WO2021260812A1 - Droplet discharging module, droplet discharging unit, and method for manufacturing droplet discharging module - Google Patents

Droplet discharging module, droplet discharging unit, and method for manufacturing droplet discharging module Download PDF

Info

Publication number
WO2021260812A1
WO2021260812A1 PCT/JP2020/024670 JP2020024670W WO2021260812A1 WO 2021260812 A1 WO2021260812 A1 WO 2021260812A1 JP 2020024670 W JP2020024670 W JP 2020024670W WO 2021260812 A1 WO2021260812 A1 WO 2021260812A1
Authority
WO
WIPO (PCT)
Prior art keywords
droplet ejection
nozzles
predetermined
droplet
heads
Prior art date
Application number
PCT/JP2020/024670
Other languages
French (fr)
Japanese (ja)
Inventor
隆良 九鬼
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to PCT/JP2020/024670 priority Critical patent/WO2021260812A1/en
Publication of WO2021260812A1 publication Critical patent/WO2021260812A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet

Definitions

  • the present invention relates to a method for manufacturing a droplet ejection module, a droplet ejection unit, and a droplet ejection module.
  • a droplet ejection device equipped with a droplet ejection head in which a plurality of nozzles for ejecting droplets of ink or the like are arranged.
  • the arrangement interval of the nozzles in the droplet ejection head is gradually becoming narrower.
  • An object of the present invention is to provide a method for manufacturing a droplet ejection module, a droplet ejection unit, and a droplet ejection module capable of more stable and high-resolution droplet ejection.
  • the invention according to claim 1 is A plurality of droplet ejection heads having a plurality of nozzles for ejecting droplets.
  • the nozzles of the plurality of droplet ejection heads are arranged at predetermined intervals in a predetermined width direction.
  • the nozzles adjacent to each other in the width direction are the nozzles of the droplet ejection heads different from each other.
  • the plurality of droplet ejection heads satisfy a predetermined criterion relating to the relative angle of the droplet ejection direction between the plurality of nozzles and the nozzles adjacent to the plurality of nozzles in the width direction. It is a droplet ejection module.
  • the invention according to claim 2 is the droplet ejection module according to claim 1.
  • the predetermined reference is that the number of sets of the nozzles whose relative angle is equal to or larger than the reference angle is less than the predetermined upper limit.
  • the invention according to claim 3 is the droplet ejection module according to claim 2. At least one of the nozzles of the group whose relative angle is equal to or larger than the reference angle is defined as a ejection prohibition nozzle.
  • the invention according to claim 4 is the droplet ejection module according to claim 2 or 3.
  • the reference angle is such that the distance in the width direction between the landing positions of the droplets ejected from each nozzle of the set and landed at a position of a predetermined reference distance from the opening surface of the nozzle is from the predetermined distance. It is an angle that is off by half.
  • the invention according to claim 5 is the droplet ejection module according to any one of claims 1 to 4.
  • the deviation of the distance between the landing positions of the droplets ejected by the nozzles at both ends in the width direction of the droplet ejection head is not more than half of the predetermined interval.
  • the invention according to claim 8 is the method for manufacturing a droplet ejection module according to claim 7.
  • the prohibition setting step of setting at least one of the adjacent nozzles whose relative angle is equal to or larger than the reference angle to the ejection prohibition is included.
  • FIG. 1 is a perspective view of the droplet ejection unit 1 of the present embodiment.
  • FIG. 2 is a bottom view of the droplet ejection unit 1.
  • the droplet ejection unit 1 includes a plurality of (here, eight) droplet ejection modules 11 and a fixing member 12 for fixing the droplet ejection modules 11 in a predetermined positional relationship.
  • the fixing member 12 has holes corresponding to the number of droplet ejection modules 11, and the droplet ejection modules 11 are fixed at positions where the bottom surface thereof is exposed from the holes.
  • the fixing member 12 is fixed to a carriage or the like in a droplet ejection device such as an inkjet recording device, and the bottom surface of the droplet ejection module 11 and the landing target of the droplet ejected from the droplet ejection module 11 face each other.
  • the eight droplet ejection modules 11 are arranged in a houndstooth pattern at positions different from each other in the Y direction, which is the longitudinal direction of the droplet ejection unit 1.
  • each of the droplet ejection modules 11 includes two (plural) droplet ejection heads 111 arranged in the X direction perpendicular to the Y direction in the bottom surface.
  • the droplet ejection head 111 has a large number (s) of nozzles N, and each nozzle N is open to the bottom surface.
  • FIG. 3 is a diagram illustrating an arrangement of nozzles.
  • a plurality of nozzles N are arranged in the Y direction at intervals of 4d.
  • the nozzles N11 and N12 belonging to different nozzle rows of the first droplet ejection head 111a are located at intervals of 2d in the Y direction.
  • the nozzles N21 and N22 belonging to different nozzle rows of the second droplet ejection head 111b are located at intervals of 2d in the Y direction.
  • the first droplet ejection head 111a and the second droplet ejection head 111b are located at a distance d in the Y direction.
  • the opening positions of the nozzles N of the two droplet ejection heads 111 are arranged alternately in the Y direction, and have an interval d (predetermined interval) in the width direction as a whole.
  • the droplet ejection unit 1 is, for example, a relative movement direction between the recording medium and the droplet ejection unit 1 at the time of droplet ejection (the transport direction of the recording medium and / or the scanning direction of the droplet ejection unit). Is installed so that is in the X direction. Liquid periodically from each nozzle arranged in the Y direction (that is, the direction perpendicular to the transport direction in the transport surface of the recording medium; the width direction of the recording medium) while moving the recording medium with respect to the droplet ejection unit 1. By enabling the droplets to be ejected, the droplet ejection unit 1 operates as a line head.
  • each nozzle of each droplet ejection module 11 (other than the nozzles at both ends in the Y direction) has two nozzles adjacent to each other in the Y direction, and a set of two adjacent nozzles is formed.
  • the nozzles belong to different droplet ejection heads 111.
  • the nozzle N12 belonging to the first droplet ejection head 111a constitutes a set of nozzles p2 and p3 adjacent to the nozzles N21 and N22 belonging to the second droplet ejection head 111b, respectively.
  • the nozzle N21 belonging to the second droplet ejection head 111b constitutes a set of nozzles p1 and p2 adjacent to the nozzles N11 and N12 belonging to the first droplet ejection head 111a, respectively.
  • the droplets ejected from each nozzle fly and land in the direction perpendicular to the bottom surface of the droplet ejection module 11 (droplet ejection head 111), but in reality, there are some deviations and variations. ..
  • the interval d is about 21.2 ⁇ m
  • the flight direction is the bottom surface.
  • the first droplet ejection head 111a and the first droplet ejection head 111a and the first droplet ejection head 111a are attached.
  • the deviation bias with the two-droplet ejection head 111b the deviation relative to the Y-direction component in the flight direction of the droplet becomes so large that it cannot be ignored (that is, it may adversely affect the image quality). In some cases.
  • FIG. 4 is a diagram illustrating a relative deviation in the discharge direction.
  • the flight direction of the droplets ejected from the front surface (X direction) to the lower part of the figure ( ⁇ Z direction) is shown.
  • the ejection direction of the droplet from the first droplet ejection head 111a is indicated by a thin line
  • the ejection direction of the droplet from the second droplet ejection head 111b is indicated by a thick line.
  • the ejection direction from the first droplet ejection head 111a is slightly biased to the right ( ⁇ Y direction) in the plane of the figure
  • the ejection direction from the second droplet ejection head 111b is the surface of the figure. It is slightly biased to the left (+ Y direction) inside.
  • the ejection direction e1 from one nozzle N of the first droplet ejection head 111a and the ejection directions e21 and e22 from the nozzle N adjacent to the nozzle of the second droplet ejection head 111b are mutually in the Y direction. There is a shift in the opposite direction.
  • the angles formed between these droplet ejection directions are the sum of the angles of deviation in the ejection direction from each nozzle and greatly deviate from 0 degrees.
  • the first droplet ejection head 111a and the second droplet ejection head 111b are combined so that the variation (relative angle) in the ejection direction is within a predetermined reference angle range (predetermined). Selected and combined (to meet the criteria of).
  • the reference angle may be appropriately determined according to the required image quality of the droplet ejection module 11, and for example, even if the relative displacement amount of the landing position is determined so as to be able to be compared with the nozzle spacing d as described above. good.
  • the amount of misalignment at the time of landing depends on the distance between the nozzle opening surface and the droplet landing surface of the recording medium, but in the droplet ejection device, the thickness of the recording medium often changes significantly. Therefore, the amount of misalignment is calculated based on the reference distance (reference distance). For example, the amount of misalignment may be calculated with the maximum settable distance as the reference distance, or the distance corresponding to the thickness of the standard recording medium may be the reference distance.
  • the reference angle is R [deg]
  • half of the nozzle spacing d is the maximum misalignment amount, G ⁇ tan in the range where R is minute.
  • the density unevenness at this degree of deviation is negligible in many cases, but the degree of unevenness or the like depends on the relationship between the landing range of the landed droplet and the distance d. Therefore, for example, when the landing range of the droplet is narrow, the reference angle may be set smaller.
  • the reference number is concerned.
  • one of the nozzles may be set as an initial defective nozzle and discharge prohibition may be set.
  • the list of nozzles (discharge prohibition nozzles) set to discharge prohibition may be stored in a storage means such as a ROM included in the droplet discharge module 11 or the droplet discharge unit 1.
  • the droplet ejection device based on this list of ejection prohibited nozzles, the droplet ejection from the ejection prohibited nozzle is prohibited, and the drive control is performed so that complementary ejection is performed by the nozzles N on both sides instead.
  • FIG. 5 is a flowchart showing the procedure of the combination setting process of the droplet ejection head 111 of the present embodiment.
  • This combination setting process is executed, for example, by the CPU of a computer for manufacturing control as a part of the manufacturing process of the droplet ejection module 11 (the manufacturing method of the droplet ejection module 11).
  • This CPU acquires information (measurement data) of the droplet ejection direction by each nozzle of the plurality of droplet ejection heads 111 that can be used for the droplet ejection head (step S101; direction acquisition step). If the measurement data is acquired directly from the manufactured inspection device of the droplet ejection head 111 or the like in association with the identification information (serial number, etc.) of each droplet ejection head 111, or via a data storage device. good.
  • the CPU selects two droplet ejection heads 111 in a combination that has not yet been selected (step S102).
  • the CPU specifies all pairs of adjacent nozzles according to the arrangement order of the nozzles in the Y direction (width direction) when the two selected droplet ejection heads 111 are attached to the droplet ejection module.
  • the CPU calculates the relative angle according to the difference in the discharge direction of each specified set (step S103; calculation step).
  • the CPU counts the number of non-standard pairs, with the pairs whose calculated relative angle (absolute value) is equal to or greater than the reference angle as non-standard pairs (step S104). If a nozzle with an abnormality in the droplet ejection itself is included due to an initial failure of the nozzle, etc., the set including this nozzle is regarded as a nonstandard set regardless of the droplet ejection direction by the nozzle. May be good.
  • the CPU determines whether or not all the sets of the plurality of target droplet ejection heads have been selected (step S105). If it is determined that there is a set that has not been selected (“NO” in step S105), the CPU processing returns to step S102.
  • the CPU extracts the sets of the droplet ejection heads whose non-standard number of sets is less than the reference number (upper limit number) (step). S106).
  • the reference number may be arbitrarily determined according to the required level of the product, and may be, for example, 10%, more preferably 1% of the total number of nozzles. In addition to the number of non-standard pairs, conditions such as adjacent pairs that are not non-standard in succession may be added.
  • the CPU determines a combination in which the maximum number of droplet ejection heads can be combined (step S107; selection step).
  • the CPU sets the nozzles of the nonstandard set as the initial defective nozzles in each combination of the determined droplet ejection heads (step S108; prohibition setting step).
  • the initial defective nozzle setting may be one of a non-standard set of nozzles. If it is clear that the cause is one of them, the one may be selected, and if it is not a clear abnormality, the deviation from the droplet ejection direction of all the nozzles is large. It may be one or the like. Then, the CPU ends the combination setting process.
  • the combination is defined as a set that meets the standard at the setting stage of the combination, it may be distorted due to heat or the like when it is actually fixed to the droplet ejection module 11.
  • the length of the droplet ejection module 11 in the width direction for example, the reference of the droplet ejected from the nozzles at both ends in the width direction of the droplet ejection module 11 without re-measuring the ejection direction of each nozzle.
  • the effect of distortion can be determined by the distance between the landing positions (distance between both ends) and the like.
  • the measured distance between both ends deviates from the original distance (distance d ⁇ (number of nozzles-1)) by half or more of the distance d, it may be excluded as being distorted.
  • FIG. 6 is a flowchart showing another example of the combination setting process.
  • step S107 of the above combination setting process is changed to steps S117 and S118, and the other processes are the same.
  • the same processing contents are designated by the same reference numerals and detailed description thereof will be omitted.
  • the CPU quantitatively evaluates the variation in the ejection direction for each of the droplet ejection heads of the extracted combinations (step S117).
  • the CPU may calculate various statistical parameters such as, for example, the average value of the absolute values of the relative angles.
  • the CPU determines the combination of the droplet ejection heads in ascending order of the degree of variation obtained in the quantitative evaluation (step S118).
  • the CPU erases the other combinations including the droplet ejection head of the combination. Then, the determination of the combination having the smallest degree of variation among the remaining combinations is repeated until there are no remaining combinations. Then, the processing of the CPU shifts to step S108.
  • the droplet ejection module 11 of the present embodiment includes a plurality of droplet ejection heads 111 having a plurality of nozzles N for ejecting droplets.
  • the nozzles N of the plurality of droplet ejection heads 111 are arranged at a predetermined interval d in a predetermined width direction (Y direction), and the nozzles N adjacent to each other in the width direction are nozzles N having different droplet ejection heads 111.
  • the plurality of droplet ejection heads 111 satisfy a predetermined criterion relating to a relative angle in the width direction of the droplet ejection direction between the plurality of nozzles N and the nozzles N adjacent to each of the plurality of nozzles N. ..
  • each droplet ejection head is determined by determining the droplet ejection head 111 in which the droplet ejection module 11 is combined in consideration of the relative difference in the droplet ejection direction of each droplet ejection head 111.
  • 111 it is possible to obtain a droplet ejection module 11 capable of stably ejecting a droplet with high resolution by suppressing a large variation in the ejection direction and the landing position due to a relative deviation even within the range of the standard. can.
  • the predetermined reference is that the number of sets of nozzles N whose relative angle is equal to or greater than the reference angle is less than the predetermined upper limit. It is difficult in manufacturing that the set of all nozzles N does not completely disperse, and the yield decreases. It can be done stably.
  • At least one of the nozzles N of the set whose relative angle is equal to or larger than the reference angle is defined as a discharge prohibition nozzle.
  • a discharge prohibition nozzle As described above, when the relative angle becomes large due to the set of nozzles N, one nozzle N is not discharged as a discharge prohibited nozzle, but is complemented by nozzles on both sides in the same manner as a normal discharge prohibited nozzle. , It may be possible to avoid the influence of the deviation in the discharge direction. By making such a setting, more stable and highly accurate droplet ejection can be performed from the droplet ejection module 11.
  • the reference angle is the droplets ejected from each nozzle N of each set and landed at a predetermined reference distance from the opening surface of the nozzle N, for example, the maximum distance determined according to the type of recording medium.
  • the distance in the width direction between the landing positions is an angle that deviates from the nozzle N spacing d by half (d / 2). If the deviation is about half of each pixel, in many cases, leakage from the landing range or unevenness of the landing density will not be negligible depending on the landing size of the droplet, so this is an example. Can be set based on such a value.
  • the deviation of the distance between the landing positions of the droplets ejected by the nozzles N at both ends in the width direction of the droplet ejection head 111 is less than half of the interval d. Even if the combination of the droplet ejection heads 111 is made more appropriate, it cannot be said that distortion may occur at the time of combination. In this case, by measuring the distance between the droplet landing positions by the nozzle N, which is the farthest distance in the width direction, the cumulative value of the entire strain can be obtained, so this distance is within the reference range (half of the interval d). By shipping the droplet ejection module 11 of the above, it is possible to supply the droplet ejection module 11 capable of more stable and highly accurate droplet ejection.
  • the droplet ejection unit 1 of the present embodiment has a plurality of the above-mentioned droplet ejection modules 11.
  • the droplets can be landed on the medium more accurately by stably aligning the ejection directions in this way.
  • the deviation of the landing position in the width direction directly affects the quality of the output content. , Stable output accuracy can be obtained.
  • the method for manufacturing the droplet ejection module 11 of the present embodiment includes a direction acquisition step for acquiring the droplet ejection directions of the plurality of nozzles N in the plurality of droplet ejection heads 111, and a plurality of acquisition of the droplet ejection directions.
  • a direction acquisition step for acquiring the droplet ejection directions of the plurality of nozzles N in the plurality of droplet ejection heads 111, and a plurality of acquisition of the droplet ejection directions.
  • a predetermined number here, two
  • the droplet ejection direction of the nozzle N that is adjacent in the width direction (Y direction) depending on the combination. It includes a calculation step of calculating each relative angle between the two, and a selection step of selecting a predetermined number of droplet ejection heads whose relative angle meets a predetermined criterion.
  • the relative angles are calculated for all available nozzles N of any (especially all) droplet ejection heads 111 that can be combined, and the degree of compatibility of the combinations is compared, so that the liquid is liquid with high accuracy on average. It is possible to obtain a droplet ejection module 11 having the same droplet ejection directions.
  • the degree of conformity is checked in many combinations, even if the droplet ejection head 111 has a slight habit in the droplet ejection direction, it is easy to find any other droplet ejection head 111 that can be combined, and the yield can be improved. Hard to lower.
  • the manufacturing method in the combination of the selected predetermined number (two) of the droplet ejection heads 111, at least one of the adjacent nozzles N having a relative angle equal to or larger than the reference angle is prohibited from being ejected. It may include a setting step. It is difficult in manufacturing that the set of all nozzles N does not completely disperse, and the yield will decrease. By setting the ejection prohibition, the ejection complementation by the nozzles N on both sides conventionally used can be applied, and the influence on the output quality can be minimized.
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • determining the combination of the droplet ejection heads it has been described that a plurality of droplet ejection heads are evaluated evenly, but the present invention is not limited to this. Priority may be given according to the number of initial defective nozzles and the like. Further, when the droplet ejection head for which the combination setting has not been made is included again in the next combination setting, the droplet ejection head may be preferentially set in combination, or conversely, the combination may be performed by lowering the priority. You may set it.
  • the case where two droplet ejection heads are combined to form a droplet ejection module has been described, but three or more droplet ejection heads may be combined.
  • two nozzles adjacent to a nozzle belonging to any first droplet ejection head belong to one of the other second droplet ejection heads.
  • the nozzles may be arranged so that the other belongs to a further different third droplet ejection head.
  • the combination of the three droplet ejection heads is determined so that the reference of the relative angle is satisfied for all the combinations of adjacent nozzles.
  • the relative angle between some nozzles may be equal to or larger than the reference angle.
  • one of the nozzles having the reference angle or more is the ejection prohibited nozzle, except for the initial defective nozzle.
  • the reference angle and the combination reference may be set so that the relative angle between all the nozzles is less than the reference angle.
  • any one of the nozzles N in the set whose relative angle is equal to or larger than the reference angle is set as ejection prohibition, but if the relative angle is about half of the interval d, ejection prohibition is set and both sides are adjacent. Since there is a case where the accuracy is not lowered by discharging from both nozzles N as it is rather than performing complementary discharge from the nozzle N of Nozzle N, it is not necessary to uniformly set the discharge prohibition. Discharge prohibition may be set only when the predetermined upper limit angle or more, which is larger than the reference angle, is set. May be.
  • the nozzles N are arranged in a houndstooth pattern on each droplet ejection head 111, but the arrangement pattern of the nozzles is not limited to this. It suffices to line up at predetermined intervals in the width direction.
  • the droplet ejection head for ejecting ink by the inkjet recording device has been described, but the present invention is not limited to this.
  • a liquid other than ink may be ejected.
  • droplets of various materials for forming a thin film, a three-dimensional structure, a wiring circuit, or the like may be ejected.
  • the specific configuration, the content and procedure of the processing operation shown in the above embodiment can be appropriately changed without departing from the spirit of the present invention.
  • the scope of the present invention includes the scope of the invention described in the claims and the equivalent scope thereof.
  • the present invention can be used in a method for manufacturing a droplet ejection module, a droplet ejection unit, and a droplet ejection module.
  • Droplet ejection unit 11 Droplet ejection module 12 Fixing member 111 Droplet ejection head N, N11, N12, N21, N22 Nozzle

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

Provided are a droplet discharging module capable of more stably discharging droplets at a high resolution, a droplet discharging unit, and a method for manufacturing the droplet discharging module. A droplet discharging module (11) is provided with a plurality of droplet discharging heads (111a, 111b) having a plurality of nozzles (N) that discharge droplets. The nozzles (N) of the plurality of droplet discharging heads (111a, 111b) are aligned at prescribed intervals (d) in a prescribed width direction (Y), and nozzles (N) adjacent in the width direction (Y) have mutually different droplet discharging heads (111a, 111b). The plurality of droplet discharging heads (111a, 111b) satisfy a prescribed standard pertaining to a relative angle with respect to the width direction (Y) of the droplet discharging direction between the plurality of nozzles (N) and each nozzle (N) adjacent to the plurality of nozzles (N).

Description

液滴吐出モジュール、液滴吐出ユニット及び液滴吐出モジュールの製造方法Manufacturing method of droplet ejection module, droplet ejection unit and droplet ejection module
 この発明は、液滴吐出モジュール、液滴吐出ユニット及び液滴吐出モジュールの製造方法に関する。 The present invention relates to a method for manufacturing a droplet ejection module, a droplet ejection unit, and a droplet ejection module.
 インクなどの液滴を吐出する複数のノズルが配列された液滴吐出ヘッドを備える液滴吐出装置がある。液滴吐出装置の出力内容に係る高精度化の要求に応じて、液滴吐出ヘッドにおけるノズルの配列間隔も徐々に狭くなってきている。 There is a droplet ejection device equipped with a droplet ejection head in which a plurality of nozzles for ejecting droplets of ink or the like are arranged. In response to the demand for higher accuracy related to the output content of the droplet ejection device, the arrangement interval of the nozzles in the droplet ejection head is gradually becoming narrower.
 これに対し、複数の液滴吐出ヘッドを組み合わせて各々のノズルが所定の幅方向について互い違いに位置するように固定することで、全体としてノズル間隔を縮小した液滴吐出モジュールを用いる技術がある(特許文献1)。これにより、個々の液滴吐出ヘッドの歩留まりを低下させずに高い解像度での液滴吐出が可能となる。 On the other hand, there is a technique of using a droplet ejection module in which the nozzle spacing is reduced as a whole by combining a plurality of droplet ejection heads and fixing the nozzles so as to be staggered in a predetermined width direction. Patent Document 1). This enables high-resolution droplet ejection without reducing the yield of the individual droplet ejection heads.
特開平11-34360号公報Japanese Unexamined Patent Publication No. 11-34360
 しかしながら、液滴吐出モジュールで組み合わされる複数の液滴吐出ヘッドのばらつきが画質に影響する場合が生じているという課題がある。 However, there is a problem that the variation of a plurality of droplet ejection heads combined in the droplet ejection module may affect the image quality.
 この発明の目的は、より安定して高解像度での液滴吐出が可能な液滴吐出モジュール、液滴吐出ユニット及び液滴吐出モジュールの製造方法を提供することにある。 An object of the present invention is to provide a method for manufacturing a droplet ejection module, a droplet ejection unit, and a droplet ejection module capable of more stable and high-resolution droplet ejection.
 上記目的を達成するため、請求項1記載の発明は、
 液滴を吐出するノズルを複数有する液滴吐出ヘッドを複数備え、
 前記複数の液滴吐出ヘッドの前記ノズルは、所定の幅方向について所定の間隔で並んでおり、
 前記幅方向について隣り合う前記ノズルは、互いに異なる前記液滴吐出ヘッドが有する前記ノズルであり、
 複数の前記液滴吐出ヘッドは、前記複数のノズルと当該複数のノズルに各々隣り合う前記ノズルとの間での液滴吐出方向の前記幅方向についての相対角度に係る所定の基準を満たしている
 液滴吐出モジュールである。
In order to achieve the above object, the invention according to claim 1 is
A plurality of droplet ejection heads having a plurality of nozzles for ejecting droplets are provided.
The nozzles of the plurality of droplet ejection heads are arranged at predetermined intervals in a predetermined width direction.
The nozzles adjacent to each other in the width direction are the nozzles of the droplet ejection heads different from each other.
The plurality of droplet ejection heads satisfy a predetermined criterion relating to the relative angle of the droplet ejection direction between the plurality of nozzles and the nozzles adjacent to the plurality of nozzles in the width direction. It is a droplet ejection module.
 また、請求項2記載の発明は、請求項1記載の液滴吐出モジュールにおいて、
 前記所定の基準は、前記相対角度が基準角度以上である前記ノズルの組が所定の上限数未満である。
The invention according to claim 2 is the droplet ejection module according to claim 1.
The predetermined reference is that the number of sets of the nozzles whose relative angle is equal to or larger than the reference angle is less than the predetermined upper limit.
 また、請求項3記載の発明は、請求項2記載の液滴吐出モジュールにおいて、
 前記相対角度が前記基準角度以上である前記組のノズルのうち少なくとも一方は、吐出禁止ノズルとして定められている。
The invention according to claim 3 is the droplet ejection module according to claim 2.
At least one of the nozzles of the group whose relative angle is equal to or larger than the reference angle is defined as a ejection prohibition nozzle.
 また、請求項4記載の発明は、請求項2又は3記載の液滴吐出モジュールにおいて、
 前記基準角度は、前記組の各ノズルから吐出されて当該ノズルの開口面から所定の基準距離の位置に着弾した液滴の着弾位置間の前記幅方向についての距離が、前記所定の間隔からその半分ずれる角度である。
The invention according to claim 4 is the droplet ejection module according to claim 2 or 3.
The reference angle is such that the distance in the width direction between the landing positions of the droplets ejected from each nozzle of the set and landed at a position of a predetermined reference distance from the opening surface of the nozzle is from the predetermined distance. It is an angle that is off by half.
 また、請求項5記載の発明は、請求項1~4のいずれか一項に記載の液滴吐出モジュールにおいて、
 前記液滴吐出ヘッドの前記幅方向についての両端の前記ノズルにより吐出された液滴の着弾位置間の距離のずれは、前記所定の間隔の半分以下である。
The invention according to claim 5 is the droplet ejection module according to any one of claims 1 to 4.
The deviation of the distance between the landing positions of the droplets ejected by the nozzles at both ends in the width direction of the droplet ejection head is not more than half of the predetermined interval.
 また、請求項6記載の発明は、
 請求項1~5のいずれか一項に記載の液滴吐出モジュールを複数有する液滴吐出ユニットである。
Further, the invention according to claim 6 is based on the invention.
A droplet ejection unit having a plurality of droplet ejection modules according to any one of claims 1 to 5.
 また、請求項7記載の発明は、
 液滴を吐出するノズルを複数有する液滴吐出ヘッドを2以上の所定数備え、異なる前記液滴吐出ヘッドの前記ノズルが所定の幅方向について隣り合って全体で所定の間隔で並んでいる液滴吐出モジュールの製造方法であって、
 複数の液滴吐出ヘッドにおける前記複数のノズルの液滴吐出方向を取得する方向取得ステップ、
 前記液滴吐出方向が取得された前記複数の液滴吐出ヘッドの任意の前記所定数の組合せについて、当該組合わせにより前記幅方向について隣り合わせとなる前記ノズルの前記液滴吐出方向の間での相対角度を各々算出する算出ステップ、
 前記相対角度が所定の基準を満たしている前記所定数の液滴吐出ヘッドを選択する選択ステップ、
 を含む。
Further, the invention according to claim 7 is based on the invention.
A droplet having a predetermined number of two or more droplet ejection heads having a plurality of droplet ejection heads, and the nozzles of different droplet ejection heads are adjacent to each other in a predetermined width direction and arranged at a predetermined interval as a whole. It is a manufacturing method of the discharge module.
A direction acquisition step of acquiring the droplet ejection directions of the plurality of nozzles in the plurality of droplet ejection heads,
For any combination of the predetermined number of the plurality of droplet ejection heads for which the droplet ejection direction has been acquired, the relative of the nozzles adjacent to each other in the width direction by the combination between the droplet ejection directions. Calculation step to calculate each angle,
A selection step of selecting the predetermined number of droplet ejection heads whose relative angles meet a predetermined criterion.
including.
 また、請求項8記載の発明は、請求項7記載の液滴吐出モジュールの製造方法において、
 前記選択された前記所定数の液滴吐出ヘッドの組合せにおいて、前記相対角度が基準角度以上である隣り合わせの前記ノズルのうち、少なくとも一方を吐出禁止に設定する禁止設定ステップを含む。
The invention according to claim 8 is the method for manufacturing a droplet ejection module according to claim 7.
In the combination of the selected predetermined number of droplet ejection heads, the prohibition setting step of setting at least one of the adjacent nozzles whose relative angle is equal to or larger than the reference angle to the ejection prohibition is included.
 本発明に従うと、より安定して高解像度での液滴吐出が可能となるという効果がある。 According to the present invention, there is an effect that more stable and high-resolution droplet ejection is possible.
液滴吐出ユニットの斜視図である。It is a perspective view of the droplet ejection unit. 液滴吐出ユニットの底面図である。It is a bottom view of the droplet ejection unit. ノズルの配列について説明する図である。It is a figure explaining the arrangement of nozzles. 吐出方向の相対的なずれについて説明する図である。It is a figure explaining the relative deviation of a discharge direction. 液滴吐出ヘッドの組合せ設定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the combination setting process of a droplet ejection head. 組み合わせ設定処理の他の例を示すフローチャートである。It is a flowchart which shows the other example of the combination setting process.
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は、本実施形態の液滴吐出ユニット1の斜視図である。図2は、液滴吐出ユニット1の底面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view of the droplet ejection unit 1 of the present embodiment. FIG. 2 is a bottom view of the droplet ejection unit 1.
 液滴吐出ユニット1は、複数(ここでは8個)の液滴吐出モジュール11と、当該液滴吐出モジュール11を所定の位置関係で固定する固定部材12などを備える。 The droplet ejection unit 1 includes a plurality of (here, eight) droplet ejection modules 11 and a fixing member 12 for fixing the droplet ejection modules 11 in a predetermined positional relationship.
 固定部材12は、液滴吐出モジュール11の数に応じた孔部を有し、液滴吐出モジュール11をその底面が孔部から露出される位置で固定している。固定部材12は、インクジェット記録装置などの液滴吐出装置において、キャリッジなどに固定され、液滴吐出モジュール11の底面と当該液滴吐出モジュール11から吐出される液滴の着弾対象とを対向させる。8個の液滴吐出モジュール11は、液滴吐出ユニット1の長手方向であるY方向について互いに異なる位置に千鳥格子状に並んでいる。 The fixing member 12 has holes corresponding to the number of droplet ejection modules 11, and the droplet ejection modules 11 are fixed at positions where the bottom surface thereof is exposed from the holes. The fixing member 12 is fixed to a carriage or the like in a droplet ejection device such as an inkjet recording device, and the bottom surface of the droplet ejection module 11 and the landing target of the droplet ejected from the droplet ejection module 11 face each other. The eight droplet ejection modules 11 are arranged in a houndstooth pattern at positions different from each other in the Y direction, which is the longitudinal direction of the droplet ejection unit 1.
 図2に示すように、液滴吐出モジュール11は、それぞれ、底面内でY方向に垂直なX方向に並んでいる2個(複数)の液滴吐出ヘッド111を備える。液滴吐出ヘッド111は、それぞれ多数(複数)のノズルNを有し、各ノズルNは底面に開口している。 As shown in FIG. 2, each of the droplet ejection modules 11 includes two (plural) droplet ejection heads 111 arranged in the X direction perpendicular to the Y direction in the bottom surface. The droplet ejection head 111 has a large number (s) of nozzles N, and each nozzle N is open to the bottom surface.
 図3は、ノズルの配列について説明する図である。
 液滴吐出モジュール11において、第1液滴吐出ヘッド111a及び第2液滴吐出ヘッド111bの各ノズル列では、複数のノズルNがY方向に間隔4dで並んでいる。第1液滴吐出ヘッド111aの異なるノズル列に属するノズルN11、N12は、Y方向について間隔2dで位置している。第2液滴吐出ヘッド111bの異なるノズル列に属するノズルN21、N22は、Y方向について間隔2dで位置している。第1液滴吐出ヘッド111a及び第2液滴吐出ヘッド111bは、Y方向について距離dずれて位置している。これらにより、2個の液滴吐出ヘッド111のノズルNの開口位置は、Y方向について交互に並び、全体として幅方向について間隔d(所定の間隔)となっている。
FIG. 3 is a diagram illustrating an arrangement of nozzles.
In the droplet ejection module 11, in each nozzle row of the first droplet ejection head 111a and the second droplet ejection head 111b, a plurality of nozzles N are arranged in the Y direction at intervals of 4d. The nozzles N11 and N12 belonging to different nozzle rows of the first droplet ejection head 111a are located at intervals of 2d in the Y direction. The nozzles N21 and N22 belonging to different nozzle rows of the second droplet ejection head 111b are located at intervals of 2d in the Y direction. The first droplet ejection head 111a and the second droplet ejection head 111b are located at a distance d in the Y direction. As a result, the opening positions of the nozzles N of the two droplet ejection heads 111 are arranged alternately in the Y direction, and have an interval d (predetermined interval) in the width direction as a whole.
 液滴吐出装置において、液滴吐出ユニット1は、例えば、液滴吐出時の記録媒体と液滴吐出ユニット1との相対移動方向(記録媒体の搬送方向及び/又は液滴吐出ユニットの走査方向)がX方向になるように取り付けられる。この液滴吐出ユニット1に対して記録媒体を移動させながらY方向(すなわち、記録媒体の搬送面内で搬送方向に垂直な方向。記録媒体の幅方向)に並んだ各ノズルから周期的に液滴を吐出可能とさせることで、液滴吐出ユニット1は、ラインヘッドとして動作する。 In the droplet ejection device, the droplet ejection unit 1 is, for example, a relative movement direction between the recording medium and the droplet ejection unit 1 at the time of droplet ejection (the transport direction of the recording medium and / or the scanning direction of the droplet ejection unit). Is installed so that is in the X direction. Liquid periodically from each nozzle arranged in the Y direction (that is, the direction perpendicular to the transport direction in the transport surface of the recording medium; the width direction of the recording medium) while moving the recording medium with respect to the droplet ejection unit 1. By enabling the droplets to be ejected, the droplet ejection unit 1 operates as a line head.
 このようなノズルの並びにより、各液滴吐出モジュール11の各ノズル(Y方向両端のノズル以外)は、Y方向について隣り合うノズルを2個ずつ有し、2個の隣り合うノズルの組は、必ず互いに異なる液滴吐出ヘッド111に属するノズル同士となる。ここでは、例えば、第1液滴吐出ヘッド111aに属するノズルN12は、第2液滴吐出ヘッド111bに属するノズルN21、N22とそれぞれ隣り合うノズルの組p2、p3を構成する。同様に、第2液滴吐出ヘッド111bに属するノズルN21は、第1液滴吐出ヘッド111aに属するノズルN11、N12とそれぞれ隣り合うノズルの組p1、p2を構成する。 Due to such an arrangement of nozzles, each nozzle of each droplet ejection module 11 (other than the nozzles at both ends in the Y direction) has two nozzles adjacent to each other in the Y direction, and a set of two adjacent nozzles is formed. The nozzles belong to different droplet ejection heads 111. Here, for example, the nozzle N12 belonging to the first droplet ejection head 111a constitutes a set of nozzles p2 and p3 adjacent to the nozzles N21 and N22 belonging to the second droplet ejection head 111b, respectively. Similarly, the nozzle N21 belonging to the second droplet ejection head 111b constitutes a set of nozzles p1 and p2 adjacent to the nozzles N11 and N12 belonging to the first droplet ejection head 111a, respectively.
 各ノズルから吐出される液滴は、理想的には、液滴吐出モジュール11(液滴吐出ヘッド111)の底面に垂直な方向に飛翔、着弾するが、実際には多少のずれ、ばらつきがある。液滴吐出モジュール11の解像度が1200dpiである場合、間隔dは、約21.2μmであり、液滴吐出ヘッド111の底面から記録媒体の着弾面までの距離が2mmである場合、飛翔方向が底面に垂直な方向から0.6度ずれることで、着弾位置がノズルNの開口直下から距離dずれる。このずれとしては、個々のノズルのばらつきに加え、製造上の特性により、液滴吐出ヘッド111単位で構造的に偏りが生じ得ることが知られている。 Ideally, the droplets ejected from each nozzle fly and land in the direction perpendicular to the bottom surface of the droplet ejection module 11 (droplet ejection head 111), but in reality, there are some deviations and variations. .. When the resolution of the droplet ejection module 11 is 1200 dpi, the interval d is about 21.2 μm, and when the distance from the bottom surface of the droplet ejection head 111 to the landing surface of the recording medium is 2 mm, the flight direction is the bottom surface. By deviating by 0.6 degrees from the direction perpendicular to the nozzle N, the landing position deviates by a distance d from just below the opening of the nozzle N. It is known that this deviation may be structurally biased in units of the droplet ejection head 111 due to manufacturing characteristics in addition to the variation of individual nozzles.
 すなわち、各液滴吐出ヘッド111の単体としては、ずれ量が許容範囲であり、液滴吐出ヘッド111が液滴吐出モジュール11に正確に取り付けられていても、第1液滴吐出ヘッド111aと第2液滴吐出ヘッド111bとの間でのずれの偏りの組合せによっては、液滴の飛翔方向のY方向成分に相対的なずれが無視できなくなる(すなわち、画質に悪影響を及ぼし得る)ほど大きくなる場合がある。 That is, even if the amount of displacement is within the permissible range for each droplet ejection head 111 as a single unit and the droplet ejection head 111 is accurately attached to the droplet ejection module 11, the first droplet ejection head 111a and the first droplet ejection head 111a and the first droplet ejection head 111a are attached. Depending on the combination of the deviation bias with the two-droplet ejection head 111b, the deviation relative to the Y-direction component in the flight direction of the droplet becomes so large that it cannot be ignored (that is, it may adversely affect the image quality). In some cases.
 図4は、吐出方向の相対的なずれについて説明する図である。ここでは、正面(X方向)から図の下方(-Z方向)へ吐出される液滴の飛翔方向を示している。第1液滴吐出ヘッド111aからの液滴の射出方向が細線で示されており、第2液滴吐出ヘッド111bからの液滴の射出方向が太線で示されている。 FIG. 4 is a diagram illustrating a relative deviation in the discharge direction. Here, the flight direction of the droplets ejected from the front surface (X direction) to the lower part of the figure (−Z direction) is shown. The ejection direction of the droplet from the first droplet ejection head 111a is indicated by a thin line, and the ejection direction of the droplet from the second droplet ejection head 111b is indicated by a thick line.
 この図では、例えば、第1液滴吐出ヘッド111aからの吐出方向が図の面内でやや右向き(-Y方向)に偏っており、第2液滴吐出ヘッド111bからの吐出方向が図の面内でやや左向き(+Y方向)に偏っている。 In this figure, for example, the ejection direction from the first droplet ejection head 111a is slightly biased to the right (−Y direction) in the plane of the figure, and the ejection direction from the second droplet ejection head 111b is the surface of the figure. It is slightly biased to the left (+ Y direction) inside.
 第1液滴吐出ヘッド111aのうちの一つのノズルNからの吐出方向e1と、第2液滴吐出ヘッド111bの上記ノズルと隣り合うノズルNからの吐出方向e21、e22とは、Y方向について互いに反対向きにずれを生じている。これら液滴吐出方向の間でなす角(幅方向についての相対角度r11、r12)は、それぞれ各ノズルからの吐出方向のずれの角度の和となって0度から大きく乖離している。 The ejection direction e1 from one nozzle N of the first droplet ejection head 111a and the ejection directions e21 and e22 from the nozzle N adjacent to the nozzle of the second droplet ejection head 111b are mutually in the Y direction. There is a shift in the opposite direction. The angles formed between these droplet ejection directions (relative angles r11 and r12 in the width direction) are the sum of the angles of deviation in the ejection direction from each nozzle and greatly deviate from 0 degrees.
 このような第1液滴吐出ヘッド111a及び第2液滴吐出ヘッド111bを組み合わせた液滴吐出モジュール11では、個々の液滴吐出ヘッド111内でのばらつきに比して大きなばらつきが着弾位置に生じて、画質に悪影響を与える。本実施形態の液滴吐出モジュール11では、第1液滴吐出ヘッド111a及び第2液滴吐出ヘッド111bは、吐出方向のばらつき(相対角度)が所定の基準角度の範囲内に収まるように(所定の基準を満たすように)選択されて組み合わされている。 In the droplet ejection module 11 in which the first droplet ejection head 111a and the second droplet ejection head 111b are combined, a large variation occurs at the landing position as compared with the variation in the individual droplet ejection heads 111. This adversely affects the image quality. In the droplet ejection module 11 of the present embodiment, the first droplet ejection head 111a and the second droplet ejection head 111b are arranged so that the variation (relative angle) in the ejection direction is within a predetermined reference angle range (predetermined). Selected and combined (to meet the criteria of).
 基準角度は、液滴吐出モジュール11の要求画質に応じて適宜定められてよく、例えば、上述のように着弾位置の相対的な位置ずれ量とノズル間隔dとの比較が可能に定められてもよい。着弾時の位置ずれ量は、ノズル開口面と記録媒体の液滴着弾面との距離に依存するが、液滴吐出装置では、記録媒体の厚さがしばしば大きく変化する。したがって、位置ずれ量は、基準となる距離(基準距離)に基づいて算出される。例えば、設定可能な最大距離を基準距離として位置ずれ量が算出されてもよいし、標準的な記録媒体の厚さに応じた距離が基準距離とされてもよい。距離G[mm]、液滴吐出モジュール11の解像度をD[dpi]、基準角度をR[deg]、ノズル間隔dの半分を最大位置ずれ量とすると、Rが微小の範囲では、G×tan(R)=0.5×25.4/Dとなり、R=727/(DG)と概算される。通常のインク液滴では、多くの場合この程度のずれでの濃度むらが無視可能であるが、むらなどの生じる度合は、着弾した液滴の着弾範囲と距離dとの関係にもよる。したがって、例えば、液滴の着弾範囲が狭い場合には、より基準角度を小さく定めることとしてもよい。 The reference angle may be appropriately determined according to the required image quality of the droplet ejection module 11, and for example, even if the relative displacement amount of the landing position is determined so as to be able to be compared with the nozzle spacing d as described above. good. The amount of misalignment at the time of landing depends on the distance between the nozzle opening surface and the droplet landing surface of the recording medium, but in the droplet ejection device, the thickness of the recording medium often changes significantly. Therefore, the amount of misalignment is calculated based on the reference distance (reference distance). For example, the amount of misalignment may be calculated with the maximum settable distance as the reference distance, or the distance corresponding to the thickness of the standard recording medium may be the reference distance. Assuming that the distance G [mm], the resolution of the droplet ejection module 11 is D [dpi], the reference angle is R [deg], and half of the nozzle spacing d is the maximum misalignment amount, G × tan in the range where R is minute. (R) = 0.5 × 25.4 / D, which is estimated to be R = 727 / (DG). In a normal ink droplet, the density unevenness at this degree of deviation is negligible in many cases, but the degree of unevenness or the like depends on the relationship between the landing range of the landed droplet and the distance d. Therefore, for example, when the landing range of the droplet is narrow, the reference angle may be set smaller.
 ここでは、全てのノズルNの組で基準角度の範囲内に収まらなくてもよく、この場合、例えば、相対角度が基準角度以上の組の数が所定の上限数未満の場合に、当該基準数の各組について、いずれか一方のノズルを初期不良ノズルとして吐出禁止に設定してもよい。吐出禁止に設定されたノズル(吐出禁止ノズル)のリストは、液滴吐出モジュール11又は液滴吐出ユニット1が有するROMなどの記憶手段に記憶されればよい。液滴吐出装置では、この吐出禁止ノズルのリストに基づいて、当該吐出禁止ノズルからの液滴吐出を禁止し、代わりに両隣などのノズルNによる補完吐出が行われるように駆動制御がなされる。 Here, it is not necessary for all the nozzle N sets to be within the range of the reference angle. In this case, for example, when the number of sets whose relative angle is equal to or larger than the reference angle is less than the predetermined upper limit number, the reference number is concerned. For each set of, one of the nozzles may be set as an initial defective nozzle and discharge prohibition may be set. The list of nozzles (discharge prohibition nozzles) set to discharge prohibition may be stored in a storage means such as a ROM included in the droplet discharge module 11 or the droplet discharge unit 1. In the droplet ejection device, based on this list of ejection prohibited nozzles, the droplet ejection from the ejection prohibited nozzle is prohibited, and the drive control is performed so that complementary ejection is performed by the nozzles N on both sides instead.
 図5は、本実施形態の液滴吐出ヘッド111の組合せ設定処理の手順を示すフローチャートである。この組み合わせ設定処理は、液滴吐出モジュール11の製造工程(液滴吐出モジュール11の製造方法)の一部として、例えば、製造管理用のコンピューターのCPUなどにより実行される。 FIG. 5 is a flowchart showing the procedure of the combination setting process of the droplet ejection head 111 of the present embodiment. This combination setting process is executed, for example, by the CPU of a computer for manufacturing control as a part of the manufacturing process of the droplet ejection module 11 (the manufacturing method of the droplet ejection module 11).
 このCPUは、液滴吐出ヘッドに利用可能な複数の液滴吐出ヘッド111の各ノズルによる液滴吐出方向の情報(計測データ)を取得する(ステップS101;方向取得ステップ)。計測データは、例えば、製造された液滴吐出ヘッド111の検査用装置などから各液滴吐出ヘッド111の識別情報(シリアル番号など)と対応付けて直接又はデータ記憶装置を介して取得されればよい。 This CPU acquires information (measurement data) of the droplet ejection direction by each nozzle of the plurality of droplet ejection heads 111 that can be used for the droplet ejection head (step S101; direction acquisition step). If the measurement data is acquired directly from the manufactured inspection device of the droplet ejection head 111 or the like in association with the identification information (serial number, etc.) of each droplet ejection head 111, or via a data storage device. good.
 CPUは、まだ選択されていない組み合わせの2個の液滴吐出ヘッド111を選択する(ステップS102)。CPUは、選択された2個の液滴吐出ヘッド111を液滴吐出モジュールに取り付けた場合のノズルのY方向(幅方向)についての配列順に従い、隣り合うノズルの組を全て特定する。CPUは、特定された各組の吐出方向の差分に応じた相対角度をそれぞれ算出する(ステップS103;算出ステップ)。 The CPU selects two droplet ejection heads 111 in a combination that has not yet been selected (step S102). The CPU specifies all pairs of adjacent nozzles according to the arrangement order of the nozzles in the Y direction (width direction) when the two selected droplet ejection heads 111 are attached to the droplet ejection module. The CPU calculates the relative angle according to the difference in the discharge direction of each specified set (step S103; calculation step).
 CPUは、算出された相対角度(絶対値)が基準角度以上の組を規格外の組として、規格外の組数を計数する(ステップS104)。なお、ノズルの初期不良などにより、液滴の吐出自体に異常があるノズルが含まれている場合には、当該ノズルによる液滴の吐出方向と関係なくこのノズルを含む組を規格外の組としてもよい。CPUは、対象とする複数の液滴吐出ヘッドの全ての組を選択したか否かを判別する(ステップS105)。選択していない組があると判別された場合には(ステップS105で“NO”)、CPUの処理は、ステップS102に戻る。 The CPU counts the number of non-standard pairs, with the pairs whose calculated relative angle (absolute value) is equal to or greater than the reference angle as non-standard pairs (step S104). If a nozzle with an abnormality in the droplet ejection itself is included due to an initial failure of the nozzle, etc., the set including this nozzle is regarded as a nonstandard set regardless of the droplet ejection direction by the nozzle. May be good. The CPU determines whether or not all the sets of the plurality of target droplet ejection heads have been selected (step S105). If it is determined that there is a set that has not been selected (“NO” in step S105), the CPU processing returns to step S102.
 全ての組が選択されたと判別された場合には(ステップS105で“YES”)、CPUは、規格外の組数が基準数(上限数)未満の液滴吐出ヘッドの組を抽出する(ステップS106)。基準数は、製品の要求水準などに応じて任意に定められてよいが、例えば、全ノズル数の1割、より好ましくは、1%とすることができる。なお、規格外の組数だけではなく、隣り合う組で続けて規格外となっていないなどの条件を追加してもよい。CPUは、最大数の液滴吐出ヘッドが組み合わせ可能な組み合わせを決定する(ステップS107;選択ステップ)。CPUは、決定された液滴吐出ヘッドの各組合せで、規格外の組とされたノズルを初期不良ノズルとして設定する(ステップS108;禁止設定ステップ)。初期不良ノズルの設定は、規格外の組のノズルのうちいずれか一方であってよい。いずれか一方に原因があることが明らかな場合には当該一方が選択されればよく、明確な異常ではない場合には、任意に、又は例えば、全ノズルの液滴吐出方向からの乖離が大きい方などであってもよい。そして、CPUは、組合せ設定処理を終了する。 When it is determined that all the sets are selected (“YES” in step S105), the CPU extracts the sets of the droplet ejection heads whose non-standard number of sets is less than the reference number (upper limit number) (step). S106). The reference number may be arbitrarily determined according to the required level of the product, and may be, for example, 10%, more preferably 1% of the total number of nozzles. In addition to the number of non-standard pairs, conditions such as adjacent pairs that are not non-standard in succession may be added. The CPU determines a combination in which the maximum number of droplet ejection heads can be combined (step S107; selection step). The CPU sets the nozzles of the nonstandard set as the initial defective nozzles in each combination of the determined droplet ejection heads (step S108; prohibition setting step). The initial defective nozzle setting may be one of a non-standard set of nozzles. If it is clear that the cause is one of them, the one may be selected, and if it is not a clear abnormality, the deviation from the droplet ejection direction of all the nozzles is large. It may be one or the like. Then, the CPU ends the combination setting process.
 なお、組み合わせの設定段階では規格を満たす組として定められても、実際に液滴吐出モジュール11に固定されたときに熱などで歪む場合があり得る。この場合、個々のノズルの吐出方向を再計測せずとも、液滴吐出モジュール11の幅方向についての長さ、例えば、液滴吐出モジュール11の幅方向両端ノズルから吐出された液滴の前記基準距離での着弾位置間の距離(両端間距離)などで、歪みの影響を判断することができる。ここでは、計測された両端間距離が本来の距離(間隔d×(ノズル数-1))に対して間隔dの半分以上ずれている場合には、歪んでいるものとして除外してよい。 Even if the combination is defined as a set that meets the standard at the setting stage of the combination, it may be distorted due to heat or the like when it is actually fixed to the droplet ejection module 11. In this case, the length of the droplet ejection module 11 in the width direction, for example, the reference of the droplet ejected from the nozzles at both ends in the width direction of the droplet ejection module 11 without re-measuring the ejection direction of each nozzle. The effect of distortion can be determined by the distance between the landing positions (distance between both ends) and the like. Here, when the measured distance between both ends deviates from the original distance (distance d × (number of nozzles-1)) by half or more of the distance d, it may be excluded as being distorted.
 図6は、組み合わせ設定処理の他の例を示すフローチャートである。
 この例の組合せ設定処理は、上記の組合せ設定処理のステップS107をステップS117、S118に変更したものであり、その他の処理は同一である。同一の処理内容には同一の符号を付して詳しい説明を省略する。
FIG. 6 is a flowchart showing another example of the combination setting process.
In the combination setting process of this example, step S107 of the above combination setting process is changed to steps S117 and S118, and the other processes are the same. The same processing contents are designated by the same reference numerals and detailed description thereof will be omitted.
 ステップS106の処理の後、CPUは、抽出された組合せの液滴吐出ヘッドのそれぞれについて、吐出方向のばらつきを定量評価する(ステップS117)。CPUは、例えば、相対角度の絶対値の平均値など、各種統計パラメーターを算出してよい。CPUは、定量評価で得られたばらつき度合の小さい順に液滴吐出ヘッドの組合せを決定していく(ステップS118)。CPUは、ばらつき度合が最小の組合せを決定すると、当該組合わせの液滴吐出ヘッドが含まれる他の組み合わせを消去していく。そして、残る組み合わせがなくなるまで、残りの中でばらつき度合が最小の組合せの決定を繰り返す。それから、CPUの処理は、ステップS108へ移行する。 After the process of step S106, the CPU quantitatively evaluates the variation in the ejection direction for each of the droplet ejection heads of the extracted combinations (step S117). The CPU may calculate various statistical parameters such as, for example, the average value of the absolute values of the relative angles. The CPU determines the combination of the droplet ejection heads in ascending order of the degree of variation obtained in the quantitative evaluation (step S118). When the CPU determines the combination having the minimum degree of variation, the CPU erases the other combinations including the droplet ejection head of the combination. Then, the determination of the combination having the smallest degree of variation among the remaining combinations is repeated until there are no remaining combinations. Then, the processing of the CPU shifts to step S108.
 以上のように、本実施形態の液滴吐出モジュール11は、液滴を吐出するノズルNを複数有する液滴吐出ヘッド111を複数備える。複数の液滴吐出ヘッド111のノズルNは、所定の幅方向(Y方向)について所定の間隔dで並んでおり、幅方向について隣り合うノズルNは、互いに異なる液滴吐出ヘッド111が有するノズルNである。複数の液滴吐出ヘッド111は、複数のノズルNと当該複数のノズルNに各々隣り合うノズルNとの間での液滴吐出方向の幅方向についての相対角度に係る所定の基準を満たしている。
 このように、液滴吐出モジュール11が各液滴吐出ヘッド111の相対的な液滴吐出方向の違いを考慮して組み合わされる液滴吐出ヘッド111が決定されていることで、各液滴吐出ヘッド111では規格の範囲内であっても相対的なずれによって吐出方向及び着弾位置が大きくばらつくのを抑制し、安定して高解像度での液滴吐出が可能な液滴吐出モジュール11を得ることができる。
As described above, the droplet ejection module 11 of the present embodiment includes a plurality of droplet ejection heads 111 having a plurality of nozzles N for ejecting droplets. The nozzles N of the plurality of droplet ejection heads 111 are arranged at a predetermined interval d in a predetermined width direction (Y direction), and the nozzles N adjacent to each other in the width direction are nozzles N having different droplet ejection heads 111. Is. The plurality of droplet ejection heads 111 satisfy a predetermined criterion relating to a relative angle in the width direction of the droplet ejection direction between the plurality of nozzles N and the nozzles N adjacent to each of the plurality of nozzles N. ..
As described above, each droplet ejection head is determined by determining the droplet ejection head 111 in which the droplet ejection module 11 is combined in consideration of the relative difference in the droplet ejection direction of each droplet ejection head 111. In 111, it is possible to obtain a droplet ejection module 11 capable of stably ejecting a droplet with high resolution by suppressing a large variation in the ejection direction and the landing position due to a relative deviation even within the range of the standard. can.
 また、所定の基準は、相対角度が基準角度以上であるノズルNの組が所定の上限数未満である。全ノズルNの組が完全にばらつかないというのは製造上難しく、歩留まりが低下するので、画質に大きな問題を生じない数内に抑えることで、従来よりも液滴着弾位置の高精度化を安定して図ることができる。 In addition, the predetermined reference is that the number of sets of nozzles N whose relative angle is equal to or greater than the reference angle is less than the predetermined upper limit. It is difficult in manufacturing that the set of all nozzles N does not completely disperse, and the yield decreases. It can be done stably.
 また、相対角度が基準角度以上である組のノズルNのうち少なくとも一方は、吐出禁止ノズルとして定められている。上記のように、ノズルNの組で相対角度が大きくなる場合には、一方のノズルNを吐出禁止ノズルとして吐出させず、通常の吐出禁止ノズルと同様に両隣のノズルなどで補完吐出させることで、吐出方向のずれの影響を回避できる場合がある。このような設定がなされることで、液滴吐出モジュール11からより安定して高精度な液滴の吐出が可能となる。 Further, at least one of the nozzles N of the set whose relative angle is equal to or larger than the reference angle is defined as a discharge prohibition nozzle. As described above, when the relative angle becomes large due to the set of nozzles N, one nozzle N is not discharged as a discharge prohibited nozzle, but is complemented by nozzles on both sides in the same manner as a normal discharge prohibited nozzle. , It may be possible to avoid the influence of the deviation in the discharge direction. By making such a setting, more stable and highly accurate droplet ejection can be performed from the droplet ejection module 11.
 また、基準角度は、各組の各ノズルNから吐出されて当該ノズルNの開口面から所定の基準距離、例えば、記録媒体の種別などに応じて定められる最大距離の位置に着弾した液滴の着弾位置間の幅方向についての距離が、ノズルNの間隔dからその半分(d/2)ずれる角度である。各画素の半分程度のずれであれば、液滴の着弾サイズなどに応じて多くの場合で、着弾範囲からの漏れが生じたり着弾濃度のむらが無視できないほど大きくなったりはしないので、一例としてこのような値を基準に定めることができる。 Further, the reference angle is the droplets ejected from each nozzle N of each set and landed at a predetermined reference distance from the opening surface of the nozzle N, for example, the maximum distance determined according to the type of recording medium. The distance in the width direction between the landing positions is an angle that deviates from the nozzle N spacing d by half (d / 2). If the deviation is about half of each pixel, in many cases, leakage from the landing range or unevenness of the landing density will not be negligible depending on the landing size of the droplet, so this is an example. Can be set based on such a value.
 また、液滴吐出ヘッド111の幅方向についての両端のノズルNにより吐出された液滴の着弾位置間の距離のずれは、間隔dの半分以下である。液滴吐出ヘッド111の組合せがより適切になされても組合せ時に歪みが生じる場合がないとはいえない。この場合、幅方向について最も距離の離れたノズルNによる液滴着弾位置間で距離を計測することで、全体の歪みの累積値が得られるので、この距離が基準範囲(間隔dの半分)内の液滴吐出モジュール11が出荷されることで、更に安定した高精度な液滴吐出が可能な液滴吐出モジュール11を供給することができる。 Further, the deviation of the distance between the landing positions of the droplets ejected by the nozzles N at both ends in the width direction of the droplet ejection head 111 is less than half of the interval d. Even if the combination of the droplet ejection heads 111 is made more appropriate, it cannot be said that distortion may occur at the time of combination. In this case, by measuring the distance between the droplet landing positions by the nozzle N, which is the farthest distance in the width direction, the cumulative value of the entire strain can be obtained, so this distance is within the reference range (half of the interval d). By shipping the droplet ejection module 11 of the above, it is possible to supply the droplet ejection module 11 capable of more stable and highly accurate droplet ejection.
 また、本実施形態の液滴吐出ユニット1は、上記の液滴吐出モジュール11を複数有する。ラインヘッドなどで複数の液滴吐出モジュール11を有する液滴吐出ユニット1において、このように吐出方向が安定してそろうことで、より精度よく媒体に液滴を着弾させることができる。特に、ラインヘッドのように幅方向についての位置を変更しない液滴吐出ユニット1では、幅方向についての着弾位置のずれがそのまま出力内容の質に影響するので、吐出方向がより適切にそろうことで、安定した出力精度が得られる。 Further, the droplet ejection unit 1 of the present embodiment has a plurality of the above-mentioned droplet ejection modules 11. In the droplet ejection unit 1 having a plurality of droplet ejection modules 11 such as a line head, the droplets can be landed on the medium more accurately by stably aligning the ejection directions in this way. In particular, in the droplet ejection unit 1 that does not change the position in the width direction like the line head, the deviation of the landing position in the width direction directly affects the quality of the output content. , Stable output accuracy can be obtained.
 また、本実施形態の液滴吐出モジュール11の製造方法は、複数の液滴吐出ヘッド111における複数のノズルNの液滴吐出方向を取得する方向取得ステップ、液滴吐出方向が取得された複数の液滴吐出ヘッド111から所定数(ここでは2個)を選択する任意(基本的に全て)の組合せについて、当該組合わせにより幅方向(Y方向)について隣り合わせとなるノズルNの液滴吐出方向の間での相対角度を各々算出する算出ステップ、相対角度が所定の基準を満たしている所定数の液滴吐出ヘッドを選択する選択ステップ、を含む。
 このように、組み合わせ可能な任意の(特に全ての)液滴吐出ヘッド111の使用可能な全ノズルNについて相対角度を算出して、組み合わせの適合度合を比較するので、平均的に高い精度で液滴吐出方向をそろえた液滴吐出モジュール11を得ることができる。また、多くの組合せで適合度合を調べるので、液滴吐出方向にやや癖のある液滴吐出ヘッド111であっても、組み合わせ可能な他のいずれかの液滴吐出ヘッド111を見つけやすく、歩留まりを低下させにくい。
Further, the method for manufacturing the droplet ejection module 11 of the present embodiment includes a direction acquisition step for acquiring the droplet ejection directions of the plurality of nozzles N in the plurality of droplet ejection heads 111, and a plurality of acquisition of the droplet ejection directions. For any (basically all) combinations that select a predetermined number (here, two) from the droplet ejection head 111, the droplet ejection direction of the nozzle N that is adjacent in the width direction (Y direction) depending on the combination. It includes a calculation step of calculating each relative angle between the two, and a selection step of selecting a predetermined number of droplet ejection heads whose relative angle meets a predetermined criterion.
In this way, the relative angles are calculated for all available nozzles N of any (especially all) droplet ejection heads 111 that can be combined, and the degree of compatibility of the combinations is compared, so that the liquid is liquid with high accuracy on average. It is possible to obtain a droplet ejection module 11 having the same droplet ejection directions. In addition, since the degree of conformity is checked in many combinations, even if the droplet ejection head 111 has a slight habit in the droplet ejection direction, it is easy to find any other droplet ejection head 111 that can be combined, and the yield can be improved. Hard to lower.
 また、この製造方法は、選択された所定数(2個)の液滴吐出ヘッド111の組合せにおいて、相対角度が基準角度以上である隣り合わせのノズルNのうち、少なくとも一方を吐出禁止に設定する禁止設定ステップを含んでもよい。全ノズルNの組が完全にばらつかないというのは製造上難しく、歩留まりが低下するので、画質に大きな問題を生じない数内に抑えたうえで、画質に影響を及ぼし得る組については、いずれかを吐出禁止に設定することで、従来利用されている両隣のノズルNなどによる吐出補完が適用され、出力の質への影響を最小限とすることができる。 Further, in this manufacturing method, in the combination of the selected predetermined number (two) of the droplet ejection heads 111, at least one of the adjacent nozzles N having a relative angle equal to or larger than the reference angle is prohibited from being ejected. It may include a setting step. It is difficult in manufacturing that the set of all nozzles N does not completely disperse, and the yield will decrease. By setting the ejection prohibition, the ejection complementation by the nozzles N on both sides conventionally used can be applied, and the influence on the output quality can be minimized.
 なお、本発明は、上記実施の形態に限られるものではなく、様々な変更が可能である。
 例えば、液滴吐出ヘッドの組み合わせの決定では、複数の液滴吐出ヘッドを均等に評価するものとして説明したが、これに限られない。初期不良ノズルの数などに応じて優先順を付してもよい。また、組み合わせ設定がなされなかった液滴吐出ヘッドを次回の組合せ設定に再度含める場合、当該液滴吐出ヘッドを優先的に組み合わせ設定するようにしてもよいし、反対に、優先度を下げて組み合わせ設定するようにしてもよい。
The present invention is not limited to the above embodiment, and various modifications can be made.
For example, in determining the combination of the droplet ejection heads, it has been described that a plurality of droplet ejection heads are evaluated evenly, but the present invention is not limited to this. Priority may be given according to the number of initial defective nozzles and the like. Further, when the droplet ejection head for which the combination setting has not been made is included again in the next combination setting, the droplet ejection head may be preferentially set in combination, or conversely, the combination may be performed by lowering the priority. You may set it.
 また、上記実施の形態では、2個の液滴吐出ヘッドを組み合わせて液滴吐出モジュールを形成する場合について説明したが、3個以上の液滴吐出ヘッドが組み合わされてもよい。例えば、3個が組み合わされる場合、任意の1個目の液滴吐出ヘッドに属するあるノズルに隣り合う2本のノズルは、一方が他の2個目の液滴吐出ヘッドに属するものであり、他方が更に異なる3個目の液滴吐出ヘッドに属するものとなるようにノズルが配列されていてもよい。この場合にも、全ての隣り合うノズルの組合せについて相対角度の基準が満たされるように3個の液滴吐出ヘッドの組合せが決定される。 Further, in the above embodiment, the case where two droplet ejection heads are combined to form a droplet ejection module has been described, but three or more droplet ejection heads may be combined. For example, when three are combined, two nozzles adjacent to a nozzle belonging to any first droplet ejection head belong to one of the other second droplet ejection heads. The nozzles may be arranged so that the other belongs to a further different third droplet ejection head. Also in this case, the combination of the three droplet ejection heads is determined so that the reference of the relative angle is satisfied for all the combinations of adjacent nozzles.
 また、上記実施の形態では、一部のノズル間の相対角度が基準角度以上であってもよく、この場合、基準角度以上のノズルの一方が吐出禁止ノズルとされたが、初期不良ノズルを除き、全てのノズル間の相対角度が基準角度未満となるように基準角度と組み合わせ基準とが定められてもよい。 Further, in the above embodiment, the relative angle between some nozzles may be equal to or larger than the reference angle. In this case, one of the nozzles having the reference angle or more is the ejection prohibited nozzle, except for the initial defective nozzle. , The reference angle and the combination reference may be set so that the relative angle between all the nozzles is less than the reference angle.
 また、上記実施の形態では、相対角度が基準角度以上の組のノズルNのうちいずれかを吐出禁止として定めたが、相対角度が間隔dの半分程度であれば、吐出禁止を設定して両隣のノズルNからの補完吐出を行わせるよりもそのまま両方のノズルNから吐出させた方が精度が下がらない場合もあるので、一律に吐出禁止の設定を行わなくてもよい。基準角度よりも更に大きい所定の上限角度以上の場合にのみ吐出禁止が設定されてもよいし、組み合わせるまでもなく単独で吐出方向の異常が生じているノズルN以外については、吐出禁止としないこととしてもよい。 Further, in the above embodiment, any one of the nozzles N in the set whose relative angle is equal to or larger than the reference angle is set as ejection prohibition, but if the relative angle is about half of the interval d, ejection prohibition is set and both sides are adjacent. Since there is a case where the accuracy is not lowered by discharging from both nozzles N as it is rather than performing complementary discharge from the nozzle N of Nozzle N, it is not necessary to uniformly set the discharge prohibition. Discharge prohibition may be set only when the predetermined upper limit angle or more, which is larger than the reference angle, is set. May be.
 また、上記実施の形態では、各液滴吐出ヘッド111で千鳥格子状にノズルNが配列されていたが、ノズルの配列パターンはこれに限られない。幅方向について所定の間隔で並んでさえいればよい。 Further, in the above embodiment, the nozzles N are arranged in a houndstooth pattern on each droplet ejection head 111, but the arrangement pattern of the nozzles is not limited to this. It suffices to line up at predetermined intervals in the width direction.
 また、上記実施の形態では、インクジェット記録装置でインクを吐出する液滴吐出ヘッドについて説明したが、これに限られない。インク以外の液体が吐出されるものであってもよい。例えば、薄膜や立体構造、配線回路などを形成するための各種材質の液滴が吐出されてもよい。
 その他、上記実施の形態で示した具体的な構成、処理動作の内容及び手順などは、本発明の趣旨を逸脱しない範囲において適宜変更可能である。本発明の範囲は、特許請求の範囲に記載した発明の範囲とその均等の範囲を含む。
Further, in the above embodiment, the droplet ejection head for ejecting ink by the inkjet recording device has been described, but the present invention is not limited to this. A liquid other than ink may be ejected. For example, droplets of various materials for forming a thin film, a three-dimensional structure, a wiring circuit, or the like may be ejected.
In addition, the specific configuration, the content and procedure of the processing operation shown in the above embodiment can be appropriately changed without departing from the spirit of the present invention. The scope of the present invention includes the scope of the invention described in the claims and the equivalent scope thereof.
 この発明は、液滴吐出モジュール、液滴吐出ユニット及び液滴吐出モジュールの製造方法に利用することができる。 The present invention can be used in a method for manufacturing a droplet ejection module, a droplet ejection unit, and a droplet ejection module.
1     液滴吐出ユニット
11   液滴吐出モジュール
12   固定部材
111 液滴吐出ヘッド
N、N11、N12、N21、N22 ノズル
1 Droplet ejection unit 11 Droplet ejection module 12 Fixing member 111 Droplet ejection head N, N11, N12, N21, N22 Nozzle

Claims (8)

  1.  液滴を吐出するノズルを複数有する液滴吐出ヘッドを複数備え、
     前記複数の液滴吐出ヘッドの前記ノズルは、所定の幅方向について所定の間隔で並んでおり、
     前記幅方向について隣り合う前記ノズルは、互いに異なる前記液滴吐出ヘッドが有する前記ノズルであり、
     複数の前記液滴吐出ヘッドは、前記複数のノズルと当該複数のノズルに各々隣り合う前記ノズルとの間での液滴吐出方向の前記幅方向についての相対角度に係る所定の基準を満たしている
     液滴吐出モジュール。
    A plurality of droplet ejection heads having a plurality of nozzles for ejecting droplets are provided.
    The nozzles of the plurality of droplet ejection heads are arranged at predetermined intervals in a predetermined width direction.
    The nozzles adjacent to each other in the width direction are the nozzles of the droplet ejection heads different from each other.
    The plurality of droplet ejection heads satisfy a predetermined criterion relating to the relative angle of the droplet ejection direction between the plurality of nozzles and the nozzles adjacent to the plurality of nozzles in the width direction. Droplet ejection module.
  2.  前記所定の基準は、前記相対角度が基準角度以上である前記ノズルの組が所定の上限数未満である、請求項1記載の液滴吐出モジュール。 The droplet ejection module according to claim 1, wherein the predetermined reference is a set of nozzles whose relative angle is equal to or larger than the reference angle and is less than a predetermined upper limit number.
  3.  前記相対角度が前記基準角度以上である前記組のノズルのうち少なくとも一方は、吐出禁止ノズルとして定められている、請求項2記載の液滴吐出モジュール。 The droplet ejection module according to claim 2, wherein at least one of the nozzles of the group whose relative angle is equal to or larger than the reference angle is defined as a ejection prohibited nozzle.
  4.  前記基準角度は、前記組の各ノズルから吐出されて当該ノズルの開口面から所定の基準距離の位置に着弾した液滴の着弾位置間の前記幅方向についての距離が、前記所定の間隔からその半分ずれる角度である、請求項2又は3記載の液滴吐出モジュール。 The reference angle is such that the distance in the width direction between the landing positions of the droplets ejected from each nozzle of the set and landed at a position of a predetermined reference distance from the opening surface of the nozzle is from the predetermined distance. The droplet ejection module according to claim 2 or 3, which has a half-shifted angle.
  5.  前記液滴吐出ヘッドの前記幅方向についての両端の前記ノズルにより吐出された液滴の着弾位置間の距離のずれは、前記所定の間隔の半分以下である、請求項1~4のいずれか一項に記載の液滴吐出モジュール。 One of claims 1 to 4, wherein the deviation of the distance between the landing positions of the droplets ejected by the nozzles at both ends in the width direction of the droplet ejection head is not more than half of the predetermined interval. Droplet ejection module according to the section.
  6.  請求項1~5のいずれか一項に記載の液滴吐出モジュールを複数有する液滴吐出ユニット。 A droplet ejection unit having a plurality of droplet ejection modules according to any one of claims 1 to 5.
  7.  液滴を吐出するノズルを複数有する液滴吐出ヘッドを2以上の所定数備え、異なる前記液滴吐出ヘッドの前記ノズルが所定の幅方向について隣り合って全体で所定の間隔で並んでいる液滴吐出モジュールの製造方法であって、
     複数の液滴吐出ヘッドにおける前記複数のノズルの液滴吐出方向を取得する方向取得ステップ、
     前記液滴吐出方向が取得された前記複数の液滴吐出ヘッドの任意の前記所定数の組合せについて、当該組合わせにより前記幅方向について隣り合わせとなる前記ノズルの前記液滴吐出方向の間での相対角度を各々算出する算出ステップ、
     前記相対角度が所定の基準を満たしている前記所定数の液滴吐出ヘッドを選択する選択ステップ、
     を含む、液滴吐出モジュールの製造方法。
    A droplet having a predetermined number of two or more droplet ejection heads having a plurality of droplet ejection heads, and the nozzles of different droplet ejection heads are adjacent to each other in a predetermined width direction and arranged at a predetermined interval as a whole. It is a manufacturing method of the discharge module.
    A direction acquisition step of acquiring the droplet ejection directions of the plurality of nozzles in the plurality of droplet ejection heads,
    For any combination of the predetermined number of the plurality of droplet ejection heads for which the droplet ejection direction has been acquired, the relative of the nozzles adjacent to each other in the width direction by the combination between the droplet ejection directions. Calculation step to calculate each angle,
    A selection step of selecting the predetermined number of droplet ejection heads whose relative angles meet a predetermined criterion.
    A method of manufacturing a droplet ejection module, including.
  8.  前記選択された前記所定数の液滴吐出ヘッドの組合せにおいて、前記相対角度が基準角度以上である隣り合わせの前記ノズルのうち、少なくとも一方を吐出禁止に設定する禁止設定ステップを含む、
     請求項7記載の液滴吐出モジュールの製造方法。
    In the combination of the selected predetermined number of droplet ejection heads, the prohibition setting step of setting at least one of the adjacent nozzles whose relative angle is equal to or larger than the reference angle to the ejection prohibition is included.
    The method for manufacturing a droplet ejection module according to claim 7.
PCT/JP2020/024670 2020-06-23 2020-06-23 Droplet discharging module, droplet discharging unit, and method for manufacturing droplet discharging module WO2021260812A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/024670 WO2021260812A1 (en) 2020-06-23 2020-06-23 Droplet discharging module, droplet discharging unit, and method for manufacturing droplet discharging module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/024670 WO2021260812A1 (en) 2020-06-23 2020-06-23 Droplet discharging module, droplet discharging unit, and method for manufacturing droplet discharging module

Publications (1)

Publication Number Publication Date
WO2021260812A1 true WO2021260812A1 (en) 2021-12-30

Family

ID=79282743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024670 WO2021260812A1 (en) 2020-06-23 2020-06-23 Droplet discharging module, droplet discharging unit, and method for manufacturing droplet discharging module

Country Status (1)

Country Link
WO (1) WO2021260812A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080038275A (en) * 2005-08-24 2008-05-06 이시이 효키 가부시키가이샤 Inkjet head, method of detecting ejection abnormality of the inkjet head, and method of forming film
JP2008114435A (en) * 2006-11-02 2008-05-22 Fuji Xerox Co Ltd Liquid droplet delivery apparatus, method for controlling liquid droplet delivery apparatus and program for computer
WO2018052031A1 (en) * 2016-09-14 2018-03-22 コニカミノルタ株式会社 Ink jet recording apparatus and method for detecting defective nozzle
JP2019111693A (en) * 2017-12-22 2019-07-11 コニカミノルタ株式会社 Relative position detection method and ink jet recording device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080038275A (en) * 2005-08-24 2008-05-06 이시이 효키 가부시키가이샤 Inkjet head, method of detecting ejection abnormality of the inkjet head, and method of forming film
JP2008114435A (en) * 2006-11-02 2008-05-22 Fuji Xerox Co Ltd Liquid droplet delivery apparatus, method for controlling liquid droplet delivery apparatus and program for computer
WO2018052031A1 (en) * 2016-09-14 2018-03-22 コニカミノルタ株式会社 Ink jet recording apparatus and method for detecting defective nozzle
JP2019111693A (en) * 2017-12-22 2019-07-11 コニカミノルタ株式会社 Relative position detection method and ink jet recording device

Similar Documents

Publication Publication Date Title
JP4881271B2 (en) Test chart, measuring method thereof, test chart measuring apparatus and program
US7744186B2 (en) Recording apparatus and transport method
US20160214323A1 (en) System and method for identification and control of z-axis printhead position in a three-dimensional object printer
CN108454235B (en) Test pattern manufacturing method, test pattern, printing system, and storage medium
US7864984B2 (en) Line position calculating method, correction value obtaining method, and storage medium having program stored thereon
JP5393333B2 (en) Inkjet recording apparatus and inkjet recording method
US10399372B2 (en) Test pattern creation method, test pattern, printing apparatus, and program
CN102105307A (en) Adjustment of a print array and a substrate in a printing device
WO2021260812A1 (en) Droplet discharging module, droplet discharging unit, and method for manufacturing droplet discharging module
US9962931B2 (en) Estimation of pen to paper spacing
JP2014226911A (en) Method of inclination inspection for ink jet head and method for suppressing density unevenness
US7547086B2 (en) Recording medium conveyance amount measurement method and inkjet recording apparatus
US8708444B2 (en) Inkjet printer and ejection timing correction method
JPWO2015186592A1 (en) Inkjet recording device
US11285734B2 (en) Compensation method and device for nozzle abnormality, and printer
US9718272B2 (en) Inkjet recording device
US7367646B2 (en) Test card for ink jet printers and method of using same
JP2020093399A (en) Inkjet printing device and poor printing detecting method
JP2010042566A (en) Adjusting method and adjusting pattern
CN111716902B (en) Recording apparatus and method for determining error of recording head
JP2010042596A (en) Adjusting method
US20080130032A1 (en) Line position calculating method, correction value obtaining method, and storage medium having program stored thereon
JP2008149726A (en) Adjustment of print array in printing device
US20230209000A1 (en) Calibrating print apparatus
US20080297555A1 (en) Array type inkjet head and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP