10 is an example of the light source control values before correction in the 72 regions A1 to A72 similar to those shown in FIG. The numerical values in the figure are light source control values in each region.
In FIG. 10, the number of regions where the light source control value LSi is the maximum value LSmax is 45, and the number of regions where the light source control value LSi is 0 is 27, which is Rm = Im / I = 45. It can be said that the case of / 72 is assumed.
 図10では、光源制御値LSiが最大値LSmaxである領域が右側の5列に集中し、光源制御値LSiが0である領域が左側の3列に集中している。言い換えると、光源制御値LSiが最大値LSmaxである領域が一つの塊をなし、光源制御値LSiが0である領域が別の塊を成す。しかし、この点に格別の意義はなく、例えば図11に示すように光源制御値LSiが最大値LSmaxである領域と、光源制御値LSiが0である領域とが混じり合っていても良い。 In FIG. 10, the region where the light source control value LSi is the maximum value LSmax is concentrated in the five columns on the right side, and the region where the light source control value LSi is 0 is concentrated in the three columns on the left side. In other words, the region where the light source control value LSi is the maximum value LSmax forms one block, and the region where the light source control value LSi is 0 forms another block. However, this point has no particular significance, and for example, as shown in FIG. 11, a region in which the light source control value LSi is the maximum value LSmax and a region in which the light source control value LSi is 0 may be mixed.
 光源制御値LSiが最大値LSmaxである領域の補正光源制御値LSCmは、式(3)及び式(5)から、下記の式(11)で与えられる。
LSCm
=((LSmax-LSave)×G+LSave)  …式(11)
The corrected light source control value LSCm in the region where the light source control value LSi is the maximum value LSmax is given by the following equation (11) from the equations (3) and (5).
LSCm
= ((LSmax-LSave) × G + LSave)… Equation (11)
 補正光源制御値LSCiのバックライト400の全体に亘る平均値LSCaveは、式(9)及び式(11)から、下記の式(12)の通りとなる。
LSCave
=((LSmax-LSave)×G+LSave)×LSave/LSmax
                         …式(12)
The average value LS Save over the entire backlight 400 of the corrected light source control value LSCi is as shown in the following equation (12) from the equations (9) and (11).
LS Save
= ((LSmax-LSave) x G + LSave) x LSave / LSmax
… Equation (12)
 補正光源制御値の平均値LSCaveが、光源制御値の最大値LSmaxと等しくなる条件は、下記の式(13)で表される。
((LSmax-LSave)×G+LSave)×LSave/LSmax
=LSmax
                         …式(13)
The condition that the average value LS Save of the corrected light source control value becomes equal to the maximum value LSmax of the light source control value is expressed by the following equation (13).
((LSmax-LSave) x G + LSave) x LSave / LSmax
= LSmax
… Equation (13)
 式(13)を変形すると、以下の通りとなる。
(LSmax-LSave)×G+LSave=(LSmax/LSave)
                       …式(14)
G=(LSmax/LSave-LSave)/(LSmax-LSave)
                       …式(15)
G=(LSmax-LSave)/((LSmax-LSave)×LSave)
                          …式(16)
G=(LSmax+LSave)/LSave   …式(17)
G=LSmax/LSave+1   …式(18)
When the equation (13) is modified, it becomes as follows.
(LSmax-LSave) x G + LSave = (LSmax 2 / LSave)
… Equation (14)
G = (LSmax 2 / LSave-LSave) / (LSmax-LSave)
… Equation (15)
G = (LSmax 2- LSave 2 ) / ((LSmax-LSave) × LSave)
… Equation (16)
G = (LSmax + LSave) / LSave ... Equation (17)
G = LSmax / LSave + 1 ... Equation (18)
 式(18)でLSmaxを1とすると、式(7)に一致する。 If LSmax is 1 in equation (18), it matches equation (7).
 式(7)のGを式(12)に代入すると、下記の式(19)が得られる。
LSCave
=((LSmax-LSave)×(1/LSave+1)+LSave)×LSave/LSmax
                         …式(19)
By substituting G in the equation (7) into the equation (12), the following equation (19) is obtained.
LS Save
= ((LSmax-LSave) × (1 / LSave + 1) + LSave) × LSave / LSmax
… Expression (19)
 式(19)でLSmax=1と置き、整理すると下記の式(20)が得られる。
LSCave
=((1-LSave)×(1+LSave)+LSave/LSave)×LSave
=1-LSave+LSave
=1                       …式(20)
When LSmax = 1 is set in the formula (19) and arranged, the following formula (20) is obtained.
LS Save
= ((1-LSave) x (1 + LSave) + LSave 2 / LSave) x LSave
= 1-LSave 2 + LSave 2
= 1 ... Equation (20)
 式(20)は、Rm=Im/I=LSave/LSmaxの如何に拘わらず、平均補正光源制御値LSCaveが1を維持することを示す。 Equation (20) shows that the average correction light source control value LS Save maintains 1 regardless of whether Rm = Im / I = LSave / LSmax.
 これは、式(7)に基づいて算出した補正強度Gを用い、かつ式(3)、(4)、(5)、及び(6)を用いて補正光源制御値LSCiを算出することで、補正光源制御値の平均値が最も大きくなる場合(条件(d)を満たす場合、即ち消費電力が最も大きくなる場合)の消費電力が、全白画像が入力されたときの消費電力と同じになることを意味する。
 また、式(7)に基づいて算出した補正強度Gを用い、かつ式(3)、(4)、(5)、及び(6)を用いて、補正光源制御値を算出すれば、補正光源制御値で要求される消費電力が、全白画像が入力されたときの消費電力よりも大きくなることはない。
This is done by using the correction intensity G calculated based on the equation (7) and calculating the correction light source control value LSCi using the equations (3), (4), (5), and (6). The power consumption when the average value of the corrected light source control values is the largest (when the condition (d) is satisfied, that is, when the power consumption is the largest) is the same as the power consumption when the all-white image is input. Means that.
Further, if the correction light source control value is calculated by using the correction intensity G calculated based on the equation (7) and using the equations (3), (4), (5), and (6), the correction light source is used. The power consumption required by the control value does not become larger than the power consumption when the all-white image is input.
 以上のように、式(7)により補正強度を定め、かつ式(3)、(4)、(5)、及び(6)を用いて補正光源制御値を定めることで、補正を可能な限り強める(各領域の補正光源制御値をできるだけ大きくする)ことができるとともに、補正光源制御値の平均値LSCaveが、全白画像が入力されたときの光源制御値の平均値LSaveよりも大きくなることがない。即ち、上記の条件(a2)及び条件(c)を満たすことができる。
 以上が補正強度Gの算出に式(7)を用いる理由である。
As described above, the correction is performed as much as possible by determining the correction intensity by the equation (7) and determining the correction light source control value by using the equations (3), (4), (5), and (6). It can be strengthened (the corrected light source control value in each area is made as large as possible), and the average value LS Save of the corrected light source control value is larger than the average value LS Save of the light source control value when the all-white image is input. There is no. That is, the above condition (a2) and condition (c) can be satisfied.
The above is the reason why the equation (7) is used for calculating the correction strength G.
 しかしながら、上記のように補正強度Gを決める場合、各領域の補正光源制御値LSCiが大きくなりすぎて、対応する領域の全画素が白色の画素であるときの光源制御値の2倍よりも大きくなる場合がある。そこで、式(8)で示したように、補正光源制御値に対して上限を設けることとしている。
 以上が式(8)の制限を付ける理由である。
However, when the correction intensity G is determined as described above, the correction light source control value LSCi in each region becomes too large, and is larger than twice the light source control value when all the pixels in the corresponding region are white pixels. May be. Therefore, as shown in the equation (8), an upper limit is set for the correction light source control value.
The above is the reason for limiting the equation (8).
 補正光源制御値LSCiの算出には、式(8)による制限が付けられるが、補正光源制御値LSCiはその制限の範囲内で最も大きい値に定められる。従って、式(8)による制約の中で、補正光源制御値が可能な限り大きく定められていると言える。 The calculation of the corrected light source control value LSCi is limited by the equation (8), but the corrected light source control value LSCi is set to the largest value within the range of the limit. Therefore, it can be said that the correction light source control value is set as large as possible within the constraint of the equation (8).
 なお、実施の形態1と同様に、補正強度Gを任意の設定値M以下に制限することとし、それにより、発光輝度の補正が強くなり過ぎないようにさらなる調整をすることとしても良い。 As in the first embodiment, the correction intensity G may be limited to an arbitrary set value M or less, and further adjustment may be made so that the correction of the emission brightness is not too strong.
 補正光源制御値LSCiの算出に、式(3)及び式(5)を用いているので、光源制御値が0或いはLSmax以外の値をとる場合は、光源制御値の平均値LSaveと各領域の光源制御値の差分、すなわち式(3)で算出される値が比較的小さくなり、従って、上記の条件(d)を満たす画像が入力された場合よりも補正光源制御値の平均値が小さくなる。従って、消費電力が、全白画像が入力されたときの消費電力よりも小さくなる。 Since equations (3) and (5) are used to calculate the corrected light source control value LSSi, when the light source control value takes a value other than 0 or LSmax, the average value LSave of the light source control values and each region. The difference between the light source control values, that is, the value calculated by the equation (3) is relatively small, and therefore the average value of the corrected light source control values is smaller than when an image satisfying the above condition (d) is input. .. Therefore, the power consumption is smaller than the power consumption when the all-white image is input.
 以上のように、式(7)に基づいて補正強度Gを算出し、式(3)、(4)、(5)、(6)及び(8)を用いて補正光源制御値を算出すれば、補正光源制御値で要求される消費電力が全白画像が入力されたときの消費電力よりも大きくなることなく、しかもバックライト400が最大限の明るさで発光するように制御することが可能である。 As described above, if the correction intensity G is calculated based on the equation (7) and the correction light source control value is calculated using the equations (3), (4), (5), (6) and (8). , The power consumption required by the correction light source control value does not become larger than the power consumption when the all-white image is input, and it is possible to control the backlight 400 to emit light with the maximum brightness. Is.
実施の形態3.
 図12は、実施の形態3に係る画像表示装置の構成を示す。図12に示される画像表示装置は、実施の形態1に関し、図1を参照して説明した画像表示装置と概して同じである。しかし、光源制御装置100の代わりに、光源制御装置100cが設けられ、画像信号処理部200の代わりに、画像信号処理部200cが設けられている。
Embodiment 3.
FIG. 12 shows the configuration of the image display device according to the third embodiment. The image display device shown in FIG. 12 is generally the same as the image display device described with reference to FIG. 1 with respect to the first embodiment. However, the light source control device 100c is provided instead of the light source control device 100, and the image signal processing unit 200c is provided instead of the image signal processing unit 200.
 図13は、光源制御装置100cの構成を示す。図13に示される光源制御装置100cは、図3に示される光源制御装置100と概して同じである。しかし、光源制御値算出部102から出力される光源制御値LSiが光源制御装置100cの外部に出力されておらず、代わりに、光源制御値補正部106から出力される補正光源制御値LSCiが画像信号処理部200cに供給される。 FIG. 13 shows the configuration of the light source control device 100c. The light source control device 100c shown in FIG. 13 is generally the same as the light source control device 100 shown in FIG. However, the light source control value LSi output from the light source control value calculation unit 102 is not output to the outside of the light source control device 100c, and instead, the correction light source control value LSCi output from the light source control value correction unit 106 is an image. It is supplied to the signal processing unit 200c.
 光源制御装置100cにおける処理の内容は、実施の形態1で光源制御装置100に関して説明したのと同じである。 The content of the processing in the light source control device 100c is the same as that described with respect to the light source control device 100 in the first embodiment.
 図12に示される画像表示装置では、画像信号処理部200cが、光源制御装置100cから入力された各領域の補正光源制御値LSCiに基づいて、入力画像信号Daに対する信号処理を行なう。 In the image display device shown in FIG. 12, the image signal processing unit 200c performs signal processing on the input image signal Da based on the correction light source control value LSCi of each region input from the light source control device 100c.
 実施の形態3でも実施の形態1と同様の効果が得られる。実施の形態3ではさらに以下の効果が得られる。
 補正光源制御値LSCiは、光源制御値の最大値LSmaxよりも大きくなる場合がある。
 画像信号処理部200cでは、バックライト400を構成する全領域のうちの、補正光源制御値LSCiが光源制御値の最大値LSmaxを超えた領域について、補正光源制御値LSCiが光源制御値の最大値LSmaxを超えない領域と異なる信号処理を行うことができる。例えば、補正光源制御値LSCiが光源制御値の最大値LSmaxを超えた領域では、周辺の光源制御値の最大値LSmaxを超えない領域との光源制御値の差により信号処理の強度を変えるなどする。このため、補正光源制御値LSCiが光源制御値の最大値LSmaxを超えた領域と補正光源制御値LSCiが光源制御値の最大値LSmaxを超えない領域とで、信号処理を連続的に最適化でき、表示画像が一層自然に見えるようにすることができる。
The same effect as that of the first embodiment can be obtained in the third embodiment. In the third embodiment, the following effects can be further obtained.
The corrected light source control value LSSi may be larger than the maximum value LSmax of the light source control value.
In the image signal processing unit 200c, the corrected light source control value LSCi is the maximum value of the light source control value in the region where the corrected light source control value LSCi exceeds the maximum value LSmax of the light source control value in the entire area constituting the backlight 400. It is possible to perform signal processing different from the region that does not exceed LSmax. For example, in the region where the corrected light source control value LSCi exceeds the maximum value LSmax of the light source control value, the signal processing intensity is changed by the difference in the light source control value from the region where the maximum value LSmax of the peripheral light source control value is not exceeded. .. Therefore, signal processing can be continuously optimized in the region where the corrected light source control value LSCi exceeds the maximum value LSmax of the light source control value and the region where the corrected light source control value LSCi does not exceed the maximum value LSmax of the light source control value. , The displayed image can be made to look more natural.
実施の形態4.
 図14は、実施の形態4に係る画像表示装置の構成を示す。図14に示される画像表示装置は、実施の形態1に関し、図1を参照して説明した画像表示装置と概して同じである。しかし、光源制御装置100の代わりに、光源制御装置100dが設けられ、画像信号処理部200の代わりに、画像信号処理部200dが設けられている。
Embodiment 4.
FIG. 14 shows the configuration of the image display device according to the fourth embodiment. The image display device shown in FIG. 14 is generally the same as the image display device described with reference to FIG. 1 with respect to the first embodiment. However, the light source control device 100d is provided in place of the light source control device 100, and the image signal processing unit 200d is provided in place of the image signal processing unit 200.
 画像信号処理部200dは、画像信号処理部200と内部構成が同じであるが、入力画像信号Daの平均階調値APLを出力する。平均階調値APLは、入力画像信号Daの輝度、明度等の平均値であり、画像信号処理部200d内で算出される。平均階調値APLは、光源制御装置100dに供給される。 The image signal processing unit 200d has the same internal configuration as the image signal processing unit 200, but outputs the average gradation value APL of the input image signal Da. The average gradation value APL is an average value of the brightness, brightness, etc. of the input image signal Da, and is calculated in the image signal processing unit 200d. The average gradation value APL is supplied to the light source control device 100d.
 図15は、光源制御装置100dの構成を示す。図15に示される光源制御装置100dは、図3に示される光源制御装置100と概して同じである。しかし、平均値算出部103が設けられておらず、補正強度算出部104、比較部105、及び光源制御値補正部106の代わりに、補正強度算出部104d、比較部105d、及び光源制御値補正部106dが設けられている。 FIG. 15 shows the configuration of the light source control device 100d. The light source control device 100d shown in FIG. 15 is generally the same as the light source control device 100 shown in FIG. However, the average value calculation unit 103 is not provided, and instead of the correction intensity calculation unit 104, the comparison unit 105, and the light source control value correction unit 106, the correction intensity calculation unit 104d, the comparison unit 105d, and the light source control value correction unit are used. A portion 106d is provided.
 補正強度算出部104dは、平均光源制御値LSaveの代わりに平均階調値APLを用いて補正強度Gの算出を行なう。
 即ち、補正強度Gは下記の式(21)及び式(22)により定められる。
 G=1/APL    …式(21)
 但し、 G≦2    …式(22)
The correction intensity calculation unit 104d calculates the correction intensity G by using the average gradation value APL instead of the average light source control value LSave.
That is, the correction strength G is determined by the following equations (21) and (22).
G = 1 / APL ... Equation (21)
However, G ≤ 2 ... Equation (22)
 比較部105dは、平均光源制御値LSaveの代わりに平均階調値APLを用いて比較を行なう。即ち、比較部105dは、光源制御値算出部102で算出された各領域の光源制御値LSiと平均階調値APLとを比較し、比較の結果を示す比較値Ciを出力する。 The comparison unit 105d makes a comparison using the average gradation value APL instead of the average light source control value LSave. That is, the comparison unit 105d compares the light source control value LSi of each region calculated by the light source control value calculation unit 102 with the average gradation value APL, and outputs a comparison value Ci indicating the comparison result.
 即ち、比較値Ciは例えば下記の式(23)及び式(24)により求められる。
 Ci=LSi-APL           …式(23)
 但し、 LSi<APLのとき、Ci=0  …式(24)
That is, the comparison value Ci is obtained by, for example, the following equations (23) and (24).
Ci = LSi-APL ... Equation (23)
However, when LSi <APL, Ci = 0 ... Equation (24)
 光源制御値補正部106dは、比較部105dから出力された比較値Ciと、補正強度算出部104dで算出された補正強度Gと、平均階調値APLとに基づいて光源制御値算出部102で算出された各領域の光源制御値LSiを補正し、補正光源制御値LSCiを出力する。
 補正光源制御値LSCiの生成には、下記の式(25)及び式(26)が用いられる。
 LSCi=Ci×G+APL         …式(25)
 但し、 Ci=0のとき、LSCi=LSi  …式(26)
The light source control value correction unit 106d is a light source control value calculation unit 102 based on the comparison value Ci output from the comparison unit 105d, the correction intensity G calculated by the correction intensity calculation unit 104d, and the average gradation value APL. The calculated light source control value LSi of each region is corrected, and the corrected light source control value LSCi is output.
The following equations (25) and (26) are used to generate the corrected light source control value LSSi.
LSSi = Ci × G + APL… Equation (25)
However, when Ci = 0, LSCi = LSi ... Equation (26)
 実施の形態4でも実施の形態1と同様の効果が得られる。実施の形態4ではさらに以下で説明する効果が得られる。 The same effect as that of the first embodiment can be obtained in the fourth embodiment. In the fourth embodiment, the effects described below can be further obtained.
 平均階調値APLは、実施の形態1に関し図3を参照して説明した平均値算出部103が算出する平均光源制御値LSave以下の値となる。
 光源制御値算出部102は、例えば、それぞれの領域の輝度、明度等のピーク値若しくは平均値、又はピーク値と平均値との混合値を、光源制御値LSiとするが、そのいずれの場合にも、平均階調値APLよりも小さくなることはない。
 即ち、輝度又は明度のピーク値を光源制御値LSiとするときは、平均階調値APLが平均光源制御値LSaveに等しいかそれよりも小さい。
 輝度又は明度の平均値を光源制御値LSiとするときは、平均階調値APLが平均光源制御値LSaveに等しい。
 輝度又は明度のピーク値と平均値との混合値を光源制御値LSiとするときも、平均階調値APLが平均光源制御値LSaveに等しいかそれよりも小さい。
The average gradation value APL is a value equal to or less than the average light source control value LSave calculated by the average value calculation unit 103 described with reference to FIG. 3 in the first embodiment.
The light source control value calculation unit 102 uses, for example, a peak value or an average value such as brightness and brightness of each region, or a mixed value of the peak value and the average value as the light source control value LSi. However, it is not smaller than the average gradation value APL.
That is, when the peak value of luminance or brightness is the light source control value LSi, the average gradation value APL is equal to or smaller than the average light source control value LSave.
When the average value of brightness or brightness is the light source control value LSi, the average gradation value APL is equal to the average light source control value LSave.
Even when the mixed value of the peak value of luminance or brightness and the average value is set as the light source control value LSi, the average gradation value APL is equal to or smaller than the average light source control value LSave.
 従って、図15の光源制御装置100dでは、式(1)及び式(2)と、式(21)及び式(22)との比較から分かるように、補正強度Gは、実施の形態1に関し図3の光源制御装置で算出される補正強度G以上の値になる。 Therefore, in the light source control device 100d of FIG. 15, as can be seen from the comparison between the equations (1) and (2) and the equations (21) and (22), the correction intensity G is the figure with respect to the first embodiment. The value is equal to or greater than the correction intensity G calculated by the light source control device of 3.
 言い換えれば、平均階調値APLを用いる場合の補正強度Gは、平均光源制御値LSaveを用いる場合の補正強度Gより小さくなることはなく、平均階調値APLを用いた場合の補正光源制御値が、平均光源制御値LSaveを用いた場合の補正光源制御値より小さくなることはない。
 従って、バックライト400が全体としてより明るく発光するように制御され、例えば、さらなる高輝度が必要とされる環境下で、望まれる結果が得られる。
In other words, the correction intensity G when the average gradation value APL is used is not smaller than the correction intensity G when the average light source control value LSave is used, and the correction light source control value when the average gradation value APL is used. However, it is not smaller than the corrected light source control value when the average light source control value LSave is used.
Therefore, the backlight 400 is controlled to emit brighter light as a whole, and the desired result can be obtained, for example, in an environment where higher brightness is required.
実施の形態5.
 図16は、実施の形態5に係る画像表示装置の構成を示す。図16に示される画像表示装置は、実施の形態4に関し、図14を参照して説明した画像表示装置と概して同じである。しかし、光源制御装置100dの代わりに、光源制御装置100eが設けられ、画像信号処理部200dの代わりに、画像信号処理部200eが設けられている。
Embodiment 5.
FIG. 16 shows the configuration of the image display device according to the fifth embodiment. The image display device shown in FIG. 16 is generally the same as the image display device described with reference to FIG. 14 with respect to the fourth embodiment. However, the light source control device 100e is provided in place of the light source control device 100d, and the image signal processing unit 200e is provided in place of the image signal processing unit 200d.
 図17は、光源制御装置100eの構成を示す。図17に示される光源制御装置100eは、図15に示される光源制御装置100dと概して同じである。しかし、光源制御値算出部102から出力される光源制御値LSiが光源制御装置100eの外部に出力されておらず、代わりに、光源制御値補正部106dから出力される補正光源制御値LSCiが画像信号処理部200eに供給される。 FIG. 17 shows the configuration of the light source control device 100e. The light source control device 100e shown in FIG. 17 is generally the same as the light source control device 100d shown in FIG. However, the light source control value LSi output from the light source control value calculation unit 102 is not output to the outside of the light source control device 100e, and instead, the corrected light source control value LSCi output from the light source control value correction unit 106d is an image. It is supplied to the signal processing unit 200e.
 光源制御装置100eにおける処理の内容は、実施の形態4で光源制御装置100dに関して説明したのと同じである。 The content of the processing in the light source control device 100e is the same as that described with respect to the light source control device 100d in the fourth embodiment.
 画像信号処理部200eは、実施の形態4の画像信号処理部200dと同様に、平均階調値APLを光源制御装置100eに出力する。 The image signal processing unit 200e outputs the average gradation value APL to the light source control device 100e, as in the image signal processing unit 200d of the fourth embodiment.
 図16に示される画像表示装置では、画像信号処理部200eは、光源制御装置100eから入力された各領域の補正光源制御値LSCiに基づいて、入力画像信号Daに対する信号処理を行なう。
 画像信号処理部200eにおける信号処理の内容は、実施の形態3で画像信号処理部200cに関して説明したのと同じである。
In the image display device shown in FIG. 16, the image signal processing unit 200e performs signal processing on the input image signal Da based on the corrected light source control value LSCi of each region input from the light source control device 100e.
The content of the signal processing in the image signal processing unit 200e is the same as that described with respect to the image signal processing unit 200c in the third embodiment.
 実施の形態5では、補正強度算出部104dにおける補正強度の算出、及び比較部105dにおける光源制御値との比較に平均階調値APLを用いているため実施の形態4と同様の効果が得られる。
 さらに、画像信号処理部200eが補正光源制御値LSCiを用いて画像信号に対する信号処理を行なうため、実施の形態3と同様の効果が得られる。
In the fifth embodiment, since the average gradation value APL is used for the calculation of the correction intensity in the correction intensity calculation unit 104d and the comparison with the light source control value in the comparison unit 105d, the same effect as that of the fourth embodiment can be obtained. ..
Further, since the image signal processing unit 200e performs signal processing on the image signal using the corrected light source control value LSSi, the same effect as that of the third embodiment can be obtained.
 補正強度算出部における補正強度Gの算出、比較部における比較値Ciの算出、及び光源制御値補正部における補正光源制御値LSCiの算出に、実施の形態1~3では、平均光源制御値LSaveが用いられ、実施の形態4及び5では平均階調値APLが用いられる。
 平均光源制御値LSaveと、平均階調値APLとは入力画像の明るさ指標である点で共通している。従って、実施の形態1~5は、いずれも補正強度算出部における補正強度Gの算出、比較部における比較値Ciの算出、及び光源制御値補正部における補正光源制御値LSCiの算出に、入力画像の明るさ指標を用いていると言うことができる。
In the first to third embodiments, the average light source control value LSave is used for the calculation of the correction intensity G in the correction intensity calculation unit, the calculation of the comparison value Ci in the comparison unit, and the calculation of the correction light source control value LSCi in the light source control value correction unit. It is used, and in the fourth and fifth embodiments, the average gradation value APL is used.
The average light source control value LSave and the average gradation value APL are common in that they are brightness indexes of the input image. Therefore, in all of the first to fifth embodiments, the input image is used for the calculation of the correction intensity G in the correction intensity calculation unit, the calculation of the comparison value Ci in the comparison unit, and the calculation of the correction light source control value LSCi in the light source control value correction unit. It can be said that the brightness index of is used.
 実施の形態1~5で説明した光源制御装置100、100b、100c、100d、及び100eの各々は、その一部又は全部を処理回路で構成し得る。
 例えば、光源制御装置の各部分の機能をそれぞれ別個の処理回路で実現してもよいし、複数の部分の機能をまとめて1つの処理回路で実現しても良い。
 処理回路はハードウェアで構成されていても良くソフトウェアで、即ちプログラムされたコンピュータで構成されていても良い。
 表示制御装置の各部分の機能のうち、一部をハードウェアで実現し、他の一部をソフトウェアで実現するようにしても良い。
Each of the light source control devices 100, 100b, 100c, 100d, and 100e described in the first to fifth embodiments may be partially or wholly composed of a processing circuit.
For example, the functions of each part of the light source control device may be realized by separate processing circuits, or the functions of a plurality of parts may be collectively realized by one processing circuit.
The processing circuit may be composed of hardware or software, that is, a programmed computer.
Of the functions of each part of the display control device, a part may be realized by hardware and the other part may be realized by software.
 図18は、単一のプロセッサを含むコンピュータ900で上記の実施の形態1の光源制御装置100の機能を実現する場合の構成の一例を、画像信号処理部200、表示パネル300及びバックライト400とともに示す。 FIG. 18 shows an example of a configuration in which the function of the light source control device 100 of the first embodiment is realized by a computer 900 including a single processor, together with an image signal processing unit 200, a display panel 300, and a backlight 400. show.
 図示の例ではコンピュータ900は、プロセッサ910及びメモリ920を有する。
 メモリ920には、表示制御装置の各部の機能を実現するためのプログラムが記憶されている。
In the illustrated example, the computer 900 has a processor 910 and a memory 920.
The memory 920 stores a program for realizing the functions of each part of the display control device.
 プロセッサ910は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)等を用いたものである。
 メモリ920は、例えばRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)若しくはEEPROM(Electrically Erasable Programmable Read Only Memory)等の半導体メモリ、磁気ディスク、光ディスク、又は光磁気ディスク等を用いたものである。
The processor 910 uses, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microprocessor, a DSP (Digital Signal Processor), or the like.
The memory 920 may be, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Memory Disk Memory), an EEPROM (Electrically Memory, etc.), or an EEPROM. Alternatively, a photomagnetic disk or the like is used.
 プロセッサ910及びメモリ920は、互いに一体化されたLSI(Large Scale Integration)で実現されていても良い。 The processor 910 and the memory 920 may be realized by an LSI (Large Scale Integration) integrated with each other.
 プロセッサ910は、メモリ920に記憶されているプログラムを実行することにより、光源制御装置の機能を実現する。
 光源制御装置の機能には、上記のようにバックライト400に対する明るさの制御が含まれる。
 プログラムは、ネットワークを通じて提供されてもよく、また、記録媒体、例えば非一時的な記録媒体に記録されて提供されてもよい。即ち、プログラムは、例えば、プログラムプロダクトとして提供されてもよい。
The processor 910 realizes the function of the light source control device by executing the program stored in the memory 920.
The function of the light source control device includes the control of the brightness of the backlight 400 as described above.
The program may be provided through a network, or may be recorded and provided on a recording medium, such as a non-temporary recording medium. That is, the program may be provided, for example, as a program product.
 図18で示されるコンピュータで、実施の形態1の光源制御装置と同様の光源制御を行なう場合の処理の手順を図19を参照して説明する。 A processing procedure in the case of performing the same light source control as that of the light source control device of the first embodiment on the computer shown in FIG. 18 will be described with reference to FIG.
 図19に示される処理は、1フレームの画像信号が入力される毎に繰り返される。即ち、画像信号の時系列的な入力に対し、繰り返し行われる。 The process shown in FIG. 19 is repeated every time one frame of image signal is input. That is, it is repeatedly performed for the time-series input of the image signal.
 ステップST10では、1フレームの画像信号Daを受信する。
 ステップST11では、入力された画像信号は、特徴量FQiを算出する。この処理は、図3の特徴量算出部101における処理に相当する。
 ステップST12では、バックライト400の各領域の光源制御値LSiを算出する。この処理は、図3の光源制御値算出部102における処理に相当する。
In step ST10, one frame of image signal Da is received.
In step ST11, the feature amount FQi is calculated for the input image signal. This process corresponds to the process in the feature amount calculation unit 101 of FIG.
In step ST12, the light source control value LSi of each region of the backlight 400 is calculated. This process corresponds to the process in the light source control value calculation unit 102 of FIG.
 ステップST13では、バックライト400の全ての領域の光源制御値LSiから平均光源制御値LSaveを算出する。この処理は、図3の平均値算出部103における処理に相当する。 In step ST13, the average light source control value LSave is calculated from the light source control value LSi in all regions of the backlight 400. This process corresponds to the process in the average value calculation unit 103 of FIG.
 ステップST14では、平均光源制御値LSaveから補正強度Gを算出する。この処理は、図3の補正強度算出部104における処理に相当する。
 ステップST15では、各領域の光源制御値LSiと平均光源制御値LSaveとから当該領域の比較値Ciを算出する。この処理は、図3の比較部105における処理に相当する。
 ステップST14の処理とステップST15の処理とは並行して行い得る。
In step ST14, the correction intensity G is calculated from the average light source control value LSave. This process corresponds to the process in the correction strength calculation unit 104 of FIG.
In step ST15, the comparison value Ci of the region is calculated from the light source control value LSi of each region and the average light source control value LSave. This process corresponds to the process in the comparison unit 105 of FIG.
The processing of step ST14 and the processing of step ST15 can be performed in parallel.
 ステップST16では、補正強度Gと各領域の比較値Ciと平均光源制御値LSaveとから当該領域の補正光源制御値LSCiを算出する。この処理は、図3の光源制御値補正部106における処理に相当する。 In step ST16, the correction light source control value LSSi of the region is calculated from the correction intensity G, the comparison value Ci of each region, and the average light source control value LSave. This process corresponds to the process in the light source control value correction unit 106 of FIG.
 ステップST17では、処理を継続すべきか否かの判定が行われる。
 画像信号Daの入力が続く場合、即ち次のフレームの画像信号が入力される場合等、特に終了する必要がない場合、継続すべきと判断し、ステップST10に戻る。
 そうでなければ、処理を終了する。
In step ST17, it is determined whether or not the processing should be continued.
When the input of the image signal Da continues, that is, when the image signal of the next frame is input and there is no particular need to end, it is determined that the continuation should be performed, and the process returns to step ST10.
If not, the process ends.
 以上、実施の形態1の光源制御装置をコンピュータで実現する場合について述べたが、実施の形態2~5の光源制御装置をコンピュータで実現する場合の構成及び処理の手順も、実施の形態1の場合と同様である。 Although the case where the light source control device of the first embodiment is realized by the computer has been described above, the procedure of the configuration and the processing when the light source control device of the second to fifth embodiments is realized by the computer is also described in the first embodiment. Same as the case.
 例えば、図18に示されるのと同様のコンピュータで、実施の形態4の光源制御装置と同様の光源制御を行なう場合には、例えば図20に示される手順で処理を行なえば良い。 For example, when the same computer as shown in FIG. 18 performs the same light source control as the light source control device of the fourth embodiment, the process may be performed by the procedure shown in FIG. 20, for example.
 図20に示される処理は、図19に示される処理と概して同じである。但し、ステップST13が設けられておらず、ステップST14、ST15、及びST16がステップST14d、ST15d、及びST16dに置き換わっている。 The process shown in FIG. 20 is generally the same as the process shown in FIG. However, step ST13 is not provided, and steps ST14, ST15, and ST16 are replaced with steps ST14d, ST15d, and ST16d.
 ステップST14dでは、平均階調値APLから補正強度Gを算出する。この処理は、図15の補正強度算出部104dにおける処理に相当する。
 ステップST15dでは、各領域の光源制御値LSiと平均階調値APLとから当該領域の比較値Ciを算出する。この処理は、図15の比較部105dにおける処理に相当する。
 ステップST16dでは、補正強度Gと各領域の比較値Ciと平均階調値APLとから当該領域の補正光源制御値LSCiを算出する。この処理は、図15の光源制御値補正部106dにおける処理に相当する。
In step ST14d, the correction intensity G is calculated from the average gradation value APL. This process corresponds to the process in the correction strength calculation unit 104d of FIG.
In step ST15d, the comparison value Ci of the region is calculated from the light source control value LSi of each region and the average gradation value APL. This process corresponds to the process in the comparison unit 105d of FIG.
In step ST16d, the correction light source control value LSCi in the region is calculated from the correction intensity G, the comparison value Ci in each region, and the average gradation value APL. This process corresponds to the process in the light source control value correction unit 106d of FIG.
 上記の実施の形態には種々の変形が可能である。
 例えば、実施の形態2を実施の形態1に対する変形として説明したが、実施の形態3~5にも同様の変形を加えることができる。
Various modifications are possible to the above embodiment.
For example, although the second embodiment has been described as a modification to the first embodiment, similar modifications can be added to the third to fifth embodiments.
 以上光源制御装置について説明したが、光源制御装置を用いて、光源制御方法を実施することも可能であり、また光源制御装置又は光源制御方法における処理をプログラムによりコンピュータに実行させることも可能である。 Although the light source control device has been described above, it is also possible to implement the light source control method by using the light source control device, and it is also possible to have a computer execute the processing in the light source control device or the light source control method by a program. ..
 1 画像入力端子、 100,100b,100c,100d,100e 光源制御装置、 101 特徴量算出部、 102 光源制御値算出部、 103 平均値算出部、 104,104b,104d 補正強度算出部、 105,105d 比較部、 106,106d 光源制御値補正部、 200,200c,200d,200e 画像信号処理部、 300 表示パネル、 400 バックライト、 402 光源駆動装置、 900 コンピュータ、 910 プロセッサ、 920 メモリ。 1 Image input terminal, 100, 100b, 100c, 100d, 100e Light source control device, 101 feature amount calculation unit, 102 light source control value calculation unit, 103 average value calculation unit, 104, 104b, 104d correction strength calculation unit, 105, 105d Comparison unit, 106, 106d light source control value correction unit, 200, 200c, 200d, 200e image signal processing unit, 300 display panel, 400 backlight, 402 light source drive device, 900 computer, 910 processor, 920 memory.

Claims (15)

  1.  複数の領域で明るさの制御が可能なバックライトを制御する光源制御装置において、
     入力画像信号から前記領域の各々について画像の輝度又は明度を示す特徴量を算出する特徴量算出部と、
     前記バックライトの各領域についての光源制御値を当該領域の特徴量に基づいて算出する光源制御値算出部と、
     各領域についての前記光源制御値と前記入力画像信号の明るさ指標とを比較し、当該領域についての比較結果を出力する比較部と、
     前記明るさ指標から補正強度を算出する補正強度算出部と、
     各領域についての前記比較結果と前記補正強度とから当該領域についての補正光源制御値を生成する光源制御値補正部とを備え、
     前記光源制御値算出部で算出される各領域の前記光源制御値は、当該領域についての前記特徴量で表される前記画像の輝度又は明度が大きいほど大きく、
     前記補正強度算出部で算出される前記補正強度は、前記明るさ指標が小さいほど大きく、
     前記光源制御値補正部は、
     前記比較部で前記光源制御値が前記明るさ指標よりも大きいと判定された場合には、当該領域の前記光源制御値から前記明るさ指標を減算した値に前記補正強度を乗じて前記明るさ指標を加算した値を、前記補正光源制御値として出力し、
     前記比較部で各領域の前記光源制御値が前記明るさ指標以下であると判定された場合には、当該領域の前記光源制御値を、当該領域の前記補正光源制御値として出力する
     光源制御装置。
    In a light source control device that controls a backlight that can control brightness in multiple areas
    A feature amount calculation unit that calculates a feature amount indicating the brightness or brightness of an image for each of the regions from an input image signal, and a feature amount calculation unit.
    A light source control value calculation unit that calculates a light source control value for each region of the backlight based on the feature amount of the region, and a light source control value calculation unit.
    A comparison unit that compares the light source control value for each region with the brightness index of the input image signal and outputs the comparison result for the region.
    A correction strength calculation unit that calculates the correction strength from the brightness index,
    It is provided with a light source control value correction unit that generates a correction light source control value for the region from the comparison result for each region and the correction intensity.
    The light source control value of each region calculated by the light source control value calculation unit is larger as the brightness or brightness of the image represented by the feature amount for the region is larger.
    The correction strength calculated by the correction strength calculation unit is larger as the brightness index is smaller.
    The light source control value correction unit is
    When the comparison unit determines that the light source control value is larger than the brightness index, the brightness is obtained by multiplying the value obtained by subtracting the brightness index from the light source control value in the region by the correction intensity. The value obtained by adding the index is output as the correction light source control value.
    When the comparison unit determines that the light source control value in each region is equal to or less than the brightness index, the light source control device outputs the light source control value in the region as the corrected light source control value in the region. ..
  2.  各領域の前記特徴量が、当該領域の輝度又は明度のピーク値若しくは平均値、又は前記ピーク値と前記平均値とから算出される値である
     請求項1に記載の光源制御装置。
    The light source control device according to claim 1, wherein the feature amount in each region is a peak value or an average value of brightness or brightness in the region, or a value calculated from the peak value and the average value.
  3.  各領域の光源制御値が、当該領域及びその周辺の領域の前記特徴量に基づいて算出される
     請求項1又は2に記載の光源制御装置。
    The light source control device according to claim 1 or 2, wherein the light source control value of each region is calculated based on the feature amount of the region and the region around the region.
  4.  前記補正強度算出部は、前記明るさ指標の逆数を前記補正強度として算出する請求項1から3のいずれか1項に記載の光源制御装置。 The light source control device according to any one of claims 1 to 3, wherein the correction intensity calculation unit calculates the reciprocal of the brightness index as the correction intensity.
  5.  前記補正強度算出部は、前記明るさ指標の逆数に1を加えた値を前記補正強度として算出する請求項1から3のいずれか1項に記載の光源制御装置。 The light source control device according to any one of claims 1 to 3, wherein the correction intensity calculation unit calculates a value obtained by adding 1 to the reciprocal of the brightness index as the correction intensity.
  6.  前記光源制御値補正部は、前記補正光源制御値が前記光源制御値の最大値の2倍を超えないように制限する
     請求項5に記載の光源制御装置。
    The light source control device according to claim 5, wherein the light source control value correction unit limits the corrected light source control value so as not to exceed twice the maximum value of the light source control value.
  7.  前記領域の光源制御値の前記バックライトの全体に亘る平均値を平均光源制御値として算出する平均値算出部をさらに有し、
     前記平均光源制御値が前記明るさ指標として用いられる
     請求項1から6のいずれか1項に記載の光源制御装置。
    Further, it has an average value calculation unit for calculating the average value of the light source control value in the region over the entire backlight as the average light source control value.
    The light source control device according to any one of claims 1 to 6, wherein the average light source control value is used as the brightness index.
  8.  前記入力画像信号の平均階調値が、前記明るさ指標として用いられる
     請求項1から6のいずれか1項に記載の光源制御装置。
    The light source control device according to any one of claims 1 to 6, wherein the average gradation value of the input image signal is used as the brightness index.
  9.  前記補正光源制御値の平均値が前記光源制御値の最大値を超えない
     請求項1から8のいずれか1項に記載の光源制御装置。
    The light source control device according to any one of claims 1 to 8, wherein the average value of the corrected light source control values does not exceed the maximum value of the light source control value.
  10.  前記補正強度算出部は、前記補正強度を設定値以下に制限する請求項1から9のいずれか1項に記載の光源制御装置。 The light source control device according to any one of claims 1 to 9, wherein the correction intensity calculation unit limits the correction intensity to a set value or less.
  11.  請求項1から10のいずれか1項に記載の光源制御装置と、
     前記光源制御装置が出力する各領域の前記光源制御値又は前記補正光源制御値に基づいて前記入力画像信号を階調補正して補正画像信号を生成する画像信号処理部と、
     前記画像信号処理部で生成された前記補正画像信号に応じて画素毎に透過率が制御される表示パネルと、
     前記バックライトとを備え、
     前記バックライトにおいては、前記光源制御装置が出力する各領域の補正光源制御値に基づいて当該領域の輝度が制御される
     画像表示装置。
    The light source control device according to any one of claims 1 to 10.
    An image signal processing unit that generates a corrected image signal by gradation-correcting the input image signal based on the light source control value or the corrected light source control value in each region output by the light source control device.
    A display panel in which the transmittance is controlled for each pixel according to the corrected image signal generated by the image signal processing unit.
    Equipped with the backlight
    In the backlight, an image display device in which the brightness of the region is controlled based on the corrected light source control value of each region output by the light source control device.
  12.  請求項8に記載の光源制御装置と、
     前記光源制御装置が出力する各領域の前記光源制御値又は前記補正光源制御値に基づいて前記入力画像信号を階調補正して補正画像信号を生成する画像信号処理部と、
     前記画像信号処理部で生成された前記補正画像信号に応じて画素毎に透過率が制御される表示パネルと、
     前記バックライトとを備え、
     前記バックライトにおいては、前記光源制御装置が出力する各領域の補正光源制御値に基づいて当該領域の輝度が制御され、
     前記画像信号処理部は、前記入力画像信号に基づいて前記平均階調値を算出して出力する
     画像表示装置。
    The light source control device according to claim 8 and
    An image signal processing unit that generates a corrected image signal by gradation-correcting the input image signal based on the light source control value or the corrected light source control value in each region output by the light source control device.
    A display panel in which the transmittance is controlled for each pixel according to the corrected image signal generated by the image signal processing unit.
    Equipped with the backlight
    In the backlight, the brightness of the region is controlled based on the corrected light source control value of each region output by the light source control device.
    The image signal processing unit is an image display device that calculates and outputs the average gradation value based on the input image signal.
  13.  複数の領域で明るさの制御が可能なバックライトを制御する光源制御方法において、
     入力画像信号から前記領域の各々について画像の輝度又は明度を示す特徴量を算出し、
     前記バックライトの各領域についての光源制御値を当該領域の特徴量に基づいて算出し、
     各領域についての前記光源制御値と前記入力画像信号の明るさ指標とを比較し、当該領域についての比較結果を出力し、
     前記明るさ指標から補正強度を算出し、
     各領域についての前記比較結果と前記補正強度とから当該領域についての補正光源制御値を生成し、
     各領域の前記光源制御値は、当該領域についての前記特徴量で表される前記画像の輝度又は明度が大きいほど大きく、
     前記補正強度は、前記明るさ指標が小さいほど大きく、
     前記光源制御値が前記明るさ指標よりも大きい場合には、当該領域の前記光源制御値から前記明るさ指標を減算した値に前記補正強度を乗じて前記明るさ指標を加算した値を、前記補正光源制御値とし、
     各領域の前記光源制御値が前記明るさ指標以下である場合には、当該領域の前記光源制御値を、当該領域の前記補正光源制御値とする
     光源制御方法。
    In the light source control method that controls the backlight that can control the brightness in multiple areas,
    From the input image signal, a feature amount indicating the brightness or brightness of the image is calculated for each of the regions.
    The light source control value for each region of the backlight is calculated based on the feature amount of the region.
    The light source control value for each region is compared with the brightness index of the input image signal, and the comparison result for the region is output.
    The correction intensity is calculated from the brightness index, and the correction intensity is calculated.
    A correction light source control value for the region is generated from the comparison result for each region and the correction intensity.
    The light source control value in each region increases as the brightness or brightness of the image represented by the feature amount for the region increases.
    The correction intensity increases as the brightness index becomes smaller.
    When the light source control value is larger than the brightness index, the value obtained by subtracting the brightness index from the light source control value in the region multiplied by the correction intensity and adding the brightness index is used. Use as the correction light source control value
    A light source control method in which when the light source control value in each region is equal to or less than the brightness index, the light source control value in the region is used as the corrected light source control value in the region.
  14.  請求項13に記載の光源制御方法における処理をコンピュータに実行させるためのプログラム。 A program for causing a computer to execute the process in the light source control method according to claim 13.
  15.  請求項14に記載のプログラムを記録した、コンピュータで読取可能な記録媒体。 A computer-readable recording medium on which the program according to claim 14 is recorded.
PCT/JP2020/025327 2020-06-26 2020-06-26 Light source control device, light source control method, image display device, program, and recording medium WO2021260939A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/025327 WO2021260939A1 (en) 2020-06-26 2020-06-26 Light source control device, light source control method, image display device, program, and recording medium
JP2022532223A JP7361922B2 (en) 2020-06-26 2020-06-26 Light source control device, light source control method, image display device, program and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/025327 WO2021260939A1 (en) 2020-06-26 2020-06-26 Light source control device, light source control method, image display device, program, and recording medium

Publications (1)

Publication Number Publication Date
WO2021260939A1 true WO2021260939A1 (en) 2021-12-30

Family

ID=79282198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025327 WO2021260939A1 (en) 2020-06-26 2020-06-26 Light source control device, light source control method, image display device, program, and recording medium

Country Status (2)

Country Link
JP (1) JP7361922B2 (en)
WO (1) WO2021260939A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058896A (en) * 2006-09-04 2008-03-13 Mitsubishi Electric Corp Image display device and image display method
JP2017076110A (en) * 2015-10-15 2017-04-20 キヤノン株式会社 Display device and control method and program for the same
JP2017173414A (en) * 2016-03-22 2017-09-28 シャープ株式会社 Light source lighting device, display device, and television device
US20180075813A1 (en) * 2015-05-18 2018-03-15 Hisense Electric Co., Ltd. Backlight brightness control method, apparatus, and liquid crystal display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277708B2 (en) 2008-04-30 2013-08-28 セイコーエプソン株式会社 Image processing apparatus, integrated circuit device, and electronic apparatus
TWI444987B (en) 2010-07-09 2014-07-11 Realtek Semiconductor Corp Contrast control device and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058896A (en) * 2006-09-04 2008-03-13 Mitsubishi Electric Corp Image display device and image display method
US20180075813A1 (en) * 2015-05-18 2018-03-15 Hisense Electric Co., Ltd. Backlight brightness control method, apparatus, and liquid crystal display device
JP2017076110A (en) * 2015-10-15 2017-04-20 キヤノン株式会社 Display device and control method and program for the same
JP2017173414A (en) * 2016-03-22 2017-09-28 シャープ株式会社 Light source lighting device, display device, and television device

Also Published As

Publication number Publication date
JPWO2021260939A1 (en) 2021-12-30
JP7361922B2 (en) 2023-10-16

Similar Documents

Publication Publication Date Title
US10761371B2 (en) Display device
US8330689B2 (en) Transmissive liquid crystal display device having control section for controlling emission luminance of backlight
US9830846B2 (en) Image display device capable of supporting brightness enhancement and power control and method thereof
CN103310765B (en) Backlight illumination compensation method and display device
US8199101B2 (en) Transmission liquid crystal display device
JP5410731B2 (en) Control method of backlight luminance suppression and display system using the control method
JP4477020B2 (en) Transmission type liquid crystal display device
US20090278867A1 (en) Multiprimary color display with dynamic gamut mapping
JP2013536956A (en) Adaptive color correction for displays with backlight modulation
CN103430230B (en) Video display devices
KR101073006B1 (en) Display device and method for controling brightness of images in display device
WO2018092419A1 (en) Field sequential image display device and image display method
JP5270279B2 (en) Transmission type liquid crystal display device, control program, and recording medium
JP5128418B2 (en) Transmission type liquid crystal display device, control program, and computer-readable recording medium
JP6108238B2 (en) Control circuit and display device thereof
WO2021260939A1 (en) Light source control device, light source control method, image display device, program, and recording medium
WO2012090358A1 (en) Video signal processing device
JP2022073047A (en) Control device, display device, and control method
JP2009210924A (en) Transmissive liquid crystal display
JP2009217052A (en) Transmissive liquid crystal display device
JP5249703B2 (en) Display device
JP2009265114A (en) Liquid crystal display device
JP2022073049A (en) Control device, display device, and control method
JP4987134B1 (en) Video display device
JP2009300968A (en) Image processing apparatus, image signal processing method, program, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532223

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941916

Country of ref document: EP

Kind code of ref document: A1