WO2021260308A1 - Procédé et système omamrc avec transmission fdm - Google Patents

Procédé et système omamrc avec transmission fdm Download PDF

Info

Publication number
WO2021260308A1
WO2021260308A1 PCT/FR2021/051114 FR2021051114W WO2021260308A1 WO 2021260308 A1 WO2021260308 A1 WO 2021260308A1 FR 2021051114 W FR2021051114 W FR 2021051114W WO 2021260308 A1 WO2021260308 A1 WO 2021260308A1
Authority
WO
WIPO (PCT)
Prior art keywords
sources
destination
source
cooperative
transmission
Prior art date
Application number
PCT/FR2021/051114
Other languages
English (en)
Inventor
Raphaël Visoz
Ali AL KHANSA
Original Assignee
Orange
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orange filed Critical Orange
Priority to CN202180045475.0A priority Critical patent/CN115769510A/zh
Priority to US18/002,736 priority patent/US20230246704A1/en
Priority to EP21740143.9A priority patent/EP4173167A1/fr
Publication of WO2021260308A1 publication Critical patent/WO2021260308A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15592Adapting at the relay station communication parameters for supporting cooperative relaying, i.e. transmission of the same data via direct - and relayed path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0076Distributed coding, e.g. network coding, involving channel coding
    • H04L1/0077Cooperative coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15521Ground-based stations combining by calculations packets received from different stations before transmitting the combined packets as part of network coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays

Definitions

  • TITLE OMAMRC process and system with FDM transmission
  • the present invention relates to the field of digital communications. Within this field, the invention relates more particularly to the transmission of coded data between at least two sources and a destination with relaying by at least two nodes which can be relays or sources.
  • a relay has no message to transmit.
  • a relay is a node dedicated to relaying messages from sources while a source has its own message to be transmitted and can also in certain cases relay messages from other sources i.e. the source is said to be cooperative in this case.
  • the invention applies in particular, but not exclusively, to the transmission of data via mobile networks, for example for real-time applications, or via for example networks of sensors.
  • Such a network of sensors is a multi-user network, made up of several sources, several relays and a recipient using a time-orthogonal multiple access scheme of the transmission channel between the relays and the destination, denoted OMAMRC (“Orthogonal Multiple- Access Multiple-Relay Charnel ”according to the English terminology).
  • OMAMRC Orthogonal Multiple- Access Multiple-Relay Charnel
  • OMAMRC transmission system implementing a slow link adaptation is known from application WO 2019/162592 published on August 29, 2019.
  • the OMAMRC telecommunication system describes has M sources, possibly L relays and a destination, M ⁇ 2, L ⁇ 0 and it uses an orthogonal time multiple access scheme of the transmission channel which applies between the nodes taken from among the M sources and the L relays.
  • the maximum number of time slots per transmitted frame is M + T max with M slots allocated during a first phase to successive transmissions from M sources and T used ⁇ T max slots for one or more cooperative retransmissions allocated during a second phase to one or more nodes selected by the destination according to a selection strategy.
  • the OMAMRC transmission system considered comprises at least two sources, each of these sources being able to operate at different times either as a source or as a relay node.
  • the system may optionally further include relays.
  • the Node terminology covers both a relay and a source acting as a relay node or as a source.
  • the system considered is such that the sources can themselves be relays.
  • the relay differs from a source because it has no message to transmit of its own, ie it only retransmits messages from other nodes. The relay always performs a cooperative retransmission.
  • the links between the different nodes of the system are subject to slow fading and Gaussian white noise.
  • Knowledge of all system links (CSI:
  • Channel State Information by destination is not available. Indeed, the links between the sources, between the relays, between the relays and the sources are not directly observable by the destination and their knowledge by the destination would require an excessive exchange of information between the sources, the relays and the destination. .
  • CDI Channel Distribution Information
  • CDI Channel Distribution Information
  • the link adaptation is slow, that is to say that before any transmission, the destination allocates initial rates to sources knowing the distribution of all channels (CDI: Channel Distribution Information).
  • CDI Channel Distribution Information
  • the transmissions of the messages from the sources are divided into frames during which the CSIs of the links are assumed to be constant (slow fading assumption).
  • the rate allocation is assumed not to change for several hundred frames, it only changes with CDI changes.
  • the transmission of a frame takes place in two phases which are optionally preceded by an additional so-called initial phase.
  • the destination determines an initial throughput for each source taking into account the average quality (eg SNR) of each of the links in the system.
  • SNR average quality
  • the destination estimates the quality (for example SNR) of the direct links: source to destination and relay to destination according to known techniques based on the use of reference signals.
  • the quality of the source - source, relay - relay and source - relay links is estimated by the sources and the relays by using, for example, the reference signals.
  • the sources and the relays transmit to the destination the average qualities of the links. This transmission takes place before the initialization phase. Only the average value of the quality of a link being taken into account, its refresh takes place on a long time scale, that is to say over a period of time. which allows to average the rapid variations (fast fading) of the channel. This time is of the order of the time required to travel several tens of wavelengths of the frequency of the signal transmitted for a given speed.
  • the initialization phase occurs for example every 200 to 1000 frames.
  • the destination goes back to the sources via a return path the initial rates that it determined.
  • the initial flow rates remain constant between two occurrences of the initialization phase.
  • the M sources successively transmit their message during the M time slots using respectively modulation and coding schemes determined from the initial bit rates.
  • the number N 1 of uses of the channel (channel use, ie resource element according to 3GPP terminology) is fixed and identical for each of the sources.
  • the messages from the sources are retransmitted in a cooperative manner by the relays and / or by the sources.
  • This phase lasts at most T max time slots.
  • the number N 2 of channel use is fixed and identical for each of the sources.
  • the independent sources broadcast during the first phase their coded information sequences in the form of messages to the attention of a single recipient.
  • Each source broadcasts its messages at the initial rate.
  • the destination communicates its initial rate to each source via very limited rate control channels.
  • the sources each transmit their respective message in turn during time slots (time slots) each dedicated to a source.
  • Sources other than the one transmitting and possibly the relays, of the "Half Duplex" type receive successive messages from the sources, decode them and, if they are selected, generate a message only from the messages from the sources decoded without error.
  • the selected nodes then access the channel orthogonal in time to each other during the second phase to retransmit their generated message to the destination.
  • the destination can choose which node should retransmit at any given time.
  • the method implements a strategy to maximize the average spectral efficiency (utility metric) within the system considered under constraint to respect an individual quality of service (QoS) per source ie an average individual BLER per source:
  • R i is a variable which takes from the discrete values taken in a finite set the number of flow rates corresponding to the different coding and modulation schemes (MCS, Modulation and Coding Scheme) available for transmission,
  • T used ⁇ T max presents the number of cooperative retransmissions used during the 2 nd phase
  • E, (T used ) is the average of the number of cooperative retransmissions used during the second phase
  • BLERi represents the block error rate for source i.
  • BLERi denotes the function with multiple variables BLERi (R 1 ..., R M ) which depends on the current value taken by the flow variables R 1 ..., R M.
  • the algorithm based on an interference-free or “Genie Aided” approach is used to solve the problem of optimization of multidimensional allocation of throughput (rate). This approach consists in independently determining each initial rate of a source by assuming that all the messages of the other sources are known by the destination and the relays then in iteratively determining the rates by initializing their value with the values determined according to the approach. "Genie Aided”.
  • the utility metric which consists of spectral efficiency is conditioned by the node selection strategy that occurs during the second phase.
  • the present invention relates to a method of transmitting messages intended for an OMAMRC telecommunication system with M sources s t ie ⁇ 1, ..., M), possibly L relay r 1 ..., r L and a destination, M ⁇ 2, L ⁇ 0, M ⁇ B.
  • the transmission is of the LDM type on a band divided into B orthogonal sub-bands between them.
  • the method is such that it comprises: a simultaneous transmission of the M sources during a time interval with allocation of at least one sub-band per source and at least one cooperative retransmission during a time interval of at least one relay node taken from among the M sources and the L relays selected according to a selection strategy with allocation of at least one sub-band per selected node, to maximize a quality of service metric.
  • the allocation of sub-bands between the sources makes it possible to reduce the time necessary for transmitting data since the sources transmit simultaneously in one and the same first time slot (time slot). Such a process is therefore well suited for services requiring in terms of latency.
  • the allocation of one or more sub-bands per source as well that the source selection strategy at subsequent intervals, are performed to maximize a quality of service metric, eg BLER, spectral efficiency. Maximizing the quality of service makes it possible to optimize the bit rate or to reduce the transmission power of the sources for the same bit rate.
  • the slot or slots following the first time slot are dedicated to retransmissions including at least one cooperative retransmission.
  • a cooperative retransmission is either a transmission by a relay or a transmission by a source capable of helping the destination to decode at least one other source.
  • a non-cooperative retransmission a retransmission by the source of its own message.
  • a cooperative retransmission is a transmission by one node that contains information about at least one message from another node.
  • the transmission of a relay is by nature a cooperative retransmission but also the transmission of a source (which is capable of cooperation) which includes in its transmission information relating to at least one message from another source.
  • the cooperation of the relay nodes ensures an increase in the reliability of the transmissions.
  • the selection strategy is such that a relay node which decodes a set of sources at a time interval t can only cooperate at a time interval t + 1 for a single source of its set.
  • This embodiment makes it possible to obtain a direct expression of the individual cut-off event of a source, that is to say without the need to obtain the cut-off events of all the subgroups of the sources containing the source considered.
  • the choice of the source, among the sources not yet decoded without error by the destination, with which the node cooperates can be random, the transmission from the node to the destination therefore includes the indication of the source with which it cooperates.
  • the common cutoff of a set of sources is obtained simply as the union of the individual cuts of the sources of the set.
  • the method is such that: the destination broadcasts to the relay nodes its set of correctly decoded sources among the sources received during a transmission interval, the relay nodes which have correctly decoded a source not correctly decoded by the destination informs the destination, the destination broadcasts to the relay nodes a vector ⁇ t comprising the relay nodes selected for the subbands for cooperative or non-cooperative retransmission during the next transmission interval.
  • the destination sends its set of correctly decoded sources back to the relay nodes after receiving data transmitted during a transmission interval.
  • This feedback can take place via a control channel.
  • the destination goes up M bits which indicate for each of the M sources whether it is correctly decoded or not. If all the sources are correctly decoded by the destination ie its set of correctly decoded sources contains the M sources, a new frame is transmitted.
  • a relay node informs the destination by transmitting a single bit in a control channel.
  • the signaling of the relay nodes to the destination is minimal and therefore has the advantage of consuming very little channel resource.
  • the destination can implement a selection strategy which, for example, consists in maximizing at a given time interval t the sum of the mutual information between the nodes that can help with their allocated subbands and the destination
  • a relay node informs the destination by transmitting its set of correctly decoded sources.
  • the signaling of the relay nodes to the destination according to the latter mode consumes more channel resources. But the information transmitted allows the destination to select relay nodes more efficiently to help it decode as many sources as possible.
  • the destination selects the relay nodes allowing it to correctly decode the most sources at the end of the cooperative or non-cooperative retransmission.
  • the destination returns to the relay nodes a vector in which are selected the relay nodes which maximize the number of sources correctly decoded by these relay nodes and not yet correctly decoded by the destination.
  • the vector further includes the allocation of the subbands to the selected relay nodes.
  • the destination selects the relay nodes such that the sum of the mutual information between the nodes which can help with their allocated subbands and the destination is maximized.
  • the method chooses the vector which maximizes the sum of the mutual information between the nodes which can help with their associated subbands and the destination:
  • the method is with slow link adaptation and is such that rates allocated to the sources are determined to maximize a metric expressed as an average utility function under constraint of an average individual BLER for each source: a variable representing the initial flow allocated to the source i, i ⁇ ⁇ 1, ..., M)
  • K j the number of data transmitted on n o, i XF uses of the channel by source i
  • T used the number of time slots used for cooperative / possibly non-cooperative retransmissions
  • E (T used ) an average of the number of time slots used for cooperative / possibly non-cooperative retransmissions
  • the method is with rapid link adaptation and is such that the bit rates allocated to the sources are determined to maximize a metric expressed in the form of an average utility function under the constraint of the individual cuts of the sources:
  • T used Ie number of time slots used for cooperative / possibly non-cooperative retransmissions a variable representing the initial bit rate allocated to the source i, i ⁇ ⁇ 1,, M ⁇ .
  • a further subject of the invention is a system comprising M sources ..., s M , L relay r 1 ..., r L and a destination d, 0, for implementing a transmission method according to invention.
  • the invention further relates to each of the specific software applications on one or more information media, said applications comprising program instructions adapted to the implementation of the transmission method when these applications are executed by processors.
  • the invention further relates to configured memories comprising instruction codes corresponding respectively to each of the specific applications.
  • the memory can be incorporated into any entity or device capable of storing the program.
  • the memory may be of the ROM type, for example a CD ROM or a microelectronic circuit ROM, or else of the magnetic type, for example a USB key or a hard disk.
  • each specific application according to the invention can be downloaded from a server accessible on an Internet type network.
  • the optional characteristics presented above in the context of the transmission method can optionally be applied to the software application and to the memory mentioned above.
  • FIG. 1 is a diagram of an example of a so-called Cooperative OMAMRC (Orthogonal Multiple Access Multiple Relays Channel) system according to the invention
  • FIG. 2 is a diagram of a transmission cycle of a frame according to an exemplary implementation of the invention
  • FIG. 3 is a diagram of the protocol for the exchange of information between the destination and the nodes, sources and relays, according to one embodiment of the invention.
  • Channel use is the smallest granularity in time-frequency resource defined by the system which allows the transmission of a modulated symbol.
  • the number of times the channel is used is related to the available frequency band and the transmission time.
  • Each source in the game S communicates with the unique destination with the help of other sources (user cooperation) and cooperating relays.
  • the sources, relays, and destination are equipped with a single receiving antenna
  • T max ⁇ 1 is a system parameter; - the instantaneous quality of the channel / direct link in reception (CSIR Channel State information at Receiver) is available at the destination, at the sources and at the relays;
  • Nodes include relays and sources that can behave like a relay when they are not sending their own message.
  • the nodes, M sources and L relays access the transmission channel in an orthogonal frequency multiple access pattern and operate in a full-duplex mode that allows them to listen to transmissions from other nodes without interference.
  • the channel strip is divided into B sub-bands the number of which is assumed to be greater than or equal to the number of sources: B ⁇ M.
  • Each sub-band associated with a time interval determines F uses of the channel (F element resource).
  • a sub-band can include, for example, as many sub-carriers as an OFDM symbol.
  • N B X F.
  • a transmission cycle lasts 1 + T used timeslots with T used ⁇ T max and T max the maximum number of timeslots. At each time interval, none, one or more sub-bands are allocated to a node according to a first partition.
  • all the sources transmit, assuming that B 3 M, respectively on one or more sub-bands allocated to each source.
  • the partitions can be different between all the transmission intervals including the first.
  • the selection of the nodes and the allocation of the sub-bands are implemented by a scheduler, typically hosted by the destination.
  • the selected node i is a source i denoted S i , i ⁇ ⁇ 1, ..., M) otherwise i> M and the selected node is a relay i - M denoted r iM , i ⁇ ⁇ M + 1,, M + L ⁇ ,
  • B is the vector of dimension B of the nodes selected for the transmission interval t, both during the first phase and during the second phase.
  • the i th element a ti of the vector a t designates the i th sub-band and the selected node active during this time interval t in this sub-band i, i ⁇ ⁇ 1, ..., B ⁇ .
  • the order in the vector corresponds to the order of the sub-bands.
  • n t ⁇ ⁇ 0, ..., B ⁇ M + L is the vector of dimension M + L of the number of sub-bands allocated for each node which varies between 0 (the node is inactive) and B (the node occupies all sub-bands), source or relay, for the transmission interval (time slot) t whether during the first phase or during the second phase.
  • the i th element n ti of the vector n t designates the number of sub-bands allocated to node i at the transmission interval (time slot) t, i ⁇ ⁇ 1, ..., M + L ⁇ .
  • the sum of the component elements the vector n t is equal to B the number of sub-bands.
  • h ab is the attenuation gain of the channel (fading) between node a (source or relay) and node b (source, relay or destination) which follows a complex circular symmetric Gaussian distribution with zero mean and variance y a , b , the gains are independent of each other,
  • T used is the minimum number of retransmission time intervals ie during the second phase which leads to zero faults for all the sources (the individual cut-off event of each of the sources is equal to zero):
  • the individual cut-off event of the source s after the interval t (round t) retransmission depends on the vector t of selecting nodes, the vector n t allocation of sub-bands and the game has been $ _i sources decoded at the end of the preceding interval, t-1.
  • a 0 is the selection vector of the source nodes transmitting during the transmission phase
  • n 0 is the allocation vector of sub-bands allocated for each source during the transmission phase
  • ⁇ S d 0 is the set of sources decoded by the destination at the end of the first phase.
  • the common failure event F or I and sub set of sources S after time interval t (round t) is the event that at least one source of subset B is not decoded correctly by the destination at the end of this interval t. Subsequently, the dependencies of are omitted to simplify the notations.
  • I e j had sources not successfully decoded by the destination at the end of the time interval t (round t). From an analytical point of view, the event of common cut-off of a subset S of sources occurs ie is satisfied if the vector of the bit rates of these sources is not included in the corresponding MAC capacity region.
  • [P] represents the brackets of Iverson i.e. which gives the value 1 if the event P is satisfied and the value 0 if not,
  • T ; j the mutual fading information block from node i to destination d for the rti i sub-bands allocated to node i at time interval l ⁇ ⁇ 1, .., T used ): (5) where I ai /, d is the mutual information between the node a which is allocated the sub-band / at the time interval (round) l E ⁇ 1, ..., T used ⁇ and the destination d.
  • Mutual information depends on the power transmitted on the sub-band of the channel ie between node a ; t and the destination d with P T the total power of this node. If node i is not selected at time interval l then the mutual information block is zero.
  • the cutout event for a given source s is defined in the form: which is by definition the intersection of all the common breaking events corresponding to a set of sources ⁇ including the source s.
  • This approach makes it possible to predict the result of implementing a parity check (CRC check) without going through the simulation of the entire transmission (modulation coding) and reception (detection / demodulation, decoding) chain. ).
  • CRC check parity check
  • It defines an abstraction of the physical layer.
  • Certain adjustments obtained by simulation (called calibration within the framework of the abstractions of the physical layer) for a given coding scheme can be carried out by introducing weighting parameters of the mutual information and / or SNRs of the links.
  • the two transmission phases of the transmission method can be preceded by an initial phase of determining an initial rate.
  • This phase can occur once every several hundred frames (ie each time the quality statistics of the channel / link change) in the “slow fading” case, we speak of slow link adaptation. Or this phase can occur much more frequently and at most each cycle, we speak of rapid link adaptation.
  • the link adaptation is fast or slow, the bit rate of each source and the allocation of sub-bands are known before the start of transmission.
  • the destination can determine the gains (CSI Channel State Information) of the direct links that is, source-to-destination and relay-to-destination links. The destination can therefore deduce average values for the direct links within the framework of a slow adaptation.
  • the statistics of the channels are assumed to be constant between two initialization phases, the transmission to the destination of the metrics by the sources and the relays may only take place at the same rate as the initialization phase.
  • the channel statistic of each link is assumed to follow a circular-centered complex Gaussian distribution and the statistics are independent between the links.
  • the destination transmits for each source s a representative value (index, MCS, bit rate, etc.) of an initial bit rate R j .
  • Each of the initial rates unambiguously determines an initial modulation and coding scheme (MCS) or conversely each initial MCS determines an initial rate.
  • MCS modulation and coding scheme
  • the rise of the initial flow rates R [ is carried out via very limited flow control channels.
  • These initial rates are determined by the destination so as to maximize a quality of service metric, for example an average spectral efficiency.
  • the quality of service metric is, according to one embodiment, an average spectral efficiency which is expressed in the form:
  • T used I e number of time slots used for cooperative or non-cooperative retransmissions
  • E (T used ) an average of the number of time slots used for the retransmissions whether they are cooperative or non-cooperative
  • bit rate and the allocation of sub-bands by source remain unchanged for several hundred transmissions of messages from the sources, which makes it possible to average the block error rate (BLER) of the source i on the channel statistics (CDI: Channel Distribution Information) known to the destination.
  • BLER block error rate
  • CDI Channel Distribution Information
  • the quality of service metric is, according to one embodiment, an average utility function under constraint of the individual cuts of the sources defined by transmitted message and the throughput and the allocation of sub. -bands can change from one message to the next:
  • O it is the individual cut-off event of source i at the retransmission interval t which is equal to one in the event of a fault or zero in the event of success (correctly decoded source), O ⁇ 0 is the individual cut-out event at the end of the transmission phase (first phase of a time interval),
  • each source i ⁇ 1, 2, 3) transmits its code words.
  • the number of sub-bands allocated to a source differs between the sources.
  • the sub-bands fi, Î2 and fs are allocated to the source 1
  • the sub-band f 3 is allocated to the source 2
  • the sub-band f * is allocated to the source 3.
  • the vector of allocation of sub-bands by node is thus During the second so-called retransmission phase and for the first time interval, only the sources 2, 3 and the relay 2 are selected and the sub-band fi is allocated to the source 3, the sub-bands f 2 , Î 3 and f * are allocated to relay 5 and the sub-band fs is allocated to source 2.
  • n 2 [2,0,0,3,0] T.
  • FIG. 3 An embodiment of the protocol for the exchanges between the nodes and the destination is illustrated in FIG. 3.
  • Each source transmits its framed data to the destination with the help of other sources and relays.
  • a frame occupies time slots during the transmission of the M messages from the respectively M sources.
  • the transmission of a frame (which defines a transmission cycle) takes place during 1 + T used time intervals: 1 interval for the 1 st phase of capacity n oi uses the channel for each source i, T used intervals for the 2 e capacity phase n ti uses the channel for each source i.
  • each source s ⁇ S transmits after coding a message u s comprising K s information bits u s being the two-element Galois body.
  • the message u s includes a CRC type code which allows the integrity of message u s to be checked.
  • the message u s is coded according to the initial MCS. Since the initial MCSs may be different between sources, the lengths of the encoded messages may be different between the sources.
  • the encoding uses an incrementally redundant code. The resulting code word is segmented into redundancy blocks. The incremental redundancy code can be of the systematic type, the information bits are then included in the first block.
  • the incrementally redundant code is of the systematic type, it is such that the first block can be decoded independently of the other blocks.
  • the incremental redundancy code can be achieved for example by means of a finite family of punched linear codes with compatible yields or of non-yielding codes modified to operate with finite lengths: raptor code (RC), punched turbo code of compatible yield ( RCPTC rate compatible punctured turbo code), rate compatible punctured convolutional code (RCPCC rate compatible punctured convolutional code), LDPC rate compatible (RCLDPC rate compatible low density parity check code).
  • RC raptor code
  • RCPTC rate compatible punctured turbo code rate compatible punctured convolutional code
  • RCPCC rate compatible punctured convolutional code rate compatible punctured convolutional code
  • LDPC rate compatible low density parity check code LDPC rate compatible
  • each full-duplex node can transmit and listen simultaneously to all the other nodes given that, to transmit, each node is allocated one or more sub-bands which are different between the nodes.
  • the destination, sources and relays attempt to decode messages received at the end of a time interval. Success of decoding at each node is decided using CRC. The destination and the nodes thus determine their set of correctly decoded sources.
  • the destination d transmits its set of correctly decoded sources at the end of the previous time interval S dt _ 1 using for example a control channel of feedback broadcast control channel.
  • t ⁇ 1, ..., T used ).
  • This return can consist of a vector of M bits.
  • the nodes, sources and relays compare the set S dt _ 1 to their set of correctly decoded sources.
  • the node informs the destination thereof by using for example a dedicated control channel of unicast type.
  • the information transmitted by a node can consist of its set of correctly decoded sources or, as illustrated by FIG. 3, of a bit, for example set to one.
  • the destination follows a certain strategy to decide which node (s) selected to transmit at the time interval (round) t.
  • the destination informs the nodes of this selection by transmitting the vector a t using for example the return broadcast control channel.
  • Each node which receives the vector a t can determine whether it is selected and on which sub-band (s) it should transmit.
  • At least one selected node, source or relay During this second phase and for at least one retransmission interval among the T used retransmission intervals, at least one selected node, source or relay, generates a cooperative retransmission. Outside of the at least one time slot, the retransmissions can be cooperative or non-cooperative.
  • the node selected for retransmission transmits u at after multi-user encoding, the words or part of the words that it has correctly decoded.
  • the selected node can transmit parities determined from messages from its correctly decoded source set using Joint Network Channel Coding.
  • the other nodes and the destination can improve their own decoding by exploiting the transmission of the selected node and update their correctly decoded source set accordingly.
  • the destination thus controls the transmission of the nodes using a return channel. This improves spectral efficiency and reliability by increasing the likelihood that all sources will be decoded by the destination.
  • the destination selects those which maximize the sum of the mutual information among the set Zt of the different allocations of sub-bands to the nodes which can help at the interval t.
  • This strategy only requires knowledge of the nodes that can help, it is compatible with the way in which the nodes transmit information in the form of a bit.
  • the selection criterion can be expressed in the form: (8) with Z t the set of possible vectors a t which correspond to the selection of the nodes which can help the destination at the interval (round) t.
  • the destination selects the nodes which make it possible to obtain the most newly correctly decoded sources at the destination at the end of the current interval t ie which maximize the cardinality of the set of sources correctly decoded by the destination at the end of the current interval t.
  • the method reviews all the possible values of the vector a t and retains the one which leads to the greatest number of newly decoded sources.
  • the method does not take into account the nodes which cannot help the non-sources. still decoded since it targets the greatest number of newly decoded sources, ie; only the nodes i which satisfy
  • This strategy further requires knowledge of the correctly decoded source set of all previously selected nodes.
  • the method chooses the vector a t which maximizes the sum of the mutual information. In fact, at a time interval t, this is the only element that can be maximized to maximize the right part of the individual cut-off events and of the common cut-off events.
  • the presence of C ti in the expression of the common cut event reflects the fact that the only nodes that can be selected are those that can help, ie having decoded at least one source not yet decoded by the destination.
  • the selection criterion can then be expressed in the form: (9) with A t the set of candidate nodes which maximize the clearance of the destination at the end of the interval (round) t.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

La présente invention se rapporte à un procédé de messages destiné à un système de télécommunication OMAMRC à M sources si iε{ 1,..., M], éventuellement L relais (r1..., r L ) et une destination. La transmission est de type FDM sur une bande divisée en B sous-bandes orthogonales entre elles. Le procédé comprend : une transmission simultanée des M sources pendant un intervalle de temps avec allocation d'au moins une sous-bande par source et au moins une retransmission coopérative d'un intervalle de temps d'au moins un nœud relais pris parmi les M sources et les L relais sélectionné selon une stratégie de sélection avec allocation d'au moins une sous-bande par nœud sélectionné.

Description

DESCRIPTION
TITRE : Procédé et système OMAMRC avec transmission FDM
Domaine de l’invention
La présente invention se rapporte au domaine des communications numériques. Au sein de ce domaine, l'invention se rapporte plus particulièrement à la transmission de données codées entre au moins deux sources et une destination avec relayage par au moins deux nœuds pouvant être des relais ou des sources.
Il est entendu qu’un relais n’a pas de message à transmettre. Un relais est un nœud dédié au relayage des messages des sources tandis qu’une source à son propre message à transmettre et peut en outre dans certain cas relayer les messages des autres sources i.e. la source est dite coopérative dans ce cas.
Il existe de nombreuses techniques de relayage connues sous leur appellation anglo-saxonne :
« amplify and forward », « décodé and forward », « compress-and-forward », « non-orthogonal amplify and forward », « dynamic décodé and forward », etc. L’invention s’applique notamment, mais non exclusivement, à la transmission de données via des réseaux mobiles, par exemple pour des applications temps réel, ou via par exemple des réseaux de capteurs.
Un tel réseau de capteurs est un réseau multi-utilisateurs, constitué de plusieurs sources, plusieurs relais et un destinataire utilisant un schéma d’accès multiple orthogonal en temps du canal de transmission entre les relais et la destination, noté OMAMRC (« Orthogonal Multiple- Access Multiple-Relay Charnel » selon la terminologie anglosaxonne).
Art antérieur
Un système de transmission OMAMRC mettant en œuvre une adaptation lente de lien est connu de la demande WO 2019/162592 publiée le 29 août 2019. Le système de télécommunication OMAMRC décrit a M sources, éventuellement L relais et une destination, M ≥ 2, L ≥ 0 et il utilise un schéma d’accès multiple orthogonal en temps du canal de transmission qui s’applique entre les nœuds pris parmi les M sources et les L relais.
Le nombre maximum d’intervalles de temps par trame transmise est de M + Tmax avec M intervalles alloués pendant une première phase aux transmissions successives des M sources et Tused ≤ Tmax intervalles pour une ou plusieurs retransmissions coopératives alloués pendant une deuxième phase à un ou plusieurs nœuds sélectionnés par la destination selon une stratégie de sélection.
Le système de transmission OMAMRC considéré comprend au moins deux sources chacune de ces sources pouvant fonctionner à des instants différents soit comme une source, soit comme un nœud de relayage. Le système peut éventuellement comprendre en outre des relais. La terminologie nœud couvre aussi bien un relais qu’une source agissant comme un nœud de relayage ou comme une source. Le système considéré est tel que les sources peuvent elle-même être des relais. Lin relais se distingue d’une source car il n'a pas de message à transmettre qui lui soit propre i.e. il ne fait que retransmettre des messages provenant d’autres nœuds. Le relais effectue toujours une retransmission coopérative.
Les liens entre les différents nœuds du système sont sujets à des évanouissements lents (slow fading) et à du bruit blanc Gaussien. La connaissance de tous les liens du système (CSI :
Channel State Information) par la destination n’est pas disponible. En effet, les liens entre les sources, entre les relais, entre les relais et les sources ne sont pas directement observables par la destination et leur connaissance par la destination nécessiterait un échange d’information trop important entre les sources, les relais et la destination. Pour limiter le coût de la surcharge de la voie de retour (feedback overhead), seule une information sur la distribution/statistique des canaux (CDI : Channel Distribution Information) de tous les liens, e.g. qualité moyenne (par exemple SNR moyen, SINR moyen) de tous les liens, est supposée connue par la destination dans le but de déterminer les débits alloués aux sources.
L’adaptation de lien est de type lent c’est-à-dire qu’avant toute transmission, la destination alloue des débits initiaux aux sources connaissant la distribution de tous les canaux (CDI: Channel Distribution Information). En général, il est possible de remonter à la distribution CDI sur la base de la connaissance du SNR ou SINR moyen de chaque lien du système. Les transmissions des messages des sources sont divisées en trames pendant lesquelles les CSI des liens sont supposés constants (hypothèse d’évanouissements lents). L’allocation de débit est supposée ne pas changer pendant plusieurs centaines de trames, elle change uniquement avec les changements de CDI.
Le procédé distingue trois phases, une phase initiale et, pour chaque trame à transmettre, une 1ere phase et une 2nde phase. La transmission d’une trame se déroule en deux phases qui sont éventuellement précédées d’une phase additionnelle dite initiale.
Lors de la phase d’initialisation, la destination détermine un débit initial pour chaque source en prenant en compte la qualité (par exemple SNR) moyenne de chacun des liens du système.
La destination estime la qualité (par exemple SNR) des liens directs : source vers destination et relais vers destination selon des techniques connues basées sur l’exploitation de signaux de référence. La qualité des liens source - source, relais - relais et source - relais est estimée par les sources et les relais en exploitant par exemple les signaux de référence. Les sources et les relais transmettent à la destination les qualités moyennes des liens. Cette transmission intervient avant la phase d’initialisation. Seule la valeur moyenne de la qualité d’un lien étant prise en compte, son rafraîchissement intervient à une échelle de temps longue c’est-à-dire sur un temps qui permet de moyenner les variations rapides (fast fading) du canal. Ce temps est de l’ordre du temps nécessaire pour parcourir plusieurs dizaines de longueur d’onde de la fréquence du signal transmis pour une vitesse donnée. La phase d’initialisation intervient par exemple toutes les 200 à 1000 trames. La destination remonte aux sources via une voie de retour les débits initiaux qu’elle a déterminés. Les débits initiaux restent constants entre deux occurrences de la phase d’initialisation.
Lors de la première phase, les M sources transmettent successivement leur message pendant les M intervalles de temps (time-slots) en utilisant respectivement des schémas de modulation et de codage déterminés à partir des débits initiaux. Pendant cette phase, le nombre N1 d’utilisations du canal (channel use i.e. ressource element selon la terminologie du 3GPP) est fixe et identique pour chacune des sources.
Lors de la 2nde phase, les messages des sources sont retransmis de façon coopérative par les relais et/ou par les sources. Cette phase dure au maximum Tmax intervalles de temps (time- slots). Pendant cette phase, le nombre N2 d’utilisations du canal (channel use) est fixe et identique pour chacune des sources.
Les sources indépendantes entre elles diffusent pendant la première phase leurs séquences d'informations codées sous forme de messages à l'attention d’un seul destinataire. Chaque source diffuse ses messages avec le débit initial. La destination communique à chaque source son débit initial via des canaux de contrôle à débit très limité. Ainsi, pendant la première phase, les sources transmettent chacune à leur tour leur message respectif pendant des intervalles de temps (time-slot) dédiés chacun à une source.
Les sources autres que celle qui émet et éventuellement les relais, de type « Half Duplex » reçoivent les messages successifs des sources, les décodent et, s’ils sont sélectionnés, génèrent un message uniquement à partir des messages des sources décodés sans erreur.
Les nœuds sélectionnés accèdent ensuite au canal de manière orthogonale en temps entre eux pendant la seconde phase pour retransmettre leur message généré vers la destination.
La destination peut choisir quel nœud doit retransmettre à un instant donné.
Le procédé met en œuvre une stratégie pour maximiser l’efficacité spectrale moyenne (métrique d’utilité) au sein du système considéré sous-contrainte de respecter une qualité de service individuelle (QoS) par source i.e. un BLER individuel moyen par source :
Figure imgf000005_0001
• Ri = Ki/N1 représente le débit initial de la source i avec Ki le nombre de bits d’information du message de la source i ∈ {1, ... , M}. R i est une variable qui prend des valeurs discrètes prises dans un jeu fini le nombre de débits correspondant aux
Figure imgf000005_0002
différents schémas de codage et de modulation (MCS, Modulation and Coding Scheme) disponibles pour la transmission,
• Tused ≤ Tmax présente le nombre de retransmissions coopératives utilisées pendant la 2nde phase, E,( Tused) est la moyenne du nombre de retransmissions coopératives utilisées pendant la seconde phase,
• a = N2/N1 est le rapport entre le nombre d’utilisations du canal pendant la seconde phase et le nombre d’utilisations du canal pendant la première phase,
• BLERi représente le taux d’erreur bloc pour la source i. BLERi dénote la fonction à variables multiples BLERi (R1... , RM) qui dépend de la valeur actuelle prise par les variables de débit R1... , RM.
La contrainte de QoS sur le BLER individuel donné par source s’écrit : BLERi ≤
BLERQoS I, ∀i ∈{ 1, ... , M). Lin algorithme basé sur une approche sans interférence ou « Genie Aided » est utilisé pour résoudre le problème d’optimisation d’allocation multidimensionnelle de débit (rate). Cette approche consiste à déterminer indépendamment chaque débit initial d’une source en supposant que tous les messages des autres sources sont connus de la destination et des relais puis à déterminer de manière itérative les débits en initialisant leur valeur avec les valeurs déterminées selon l’approche « Genie Aided ». La métrique d’utilité qui consiste en une efficacité spectrale est conditionnée à la stratégie de sélection des nœuds qui intervient pendant la deuxième phase.
Caractéristiques principales de l’invention
La présente invention a pour objet un procédé de transmission de messages destiné à un système de télécommunication OMAMRC à M sources st ie{ 1, ... , M), éventuellement L relais r1 ... , rL et une destination, M ≥ 2, L ≥ 0, M ≤ B . La transmission est de type LDM sur une bande divisée en B sous-bandes orthogonales entre elles. Le procédé est tel qu’il comprend : une transmission simultanée des M sources pendant un intervalle de temps avec allocation d’ au moins une sous-bande par source et au moins une retransmission coopérative pendant un intervalle de temps d’au moins un nœud relais pris parmi les M sources et les L relais sélectionné selon une stratégie de sélection avec allocation d’au moins une sous-bande par nœud sélectionné, pour maximiser une métrique de qualité de service.
L’ allocation de sous bandes entre les sources permet de réduire le temps nécessaire pour transmettre des données puisque les sources émettent simultanément dans un seul et même premier intervalle de temps (time slot). Lin tel procédé est donc bien adapté pour des services exigeant en terme de latence. L’allocation d’une ou de plusieurs sous-bandes par source ainsi que la stratégie de sélection des sources lors des intervalles suivants, sont effectuées pour maximiser une métrique de qualité de service, par exemple un BLER, une efficacité spectrale. Une maximisation de la qualité de service permet d’optimiser le débit ou de diminuer la puissance d’émission des sources pour un même débit.
Le ou les intervalles suivants le premier intervalle de temps sont dédiés à des retransmissions incluant au moins une retransmission coopérative. Une retransmission coopérative est soit une transmission par un relais soit une transmission par une source capable d’ aider la destination à décoder au moins une autre source. Nous appellerons par la suite une retransmission non coopérative, une retransmission par la source de son propre message. Une retransmission coopérative est une transmission par un nœud qui contient des informations relatives à au moins un message d’un autre nœud. La transmission d’un relais est, par nature, une retransmission coopérative mais aussi la transmission d’une source (qui est capable de coopération) qui inclut dans sa transmission des informations relatives à au moins un message d’une autre source. La coopération des nœuds relais assure une augmentation de la fiabilité des transmissions.
Selon un mode de réalisation, la stratégie de sélection est telle qu’un nœud relais qui décode un jeu de sources à un intervalle de temps t ne peut coopérer à un intervalle de temps t+1 que pour une seule source de son jeu.
Ce mode de réalisation permet d’obtenir une expression directe de l’événement de coupure individuelle d’une source, c’est-à-dire sans la nécessité d’obtenir les événements de coupure de tous les sous-groupes des sources contenant la source considérée. Le choix de la source, parmi les sources non encore décodées sans erreur par la destination, avec laquelle le nœud coopère peut être aléatoire, la transmission du nœud vers la destination comprend donc l’indication de la source avec laquelle il coopère. En outre, l’événement de coupure commune d’un jeu de sources est obtenu simplement comme étant l’union des coupures individuelles des sources du jeu.
Selon un mode de réalisation, le procédé est tel que : la destination diffuse aux nœuds relais son jeu de sources correctement décodées parmi les sources reçues lors d’un intervalle de transmission, les nœuds relais qui ont correctement décodées une source non correctement décodée par la destination en informe la destination, la destination diffuse aux nœuds relais un vecteur αt comprenant les nœuds relais sélectionnés pour les sous-bandes pour la retransmission coopérative ou non coopérative pendant l’intervalle de transmission suivant.
Selon ce protocole la destination remonte aux nœuds relais son jeu de sources correctement décodées à l’issue d’une réception de données transmises pendant un intervalle de transmission. Cette remontée peut intervenir via un canal de contrôle. Selon un mode de réalisation particulièrement simple, la destination remonte M bits qui indiquent pour chacune des M sources si elle est correctement décodée ou pas. Si toutes les sources sont correctement décodées par la destination i.e. son jeu de sources correctement décodées contient les M sources, une nouvelle trame est transmise.
Selon un mode de réalisation, un nœud relais informe la destination en transmettant un seul bit dans un canal de contrôle.
Selon ce mode, la signalisation des nœuds relais vers la destination est minimale et a donc pour avantage de consommer très peu de ressource du canal. Avec cette information, la destination peut mettre en œuvre une stratégie de sélection qui, par exemple, consiste à maximiser à un intervalle de temps donné t la somme des informations mutuelles entre les nœuds pouvant aider avec leurs sous bandes allouées et la destination
Figure imgf000008_0001
Selon un mode de réalisation, un nœud relais informe la destination en transmettant son jeu de sources correctement décodées.
Comparativement au mode précédent, la signalisation des nœuds relais vers la destination selon ce dernier mode est plus consommatrice en ressources du canal. Mais l’information transmise permet à la destination de sélectionner plus efficacement les nœuds relais pour l’aider à décoder un maximum de sources.
Selon un mode de réalisation, la destination sélectionne les nœuds relais lui permettant de décoder correctement le plus de sources à l’issue de la retransmission coopérative ou non coopérative.
Selon ce mode, la destination remonte aux nœuds relais un vecteur dans lequel sont sélectionnés les nœuds relais qui maximisent le nombre de sources correctement décodées par ces nœuds relais et pas encore correctement décodées par la destination. Le vecteur comprend en outre l’allocation des sous-bandes aux nœuds relais sélectionnés.
Selon un mode de réalisation, la destination sélectionne les nœuds relais tel que la somme des informations mutuelles entre les nœuds pouvant aider avec leurs sous bandes allouées et la destination est maximisée.
Dans le cas où plusieurs vecteurs at peuvent conduire au même nombre maximum de sources nouvellement décodées, le procédé choisit le vecteur qui maximise la somme des
Figure imgf000008_0004
Figure imgf000008_0002
informations mutuelles entre les nœuds pouvant aider avec leurs sous bandes associées et la destination :
Figure imgf000008_0003
Selon un mode de réalisation, le procédé est avec adaptation lente de lien et est tel que des débits alloués aux sources sont déterminés pour maximiser une métrique exprimée sous la forme d’une fonction d’utilité moyenne sous contrainte d’un BLER individuel moyen pour chaque source :
Figure imgf000009_0002
une variable représentant le débit initial alloué à la source i, i ∈ {1, ... , M )
Figure imgf000009_0003
Kj le nombre de données transmises sur no,i X F utilisations du canal par la source i,
• Tused Ie nombre d’intervalles de temps utilisés pour les retransmissions coopératives/éventuellement non coopératives,
• E ( Tused) une moyenne du nombre d’intervalles de temps utilisés pour les retransmissions coopératives/éventuellement non coopératives,
• BLERj le taux d’erreur bloc pour la source i.
Selon un mode de réalisation, le procédé est avec adaptation rapide de lien et est tel que des débits alloués aux sources sont déterminés pour maximiser une métrique exprimée sous la forme d’une fonction d’utilité moyenne sous contrainte des coupures individuelles des sources :
Figure imgf000009_0004
Oi,t la probabilité de coupure individuelle de la source i à l’intervalle t de retransmission coopérative/éventuellement non coopérative,
• Tused Ie nombre d’intervalles de temps utilisés pour les retransmissions coopératives/éventuellement non coopératives, une variable représentant le débit initial alloué à la source i, i ∈ { 1, , M}.
Figure imgf000009_0005
L’invention a en outre pour objet, un système comprenant M sources
Figure imgf000009_0001
... ,sM, L relais r1 ... , rL et une destination d, 0, pour une mise en œuvre d’un procédé de transmission selon
Figure imgf000009_0006
l’invention.
L’invention a en outre pour objet chacune des applications logicielles spécifiques sur un ou plusieurs supports d'information, lesdites applications comportant des instructions de programme adaptées à la mise en œuvre du procédé de transmission lorsque ces applications sont exécutées par des processeurs.
L’invention a en outre pour objet des mémoires configurées comportant des codes d’instructions correspondant respectivement à chacune des applications spécifiques.
La mémoire peut être incorporée dans n'importe quelle entité ou dispositif capable de stocker le programme. La mémoire peut-être de type ROM, par exemple un CD ROM ou une ROM de circuit microélectronique, ou encore de type magnétique, par exemple une clé USB ou un disque dur.
D'autre part, chaque application spécifique selon l'invention peut être téléchargée depuis un serveur accessible sur un réseau de type Internet. Les caractéristiques optionnelles présentées ci-dessus dans le cadre du procédé de transmission peuvent éventuellement s’appliquer à l’application logicielle et à la mémoire ci-dessus évoquées.
Liste des figures D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante de modes de réalisation, donnés à titre de simples exemples illustratifs et non limitatifs, et des dessins annexés, parmi lesquels :
[Fig 1] la figure 1 est un schéma d’un exemple de système dit Coopérative OMAMRC (Orthogonal Multiple Access Multiple Relays Channel) selon l’invention, [Fig 2] la figure 2 est un schéma d’un cycle de transmission d’une trame selon un exemple de mise en œuvre de l’invention,
[Fig 3] la figure 3 est un schéma du protocole des échanges d’informations entre la destination et les nœuds, sources et relais, selon un mode de réalisation de l’invention.
Description de modes de réalisation particuliers Une utilisation du canal (channel use) est la plus petite granularité en ressource temps-fréquence définit par le système qui permet la transmission d’un symbole modulé. Le nombre d’utilisations du canal est lié à la bande de fréquence disponible et à la durée de transmission.
Un système OMAMRC est illustré par la figure 1. Un tel système comprend M sources qui appartiennent au jeu de sources S = (1, ... , M), L relais qui appartiennent au jeu de relais R = (M + 1, ... , M + L) et une destination d.
Chaque source du jeu S communique avec l’unique destination avec l’aide des autres sources (user coopération) et des relais qui coopèrent.
A titre de simplification de la description, les suppositions suivantes sont faites par la suite sur le système OMAMRC : - les sources, les relais sont équipés d’une seule antenne d’émission ;
- les sources, les relais, et la destination sont équipés d’une seule antenne de réception ;
- les sources, les relais, et la destination sont parfaitement synchronisés ;
- les sources sont statistiquement indépendantes (il n'y a pas de corrélation entre elles) ;
- tous les nœuds émettent avec une même puissance ; - il est fait usage d’un code CRC supposé inclus dans les Ki bits d’information de chaque source i pour déterminer si un message est correctement décodé ou pas, i ∈ S ;
- les liens entre les différents nœuds souffrent de bruit additif et d’évanouissement. Les gains d’évanouissement sont fixes pendant la transmission d’une trame effectuée pendant une durée maximale de 1 + Tmax intervalles de temps, mais peuvent changer indépendamment d’une trame à une autre. Tmax ≥ 1 est un paramètre du système ; - la qualité instantanée du canal/lien direct en réception (CSIR Channel State information at Receiver) est disponible à la destination, aux sources et aux relais ;
- les retours sont sans erreur (pas d’erreur sur les signaux de contrôle).
Les nœuds comprennent les relais et les sources qui peuvent se comporter comme un relais quand elles n’émettent pas leur propre message.
Les nœuds, M sources et L relais, accèdent au canal de transmission selon un schéma d’accès multiple orthogonal en fréquence et fonctionnent selon un mode full-duplex qui leur permet d’écouter sans interférence les transmissions des autres nœuds.
La bande du canal est divisée en B sous-bandes dont le nombre est supposé supérieur ou égal au nombre de sources : B ≥ M. Chaque sous-bande associée à un intervalle de temps détermine F utilisations du canal (F ressource éléments).
Dans le cas d’une transmission avec une modulation OFDM, une sous-bande peut comprendre par exemple autant de sous-porteuses qu’un symbole OFDM.
Le nombre N d’utilisations du canal est supposé identique pour chaque intervalle de transmission : N = B X F.
Un cycle de transmission dure 1 + Tused intervalles de temps avec Tused ≤ Tmax et Tmax le nombre maximal d’intervalles de temps. A chaque intervalle de temps, aucune, une ou plusieurs sous-bandes sont allouées à un nœud selon une première partition.
Pendant le premier intervalle de temps (première phase) toutes les sources transmettent, en supposant que B ³ M, respectivement sur une ou plusieurs sous-bandes allouées à chaque source.
Pendant les intervalles suivants dits de retransmission (deuxième phase), seuls les nœuds sélectionnés parmi les sources et les relais retransmettent et leur retransmission intervient sur la ou les sous-bandes qui leur sont respectivement allouées selon une partition déterminée pour chaque intervalle courant. Ainsi, les partitions peuvent être différentes entre tous les intervalles de transmission y compris le premier.
La sélection des nœuds et l’allocation des sous-bandes sont mises en œuvre par un ordonnanceur, (« scheduler » en anglais) typiquement hébergé par la destination.
Les notations suivantes sont utilisées :
• si i ≤ M le nœud i sélectionné est une source i dénotée Si, i ∈ {1, ... , M) sinon i > M et le nœud sélectionné est un relais i — M dénoté ri-M, i ∈ {M + 1, , M + L},
• at ∈ {S U 9V)B est le vecteur de dimension B des nœuds sélectionnés pour l’intervalle de transmission t, que ce soit pendant la première phase que pendant la deuxième phase. Le ith élément at i du vecteur at désigne la ith sous-bande et le nœud sélectionné actif durant cet intervalle de temps t dans cette sous-bande i, i ∈ {1, ... , B}. L’ordre dans le vecteur correspond à l’ordre des sous-bandes.
• nt ∈ {0, ... , B}M+L est le vecteur de dimension M+L du nombre de sous-bandes allouées pour chaque nœud qui varie entre 0 (le nœud est inactif) et B (le nœud occupe toutes les sous bandes), source ou relais, pour l’intervalle de transmission (time slot) t que ce soit pendant la première phase que pendant la deuxième phase. Le ith élément nt i du vecteur nt désigne le nombre de sous-bandes allouées au nœud i à l’intervalle de transmission (time slot) t, i ∈ {1, ... , M + L}. La somme des éléments composants le vecteur nt est égale à B le nombre de sous-bandes.
• ha b est le gain d’atténuation du canal (fading) entre le nœud a (source ou relais) et le nœud b (source, relais ou destination) qui suit une distribution Gaussienne complexe circulaire symétrique à moyenne nulle et de variance ya ,b , les gains sont indépendants entre eux,
• Tused est le nombre minimum d’intervalles de temps de retransmission i.e. pendant la deuxième phase qui conduit à zéro défauts pour toutes les sources (l’événement de coupure individuelle de chacune des sources vaut zéro) : (1)
Figure imgf000012_0001
L’événement de coupure individuelle de la source s après
Figure imgf000012_0002
l’intervalle t (round t) de retransmission dépend du vecteur at de sélection des nœuds, du vecteur nt d’allocation de sous-bandes et du jeu $a t_i de sources décodées à la fin de l’intervalle précédent, t-1. Il est en outre conditionnel de la connaissance des réalisations du canal des liens directs hdir (des gains du canal) ainsi que de Pt-1· Pt- i désigne le jeu des vecteurs de sélection (donc des nœuds sélectionnés) et des vecteurs d’allocation avec leur jeu de sources décodées <¾-i associé déterminés pour les intervalles (rounds) l précédant l’intervalle t, l ∈ {1, ... , t — 1} et le jeu Sd t-1 de sources décodées par la destination. Il faut noter que a0 est le vecteur de sélection des nœuds source transmettant pendant la phase de transmission, que n0 est le vecteur d’ allocation de sous-bandes allouées pour chaque source pendant la phase de transmission et que <Sd 0 est le jeu de sources décodées par la destination à l’issue de la première phase.
L’événement de coupure commune Pour Ie sous jeu de sources
Figure imgf000012_0003
S après l’intervalle de temps t (round t) est l’événement qu’au moins une source du sous-jeu B n’est pas décodée correctement par la destination à la fin de cet intervalle t. Par la suite, les dépendances de
Figure imgf000012_0005
sont omises pour simplifier les notations. On note Ie jeu des sources non décodées avec succès par la destination à la fin de
Figure imgf000012_0004
l’intervalle de temps t (round t). D’un point de vue analytique, l’événement de coupure commune d’un sous jeu S de sources intervient i.e. est satisfait si le vecteur des débits de ces sources n’est pas compris dans la région de capacité MAC correspondante.
Ainsi, pour un sous-jeu de sources donné, pour un vecteur at candidat de nœuds
Figure imgf000013_0001
sélectionnés et le vecteur nt d’allocation de sous-bandes correspondant, cet événement peut s’exprimer sous la forme :
Figure imgf000013_0002
(2) traduit le non-respect de l’inégalité MAC associée au débit somme des sources
Figure imgf000013_0003
contenues dans 11 : (3)
Figure imgf000013_0004
avec l l’index d’intervalle de temps (round) de la deuxième phase avec la convention que l = 0 correspond à la fin de la première phase (phase de transmission), l ∈ {1, .. , Tused}> s l’index correspondant au nœud source, s ∈ {1, ... , M), · i l’index correspondant à n’importe quel nœud (source et relais), i ∈ {1, ... , M + L), rti i le nombre de sous-bandes allouées au nœud i pour l’intervalle de temps l (round) l G {1, ... , Tuse(i}, n0 s le nombre de sous-bandes allouées à la source s G {1, ... , M) par la destination pour la première phase, ·
Figure imgf000013_0005
(4)
Figure imgf000013_0006
, représente le jeu de sources interférentes, Cl:i vaut un si d’une part l’intersection entre le jeu de sources correctement décodées par le nœud i à l’intervalle l — 1 et l’ensemble U n’est pas vide et d’autre part l’intersection entre le jeu de sources correctement décodées par le nœud i à l’intervalle l — 1 et le jeu de sources interférentes est vide,
A représente le « et » logique,
[P] représente les crochets d’Iverson i.e. qui donne la valeur 1 si l’événement P est satisfait et la valeur 0 si non,
T; j le bloc d’information mutuelle d’évanouissement du nœud i à la destination d pour les rti i sous-bandes allouées au nœud i à l’intervalle de temps l ∈ {1, .. , Tused ) : (5)
Figure imgf000013_0007
où Iai/,d est l’information mutuelle entre le nœud a auquel est allouée la sous-bande / à Tintervalle de temps (round) l E {1, ... , Tused } et la destination d . L’information mutuelle dépend de la puissance transmise sur la sous-bande du canal i.e entre le nœud a; t et
Figure imgf000014_0001
la destination d avec PT la puissance totale de ce nœud. Si le nœud i n’est pas sélectionné à l’intervalle de temps l alors le bloc d’information mutuelle est nul.
Figure imgf000014_0007
S le bloc d’information mutuelle d’évanouissement de la source s à la destination d, pour a0 etn0 donnés, à l’intervalle de temps correspondant à la phase de transmission(première phase),
Figure imgf000014_0006
est le débit utilisé pendant la première phase avec Ks le nombre de bits d’information utile transmise sur n0 SF utilisations de canal.
Par la suite l’évènement de coupure pour une source donné s est défini sous la forme :
Figure imgf000014_0002
qui est par définition l’intersection de tous les évènements de coupure commun correspondant à un jeu de sources Έ incluant la source s. Une source s est en coupure si et seulement il n’existe aucun jeu de sources Έ la comprenant qui puisse être associé à un décodage sans erreur, i.e., eίΈ = 0. Il vient :
Figure imgf000014_0005
Figure imgf000014_0003
Cet évènement de coupure indique si une source est décodée sans erreur ou si elle
Figure imgf000014_0004
est en coupure ( Os t = 1). Cette approche permet de prédire le résultat de la mise en œuvre d’un contrôle de parité (CRC check) sans passer par la simulation de l’ensemble de la chaîne d’émission (codage modulation) et de réception (détection/démodulation, décodage). En ceci, elle définit une abstraction de la couche physique. Certains ajustements obtenus par simulation (appelé calibration dans le cadre des abstractions de la couche physique) pour un schéma de codage donné peuvent être réalisés en introduisant des paramètres de pondération des informations mutuelles et/ou des SNR des liens. Les deux phases de transmission du procédé de transmission peuvent être précédées d’une phase initiale de détermination d’un débit initial. Cette phase peut intervenir une fois toutes les plusieurs centaines de trames (i.e. à chaque fois que les statistiques de qualité du canal/lien changent) dans le cas « slow fading », on parle d’adaptation lente de lien. Ou cette phase peut intervenir beaucoup plus fréquemment et au plus à chaque cycle, on parle d’adaptation rapide de lien. Que l’adaptation de lien soit rapide ou lente, le débit de chaque source et l’allocation de sous-bandes sont connues avant le début de la transmission. En exploitant des signaux de référence (symboles pilotes du type DMRS 3GPP LTE/NR, signaux de références du type SRS 3GPP LTE/NR, etc), la destination peut déterminer les gains (CSI Channel State Information) des liens directs
Figure imgf000015_0001
c’est-à-dire des liens source vers destination et relais vers destination. La destination peut donc en déduire des valeurs moyennes pour les liens directs dans le cadre d’une adaptation lente.
Par contre les gains des liens entre sources, des liens entre relais et des liens entre sources et relais ne sont pas connus de la destination. Seuls les sources et les relais peuvent estimer une métrique de ces liens en exploitant des signaux de référence de manière similaire à celle utilisée pour les liens directs.
Compte tenu que dans le cadre d’une adaptation lente les statistiques des canaux sont supposés constantes entre deux phases d’initialisation, la transmission à la destination des métriques par les sources et les relais peut n’intervenir qu’à la même cadence que la phase d’initialisation. La statistique du canal de chaque lien est supposée suivre une distribution Gaussienne complexe circulaire centrée et les statistiques sont indépendantes entre les liens.
Dans le cadre d’une adaptation rapide, l’optimisation de l’efficacité spectrale peut s’appuyer sur une connaissance de tous les liens ou de certains liens. Une solution possible mais très coûteuse en contrôle est que les sources et les relais remontent les coefficients des liens (quantifiés par sous bande) qu’ils peuvent estimer à la destination.
Pendant la phase initiale d’adaptation de lien qui précède la transmission d’une ou de plusieurs trames, la destination transmet pour chaque source s une valeur représentative (index, MCS, débit, etc) d’un débit initial Rj. Chacun des débits initiaux détermine de manière non ambiguë un schéma de modulation et de codage (MCS, Modulation and Coding Scheme) initial ou inversement chaque MCS initial détermine un débit initial. La remontée des débits initiaux R[ est effectuée via des canaux de contrôle à débit très limité.
Ces débits initiaux sont déterminés par la destination de façon à maximiser une métrique de qualité de service, par exemple une efficacité spectrale moyenne.
Dans le cas d’une adaptation lente de lien la métrique de qualité de service est, selon un mode de réalisation, une efficacité spectrale moyenne qui s’exprime sous la forme :
(6)
Figure imgf000015_0002
avec
• une variable représentant le débit initial alloué à la source i
Figure imgf000015_0003
Figure imgf000015_0004
• Ki le nombre de données transmises sur no i X F utilisations du canal par la source i,
• Tused Ie nombre d’intervalles de temps utilisés pour les retransmissions coopératives ou non coopératives, • E( Tused ) une moyenne du nombre d’intervalles de temps utilisés pour les retransmissions qu’elles soient coopératives ou non coopératives,
• BLERj le taux d’erreur moyen bloc pour la source i.
Dans le cas d’une adaptation lente de lien, le débit et l' allocation de sous-bandes par source reste inchangés pendant plusieurs centaines de transmissions de messages des sources ce qui permet de moyenner le taux d’erreur bloc (BLER) de la source i sur les statistiques du canal (CDI : Channel Distribution Information) connues de la destination. Une source i prend no i X F éléments de ressource pour transmettre au débit Rj les Kj données pendant l’intervalle de temps de la première phase.
Dans le cas d’une adaptation rapide de lien la métrique de qualité de service est, selon un mode de réalisation, une fonction d’utilité moyenne sous contrainte des coupures individuelles des sources définie par message transmis et le débit et l’allocation de sous-bandes peuvent changer d’un message au suivant :
(7)
Figure imgf000016_0001
avec
• Oi t l’événement de coupure individuelle de la source i à l’intervalle t de retransmission qui vaut un en cas de défaut ou zéro en cas de succès (source correctement décodée), O^0 est l’événement de coupure individuelle à la fin de la phase de transmission (première phase d’un intervalle de temps),
• TUsed Ie nombre d’intervalles de temps utilisés pour les retransmissions coopératives ou non coopératives (deuxième phase pouvant prendre la valeur 0 si
Figure imgf000016_0003
• une variable représentant le débit initial alloué à la source i, i ∈ {1, ... , M).
Figure imgf000016_0002
Un mode de réalisation d’un procédé de transmission selon l’invention est décrit à l’appui du schéma de la figure 2 qui illustre un cycle de transmission d’une trame dans le contexte d’un système OMAMRC à trois sources, i = {1, 2, 3) deux relais, i = {4,5), une destination et un canal de transmission ayant une certaine largeur de bande. La bande est découpée en B= 5 sous- bandes et chaque sous-bande associée à un intervalle de temps détermine F=5 utilisations du canal soit N=25.
Pendant la première phase d’un intervalle de temps, chaque source i = {1, 2, 3) émet ses mots de code. Selon l’exemple, le nombre de sous-bandes allouées à une source diffère entre les sources. Ainsi, les sous-bandes fi, Î2et fs sont allouées à la source 1, la sous-bande f3 est allouée à la source 2 et la sous-bande f* est allouée à la source 3. Le vecteur de sélection est donc a0 =
Figure imgf000016_0004
. Le vecteur d’allocation de sous-bandes par nœud est donc
Figure imgf000016_0005
Pendant la deuxième phase dite de retransmission et pour le premier intervalle de temps, seuls les sources 2, 3 et le relais 2 sont sélectionnés et la sous-bande fi est allouée à la source 3, les sous-bandes f2, Î3 et f* sont allouées au relais 5 et la sous-bande fs est allouée à la source 2. Le vecteur de sélection est donc a1 = [s3,r2,r2,r2,s2]T = [3,5,5,5,2]r. Le vecteur d’allocation de sous-bandes par nœud est donc = [0,1,1,0,3]T.
Pendant la deuxième phase dite de retransmission et pour le deuxième intervalle de temps, seuls la source 1 et le relais 4 sont sélectionnés et les sous-bandes f1, f2 et fs sont allouées au relais 4, les sous-bandes f3 et f4 sont allouées à la source 1. Le vecteur de sélection est donc a2 =
= [4,4,l,l,4]T. Le vecteur d’allocation de sous-bandes par nœud est donc n2 = [2,0,0,3,0]T.
Un mode de réalisation du protocole des échanges entre les nœuds et la destination est illustré par la figure 3.
Chaque source transmet à la destination ses données mises en trame avec l’aide des autres sources et des relais. Une trame occupe des intervalles de temps (time slots) lors de la transmission des M messages des respectivement M sources. La transmission d’une trame (qui définit un cycle de transmission) se déroule pendant 1 + Tused intervalles de temps : 1 intervalle pour la 1ere phase de capacité no i utilisations du canal pour chaque source i, Tused intervalles pour la 2e phase de capacité nt i utilisations du canal pour chaque source i.
Pendant la première phase, chaque source s ∈ S transmet après codage un message us comportant Ks bits d’information us étant le corps de Galois à deux éléments. Le
Figure imgf000017_0001
message us comprend un code de type CRC qui permet de vérifier l’intégrité du message us. Le message us est codé selon le MCS initial. Compte tenu que les MCS initiaux peuvent être différents entre les sources, les longueurs des messages codés peuvent être différentes entre les sources. Le codage utilise un code à redondance incrémentale. Le mot de code obtenu est segmenté en blocs de redondance. Le code à redondance incrémentale peut être de type systématique, les bits d’information sont alors inclus dans le premier bloc. Que le code à redondance incrémentale soit ou pas de type systématique, il est tel que le premier bloc peut être décodé de manière indépendante des autres blocs. Le code à redondance incrémentale peut être réalisé par exemple au moyen d’une famille finie de codes linéaires poinçonnés à rendements compatibles ou de codes sans rendement modifiés pour fonctionner avec des longueurs finies : code raptor (RC), turbo code poinçonné de rendement compatible (RCPTC rate compatible punctured turbo code), code convolutionnel poinçonné de rendement compatible (RCPCC rate compatible punctured convolutional code), LDPC de rendement compatible (RCLDPC rate compatible low density parity check code). Ainsi, lors de la première phase, les M sources transmettent simultanément leur message pendant l’intervalle de transmission sur les sous-bandes allouées conformément au vecteur a0, avec respectivement des schémas de modulation et de codage déterminés à partir des valeurs des débits initiaux.
Chaque message transmis correspondant à une source s ∈ S, un message correctement décodé est assimilé à la source correspondante par abus de notation.
Que ce soit pendant la première phase ou la deuxième phase, lorsqu’un nœud, en particulier une source transmet, la destination et les autres nœuds écoutent. Chaque nœud full-duplex peut transmettre et écouter simultanément tous les autres nœuds compte tenu que, pour transmettre, chaque nœud se voit allouer une ou des sous-bandes qui sont différentes entre les nœuds.
La destination, les sources et les relais tentent de décoder les messages reçus à la fin d’un intervalle de temps. Le succès du décodage à chaque nœud est décidé en utilisant le CRC. La destination et les nœuds déterminent ainsi leur jeu de sources correctement décodés.
Pendant la deuxième phase, à l’intervalle de temps (round) t, la destination d transmet son jeu de sources correctement décodées à l’issue de l’intervalle de temps précédent Sd t_ 1 en utilisant par exemple un canal de contrôle de diffusion de retour (feedback broadcast control channel). t = {1, ... , Tused ). Ce retour peut consister en un vecteur de M bits.
Si le décodage de toutes les sources par la destination est correct Sd t_ 1 = S. Dans ce cas, le cycle courant est stoppé, un nouveau cycle peut démarrer. Lin cycle de transmission d’une nouvelle trame débute avec l’effacement des mémoires des relais et de la destination et avec la transmission par les sources de nouveaux messages. Le nombre d’intervalle de temps (rounds) utilisés pendant la seconde phase Tused = {1, ... , Tmax} dépend du succès de décodage à la destination.
Les nœuds, sources et relais, comparent le jeu Sd t_ 1 à leur jeu de sources correctement décodées.
Si le jeu d’un nœud comprend au moins une source non incluse dans le jeu Sd t_ 1 de la destination, le nœud en informe la destination en utilisant par exemple un canal de contrôle dédié de type unicast. L’information transmise par un nœud peut consister en son jeu de sources correctement décodées ou, comme illustrée par la figure 3, en un bit par exemple positionné à un.
Pendant cette deuxième phase, la destination suit une certaine stratégie pour décider du ou des nœuds sélectionnés qui transmettent à l’intervalle de temps (round) t.
La destination informe les nœuds de cette sélection en transmettant le vecteur at en utilisant par exemple le canal de contrôle de diffusion de retour. Chaque nœud qui reçoit le vecteur at peut déterminer s’il est sélectionné et sur quelle(s) sous- bande^) il doit transmettre.
Pendant cette deuxième phase et pour au moins un intervalle de retransmission parmi les Tused intervalles de retransmission, au moins un nœud sélectionné, source ou relais, génère une retransmission coopérative. En dehors du au moins un intervalle de temps, les retransmissions peuvent être coopératives ou non coopératives.
Le nœud sélectionné pour une retransmission transmet uat après un codage multi utilisateurs, les mots ou une partie des mots qu’il a correctement décodés. Le nœud sélectionné peut transmettre des parités déterminées à partir des messages de son jeu de sources correctement décodées en utilisant un codage réseau et un codage canal conjoints (Joint Network Channel Coding). Les autres nœuds et la destination peuvent améliorer leur propre décodage en exploitant la transmission du nœud sélectionné et mettre à jour en conséquence leur jeu de sources correctement décodées.
La destination contrôle ainsi la transmission des nœuds en utilisant un canal de retour. Ceci permet d’améliorer l’efficacité spectrale et la fiabilité en augmentant la probabilité de décodage de toutes les sources par la destination.
Stratégie de sélection
Selon une première stratégie, la destination sélectionne ceux qui maximisent la somme des informations mutuelles parmi l’ensemble Zt des différentes allocations de sous-bandes aux nœuds qui peuvent aider à l’intervalle t. Cette stratégie ne nécessite que la connaissance des nœuds qui peuvent aider, elle est compatible du mode selon lequel les nœuds transmettent une information sous la forme d’un bit.
Le critère de sélection peut s’exprimer sous la forme : (8)
Figure imgf000019_0001
avec Zt le jeu des vecteurs at possibles qui correspondent à la sélection des nœuds qui peuvent aider la destination à l’intervalle (round) t.
Sur la base des jeux de sources correctement décodées reçus des nœuds et selon une deuxième stratégie, la destination sélectionne les nœuds qui permettent d’obtenir le plus de sources nouvellement correctement décodées à la destination à l’issue de l’intervalle courant t i.e. qui maximisent la cardinalité du jeu des sources correctement décodées par la destination à l’issue de l’intervalle courant t.
Selon cette stratégie, le procédé passe en revue toutes les valeurs possibles du vecteur at et retient celui qui conduit au plus grand nombre de sources nouvellement décodées. Ainsi, le procédé ne prend pas en considération les nœuds qui ne peuvent pas aider les sources non encore décodées puisqu’il vise au plus grand nombre de sources nouvellement décodées, i.e ; seuls sont considérés les nœuds i qui satisfont
Figure imgf000020_0001
Cette stratégie nécessite en outre la connaissance du jeu des sources correctement décodés de tous les nœuds précédemment sélectionnés. Dans le cas où plusieurs vecteurs at peuvent conduire au même nombre maximum de sources nouvellement décodées, le procédé choisit le vecteur at qui maximise la somme des
Figure imgf000020_0002
informations mutuelles. En effet, à un intervalle de temps t, il s’agit du seul élément qui peut être maximisé pour maximiser la partie droite des événements de coupure individuelle et des événements de coupure commune. La présence de Ct i dans l’expression de l’événement de coupure commune traduit le fait que les seuls nœuds pouvant être sélectionnés sont ceux pouvant aider i.e. ayant décodé au moins une source non encore décodée par la destination. Le critère de sélection peut alors s’exprimer sous la forme : (9)
Figure imgf000020_0003
avec At le jeu des nœuds candidats qui maximisent le jeu de la destination à l’issue de l’intervalle (round) t.
On peut noter que pour t = 0, les seuls nœuds candidats pour la première phase sont les sources, leur jeu de décodage correspond à elle -même et les nœuds relais ont un jeu de décodage vide.

Claims

REVENDICATIONS
1. Procédé de transmission de messages mis en trames destiné à un système de télécommunication à M sources
Figure imgf000021_0001
ie{ i, ... , M }, éventuellement L relais (r1 ... , rL) et une destination ( d ), M ≥ 2, L ≥ 0, M ≤ B avec un accès multiple orthogonal au canal de transmission, dit OMAMRC, caractérisé en ce que la transmission est de type multiplexage par répartition en fréquence dit FDM sur une bande divisée en B sous-bandes orthogonales entre elles et le procédé est tel qu’il comprend : une transmission simultanée des M sources pendant un intervalle de temps avec allocation d’au moins une sous-bande par source et au moins une retransmission coopérative d’un intervalle de temps d’au moins un nœud relais pris parmi les M sources et les L relais sélectionné par la destination avec allocation par la destination d’au moins une sous-bande par nœud sélectionné, connaissant les sources correctement décodées par les nœuds la destination sélectionne les nœuds qui permettent d’obtenir le plus de sources nouvellement correctement décodées à la destination à l’issue de la retransmission coopérative.
2. Procédé de transmission de messages selon la revendication 1 selon lequel la sélection par la destination est telle qu’un nœud relais qui décode un jeu de sources à un intervalle de temps t ne peut coopérer à un intervalle de temps t+1 que pour une seule source de son jeu.
3. Procédé de transmission de messages selon la revendication 1 selon lequel : - la destination diffuse aux nœuds relais son jeu de sources correctement décodées parmi les sources reçues lors d’un intervalle de transmission, les nœuds relais qui ont correctement décodées une source non correctement décodée par la destination en informe la destination, la destination diffuse aux nœuds relais un vecteur (at) comprenant les nœuds relais sélectionnés pour les sous-bandes pour la retransmission coopérative ou non coopérative pendant l’intervalle de transmission suivant.
4. Procédé de transmission selon la revendication 3 selon lequel un nœud relais informe la destination en transmettant son jeu de sources correctement décodées.
5. Procédé de transmission selon la revendication 1 selon lequel la destination sélectionne les nœuds relais tel que la somme des informations mutuelles entre les nœuds pouvant aider avec leurs sous bandes allouées et la destination est maximisée.
6. Procédé de transmission selon l’une des revendications précédentes avec une phase initiale de détermination de débits initiaux et tel que les débits initiaux alloués aux sources sont déterminés pour maximiser une métrique exprimée sous la forme d’une fonction d’utilité moyenne sous contrainte d’un BLER individuel moyen pour chaque source : ayec
Figure imgf000022_0002
• une variable représentant le débit initial alloué à la source i, i ∈ {1, ... , M)
Figure imgf000022_0001
• Kj le nombre de données transmises sur no i X F utilisations du canal par la source i,
• TUsed Ie nombre d’intervalles de temps utilisés pour les retransmissions coopératives ou non coopératives,
• E (Tused) une moyenne du nombre d’intervalles de temps utilisés pour les retransmissions coopératives ou non coopératives,
• BLERj le taux d’erreur bloc pour la source i.
7. Procédé de transmission selon l’une des revendications 1-5 avec une phase initiale de détermination de débits initiaux à chaque trame et tel que les débits initiaux alloués aux sources sont déterminés pour maximiser une métrique exprimée sous la forme d’une fonction d’utilité moyenne sous contrainte des coupures individuelles des sources : avec
Figure imgf000022_0003
• Oi,t la probabilité de coupure individuelle de la source i à l’intervalle t de retransmission coopérative ou non coopérative,
TUSed Ie nombre de retransmissions coopératives ou non coopératives,
• une variable représentant le débit initial alloué à la source i, i ∈ {1, ... , M)
Figure imgf000022_0004
n0 j un nombre de sous-bandes allouées au nœud i pour l’intervalle de temps 0, i ∈ {1. M},
• F un nombre d’utilisations du canal.
8. Système comprenant M sources ... , sM), L relais (r1 ... , rL) et une destination (d), M ≥ 2, L ≥ 0, adapté pour une mise en œuvre d’un procédé de transmission selon l’une des revendications 1 à 9.
PCT/FR2021/051114 2020-06-24 2021-06-18 Procédé et système omamrc avec transmission fdm WO2021260308A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180045475.0A CN115769510A (zh) 2020-06-24 2021-06-18 利用fdm传输的omamrc方法及系统
US18/002,736 US20230246704A1 (en) 2020-06-24 2021-06-18 Omamrc method and system with fdm transmission
EP21740143.9A EP4173167A1 (fr) 2020-06-24 2021-06-18 Procédé et système omamrc avec transmission fdm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2006623 2020-06-24
FR2006623A FR3111495A1 (fr) 2020-06-24 2020-06-24 Procédé et système OMAMRC avec transmission FDM

Publications (1)

Publication Number Publication Date
WO2021260308A1 true WO2021260308A1 (fr) 2021-12-30

Family

ID=73401595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051114 WO2021260308A1 (fr) 2020-06-24 2021-06-18 Procédé et système omamrc avec transmission fdm

Country Status (5)

Country Link
US (1) US20230246704A1 (fr)
EP (1) EP4173167A1 (fr)
CN (1) CN115769510A (fr)
FR (1) FR3111495A1 (fr)
WO (1) WO2021260308A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024079158A1 (fr) 2022-10-14 2024-04-18 Orange Procédé et système omamrc avec transmission fdm et coopérations multiples par sous-bande

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3067543A1 (fr) * 2017-06-12 2018-12-14 Orange Procede et systeme omamrc de transmission avec adaptation lente de lien
WO2019162592A1 (fr) 2018-02-23 2019-08-29 Orange Procédé et système omamrc de transmission avec adaptation lente de lien sous contrainte d'un bler
FR3079378A1 (fr) * 2018-03-23 2019-09-27 Orange Procede et systeme omamrc de transmission avec signalisation reduite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3067543A1 (fr) * 2017-06-12 2018-12-14 Orange Procede et systeme omamrc de transmission avec adaptation lente de lien
WO2019162592A1 (fr) 2018-02-23 2019-08-29 Orange Procédé et système omamrc de transmission avec adaptation lente de lien sous contrainte d'un bler
FR3078459A1 (fr) * 2018-02-23 2019-08-30 Orange Procede et systeme omamrc de transmission avec adaptation lente de lien sous contrainte d'un bler
FR3079378A1 (fr) * 2018-03-23 2019-09-27 Orange Procede et systeme omamrc de transmission avec signalisation reduite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CEROVIC STEFAN ET AL: "Centralized Scheduling Strategies for Cooperative HARQ Retransmissions in Multi-Source Multi-Relay Wireless Networks", 2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), IEEE, 20 May 2018 (2018-05-20), pages 1 - 6, XP033378563, DOI: 10.1109/ICC.2018.8422578 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024079158A1 (fr) 2022-10-14 2024-04-18 Orange Procédé et système omamrc avec transmission fdm et coopérations multiples par sous-bande
FR3141022A1 (fr) 2022-10-14 2024-04-19 Orange Procédé et système OMAMRC avec transmission FDM et coopérations multiples par sous-bande

Also Published As

Publication number Publication date
CN115769510A (zh) 2023-03-07
FR3111495A1 (fr) 2021-12-17
EP4173167A1 (fr) 2023-05-03
US20230246704A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
EP3756295B1 (fr) Procédé et système omamrc de transmission avec adaptation lente de lien sous contrainte d&#39;un bler
EP3387773B1 (fr) Procede, dispositif de relayage et destinataire avec retour dans un systeme omamrc
EP3639427B1 (fr) Procédé et système omamrc de transmission avec adaptation lente de lien
EP3476071B1 (fr) Transmission dynamique et selectif d&#39;un signal numerique pour un systeme avec relais full-duplex et une voie de retour limitee
EP4150808A1 (fr) Procédé et système omamrc de transmission avec variation du nombre d&#39;utilisations du canal
EP3769451A1 (fr) Procédé et système omamrc de transmission avec signalisation réduite
EP4173167A1 (fr) Procédé et système omamrc avec transmission fdm
EP3224978B1 (fr) Procédé et dispositif de relayage souple et sélectif ssdf
WO2024079158A1 (fr) Procédé et système omamrc avec transmission fdm et coopérations multiples par sous-bande
WO2024002886A1 (fr) Procédé de transmission et système omamrc avec une stratégie de sélection lors de retransmissions tenant compte du débit des sources et d&#39;un ou plusieurs échanges de contrôle
WO2024002899A1 (fr) Procédé de transmission et système omamrc avec une stratégie de sélection lors de retransmissions tenant compte du débit des sources et d&#39;un unique échange de contrôle
WO2023275469A1 (fr) Procede de retransmission cooperative dans un systeme omamrc
WO2024133311A1 (fr) Procédé de communication et système omamrc avec une sélection lors de retransmissions tenant compte du débit des sources et d&#39;un unique échange de csi
WO2024133310A1 (fr) Procédé de communication et système omamrc avec une sélection lors de retransmissions tenant compte d&#39;un unique échange conditionnel de csi
WO2022136798A1 (fr) Procede de reception d&#39;au moins une trame de donnees dans un systeme omamrc, destination, programme d&#39;ordinateur et systeme correspondants
WO2023242295A1 (fr) Procédé de retransmission coopérative dans un système omamrc
WO2024002898A1 (fr) Procédé de retransmission coopérative dans un système omamrc
FR3141028A1 (fr) Procédé de retransmission coopérative dans un système OMAMRC avec allocation de ressources et sélections des sources à aider conjointes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21740143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021740143

Country of ref document: EP

Effective date: 20230124