WO2021259063A1 - Method and system for automatically zooming one or more objects present in a camera preview frame - Google Patents

Method and system for automatically zooming one or more objects present in a camera preview frame Download PDF

Info

Publication number
WO2021259063A1
WO2021259063A1 PCT/CN2021/099145 CN2021099145W WO2021259063A1 WO 2021259063 A1 WO2021259063 A1 WO 2021259063A1 CN 2021099145 W CN2021099145 W CN 2021099145W WO 2021259063 A1 WO2021259063 A1 WO 2021259063A1
Authority
WO
WIPO (PCT)
Prior art keywords
objects
camera
distance
preview frame
camera preview
Prior art date
Application number
PCT/CN2021/099145
Other languages
French (fr)
Inventor
Shubham MAKRARIYA
Sunil Kumar
ABDUSSAMAD, Md
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Publication of WO2021259063A1 publication Critical patent/WO2021259063A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming

Definitions

  • the present disclosure generally relates to the field of media analysis and more particularly to a system and method for automatically zooming one or more objects present in a camera preview frame.
  • smart user devices With the evolution of camera technology, media capturing power of advanced smart camera devices has increased to a great extent. Now-a-days most of the smart user devices are equipped with various types of camera sensors to analyse and capture media in the best possible way. Also, smart user devices having multiple camera sensors are used for different purposes like a wide-angle camera sensor is used for broader field of view (FOV) to capture one or more nearby objects clearly, a telephoto camera sensor is used for the objects which are far, a depth sensor is used to calculate depth of objects and make Bokeh effect.
  • FOV field of view
  • camera opens with a main sensor and if a user wishes to zoom any object in the field of view of the camera, he can either zoom the object based on one or more inputs and switch to telephoto sensor or also the user can further move to a portrait mode and switch to depth + telephoto sensor or in one other instance the user can also switch to wide-angle sensor for clearer image of near objects.
  • an object of the present disclosure is to provide a novel method and system for automatically zooming one or more objects present in a camera preview frame. It is another object of the present disclosure to take care of all the objects in the camera preview frame by evaluating distance of the objects from camera sensor. Also, one of the object of the present disclosure is to calculate a zooming level based on the distance of the objects from the camera sensor/s. One more object of the present disclosure is to automatically zoom one or more objects present in a camera preview frame without any manual interference. Another object of the present disclosure is to provide the users a correct level of zooming so that the one or more objects under camera preview frame are seen/previewed clearer and nearer. Yet another object of the present disclosure is to provide a better camera experience to the user.
  • the present disclosure provides a method and system for automatically zooming one or more objects present in a camera preview frame.
  • One aspect of the present disclosure relates to a method of automatically zooming one or more objects present in the camera preview frame.
  • the method encompasses receiving, at a camera unit, the camera preview frame comprising one or more objects. Thereafter, the method comprises detecting, via an object detection module, the one or more objects in the camera preview frame.
  • the method further comprises calculating, via a distance detection module, a distance of each of the one or more objects in the camera preview frame.
  • the method then leads to comparing, via a processing unit, the distance of each of the one or more objects with a pre-defined distance threshold.
  • the method encompasses generating, via the processing unit, one of a positive response and a negative response based on the comparison of the distance of each of the one or more objects with the pre-defined distance threshold. Further the method comprises automatically zooming, via the processing unit, the one or more object in the camera preview frame based on the positive response.
  • the system comprises a camera unit, configured to receive, the camera preview frame comprising one or more objects.
  • the system further comprises an object detection module, configured to detect, the one or more objects in the camera preview frame.
  • the system comprises a distance detection module, configured to calculate, a distance of each of the one or more objects in the camera preview frame.
  • the system comprises a processing unit, configured to compare, the distance of each of the one or more objects with a pre-defined distance threshold.
  • the processing unit is configured to generate, one of a positive response and a negative response based on the comparison of the distance of each of the one or more objects with the pre-defined distance threshold.
  • the processing unit is configured to automatically zoom, the one or more object in the camera preview frame based on the positive response.
  • the user equipment comprises a system, configured to receive, the camera preview frame comprising one or more objects.
  • the system is further configured to detect, the one or more objects in the camera preview frame. Further, the system is configured to calculate, a distance of each of the one or more objects in the camera preview frame. Thereafter, the system is configured to compare, the distance of each of the one or more objects with a pre-defined distance threshold.
  • the system further configured to generate, one of a positive response and a negative response based on the comparison of the distance of each of the one or more objects with the pre-defined distance threshold. Thereafter, the system is configured to automatically zoom, the one or more object in the camera preview frame based on the positive response.
  • FIG. 1 illustrates a block diagram of the system [100] , for automatically zooming one or more objects present in a camera preview frame, in accordance with exemplary embodiments of the present disclosure.
  • FIG. 2 illustrates an exemplary architecture of a camera unit [102] , in accordance with exemplary embodiments of the present disclosure.
  • FIG. 3 illustrates an exemplary method flow diagram [300] , depicting method of automatically zooming one or more objects present in a camera preview frame, in accordance with exemplary embodiments of the present disclosure.
  • FIG. 4 illustrates an exemplary flow diagram [400] , depicting an instance implementation of the process of automatically zooming one or more objects present in a camera preview frame, in accordance with exemplary embodiments of the present disclosure.
  • FIG. 5 illustrates an exemplary use case, in accordance with exemplary embodiments of the present disclosure.
  • This known prior art solution only takes care of the relative speed of an object to zooming in/out the object. This solution fails to check the distance of object from the camera lens. Further, as the prior art solution is only considering relative speed of an object with camera to perform zooming in or zooming out action, it fails to calculate the zooming value considering how far the object actually is from the camera unit and how much zoom value is actually required based on the distance of the object to capture a clear and focused media. Further, this prior solution also fails to perform zooming in a stationary image.
  • the present disclosure provides a method and system for automatically zooming one or more objects present in a camera preview frame.
  • the present disclosure proposes that if an object in the field of view is far away then zoom level is calculated and applied by switching the sensor from a main camera sensor to the telephoto camera sensor.
  • the present disclosure encompasses the switching at least one main camera sensor to at least one telephoto camera sensor, based on a comparison of a calculated distance of each object of the one or more objects with a pre-defined distance threshold.
  • the present disclosure automatically zooms the one or more objects based on a zoom level.
  • no zooming effect will be required as the one or more objects under the camera FOV are clear and focused.
  • the present disclosure encompasses determining the zoom level on the basis of at least one parameter, including but not limited to, an initial focal length of the one or more objects, an adjusted focal length of the one or more objects, a zoomed height of the one or more objects, an initial height of the one or more objects, the pre-defined distance threshold and the calculated distance of the one or more objects.
  • the “camera preview frame” comprises at least one real time preview of an event picked up by a camera unit. Further the real-time preview of the event comprises a real time preview of at least one of, at least one scene to be captured, at least one object to be captured and at least one surrounding or environment associated with the at least one object.
  • camera preview frame may refer to the preview generated by a camera unit, which further can be seen on a display unit of a user equipment when the user opens a camera application.
  • a “processing unit” or “processor” includes one or more processors, wherein processor refers to any logic circuitry for processing instructions.
  • a processor may be a general-purpose processor, a special purpose processor, a conventional processor, a digital signal processor, a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits, Field Programmable Gate Array circuits, any other type of integrated circuits, etc.
  • the processor may perform signal coding data processing, input/output processing, and/or any other functionality that enables the working of the system according to the present disclosure. More specifically, the processor or processing unit is a hardware processor.
  • auser equipment As used herein, “auser equipment” , “auser device” , “asmart-user device” , “an electronic device” may be any electrical, electronic and computing device or equipment, having at least one camera unit installed on it.
  • the user equipment may include, but is not limited to, a mobile phone, smart phone, laptop, a general-purpose computer, desktop, personal digital assistant, tablet computer, wearable device or any other computing device which is capable of capturing and analyzing one or more media.
  • the user equipment contains at least one input means configured to receive an input from a user, a processing unit, a storage unit, a display unit, an object detection module, a distance detection module, a camera unit and any other such unit which is obvious to the person skilled in the art and is capable of implementing the features of the present disclosure.
  • an “object detection module” may be an intelligent unit having an analysing, computing and detecting capability of detecting an object, and/or the object detection module may be any other such similar unit configured to implement the features of the present disclosure and is obvious to a person skilled in the art.
  • a “distance detection module” may be a smart unit having an analysing and calculating capability to calculate distance, and/or the distance detection module may be any other such similar unit configured to implement the features of the present disclosure and is obvious to a person skilled in the art.
  • FIG. 1 an exemplary block diagram of the system [100] , for automatically zooming one or more objects present in a camera preview frame, in accordance with exemplary embodiments of the present disclosure is shown.
  • the system [100] comprises, at least one camera unit [102] , at least one object detection module [104] , at least one distance detection module [106] and at least one processing unit [108] . All of these components/units are assumed to be connected to each other unless otherwise indicated below. Also, in Fig. 1 only few units are shown, however the system [100] may comprise multiple such units or the system [100] may comprise any such numbers of the units, obvious to a person skilled in the art or as required to implement the features of the present disclosure.
  • the system [100] is configured for automatically zooming one or more objects present in a camera preview frame with the help of the interconnection between its components/units.
  • the at least one camera unit [102] of the system [100] is configured to receive, the camera preview frame comprising one or more objects.
  • the camera preview frame comprises at least one real time preview of an event picked up by the camera unit [102] .
  • the camera preview frame in this scenario comprises a real time preview of a night sky comprising a shooting star, wherein the shooting star is indicated as an object under a field of view of the camera unit [102] .
  • the at least one object detection module [104] of the system [100] is connected to the at least one camera unit [102] .
  • the object detection module [104] is a trained module and is configured to detect, the one or more objects in the camera preview frame.
  • the object detection module [104] receives a first preview frame, received at a camera hardware abstraction layer (HAL) from an image sensor as an input, to detect all objects that are present in the first preview frame.
  • the one or more object under the camera preview frame may be in a rest state or in a moving state. The rest state relates to an absence of movement or state change of the one or more object under the camera preview frame.
  • moving state indicates a movement and/or a change in the one or more object under the camera preview frame/field of view, of the camera unit [102] .
  • the object detection module [104] detects the one or more cars under the camera preview frame of the camera unit [102] .
  • the at least one distance detection module [106] of the system [100] is connected to the at least one object detection module [104] and the at least one camera unit [102] .
  • the distance detection module [106] is configured to calculate, a distance of each of the one or more objects in the camera preview frame.
  • the object detection module [104] provides at least one information related to the detected one or more objects to the distance detection module [106] .
  • the distance detection module [106] calculates the distance of the each of the detected one or more objects, from the camera unit [102] .
  • the distance detection module [106] calculates the distance based on various parameters such as including but not limited to at least one of a focal length, an object height, an image height, and a camera sensor aperture.
  • the object height may be an average object height or a known object height. In an example, the object height is measured in pixels.
  • the at least one processing unit [108] of the system [100] is connected to the at least one distance detection module [106] , at least one object detection module [104] and the at least one camera unit [102] .
  • the processing unit [108] is configured to compare, the distance of each of the one or more objects with a pre-defined distance threshold.
  • the distance detection module [106] provides the calculated distance of each of the one or more objects present under the camera preview frame, to the processing unit [108] .
  • the processing unit [108] is also configured to compare the calculated distance of each of the one or more objects with the pre-defined distance threshold.
  • the pre-defined distance threshold is the distance threshold based on the camera unit [102] .
  • the pre-defined distance threshold is the distance up-to which the camera unit [102] is capable of capturing the one or more media/object with best possible focus and clarity, without any need to zoom the one or more object.
  • the processing unit [108] is further configured to generate, one of a positive response and a negative response based on the comparison of the distance of each of the one or more objects with the pre-defined distance threshold.
  • the processing unit [108] generates the positive response in an event the distance of the one or more objects is greater than the pre-defined distance threshold.
  • the processing unit [108] generates the negative response in an event the distance of the one or more objects is less than the pre-defined distance threshold.
  • the positive response indicates that in order to capture a clearer and focused object, there is a requirement to zoom the object to a certain level as the object is present beyond the pre-defined distance threshold.
  • the negative response indicates that in order to capture a clearer and focused object, there is no requirement to zoom the object to a certain level as the object is present with-in the pre-defined distance threshold.
  • the processing unit [108] is further configured to automatically zoom, the one or more objects in the camera preview frame based on the positive response.
  • the processing unit [108] in order to automatically zoom the one or more objects is further configured to automatically switch at least one main sensor of the camera unit to at least one telephoto sensor of the camera unit.
  • the processing unit [108] is configured to switch at least one main sensor of the camera unit to at least one telephoto sensor of the camera unit to zoom a selected object from multiple objects, based on a user input. For example, if the object detection module [104] detects two objects (i.e. object 1 and object 2) under the camera preview frame and the distance calculated by the distance detection module [106] is 1.2 meter and 1.4 meter for the object 1 and the object 2 respectively. Further, say the pre-defined distance threshold is 1 meter in the given example. The processing unit [108] , after comparing the calculated distance generates a positive response for each of the object 1 and the object 2, as the calculated distance of both object 1 and object 2 is more than the pre-defined distance threshold.
  • the object detection module [104] detects two objects (i.e. object 1 and object 2) under the camera preview frame and the distance calculated by the distance detection module [106] is 1.2 meter and 1.4 meter for the object 1 and the object 2 respectively.
  • the pre-defined distance threshold is 1 meter in
  • the processing unit [108] therefore receives a user input to zoom one of the object 1 and the object 2. Also, in one other example if the distance of the object 1 and object 2 is same (i.e. 1.2 meter or 1.4 meter) , the processing unit [108] is configured to automatically zoom both object 1 and object 2 simultaneously.
  • the processing unit [108] is also configured to automatically zoom, the one or more objects in the camera preview frame, based on a zoom level.
  • the zoom level is a zooming value up-to which the processing unit [108] requires to make an object closer in the camera preview frame, in order to provide a clearer preview of the object in the camera preview frame and to give a better camera experience to the user.
  • the processing unit [108] is configured to calculate the zoom level based on at least one of an initial focal length of the one or more objects, an adjusted focal length of the one or more objects, a zoomed height of the one or more objects, an initial height of the one or more objects, the pre-defined distance threshold and the calculated distance of the one or more objects.
  • the processing unit [108] calculates the zoom level based on a ratio of the adjusted focal length of the one or more objects to the initial focal length of the one or more objects. Also, the calculation of the zoom level may be based on a multiplication of, a ratio of the zoomed height of the one or more objects (in pixels) to the initial height of the one or more objects (in pixels) , with a ratio of the pre-defined distance threshold to the calculated distance of the one or more objects.
  • the zoomed height of the one or more objects can be calculated via the processing unit [108] , based on a relation between an image area (in pixel) and a threshold ratio of the image area and zoomed object height.
  • FIG. 2 refers to an exemplary architecture of camera unit [102] , in accordance with the exemplary embodiments of the present disclosure.
  • the camera unit [102] comprises, at least one camera preview frame unit [202] , at least one camera driver [204] , at least one camera HAL [206] , at least one camera framework [208] , at least one main sensor [210] and at least one telephoto sensor [212] .
  • the camera unit [102] may comprise other various subunits, but the same are not shown in the Figure 2 for the purpose of clarity. Also, in Figure 2 only few units/sub-units of the camera unit [102] are shown, however the camera unit [102] may comprise multiple such units or the camera unit [102] may comprise any such numbers of the units, obvious to a person skilled in the art, required to implement the features of the present disclosure.
  • the camera preview frame unit [202] is configured to provide a graphical user interface to a user to provide a preview of at least one camera preview frame.
  • the present disclosure encompasses that the camera preview frame unit [202] is configured to display a camera preview frame on a display unit.
  • the display unit (not shown in Figure) may be a display unit integrated within the system [100] or may be any external display unit connected to the system [100] .
  • the camera preview frame comprises at least one real time preview of an event picked up by the camera unit [102] . Further the real-time preview of the event comprises a real time preview of at least one of, at least one scene to be captured, at least one object to be captured and the surrounding or environment associated with the at least one object.
  • camera preview frame may refer to the preview generated by the camera unit [102] at the camera preview frame unit [202] that further displayed on the display unit.
  • the camera driver [204] is configured to collect a real-time data and to provide the same to the camera HAL [206] .
  • the camera HAL [206] is configured to process the received real time data based on a received triggering command from at least one of the one or more subunits of, the camera unit [102] and the system [100] .
  • the camera framework [208] is configured to provide a module to interact at least one of the one or more subunits of the camera unit [102] with the system [100] .
  • the camera framework [208] is also configured to store files for input data, processing and the guiding mechanism.
  • the main sensor [210] is a main camera sensor of the camera unit [102] and is configured to receive at least one real time event to further generate the camera preview frame.
  • the telephoto sensor [210] of the camera unit [102] is configured to provide at least one zooming effect in the camera preview frame.
  • an exemplary method flow diagram [300] depicting method of automatically zooming one or more objects present in a camera preview frame, in accordance with exemplary embodiments of the present disclosure, is shown.
  • the method begins at step [302] .
  • the method begins when a user opens a camera application on its user device to capture a media.
  • the method comprises receiving, at a camera unit [102] , a camera preview frame comprising one or more objects.
  • the camera preview frame comprises at least one real time preview of an event picked up by the camera unit [102] .
  • the camera preview frame in this scenario comprises a real time preview of the sky comprising the one or more birds, wherein the one or more birds are indicated as the one or more objects under a field of view of the camera unit [102] .
  • the method comprises detecting, via an object detection module [104] , the one or more objects in the camera preview frame.
  • the method encompasses receiving at the object detection module [104] , a first preview frame, received at a camera hardware abstraction layer (HAL) from an image sensor as an input, to detect all objects that are present in the first preview frame.
  • the one or more object under the camera preview frame may be in a rest state or in a moving state.
  • the rest state relates to an absence of movement or state change of the one or more object under the camera preview frame.
  • moving state indicates a movement and/or a change in the one or more object under the camera preview frame/field of view, of the camera unit [102] .
  • the object detection module [104] may detect a cake and a cake cutting master as two objects, under the camera preview frame of the camera unit [102] .
  • the method comprises calculating, via a distance detection module [106] , a distance of each of the one or more objects present in the camera preview frame.
  • the method in order to calculate the distance further encompasses receiving at the distance detection module [106] , at least one information related to the detected one or more objects via the object detection module [104] .
  • the method comprises calculating via the distance detection module [106] , the distance of the each of the detected one or more objects, from the camera unit [102] .
  • the method comprises calculating the distance of the each of the one or more objects based on various parameters such as including but not limited to at least one of a focal length, an object height, an image height, and a camera sensor aperture.
  • the object height may be an average object height or a known object height. In an example, the object height is measured in pixels.
  • the method comprises comparing, via a processing unit [108] , the distance of each of the one or more objects with a pre-defined distance threshold.
  • the method in order to compare the distance of the each of the one or more objects with the pre-defined distance threshold distance, encompasses receiving at the processing unit [108] , the calculated distance of each of the one or more objects present under the camera preview frame, from the detection module [106] .
  • the method thereafter compares via the processing unit, the calculated distance of each of the one or more objects with the pre-defined distance threshold.
  • the pre-defined distance threshold is the distance threshold based on the camera unit [102] .
  • the pre-defined distance threshold is the distance up-to which the camera unit [102] is capable of capturing the one or more media/object with best possible focus and clarity, without any need to zoom the one or more object.
  • the method comprises generating, via the processing unit [108] , one of a positive response and a negative response based on the comparison of the distance of each of the one or more objects with the pre-defined distance threshold.
  • the method comprises generating via the processing unit [108] , the positive response in an event the distance of the one or more objects is greater than the pre-defined distance threshold.
  • the method comprises generating via the processing unit [108] , the negative response in an event the distance of the one or more objects is less than the pre-defined distance threshold.
  • the positive response indicates that in order to capture a clearer and focused object, there is a requirement to zoom the object to a certain level as the object is present beyond the pre-defined distance threshold.
  • the negative response indicates that in order to capture a clearer and focused object, there is no requirement to zoom the object as the object is present with-in the pre-defined distance threshold.
  • the method comprises automatically zooming, via the processing unit [108] , the one or more objects in the camera preview frame based on the positive response.
  • the method thereafter in order to automatically zoom the one or more objects further comprises automatically switching via the processing unit [108] , at least one main sensor [210] of the camera unit to at least one telephoto sensor [212] of the camera unit.
  • the method encompasses zooming a selected object from multiple objects detected under the camera preview frame, by switching via the processing unit [108] , the at least one main sensor [210] of the camera unit [102] to the at least one telephoto sensor [212] of the camera unit [102] , based on a user input. For example, if three objects (i.e. object 1, object 2 and object 3) are detected under the camera preview frame via the object detection module [104] , and the distance calculated by the distance detection module [106] is 1.9 meters, 2.1 meters and 2.4 meters for the object 1, object 2 and the object 3 respectively. Further, the pre-defined distance threshold is 2 meters in the given example.
  • the method After comparing the calculated distance generates a positive response for each of the object 2 and the object 3, as the calculated distance of both object 2 and object 3 is more than the pre-defined distance threshold. Also, the distance of object 1 is less than the pre-defined distance threshold, therefore a negative response is generated for the object 1. Further, as the object 2 and object 3 are at a different distance from the camera unit [102] , the method therefore encompasses receiving a user input to automatically zoom one of the object 2 and the object 3. Also, in one other example if the distance of the object 2 and object 3 is same (i.e. either 2.1 meter or 2.4 meter) , the method encompasses automatically zooming both object 2 and object 3 simultaneously, without any user selection of either of the object 2 or the object 3.
  • the method also comprises automatically zooming via the processing unit [108] , the one or more objects in the camera preview frame, based on a zoom level.
  • the zoom level is a zooming value up-to which the processing unit [108] requires to make an object closer in the camera preview frame, in order to provide a clearer preview of the object in the camera preview frame and to give a better camera experience to the user.
  • the method comprises calculating via the processing unit [108] , the zoom level based on at least one of an initial focal length of the one or more objects, an adjusted focal length of the one or more objects, a zoomed height of the one or more objects, an initial height of the one or more objects, the pre-defined distance threshold and the calculated distance of the one or more objects.
  • the method encompasses calculating via the processing unit [108] , the zoom level based on a ratio of the adjusted focal length of the one or more objects to the initial focal length of the one or more objects.
  • the calculation of the zoom level may be based on a multiplication of, a ratio of the zoomed height of the one or more objects (in pixels) to the initial height of the one or more objects (in pixels) , with a ratio of the pre-defined distance threshold to the calculated distance of the one or more objects.
  • the method comprises calculating via the processing unit [108] , the zoomed height of the one or more objects, based on a relation between an image area (in pixel) and a threshold ratio of the image area and zoomed object height.
  • the method After automatically zooming the one or more objects present in the camera preview frame, the method further terminates at step [316] .
  • the user equipment comprises a system [100] , configured to receive, the camera preview frame comprising one or more objects.
  • the system [100] is further configured to detect, the one or more objects in the camera preview frame.
  • the system [100] is configured to calculate, a distance of each of the one or more objects in the camera preview frame.
  • the system [100] is configured to compare, the distance of each of the one or more objects with a pre-defined distance threshold.
  • the system [100] further configured to generate, one of a positive response and a negative response based on the comparison of the distance of each of the one or more objects with the pre-defined distance threshold.
  • the system [100] is configured to automatically zoom, the one or more object in the camera preview frame based on the positive response.
  • FIG. 4 an exemplary flow diagram [400] , depicting an instance implementation of the process of automatically zooming one or more objects present in a camera preview frame, in accordance with exemplary embodiments of the present disclosure, is shown. As indicated in Figure 1, the process starts at step [402] .
  • the method encompasses accessing a camera unit [102] via a user, by opening a camera of a user device, to capture one or more media. Further, the camera unit [102] is configured to receive, a camera preview frame comprising one or more objects.
  • the method comprises detecting, via an object detection module [104] , the one or more objects in the camera preview frame.
  • the method comprises calculating, via a distance detection module [106] , a distance of each of the one or more objects in the camera preview frame.
  • the method comprises determining whether a single object or multiple objects are detected under the camera preview frame, respectively. Further, the method leads to the step [414] in an event multiple objects are detected under the camera preview frame. Also, the method leads to the step [416] in an event single object is detected under the camera preview frame.
  • step [414] the method indicates that the detected multiple objects are located nearby to each other (i.e. located at approximately same distance from the camera unit [102] ) . Thereafter the method further leads to step [416] from step [414] .
  • the method at step [422] indicated that the detected multiple objects are not located nearby to each other (i.e. located at a far distance from each other) . Thereafter the method further leads to step [424] to select a single object out of the multiple detected objects, based on a user selection. After the selection of the single object from the multiple detected objects the method further leads to step [418] . Also, if no object is selected from the multiple detected objects the method leads to step [420] .
  • the method comprises determining if the calculated distance of the detected objects is greater than a pre-defined distance threshold. Further in an event if the calculated distance of the detected objects is greater than a pre-defined distance threshold, the method leads to step [418] , otherwise the method leads to step [420] .
  • the method comprises providing the user a zoomed preview of the one or more identified object under the camera preview frame by automatically zooming the one or more objects based on a zoom value. Also, the automatically zooming further comprises switching at least one main sensor [210] of the camera unit [102] to at least one telephoto sensor [212] of the camera unit [102] .
  • the method comprises, providing the user a normal view of the one or more object present under the camera preview frame, as no zooming effect if required at step [420] .
  • the method further terminates at step [422] .
  • FIG. 5 an exemplary use case, in accordance with exemplary embodiments of the present disclosure, is shown.
  • Figure 5 indicates two camera preview frames [500 A] and [500 B] indicating a camera preview frame before automatically zooming an object [508] and a camera preview frame after automatically zooming an object [508] , respectively.
  • the camera preview frames [500 A] indicates that the 4 objects are detected via the object detection module [104] .
  • the detected 4 objects are [502] , [504] , [506] and [508] .
  • a distance of each of the [502] , [504] , [506] and [508] from a camera unit [102] is further determined via a distance detection module [106] .
  • the calculated distance of each of the [502] , [504] , [506] and [508] is further compared with a pre-defined distance threshold, via a processing unit [108] . Also, in an instance the calculated distance of the [502] is less than the pre-defined distance threshold, therefore no zooming effect is required for [502] .
  • the processing unit [108] further based on a user selection of object [508] from the objects [504] , [506] and [508] , automatically zooms the object [508] to a calculated adequate zoom level. Further, the automatically zoomed object [508] is shown under the camera preview frame [500 B] .
  • the present solution provides significant technical advancement over the existing solutions by automatically zooming, the one or more objects present in the camera preview frame.

Abstract

The present disclosure provides method [200] and system [100] for automatically zooming one or more objects present in a camera preview frame. The method encompasses, a camera preview frame comprising one or more objects. Thereafter, the method comprises detecting, the one or more objects in the camera preview frame. Further, the method comprises calculating, a distance of each of the one or more objects in the camera preview frame. The method further encompasses comparing, the distance of each of the one or more objects with a pre-defined distance threshold. The method further comprises generating, one of a positive response and a negative response based on the comparison of the distance of each of the one or more objects with the pre-defined distance threshold. Thereafter, the method comprises automatically zooming, the one or more objects in the camera preview frame based on the positive response.

Description

METHOD AND SYSTEM FOR AUTOMATICALLY ZOOMING ONE OR MORE OBJECTS PRESENT IN A CAMERA PREVIEW FRAME
FIELD OF THE DISCLOSURE
The present disclosure generally relates to the field of media analysis and more particularly to a system and method for automatically zooming one or more objects present in a camera preview frame.
BACKGROUND
This section is intended to provide information relating to field of the disclosure and thus any approach or functionality described below should not be assumed to be qualified as prior art merely by its inclusion in this section.
With the evolution of camera technology, media capturing power of advanced smart camera devices has increased to a great extent. Now-a-days most of the smart user devices are equipped with various types of camera sensors to analyse and capture media in the best possible way. Also, smart user devices having multiple camera sensors are used for different purposes like a wide-angle camera sensor is used for broader field of view (FOV) to capture one or more nearby objects clearly, a telephoto camera sensor is used for the objects which are far, a depth sensor is used to calculate depth of objects and make Bokeh effect.
Usually camera opens with a main sensor and if a user wishes to zoom any object in the field of view of the camera, he can either zoom the object based on one or more inputs and switch to telephoto sensor or also the user can further move to a portrait mode and switch to depth + telephoto sensor or in one other instance the user can also switch to wide-angle sensor for clearer image of near objects.
Further, although the existing technologies have provided various solutions to capture and analyse media, but these currently known solutions have many limitations and therefore there is a need for improvement in this area of technology.
SUMMARY
This section is provided to introduce certain objects and aspects of the present disclosure in a simplified form that are further described below in the detailed description. This summary is not intended to identify the key features or the scope of the claimed subject matter.
In order to overcome at least a few problems associated with the known solutions, an object of the present disclosure is to provide a novel method and system for automatically zooming one or more objects present in a camera preview frame. It is  another object of the present disclosure to take care of all the objects in the camera preview frame by evaluating distance of the objects from camera sensor. Also, one of the object of the present disclosure is to calculate a zooming level based on the distance of the objects from the camera sensor/s. One more object of the present disclosure is to automatically zoom one or more objects present in a camera preview frame without any manual interference. Another object of the present disclosure is to provide the users a correct level of zooming so that the one or more objects under camera preview frame are seen/previewed clearer and nearer. Yet another object of the present disclosure is to provide a better camera experience to the user.
In order to achieve the afore-mentioned objectives, the present disclosure provides a method and system for automatically zooming one or more objects present in a camera preview frame. One aspect of the present disclosure relates to a method of automatically zooming one or more objects present in the camera preview frame. The method encompasses receiving, at a camera unit, the camera preview frame comprising one or more objects. Thereafter, the method comprises detecting, via an object detection module, the one or more objects in the camera preview frame. The method further comprises calculating, via a distance detection module, a distance of each of the one or more objects in the camera preview frame. The method then leads to comparing, via a processing unit, the distance of each of the one or more objects with a pre-defined distance threshold. Thereafter, the method encompasses generating, via the processing unit, one of a positive response and a negative response based on the comparison of the distance of each of the one or more objects with the pre-defined distance threshold. Further the method comprises automatically zooming, via the processing unit, the one or more object in the camera preview frame based on the positive response.
Further, another aspect of the present disclosure relates to a system for automatically zooming one or more objects present in a camera preview frame. The system comprises a camera unit, configured to receive, the camera preview frame comprising one or more objects. The system further comprises an object detection module, configured to detect, the one or more objects in the camera preview frame. Further, the system comprises a distance detection module, configured to calculate, a distance of each of the one or more objects in the camera preview frame. Thereafter, the system comprises a processing unit, configured to compare, the distance of each of the one or more objects with a pre-defined distance threshold. Further, the processing unit is configured to generate, one of a positive response and a negative response based on the comparison of the distance of each of the one or more objects with the pre-defined distance threshold. Thereafter, the processing unit is configured to automatically zoom, the one or more object in the camera preview frame based on the positive response.
Yet, another aspect of the present disclosure relates to a user equipment for automatically zooming one or more objects present in a camera preview frame. The user equipment comprises a system, configured to receive, the camera preview  frame comprising one or more objects. The system is further configured to detect, the one or more objects in the camera preview frame. Further, the system is configured to calculate, a distance of each of the one or more objects in the camera preview frame. Thereafter, the system is configured to compare, the distance of each of the one or more objects with a pre-defined distance threshold. The system further configured to generate, one of a positive response and a negative response based on the comparison of the distance of each of the one or more objects with the pre-defined distance threshold. Thereafter, the system is configured to automatically zoom, the one or more object in the camera preview frame based on the positive response.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated herein, and constitute a part of this disclosure, illustrate exemplary embodiments of the disclosed methods and systems in which like reference numerals refer to the same parts throughout the different drawings. Components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Some drawings may indicate the components using block diagrams and may not represent the internal circuitry of each component. It will be appreciated by those skilled in the art that disclosure of such drawings includes disclosure of electrical components, electronic components or circuitry commonly used to implement such components.
FIG. 1 illustrates a block diagram of the system [100] , for automatically zooming one or more objects present in a camera preview frame, in accordance with exemplary embodiments of the present disclosure.
FIG. 2 illustrates an exemplary architecture of a camera unit [102] , in accordance with exemplary embodiments of the present disclosure.
FIG. 3 illustrates an exemplary method flow diagram [300] , depicting method of automatically zooming one or more objects present in a camera preview frame, in accordance with exemplary embodiments of the present disclosure.
FIG. 4 illustrates an exemplary flow diagram [400] , depicting an instance implementation of the process of automatically zooming one or more objects present in a camera preview frame, in accordance with exemplary embodiments of the present disclosure.
FIG. 5 illustrates an exemplary use case, in accordance with exemplary embodiments of the present disclosure.
The foregoing shall be more apparent from the following more detailed description of the present disclosure.
DETAILED DESCRIPTION
In the following description, for the purposes of explanation, various specific details are set forth in order to provide a thorough understanding of embodiments of the present disclosure. It will be apparent, however, that embodiments of the present disclosure may be practiced without these specific details. Several features described hereafter can each be used independently of one another or with any combination of other features. An individual feature may not address all of the problems discussed above or might address only some of the problems discussed above.
As it is important to analyse and capture an image/video in the best possible way, a number of solutions for zooming the images/videos have been developed over a period of time. In order to capture one or more objects which are very distant from the camera sensor/s, the current known solutions provide various techniques to clearly focus and zoom such one or more objects. Most of these prior art solutions require a manual input of the user to zoom one or more objects present under a camera FOV, for instance the user needs to select the zooming range manually by providing one or more inputs. Also, one of the currently known solution provides automatically zooming in, if the object is stationary or its relative movement is slowing down and also automatically zooming out, if the object is moving fast relatively. This prior art solution provides the zooming in and zooming out effect by using power lens or the zooming in and zooming out effect in the prior art solution is achieved digitally without moving lens part.
This known prior art solution only takes care of the relative speed of an object to zooming in/out the object. This solution fails to check the distance of object from the camera lens. Further, as the prior art solution is only considering relative speed of an object with camera to perform zooming in or zooming out action, it fails to calculate the zooming value considering how far the object actually is from the camera unit and how much zoom value is actually required based on the distance of the object to capture a clear and focused media. Further, this prior solution also fails to perform zooming in a stationary image.
Therefore, in view of these and other existing limitations, there is an imperative need to provide a solution to overcome the limitations of prior existing solutions and to provide a more efficient method and system for automatically zooming one or more objects present in a camera preview frame.
The present disclosure provides a method and system for automatically zooming one or more objects present in a camera preview frame. The present disclosure proposes that if an object in the field of view is far away then zoom level is calculated and applied by switching the sensor from a main camera sensor to the telephoto camera sensor. The present disclosure encompasses the switching at least one main camera sensor to at least one telephoto camera sensor, based on a comparison of a calculated distance of each object of the one or more objects with a pre-defined  distance threshold. In an event, if the calculated distance of the one or more objects is more than the pre-defined distance threshold, the present disclosure automatically zooms the one or more objects based on a zoom level. Also, in one other event, if the calculated distance of the objects is less than the pre-defined distance threshold, no zooming effect will be required as the one or more objects under the camera FOV are clear and focused.
Furthermore, the present disclosure encompasses determining the zoom level on the basis of at least one parameter, including but not limited to, an initial focal length of the one or more objects, an adjusted focal length of the one or more objects, a zoomed height of the one or more objects, an initial height of the one or more objects, the pre-defined distance threshold and the calculated distance of the one or more objects.
As used herein, the “camera preview frame” comprises at least one real time preview of an event picked up by a camera unit. Further the real-time preview of the event comprises a real time preview of at least one of, at least one scene to be captured, at least one object to be captured and at least one surrounding or environment associated with the at least one object. For instance, camera preview frame may refer to the preview generated by a camera unit, which further can be seen on a display unit of a user equipment when the user opens a camera application.
As used herein, a “processing unit” or “processor” includes one or more processors, wherein processor refers to any logic circuitry for processing instructions. A processor may be a general-purpose processor, a special purpose processor, a conventional processor, a digital signal processor, a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits, Field Programmable Gate Array circuits, any other type of integrated circuits, etc. The processor may perform signal coding data processing, input/output processing, and/or any other functionality that enables the working of the system according to the present disclosure. More specifically, the processor or processing unit is a hardware processor.
As used herein, “auser equipment” , “auser device” , “asmart-user device” , “an electronic device” may be any electrical, electronic and computing device or equipment, having at least one camera unit installed on it. The user equipment may include, but is not limited to, a mobile phone, smart phone, laptop, a general-purpose computer, desktop, personal digital assistant, tablet computer, wearable device or any other computing device which is capable of capturing and analyzing one or more media. The user equipment contains at least one input means configured to receive an input from a user, a processing unit, a storage unit, a display unit, an object detection module, a distance detection module, a camera unit and any other such unit which is obvious to the person skilled in the art and is capable of implementing the features of the present disclosure.
As used herein, an “object detection module” may be an intelligent unit having an analysing, computing and detecting capability of detecting an object, and/or the object detection module may be any other such similar unit configured to implement the features of the present disclosure and is obvious to a person skilled in the art.
As used herein, a “distance detection module” may be a smart unit having an analysing and calculating capability to calculate distance, and/or the distance detection module may be any other such similar unit configured to implement the features of the present disclosure and is obvious to a person skilled in the art.
The present disclosure is further explained in detail below with reference now to the diagrams.
Referring to FIG. 1, an exemplary block diagram of the system [100] , for automatically zooming one or more objects present in a camera preview frame, in accordance with exemplary embodiments of the present disclosure is shown.
The system [100] comprises, at least one camera unit [102] , at least one object detection module [104] , at least one distance detection module [106] and at least one processing unit [108] . All of these components/units are assumed to be connected to each other unless otherwise indicated below. Also, in Fig. 1 only few units are shown, however the system [100] may comprise multiple such units or the system [100] may comprise any such numbers of the units, obvious to a person skilled in the art or as required to implement the features of the present disclosure.
The system [100] is configured for automatically zooming one or more objects present in a camera preview frame with the help of the interconnection between its components/units.
The at least one camera unit [102] of the system [100] is configured to receive, the camera preview frame comprising one or more objects. The camera preview frame comprises at least one real time preview of an event picked up by the camera unit [102] . For instance, if a user accesses a camera of a user device to capture a shooting star, the camera preview frame in this scenario comprises a real time preview of a night sky comprising a shooting star, wherein the shooting star is indicated as an object under a field of view of the camera unit [102] .
The at least one object detection module [104] of the system [100] is connected to the at least one camera unit [102] . The object detection module [104] is a trained module and is configured to detect, the one or more objects in the camera preview frame. In an instance, the object detection module [104] receives a first preview frame, received at a camera hardware abstraction layer (HAL) from an image sensor as an input, to detect all objects that are present in the first preview frame. Further, the one or more object under the camera preview frame may be in a rest state or in a moving state. The rest state relates to an absence of movement or state change of the one or more object under the camera preview frame. Also, moving state  indicates a movement and/or a change in the one or more object under the camera preview frame/field of view, of the camera unit [102] . Further, in an example, if a user accesses a camera of a user device to capture a car race, the object detection module [104] detects the one or more cars under the camera preview frame of the camera unit [102] .
The at least one distance detection module [106] of the system [100] is connected to the at least one object detection module [104] and the at least one camera unit [102] . The distance detection module [106] is configured to calculate, a distance of each of the one or more objects in the camera preview frame. The object detection module [104] provides at least one information related to the detected one or more objects to the distance detection module [106] . Thereafter, the distance detection module [106] , calculates the distance of the each of the detected one or more objects, from the camera unit [102] . The distance detection module [106] calculates the distance based on various parameters such as including but not limited to at least one of a focal length, an object height, an image height, and a camera sensor aperture. Also, in an instance the object height may be an average object height or a known object height. In an example, the object height is measured in pixels.
The at least one processing unit [108] of the system [100] is connected to the at least one distance detection module [106] , at least one object detection module [104] and the at least one camera unit [102] . The processing unit [108] is configured to compare, the distance of each of the one or more objects with a pre-defined distance threshold. The distance detection module [106] provides the calculated distance of each of the one or more objects present under the camera preview frame, to the processing unit [108] . The processing unit [108] is also configured to compare the calculated distance of each of the one or more objects with the pre-defined distance threshold. In an instance, the pre-defined distance threshold is the distance threshold based on the camera unit [102] . Further, the pre-defined distance threshold is the distance up-to which the camera unit [102] is capable of capturing the one or more media/object with best possible focus and clarity, without any need to zoom the one or more object.
The processing unit [108] is further configured to generate, one of a positive response and a negative response based on the comparison of the distance of each of the one or more objects with the pre-defined distance threshold. The processing unit [108] generates the positive response in an event the distance of the one or more objects is greater than the pre-defined distance threshold. Also, the processing unit [108] generates the negative response in an event the distance of the one or more objects is less than the pre-defined distance threshold. Furthermore, the positive response indicates that in order to capture a clearer and focused object, there is a requirement to zoom the object to a certain level as the object is present beyond the pre-defined distance threshold. Also, the negative response indicates that in order to capture a clearer and focused object, there is no requirement to zoom the object to a certain level as the object is present with-in the pre-defined  distance threshold.
The processing unit [108] is further configured to automatically zoom, the one or more objects in the camera preview frame based on the positive response. The processing unit [108] in order to automatically zoom the one or more objects, is further configured to automatically switch at least one main sensor of the camera unit to at least one telephoto sensor of the camera unit.
Also, the processing unit [108] is configured to switch at least one main sensor of the camera unit to at least one telephoto sensor of the camera unit to zoom a selected object from multiple objects, based on a user input. For example, if the object detection module [104] detects two objects (i.e. object 1 and object 2) under the camera preview frame and the distance calculated by the distance detection module [106] is 1.2 meter and 1.4 meter for the object 1 and the object 2 respectively. Further, say the pre-defined distance threshold is 1 meter in the given example. The processing unit [108] , after comparing the calculated distance generates a positive response for each of the object 1 and the object 2, as the calculated distance of both object 1 and object 2 is more than the pre-defined distance threshold. Further, as the object 1 and object 2 are at a different distance from the camera unit [102] , the processing unit [108] therefore receives a user input to zoom one of the object 1 and the object 2. Also, in one other example if the distance of the object 1 and object 2 is same (i.e. 1.2 meter or 1.4 meter) , the processing unit [108] is configured to automatically zoom both object 1 and object 2 simultaneously.
The processing unit [108] is also configured to automatically zoom, the one or more objects in the camera preview frame, based on a zoom level. The zoom level is a zooming value up-to which the processing unit [108] requires to make an object closer in the camera preview frame, in order to provide a clearer preview of the object in the camera preview frame and to give a better camera experience to the user. The processing unit [108] is configured to calculate the zoom level based on at least one of an initial focal length of the one or more objects, an adjusted focal length of the one or more objects, a zoomed height of the one or more objects, an initial height of the one or more objects, the pre-defined distance threshold and the calculated distance of the one or more objects.
Furthermore, in an instance, the processing unit [108] calculates the zoom level based on a ratio of the adjusted focal length of the one or more objects to the initial focal length of the one or more objects. Also, the calculation of the zoom level may be based on a multiplication of, a ratio of the zoomed height of the one or more objects (in pixels) to the initial height of the one or more objects (in pixels) , with a ratio of the pre-defined distance threshold to the calculated distance of the one or more objects.
Also, the zoomed height of the one or more objects can be calculated via the processing unit [108] , based on a relation between an image area (in pixel) and a  threshold ratio of the image area and zoomed object height.
FIG. 2 refers to an exemplary architecture of camera unit [102] , in accordance with the exemplary embodiments of the present disclosure.
The camera unit [102] comprises, at least one camera preview frame unit [202] , at least one camera driver [204] , at least one camera HAL [206] , at least one camera framework [208] , at least one main sensor [210] and at least one telephoto sensor [212] . Also, the camera unit [102] may comprise other various subunits, but the same are not shown in the Figure 2 for the purpose of clarity. Also, in Figure 2 only few units/sub-units of the camera unit [102] are shown, however the camera unit [102] may comprise multiple such units or the camera unit [102] may comprise any such numbers of the units, obvious to a person skilled in the art, required to implement the features of the present disclosure.
The camera preview frame unit [202] is configured to provide a graphical user interface to a user to provide a preview of at least one camera preview frame. The present disclosure encompasses that the camera preview frame unit [202] is configured to display a camera preview frame on a display unit. The display unit (not shown in Figure) may be a display unit integrated within the system [100] or may be any external display unit connected to the system [100] . Also, the camera preview frame comprises at least one real time preview of an event picked up by the camera unit [102] . Further the real-time preview of the event comprises a real time preview of at least one of, at least one scene to be captured, at least one object to be captured and the surrounding or environment associated with the at least one object. For instance, camera preview frame may refer to the preview generated by the camera unit [102] at the camera preview frame unit [202] that further displayed on the display unit.
The camera driver [204] , is configured to collect a real-time data and to provide the same to the camera HAL [206] . The camera HAL [206] is configured to process the received real time data based on a received triggering command from at least one of the one or more subunits of, the camera unit [102] and the system [100] .
The camera framework [208] is configured to provide a module to interact at least one of the one or more subunits of the camera unit [102] with the system [100] . The camera framework [208] is also configured to store files for input data, processing and the guiding mechanism.
The main sensor [210] is a main camera sensor of the camera unit [102] and is configured to receive at least one real time event to further generate the camera preview frame.
The telephoto sensor [210] of the camera unit [102] is configured to provide at least one zooming effect in the camera preview frame.
Referring to Fig. 3, an exemplary method flow diagram [300] , depicting method of automatically zooming one or more objects present in a camera preview frame, in accordance with exemplary embodiments of the present disclosure, is shown. As shown in Fig. 3, the method begins at step [302] . For instance, the method begins when a user opens a camera application on its user device to capture a media.
At step [304] , the method comprises receiving, at a camera unit [102] , a camera preview frame comprising one or more objects. The camera preview frame comprises at least one real time preview of an event picked up by the camera unit [102] . For instance, if a user accesses a camera unit [102] via a camera application to capture one or more birds flying in the sky, the camera preview frame in this scenario comprises a real time preview of the sky comprising the one or more birds, wherein the one or more birds are indicated as the one or more objects under a field of view of the camera unit [102] .
Next, at step [306] , the method comprises detecting, via an object detection module [104] , the one or more objects in the camera preview frame. In an instance, the method encompasses receiving at the object detection module [104] , a first preview frame, received at a camera hardware abstraction layer (HAL) from an image sensor as an input, to detect all objects that are present in the first preview frame. Further, the one or more object under the camera preview frame may be in a rest state or in a moving state. The rest state relates to an absence of movement or state change of the one or more object under the camera preview frame. Also, moving state indicates a movement and/or a change in the one or more object under the camera preview frame/field of view, of the camera unit [102] . Further, in an example, if a user accesses a camera unit [102] to capture a birthday party, the object detection module [104] may detect a cake and a cake cutting master as two objects, under the camera preview frame of the camera unit [102] .
Next, at step [308] , the method comprises calculating, via a distance detection module [106] , a distance of each of the one or more objects present in the camera preview frame. The method in order to calculate the distance further encompasses receiving at the distance detection module [106] , at least one information related to the detected one or more objects via the object detection module [104] . Thereafter, the method comprises calculating via the distance detection module [106] , the distance of the each of the detected one or more objects, from the camera unit [102] . Also, the method comprises calculating the distance of the each of the one or more objects based on various parameters such as including but not limited to at least one of a focal length, an object height, an image height, and a camera sensor aperture. Also, in an instance the object height may be an average object height or a known object height. In an example, the object height is measured in pixels.
Next, at step [310] , the method comprises comparing, via a processing unit [108] , the distance of each of the one or more objects with a pre-defined distance threshold. The method in order to compare the distance of the each of the one or more objects  with the pre-defined distance threshold distance, encompasses receiving at the processing unit [108] , the calculated distance of each of the one or more objects present under the camera preview frame, from the detection module [106] . The method thereafter compares via the processing unit, the calculated distance of each of the one or more objects with the pre-defined distance threshold. In an instance, the pre-defined distance threshold is the distance threshold based on the camera unit [102] . Further, the pre-defined distance threshold is the distance up-to which the camera unit [102] is capable of capturing the one or more media/object with best possible focus and clarity, without any need to zoom the one or more object.
Next, at step [312] , the method comprises generating, via the processing unit [108] , one of a positive response and a negative response based on the comparison of the distance of each of the one or more objects with the pre-defined distance threshold. The method comprises generating via the processing unit [108] , the positive response in an event the distance of the one or more objects is greater than the pre-defined distance threshold. Also, the method comprises generating via the processing unit [108] , the negative response in an event the distance of the one or more objects is less than the pre-defined distance threshold. Furthermore, the positive response indicates that in order to capture a clearer and focused object, there is a requirement to zoom the object to a certain level as the object is present beyond the pre-defined distance threshold. Also, the negative response indicates that in order to capture a clearer and focused object, there is no requirement to zoom the object as the object is present with-in the pre-defined distance threshold.
Next, at step [314] , the method comprises automatically zooming, via the processing unit [108] , the one or more objects in the camera preview frame based on the positive response. The method thereafter in order to automatically zoom the one or more objects, further comprises automatically switching via the processing unit [108] , at least one main sensor [210] of the camera unit to at least one telephoto sensor [212] of the camera unit.
Also, the method encompasses zooming a selected object from multiple objects detected under the camera preview frame, by switching via the processing unit [108] , the at least one main sensor [210] of the camera unit [102] to the at least one telephoto sensor [212] of the camera unit [102] , based on a user input. For example, if three objects (i.e. object 1, object 2 and object 3) are detected under the camera preview frame via the object detection module [104] , and the distance calculated by the distance detection module [106] is 1.9 meters, 2.1 meters and 2.4 meters for the object 1, object 2 and the object 3 respectively. Further, the pre-defined distance threshold is 2 meters in the given example. Thereafter the method, after comparing the calculated distance generates a positive response for each of the object 2 and the object 3, as the calculated distance of both object 2 and object 3 is more than the pre-defined distance threshold. Also, the distance of object 1 is less than the pre-defined distance threshold, therefore a negative response is generated for the object 1. Further, as the object 2 and object 3 are at a different distance from the  camera unit [102] , the method therefore encompasses receiving a user input to automatically zoom one of the object 2 and the object 3. Also, in one other example if the distance of the object 2 and object 3 is same (i.e. either 2.1 meter or 2.4 meter) , the method encompasses automatically zooming both object 2 and object 3 simultaneously, without any user selection of either of the object 2 or the object 3.
The method also comprises automatically zooming via the processing unit [108] , the one or more objects in the camera preview frame, based on a zoom level. The zoom level is a zooming value up-to which the processing unit [108] requires to make an object closer in the camera preview frame, in order to provide a clearer preview of the object in the camera preview frame and to give a better camera experience to the user. Thereafter, the method comprises calculating via the processing unit [108] , the zoom level based on at least one of an initial focal length of the one or more objects, an adjusted focal length of the one or more objects, a zoomed height of the one or more objects, an initial height of the one or more objects, the pre-defined distance threshold and the calculated distance of the one or more objects.
Furthermore, in an instance, the method encompasses calculating via the processing unit [108] , the zoom level based on a ratio of the adjusted focal length of the one or more objects to the initial focal length of the one or more objects. Also, the calculation of the zoom level may be based on a multiplication of, a ratio of the zoomed height of the one or more objects (in pixels) to the initial height of the one or more objects (in pixels) , with a ratio of the pre-defined distance threshold to the calculated distance of the one or more objects.
Also, the method comprises calculating via the processing unit [108] , the zoomed height of the one or more objects, based on a relation between an image area (in pixel) and a threshold ratio of the image area and zoomed object height.
After automatically zooming the one or more objects present in the camera preview frame, the method further terminates at step [316] .
Further, one aspect of the present disclosure relates to a user equipment for automatically zooming one or more objects present in a camera preview frame. The user equipment comprises a system [100] , configured to receive, the camera preview frame comprising one or more objects. The system [100] is further configured to detect, the one or more objects in the camera preview frame. Further, the system [100] is configured to calculate, a distance of each of the one or more objects in the camera preview frame. Thereafter, the system [100] is configured to compare, the distance of each of the one or more objects with a pre-defined distance threshold. The system [100] further configured to generate, one of a positive response and a negative response based on the comparison of the distance of each of the one or more objects with the pre-defined distance threshold. Thereafter, the system [100] is configured to automatically zoom, the one or more object in the camera preview frame based on the positive response.
Referring to Fig. 4, an exemplary flow diagram [400] , depicting an instance implementation of the process of automatically zooming one or more objects present in a camera preview frame, in accordance with exemplary embodiments of the present disclosure, is shown. As indicated in Figure 1, the process starts at step [402] .
At step [404] the method encompasses accessing a camera unit [102] via a user, by opening a camera of a user device, to capture one or more media. Further, the camera unit [102] is configured to receive, a camera preview frame comprising one or more objects.
Next, at step [406] , the method comprises detecting, via an object detection module [104] , the one or more objects in the camera preview frame.
Next, at step [408] , the method comprises calculating, via a distance detection module [106] , a distance of each of the one or more objects in the camera preview frame.
Next, at step [410] and step [412] , the method comprises determining whether a single object or multiple objects are detected under the camera preview frame, respectively. Further, the method leads to the step [414] in an event multiple objects are detected under the camera preview frame. Also, the method leads to the step [416] in an event single object is detected under the camera preview frame.
Further, at step [414] the method indicates that the detected multiple objects are located nearby to each other (i.e. located at approximately same distance from the camera unit [102] ) . Thereafter the method further leads to step [416] from step [414] .
Also, in the event multiple objects are detected under the camera preview frame, the method at step [422] indicated that the detected multiple objects are not located nearby to each other (i.e. located at a far distance from each other) . Thereafter the method further leads to step [424] to select a single object out of the multiple detected objects, based on a user selection. After the selection of the single object from the multiple detected objects the method further leads to step [418] . Also, if no object is selected from the multiple detected objects the method leads to step [420] .
Next, at step [416] , the method comprises determining if the calculated distance of the detected objects is greater than a pre-defined distance threshold. Further in an event if the calculated distance of the detected objects is greater than a pre-defined distance threshold, the method leads to step [418] , otherwise the method leads to step [420] .
Next, at step [418] , the method comprises providing the user a zoomed preview of the one or more identified object under the camera preview frame by automatically zooming the one or more objects based on a zoom value. Also, the automatically  zooming further comprises switching at least one main sensor [210] of the camera unit [102] to at least one telephoto sensor [212] of the camera unit [102] .
Next, at step [420] , the method comprises, providing the user a normal view of the one or more object present under the camera preview frame, as no zooming effect if required at step [420] . After automatically zooming the one or more objects present in the camera preview frame, the method further terminates at step [422] .
Further referring to Fig. 5, an exemplary use case, in accordance with exemplary embodiments of the present disclosure, is shown.
Figure 5 indicates two camera preview frames [500 A] and [500 B] indicating a camera preview frame before automatically zooming an object [508] and a camera preview frame after automatically zooming an object [508] , respectively.
The camera preview frames [500 A] indicates that the 4 objects are detected via the object detection module [104] . The detected 4 objects are [502] , [504] , [506] and [508] .
Further, a distance of each of the [502] , [504] , [506] and [508] from a camera unit [102] , is further determined via a distance detection module [106] . Thereafter, the calculated distance of each of the [502] , [504] , [506] and [508] is further compared with a pre-defined distance threshold, via a processing unit [108] . Also, in an instance the calculated distance of the [502] is less than the pre-defined distance threshold, therefore no zooming effect is required for [502] .
Also, in the given instance the calculated distance of the [504] , [506] and [508] is greater than the pre-defined distance threshold. Also, the distance of each of the [504] , [506] and [508] is different from the camera unit [102] . Therefore, the processing unit [108] further based on a user selection of object [508] from the objects [504] , [506] and [508] , automatically zooms the object [508] to a calculated adequate zoom level. Further, the automatically zoomed object [508] is shown under the camera preview frame [500 B] .
As evident from the above disclosure, the present solution provides significant technical advancement over the existing solutions by automatically zooming, the one or more objects present in the camera preview frame.
While considerable emphasis has been placed herein on the disclosed embodiments, it will be appreciated that many embodiments can be made and that many changes can be made to the embodiments without departing from the principles of the present disclosure. These and other changes in the embodiments of the present disclosure will be apparent to those skilled in the art, whereby it is to be understood that the foregoing descriptive matter to be implemented is illustrative and non-limiting.

Claims (17)

  1. A method [300] for automatically zooming one or more objects present in a camera preview frame, the method comprising:
    - receiving, at a camera unit [102] , a camera preview frame comprising one or more objects;
    - detecting, via an object detection module [104] , the one or more objects in the camera preview frame;
    - calculating, via a distance detection module [106] , a distance of each of the one or more objects in the camera preview frame;
    - comparing, via a processing unit [108] , the distance of each of the one or more objects with a pre-defined distance threshold;
    - generating, via the processing unit [108] , one of a positive response and a negative response based on the comparison of the distance of each of the one or more objects with the pre-defined distance threshold; and
    - automatically zooming, via the processing unit [108] , the one or more objects in the camera preview frame based on the positive response.
  2. The method as claimed in claim 1, wherein the automatically zooming further comprises switching at least one main sensor [210] of the camera unit [102] to at least one telephoto sensor [212] of the camera unit [102] .
  3. The method as claimed in claim 2, wherein the switching at least one main sensor [210] of the camera unit [102] to at least one telephoto sensor [212] of the camera unit [102] is further based on a user input, to zoom a selected object from multiple objects.
  4. The method as claimed in claim 1, wherein the automatically zooming the one or more objects in the camera preview frameis further based on a zoom level.
  5. The method as claimed in claim 4, the method further comprises calculating via the processing unit [104] , the zoom level based on at least one of an initial focal length of the one or more objects, an adjusted focal length of the one or more objects, a zoomed height of the one or more objects, an initial height of the one or more objects, the pre-defined distance threshold and the calculated distance of the one or more objects.
  6. The method as claimed in claim 1, wherein the calculating the distance of each of the one or more objects is further based on at least one of a focal length, an object height, an image height, and a camera sensor aperture.
  7. The method as claimed in claim 1, wherein the positive response is generated in an event the distance of the one or more objects is greater than the pre-defined distance threshold.
  8. The method as claimed in claim 1, wherein the negative response is generated in an event the distance of the one or more objects is less than the pre-defined distance threshold.
  9. A system [100] for automatically zooming one or more objects present in a camera preview frame, the system comprising:
    - a camera unit [102] , configured to receive, a camera preview frame comprising one or more objects;
    - an object detection module [104] , configured to detect, the one or more objects in the camera preview frame;
    - a distance detection module [106] , configured to calculate, a distance of each of the one or more objects in the camera preview frame;
    - a processing unit [108] , configured to:
    compare, the distance of each of the one or more objects with a pre-defined distance threshold,
    generate, one of a positive response and a negative response based on the comparison of the distance of each of the one or more objects with the pre-defined distance threshold, and
    automatically zoom, the one or more objects in the camera preview frame based on the positive response.
  10. The system as claimed in claim 9, wherein the processing unit [108] is further configured to switch at least one main sensor [210] of the camera unit [102] to at least one telephoto sensor [212] of the camera unit [102] , to automatically zoom the one or more objects.
  11. The system as claimed in claim 10, wherein the processing unit [108] is further configured to switch at least one main sensor [210] of the camera unit [102] to at least one telephoto sensor [212] of the camera unit [102] to zoom a selected object from multiple objects, based on a user input.
  12. The system as claimed in claim 9, wherein the processing unit [108] is further configured to automatically zoom, the one or more objects in the camera preview frame, based on a zoom level.
  13. The system as claimed in claim 12, wherein the processing unit [108] is further configured to calculate the zoom level based on at least one of an initial focal length of the one or more objects, an adjusted focal length of the one or more objects, a zoomed height of the one or more objects, an initial height of the one or more objects, the pre-defined distance threshold and the calculated distance of the one or more objects.
  14. The system as claimed in claim 9, wherein the distance detection module [106] is further configured to calculate the distance of each of the one or more objects based on at least one of a focal length, an object height, an image height, and a camera sensor aperture.
  15. The system as claimed in claim 9, wherein the processing unit [108] is further configured to generate the positive response in an event the distance of the one or more objects is greater than the pre-defined distance threshold.
  16. The system as claimed in claim 9, wherein the processing unit [108] is further configured to generate the negative response in an event the distance of the one or more objects is lesser than the pre-defined distance threshold.
  17. A user equipment for automatically zooming one or more objects present in a camera preview frame, the user equipment comprising:
    - a system [100] , configured to:
    receive, a camera preview frame comprising one or more objects,
    detect, the one or more objects in the camera preview frame,
    calculate, a distance of each of the one or more objects in the camera preview frame,
    compare, the distance of each of the one or more objects with a pre-defined distance threshold,
    generate, one of a positive response and a negative response based on the comparison of the distance of each of the one or more objects with the pre-defined distance threshold, and
    automatically zoom, the one or more objects in the camera preview frame based on the positive response.
PCT/CN2021/099145 2020-06-23 2021-06-09 Method and system for automatically zooming one or more objects present in a camera preview frame WO2021259063A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN202041026617 2020-06-23
IN202041026617 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021259063A1 true WO2021259063A1 (en) 2021-12-30

Family

ID=79282795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099145 WO2021259063A1 (en) 2020-06-23 2021-06-09 Method and system for automatically zooming one or more objects present in a camera preview frame

Country Status (1)

Country Link
WO (1) WO2021259063A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140184854A1 (en) * 2012-12-28 2014-07-03 Motorola Mobility Llc Front camera face detection for rear camera zoom function
CN106161941A (en) * 2016-07-29 2016-11-23 深圳众思科技有限公司 Dual camera chases after burnt method, device and terminal automatically
CN106249508A (en) * 2016-08-15 2016-12-21 广东欧珀移动通信有限公司 Atomatic focusing method and system, filming apparatus
CN106454123A (en) * 2016-11-25 2017-02-22 滁州昭阳电信通讯设备科技有限公司 Shooting focusing method and mobile terminal
CN106791375A (en) * 2016-11-29 2017-05-31 维沃移动通信有限公司 One kind shoots focusing method and mobile terminal
CN107172347A (en) * 2017-05-12 2017-09-15 维沃移动通信有限公司 A kind of photographic method and terminal
EP3291533A1 (en) * 2016-09-06 2018-03-07 LG Electronics Inc. Terminal and controlling method thereof
CN107920211A (en) * 2017-12-28 2018-04-17 深圳市金立通信设备有限公司 A kind of photographic method, terminal and computer-readable recording medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140184854A1 (en) * 2012-12-28 2014-07-03 Motorola Mobility Llc Front camera face detection for rear camera zoom function
CN106161941A (en) * 2016-07-29 2016-11-23 深圳众思科技有限公司 Dual camera chases after burnt method, device and terminal automatically
CN106249508A (en) * 2016-08-15 2016-12-21 广东欧珀移动通信有限公司 Atomatic focusing method and system, filming apparatus
EP3291533A1 (en) * 2016-09-06 2018-03-07 LG Electronics Inc. Terminal and controlling method thereof
CN106454123A (en) * 2016-11-25 2017-02-22 滁州昭阳电信通讯设备科技有限公司 Shooting focusing method and mobile terminal
CN106791375A (en) * 2016-11-29 2017-05-31 维沃移动通信有限公司 One kind shoots focusing method and mobile terminal
CN107172347A (en) * 2017-05-12 2017-09-15 维沃移动通信有限公司 A kind of photographic method and terminal
CN107920211A (en) * 2017-12-28 2018-04-17 深圳市金立通信设备有限公司 A kind of photographic method, terminal and computer-readable recording medium

Similar Documents

Publication Publication Date Title
US10198660B2 (en) Method and apparatus for event sampling of dynamic vision sensor on image formation
US8314854B2 (en) Apparatus and method for image recognition of facial areas in photographic images from a digital camera
JP2020518078A (en) METHOD AND APPARATUS FOR OBTAINING VEHICLE LOSS EVALUATION IMAGE, SERVER, AND TERMINAL DEVICE
WO2019023921A1 (en) Gesture recognition method, apparatus, and device
CN102096805B (en) Apparatus and method for registering plurality of facial images for face recognition
CN109815787B (en) Target identification method and device, storage medium and electronic equipment
CN110248048B (en) Video jitter detection method and device
CN108541374A (en) A kind of image interfusion method, device and terminal device
JP6551226B2 (en) INFORMATION PROCESSING SYSTEM, INFORMATION PROCESSING METHOD, AND PROGRAM
CN112822412B (en) Exposure method, exposure device, electronic equipment and storage medium
CN105608209A (en) Video labeling method and video labeling device
CN110072078A (en) Monitor camera, the control method of monitor camera and storage medium
CN112668636A (en) Camera shielding detection method and system, electronic equipment and storage medium
US20230336878A1 (en) Photographing mode determination method and apparatus, and electronic device and storage medium
CN112416206A (en) Display window adjusting method, device, electronic device and storage medium
CN111083444B (en) Snapshot method and device, electronic equipment and storage medium
WO2021259063A1 (en) Method and system for automatically zooming one or more objects present in a camera preview frame
CN107667522B (en) Method and apparatus for forming moving image
CN114079726A (en) Shooting method and equipment
CN112153291B (en) Photographing method and electronic equipment
CN112383716A (en) System and method for obtaining clear photos based on continuous automatic photographing of smart phone
WO2021175125A1 (en) System and method for automatically adjusting focus of a camera
WO2021179969A1 (en) System and method for automatically adjusting focus of a camera
WO2024062971A1 (en) Information processing device, information processing method, and information processing program
WO2021249067A1 (en) Method and system for capturing a real-time video in a plurality of video modes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829132

Country of ref document: EP

Kind code of ref document: A1