WO2021259958A1 - Procede de determination de la pression arterielle a partir d'un signal ppg et dispositif correspondant - Google Patents

Procede de determination de la pression arterielle a partir d'un signal ppg et dispositif correspondant Download PDF

Info

Publication number
WO2021259958A1
WO2021259958A1 PCT/EP2021/067047 EP2021067047W WO2021259958A1 WO 2021259958 A1 WO2021259958 A1 WO 2021259958A1 EP 2021067047 W EP2021067047 W EP 2021067047W WO 2021259958 A1 WO2021259958 A1 WO 2021259958A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurements
patient
pressure
ppg
ppg signal
Prior art date
Application number
PCT/EP2021/067047
Other languages
English (en)
Inventor
Alain Magid Hallab
Franck MOUNEY
Original Assignee
Axelife
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axelife filed Critical Axelife
Publication of WO2021259958A1 publication Critical patent/WO2021259958A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation

Definitions

  • the field of the invention is that of medical examination techniques and in particular of blood pressure monitoring techniques.
  • the invention relates to a method and a device for determining blood pressure from a photoplethysmographic (PPG) signal from a patient.
  • PPG photoplethysmographic
  • the known methods of estimating arterial pressure from PPG signals are mainly based on a time domain approach. Most of them involve signal pre-processing (smoothing, filtering, etc.), extraction of temporal characteristics and a predictive model of arterial pressure, such as the Windkessel model (see for example Choudhury, AD , Banerjee, R., Sinha, A., Kundu, S .: Estimating blood pressure using windkessel model on photoplethysmogram. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society pp. 4567-4570.
  • a drawback of these known techniques using neural networks or deep learning networks is that they are expensive in terms of computation capacity and less rapid, and that they do not make it possible to explain a relationship between arterial pressure and blood pressure. PPG signal from an individual.
  • the object of the invention is therefore in particular to overcome the drawbacks of the state of the art mentioned above.
  • Another objective of the invention is to provide such a technique for determining arterial pressure which is simple, efficient and rapid to implement.
  • An objective of the invention is also to provide such a technique which is inexpensive.
  • Yet another objective of the invention is to provide a technique for determining arterial pressure from a PPG signal from a patient which is robust regardless of the quality of the PPG signal. 4. Disclosure of the invention
  • a method of determining the blood pressure of a patient comprising the following steps: measuring a PPG signal using a photoplethysmography sensor applied to a part of the body of said patient; determining the systolic pressure and the diastolic pressure from said PPG signal comprising the following steps: normalizing said PPG signal so as to obtain a normalized signal of zero mean; calculation of the systolic pressure PAS, said systolic pressure PAS being calculated according to the mathematical formulation , where n, with n ⁇ 8, is the number of a first set of explanatory variables of a statistical learning method of the linear regression method type, said explanatory variables j (j ⁇ [1; n]) being time markers or characteristic frequencies, X j (j ⁇ [1; n]) is the amplitude of the explanatory variable j (j ⁇ [1; n]) obtained for said normalized PPG signal and the weighting coefficient
  • diastolic pressure PAD said diastolic pressure PAD being calculated according to the mathematical formulation , where p, with p ⁇ 8, is the number of a second set of explanatory variables of said statistical learning method of type linear regression method, said explanatory variables i (i ⁇ [1; p]) being markers time or characteristic frequencies, Y i (i ⁇ [1; p]) is the amplitude of the explanatory variable i (i ⁇ [1; p]) obtained for said normalized PPG signal and the weighting coefficients ⁇ i (i ⁇ [1; p]) are constants, said explanatory variables i (i ⁇ [1; p]) and said weighting coefficients ⁇ i (i ⁇ [1; p]) having been determined beforehand by construction of a predictive model from said statistical learning model and from a set of measurements of PPG signals and of measurements of systolic pressure and diastolic pressure carried out jointly on said patient beforehand.
  • the invention proposes to use a predictive equation of the systolic pressure and of the diastolic pressure obtained by a statistical learning method using time markers or spectra of PPG signals previously recorded to estimate the value of a patient's blood pressure from a simple measurement of a PPG signal.
  • the method according to the invention makes it possible to estimate the blood pressure of a patient in a reliable and robust manner and with precision and makes it possible to provide an estimate of the blood pressure continuously.
  • the term “statistical learning method of the linear regression method type” covers any known machine learning algorithm making it possible to provide a predictive linear equation of blood pressure as a function of explanatory variables. , or in other words to express the systolic pressure and the diastolic pressure in the form of linear mathematical functions of the explanatory variables, and for example regularized linear regression methods, such as the LASSO algorithm (acronym for "Least Absolute Shrinkage and Selection Operator ”), the Ridge algorithm or the Elastic net algorithm, or methods such as the PLS algorithm ...
  • regularized linear regression methods such as the LASSO algorithm (acronym for "Least Absolute Shrinkage and Selection Operator ”), the Ridge algorithm or the Elastic net algorithm, or methods such as the PLS algorithm ...
  • explanatory variable also called predictive variable
  • the term “explanatory variable” is understood in its current meaning in the field of statistical learning methods, namely one of the characteristic variables selected from a large set of. variable, used to estimate the value of a variable to predict, also called an explained variable.
  • said numbers n and p are between 10 and 30.
  • said numbers n and p are between 20 and 30.
  • said step of determining the systolic pressure and the diastolic pressure comprises a step of processing said normalized PPG signal in order to obtain a spectrum of said PPG signal, said explanatory variables j (j ⁇ [1; n]) and i (i ⁇ [1; p]) are characteristic frequencies, with n and p greater than or equal to 15, and preferably greater than or equal to 20, and said predictive model is obtained from the median spectra of said PPG signals produced beforehand, together with measurements of systolic pressure and diastolic pressure.
  • the arterial pressure is thus determined precisely from the spectral information of the PPG signals, which is simpler to implement.
  • said explanatory variables j (j ⁇ [1; n]) and i (i ⁇ [1; p]) are time markers and at least one of said time markers belongs to the group comprising at least :
  • Temporal or amplitude parameter of the Gaussian model variance of the spectral entropy of the signal; pulse wave skewness; pulse wave kurtosis.
  • said statistical learning method of linear regression method type is a LASSO method.
  • said set of measurements of PPG signals and of measurements of the systolic pressure and the diastolic pressure carried out jointly beforehand on said patient are carried out on at least partly on said patient in a lying position and / or at least partly on said patient. in a standing position and / or at least partly on said patient after carrying out a stress test.
  • Blood pressure can thus be predicted more precisely regardless of the position (lying or standing) or the state of the patient (at rest or after exertion).
  • the measurements of said set of measurements of PPG signals and of measurements of the systolic pressure and the diastolic pressure carried out jointly beforehand on said patient have a duration of at least 10 seconds.
  • the number of measurements of said set of measurements of PPG signals and of measurements of the systolic pressure and the diastolic pressure carried out jointly beforehand on said patient is greater than or equal to 45.
  • the prediction model is constructed from at least 15 preliminary measurements in the supine position, at least 15 measurements when the patient is standing and at least 15 measurements taken after a stress test consisting, for example, of a Ruffier-Dickson test or a 10 to 30 minute stress test performed in a hospital or clinic.
  • the invention also relates to a device for determining the arterial pressure of a patient, comprising: means for measuring a PPG signal comprising a photoplethysmographic sensor intended to be applied to a part of the body of said patient; means for determining the systolic pressure and the diastolic pressure from said PPG signal comprising a calculation unit dedicated to or configured to: digitally process said PPG signal in order to obtain a normalized signal of zero mean; calculate the systolic pressure PAS according to the mathematical formulation, where n, with n ⁇ 8, is the number of a first set of explanatory variables of a statistical learning method of the linear regression method type, said explanatory variables j (j ⁇ [1; n]) being time markers or characteristic frequencies, X j (j ⁇ [1; n]) is the amplitude of the explanatory variable j (j ⁇ [1; n]) obtained for said normalized PPG signal and the weighting coefficients a j (j ⁇ [1;
  • FIG. 1 is a block diagram of the steps of a first exemplary embodiment of a method for determining arterial pressure in the frequency domain according to the invention, in the form of a block diagram;
  • FIG. 2 is a schematic representation of a device for determining arterial pressure according to the invention implementing the method presented with reference to FIG. 1;
  • Figure 3 illustrates the use of a sliding window to calculate the median spectrum of a PPG signal;
  • FIG. 1 is a block diagram of the steps of a first exemplary embodiment of a method for determining arterial pressure in the frequency domain according to the invention, in the form of a block diagram
  • FIG. 2 is a schematic representation of a device for determining arterial pressure according to the invention implementing the method presented with reference to FIG. 1
  • Figure 3 illustrates the use of a sliding window to calculate the median spectrum of a PPG signal;
  • FIG. 1 is a block diagram of the steps of a first exemplary embodiment of a method for determining arterial pressure in the frequency domain according to the invention, in the form of a
  • FIG. 4 represents the cross-mean square prediction error by the LASSO algorithm in spectral analysis of the PPG signal for the systolic arterial pressure (a) and the diastolic pressure (b);
  • Figure 5 is a comparison of predicted and measured values of systolic blood pressure (a) and diastolic pressure (b);
  • FIG. 6 is a block diagram of the steps of a second exemplary embodiment of a method for determining arterial pressure in the time domain according to the invention, in the form of a block diagram 6. Detailed description of the invention
  • First exemplary embodiment of the invention The steps of a first exemplary embodiment of a method for determining arterial pressure as a function of a PPG signal of a patient according to the invention, in the form of a block diagram.
  • a PPG signal is measured with a PPG sensor 21 implanted within a clamp which attaches to the thumb of the right hand of a patient.
  • the PPG sensor can be implanted in a watch, a bracelet or an armband.
  • the digital output signal of the PPG sensor is transmitted to a calculation unit 22.
  • this device 20 comprises a PPG sensor 21 providing digital output signals, transmitted to a computing unit 22.
  • the computing unit 22 comprises a random access memory 23 (for example a RAM memory), a processing unit 24 equipped with example of a processor, and controlled by a computer program stored in a read only memory 25 (for example a ROM memory or a hard disk).
  • a computer program stored in a read only memory 25 (for example a ROM memory or a hard disk).
  • the code instructions of the computer program are for example loaded into the random access memory 23 before being executed by the processor of the processing unit 24.
  • the PPG signal is normalized in a substep 121, then the median spectrum of the normalized PPG signal is calculated in a substep 122, and an estimate of the systolic pressure and the diastolic pressure is calculated. from the median spectrum of the normalized PPG signal, in a following sub-step 123.
  • the two sub-steps 121, 122 and 123 form step 12 of determining the arterial pressure of the method according to the invention.
  • the signal PPG (t) is normalized by the processing unit 24 by subtracting the average value of this signal then by dividing the signal with zero mean value by its standard deviation (Std), so as to obtain a normalized signal PPGs (t) defined by:
  • the processing unit 24 calculates the discrete Fourier transform of the normalized signal PPGs to obtain the spectrum of the normalized signal from which a median spectrum is obtained by averaging the spectra of a plurality of sliding windows applied. to the spectrum of the normalized signal, as shown in Figure 3.
  • the processing unit 24 calculates in a first step 123 1 the systolic pressure PAS from the mathematical formulation, where n is equal to 30, j (j ⁇ [1; n]) represents a first group of frequencies characteristic of a predictive model of arterial pressure, and X j (j ⁇ [1; n]) is the amplitude of the median spectrum for the characteristic frequency j (j ⁇ [1; n]) and the weighting coefficients a j (j ⁇ [1; n]) are constants whose values are specified in the following table:
  • the measurements were carried out using a pOpmetre medical device (registered trademark): The cuff of the blood pressure monitor was positioned on the subject's left arm.
  • the PPG clamp was positioned on the thumb of the right hand.
  • Each PPG signal was normalized by subtracting its mean value and dividing by its standard deviation (Std) and the normalized PPG signal was amplified (adding zero values to the end of the signal) up to 105 (equivalent to a time window of 100 seconds at a sampling frequency of 1 KHz).
  • the MSE of the LASSO algorithm for systolic pressure is 18.07 and the MSE for diastolic pressure is 7.95.
  • Figure 4 shows the uninterrupted cross-validated mean squared prediction error of the LASSO algorithm for systolic and diastolic pressures.
  • Figure 5 shows the correlation between actual values of systolic pressure and diastolic pressure and the values predicted by the predictive model.
  • FIG. 6 illustrates the steps of a second exemplary embodiment of a method for determining the arterial pressure as a function of a PPG signal from a patient according to invention, in the form of a block diagram.
  • a PPG signal is measured with a clamp including a PPG sensor which attaches to the thumb of the right hand of a patient.
  • the measured PPG signal is normalized by subtracting the mean value of this signal then by dividing the signal with zero mean value obtained by its standard deviation (Std).
  • the normalized PPG signal is filtered using a low pass filter with a cutoff frequency of 10 Hz.
  • a Kalman filter can be implemented.
  • the normalized and filtered signal is then smoothed by applying a digital filtering of polynomial order 3 (step 64).
  • n is equal to 10
  • j (j ⁇ [1; n]) represents a first group of time markers characteristic of a predictive model of arterial pressure
  • X j (j ⁇ [1; n]) is the amplitude of time markers j (j ⁇ [1; n])
  • the weighting coefficients a j (j ⁇ [1; n]) are constants whose values are specified in the following table:
  • the 10 time markers used in this particular embodiment of the invention are:
  • ATG1 Base amplitude of the first Gaussian model.
  • ASM area under the curve from the start to the peak of the pulse.
  • NCCP number of consecutive pulses detected to assess heart rate.
  • TUTE90 time interval between ascent and descent at 90% of the amplitude under the curve.
  • TE temporal average of the detected pulses.
  • Aa2D Amplitude of the 1st vertex of the second derivative of the signal.
  • HV Variance of the spectral entropy of the signal.
  • KTEM Average of the Kaiser-Teager energy of the signal.
  • SQIM Average of the asymmetry of the pulses in the signal.
  • NCCP number of consecutive pulses detected to assess heart rate.
  • PDT time between the onset and the diastolic peak (maximum 2nd point) of the pulse.
  • AbP Amplitude of the 2nd minimum point of the second derivative of the signal reported the pulse.
  • ASMMG mean area under curve between the start of the pulse and the maximum amplitude extracted from the Gaussian model.
  • AMDP mean area under the curve between the start and the diastolic peak (2nd point maximum) of the pulse.
  • Te2D time interval between the start and the third peak of the second derivative of the pulse signal.
  • Tf2D time interval between the start and the fifth peak of the second derivative of the pulse signal.
  • KUR pulse wave kurtosis
  • Characteristic time markers and coefficients of the predictive model of blood pressure were identified using a LASSO algorithm, from 84 observations of the PPG signal and systolic pressure and diastolic pressure values measured together.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Vascular Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

Un procédé et un dispositif de détermination de la pression artérielle à partir d'un signal photopléthysmographique (PPG) d'un patient utilisent des équations prédictives de la pression systolique et de la pression diastolique obtenues par une méthode d'apprentissage statistique de type méthode de régression linéaire, telle que le LASSO, à partir de marqueurs temporels ou des spectres médians d'un ensemble de mesures préalables de signaux PPG.

Description

Procédé de détermination de la pression artérielle à partir d'un signal PPG et dispositif correspondant
1. Domaine de l'invention
Le domaine de l'invention est celui des techniques d'examen médical et en particulier des techniques de surveillance de la tension artérielle.
Plus précisément, l'invention concerne un procédé et un dispositif de détermination de la pression artérielle à partir d'un signal photopléthysmographique (PPG) d'un patient.
2. Etat de la technique
La surveillance continue de la pression artérielle afin de prédire les maladies cardiovasculaires graves est l'un des défis majeurs des prochaines années.
On connaît des techniques de prédiction de la pression artérielle uniquement à partir de signaux photopléthysmographiques.
Les méthodes connues d'estimation de la pression artérielle à partir de signaux PPG reposent principalement sur une approche par domaine temporel. La plupart d'entre elles impliquent le pré-traitement du signal (lissage, filtrage, etc..), une extraction des caractéristiques temporelles et un modèle prédictif de la pression artérielle, tel que le modèle de Windkessel (voir par exemple Choudhury, A.D., Banerjee, R., Sinha, A., Kundu, S.: Estimating blood pressure using windkessel model on photoplethysmogram. In: 2014 36th Annual Interna- tional Conférence of the IEEE Engineering in Medicine and Biology Society pp. 4567-4570. IEEE (2014)) ou des modèles d'apprentissage automatique par réseaux neuronaux (voir par exemple Lamonaca, F., Barbe , K., Kurylyak, Y., Grimaldi, D., Van Moer, W., Furfaro, A., Spagnuolo, V .: Application of the artificial neural network for blood pressure évaluation with smartphones. In: 2013 IEEE 7th International Conférence on In telligent Data Acquisition and Advanced Computing Systems (IDAACS). vol. 1, pp. 408-412. IEEE (2013)) ou des modèles d'apprentissage profond (« deep learning en anglais) mettant en oeuvre des réseaux neuronaux convolutifs.
On connaît également des techniques de prédiction de la pression artérielle basées sur des méthodes d'apprentissage automatique utilisant le spectre des signaux PPG. Ainsi par exemple la technique décrite dans l'article Xing, X., Sun, M.: Optical blood pressure estimation with photoplethysmography and fft-based neural networks. Biomédical optics express 7(8), 3007-3020 (2016) repose sur une prédiction à partir de réseaux neuronaux utilisant le spectre d'un signal PPG obtenu par transformée de Fourier rapide. Comme souligné récemment ( Mouney , F., Tiplica, T., Hallab, M., Dinomais, M., Fasquel, J. B.: Towards a smartwatch for cuff-less blood pressure measurement using ppg signal and physiological features. International Conférence on IoT Technologies for Healthcare (2019)), les techniques basées sur le domaine spectral sont plus pratiques que celles basées sur le domaine temporel car il n'est pas nécessaire de détecter le front des ondes.
On a également proposé une technique d'apprentissage profond basée à la fois sur des informations temporelles et des informations fréquentielles ( Baek , S., Jang, J., Yoon, S.: End-to-end blood pressure prédiction via fully convolutional networks. IEEE Access 7, 185458-185468 (2019)).
Un inconvénient de ces techniques connues mettant en oeuvre des réseaux neuronaux ou des réseaux de deep learning est qu'elles sont coûteuses en capacité de calcul et moins rapide, et qu'elles ne permettent pas d'expliciter une relation entre la pression artérielle et le signal PPG d'un individu.
Un autre inconvénient de ces techniques connues mettant en oeuvre des réseaux neuronaux ou des réseaux de deep learning est que les écarts entre les valeurs de pression artérielle prédites avec ces techniques et les valeurs mesurées sont difficilement interprétables, ce qui est pénalisant en termes de fiabilité et de traçabilité.
3. Objectifs de l'invention
L'invention a donc notamment pour objectif de pallier les inconvénients de l'état de la technique cités ci-dessus.
Plus précisément, l'invention a pour objectif de fournir une technique de détermination de la pression artérielle à partir d'un signal PPG d'un patient qui soit fiable et précise. L'invention a également pour objectif de proposer une telle technique de détermination de la pression artérielle qui puisse fournir une estimation de la pression artérielle d'un patient en continu.
Un autre objectif de l'invention est de fournir une telle technique de détermination de la pression artérielle qui soit simple, efficace et rapide à mettre en oeuvre.
Un objectif de l'invention est également de fournir une telle technique qui soit peu coûteuse.
Encore un objectif de l'invention est de proposer une technique de détermination de la pression artérielle à partir d'un signal PPG d'un patient qui soit robuste quelle que soit la qualité du signal PPG. 4. Exposé de l'invention
Ces objectifs, ainsi que d'autres qui apparaîtront par la suite sont atteints à l'aide d'un procédé de détermination de la pression artérielle d'un patient, comprenant les étapes suivantes : mesure d'un signal PPG à l'aide d'un capteur de photopléthysmographie appliqué sur une partie du corps dudit patient ; détermination de la pression systolique et de la pression diastolique à partir dudit signal PPG comprenant les étapes suivantes : normalisation dudit signal PPG de sorte à obtenir un signal normalisé de moyenne nulle ; calcul de la pression systolique PAS, ladite pression systolique PAS étant calculée selon la formulation mathématique
Figure imgf000005_0001
, où n, avec n ≥ 8, est le nombre d'un premier ensemble de variables explicatives d'une méthode d'apprentissage statistique de type méthode de régression linéaire, lesdites variables explicatives j (j∈[1;n]) étant des marqueurs temporels ou des fréquences caractéristiques, Xj(j∈[1;n]) est l'amplitude de la variable explicative j (j∈[1;n]) obtenue pour ledit signal PPG normalisé et les coefficients de pondération aj(j∈[1;n]) sont des constantes, lesdites variables explicatives j (j∈[1;n]) et lesdits coefficients de pondération aj(j∈[1;n]) ayant été préalablement déterminées par construction d'un modèle prédictif à partir dudit modèle d'apprentissage statistique et d'un ensemble de mesures de signaux PPG et de mesures de la pression systolique et la pression diastolique réalisées conjointement sur ledit patient. calcul de la pression diastolique PAD, ladite pression diastolique PAD étant calculée selon la formulation mathématique
Figure imgf000005_0002
, où p, avec p ≥ 8, est le nombre d'un deuxième ensemble de variables explicatives de ladite méthode d'apprentissage statistique de type méthode de régression linéaire, lesdites variables explicatives i (i∈[1;p]) étant des marqueurs temporels ou des fréquences caractéristiques, Yi (i∈[1;p]) est l'amplitude de la variable explicative i (i∈[1;p]) obtenue pour ledit signal PPG normalisé et les coefficients de pondération βi (i∈[1;p]) sont des constantes, lesdites variables explicatives i (i∈[1;p]) et lesdits coefficients de pondération βi(i∈[1;p]) ayant été préalablement déterminées par construction d'un modèle prédictif à partir dudit modèle d'apprentissage statistique et d'un ensemble de mesures de signaux PPG et de mesures de la pression systolique et la pression diastolique réalisées conjointement sur ledit patient au préalable.
Ainsi, de façon inédite, l'invention propose d'utiliser une équation prédictive de la pression systolique et de la pression diastolique obtenues par une méthode d'apprentissage statistique utilisant des marqueurs temporels ou des spectres de signaux PPG préalablement enregistrés pour estimer la valeur de la pression artérielle d'un patient à partir d'une simple mesure d'un signal PPG.
On notera que le procédé selon l'invention permet d'estimer la pression artérielle d'un patient de façon fiable et robuste et avec précision et permet de fournir une estimation de la pression artérielle en continu.
Il convient de noter que dans le cadre de l'invention, le terme « méthode apprentissage statistique de type méthode de régression linéaire » recouvre tout algorithme d'apprentissage automatique connu permettant de fournir une équation linéaire prédictive de la pression artérielle en fonction de variables explicatives, ou en d'autres termes d'exprimer la pression systolique et la pression diastolique sous la forme de fonctions mathématiques linéaires des variables explicatives, et par exemple des méthodes de régression linéaire régularisées, telles que l'algorithme LASSO (acronyme de « Least Absolute Shrinkage and Sélection Operator » en anglais), l'algorithme Ridge ou l'algorithme Elastic net, ou des méthodes telles que l'algorithme PLS ...
Par ailleurs dans le cadre de l'invention, on entend le terme « variable explicative » (aussi appelée variable prédictive) dans son acception courante dans le domaine des méthodes d'apprentissage statistique, à savoir une des variables caractéristiques sélectionnées dans un grand ensemble de variable, permettant d'estimer la valeur d'une variable à prédire, aussi appelée variable expliquée.
Dans un mode de réalisation particulier de l'invention, lesdits nombres n et p sont compris entre 10 et 30.
Dans un mode de réalisation avantageux de l'invention, lesdits nombres n et p sont compris entre 20 et 30.
On obtient ainsi une estimation plus précise de la pression artérielle. Selon un mode de réalisation particulier de l'invention, ladite étape de détermination de la pression systolique et de la pression diastolique comprend une étape de traitement dudit signal PPG normalisé afin d'obtenir un spectre dudit signal PPG, lesdites variables explicatives j (j∈[1;n]) et i (i∈[1;p]) sont des fréquences caractéristiques, avec n et p supérieurs ou égaux à 15, et de préférence supérieurs ou égaux à 20, et ledit modèle prédictif est obtenu à partir des spectres médians desdits signaux PPG réalisés au préalable, conjointement avec des mesures de la pression systolique et la pression diastolique.
On déterminer ainsi la pression artérielle de façon précise à partir des informations spectrales des signaux PPG, ce qui est plus simple à mettre en oeuvre.
Dans un mode de réalisation particulier de l'invention, lesdites variables explicatives j (j∈[1;n]) et i (i∈[1;p]) sont des marqueurs temporels et au moins un desdits marqueurs temporels appartient au groupe comprenant au moins :
Paramètre temporel ou d'amplitude du modèle gaussien ; variance de l'entropie spectrale du signal ; skewness de l'onde de pouls ; kurtosis de l'onde de pouls.
La mise en oeuvre de marqueurs temporels inédits permet ainsi une estimation plus fiable de la pression artérielle.
Dans un mode de réalisation préféré de l'invention, ladite méthode d'apprentissage statistique de type méthode de régression linéaire est une méthode LASSO. Avantageusement, ledit ensemble de mesures de signaux PPG et de mesures de la pression systolique et la pression diastolique réalisées conjointement au préalable sur ledit patient sont réalisées sur au moins en partie sur ledit patient en position allongée et/ou au moins en partie sur ledit patient en position debout et/ou au moins en partie sur ledit patient après réalisation d'un test d'effort.
On peut ainsi prédire plus précisément la pression artérielle quelle que soit la position (couché ou debout) ou l'état du patient (au repos ou après un effort).
Selon un aspect particulier de l'invention, les mesures dudit ensemble de mesures de signaux PPG et de mesures de la pression systolique et la pression diastolique réalisées conjointement au préalable sur ledit patient ont une durée d'au moins 10 secondes.
De préférence, le nombre de mesures dudit ensemble de mesures de signaux PPG et de mesures de la pression systolique et la pression diastolique réalisées conjointement au préalable sur ledit patient est supérieur ou égal à 45. Dans un mode de réalisation particulier de l'invention, le modèle prédiction est construit à partir d'au moins 15 mesures préalables en position couché, d'au moins 15 mesures lorsque le patient est débout et d'au moins 15 mesures réalisées après un test d'effort consistant, par exemple, en un test de Ruffier-Dickson ou en un test d'effort de 10 à 30 minutes pratiqué à l'hôpital ou en clinique.
L'invention concerne également un dispositif de détermination de la pression artérielle d'un patient, comprenant : des moyens de mesure d'un signal PPG comprenant un capteur photopléthysmographique destiné à être appliqué sur une partie du corps dudit patient ; des moyens de détermination de la pression systolique et de la pression diastolique à partir dudit signal PPG comprenant une unité de calcul dédiée à ou configurée pour : traiter numériquement ledit signal PPG afin d'obtenir un signal normalisé de moyenne nulle ; calculer la pression systolique PAS selon la formulation mathématique , où n, avec n ≥ 8, est le nombre d'un
Figure imgf000008_0001
premier ensemble de variables explicatives d'une méthode d'apprentissage statistique de type méthode de régression linéaire, lesdites variables explicatives j (j∈[1;n]) étant des marqueurs temporels ou des fréquences caractéristiques, Xj (j∈[1;n]) est l'amplitude de la variable explicative j (j∈[1;n]) obtenue pour ledit signal PPG normalisé et les coefficients de pondération aj(j∈[1;n]) sont des constantes, lesdites variables explicatives j (j∈[1;n]) et lesdits coefficients de pondération aj(j∈[1;n]) ayant été préalablement déterminées par construction d'un modèle prédictif à partir dudit modèle d'apprentissage statistique et d'un ensemble de mesures de signaux PPG et de mesures de la pression systolique et la pression diastolique réalisées conjointement sur ledit patient. calculer la pression diastolique PAD selon la formulation mathématique , où p, avec p ≥ 8, est le nombre d'un
Figure imgf000008_0002
deuxième ensemble de variables explicatives de ladite méthode d'apprentissage statistique de type méthode de régression linéaire, lesdites variables explicatives i (i∈[1;p]) étant des marqueurs temporels ou des fréquences caractéristiques, Yi (i∈[1;p]) est l'amplitude de la variable explicative i (i∈[1;p]) obtenue pour ledit signal PPG normalisé et les coefficients de pondération βi (i∈[1;p]) sont des constantes, lesdites variables explicatives i (i∈[1;p]) et lesdits coefficients de pondération βi (i∈[1;p]) ayant été préalablement déterminées par construction d'un modèle prédictif à partir dudit modèle d'apprentissage statistique et d'un ensemble de mesures de signaux PPG et de mesures de la pression systolique et la pression diastolique réalisées conjointement sur ledit patient au préalable.
5. Liste des figures
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante de deux modes de réalisation de l'invention, donnés à titre de simples exemples illustratifs et non limitatifs, et des dessins annexés parmi lesquels : la figure 1 est une représentation synoptique des étapes d'un premier exemple de mode de réalisation d'un procédé de détermination de la pression artérielle dans le domaine fréquentiel selon l'invention, sous forme de diagramme-bloc ; la figure 2 est une représentation schématique d'un dispositif de détermination de la pression artérielle selon l'invention mettant en oeuvre le procédé présenté en référence à la figure 1 ; la figure 3 illustre l'utilisation d'une fenêtre glissante pour calculer le spectre médian d'un signal PPG ; la figure 4 représente l'erreur de prédiction quadratique moyenne croisée par l'algorithme du LASSO en analyse spectrale du signal PPG pour la pression artérielle systolique (a) et la pression diastolique (b) ; la figure 5 est une comparaison de valeurs prédites et mesurées de la pression artérielle systolique (a) et de la pression diastolique (b) ; la figure 6 est une représentation synoptique des étapes d'un deuxième exemple de mode de réalisation d'un procédé de détermination de la pression artérielle dans le domaine temporel selon l'invention, sous forme de diagramme-bloc 6. Description détaillée de l'invention
La présente demande de brevet comprend l'ensemble de la description de la demande de brevet FR20 06536, qui est ici incorporée par renvoi.
6.1. Premier exemple de mode de réalisation de l'invention On présente ci-après sur la figure 1 les étapes d'un premier exemple de mode de réalisation d'un procédé de détermination de la pression artérielle en fonction d'un signal PPG d'un patient selon l'invention, sous forme de schéma-bloc.
Dans une première étape 11, on mesure un signal PPG avec un capteur PPG 21 implanté au sein d'une pince se fixant sur le pouce de la main droite d'un patient.
Dans des variantes de ce mode de réalisation particulier de l'invention, le capteur PPG peut être implanté dans une montre, un bracelet ou un brassard.
Le signal numérique de sortie du capteur PPG est transmis à une unité de calcul 22. Comme on peut le voir sur la figure 2, qui illustre un exemple de mode de réalisation d'un dispositif 20 de détermination de la pression artérielle selon l'invention, ce dispositif 20 comprend un capteur PPG 21 fournissant des signaux numériques en sortie, transmis à une unité de calcul 22. L'unité de calcul 22 comprend une mémoire vive 23 (par exemple une mémoire RAM), une unité de traitement 24 équipée par exemple d’un processeur, et pilotée par un programme d’ordinateur stocké dans une mémoire morte 25 (par exemple une mémoire ROM ou un disque dur). A l’initialisation, les instructions de code du programme d’ordinateur sont par exemple chargées dans la mémoire vive 23 avant d’être exécutées par le processeur de l’unité de traitement 24.
Dans l'unité de calcul 22, le signal PPG est normalisé dans une sous-étape 121, puis le spectre médian du signal PPG normalisé est calculé dans une sous-étape 122, et une estimation de la pression systolique et la pression diastolique est calculée à partir du spectre médian du signal PPG normalisé, dans une sous-étape 123 suivante. Les deux sous-étapes 121, 122 et 123 forment l'étape 12 de détermination de la pression artérielle du procédé selon l'invention.
Lors de l'étape 121, le signal PPG(t) est normalisé par l'unité de traitement 24 en soustrayant la valeur moyenne de ce signal puis en divisant le signal à valeur moyenne nulle par son écart type (Std), de sorte à obtenir un signal normalisé PPGs(t) défini par :
Figure imgf000010_0001
Lors de l'étape 122, l'unité de traitement 24 calcule la transformée de Fourier discrète du signal normalisé PPGs pour obtenir le spectre du signal normalisé à partir duquel un spectre médian est obtenu en moyennant les spectres d'une pluralité de fenêtres glissantes appliquées au spectre du signal normalisé, comme illustré sur la figure 3.
Lors de l'étape 123, l'unité de traitement 24 calcule dans une première étape 1231 la pression systolique PAS à partir de la formulation mathématique , où n est
Figure imgf000011_0001
égal à 30, j (j∈[1;n]) représente un premier groupe de fréquences caractéristiques d'un modèle prédictif de la pression artérielle, et Xj (j∈[1;n]) est l'amplitude du spectre médian pour la fréquence caractéristique j (j∈[1;n]) et les coefficients de pondération aj (j∈[1;n]) sont des constantes dont les valeurs sont précisées dans le tableau suivant :
[Tableau 1 ]
Figure imgf000011_0003
Dans une deuxième étape 1232, l'unité de traitement 24 calcule la pression systolique PAD à partir de la formulation mathématique , où p=32, i (i∈[1;p]) représente
Figure imgf000011_0002
un deuxième groupe de fréquences caractéristiques d'un modèle prédictif de la pression artérielle, Yi (i∈[1;p]) est l'amplitude du spectre médian pour la fréquence caractéristique i (i∈[1;p]) et les coefficients de pondération βi(i∈[1;p]) sont des constantes dont les valeurs sont précisées dans le tableau suivant : [Tableau 2]
Figure imgf000012_0001
Le processus d'apprentissage ayant permis de construire un modèle prédictif de la pression artérielle à partir d'un algorithme LASSO est précisé ci-dessous. II convient de noter que cette phase d'apprentissage a été réalisée préalablement, afin de « paramétrer » le dispositif 20.
Dans cette phase d'apprentissage, 56 signaux PPG du patient de 10 secondes ont été mesurés en position couché sur une période de 40 jours. Lors de chaque mesure d'un signal PPG, la pression systolique et la pression diastolique ont été mesurées en même temps. Le patient était allongé de puis au moins 5 minutes quand ces mesures ont été réalisées et deux mesures consécutives ont été espacées d'une minute.
Les mesures ont été réalisées grâce à un dispositif médical pOpmetre(marque déposée) : Le brassard du tensiomètre a été positionné sur le bras gauche du sujet.
La pince PPG a été positionnée sur le pouce de la main droite. Dans une variante de ce mode de réalisation de l'invention, il peut être prévu que les certains signaux mesurés dans la phase d'apprentissage soit acquis lorsque le patient est couché, d'autres signaux lorsque le patient est débout et enfin d'autres signaux après que le patient a réalisé un test d'effort.
Chaque signal PPG a été normalisé en soustrayant sa valeur moyenne et en divisant par son écart type (Std) et le signal PPG normalisé a été amplifié (en ajoutant des valeurs nulles à la fin du signal) jusqu'à 105 (équivalent d'une fenêtre temporelle de 100 secondes à une fréquence d'échantillonnage de 1 KHz).
Puis, le spectre de chaque signal normalisé et amplifié a été calculé par FFT et un spectre médian a été calculé pour chaque spectre en appliquant des fenêtres glissantes. Les 56 spectres médians et les valeurs mesurées correspondantes de la pression systolique et de la pression diastolique ont été fournies à un algorithme LASSO pour évaluer les fréquences caractéristiques et les coefficients de pondérations du modèle prédictif de la pression artérielle du sujet. Le logiciel R et le package lars (version : 1.2) proposés par Trevor Hastie et Brad Efron ont été utilisés pour les calculs.
Dans ce mode de réalisation particulier de l'invention, le MSE de l'algorithme LASSO pour la pression systolique est de 18,07 et le MSE pour la pression diastolique est de 7,95.
La figure 4 représente l’erreur de prédiction quadratique moyenne à validation croisée sans interruption de l’algorithme LASSO pour les pressions systolique et diastolique.
La figure 5 présente la corrélation entre des valeurs réelles de la pression systolique et de la pression diastolique et les valeurs prédites par le modèle prédictif.
Il convient de noter qu'un modèle prédictif doit être établi pour chaque patient. En effet, les variations des pressions systoliques et diastoliques en fonction des signaux PPG sont propres à chaque individu.
6.2. Deuxième exemple de mode de réalisation de l'invention On a illustré sur la figure 6 les étapes d'un deuxième exemple de mode de réalisation d'un procédé de détermination de la pression artérielle en fonction d'un signal PPG d'un patient selon l'invention, sous forme de schéma-bloc.
Dans une première étape 61, on mesure un signal PPG avec une pince incluant un capteur PPG se fixant sur le pouce de la main droite d'un patient.
Dans une deuxième étape 62, le signal PPG mesuré est normalisé en soustrayant la valeur moyenne de ce signal puis en divisant le signal à valeur moyenne nulle obtenu par son écart type (Std).
Dans une étape 63, le signal PPG normalisé est filtré à l'aide d'un filtre passe-bas de fréquence de coupure lOhz.
Dans une variante de ce mode de réalisation particulier de l'invention, un filtre de Kalman peut être mis en oeuvre.
On opère ensuite un lissage du signal normalisé et filtré par application d'un filtrage numérique d'ordre polynomial 3 (étape 64).
Une estimation de la pression systolique PAS est ensuite calculée dans une étape 65 à partir de la formulation mathématique , où n est égal à 10, j (j∈[1;n])
Figure imgf000013_0001
représente un premier groupe de marqueurs temporels caractéristiques d'un modèle prédictif de la pression artérielle, Xj (j∈[1;n]) est l'amplitude des marqueurs temporels j (j∈[1;n]) et les coefficients de pondération aj(j∈[1;n]) sont des constantes dont les valeurs sont précisées dans le tableau suivant :
[Tableau 3]
Figure imgf000014_0002
Les 10 marqueurs temporels utilisés dans ce mode de réalisation particulier de l'invention sont :
ATG1 : Amplitude de base du premier modèle gaussien.
ASM : aire sous la courbe du début au sommet de l’impulsion.
NCCP : nombre d’impulsions consécutives détectées pour évaluer la fréquence cardiaque.
TUTE90 : intervalle de temps entre la montée et la descente à 90% de l’amplitude sous la courbe.
TE : moyenne temporelle des impulsions détectées.
Aa2D : Amplitude du 1er sommet de la dérivée seconde du signal.
HV : Variance de l’entropie spectrale du signal.
LgE : Énergie du signal.
KTEM : Moyenne de l’énergie Kaiser-Teager du signal.
SQIM : Moyenne de l’asymétrie des impulsions dans le signal.
Dans une dernière étape 66, on calcule la pression systolique PAD à partir de la formulation mathématique , où p=8, i (i∈[1;p]) représente un deuxième groupe de
Figure imgf000014_0001
marqueurs temporels caractéristiques d'un modèle prédictif de la pression artérielle, Y, (i∈[1;p]) est l'amplitude des marqueurs temporels i (i∈[1;p]) et les coefficients de pondération βi (i∈[1;p]) sont des constantes dont les valeurs sont précisées dans le tableau suivant :
[Tableau 4]
Figure imgf000014_0003
Les 8 marqueurs temporels utilisés pour prédire la pression diastolique dans ce mode de réalisation particulier de l'invention sont :
NCCP : nombre d’impulsions consécutives détectées pour évaluer la fréquence cardiaque.
TDP : durée entre le début et le pic diastolique (2e point maximum) de l’impulsion.
AbP : Amplitude du 2ème point minimum de la dérivée seconde du signal a rapporté le pouls.
ASMMG : aire moyenne sous courbe entre le début de l’impulsion et l’amplitude maximale extraite du modèle gaussien.
AMDP : surface moyenne sous la courbe entre le début et le pic diastolique (2e point maximum) de l’impulsion.
Te2D : intervalle de temps entre le début et le troisième sommet de la dérivée seconde du signal de l’impulsion.
Tf2D : intervalle de temps entre le début et le cinquième sommet de la dérivée seconde du signal du pouls.
KUR : kurtosis de l'onde de pouls.
Les marqueurs temporels caractéristiques et les coefficients du modèle prédictif de la pression artérielle ont été identifiés en utilisant un algorithme LASSO, à partir de 84 observations du signal PPG et des valeurs de la pression systolique et la pression diastolique mesurées conjointement.
Ces 84 signaux PPG ont été normalisés, filtrés à l'aide d'un filtre passe-bande et un lissage à l'aide d'un filtre numérique leur a été appliqué avant de mettre oeuvre l'algorithme LASSO.
Dans ce mode de réalisation particulier de l'invention, 153 marqueurs temporels différents ont été initialement introduit dans le modèle LASSO.

Claims

REVENDICATIONS
1. Procédé de détermination de la pression artérielle d'un patient, caractérisé en ce qu'il comprend les étapes suivantes : mesure d'un signal PPG à l'aide d'un capteur photopléthysmographique appliqué sur une partie du corps dudit patient ; détermination de la pression systolique et de la pression diastolique à partir dudit signal PPG comprenant les étapes suivantes : normalisation dudit signal PPG de sorte à obtenir un signal normalisé de moyenne nulle ; calcul de la pression systolique PAS, ladite pression systolique PAS étant calculée selon la formulation mathématique , où n, avec
Figure imgf000016_0001
n ≥ 8, est le nombre d'un premier ensemble de variables explicatives d'une méthode d'apprentissage statistique de type méthode de régression linéaire, lesdites variables explicatives j (j∈[1;n]) étant des marqueurs temporels ou des fréquences caractéristiques, Xj (j∈[1;n]) est l'amplitude de la variable explicative j (j∈[1;n]) obtenue pour ledit signal PPG normalisé et les coefficients de pondération aj(j∈[1;n]) sont des constantes, lesdites variables explicatives j (j∈[1;n]) et lesdits coefficients de pondération aj(j∈[1;n]) ayant été préalablement déterminées par construction d'un modèle prédictif à partir dudit modèle d'apprentissage statistique et d'un ensemble de mesures de signaux PPG et de mesures de la pression systolique et la pression diastolique réalisées conjointement sur ledit patient. calcul de la pression diastolique PAD, ladite pression diastolique PAD étant calculée selon la formulation mathématique , où p, avec p
Figure imgf000016_0002
≥ 8, est le nombre d'un deuxième ensemble de variables explicatives de ladite méthode d'apprentissage statistique de type méthode de régression linéaire, lesdites variables explicatives i (i∈[1;p]) étant des marqueurs temporels ou des fréquences caractéristiques, Yi (i∈[1;p]) est l'amplitude de la variable explicative i (i∈[1;p]) obtenue pour ledit signal PPG normalisé et les coefficients de pondération βi (i∈[1;p]) sont des constantes, lesdites variables explicatives i (i∈[1;p]) et lesdits coefficients de pondération βi (j∈[1;n]) ayant été préalablement déterminées par construction d'un modèle prédictif à partir dudit modèle d'apprentissage statistique et d'un ensemble de mesures de signaux PPG et de mesures de la pression systolique et la pression diastolique réalisées conjointement sur ledit patient au préalable.
2. Procédé selon la revendication 1, caractérisé en ce que lesdits nombres n et p sont compris entre 10 et 30.
3. Procédé selon la revendication 2, caractérisé en ce que lesdits nombres n et p sont compris entre 20 et 30.
4. Procédé selon la revendication 1, caractérisé en ce que l'étape de détermination de la pression systolique et de la pression diastolique comprend une étape de traitement dudit signal PPG normalisé afin d'obtenir un spectre dudit signal PPG, en ce que lesdites variables explicatives j (j∈[1;n]) et i (i∈[1;p]) sont des fréquences caractéristiques, avec n et p supérieurs ou égaux à 15, et de préférence supérieurs ou égaux à 20, et en ce que ledit modèle prédictif est obtenu à partir des spectres médians desdits signaux PPG réalisés au préalable, conjointement avec des mesures de la pression systolique et la pression diastolique.
5. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que lesdites variables explicatives j (j∈[1;n]) et i (i∈[1;p]) sont des marqueurs temporels et en ce qu'au moins un desdits marqueurs temporels appartient au groupe comprenant au moins :
Paramètre temporel ou d'amplitude du modèle gaussien ; variance de l'entropie spectrale du signal ; skewness de l'onde de pouls ; kurtosis de l'onde de pouls.
6. Procédé selon la revendication selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ladite méthode d'apprentissage statistique de type méthode de régression linéaire est une méthode LASSO.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ledit ensemble de mesures de signaux PPG et de mesures de la pression systolique et la pression diastolique réalisées conjointement au préalable sur ledit patient sont réalisées sur au moins en partie sur ledit patient en position allongée et/ou au moins en partie sur ledit patient en position debout et/ou au moins en partie sur ledit patient après réalisation d'un test d'effort.
8. Procédé selon la revendication selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les mesures dudit ensemble de mesures de signaux PPG et de mesures de la pression systolique et la pression diastolique réalisées conjointement au préalable sur ledit patient ont une durée d'au moins 10 secondes.
9. Procédé selon la revendication selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le nombre de mesures dudit ensemble de mesures de signaux PPG et de mesures de la pression systolique et la pression diastolique réalisées conjointement au préalable sur ledit patient est supérieur ou égal à 45.
10. Dispositif de détermination de la pression artérielle d'un patient, caractérisé en ce qu'il comprend : des moyens de mesure d'un signal PPG comprenant un capteur photopléthysmographique destiné à être appliqué sur une partie du corps dudit patient ; des moyens de détermination de la pression systolique et de la pression diastolique à partir dudit signal PPG comprenant une unité de calcul dédiée à ou configurée pour : traiter numériquement ledit signal PPG afin d'obtenir un signal normalisé de moyenne nulle ; calculer la pression systolique PAS selon la formulation mathématique , où n, avec n ≥ 8, est le nombre d'un
Figure imgf000019_0001
premier ensemble de variables explicatives d'une méthode d'apprentissage statistique de type méthode de régression linéaire, lesdites variables explicatives j (j∈[1;n]) étant des marqueurs temporels ou des fréquences caractéristiques, Xj (j∈[1;n]) est l'amplitude de la variable explicative j (j∈[1;n]) obtenue pour ledit signal PPG normalisé et les coefficients de pondération aj(j∈[1;n]) sont des constantes, lesdites variables explicatives j (j∈[1;n]) et lesdits coefficients de pondération aj(j∈[1;n]) ayant été préalablement déterminées par construction d'un modèle prédictif à partir dudit modèle d'apprentissage statistique et d'un ensemble de mesures de signaux PPG et de mesures de la pression systolique et la pression diastolique réalisées conjointement sur ledit patient. calculer la pression diastolique PAD selon la formulation mathématique , où p, avec p ≥ 8, est le nombre d'un
Figure imgf000019_0002
deuxième ensemble de variables explicatives de ladite méthode d'apprentissage statistique de type méthode de régression linéaire, lesdites variables explicatives i (i∈[1;p]) étant des marqueurs temporels ou des fréquences caractéristiques, Yi (i∈[1;p]) est l'amplitude de la variable explicative i (i∈[1;p]) obtenue pour ledit signal PPG normalisé et les coefficients de pondération βi (i∈[1;p]) sont des constantes, lesdites variables explicatives i (i∈[1;p]) et lesdits coefficients de pondération βi (i∈[1;p]) ayant été préalablement déterminées par construction d'un modèle prédictif à partir dudit modèle d'apprentissage statistique et d'un ensemble de mesures de signaux PPG et de mesures de la pression systolique et la pression diastolique réalisées conjointement sur ledit patient au préalable.
PCT/EP2021/067047 2020-06-22 2021-06-22 Procede de determination de la pression arterielle a partir d'un signal ppg et dispositif correspondant WO2021259958A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2006526A FR3111534A1 (fr) 2020-06-22 2020-06-22 Procédé de prédiction de la pression artérielle à l’aide de capteurs PPG
FRFR2006526 2020-06-22

Publications (1)

Publication Number Publication Date
WO2021259958A1 true WO2021259958A1 (fr) 2021-12-30

Family

ID=76807603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/067047 WO2021259958A1 (fr) 2020-06-22 2021-06-22 Procede de determination de la pression arterielle a partir d'un signal ppg et dispositif correspondant

Country Status (2)

Country Link
FR (2) FR3111534A1 (fr)
WO (1) WO2021259958A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210027895A1 (en) * 2019-07-22 2021-01-28 Tata Consultancy Services Limited Method and system for pressure autoregulation based synthesizing of photoplethysmogram signal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170238818A1 (en) * 2016-02-18 2017-08-24 Samsung Electronics Co., Ltd. Method and electronic device for cuff-less blood pressure (bp) measurement
US20180303354A1 (en) * 2016-10-20 2018-10-25 Boe Technology Group Co., Ltd. Apparatus and method for determining a blood pressure of a subject

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170238818A1 (en) * 2016-02-18 2017-08-24 Samsung Electronics Co., Ltd. Method and electronic device for cuff-less blood pressure (bp) measurement
US20180303354A1 (en) * 2016-10-20 2018-10-25 Boe Technology Group Co., Ltd. Apparatus and method for determining a blood pressure of a subject

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BAEK, S.,JANG, J.YOON, S.:: "End-to-end blood pressure prediction via fully convolutional networks", IEEE ACCESS, vol. 7, 2019, pages 185458 - 185468, XP011763871, DOI: 10.1109/ACCESS.2019.2960844
CHOUDHURY, A.D.BANERJEE, R.SINHA, A.,KUNDU, S.:: "Annual Interna- tional Conférence of the IEEE Engineering in Medicine and Biology Society", 2014, IEEE, article "Estimating blood pressure using windkessel model on photoplethysmogram.", pages: 4567 - 4570
LAMONACA, F.BARBE, K.KURYLYAK, Y.,GRIMALDI, D.,VAN MOER, W.FURFARO, A.SPAGNUOLO, V.:: "IEEE 7th International Conférence on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS)", vol. 1, 2013, IEEE, article "Application of the artificial neural network for blood pressure évaluation with smartphone", pages: 408 - 412
MOUNEY FRANCK ET AL: "Towards a Smartwatch for Cuff-Less Blood Pressure Measurement Using PPG Signal and Physiological Features", vol. 314, 3 April 2020 (2020-04-03), pages 67 - 76, XP009529863, ISBN: 978-3-030-42029-1, Retrieved from the Internet <URL:http://link.springer.com/10.1007/978-3-030-42029-1_5> [retrieved on 20210907], DOI: 10.1007/978-3-030-42029-1_5 *
MOUNEY, F.,TIPLICA, T.,HALLAB, M.DINOMAIS, M.FASQUEL, J.B.: "Towards a smartwatch for cuff-less blood pressure measurement using ppg signal and physiological features", INTERNATIONAL CONFÉRENCE ON IOT TECHNOLOGIES FOR HEALTHCARE, 2019
XING, X.,SUN, M.: "Optical blood pressure estimation with photoplethysmography and fft-based neural networks", BIOMÉDICAL OPTICS EXPRESS, vol. 7, no. 8, 2016, pages 3007 - 3020, XP055495990, DOI: 10.1364/BOE.7.003007
YANG SEN ET AL: "Blood pressure estimation with complexity features from electrocardiogram and photoplethysmogram signals", OPTICAL AND QUANTUM ELECTRONICS, CHAPMAN AND HALL, LONDON, GB, vol. 52, no. 3, 17 February 2020 (2020-02-17), XP037078616, ISSN: 0306-8919, [retrieved on 20200217], DOI: 10.1007/S11082-020-2260-7 *
YI CHEN ET AL: "Continuous blood pressure measurement based on photoplethysmography", 2019 14TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), IEEE, 1 November 2019 (2019-11-01), pages 1656 - 1663, XP033774930, DOI: 10.1109/ICEMI46757.2019.9101774 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210027895A1 (en) * 2019-07-22 2021-01-28 Tata Consultancy Services Limited Method and system for pressure autoregulation based synthesizing of photoplethysmogram signal
US11462331B2 (en) * 2019-07-22 2022-10-04 Tata Consultancy Services Limited Method and system for pressure autoregulation based synthesizing of photoplethysmogram signal

Also Published As

Publication number Publication date
FR3111533A1 (fr) 2021-12-24
FR3111534A1 (fr) 2021-12-24

Similar Documents

Publication Publication Date Title
CN107920758B (zh) 用于确定血压值的方法、装置和计算机程序
EP3110321B1 (fr) Procédé, dispositif, système et programme informatique de filtrage d&#39;une série rr obtenue a partir d&#39;un signal cardiaque avec contrôle automatique de la qualité de la série rr
EP1898783B1 (fr) Systeme et procede d&#39;analyse electrophysiologique
Tsai et al. Diabetes care in motion: Blood glucose estimation using wearable devices
FR3053238A1 (fr) Procede de detection d&#39;au moins un trouble du rythme cardiaque
EP3305186A1 (fr) Procédé et système de surveillance de stress d&#39;un utilisateur
WO2017115362A1 (fr) Systèmes et procédés pour détecter des paramètres physiologiques
WO2018002541A1 (fr) Dispositif de détection d&#39;au moins un trouble du rythme cardiaque
WO2021259958A1 (fr) Procede de determination de la pression arterielle a partir d&#39;un signal ppg et dispositif correspondant
WO2015121503A1 (fr) Procédé et système de surveillance du système nerveux autonome d&#39;un sujet
EP3491999B1 (fr) Dispositif d&#39;éstimation de la spo2 et méthode d&#39;éstimation de la spo2
EP3593709A1 (fr) Procédé de détermination de l&#39;état de stress d&#39;un individu
EP3110322B1 (fr) Procédé et dispositif de contrôle automatique de la qualité d&#39;une serie rr obtenue à partir d&#39;un signal cardiaque
WO2015197650A2 (fr) Dispositif de traitement de données de rythme cardiaque fœtal, méthode et programme d&#39;ordinateur correspondant
EP4027874B1 (fr) Procédé de détermination du taux respiratoire
Lenskiy et al. Extracting heart rate variability from a smartphone camera
EP1637075A1 (fr) Procédé et dispositif d&#39;évaluation de la douleur chez un être vivant
EP3017754B1 (fr) Methode de determination automatisee d&#39;un indice representatif de l&#39;activite sympatho-vagale d&#39;un etre humain ou d&#39;un animal de competition
FR2983055A1 (fr) Detection et estimation du complexe qrs pour le suivi d&#39;une activite cardiaque et pulmonaire
EP3294121A1 (fr) Procede et dispositif de determination de parametres representatifs d&#39;une activite cardiovasculaire
EP3547911B1 (fr) Procedes et dispositifs de determination d&#39;un signal synthetique d&#39;une activite bioelectrique
EP3841964A1 (fr) Procédé de détermination d&#39;une fonction d&#39;appartenance, destinée à être appliquée pour estimer un état de stress d&#39;une personne
WO2020167583A1 (fr) Oxymétrie de pouls sans étalonnage
WO2024023398A1 (fr) Système et procédé de détermination d&#39;un risque d&#39;hypoxie foetale
WO2023222453A1 (fr) Procédé et dispositif d&#39;estimation de tension artérielle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21739025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21739025

Country of ref document: EP

Kind code of ref document: A1