WO2021260281A1 - Method for controlling the advancement of injection timing of a diesel combustion engine - Google Patents

Method for controlling the advancement of injection timing of a diesel combustion engine Download PDF

Info

Publication number
WO2021260281A1
WO2021260281A1 PCT/FR2021/050757 FR2021050757W WO2021260281A1 WO 2021260281 A1 WO2021260281 A1 WO 2021260281A1 FR 2021050757 W FR2021050757 W FR 2021050757W WO 2021260281 A1 WO2021260281 A1 WO 2021260281A1
Authority
WO
WIPO (PCT)
Prior art keywords
deviation
correction
difference
combustion engine
intake air
Prior art date
Application number
PCT/FR2021/050757
Other languages
French (fr)
Inventor
Serge Laurent
Original Assignee
Psa Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Psa Automobiles Sa filed Critical Psa Automobiles Sa
Priority to EP21732416.9A priority Critical patent/EP4168662A1/en
Publication of WO2021260281A1 publication Critical patent/WO2021260281A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to the field of motor vehicles, more particularly to the control of diesel combustion engines of motor vehicles.
  • the published patent document CN 105089833 A relates to the control of a fuel combustion engine of the diesel type for railway application, more particularly to the management of the fuel injection at each engine cycle. operation, depending on different parameters. The transient regime issue is not addressed and the engine does not seem to be equipped with a turbocharger.
  • Published patent document CN 203098068 A relates to a diesel-type fuel combustion engine equipped with a fuel injection system with an electromechanical injection advance adjustment device. However, the issue of a transitional regime is not addressed.
  • the object of the invention is to overcome at least one of the drawbacks of the aforementioned state of the art. More particularly, the object of the invention is to provide a control for a diesel engine with a turbocharger which makes it possible to better manage transient speeds, in particular with regard to the speed at which the power is delivered during an increase in engine load. .
  • the subject of the invention is a method for controlling a diesel combustion engine with a turbocharger and controlled injection, comprising the following actions: monitoring a deviation EF between a set intake air flow rate and a flow rate of real intake air; injection advance CA correction as a function of the EF deviation; remarkable for the following additional action: monitoring a deviation Ep between a set inlet air pressure and an actual inlet air pressure; and in that the CA correction is a function of the EF deviation and the Ep deviation.
  • the correction CA is greater as the difference EF is large and the difference Ep is large.
  • the correction CA is determined by a mapping as a function of the deviation EF and the deviation Ep.
  • the mapping determines a weighting factor for the correction CA as a function of the deviation EF and the deviation Ep.
  • the weighting factor is between 0 and 1. According to an advantageous embodiment of the invention, the correction factor increases monotonically with the difference EF for a difference Ep greater than a minimum non-zero value.
  • the correction factor increases monotonically with the deviation Ep for a deviation EF greater than a non-zero minimum value.
  • the AC correction is also a function of engine speed n and engine torque T.
  • the invention also relates to a control unit for a diesel combustion engine with turbocharger and controlled injection, remarkable in that said control unit is configured to carry out the method according to the invention.
  • the invention also relates to a motor vehicle comprising a diesel combustion engine with turbocharger and controlled injection and a control unit for said combustion engine, remarkable in that said control unit is configured to perform the method according to the invention.
  • the measures of the invention are advantageous in that they allow the engine to deliver more torque in transient speeds, in particular at altitude, while respecting pollution control constraints.
  • the injection advance CA correction is thus controlled in a more refined and also more efficient manner.
  • FIG 1 is a schematic representation of a diesel combustion engine with turbocharger and controlled injection, equipped with a control unit according to the invention
  • FIG 2 is a flowchart illustrating the principle of transient state control according to the state of the art
  • FIG 3 is a flowchart illustrating the principle of transient regime control according to the invention.
  • FIG 4 illustrates a mapping of an injection advance weighting factor according to the invention.
  • FIG. 1 schematically illustrates a diesel combustion engine 2.
  • the diesel combustion engine 2 conventionally comprises an engine block 4 forming cylinders receiving pistons 6 for compressing the intake air and injecting diesel fuel therein to cause combustion.
  • the fuel is injected into the combustion chambers by injectors 8.
  • injectors 8 are supplied with pressurized fuel via a common rail (not shown) and controlled electrically during each engine operating cycle.
  • the engine 2 comprises an air intake manifold 10, an exhaust manifold 12 and a turbocharger 14, the turbine of which is supplied by the exhaust from the exhaust manifold 12 of the engine and the compressor compresses it. intake air to the intake air manifold 10 of the engine.
  • An exhaust gas recirculation valve 16 commonly designated by the acronym EGR (corresponding to “Exhaust Gas Recycling”) is fluidly disposed between the exhaust line, between the exhaust manifold and the turbocharger 14, and an intake air line connecting the compressor of the turbocharger 14 to the intake air manifold 10.
  • EGR exhaust Gas Recycling
  • This exhaust gas recirculation valve 16 is essentially intended to reduce the emissions of nitrogen oxides NOx, without increasing the amount of particles produced too much.
  • the production of nitrogen oxides NOx results mainly from high combustion temperatures, typically above 1300 ° C, particularly present in high efficiency direct injection engines.
  • the exhaust gas recirculation valve 16 makes it possible to reduce the rate of NOx at the exhaust outlet, essentially by lowering the combustion temperature via in particular the reduction in the proportion of oxygen, to the detriment of efficiency and consumption. of fuel while increasing the amount of particulate matter released.
  • the metering of the flue gas is controlled according to the load and the speed to sufficiently reduce the combustion temperature without significantly increasing the production of soot.
  • the engine comprises a control unit 18 configured in particular to control the fuel injectors 8, as a function of numerous parameters, such as in particular a demand for power on the part of the driver and the engine speed.
  • the control unit 18 is configured to, upon a demand for an increase in power from the driver, control the fuel injectors 8 so as to increase the torque of the engine while applying an advance correction to the engine. 'injection during the transient regime, that is to say the regime where the turbocharger is in the acceleration phase following the increase in engine load and has not yet reached a new pressure and flow rate of the engine. intake air corresponding to the new engine load.
  • FIG. 2 illustrates, by means of a flowchart, a principle for determining the injection advance correction CA as a function of the engine speed n, of the engine torque T and of a difference EF between an intake air flow rate of setpoint and an actual intake air flow rate, according to the state of the art.
  • the difference EF between the setpoint intake air flow rate and the actual intake air flow rate may be permanent then that the exhaust gas recirculation valve is closed, and then lead to prolonged operation of the engine with an AC injection advance correction.
  • Such operating conditions can lead to a significant production of fumes, most often then limited by a reduction in the quantity of fuel injected and thus a reduction in the torque produced.
  • the invention provides, according to FIG. 3 illustrating a flowchart for determining the injection advance correction CA, to also take into account a difference Ep between a setpoint intake air pressure and an air pressure. actual admission.
  • step 20 a mapping of a weighting factor as a function of the difference EF and the difference Ep can be used, this factor then being combined with action 24 with a weighting factor function of the speed n and of the torque T of the engine determined in action 22, similarly to FIG. 2.
  • a mapping of a weighting factor as a function of the difference EF and the difference Ep can be used, this factor then being combined with action 24 with a weighting factor function of the speed n and of the torque T of the engine determined in action 22, similarly to FIG. 2.
  • FIG. 4 illustrates an example of a mapping of the weighting factor as a function of the differences EF and Ep.
  • the vertical axis expresses the weighting factor between 0 and 1.
  • the horizontal axis generally parallel to the plane of the drawing corresponds to the difference EF expressed in mg / cycle and the horizontal axis generally perpendicular to the plane of the drawing according to the perspective corresponds to the deviation Ep expressed in mbar.
  • the weighting factor only becomes large when the deviation EF and the deviation Ep are large.
  • the injection advance correction CA will therefore be significant under the influence of the difference EF between a setpoint intake air flow rate and a real intake air flow rate only if the difference Ep between A set intake air pressure and an actual intake air pressure are also significant.

Abstract

The invention relates to a method for controlling a diesel combustion engine with a turbocharger and controlled injection, comprising the following steps: monitoring a difference EF between a set intake air flow and an actual intake air flow; correcting the injection timing CA in accordance with the difference EF; monitoring a difference EP between a set intake air pressure and an actual intake air pressure; and wherein the correction CA is in accordance with the difference EF and the difference EP.

Description

DESCRIPTION DESCRIPTION
TITRE : CONTRÔLE DE L’AVANCE À L’INJECTION SUR UN MOTEUR À COMBUSTION DIESEL TITLE: INJECTION ADVANCE CONTROL ON A DIESEL COMBUSTION ENGINE
La présente invention revendique la priorité de la demande française N ° 2006533 déposée le 23.06.2020 dont le contenu (texte, dessins et revendications) est ici incorporé par référence. The present invention claims the priority of French application No. 2006533 filed on 06.23.2020, the content of which (text, drawings and claims) is incorporated here by reference.
Domaine technique Technical area
L’invention a trait au domaine des véhicules automobiles, plus particulièrement au contrôle de moteur à combustion diesel de véhicules automobiles. Technique antérieure The invention relates to the field of motor vehicles, more particularly to the control of diesel combustion engines of motor vehicles. Prior art
Dans les moteurs à combustion à carburant du type diesel et avec turbocompresseur, les variations de charge du moteur entraînent des régimes transitoires nécessitant une gestion particulière afin de conserver les prestations de dépollution et d’agrément de conduite. Ces régimes transitoires sont essentiellement dus au temps de réaction du turbocompresseur. Lors d’une augmentation de charge du moteur par le conducteur, manifestée par un enfoncement de l’accélérateur, l’augmentation correspondante de richesse du mélange a pour conséquence, durant la phase transitoire jusqu’à ce que le débit d’air désiré soit atteint, une augmentation de la richesse du mélange air-carburant. Cette augmentation transitoire de richesse peut provoquer une production de fumées noires. Cet effet indésirable est actuellement contrôlé ou du moins limité par une limitation de l’augmentation de richesse du mélange, conduisant alors à une sensation de brio ou reprise réduite. Une autre manière de contrôler ou limiter la production de fumées noires consiste à augmenter l’avance à l’injection. Cette mesure est cependant susceptible de dégrader le bruit de combustion, en d’autres termes de rendre le moteur plus bruyant et potentiellement de l’endommager. In diesel fuel combustion engines with turbochargers, variations in engine load lead to transient regimes requiring special management in order to maintain pollution control and driveability services. These transient conditions are mainly due to the reaction time of the turbocharger. During an increase in engine load by the driver, manifested by a depression of the accelerator, the corresponding increase in richness of the mixture results, during the transitional phase until the desired air flow is achieved, an increase in the richness of the air-fuel mixture. This transient increase in richness can cause the production of black smoke. This undesirable effect is currently controlled or at least limited by limiting the increase in richness of the mixture, thus leading to a sensation of brio or reduced recovery. Another way to control or limit the production of black smoke is to increase the injection advance. This measure, however, is likely to degrade combustion noise, in other words making the engine noisier and potentially damaging it.
Le document de brevet publié CN 105089833 A a trait au contrôle d’un moteur à combustion à carburant du type diesel pour application ferroviaire, plus particulièrement à la gestion de l’injection de carburant à chaque cycle de fonctionnement, en fonction de différents paramètres. La problématique de régime transitoire n’est pas abordée et le moteur ne semble pas être équipé de turbocompresseur. The published patent document CN 105089833 A relates to the control of a fuel combustion engine of the diesel type for railway application, more particularly to the management of the fuel injection at each engine cycle. operation, depending on different parameters. The transient regime issue is not addressed and the engine does not seem to be equipped with a turbocharger.
Le document de brevet publié CN 203098068 A a trait à un moteur à combustion à carburant du type diesel et équipé d’un système d’injection de carburant avec un dispositif électromécanique d’ajustement de l’avance à l’injection. La problématique de régime transitoire n’est cependant pas abordée. Published patent document CN 203098068 A relates to a diesel-type fuel combustion engine equipped with a fuel injection system with an electromechanical injection advance adjustment device. However, the issue of a transitional regime is not addressed.
Exposé de l'invention Disclosure of the invention
L’invention a pour objectif de pallier au moins un des inconvénients de l’état de l’art susmentionné. Plus particulièrement, l’invention a pour objectif de proposer un contrôle pour moteur diesel avec turbocompresseur qui permet de mieux gérer les régimes transitoires, en particulier en ce qui concerne la rapidité à laquelle la puissance est délivrée lors d’une augmentation de charge du moteur. The object of the invention is to overcome at least one of the drawbacks of the aforementioned state of the art. More particularly, the object of the invention is to provide a control for a diesel engine with a turbocharger which makes it possible to better manage transient speeds, in particular with regard to the speed at which the power is delivered during an increase in engine load. .
L’invention a pour objet un procédé de contrôle d’un moteur à combustion diesel avec turbocompresseur et injection commandée, comprenant les actions suivantes : surveillance d’un écart EF entre un débit d’air d’admission de consigne et un débit d’air d’admission réel ; correction CA d’avance à l’injection en fonction de l’écart EF ; remarquable par l’action supplémentaire suivante : surveillance d’un écart Ep entre une pression d’air d’admission de consigne et une pression d’air d’admission réelle ; et en ce que la correction CA est en fonction de l’écart EF et de l’écart Ep. The subject of the invention is a method for controlling a diesel combustion engine with a turbocharger and controlled injection, comprising the following actions: monitoring a deviation EF between a set intake air flow rate and a flow rate of real intake air; injection advance CA correction as a function of the EF deviation; remarkable for the following additional action: monitoring a deviation Ep between a set inlet air pressure and an actual inlet air pressure; and in that the CA correction is a function of the EF deviation and the Ep deviation.
Selon un mode avantageux de l’invention, la correction CA est d’autant plus grande que l’écart EF est grand et l’écart Ep est grand. According to an advantageous mode of the invention, the correction CA is greater as the difference EF is large and the difference Ep is large.
Selon un mode avantageux de l’invention, la correction CA est déterminée par une cartographie en fonction de l’écart EF et de l’écart Ep. According to an advantageous embodiment of the invention, the correction CA is determined by a mapping as a function of the deviation EF and the deviation Ep.
Selon un mode avantageux de l’invention, la cartographie détermine un facteur de pondération de la correction CA en fonction de l’écart EF et de l’écart Ep. According to an advantageous embodiment of the invention, the mapping determines a weighting factor for the correction CA as a function of the deviation EF and the deviation Ep.
Selon un mode avantageux de l’invention, le facteur de pondération est compris entre 0 et 1. Selon un mode avantageux de l’invention, le facteur de correction croît de manière monotone avec l’écart EF pour un écart Ep supérieur à une valeur minimale non nulle. According to an advantageous embodiment of the invention, the weighting factor is between 0 and 1. According to an advantageous embodiment of the invention, the correction factor increases monotonically with the difference EF for a difference Ep greater than a minimum non-zero value.
Selon un mode avantageux de l’invention, le facteur de correction croît de manière monotone avec l’écart Ep pour un écart EF supérieur à une valeur minimale non nulle. According to an advantageous embodiment of the invention, the correction factor increases monotonically with the deviation Ep for a deviation EF greater than a non-zero minimum value.
Selon un mode avantageux de l’invention, la correction CA est également en fonction du régime moteur n et du couple moteur T. According to an advantageous embodiment of the invention, the AC correction is also a function of engine speed n and engine torque T.
L’invention a également pour objet une unité de contrôle d’un moteur à combustion diesel avec turbocompresseur et injection commandée, remarquable en ce que ladite unité de contrôle est configurée pour exécuter le procédé selon l’invention.The invention also relates to a control unit for a diesel combustion engine with turbocharger and controlled injection, remarkable in that said control unit is configured to carry out the method according to the invention.
L’invention a également pour objet un véhicule automobile comprenant un moteur à combustion diesel avec turbocompresseur et injection commandée et une unité de contrôle dudit moteur à combustion, remarquable en ce que ladite unité de contrôle est configurée pour exécuter le procédé selon l’invention. The invention also relates to a motor vehicle comprising a diesel combustion engine with turbocharger and controlled injection and a control unit for said combustion engine, remarkable in that said control unit is configured to perform the method according to the invention.
Les mesures de l’invention sont intéressantes en ce qu’elles permettent au moteur de délivrer davantage de couple dans les régimes transitoires, notamment en altitude tout en respectant les contraintes de dépollution. La correction CA d’avance à l’injection est ainsi contrôlée de manière plus raffinée et aussi plus performante. The measures of the invention are advantageous in that they allow the engine to deliver more torque in transient speeds, in particular at altitude, while respecting pollution control constraints. The injection advance CA correction is thus controlled in a more refined and also more efficient manner.
Brève description des dessins Brief description of the drawings
[Fig 1] est une représentation schématique d’un moteur à combustion diesel avec turbocompresseur et injection commandée, équipé d’une unité de contrôle conforme à l’invention ; [Fig 1] is a schematic representation of a diesel combustion engine with turbocharger and controlled injection, equipped with a control unit according to the invention;
[Fig 2] est un logigramme illustrant le principe de contrôle de régime transitoire selon l’état de la technique ; [Fig 2] is a flowchart illustrating the principle of transient state control according to the state of the art;
[Fig 3] est un logigramme illustrant le principe de contrôle de régime transitoire selon l’invention ; [Fig 3] is a flowchart illustrating the principle of transient regime control according to the invention;
[Fig 4] illustre une cartographie d’un facteur de pondération de l’avance à l’injection, conformément à l’invention. [Fig 4] illustrates a mapping of an injection advance weighting factor according to the invention.
Description détaillée La figure 1 illustre de manière schématique un moteur à combustion diesel 2. detailed description Figure 1 schematically illustrates a diesel combustion engine 2.
Le moteur à combustion diesel 2 comprend, classiquement, un bloc moteur 4 formant des cylindres recevant des pistons 6 en vue de comprimer de l’air d’admission et d’y injecter du carburant diesel pour provoquer une combustion. L’injection du carburant dans les chambres de combustion est réalisée par les injecteurs 8. Ces derniers sont alimentés en carburant sous pression via une rampe commune (non représentée) et commandés électriquement à chaque cycle de fonctionnement du moteur. Toujours classiquement, le moteur 2 comprend un collecteur d’admission d’air 10, un collecteur d’échappement 12 et un turbocompresseur 14 dont la turbine est alimentée par l’échappement depuis le collecteur d’échappement 12 du moteur et le compresseur comprime l’air d’admission vers le collecteur d’air d’admission 10 du moteur. Une vanne de recirculation de gaz d’échappement 16, couramment désignée par l’acronyme EGR (correspondant à « Exhaust Gas Recycling ») est disposée de manière fluidique entre la ligne d’échappement, entre le collecteur d’échappement et le turbocompresseur 14, et une conduite d’air d’admission reliant le compresseur du turbocompresseur 14 au collecteur d’air d’admission 10. Cette vanne de recirculation de gaz d’échappement 16 est essentiellement destinée à réduire les émissions d'oxydes d'azote NOx, sans trop augmenter la quantité de particules produites. La production d'oxydes d'azote NOx résulte essentiellement de températures de combustion élevées, typiquement supérieures à 1300°C, particulièrement présentes dans les moteurs à injection directe à haut rendement. La vanne de recirculation de gaz d’échappement 16 permet de réduire le taux de NOx, en sortie d’échappement, essentiellement en abaissant la température de combustion via notamment la diminution de la proportion d'oxygène, au détriment du rendement et de la consommation de carburant tout en augmentant la quantité de particules rejetées.The diesel combustion engine 2 conventionally comprises an engine block 4 forming cylinders receiving pistons 6 for compressing the intake air and injecting diesel fuel therein to cause combustion. The fuel is injected into the combustion chambers by injectors 8. These injectors are supplied with pressurized fuel via a common rail (not shown) and controlled electrically during each engine operating cycle. Still conventionally, the engine 2 comprises an air intake manifold 10, an exhaust manifold 12 and a turbocharger 14, the turbine of which is supplied by the exhaust from the exhaust manifold 12 of the engine and the compressor compresses it. intake air to the intake air manifold 10 of the engine. An exhaust gas recirculation valve 16, commonly designated by the acronym EGR (corresponding to “Exhaust Gas Recycling”) is fluidly disposed between the exhaust line, between the exhaust manifold and the turbocharger 14, and an intake air line connecting the compressor of the turbocharger 14 to the intake air manifold 10. This exhaust gas recirculation valve 16 is essentially intended to reduce the emissions of nitrogen oxides NOx, without increasing the amount of particles produced too much. The production of nitrogen oxides NOx results mainly from high combustion temperatures, typically above 1300 ° C, particularly present in high efficiency direct injection engines. The exhaust gas recirculation valve 16 makes it possible to reduce the rate of NOx at the exhaust outlet, essentially by lowering the combustion temperature via in particular the reduction in the proportion of oxygen, to the detriment of efficiency and consumption. of fuel while increasing the amount of particulate matter released.
Le dosage de gaz brûlé est piloté en fonction de la charge et du régime pour réduire suffisamment la température de combustion sans significativement augmenter la production de suies. The metering of the flue gas is controlled according to the load and the speed to sufficiently reduce the combustion temperature without significantly increasing the production of soot.
Le moteur comprend une unité de contrôle 18 configurée pour notamment commander les injecteurs de carburant 8, en fonction de nombreux paramètres, comme notamment une demande de puissance de la part du conducteur et le régime du moteur. The engine comprises a control unit 18 configured in particular to control the fuel injectors 8, as a function of numerous parameters, such as in particular a demand for power on the part of the driver and the engine speed.
L’unité de contrôle 18 est configurée pour, lors d’une demande d’augmentation de puissance de la part du conducteur, commander les injecteurs de carburant 8 de manière à augmenter le couple du moteur tout en appliquant une correction d’avance à l’injection durant le régime transitoire, c’est-à-dire le régime où le turbocompresseur est en phase d’accélération suite à l’augmentation de charge du moteur et n’a pas encore atteint un nouveau régime de pression et débit de l’air admission correspondant à la nouvelle charge du moteur. The control unit 18 is configured to, upon a demand for an increase in power from the driver, control the fuel injectors 8 so as to increase the torque of the engine while applying an advance correction to the engine. 'injection during the transient regime, that is to say the regime where the turbocharger is in the acceleration phase following the increase in engine load and has not yet reached a new pressure and flow rate of the engine. intake air corresponding to the new engine load.
La figure 2 illustre au moyen d’un logigramme un principe de détermination de correction CA d’avance d’injection en fonction du régime moteur n, du couple moteur T et d’un écart EF entre un débit d’air d’admission de consigne et un débit d’air d’admission réel, selon l’état de la technique. Lors d’une augmentation de charge du moteur, une consigne de quantité de carburant à injecter et une consigne de débit d’air associée sont déterminées. Ces deux consignes correspondent à des augmentations, signifiant que le débit d’échappement va augmenter et que le régime du turbocompresseur va également augmenter. La consigne de quantité de carburant à injecter peut être atteinte immédiatement, par exemple d’un cycle de fonctionnement à l’autre. Par contre, la consigne de débit d’air d’admission ne peut être atteinte immédiatement compte tenu de l’inertie du turbocompresseur. Selon la figure 2, il est connu de surveiller l’écart EF entre le débit d’air d’admission de consigne et le débit d’air d’admission réel et prévoir une correction CA d’avance à l’injection en fonction de l’écart EF. A l’action 20’, une courbe de pondération en fonction de l’écart EF peut être utilisée. Similairement, à l’action 22’, la correction CA d’avance à l’injection peut être fonction du régime n et du couple T du moteur. Une cartographie de pondération suivant n et T peut aussi être utilisée. Les deux facteurs de pondération obtenus aux actions 20’ et 22’ sont combinés à l’action 24 de manière à déterminer la correction CA d’avance à l’injection. FIG. 2 illustrates, by means of a flowchart, a principle for determining the injection advance correction CA as a function of the engine speed n, of the engine torque T and of a difference EF between an intake air flow rate of setpoint and an actual intake air flow rate, according to the state of the art. When the engine load increases, a setpoint for the amount of fuel to be injected and an associated air flow setpoint are determined. These two setpoints correspond to increases, meaning that the exhaust flow will increase and the turbocharger rpm will also increase. The set amount of fuel to be injected can be reached immediately, for example from one operating cycle to the next. On the other hand, the intake air flow setpoint cannot be reached immediately given the inertia of the turbocharger. According to FIG. 2, it is known to monitor the difference EF between the setpoint intake air flow rate and the actual intake air flow rate and to provide an injection advance correction CA as a function of the EF deviation. At the 20 ’action, a weighting curve as a function of the EF deviation can be used. Similarly, at the 22 ’action, the injection advance AC correction can be a function of engine speed n and torque T. A weighting map following n and T can also be used. The two weighting factors obtained at actions 20 ’and 22’ are combined with action 24 to determine the injection advance AC correction.
Dans certaines conditions de fonctionnement, notamment en altitude (par exemple à partir de 1500m d’altitude), l’écart EF entre le débit d’air d’admission de consigne et le débit d’air d’admission réel peut être permanent alors que la vanne de recyclage de gaz d’échappement est fermée, et conduire alors à un fonctionnement prolongé du moteur avec une correction CA d’avance à l’injection. De telles conditions de fonctionnement peuvent conduire à une production importante de fumées, le plus souvent limitée alors par une réduction de la quantité de carburant injectée et ainsi une réduction du couple produit. Under certain operating conditions, especially at altitude (for example from an altitude of 1500m), the difference EF between the setpoint intake air flow rate and the actual intake air flow rate may be permanent then that the exhaust gas recirculation valve is closed, and then lead to prolonged operation of the engine with an AC injection advance correction. Such operating conditions can lead to a significant production of fumes, most often then limited by a reduction in the quantity of fuel injected and thus a reduction in the torque produced.
L’invention prévoit, suivant la figure 3 illustrant un logigramme de détermination de correction CA d’avance d’injection, de tenir également compte d’un écart Ep entre une pression d’air d’admission de consigne et une pression d’air d’admission réelle.The invention provides, according to FIG. 3 illustrating a flowchart for determining the injection advance correction CA, to also take into account a difference Ep between a setpoint intake air pressure and an air pressure. actual admission.
A cet effet, à l’étape 20, une cartographie d’un facteur de pondération en fonction de l’écart EF et de l’écart Ep peut être utilisée, ce facteur étant alors combiné à l’action 24 avec un facteur de pondération fonction du régime n et du couple T du moteur déterminé à l’action 22, similairement à la figure 2. Une telle approche est intéressante en ce qu’en altitude l’écart Ep entre une pression d’air d’admission de consigne et une pression d’air d’admission réelle est faible, voire s’annule, permettant alors de limiter la correction CA d’avance d’injection et de délivrer un couple satisfaisant. To this end, in step 20, a mapping of a weighting factor as a function of the difference EF and the difference Ep can be used, this factor then being combined with action 24 with a weighting factor function of the speed n and of the torque T of the engine determined in action 22, similarly to FIG. 2. Such an approach is advantageous in that at altitude the difference Ep between a setpoint intake air pressure and an actual intake air pressure is low, or even cancels out, then making it possible to limit the injection advance correction CA and to deliver a satisfactory torque.
La figure 4 illustre un exemple de cartographie de facteur de pondération en fonction des écarts EF et Ep. L’axe vertical exprime le facteur de pondération compris entre 0 et 1. L’axe horizontal généralement parallèle au plan du dessin correspond à l’écart EF exprimé en mg/cycle et l’axe horizontal généralement perpendiculaire au plan du dessin suivant la perspective correspond à l’écart Ep exprimé en mbar. On peut observer que le facteur de pondération ne devient grand que lorsque l’écart EF et l’écart Ep sont grands. En d’autres termes, une telle approche permet de limiter l’effet de l’écart EF sur la correction CA d’avance à l’injection lorsque l’écart Ep est faible, et vice versa. La correction CA d’avance d’injection ne sera donc importante sous l’influence de l’écart EF entre un débit d’air d’admission de consigne et un débit d’air d’admission réel que si l’écart Ep entre une pression d’air d’admission de consigne et une pression d’air d’admission réelle est également significatif. FIG. 4 illustrates an example of a mapping of the weighting factor as a function of the differences EF and Ep. The vertical axis expresses the weighting factor between 0 and 1. The horizontal axis generally parallel to the plane of the drawing corresponds to the difference EF expressed in mg / cycle and the horizontal axis generally perpendicular to the plane of the drawing according to the perspective corresponds to the deviation Ep expressed in mbar. It can be observed that the weighting factor only becomes large when the deviation EF and the deviation Ep are large. In other words, such an approach makes it possible to limit the effect of the EF deviation on the injection advance CA correction when the Ep deviation is small, and vice versa. The injection advance correction CA will therefore be significant under the influence of the difference EF between a setpoint intake air flow rate and a real intake air flow rate only if the difference Ep between A set intake air pressure and an actual intake air pressure are also significant.

Claims

REVENDICATIONS
[Revendication 1.] Procédé de contrôle d’un moteur à combustion diesel (2) avec turbocompresseur (14) et injection commandée, comprenant les actions suivantes : [Claim 1.] A method of controlling a diesel combustion engine (2) with a turbocharger (14) and controlled injection, comprising the following actions:
- surveillance d’un écart EF entre un débit d’air d’admission de consigne et un débit d’air d’admission réel ; - monitoring of an EF difference between a setpoint intake air flow rate and an actual intake air flow rate;
- correction CA d’avance à l’injection en fonction de l’écart EF ; caractérisé par l’action supplémentaire suivante : - CA injection advance correction as a function of the EF deviation; characterized by the following additional action:
- surveillance d’un écart Ep entre une pression d’air d’admission de consigne et une pression d’air d’admission réelle ; et en ce que - monitoring of a deviation Ep between a set inlet air pressure and an actual inlet air pressure; and in that
- la correction CA est en fonction de l’écart EF et de l’écart Ep. - the AC correction is a function of the EF deviation and the Ep deviation.
[Revendication 2.] Procédé selon la revendication 1 , caractérisé en ce que la correction CA est d’autant plus grande que l’écart EF est grand et l’écart Ep est grand. [Claim 2.] A method according to claim 1, characterized in that the correction CA is greater as the deviation EF is large and the deviation Ep is large.
[Revendication 3.] Procédé selon l’une des revendications 1 et 2, caractérisé en ce que la correction CA est déterminée par une cartographie en fonction de l’écart EF et de l’écart Ep. [Claim 3.] Method according to one of claims 1 and 2, characterized in that the AC correction is determined by a mapping as a function of the EF deviation and the Ep deviation.
[Revendication 4.] Procédé selon la revendication 3, caractérisé en ce que la cartographie détermine un facteur de pondération de la correction CA en fonction de l’écart EF et de l’écart Ep. [Claim 4.] The method of claim 3, characterized in that the mapping determines a weighting factor for the AC correction as a function of the EF deviation and the Ep deviation.
[Revendication 5.] Procédé selon la revendication 4, caractérisé en ce que le facteur de pondération est compris entre 0 et 1. [Claim 5.] A method according to claim 4, characterized in that the weighting factor is between 0 and 1.
[Revendication 6.] Procédé selon l’une des revendications 4 et 5, caractérisé en ce que le facteur de pondération croît de manière monotone avec l’écart EF pour un écart Ep supérieur à une valeur minimale non nulle. [Revendication 7.] Procédé selon l’une des revendications 4 à 6, caractérisé en ce que le facteur de pondération croît de manière monotone avec l’écart Ep pour un écart EF supérieur à une valeur minimale non nulle. [Revendication 8.] Procédé selon l’une des revendications 1 à 7, caractérisé en ce que la correction CA est également en fonction du régime moteur n et du couple moteur T. [Revendication 9.] Unité de contrôle (18) d’un moteur à combustion diesel (2) avec turbocompresseur (14) et injection commandée, caractérisée en ce que ladite unité de contrôle (18) est configurée pour exécuter le procédé selon l’une des revendications 1 à 8. [Revendication 10.] Véhicule automobile comprenant un moteur à combustion diesel (2) avec turbocompresseur (14) et injection commandée et une unité de contrôle (18) dudit moteur à combustion, caractérisée en ce que ladite unité de contrôle (18) est configurée pour exécuter le procédé selon l’une des revendications 1 à 8. [Claim 6.] Method according to one of claims 4 and 5, characterized in that the weighting factor increases monotonically with the difference EF for a difference Ep greater than a minimum non-zero value. [Claim 7.] Method according to one of claims 4 to 6, characterized in that the weighting factor increases monotonically with the deviation Ep for a deviation EF greater than a non-zero minimum value. [Claim 8.] Method according to one of claims 1 to 7, characterized in that the correction CA is also a function of the engine speed n and of the engine torque T. [Claim 9.] Control unit (18) of a diesel combustion engine (2) with turbocharger (14) and controlled injection, characterized in that said control unit (18) is configured to carry out the method according to the one of claims 1 to 8. [Claim 10.] Motor vehicle comprising a diesel combustion engine (2) with turbocharger (14) and controlled injection and a control unit (18) of said combustion engine, characterized in that said unit control (18) is configured to carry out the method according to one of claims 1 to 8.
PCT/FR2021/050757 2020-06-23 2021-05-03 Method for controlling the advancement of injection timing of a diesel combustion engine WO2021260281A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21732416.9A EP4168662A1 (en) 2020-06-23 2021-05-03 Method for controlling the advancement of injection timing of a diesel combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2006533A FR3111672B1 (en) 2020-06-23 2020-06-23 CHECKING THE INJECTION ADVANCE ON A DIESEL COMBUSTION ENGINE
FR2006533 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021260281A1 true WO2021260281A1 (en) 2021-12-30

Family

ID=73642972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/050757 WO2021260281A1 (en) 2020-06-23 2021-05-03 Method for controlling the advancement of injection timing of a diesel combustion engine

Country Status (3)

Country Link
EP (1) EP4168662A1 (en)
FR (1) FR3111672B1 (en)
WO (1) WO2021260281A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114876660A (en) * 2022-05-20 2022-08-09 潍柴动力股份有限公司 Correction method and device for fuel injection advance angle and electronic equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2006533A1 (en) 1968-04-19 1969-12-26 Marker Hannes
EP0843087A2 (en) * 1996-11-13 1998-05-20 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Fuel injection apparatus for a diesel combustion engine
EP1744040A1 (en) * 2005-07-14 2007-01-17 HONDA MOTOR CO., Ltd. Control system for internal combustion engine
US20070023010A1 (en) * 2004-04-07 2007-02-01 Johannes Baldauf Method of controlling the injection begin of a fuel injection valve of an internal combustion engine
US7219002B2 (en) * 2005-05-30 2007-05-15 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US20080202099A1 (en) * 2007-02-28 2008-08-28 Honda Motor Co., Ltd. Fuel control of an internal-combustion engine
CN203098068U (en) 2012-12-27 2013-07-31 重庆普什机械有限责任公司 Fuel injection adjusting system of high-power diesel engine
CN105089833A (en) 2014-05-23 2015-11-25 株洲南车时代电气股份有限公司 Diesel engine fuel oil electronic injecting device and system for diesel locomotive and control method of device and system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2006533A1 (en) 1968-04-19 1969-12-26 Marker Hannes
EP0843087A2 (en) * 1996-11-13 1998-05-20 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Fuel injection apparatus for a diesel combustion engine
US20070023010A1 (en) * 2004-04-07 2007-02-01 Johannes Baldauf Method of controlling the injection begin of a fuel injection valve of an internal combustion engine
US7219002B2 (en) * 2005-05-30 2007-05-15 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
EP1744040A1 (en) * 2005-07-14 2007-01-17 HONDA MOTOR CO., Ltd. Control system for internal combustion engine
US20080202099A1 (en) * 2007-02-28 2008-08-28 Honda Motor Co., Ltd. Fuel control of an internal-combustion engine
CN203098068U (en) 2012-12-27 2013-07-31 重庆普什机械有限责任公司 Fuel injection adjusting system of high-power diesel engine
CN105089833A (en) 2014-05-23 2015-11-25 株洲南车时代电气股份有限公司 Diesel engine fuel oil electronic injecting device and system for diesel locomotive and control method of device and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114876660A (en) * 2022-05-20 2022-08-09 潍柴动力股份有限公司 Correction method and device for fuel injection advance angle and electronic equipment

Also Published As

Publication number Publication date
EP4168662A1 (en) 2023-04-26
FR3111672B1 (en) 2022-08-12
FR3111672A1 (en) 2021-12-24

Similar Documents

Publication Publication Date Title
EP2250359B1 (en) Cetane number estimation method
EP1774144B1 (en) System for assisting regeneration of pollution management means
EP1632668B1 (en) System for controlling a combustion engine with direct injection and engine with such system
EP2379867B1 (en) Internal combustion heat engine, control system, method for dimensioning the engine, and automobile with said engine
WO2021260281A1 (en) Method for controlling the advancement of injection timing of a diesel combustion engine
EP3402975B1 (en) Method for managing a turbocharged motor vehicle engine
FR2870887A1 (en) Internal combustion engine e.g. gasoline engine, controlling method for motor vehicle, involves controlling overlapping of valve strokes so that inlet and exhaust valves are open and fuel arrives in exhaust gas pipe for being burnt with air
FR2947866A1 (en) Method for controlling air flow injected in petrol engine connected to turbocharger in vehicle, involves controlling air flow injected in engine by correcting set value airflow, where set value airflow is compared with minimum air flow
EP3816427B1 (en) Method for diagnosing a gas leak from a low-pressure exhaust gas partial recirculation circuit of an internal combustion engine
EP2299094A1 (en) Method for controlling a supercharged diesel engine with low-pressure exhaust gas recirculation
EP3805544A1 (en) Control of a supercharged spark ignition engine with low-pressure exhaust gas recirculation
EP1760300A1 (en) Method and apparatus for controlling a diesel engine of a vehicle
WO2011004091A1 (en) Method for controlling airflow injected in an engine, assembly including a computer implementing the method, and vehicle including the assembly
WO2006095114A1 (en) System for controlling switchover of a motor vehicle operating conditions between lean and rich modes
US20210277841A1 (en) Method for Operating an Internal Combustion Engine of a Motor Vehicle With an Automatic Transmission
EP3910185A1 (en) Method for controlling an internal combustion engine associated with a common rail injection
EP2562400A1 (en) Method for regenerating a particulate filter of an internal combustion engine
EP4045783A1 (en) Method for managing the torque of a motor vehicle comprising an internal combustion engine
WO2018178536A1 (en) Method for controlling a supercharged spark-ignition engine with partial recirculation of exhaust gases and associated motorisation means
FR3047521A1 (en) METHOD FOR CONTROLLING A MOTORIZATION DEVICE AND ASSOCIATED MOTORIZATION DEVICE
EP1703105A1 (en) System for assisting the regeneration of a storage/releasing NOX trap in an exhaust system of a motor vehicle
FR2874967A1 (en) Regenerating the particulate filter of an internal combustion engine comprises restricting the amount of air admitted into the engine during periods of low-load operation
EP1803919A1 (en) Method of injecting fuel to increase the full load performance of an engine
EP2799695A1 (en) Low-pollution engine with exhaust-gas recirculation for a motor vehicle
FR2945317A1 (en) Drive train managing method for diesel type motor vehicle, involves regulating supercharging of air of train based on combination of pressure in manifold and pressure in upstream of turbine of turbocompressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21732416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021732416

Country of ref document: EP

Effective date: 20230123