WO2021258745A1 - 数据监控系统、设备和方法 - Google Patents

数据监控系统、设备和方法 Download PDF

Info

Publication number
WO2021258745A1
WO2021258745A1 PCT/CN2021/076164 CN2021076164W WO2021258745A1 WO 2021258745 A1 WO2021258745 A1 WO 2021258745A1 CN 2021076164 W CN2021076164 W CN 2021076164W WO 2021258745 A1 WO2021258745 A1 WO 2021258745A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
data center
monitoring device
interface
physical bus
Prior art date
Application number
PCT/CN2021/076164
Other languages
English (en)
French (fr)
Inventor
房继军
冯晓波
李星
颜泽波
Original Assignee
维谛技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维谛技术有限公司 filed Critical 维谛技术有限公司
Publication of WO2021258745A1 publication Critical patent/WO2021258745A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0631Management of faults, events, alarms or notifications using root cause analysis; using analysis of correlation between notifications, alarms or events based on decision criteria, e.g. hierarchy, tree or time analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to the field of computer technology, in particular to a data monitoring system, equipment and method.
  • the network communication of the distributed cabinet monitoring equipment group in the data center adopts the mode of network switch aggregation.
  • a single failure causes a greater communication impact.
  • some monitoring equipment adopts the network loop method to improve the reliability of the communication link, this method leads to network loops.
  • the sharp increase in equipment complexity also reduces the link reliability.
  • the architecture of the existing data center distributed cabinet monitoring equipment group includes the following methods:
  • Method 1 Monitoring equipment network switches are converged, the upper monitoring equipment is connected to each cabinet through the switch group, and each cabinet is connected to the switch through the corresponding monitoring equipment.
  • Figure 1a is a schematic diagram of the monitoring equipment network switch convergence network in the prior art; Figure 1a As shown, this connection method converges a large number of network cables during deployment, and the workload of combing and marking is large, and the later operation and maintenance is difficult; when failure point 1 occurs, it will affect the entire network loop, and affect the reception of key data and the issuance of instructions; When failure point 2 occurs, it will affect the communication of all devices under the cascaded expansion switch, resulting in abnormal data reception and command delivery of multiple devices. In summary, when failure point 1 and failure point 2 are generated, it will cause the loss of key alarms for multiple devices following the link, and the failure of key control commands to be issued, resulting in equipment loss or delay of key operations.
  • Method 2 Monitoring equipment network loop, the cabinets are connected end to end through the network, and the upper monitoring equipment is connected to the first cabinet and the last cabinet of each cabinet through the network.
  • Figure 1b shows the network loop of the monitoring equipment in the prior art. Schematic diagram; as shown in Figure 1b, this connection method has the risk of generating network storms; network loops need to use complex loop control protocols and detection algorithms to avoid network storms. Increased complexity will reduce the reliability of network switching; support complex The hardware of the protocol and control algorithm will incur higher costs; using the network exchange method, the transmission of data depends on the normal operation of the communication node equipment along the way, which is not suitable for cascading use of a large number of equipment.
  • the data link will be formed Isolated islands cannot compare to the reliability of the physical bus; when the failure point 1 and the failure point 2 occur at the same time (one or more devices are powered off, the chip is abnormal, the device network switching software is abnormal), because the device is powered off or the network switching software is abnormal It will cause the network switching loop to fail. At this time, the cabinet 2 will be in an island, unable to communicate with the entire link, and there is still the risk of losing key alarms and key control commands.
  • Methods 1 and 2 respectively have high deployment and maintenance complexity and high complexity of the equipment itself, and there is a risk of loss of alarm data and key instructions issued in key areas.
  • the first and second methods cannot solve the cabinet-level distribution. Monitoring the reliability of interconnected communication links.
  • the embodiments of the present invention provide a data monitoring system, equipment, and method to at least solve the technical problem of low reliability of the existing cabinet-level distributed monitoring interconnection communication link.
  • a data monitoring system including: a data monitoring device and at least two data center monitoring devices, wherein the at least two data center monitoring devices are connected through a network and a physical bus, respectively,
  • the data monitoring device is connected to at least one data center monitoring device of the at least two data center monitoring devices through a network and a physical bus respectively.
  • each data center monitoring device includes: a master control, at least two network signal interfaces, at least two physical bus interfaces and functional interfaces, where the physical bus interfaces between each data center monitoring device pass through Physical cable connection; among them, the main control includes a switching module, which is used to implement multi-port switching.
  • the data center monitoring equipment is connected to the corresponding cabinet.
  • the data monitoring device includes: at least one data monitoring device network signal interface and at least one data monitoring device physical bus interface, where at least one data monitoring device physical bus interface is connected to at least two data center monitoring devices The interface connection of the physical bus of the first data center monitoring device, and the interface connection of the network signal of the first data center monitoring device through at least one data center monitoring device network signal interface; each data center monitoring device is separately connected Connected sequentially through the network and the physical bus.
  • the data monitoring device includes: at least two data monitoring device network signal interfaces and at least two data monitoring device physical bus interfaces. Further, optionally, the data monitoring device is connected to the physical bus interface of the first data center monitoring device of the at least two data center monitoring devices through the first interface of the at least one physical bus interface of the data monitoring device, through at least One data monitoring device network signal interface is connected to the first data center monitoring device's network signal interface; the second interface of the at least one data monitoring device physical bus interface is connected to the last data of at least two data center monitoring devices The interface connection of the physical bus of the central monitoring equipment; among them, each data center monitoring equipment is connected in turn through the network and the physical bus.
  • the system further includes: at least two columns of data center monitoring equipment, where each column of data center monitoring equipment includes at least two data center monitoring equipment, and each column of data center monitoring equipment is separated from each other.
  • the data monitoring device is connected to the physical bus interface of the first data center monitoring device in the first column of data center monitoring devices through the first interface of the at least one data monitoring device physical bus interface, through At least one data monitoring equipment network signal interface is connected to the first data center monitoring equipment network signal interface;
  • the second interface of the at least one data monitoring equipment physical bus interface is connected to the first data center monitoring equipment in the second column
  • the last data center monitoring device in the first row of cabinet arrays is connected to the network signal interface of the last data center monitoring device in the second row of cabinet arrays through a network signal interface.
  • the data monitoring equipment has the same structure as the data center monitoring equipment.
  • a data monitoring device applied to the above system, including: a master control, at least one data monitoring device network signal interface, and at least one data monitoring device physical bus interface, where , Through the interface of at least one physical bus of the data monitoring equipment and the interface of the physical bus of the first data center monitoring equipment of the at least two data center monitoring equipment, and at least two data centers through the interface of at least one data monitoring equipment network signal The interface connection of the network signal of the first data center monitoring device in the monitoring device; the master controller is respectively connected with at least one data monitoring device network signal interface and at least one data monitoring device physical bus interface.
  • a data monitoring method applied to the above system, including the following steps: through at least one data monitoring device network signal interface and at least one data monitoring device physical bus interface and At least two data center monitoring devices communicate; at least one data center monitoring device physical bus interface is used to detect whether there is a device with abnormal network status in at least two data center monitoring devices; if the detection result is yes, at least one data The interface of the physical bus of the monitoring device detects at least two data center monitoring devices, obtains the detection result, and outputs the detection result; if the detection result is negative, the detection result is output.
  • detecting at least two data center monitoring devices through the interface of the physical bus of at least one data monitoring device, obtaining the detection result, and outputting the detection result includes the following steps: matching the abnormal network communication node in the node pool to obtain the detection list, according to The detection list detects the data center monitoring equipment in the detection list through at least one physical bus interface of the data monitoring equipment, and obtains the detection data of the network status of the data center monitoring equipment with abnormal network status; compares the pre-stored data with the network status in the detection list The detection data of the abnormal data center monitoring equipment's network status is compared to obtain the fault information of the equipment with abnormal network status; among them, the pre-stored data is the network status data of the data monitoring equipment that is pre-stored in advance by the data monitoring equipment to detect the normal work of the data center monitoring equipment; basis; The fault information determines the detection result and outputs the detection result.
  • comparing the pre-stored data with the detection data of the network status of the data center monitoring equipment with abnormal network status in the detection list, and obtaining the fault information of the equipment with abnormal network status includes the following steps: The data is compared with the detection data of the network status of the data center monitoring equipment with abnormal network status in the detection list, and different comparison results are obtained; according to the different comparison results, physical detection is initiated respectively, and at least one data monitoring equipment physical bus is used The interface to obtain the operating parameters of the data center monitoring equipment with abnormal network status; determine the fault location and fault type of the data center monitoring equipment according to the operating parameters; generate fault information according to the fault location and fault type.
  • determining the detection result according to the fault information and outputting the detection result includes the following steps: generating alarm information according to the fault information, and determining the alarm information as the detection result; outputting the detection result.
  • a storage medium wherein the storage medium includes a stored program, and the device where the storage medium is located is controlled to execute the above-mentioned data monitoring method when the program is running.
  • processor wherein the processor is used to run a program, and the above data monitoring method is executed when the program is running.
  • the data monitoring device and at least two data center monitoring devices are connected, wherein the at least two data center monitoring devices are connected through a network and a physical bus respectively, and the data monitoring device is connected to at least two data center monitoring devices through a network and a physical bus.
  • At least one of the two data center monitoring equipment is connected to achieve the purpose of reducing the difficulty of deployment and maintenance, thereby achieving the technical effect of improving the reliability of the cabinet-level distributed monitoring interconnection communication link, thereby solving the problem of There is a technical problem of low reliability of the cabinet-level distributed monitoring interconnection communication link.
  • Figure 1a is a schematic diagram of a monitoring device network switch convergence network in the prior art
  • Figure 1b is a schematic diagram of a monitoring device network loop in the prior art
  • Figure 2 is a schematic diagram of a data monitoring system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a connection structure between a data monitoring device and at least two data center monitoring devices in a data monitoring system according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a data monitoring device or a data center monitoring device in a data monitoring system according to an embodiment of the present invention
  • Fig. 5 is a schematic diagram of a data monitoring system according to an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of another data monitoring system according to an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of yet another data monitoring system according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a data monitoring method according to an embodiment of the present invention.
  • Fig. 9 is a schematic flowchart of a data monitoring method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a data monitoring system according to an embodiment of the present invention. As shown in FIG. 2, it includes: a data monitoring device 22 and at least two data centers The monitoring device 24, wherein at least two data center monitoring devices 24 are connected through a network and a physical bus respectively, and the data monitoring device 22 is connected to at least one of the at least two data center monitoring devices 24 through a network and a physical bus respectively. Device connection.
  • the data monitoring system provided by the embodiment of the present application is composed of a data monitoring device 22 and at least two data center monitoring devices 24, wherein each data center monitoring device 24 is connected to a corresponding cabinet.
  • FIG. 3 is based on this A schematic diagram of the connection structure between the data monitoring device and at least two data center monitoring devices in the data monitoring system of the embodiment of the invention. As shown in Figure 3, each data center monitoring device 24 is connected to a corresponding cabinet, each data center monitoring device 24 is connected through a network and a physical bus, and the data monitoring device 22 is connected to the first row of each column through the network and physical bus. Data center monitoring equipment connection.
  • the data center monitoring equipment 24 includes multiple data center monitoring equipment, they are marked as: equipment 1, equipment 2, equipment 3, ... equipment N, each of which is connected to the cabinet, That is, equipment 1 is connected to cabinet 1, equipment 2 is connected to cabinet 2, equipment 3 is connected to cabinet 3, ... equipment N is connected to cabinet N; data monitoring equipment 22 is connected to equipment 1 through the network and physical bus, equipment 1, equipment 2.
  • Device 3... Device N is connected through a network and a physical bus.
  • the data monitoring equipment 22 and the data center monitoring equipment 24 realize network hardware exchange and network cascade (that is, the connection between each data center monitoring equipment, and the data center monitoring equipment and data
  • the connection between the monitoring equipment is realized by network hardware exchange, without software, and the reliability of the network node of a single device is high; and the backup is realized through the physical bus, and the existence of the physical cable is used to ensure high reliability. Power, hardware abnormalities, and network module software and hardware abnormalities cause the link to be disconnected;
  • Network hard switch cascading and physical bus cascading backup exist to ensure data efficiency under normal conditions, and emergency data can be sent and received through the physical bus under abnormal conditions, taking into account high-speed characteristics and high reliability characteristics;
  • the data monitoring system provided by the embodiments of this application can achieve precise fault location, network hard switching and physical bus cascade backup exist, and accurately locate the cause of communication link abnormality (monitoring equipment power failure, hardware abnormality, communication cable abnormality, network abnormality) And other failures).
  • the physical bus can still guarantee the reliable transmission of upstream and downstream data; when the fault point 2 is the data center monitoring equipment itself loses power or the hardware is abnormal, the physical bus does not depend on any equipment at this time. Relying only on the physical connection, the physical bus still guarantees the integrity of the entire communication link; when the failure point 1 and the failure point 3 occur, the physical bus can still guarantee the normal operation of the communication link.
  • the data monitoring system ensures that the uplink and downlink of key business communications are continuously online, and can accurately distinguish the fault types of equipment and communication links, and notify the operation and maintenance personnel of specific fault points and causes of the fault, so as to locate and solve as quickly as possible. It is extremely competitive in the field of ensuring the reliability of key business communications.
  • the data monitoring device and at least two data center monitoring devices are connected, wherein the at least two data center monitoring devices are connected through a network and a physical bus respectively, and the data monitoring device is connected to at least two data center monitoring devices through a network and a physical bus.
  • At least one of the two data center monitoring equipment is connected to achieve the purpose of reducing the difficulty of deployment and maintenance, thereby achieving the technical effect of improving the reliability of the cabinet-level distributed monitoring interconnection communication link, thereby solving the problem of There is a technical problem of low reliability of the cabinet-level distributed monitoring interconnection communication link.
  • data center monitoring equipment and the data monitoring equipment in the embodiments of the present application may be the same type of equipment.
  • each data center monitoring device 24 includes: a master control, at least two network signal interfaces, at least two physical bus interfaces, and functional interfaces, where each data center monitoring device has a physical bus interface Connected by physical cables; among them, the main control includes a switching module, which is used to implement multi-port switching.
  • FIG. 4 is a schematic diagram of a data monitoring device or a data center monitoring device in a data monitoring system according to an embodiment of the present invention.
  • Data center monitoring equipment or data monitoring equipment includes: a main control, at least two network signal interfaces, at least two physical bus interfaces and functional interfaces; as shown in Figure 4, the main control contains a switching module, which is connected with At least two network signal interfaces are connected. The interfaces of at least two physical buses are interconnected through the physical bus and connected to the master.
  • the switch module is marked as network hard switch, and the interface marks of at least two network signals are For LAN1 and LAN2, the interfaces of at least two physical buses are marked as COM_BUS.
  • the external ports of the data monitoring equipment or data center monitoring equipment in the embodiments of the present application include at least two sets of interfaces for transmitting network signals, and at the same time include at least two physical bus interfaces, and the physical bus uses pure physical lines. Cable connection, the physical bus does not go through any circuit or signal processing, internally through the deployment method similar to RS485, RS422, CAN and other buses, the monitoring equipment has the following interface forms.
  • the data center monitoring device in the embodiment of the present application implements a multi-port switch by itself, and uses simple hardware network switching to implement network cascading of upstream and downstream devices, and does not require logic control of software algorithms.
  • a physical bus is used to implement cascaded communication between upstream and downstream devices.
  • the network and the physical bus adopt dual physical connections to ensure the physical redundancy of the communication link while accurately providing communication fault type alarms for efficient location and resolution.
  • the data monitoring device 22 includes: at least one data monitoring device network signal interface and at least one data monitoring device physical bus interface, where at least one data monitoring device physical bus interface is connected to at least two data center monitoring devices The physical bus interface connection of the first data center monitoring device in the data center, and the interface connection of the network signal of the first data center monitoring device through at least one data center monitoring device network signal interface; between each data center monitoring device They are connected sequentially through the network and the physical bus.
  • FIG. 5 is a schematic diagram of a data monitoring system according to an embodiment of the present invention.
  • device 2 is connected to cabinet 2
  • device 3 is connected to cabinet 3
  • Device N is connected to cabinet N;
  • the data monitoring device 22 is connected to the network signal interface of the device 1 and the interface of the physical bus through at least one data monitoring device network interface and at least one data monitoring device physical bus interface, respectively, device 1, device 2, device 3,...
  • the devices N are connected in sequence through the interface of the network signal and the interface of the physical bus.
  • the data monitoring device 22 includes: at least two data monitoring device network signal interfaces and at least two data monitoring device physical bus interfaces.
  • the data monitoring device 22 is connected to the physical bus interface of the first data center monitoring device of the at least two data center monitoring devices through the first interface of the at least one data monitoring device physical bus interface, and At least one data monitoring device network signal interface is connected to the first data center monitoring device network signal interface; the second interface of the at least one data monitoring device physical bus interface is connected to the last one of the at least two data center monitoring devices The interface connection of the physical bus of the data center monitoring equipment; among them, each data center monitoring equipment is connected in turn through the network and the physical bus.
  • FIG. 6 is a schematic diagram of another data monitoring system according to an embodiment of the present invention.
  • the data monitoring device 22 passes through at least one data monitoring device network interface and at least one data monitoring device physical bus interface.
  • the first interface in the device 1 is connected to the network signal interface and the physical bus interface of the device 1
  • the second interface of the physical bus interface of the data monitoring device is connected to the interface of the physical neutral line of the device N
  • the device 1 , Device 2, Device 3, ... Device N are connected in turn through a network and a physical bus (multiple data center monitoring devices are marked as Device 1, Device 2, Device 3, ... Device N).
  • the physical bus can be adjusted to a loop mode through the connection structure shown in FIG. 6 to enhance the reliability of the physical bus.
  • the multiple data center monitoring devices in the embodiment of the present application are connected to the data monitoring device after being connected to each other through a network and a physical bus, and the whole constitutes a backup of the network cascade and the physical bus cascade.
  • the physical bus is a full-line physical connection, and the bus loop has not undergone any signal processing.
  • the connection mode of Figure 5 and Figure 6 can be two sets of connecting cables, or a connector to connect two sets of communication cables at the same time. Among them, the two sets of transmission media correspond to network transmission and physical bus transmission respectively, which can ensure that the physical Realize independent and reliable backup on the link medium.
  • the data monitoring system provided in the embodiment of the present application further includes: at least two rows of data center monitoring equipment, wherein each column of data center monitoring equipment includes at least two data center monitoring equipment, and each column of data center monitoring equipment
  • the data center monitoring equipment is connected in sequence through the network and the physical bus; the data monitoring equipment is connected to the first data center monitoring equipment in the first column of data center monitoring equipment through at least one of the first interface of the physical bus interface of the data monitoring equipment
  • the interface connection of the physical bus is connected to the network signal interface of the first data center monitoring device through at least one data monitoring device network signal interface; the second interface of the at least one data monitoring device physical bus interface is connected to the second column
  • the interface connection of the physical bus of the first data center monitoring device in the data center monitoring device; the last data center monitoring device in the first row of cabinet arrays is connected to the network of the last data center monitoring device in the second row of cabinet arrays through the network signal interface Signal interface connection.
  • FIG. 7 is a schematic diagram of another data monitoring system according to an embodiment of the present invention.
  • Monitoring equipment is equivalent to each row of cabinet arrays).
  • Each cabinet is connected to the corresponding data center monitoring equipment.
  • the data monitoring equipment 22 passes through at least one data monitoring equipment network signal interface and at least one data monitoring equipment physical bus interface.
  • the first interface is connected to the network signal interface and the physical bus interface of the data center monitoring equipment 1 in the cabinet 1 of column A; the data center monitoring equipment 1 of column A and the data center monitoring equipment 2 of column A are connected through the network and physical Bus connection, the data center monitoring equipment 2 of column A and the data center monitoring equipment 3 of column A are connected through a network and a physical bus, whil, the data center monitoring equipment N-1 of column A and the data center monitoring equipment N of column A pass through Network and physical bus connection; A column data center monitoring equipment N and B column data center monitoring equipment N are connected through a network (as shown in Figure 7, A column data center monitoring equipment 1, 2, 3, ... N, mark As: A column equipment 1, 2, 3, ... N);
  • the data monitoring device 22 is connected to the physical bus interface of the column B data center monitoring device 1 of the cabinet 1 of column B through the second interface of the at least one physical bus interface of the data monitoring device, and the data center monitoring device 1 of column B is connected with the data of column B
  • the central monitoring equipment 2 is connected through a network and a physical bus
  • the B-column data center monitoring equipment 2 is connected to the B-column data center monitoring equipment 3 through a network and physical bus....
  • the B-column data center monitoring equipment N-1 is connected with
  • the data center monitoring equipment N of column B is connected through a network and a physical bus (as shown in Figure 7, the data center monitoring equipment 1,2,3,...N of column B are marked as: equipment 1,2,3 of column B, ...N).
  • the data monitoring device 22 and the data center monitoring device 24 have the same structure.
  • the data monitoring device 22 and the data center monitoring device 24 in the embodiment of the present application may be the same device. The difference lies in the functional position.
  • the data monitoring device 22 is connected to the first cabinet of each column through network signals and physical buses.
  • the data center monitoring equipment 24 is connected.
  • the data center monitoring equipment 24 in each cabinet is used to return the network fault point and the cause of the fault to the data monitoring equipment 22 through the physical bus when a network failure occurs, and then through each cabinet through the data center monitoring
  • a data monitoring device which is applied to the system in the foregoing embodiment 1, and includes:
  • the main control at least one data monitoring device network signal interface, and at least one data monitoring device physical bus interface, where at least one data monitoring device physical bus interface is connected to the first data center monitoring device of at least two data center monitoring devices
  • the interface connection of the physical bus of the equipment is connected with the interface of the network signal of the first data center monitoring equipment of the at least two data center monitoring equipment through at least one interface of the network signal of the data monitoring equipment; the master controller is respectively connected with at least one data monitoring equipment
  • the interface of the network signal is connected with the interface of the physical bus of at least one data monitoring device.
  • the data monitoring device includes: a main control, at least one data monitoring device network signal interface, and at least one data monitoring device physical bus interface; the main control includes a switching module that is connected to at least one data monitoring device network signal The switch module is connected to the physical bus interface of at least one data monitoring device, and the physical bus interface of each data monitoring device is interconnected through the physical bus.
  • the switch module is marked as network hard switch, and at least one data monitoring device network
  • the interface of the signal is marked as LAN, and the interface of the physical bus of at least one data monitoring device is marked as COM_BUS.
  • the external port of the data monitoring device in the embodiment of the present application includes at least one interface for transmitting network signals, and at the same time includes at least one physical bus interface.
  • the physical interface used between the data monitoring device and the data center monitoring device The bus is connected by a pure physical cable, and the physical bus does not go through any circuit or signal processing, and internally uses a deployment method similar to RS485, RS422, CAN and other buses.
  • the interface of the physical bus of at least one data monitoring device in the embodiment of the present application is only an example of the above specifications, and the implementation of the data monitoring device provided in the embodiment of the present application shall prevail, and the details are not limited.
  • a method embodiment of a data monitoring method is provided. It should be noted that the steps shown in the flowchart of the accompanying drawings can be executed in a computer system such as a set of computer-executable instructions, and, Although a logical sequence is shown in the flowchart, in some cases, the steps shown or described may be performed in a different order than here.
  • FIG. 8 is a schematic flow chart of a data monitoring method according to an embodiment of the present invention. As shown in FIG. 8, it is applied to the system in Embodiment 1 above. On the data monitoring device side, the data monitoring method provided by the embodiment of the present application includes the following steps :
  • Step S802 communicating with at least two data center monitoring devices through at least one data monitoring device network signal interface and at least one data monitoring device physical bus interface respectively;
  • the data monitoring device communicates with at least two data center monitoring devices through the network signal interface and the physical bus interface respectively, and the network status is abnormal in the at least two data center devices.
  • the data monitoring device communicates with at least two data center monitoring devices through the network signal interface and the physical bus interface respectively, and the network status is abnormal in the at least two data center devices.
  • the network status of at least two data center devices through the interface of the physical bus.
  • Step S804 detecting whether there is a device with an abnormal network status in the at least two data center monitoring devices through the interface of the physical bus of the at least one data monitoring device;
  • step S804 of this application on the premise that at least one data monitoring device network signal interface is not occupied to communicate with at least two data center monitoring devices, at least two data center monitoring devices are communicated through at least one physical bus interface of the data monitoring device. Detect the network status of at least one data center monitoring device through the interface of the physical bus of at least one data center monitoring device to detect whether the network status abnormality occurs in at least two data center monitoring devices, and execute if the network status abnormality occurs in at least two data center monitoring devices Step S806: If there is no abnormal network status, perform step S808.
  • Step S806 in a case where the detection result is yes, detect at least two data center monitoring devices through the interface of at least one data monitoring device physical bus, obtain the detection results, and output the detection results;
  • step S806 of this application based on the detection of the network status of at least two data center monitoring devices in step S804, when the network status of at least two data center monitoring devices is abnormal, the data monitoring device passes through at least one data monitoring device physical bus The interface detects at least two data center monitoring devices, and obtains devices with abnormal network status among at least two data center monitoring devices;
  • the detection result in the embodiment of the present application may include: the location of the device with abnormal network status and/or the type of network failure;
  • the scheduling mechanism is triggered to migrate the business of the server where the device with the abnormal network status is located To the standby server, so as to ensure the smooth execution of the current business before the operation and maintenance personnel solve the abnormal network status; and/or, when the abnormal network status of the data center monitoring equipment is the interface failure of the network signal, the connection through the physical bus The interface communicates with data monitoring equipment and other data center monitoring equipment until the operation and maintenance personnel solve the abnormal network status, thereby ensuring the normal progress of the current business.
  • step S808 if the detection result is negative, the detection result is output.
  • the output detection result may be that the current network status of the at least two data center monitoring devices is normal.
  • communication with at least two data center monitoring devices is performed through at least one data monitoring device network signal interface and at least one data monitoring device physical bus interface; through at least one data monitoring device physical bus interface Detect whether there are devices with abnormal network status in at least two data center monitoring devices; if the detection result is yes, detect at least two data center monitoring devices through the interface of the physical bus of at least one data center monitoring device to obtain the detection result , And output the detection result; in the case that the detection result is no, output the detection result to achieve the purpose of realizing fault location and determining the type of fault, thus realizing the improvement of the reliability of the cabinet-level distributed monitoring interconnection communication link based on the data monitoring system
  • the technical effect of this method solves the technical problem of low reliability of the existing cabinet-level distributed monitoring interconnection communication link.
  • step S806 detecting at least two data center monitoring devices through the interface of at least one data monitoring device physical bus, acquiring the detection results, and outputting the detection results includes the following steps:
  • Step S8061 The abnormal network communication node in the matching node pool obtains the detection list, and detects the data center monitoring equipment in the detection list through at least one physical bus interface of the data monitoring equipment according to the detection list, and obtains the data center monitoring equipment with abnormal network status. Detection data of network status;
  • the node pool includes at least one data center monitoring device, each data center monitoring device exists as each node in the node pool, and the data center monitoring device with abnormal network communication in the node pool generates a detection list.
  • Step S8062 Compare the pre-stored data with the detection data of the network status of the data center monitoring equipment with abnormal network status in the detection list, and obtain the fault information of the equipment with the abnormal network status; wherein, the pre-stored data is pre-stored by the data monitoring equipment in advance. Detect the network status data of the monitoring equipment in the normal working data center;
  • the data monitoring device will obtain the operating status of each data center monitoring device, that is, the pre-stored data in the embodiment of this application, where the operating status includes the network operating status, Communication status, physical status of the equipment (for example, age, operating years, location) and other information.
  • the data monitoring equipment will detect the abnormal network status by comparing the pre-stored data with the detection list. The detection data of the network status of the data center monitoring equipment is compared, and the fault information of the equipment with abnormal network status is obtained.
  • the pre-stored data is compared with the detection data of the network status of the data center monitoring equipment with abnormal network status in the detection list.
  • Obtaining the fault information of the equipment with abnormal network status includes the following steps: The pre-stored data is compared with the detection data of the network status of the data center monitoring equipment with abnormal network status in the detection list, and different comparison results are obtained; according to the different comparison results, physical detection is started separately, and at least one data monitoring device is passed The physical bus interface obtains the operating parameters of the data center monitoring equipment with abnormal network status; determines the fault location and fault type of the data center monitoring equipment according to the operating parameters; generates fault information according to the fault location and fault type.
  • the fault location is obtained and the fault type of the data center monitoring equipment in abnormal network state is determined, that is, the data center monitoring equipment may have at least one of software failure, power failure, or hardware failure of the data center monitoring equipment.
  • step S8063 the detection result is determined according to the fault information, and the detection result is output.
  • determining the detection result according to the fault information and outputting the detection result includes the following steps: generating alarm information according to the fault information, and determining the alarm information as the detection result; outputting the detection result.
  • alarm information is generated according to the fault type and location of the data center monitoring device with abnormal network status in the fault information, and then the alarm information is determined as the detection result and output.
  • the data monitoring method provided in the embodiment of the present application can be applied to the data monitoring system in Embodiment 1.
  • the abnormal network communication node in the matching node pool obtains a detection list, and the data monitoring device uses the at least one data monitoring device physical bus interface to compare the detection list according to the detection list.
  • Detect the data center monitoring equipment in the detection list to obtain the detection data of the network status of the data center monitoring equipment with abnormal network status, so as to determine the location and fault type of the data center monitoring equipment that has the network failure, and finally the fault location and failure
  • the type (including the reason for the failure) is sent to the operation and maintenance personnel.
  • FIG. 9 is a schematic flowchart of a data monitoring method according to an embodiment of the present invention. As shown in FIG. 9, the data monitoring method provided by the embodiment of the present application is specifically as follows:
  • the data monitoring method provided in the embodiments of this application includes three parts when implemented: the first part, the network anomaly detection part; the second part, the network link data uplink and downlink transmission; the third part, the physical bus data uplink and downlink transmission (to ensure alarm and Smooth execution of control instructions).
  • the abnormal nodes of the network in the first part will continue to use the physical bus for communication;
  • Step1 check whether the network communication of the equipment in the link group is abnormal
  • the equipment in the link group includes data center monitoring equipment in each column;
  • Step2 when the detection result is yes, the abnormal network communication node in the matching node pool constitutes a detection list
  • the node pool contains data center monitoring equipment in each column. If the data center monitoring equipment in each column in the node pool has abnormal network communication, the data center monitoring equipment in each column in the node pool will be generated into a detection list;
  • Step3 Compare the pre-stored data with the network status data of the data center monitoring equipment with abnormal network status in the detection list, obtain the fault information of the equipment with abnormal network status, determine the detection result based on the fault information, and output the detection result;
  • the fault type in the detection result is a type 1 fault
  • the fault type in the detection result is a type N fault
  • the data monitoring method provided by the embodiments of this application is based on a dual-link hardware communication mechanism of network and physical bus, which ensures that the uplink and downlink are continuously online while accurately distinguishing the fault types of the device and the communication link, and based on this, the specific problem device characteristics can be accurately located And fault type, multi-process communication backup mechanism and fault location mechanism are shown in Figure 9.
  • the fault type located in Figure 9 can indicate common single-point or multi-point network transmission medium abnormalities, single-point or multi-point equipment power failure or hardware abnormality, single-point or multi-point equipment software abnormality, single-point or multi-point equipment network card abnormality And many other types of failures.
  • it while ensuring the normal uplink and downlink communications of key services, it detects physical link abnormalities and provides accurate problem alarms to operation and maintenance personnel, facilitating location and resolution as soon as possible.
  • a storage medium wherein the storage medium includes a stored program, wherein the device where the storage medium is located is controlled to execute the data monitoring method in the third embodiment when the program is running.
  • processor wherein the processor is used to run a program, and the data monitoring method in the third embodiment is executed when the program is running.
  • the disclosed technical content can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units may be a logical function division.
  • multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, units or modules, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned storage media include: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种数据监控系统、设备和方法。其中,该系统包括:数据监控设备和至少两个数据中心监控设备,其中,至少两个数据中心监控设备之间分别通过网络和物理总线连接,数据监控设备分别通过网络和物理总线与至少两个数据中心监控设备中的至少一个数据中心监控设备连接。本发明解决了由于现有机柜级分布式监控互联通信链路可靠性低的技术问题。

Description

数据监控系统、设备和方法
本申请要求于2020年6月24日提交中国专利局、申请号为202010589761.0、发明名称为“数据监控系统、设备和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及计算机技术领域,具体而言,涉及一种数据监控系统、设备和方法。
背景技术
目前数据中心分布式机柜监控设备群的网络通信采用网络交换机汇聚的方式,单一故障造成通信影响较大,部分监控设备虽然采用网络环路方式来提高通信链路可靠性,但该方式导致网络回路设备复杂度剧增的同时降低了链路可靠性,这些方法无法解决机柜级分布式监控互联通信链路可靠性问题。
现有数据中心分布式机柜监控设备群的架构包括如下方式:
方式一:监控设备网络交换机汇聚,上层监控设备通过交换机组与各机柜连接,各机柜通过对应的监控设备与交换机连接,图1a是现有技术中监控设备网络交换机汇聚网络的示意图;如图1a所示,该连接方式在部署时大量网线汇聚,梳理标识工作量大,后期运维难度较大;当发生故障点1时,会影响整个网络回路,影响关键数据的接收和指令下发;当发生故障点2时,将会影响级联扩展交换机下所有的设备通信,造成多个设备数据接收和指令下发异常。综上,故障点1和故障点2产生时,都将会导致该链路后续多个设备的关键告警 丢失,关键控制指令下发失败,造成设备损失或者延误关键操作。
方式二:监控设备网络环路,各机柜之间通过网络首尾相连,上层监控设备通过网络分别连接各机柜的第一个机柜和最后一个机柜,图1b是现有技术中监控设备网络环路的示意图;如图1b所示,该连接方式有产生网络风暴的风险;网络环路为避免网络风暴需要使用复杂环路控制协议和检测算法,复杂度提高后将导致网络交换可靠性降低;支持复杂协议和控制算法的硬件将产生较高的成本;使用网络交换方式,数据的传输依赖于沿途通信节点设备的正常工作,不适合大量设备级联使用,一旦沿途多点异常,数据链路将形成孤岛,无法比拟物理总线的可靠性;当故障点1和故障点2同时发生(某一个或多个设备掉电、芯片异常、设备网络交换软件异常)时,由于设备掉电或网络交换软件异常将会导致网络交换回路失效,此时机柜2将会处于孤岛,无法与整个链路通信,仍然存在丢失关键告警和关键控制指令的风险。
方式一和方式二分别存在部署维护复杂度高,存在设备本身复杂度高的问题,并且在关键领域上下行的告警数据和关键指令下发存在丢失风险,方式一和方式二无法解决机柜级分布式监控互联通信链路可靠性问题。
针对上述由于现有机柜级分布式监控互联通信链路可靠性低的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种数据监控系统、设备和方法,以至少解决由于现有机柜级分布式监控互联通信链路可靠性低的技术问题。
根据本发明实施例的一个方面,提供了一种数据监控系统,包括:数据监控设备和至少 两个数据中心监控设备,其中,至少两个数据中心监控设备之间分别通过网络和物理总线连接,数据监控设备分别通过网络和物理总线与至少两个数据中心监控设备中的至少一个数据中心监控设备连接。
可选的,每个数据中心监控设备包括:主控、至少两个网络信号的接口、至少两个物理总线的接口和功能接口,其中,每个数据中心监控设备之间的物理总线的接口通过物理线缆连接;其中,主控包括交换模块,交换模块用于实现多端口交换。
进一步地,可选的,数据中心监控设备与对应的机柜连接。
可选的,数据监控设备包括:至少一个数据监控设备网络信号的接口和至少一个数据监控设备物理总线的接口,其中,通过至少一个数据监控设备物理总线的接口与至少两个数据中心监控设备中第一个数据中心监控设备的物理总线的接口连接,以及,通过至少一个数据监控设备网络信号的接口与第一个数据中心监控设备的网络信号的接口连接;每个数据中心监控设备之间分别通过网络和物理总线依次连接。
可选的,数据监控设备包括:至少两个数据监控设备网络信号的接口和至少两个数据监控设备物理总线的接口。进一步地,可选的,数据监控设备通过至少一个数据监控设备物理总线的接口中的第一接口与至少两个数据中心监控设备中第一个数据中心监控设备的物理总线的接口连接,通过至少一个数据监控设备网络信号的接口与第一个数据中心监控设备的网络信号的接口连接;通过至少一个数据监控设备物理总线的接口中的第二接口与至少两个数据中心监控设备中最后一个数据中心监控设备的物理总线的接口连接;其中,每个数据中心监控设备之间分别通过网络和物理总线依次连接。
可选的,该系统还包括:至少两列数据中心监控设备,其中,每列数据中心监控设备包 括至少两个数据中心监控设备,每列数据中心监控设备中每个数据中心监控设备之间分别通过网络和物理总线依次连接;数据监控设备通过至少一个数据监控设备物理总线的接口中的第一接口与第一列数据中心监控设备中第一个数据中心监控设备的物理总线的接口连接,通过至少一个数据监控设备网络信号的接口与第一个数据中心监控设备的网络信号的接口连接;通过至少一个数据监控设备物理总线的接口中的第二接口与第二列数据中心监控设备中第一个数据中心监控设备的物理总线的接口连接;第一列机柜阵列中最后一个数据中心监控设备通过网络信号接口与第二列机柜阵列中最后一个数据中心监控设备的网络信号接口连接。
可选的,数据监控设备与数据中心监控设备的结构相同。
根据本发明实施例的另一方面,还提供了一种数据监控设备,应用于上述系统,包括:主控、至少一个数据监控设备网络信号的接口和至少一个数据监控设备物理总线的接口,其中,通过至少一个数据监控设备物理总线的接口与至少两个数据中心监控设备中第一个数据中心监控设备的物理总线的接口连接,通过至少一个数据监控设备网络信号的接口与至少两个数据中心监控设备中第一个数据中心监控设备的网络信号的接口连接;主控分别与至少一个数据监控设备网络信号的接口和至少一个数据监控设备物理总线的接口连接。
根据本发明实施例的又一方面,还提供了一种数据监控方法,应用于上述系统,包括以下步骤:分别通过至少一个数据监控设备网络信号的接口和至少一个数据监控设备物理总线的接口与至少两个数据中心监控设备进行通信;通过至少一个数据监控设备物理总线的接口检测至少两个数据中心监控设备中是否存在网络状态异常的设备;在检测结果为是的情况下,通过至少一个数据监控设备物理总线的接口对至少两个数据中心监控设备进行探测,获取探测结果,并输出探测结果;在检测结果为否的情况下,输出检测结果。
可选的,通过至少一个数据监控设备物理总线的接口对至少两个数据中心监控设备进行探测,获取探测结果,并输出探测结果包括以下步骤:匹配节点池中网络通讯异常节点得到探测列表,根据探测列表通过至少一个数据监控设备物理总线接口对探测列表中的数据中心监控设备进行探测,获取存在网络状态异常的数据中心监控设备的网络状态的探测数据;将预存数据与探测列表中存在网络状态异常的数据中心监控设备的网络状态的探测数据进行对比,获取存在网络状态异常的设备的故障信息;其中,预存数据为数据监控设备提前预存的检测正常工作数据中心监控设备的网络状态数据;依据故障信息确定探测结果,并输出探测结果。
进一步地,可选的,将预存的数据与探测列表中存在网络状态异常的数据中心监控设备的网络状态的探测数据进行对比,获取存在网络状态异常的设备的故障信息包括以下步骤:将预存的数据与探测列表中存在网络状态异常的数据中心监控设备的网络状态的探测数据进行对比,获取不同的比对结果;根据不同的比对结果,分别启动物理探测,通过至少一个数据监控设备物理总线的接口获取网络状态异常的数据中心监控设备的运行参数;依据运行参数确定数据中心监控设备的故障位置和故障类型;依据故障位置和故障类型生成故障信息。
可选的,依据故障信息确定探测结果,并输出探测结果包括以下步骤:依据故障信息生成告警信息,并将告警信息确定为探测结果;输出探测结果。
根据本发明实施例的再一方面,还提供了一种存储介质,其中,存储介质包括存储的程序,其中,在程序运行时控制存储介质所在设备执行上述数据监控方法。
根据本发明实施例的再一方面,还提供了一种处理器,其中,处理器用于运行程序,其中,程序运行时执行上述数据监控方法。
在本发明实施例中,通过数据监控设备和至少两个数据中心监控设备,其中,至少两个数据中心监控设备之间分别通过网络和物理总线连接,数据监控设备分别通过网络和物理总线与至少两个数据中心监控设备中的至少一个数据中心监控设备连接,达到了降低部署和维护难度的目的,从而实现了提升机柜级分布式监控互联通信链路可靠性的技术效果,进而解决了由于现有机柜级分布式监控互联通信链路可靠性低的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1a是现有技术中监控设备网络交换机汇聚网络的示意图;
图1b是现有技术中监控设备网络环路的示意图;
图2是根据本发明实施例的数据监控系统的示意图;
图3是根据本发明实施例的数据监控系统中数据监控设备与至少两个数据中心监控设备连接结构的示意图;
图4是根据本发明实施例的数据监控系统中数据监控设备或数据中心监控设备的示意图;
图5是根据本发明实施例的一种数据监控系统的示意图;
图6是根据本发明实施例的另一种数据监控系统的示意图;
图7是根据本发明实施例的又一种数据监控系统的示意图;
图8是根据本发明实施例的数据监控方法的流程示意图;
图9是根据本发明实施例的一种数据监控方法的流程示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例1
根据本发明实施例的一个方面,提供了一种数据监控系统,图2是根据本发明实施例的数据监控系统的示意图,如图2所示,包括:数据监控设备22和至少两个数据中心监控设备24,其中,至少两个数据中心监控设备24之间分别通过网络和物理总线连接,数据监控设备22分别通过网络和物理总线与至少两个数据中心监控设备24中的至少一个数据中心监控设备连接。
具体的,本申请实施例提供的数据监控系统是由数据监控设备22、至少两个数据中心监控设备24组成,其中,每个数据中心监控设备24分别与对应的机柜连接,图3是根据本发明实施例的数据监控系统中数据监控设备与至少两个数据中心监控设备连接结构的示意图。如图3所示,每个数据中心监控设备24分别与对应的机柜连接,每个数据中心监控设备24之间通过网络和物理总线连接,数据监控设备22通过网络和物理总线与每列第一个数据中心监控设备连接。
例如,如图3所示,在数据中心监控设备24包括多个数据中心监控设备的情况下,标记为:设备1、设备2、设备3、……设备N,每个设备分别与机柜连接,即,设备1与机柜1连接、设备2与机柜2连接、设备3与机柜3连接、……设备N与机柜N连接;数据监控设备22通过网络和物理总线与设备1连接,设备1、设备2、设备3、……设备N之间通过网络和物理总线连接。
其中,数据监控设备22和数据中心监控设备24中通过内部主控中的交换模块实现网络硬件交换,网络级联(即,每个数据中心监控设备之间的连接,以及数据中心监控设备与数据监控设备之间的连接)采用网络硬件交换实现,不涉及软件,单个设备自身网络节点可靠性高;并且通过物理总线实现备份,依靠物理线缆的存在确保高可靠性,不会因单个设备掉电、硬件异常、网络模块软硬件异常而导致链路断开;
网络硬交换级联和物理总线级联备份存在,确保正常时数据高效,异常时紧急数据可通过物理总线收发,兼顾高速特性和高可靠性的特性;
通过本申请实施例提供的数据监控系统能够实现故障精确定位,网络硬交换和物理总线级联备份存在,精确定位通信链路异常原因(监控设备掉电、硬件异常、通信线缆异常、网络异常等故障)。如图3所示,当故障点1发生时,物理总线依然可以保障上下行数据可靠 传递;当故障点2为数据中心监控设备自身掉电或硬件异常,此时物理总线不依赖于任何设备,仅依赖于物理连接,因此物理总线依然保障整个通信链路的完整性;当故障点1和故障点3发生时,物理总线依旧可以保障通信链路可正常工作。
本申请实施例提供的数据监控系统确保关键业务通信上下行持续在线的同时可以精确区分设备以及通信链路的故障类型,告警通知给运维人员具体故障点和故障原因,便于尽快定位解决,在保障关键业务通信可靠性领域具有极强的竞争力。
在本发明实施例中,通过数据监控设备和至少两个数据中心监控设备,其中,至少两个数据中心监控设备之间分别通过网络和物理总线连接,数据监控设备分别通过网络和物理总线与至少两个数据中心监控设备中的至少一个数据中心监控设备连接,达到了降低部署和维护难度的目的,从而实现了提升机柜级分布式监控互联通信链路可靠性的技术效果,进而解决了由于现有机柜级分布式监控互联通信链路可靠性低的技术问题。
需要说明的是,本申请实施例中数据中心监控设备与数据监控设备可以为相同类型的设备。
可选的,每个数据中心监控设备24包括:主控、至少两个网络信号的接口、至少两个物理总线的接口和功能接口,其中,每个数据中心监控设备之间的物理总线的接口通过物理线缆连接;其中,主控包括交换模块,交换模块用于实现多端口交换。
具体的,图4是根据本发明实施例的数据监控系统中数据监控设备或数据中心监控设备的示意图。数据中心监控设备或数据监控设备包括:主控、至少两个网络信号的接口、至少两个物理总线的接口和功能接口;如图4所示,主控中包含有交换模块,该交换模块与至少两个网络信号的接口连接,至少两个物理总线的接口之间通过物理总线互联,并与主控连接, 在图4中,交换模块标记为网络硬交换,至少两个网络信号的接口标记为LAN1和LAN2,至少两个物理总线的接口标记为COM_BUS。
需要说明的是,本申请实施例中的数据监控设备或数据中心监控设备的外部端口包含至少2组用于传输网络信号的接口,同时包含至少两个物理总线的接口,物理总线使用纯物理线缆连接,物理总线不经过任何电路或信号处理,内部通过类似RS485、RS422、CAN等总线的部署方式,监控设备具备如下接口形式。
本申请实施例中的数据中心监控设备自身实现多端口交换机,采用简单的硬件网络交换实现上下游设备的网络级联,无需软件算法的逻辑控制。同时,使用物理总线实现上下游设备的级联通信。网络和物理总线采用双物理连接,确保通信链路物理冗余的同时可精确提供通信故障类型告警便于高效定位解决。
可选的,数据监控设备22包括:至少一个数据监控设备网络信号的接口和至少一个数据监控设备物理总线的接口,其中,通过至少一个数据监控设备物理总线的接口与至少两个数据中心监控设备中第一个数据中心监控设备的物理总线的接口连接,以及,通过至少一个数据监控设备网络信号的接口与第一个数据中心监控设备的网络信号的接口连接;每个数据中心监控设备之间分别通过网络和物理总线依次连接。
具体的,图5是根据本发明实施例的一种数据监控系统的示意图,如图5所示,仍以图2中的数据中心监控设备24中的示例为例,即,设备1与机柜1连接、设备2与机柜2连接、设备3与机柜3连接、……设备N与机柜N连接;
数据监控设备22通过至少一个数据监控设备网络的接口和至少一个数据监控设备物理总线的接口分别与设备1的网络信号的接口和物理总线的接口连接,设备1、设备2、设备 3、……设备N之间通过网络信号的接口和物理总线的接口依次连接。
可选的,数据监控设备22包括:至少两个数据监控设备网络信号的接口和至少两个数据监控设备物理总线的接口。
进一步地,可选的,数据监控设备22通过至少一个数据监控设备物理总线的接口中的第一接口与至少两个数据中心监控设备中第一个数据中心监控设备的物理总线的接口连接,通过至少一个数据监控设备网络信号的接口与第一个数据中心监控设备的网络信号的接口连接;通过至少一个数据监控设备物理总线的接口中的第二接口与至少两个数据中心监控设备中最后一个数据中心监控设备的物理总线的接口连接;其中,每个数据中心监控设备之间分别通过网络和物理总线依次连接。
具体的,图6是根据本发明实施例的另一种数据监控系统的示意图,如图6所示,数据监控设备22通过至少一个数据监控设备网络的接口和至少一个数据监控设备物理总线的接口中的第一接口分别与设备1的网络信号的接口和物理总线的接口连接,以及,通过至少一个数据监控设备物理总线的接口中的第二接口与设备N的物理中线的接口连接,设备1、设备2、设备3、……设备N之间通过网络和物理总线依次连接(多个数据中心监控设备标记为设备1、设备2、设备3、……设备N)。
其中,通过图6所示的连接结构可以将物理总线调整为环路方式来加强物理总线可靠性。
本申请实施例中的多个数据中心监控设备通过网络和物理总线方式相互连接后连接至数据监控设备,整体构成网络级联和物理总线级联的备份。物理总线是全线物理连接,总线回路没有经过任何信号处理。图5和图6的连接方式可以是两组连接线缆,也可以是一种连 接器同时连接两组通信线缆,其中,两组传输介质分别对应网络传输和物理总线传输,可以确保从物理链接媒介上实现独立可靠的备份。
可选的,本申请实施例提供的数据监控系统还包括:至少两列数据中心监控设备,其中,每列数据中心监控设备包括至少两个数据中心监控设备,每列数据中心监控设备中每个数据中心监控设备之间分别通过网络和物理总线依次连接;数据监控设备通过至少一个数据监控设备物理总线的接口中的第一接口与第一列数据中心监控设备中第一个数据中心监控设备的物理总线的接口连接,通过至少一个数据监控设备网络信号的接口与第一个数据中心监控设备的网络信号的接口连接;通过至少一个数据监控设备物理总线的接口中的第二接口与第二列数据中心监控设备中第一个数据中心监控设备的物理总线的接口连接;第一列机柜阵列中最后一个数据中心监控设备通过网络信号接口与第二列机柜阵列中最后一个数据中心监控设备的网络信号接口连接。
具体的,图7是根据本发明实施例的又一种数据监控系统的示意图,如图7所示,A列机柜阵列(由于每个数据中心监控设备与对于的机柜连接,因此每列数据中心监控设备与每列机柜阵列意思等同)中每个机柜都与对应的数据中心监控设备连接,数据监控设备22通过至少一个数据监控设备网络信号的接口和通过至少一个数据监控设备物理总线的接口中的第一接口分别与A列机柜1中的数据中心监控设备1的网络信号的接口和物理总线的接口连接;A列数据中心监控设备1与A列数据中心监控设备2之间通过网络和物理总线连接,A列数据中心监控设备2与A列数据中心监控设备3之间通过网络和物理总线连接,……,A列数据中心监控设备N-1与A列数据中心监控设备N之间通过网络和物理总线连接;A列数据中心监控设备N与B列数据中心监控设备N之间通过网络连接(如图7所示,A列数据中心监控设备1,2,3,……N,标记为:A列设备1,2,3,……N);
数据监控设备22通过至少一个数据监控设备物理总线的接口中的第二接口与B列机柜1的B列数据中心监控设备1的物理总线的接口连接,B列数据中心监控设备1与B列数据中心监控设备2之间通过网络和物理总线连接,B列数据中心监控设备2与B列数据中心监控设备3之间通过网络和物理总线连接,……,B列数据中心监控设备N-1与B列数据中心监控设备N之间通过网络和物理总线连接(如图7所示,B列数据中心监控设备1,2,3,……N,标记为:B列设备1,2,3,……N)。
可选的,数据监控设备22与数据中心监控设备24的结构相同。
需要说明的是,本申请实施例中数据监控设备22与数据中心监控设备24可以为相同的设备,区别在于功能位置上,数据监控设备22通过网络信号和物理总线与每列第一个机柜的数据中心监控设备24连接,每个机柜中的数据中心监控设备24用于在发生网络故障时,通过物理总线将网络故障点和故障原因返回值数据监控设备22,进而通过各个机柜通过数据中心监控设备的级联关系,通过物理总线进行数据传输,保障整个链路通信的正常运行。
实施例2
根据本发明实施例的另一方面,还提供了一种数据监控设备,应用于上述实施例1中的系统,包括:
主控、至少一个数据监控设备网络信号的接口和至少一个数据监控设备物理总线的接口,其中,通过至少一个数据监控设备物理总线的接口与至少两个数据中心监控设备中第一个数据中心监控设备的物理总线的接口连接,通过至少一个数据监控设备网络信号的接口与至少两个数据中心监控设备中第一个数据中心监控设备的网络信号的接口连接;主控分别与至少一个数据监控设备网络信号的接口和至少一个数据监控设备物理总线的接口连接。
具体的,数据监控设备包括:主控、至少一个数据监控设备网络信号的接口和至少一个数据监控设备物理总线的接口;主控中包含有交换模块,该交换模块与至少一个数据监控设备网络信号的接口连接,并且该交换模块与至少一个数据监控设备物理总线的接口,以及每个数据监控设备物理总线的接口之间通过物理总线互联,交换模块标记为网络硬交换,至少一个数据监控设备网络信号的接口标记为LAN,至少一个数据监控设备物理总线的接口标记为COM_BUS。
需要说明的是,本申请实施例中的数据监控设备的外部端口包含至少一个用于传输网络信号的接口,同时包含至少一个物理总线的接口,数据监控设备与数据中心监控设备之间使用的物理总线使用纯物理线缆连接,物理总线不经过任何电路或信号处理,内部通过类似RS485、RS422、CAN等总线的部署方式。
本申请实施例中至少一个数据监控设备物理总线的接口仅以上述规格示例,以实现本申请实施例提供的数据监控设备为准,具体不做限定。
实施例3
根据本发明实施例,提供了一种数据监控方法的方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图8是根据本发明实施例的数据监控方法的流程示意图,如图8所示,应用于上述实施例1中的系统,在数据监控设备侧,本申请实施例提供的数据监控方法包括如下步骤:
步骤S802,分别通过至少一个数据监控设备网络信号的接口和至少一个数据监控设备 物理总线的接口与至少两个数据中心监控设备进行通信;
本申请上述步骤S802中,在数据监控设备侧,数据监控设备与至少两个数据中心监控设备分别通过网络信号的接口和物理总线的接口进行通信,在至少两个数据中心设备中存在网络状态异常的情况下,通过物理总线的接口获取至少两个数据中心设备的网络状态。
步骤S804,通过至少一个数据监控设备物理总线的接口检测至少两个数据中心监控设备中是否存在网络状态异常的设备;
本申请上述步骤S804中,在不占用至少一个数据监控设备网络信号的接口与至少两个数据中心监控设备通信的前提下,通过至少一个数据监控设备物理总线的接口对至少两个数据中心监控设备的网络状态进行检测,并通过至少一个数据监控设备物理总线的接口检测至少两个数据中心监控设备中是否发生网络状态异常,在至少两个数据中心监控设备中发生网络状态异常的情况下,执行步骤S806;在未发生网络状态异常的情况下,执行步骤S808。
步骤S806,在检测结果为是的情况下,通过至少一个数据监控设备物理总线的接口对至少两个数据中心监控设备进行探测,获取探测结果,并输出探测结果;
本申请上述步骤S806中,基于步骤S804中对至少两个数据中心监控设备的网络状态的检测,当至少两个数据中心监控设备发生网络状态异常时,数据监控设备通过至少一个数据监控设备物理总线的接口对至少两个数据中心监控设备进行探测,获取至少两个数据中心监控设备中存在网络状态异常的设备;
其中,本申请实施例中的探测结果可以包括:网络状态异常的设备的位置和/或网络故障类型;
当发生网络状态异常时,除了将探测结果以告警信息的方式发送至运维人员外,为了维持当前业务所需的服务器数量,触发调度机制将网络状态异常的设备所处的服务器中的业务迁移至备用服务器中,从而保障在运维人员解决网络状态异常之前,当前业务的顺利执行;和/或,在数据中心监控设备的网络状态异常为网络信号的接口故障的情况下,通过物理总线的接口与数据监控设备以及其他数据中心监控设备进行通信,直至运维人员解决网络状态异常,进而保障当前业务的正常进行。
步骤S808,在检测结果为否的情况下,输出检测结果。
基于步骤S804的检测,在至少两个数据中心监控设备没有网络状态异常的情况下,输出检测结果可以为当前至少两个数据中心监控设备网络状态正常。
在本发明实施例中,通过分别通过至少一个数据监控设备网络信号的接口和至少一个数据监控设备物理总线的接口与至少两个数据中心监控设备进行通信;通过至少一个数据监控设备物理总线的接口检测至少两个数据中心监控设备中是否存在网络状态异常的设备;在检测结果为是的情况下,通过至少一个数据监控设备物理总线的接口对至少两个数据中心监控设备进行探测,获取探测结果,并输出探测结果;在检测结果为否的情况下,输出检测结果,达到了实现故障定位和确定故障类型的目的,从而实现了基于数据监控系统提升机柜级分布式监控互联通信链路可靠性的技术效果,进而解决了由于现有机柜级分布式监控互联通信链路可靠性低的技术问题。
可选的,步骤S806中通过至少一个数据监控设备物理总线的接口对至少两个数据中心监控设备进行探测,获取探测结果,并输出探测结果包括以下步骤:
步骤S8061,匹配节点池中网络通讯异常节点得到探测列表,根据探测列表通过至少一 个数据监控设备物理总线接口对探测列表中的数据中心监控设备进行探测,获取存在网络状态异常的数据中心监控设备的网络状态的探测数据;
其中,节点池包含了至少一个数据中心监控设备,每个数据中心监控设备作为各个节点存在于节点池中,将该节点池中存在网络通信异常的数据中心监控设备生成探测列表。
步骤S8062,将预存数据与探测列表中存在网络状态异常的数据中心监控设备的网络状态的探测数据进行对比,获取存在网络状态异常的设备的故障信息;其中,预存数据为数据监控设备提前预存的检测正常工作数据中心监控设备的网络状态数据;
其中,本申请实施例中基于实施例1中的系统,数据监控设备会获取每个数据中心监控设备的运行状态,即,本申请实施例中的预存数据,其中该运行状态包括网络运行状态,通信状态,设备物理状态(例如,老化程度,运行年限,所在位置)等信息,当至少一个数据中心监控设备发生网络状态异常时,数据监控设备通过将预存数据与探测列表中存在网络状态异常的数据中心监控设备的网络状态的探测数据进行对比,获取存在网络状态异常的设备的故障信息。
在一种可实现的方式中,将预存的数据与探测列表中存在网络状态异常的数据中心监控设备的网络状态的探测数据进行对比,获取存在网络状态异常的设备的故障信息包括以下步骤:将预存的数据与探测列表中存在网络状态异常的数据中心监控设备的网络状态的探测数据进行对比,获取不同的比对结果;根据不同的比对结果,分别启动物理探测,通过至少一个数据监控设备物理总线的接口获取网络状态异常的数据中心监控设备的运行参数;依据运行参数确定数据中心监控设备的故障位置和故障类型;依据故障位置和故障类型生成故障信息。
其中,通过获取故障位置,并确定处于网络状态异常的数据中心监控设备的故障类型,即,数据中心监控设备可能存在软件故障、掉电故障或数据中心监控设备硬件故障中至少一种。
步骤S8063,依据故障信息确定探测结果,并输出探测结果。
在一种可实现的方式中,依据故障信息确定探测结果,并输出探测结果包括以下步骤:依据故障信息生成告警信息,并将告警信息确定为探测结果;输出探测结果。
当确定存在网络状态异常的数据中心监控设备时,依据故障信息中存在网络状态异常的数据中心监控设备的故障类型和故障位置生成告警信息,进而将告警信息确定为探测结果进行输出。
综上,结合步骤S802至步骤S808,本申请实施例提供的数据监控方法可以适用于实施例1中的数据监控系统,在数据监控设备侧,当多个数据中心监控设备所属的机柜中存在网络故障(即,本申请实施例中的网络状态异常)的情况下,匹配节点池中网络通讯异常节点得到探测列表,数据监控设备根据探测列表通过所述至少一个数据监控设备物理总线接口对所述探测列表中的数据中心监控设备进行探测,获取存在网络状态异常的数据中心监控设备的网络状态的探测数据,从而确定发生网络故障的数据中心监控设备所在位置和故障类型,最终将故障位置和故障类型(含故障原因)发送至运维人员。
综上,图9是根据本发明实施例的一种数据监控方法的流程示意图,如图9所示,本申请实施例提供的数据监控方法具体如下:
本申请实施例提供的数据监控方法在实施时包括三部分:第一部分,网络异常检测部分;第二部分,网络链路数据上下行传输;第三部分,物理总线数据上下行传输(确保告警和控 制指令执行畅通)。
其中,第一部分中网络异常节点将持续使用物理总线进行通信;
Step1,检测链路组内设备网络通信是否异常;
其中,链路组内设备包含每列的数据中心监控设备;
Step2,在检测结果为是的情况下,匹配节点池中网络通信异常节点构成探测列表;
其中,节点池包含每列的数据中心监控设备,若节点池中每列的数据中心监控设备网络通信异常,则将节点池中的每列的数据中心监控设备生成探测列表;
Step3,将预存数据与探测列表中存在网络状态异常的数据中心监控设备的网络状态数据进行对比,获取存在网络状态异常的设备的故障信息,依据故障信息确定探测结果,并输出探测结果;
其中,若探测结果中的故障类型为1类故障,则反馈result==1,同理,通过探测结果中的故障类型为N类故障,则反馈对应的故障类型,反馈result==N。
本申请实施例提供的数据监控方法基于网络和物理总线双链路的硬件通信机制,确保上下行持续在线的同时可以精确区分设备以及通信链路的故障类型,基于此可准确定位具体问题设备特征及故障类型,多进程通信备份机制及故障定位机制如图9所示。
图9中定位的故障类型可以指示常见的单点或多点网络传输介质异常、单点或多点设备掉电或硬件异常、单点或多点设备软件异常、单点或多点设备网卡异常等多种故障类型。综上描述,在确保关键业务上下行通信正常的同时,检测物理链路异常将精确的问题告警提供给运维人员,便于尽快定位解决。
实施例4
根据本发明实施例的再一方面,还提供了一种存储介质,其中,存储介质包括存储的程序,其中,在程序运行时控制存储介质所在设备执行上述实施例3中的数据监控方法。
实施例5
根据本发明实施例的再一方面,还提供了一种处理器,其中,处理器用于运行程序,其中,程序运行时执行上述实施例3中的数据监控方法。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个 单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (15)

  1. 一种数据监控系统,其特征在于,包括:
    数据监控设备和至少两个数据中心监控设备,其中,所述至少两个数据中心监控设备之间分别通过网络和物理总线连接,所述数据监控设备分别通过所述网络和所述物理总线与所述至少两个数据中心监控设备中的至少一个数据中心监控设备连接。
  2. 根据权利要求1所述的系统,其特征在于,
    每个数据中心监控设备包括:主控、至少两个网络信号的接口、至少两个物理总线的接口和功能接口,其中,所述每个数据中心监控设备之间的物理总线的接口通过物理线缆连接;
    其中,所述主控包括交换模块,所述交换模块用于实现多端口交换。
  3. 根据权利要求2所述的系统,其特征在于,数据中心监控设备与对应的机柜连接。
  4. 根据权利要求3所述的系统,其特征在于,所述数据监控设备包括:至少一个数据监控设备网络信号的接口和至少一个数据监控设备物理总线的接口,其中,
    通过所述至少一个数据监控设备物理总线的接口与所述至少两个数据中心监控设备中第一个数据中心监控设备的物理总线的接口连接,以及,通过所述至少一个数据监控设备网络信号的接口与所述第一个数据中心监控设备的网络信号的接口连接;
    每个数据中心监控设备之间分别通过网络和物理总线依次连接。
  5. 根据权利要求3所述的系统,其特征在于,所述数据监控设备包括:
    至少两个数据监控设备网络信号的接口和至少两个数据监控设备物理总线的接口。
  6. 根据权利要求5所述的系统,其特征在于,
    所述数据监控设备通过所述至少一个数据监控设备物理总线的接口中的第一接口与所述至少两个数据中心监控设备中第一个数据中心监控设备的物理总线的接口连接,通过所述至少一个数据监控设备网络信号的接口与所述第一个数据中心监控设备的网络信号的接口连接;
    通过所述至少一个数据监控设备物理总线的接口中的第二接口与所述至少两个数据中心监控设备中最后一个数据中心监控设备的物理总线的接口连接;
    其中,每个数据中心监控设备之间分别通过网络和物理总线依次连接。
  7. 根据权利要求5所述的系统,其特征在于,所述系统还包括:
    至少两列数据中心监控设备,其中,每列数据中心监控设备包括至少两个数据中心监控设备,每列数据中心监控设备中每个数据中心监控设备之间分别通过网络和物理总线依次连接;
    所述数据监控设备通过所述至少一个数据监控设备物理总线的接口中的第一接口与第一列数据中心监控设备中第一个数据中心监控设备的物理总线的接口连接,通过所述至少一个数据监控设备网络信号的接口与所述第一个数据中心监控设备的网络信号的接口连接;
    通过所述至少一个数据监控设备物理总线的接口中的第二接口与第二列数据中心监控设备中第一个数据中心监控设备的物理总线的接口连接;
    所述第一列数据中心监控设备中最后一个数据中心监控设备通过网络信号接口与所述第二列数据中心监控设备中最后一个数据中心监控设备的网络信号接口连接。
  8. 根据权利要求1所述的系统,其特征在于,所述数据监控设备与数据中心监控设备的结构相同。
  9. 一种数据监控设备,其特征在于,应用于权利要求1至8中任意一项所述的系统,包括:
    主控、至少一个数据监控设备网络信号的接口和至少一个数据监控设备物理总线的接口,其中,通过所述至少一个数据监控设备物理总线的接口与至少两个数据中心监控设备中第一个数据中心监控设备的物理总线的接口连接,通过所述至少一个数据监控设备网络信号的接口与所述至少两个数据中心监控设备中第一个数据中心监控设备的网络信号的接口连接;
    所述主控分别与所述至少一个数据监控设备网络信号的接口和所述至少一个数据监控设备物理总线的接口连接。
  10. 一种数据监控方法,其特征在于,应用于权利要求1至8中任意一项所述的系统,包括以下步骤:
    分别通过至少一个数据监控设备网络信号的接口和至少一个数据监控设备物理总线的接口与至少两个数据中心监控设备进行通信;
    通过所述至少一个数据监控设备物理总线的接口检测至少两个数据中心监控设备中是否存在网络状态异常的设备;
    在检测结果为是的情况下,通过所述至少一个数据监控设备物理总线的接口对至 少两个数据中心监控设备进行探测,获取探测结果,并输出所述探测结果;
    在检测结果为否的情况下,输出所述检测结果。
  11. 根据权利要求10所述的方法,其特征在于,所述通过所述至少一个数据监控设备物理总线的接口对至少两个数据中心监控设备进行探测,获取探测结果,并输出所述探测结果包括以下步骤:
    匹配节点池中网络通讯异常节点得到探测列表,根据探测列表通过所述至少一个数据监控设备物理总线接口对所述探测列表中的数据中心监控设备进行探测,获取存在网络状态异常的数据中心监控设备的网络状态的探测数据;
    将预存数据与所述探测列表中存在网络状态异常的数据中心监控设备的网络状态的探测数据进行对比,获取存在网络状态异常的设备的故障信息;
    其中,所述预存数据为数据监控设备提前预存的检测正常工作数据中心监控设备的网络状态数据;
    依据所述故障信息确定探测结果,并输出所述探测结果。
  12. 根据权利要求11所述的方法,其特征在于,将预存的数据与所述探测列表中存在网络状态异常的数据中心监控设备的网络的状态探测数据进行对比,获取存在网络状态异常的设备的故障信息包括以下步骤:
    将预存的数据与所述探测列表中存在网络状态异常的数据中心监控设备的网络状态的探测数据进行对比,获取不同的比对结果;
    根据所述不同的比对结果,分别启动物理探测,通过所述至少一个数据监控设备 物理总线的接口获取网络状态异常的数据中心监控设备的运行参数;
    依据所述运行参数确定所述数据中心监控设备的故障位置和故障类型;
    依据所述故障位置和所述故障类型生成故障信息。
  13. 根据权利要求12所述的方法,其特征在于,依据所述故障信息确定探测结果,并输出所述探测结果包括以下步骤:
    依据所述故障信息生成告警信息,并将所述告警信息确定为所述探测结果;
    输出所述探测结果。
  14. 一种存储介质,其中,所述存储介质包括存储的程序,其中,在所述程序运行时控制所述存储介质所在设备执行权利要求10至13中至少一项所述的数据监控方法。
  15. 一种处理器,其中,所述处理器用于运行程序,其中,所述程序运行时执行权利要求10至13中至少一项所述的数据监控方法。
PCT/CN2021/076164 2020-06-24 2021-02-09 数据监控系统、设备和方法 WO2021258745A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010589761.0 2020-06-24
CN202010589761.0A CN113839827B (zh) 2020-06-24 2020-06-24 数据监控系统、设备和方法

Publications (1)

Publication Number Publication Date
WO2021258745A1 true WO2021258745A1 (zh) 2021-12-30

Family

ID=78964601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076164 WO2021258745A1 (zh) 2020-06-24 2021-02-09 数据监控系统、设备和方法

Country Status (2)

Country Link
CN (1) CN113839827B (zh)
WO (1) WO2021258745A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291451A (zh) * 2011-08-09 2011-12-21 上海交通大学 交互数字媒体资讯服务电子标牌网络系统
CN103135527A (zh) * 2013-01-25 2013-06-05 上海飞为自动化系统有限公司 一种pcb或lcd或太阳能电池制造工厂生产监控系统
US20140336791A1 (en) * 2013-05-09 2014-11-13 Rockwell Automation Technologies, Inc. Predictive maintenance for industrial products using big data
CN104184637A (zh) * 2014-08-29 2014-12-03 广州日滨科技发展有限公司 综采工作面数据传输系统及其数据传输方法
CN104766261A (zh) * 2015-03-23 2015-07-08 中国民航大学 一种飞机客梯车智能管理系统
CN107154879A (zh) * 2017-07-21 2017-09-12 郑州云海信息技术有限公司 一种管理网络的组网系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104270268B (zh) * 2014-09-28 2017-12-05 曙光信息产业股份有限公司 一种分布式系统网络性能分析及故障诊断方法
CN108234150A (zh) * 2016-12-09 2018-06-29 中兴通讯股份有限公司 用于数据中心监控系统的数据采集和处理方法及系统
CN111324504B (zh) * 2018-12-14 2024-02-27 国网山西省电力公司信息通信分公司 电力通信网络运行状态监测方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291451A (zh) * 2011-08-09 2011-12-21 上海交通大学 交互数字媒体资讯服务电子标牌网络系统
CN103135527A (zh) * 2013-01-25 2013-06-05 上海飞为自动化系统有限公司 一种pcb或lcd或太阳能电池制造工厂生产监控系统
US20140336791A1 (en) * 2013-05-09 2014-11-13 Rockwell Automation Technologies, Inc. Predictive maintenance for industrial products using big data
CN104184637A (zh) * 2014-08-29 2014-12-03 广州日滨科技发展有限公司 综采工作面数据传输系统及其数据传输方法
CN104766261A (zh) * 2015-03-23 2015-07-08 中国民航大学 一种飞机客梯车智能管理系统
CN107154879A (zh) * 2017-07-21 2017-09-12 郑州云海信息技术有限公司 一种管理网络的组网系统及方法

Also Published As

Publication number Publication date
CN113839827A (zh) 2021-12-24
CN113839827B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
US20080215910A1 (en) High-Availability Networking with Intelligent Failover
US20150055452A1 (en) Dedicated control path architecture for systems of devices
CN101291243A (zh) 高可用集群系统的裂脑预防方法
JP2011504693A (ja) 産業用イーサネットネットワークに基づいた故障処理方法、システム、および交換装置
WO2006102826A1 (fr) Procede de realisation de sauvegarde de service de donnees
CN111510398A (zh) 用于控制平面网络中的冗余连接的控制设备和方法
CN108737188A (zh) 一种网卡故障切换系统
Huang et al. An open solution to fault-tolerant Ethernet: design, prototyping, and evaluation
WO2021258745A1 (zh) 数据监控系统、设备和方法
CN210270871U (zh) 一种冗余容错计算机串口选通装置
KR100690042B1 (ko) 듀얼 액티브를 이용한 아이피 인터페이스의 파이레벨이중화 장치
US7210069B2 (en) Failure recovery in a multiprocessor configuration
CN106850264B (zh) 一种网络设备
CN107423167A (zh) 一种基于双控存储的ISCSI target冗余控制方法和系统
CN210222738U (zh) 中断重连快速响应装置和通信设备
CN104656478B (zh) 一种多电源模块的控制电路及控制方法
CN106656437A (zh) 冗余热备平台
KR100460115B1 (ko) 아이피씨 링크 이중화 제어 장치
CN115037674B (zh) 一种中央控制系统单机及多设备冗余备份方法
KR0152229B1 (ko) 시스팀의 이중화를 위한 저가형 이중화 노드
CN104022909B (zh) 基于XAUI link的倒换的业务处理方法、装置和系统
Pham et al. An adaptive and reliable data-path determination for Fault-Tolerant Ethernet using heartbeat mechanism
CN217037201U (zh) 一种用于存储产品的管理网络装置及存储系统
CN220359181U (zh) 具有旁路电口的以太网交换机
JP2000250770A (ja) 多重化計装システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829484

Country of ref document: EP

Kind code of ref document: A1