WO2021258577A1 - 滤波器阵列、图像传感器、数码相机、手机及监控系统 - Google Patents

滤波器阵列、图像传感器、数码相机、手机及监控系统 Download PDF

Info

Publication number
WO2021258577A1
WO2021258577A1 PCT/CN2020/119484 CN2020119484W WO2021258577A1 WO 2021258577 A1 WO2021258577 A1 WO 2021258577A1 CN 2020119484 W CN2020119484 W CN 2020119484W WO 2021258577 A1 WO2021258577 A1 WO 2021258577A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
filter
cell
filter unit
units
Prior art date
Application number
PCT/CN2020/119484
Other languages
English (en)
French (fr)
Inventor
范浩强
Original Assignee
北京迈格威科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京迈格威科技有限公司 filed Critical 北京迈格威科技有限公司
Publication of WO2021258577A1 publication Critical patent/WO2021258577A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics

Definitions

  • the present disclosure relates to the field of image acquisition and processing. Specifically, the embodiments of the present disclosure relate to a filter array, an image sensor, a digital camera, a mobile phone, and a monitoring system.
  • CFA Color Filter Array
  • the most classic color array is a 2x2 Bayer Bayer array.
  • the full-size and full-size are obtained through the algorithm of the image processing module (for example, the demosaic algorithm). Color red, green and blue image.
  • One of the objectives of the embodiments of the present disclosure is to provide a filter array, image sensor, digital camera, mobile phone, and monitoring system.
  • the four-color or five-color color arrangement of the filter array proposed in the embodiments of the present disclosure can hardly lose color. In the case of restoration ability, the amount of light entering is increased, thereby improving the brightness and color perception of the obtained image.
  • an embodiment of the present disclosure provides a filter array, the filter array includes a plurality of tiled minimum repeating units, each of the minimum repeating units includes: a red filter configured to transmit red light Filter unit; a green filter unit configured to transmit green light; a blue filter unit configured to transmit blue light; and a yellow filter unit configured to transmit yellow light and cyan configured to transmit cyan light At least one of the filter units.
  • the filter array further includes a panchromatic filter unit.
  • the smallest repeating unit includes a four-row by four-column cell, and the four-row by four-column cell includes four two-row by two-column sub-cells;
  • the first sub-cell among the four sub-cells is arranged with two red filter units distributed diagonally;
  • the second sub-cell among the four sub-cells is arranged with The two green filter units are diagonally distributed;
  • the third of the four sub-cells is arranged with two blue filter units that are diagonally distributed;
  • the four A fourth sub-cell of the sub-cells is arranged with two of the yellow filter units and two filter units of at least one color of the two cyan filter units that are diagonally distributed.
  • the cyan filter unit is provided in the fourth sub-cell, wherein two of the yellow filter units are located in the first sub-cell and the first sub-cell. Three sub-cells or the fourth sub-cell.
  • the yellow filter unit is provided in the fourth sub-cell, wherein two of the cyan filter units are located in the first sub-cell and the first sub-cell. Three sub-cells or the fourth sub-cell.
  • the two red filter units, the two green filter units, the two blue filter units, and the yellow filter units are all located in corresponding sub- The main diagonal of the cell.
  • a full-color filter is provided in at least part of the multiple positions where the colored filter unit is not arranged Unit; wherein the colored filter unit includes the red filter unit, the green filter unit, the blue filter unit, the yellow filter unit, and the cyan filter unit.
  • embodiments of the present disclosure provide an image sensor that includes: a plurality of pixel units; and a plurality of filter units arranged in one-to-one correspondence with the plurality of pixel units, wherein the plurality of Each filter unit in the filter unit covers each of the plurality of pixel units, and the plurality of filter units includes a red filter unit configured to transmit red light and configured to transmit green light
  • the green filter unit is configured as a blue filter unit that transmits blue light, and at least one of a yellow filter unit configured to transmit yellow light and a cyan filter unit configured to transmit cyan light.
  • the multiple filter units further include a panchromatic filter unit.
  • the multiple filter units form a filter array
  • the smallest repeating unit of the pattern of the filter array is a cell of four rows by four columns
  • the four The row-by-four-column cell includes four two-row by two-column sub-cells; wherein, the first sub-cell among the four sub-cells is arranged with two red filters distributed diagonally Unit; a second sub-cell of the four sub-cells is arranged with two of the green filter units diagonally distributed; a third sub-cell of the four sub-cells Two blue filter units distributed diagonally are arranged; a fourth sub-cell among the four sub-cells is arranged with two yellow filter units distributed diagonally and two A filter unit of at least one color among the cyan filter units.
  • the cyan filter unit is provided in the fourth sub-cell, wherein two of the yellow filter units are located in the first sub-cell and the first sub-cell. Three sub-cells or the fourth sub-cell.
  • the yellow filter unit is provided in the fourth sub-cell, wherein two of the cyan filter units are located in the first sub-cell and the first sub-cell. Three sub-cells or the fourth sub-cell.
  • the two red filter units, the two green filter units, the two blue filter units, and the yellow filter units are all located in corresponding sub- The main diagonal of the cell.
  • a full-color filter is provided in at least part of the multiple positions where the colored filter unit is not arranged Unit; wherein the colored filter unit includes the red filter unit, the green filter unit, the blue filter unit, the yellow filter unit, and the cyan filter unit.
  • the image sensor further includes a reading circuit configured to combine and read the photosensitive current of the photosensitive element, wherein the photosensitive element is the four two The photosensitive element corresponding to the filter unit arranged on the diagonal of each sub-cell in the sub-cells of two rows by two columns, and the diagonal is one of the main diagonal and the sub-diagonal of the sub-cell.
  • the image sensor further includes a conversion device configured to convert electrical signals induced by a plurality of photosensitive elements corresponding to the smallest repeating unit into output signals in Bayer format , For the image processing circuit to analyze the image.
  • the conversion device is configured to: determine the target weight of the neural network model according to the resolution type, where the resolution type includes a half-size mode and a full-size mode;
  • the neural network model converts the input electric signal to be converted into the output signal in the Bayer format.
  • embodiments of the present disclosure provide a digital camera, the camera including a lens and the filter array described in the first aspect or the image sensor described in the second aspect.
  • embodiments of the present disclosure provide a mobile phone terminal, which includes a memory, a processor, and the filter array described in the first aspect or the image sensor described in the second aspect.
  • embodiments of the present disclosure provide a video surveillance system, which includes a memory, a display, and the optical filter array described in the first aspect or the image sensor described in the second aspect.
  • FIG. 1 is a schematic structural diagram of an image sensor provided by an embodiment of the disclosure
  • FIG. 2 is a block diagram of an imaging system provided by an embodiment of the disclosure.
  • FIG. 3 is a block diagram of the planar arrangement of the smallest repeating unit of the filter array provided by the embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of the types of filter units included in the smallest repeating unit in the filter array provided by an embodiment of the disclosure
  • FIG. 5 is a block diagram of a tiled structure of a pixel array and related processing circuits provided by an embodiment of the disclosure
  • FIG. 6 is a schematic diagram of a first pattern of a filter array provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of a second pattern of a filter array of an image sensor provided by an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of a third pattern of a filter array of an image sensor provided by an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of a fourth pattern of a filter array of an image sensor provided by an embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of a fifth pattern of a filter array of an image sensor provided by an embodiment of the disclosure.
  • FIG. 11 is a schematic diagram of a sixth pattern of a filter array of an image sensor provided by an embodiment of the disclosure.
  • FIG. 12 is a schematic diagram of a seventh pattern of a filter array of an image sensor provided by an embodiment of the disclosure.
  • FIG. 13 is a schematic diagram of an eighth pattern of a filter array of an image sensor provided by an embodiment of the disclosure.
  • FIG. 14 is a schematic diagram of a ninth pattern of a filter array of an image sensor provided by an embodiment of the disclosure.
  • FIG. 15 is a block diagram of a digital camera provided by an embodiment of the disclosure.
  • FIG. 16 is a block diagram of a mobile phone provided by an embodiment of the disclosure.
  • Fig. 17 is a block diagram of a monitoring system provided by an embodiment of the disclosure.
  • the indicators that can be considered in the design of the filter array include: signal-to-noise ratio, sensitivity, color reproduction, resolution, and the ability to restore object shape and texture details.
  • signal-to-noise ratio sensitivity
  • color reproduction resolution
  • the ability to restore object shape and texture details For example, the pattern designed by the filter array to obtain a better signal-to-noise ratio, as much as possible to increase the sensitivity of light through more light, better and more accurate restoration of color, better resolution and as much as possible to restore the shape of the object And the details on the texture are the goal.
  • a filter array with a 4x4 periodic array as a design pattern includes two design patterns, QuadBayer and RGBW.
  • QuadBayer can improve the resolution, but the amount of light is not optimal.
  • RGBW can increase the amount of light, but it is worse for color reproduction and is prone to color noise.
  • Some embodiments of the present disclosure provide a four-color or five-color arrangement pattern.
  • an image sensor composed of a filter array arranged in a four-color or five-color arrangement pattern can be improved with little loss of color reproduction ability. The amount of light, thereby improving the quality of the image obtained by the analysis.
  • FIG. 1 is a schematic structural diagram of an image sensor provided by an embodiment of the present disclosure.
  • the image sensor 100 provided in FIG. 1 includes a filter array 110 (ie, a filter array) and a pixel array 120.
  • the filter array 110 includes a plurality of filter units 111
  • the pixel array 120 includes a plurality of pixel units 121.
  • Each pixel unit 121 includes a photosensitive element (for example, a photodiode, not shown in FIG. 1), and the filter unit 111 and the pixel unit 121 in FIG. 1 are arranged in a one-to-one correspondence.
  • the filter unit 111 in the filter array 110 shown in FIG. 1 is optically coupled to a certain pixel unit 121 included in the pixel array 120 corresponding to its position (for example, guiding light of the remaining color after filtering to the pixel unit 121 includes
  • the light-sensitive device such as the photodiode
  • each filter unit 111 (for example, a filter) shown in FIG. 1 can filter the incident light, and retain some frequency light (corresponding to one or more colors).
  • the image sensor may be provided with a filter array 110 arranged in a certain pattern (for example, Bayer pattern), so that multiple pixel units in the image sensor can receive and pass through the corresponding filter.
  • the light of the unit 111 generates pixel signals with different color channels.
  • each pixel unit 121 can output a pixel signal of one color channel value, and the pixel signals of the other color channel values need to be obtained by interpolation (that is, by the image processing circuit 200).
  • the imaging system 10 shown in FIG. 2 may include an image sensor 100 and an image processing circuit 200.
  • the image sensor 100 can acquire the light intensity and wavelength (the filter array 110 is required to acquire the wavelength information) information captured by each pixel unit 121 (for example, a photodiode), and provide a set of image data that can be processed by the image processing circuit 200 .
  • the electrical signal collected by each pixel unit 121 in the pixel array 120 can be provided to the image processing circuit 200 for one step of data processing through a readout circuit (not shown in the figure).
  • a set of image data may include image data composed of multiple first pixel signals, multiple second pixel signals, multiple third pixel signals, and multiple fourth pixel signals.
  • the image processing circuit 200 can process image data pixel by pixel in a variety of formats. For example, each image pixel may have a bit depth of 8, 10, 12, or 14 bits, and the image processing circuit 200 may perform one or more image processing operations on the image data, and collect statistical information about the image data.
  • the processed image data (for example, a color image) can be sent to an image memory (not shown in the figure) for additional processing before being displayed.
  • the image data processed by the image processing circuit 200 can be output to a display for viewing by a user and/or processed by a graphics engine or a GPU (Graphics Processing Unit, graphics processor).
  • the statistical data determined by the image processing circuit 200 may include automatic exposure, automatic white balance, automatic focus, flicker detection, black level compensation, and the like.
  • the following describes the filter array 110 arranged in a certain pattern provided by some possible embodiments of the present disclosure in conjunction with FIG. 3 and FIG. 4.
  • the filter array 110 includes a plurality of tiled minimum repeating units 170, and each of the minimum repeating units 170 includes: Red filter unit 171; green filter unit 172 configured to transmit green light; blue filter unit 173 configured to transmit blue light; and yellow filter unit 174 configured to transmit yellow light and configured to At least one of the cyan filter units 175 that transmits cyan light.
  • the minimum repeating unit 170 includes: a red filter unit 171, a green filter unit 172, a blue filter unit 173, and a yellow filter unit 174. In other possible embodiments, the minimum repeating unit 170 includes a red filter unit 171, a green filter unit 172, a blue filter unit 173, and a cyan filter unit 175. In still other possible embodiments, the minimum repeating unit 170 includes a red filter unit 171, a green filter unit 172, a blue filter unit 173, a yellow filter unit 174, and a cyan filter unit 175.
  • the plurality of filter units further include a full-color filter unit (not shown in FIG. 4).
  • the composition of the minimum repeating unit is not limited.
  • a cell of four rows by four columns is the minimum repeating unit, and each filter in the minimum repeating unit 170 is exemplified.
  • the layout of the unit is not limited.
  • the four-row by four-column cell includes four sub-cells of two-row by two-column.
  • the first sub-cell among the four sub-cells is arranged with two red filter units distributed diagonally.
  • the second sub-cell among the four sub-cells is arranged with two of the green filter units diagonally distributed.
  • a third sub-cell among the four sub-cells is arranged with two blue filter units distributed diagonally.
  • a fourth sub-cell of the four sub-cells is arranged with filter units of at least one color of the two yellow filter units and the two cyan filter units that are diagonally distributed .
  • the first sub-cell is a 2*2 sub-cell located at the upper left position of the smallest repeating unit. In other possible embodiments, the first sub-cell is a 2*2 sub-cell located at the lower left position of the smallest repeating unit. In some possible embodiments, the first sub-cell is a 2*2 sub-cell located at the upper right position of the smallest repeating unit.
  • the first sub-cell is a 2*2 sub-cell located at the lower right position of the smallest repeating unit.
  • the positions of the remaining second, third, and fourth subcells may also be located in the upper left, lower left, upper right, or lower right subcells of the smallest repeating unit.
  • the diagonal distribution of the embodiments of the present disclosure includes distribution on a main diagonal or a sub-diagonal line. The meaning of the main diagonal and the sub-diagonal line can be referred to the following description.
  • the smallest repeating unit 170 is arranged with five-color filter units.
  • the first sub-cell is arranged with two red filter units distributed diagonally
  • the second sub-cell is arranged with two green filter units distributed diagonally
  • the third sub-cell is arranged with diagonally
  • Two blue filter units are distributed
  • the fourth sub-cell is arranged with two cyan filter units that are diagonally distributed
  • the remaining two yellow filter units are arranged in the first and third sub-cells Or in the fourth child cell.
  • the yellow filter unit can be bound to the red filter unit in a sub-cell, it can also be bound to the blue filter unit in a sub-cell, or it can be bound to the cyan filter unit. In a child cell.
  • the smallest repeating unit 170 is arranged with five-color filter units.
  • the first sub-cell is arranged with two red filter units distributed diagonally
  • the second sub-cell is arranged with two green filter units distributed diagonally
  • the third sub-cell is arranged with diagonally
  • Two blue filter units are distributed
  • the fourth sub-cell is arranged with two yellow filter units distributed diagonally
  • the remaining two cyan filter units are arranged in the first sub-cell and the third sub-cell Or in the fourth child cell.
  • the cyan filter unit can be bound to the red filter unit in a sub-cell, it can also be bound to the blue filter unit in a sub-cell, or it can be bound to the cyan filter unit. In a child cell.
  • two of the red filter units are arranged on the main diagonal of the first sub-cell, and two of the green filter units are arranged on the main diagonal of the second sub-cell.
  • the upper and two blue filter units are arranged on the main diagonal of the third sub-cell and the yellow filter units are arranged on the main diagonal of the fourth sub-cell.
  • the two cyan filter units can be arranged on the sub-diagonal line of the first sub-cell (the sub-diagonal line is the diagonal line of the lower left and upper right cells in each sub-cell, as shown in the sub-diagonal line in Figure 6. On the diagonal line 182), it can also be arranged on the sub-diagonal line of the fourth sub-cell.
  • the colored filter unit includes: the red filter unit, the green filter unit, the blue filter unit, the yellow filter unit, and the cyan filter unit.
  • the full-color filter unit it is also possible to arrange the full-color filter unit in some positions and not arrange any filter unit in other positions.
  • FIG. 5 only provides some units or circuits included in the image sensor 100.
  • FIG. 3 For other units included in the image sensor 100 not shown in FIG. 5 (For example, for the structure and layout of the filter array, please refer to FIG. 3, FIG. 4 or FIG. 6 to FIG. 14)
  • FIG. 3 For example, for the structure and layout of the filter array, please refer to FIG. 3, FIG. 4 or FIG. 6 to FIG. 14)
  • FIG. 14 For example, for the structure and layout of the filter array, please refer to FIG. 3, FIG. 4 or FIG. 6 to FIG. 14
  • Other related drawings of the embodiment of the present disclosure can be referred to.
  • the image sensor 100 provided by some possible embodiments of the present disclosure includes a pixel array 120 and a plurality of filter units.
  • the pixel array 120 includes a plurality of pixel units 121, and the plurality of pixel units 121 are arranged in a one-to-one correspondence with a plurality of filter units (because the tile diagram does not show the filter unit located on the upper layer of each pixel unit) .
  • each filter unit of the plurality of filter units covers each pixel unit 121 (for example, the photosensitive device of the pixel unit 121) of the plurality of pixel units, so as to realize the filter unit and the pixel unit.
  • the plurality of filter units include a red filter unit 171 configured to transmit red light, a green filter unit 172 configured to transmit green light, and a red filter unit 172 configured to transmit blue light.
  • Some possible embodiments of the present disclosure adopt four colors (for example, red, blue, green, and cyan four colors RGBC, or red, blue, green, yellow, four colors RGBY) or five colors (red, blue, yellow, green, and cyan four colors RGYBC) to filter the incident light, and then pass the pixels
  • the photosensitive element on the unit 121 performs photoelectric conversion. On the one hand, it improves the brightness of the analyzed image by improving the light transmission efficiency; on the other hand, it improves the color effect of the acquired image by improving the ability of the pixel unit to perceive colors.
  • the plurality of filter units further include a full-color filter unit (not shown in FIG. 5).
  • the image sensor further includes a reading circuit 330.
  • the reading circuit 330 is configured to combine and read the photosensitive element corresponding to the filter unit provided on the diagonal line of each sub-cell in the four two-row by two-column (ie 2*2) sub-cells.
  • Photosensitive current where the diagonal can be the main diagonal (the main diagonal is the diagonal between the upper left and lower right cells in each sub-cell, as shown in Figure 6 main diagonal 181) and from the diagonal The diagonal of one of the lines.
  • each pixel unit needs to be addressed.
  • the address selection process of a certain pixel unit in FIG. 5 is: strobe a certain row address line 311 under the control of the row drive circuit 310, and strobe a certain column address line 321 under the control of the column drive circuit 320,
  • the current signal induced by the pixel cell at the intersection of the row address line 311 and the column address line 321 is read out through the read line 312, where the read line 312 is connected to the read circuit 330.
  • the current values of two pixel units can be read at the same time, where the two pixel units are located in each sub-cell (or part of the sub-cell) in a minimum repeating unit.
  • Two pixel units corresponding to the filter units arranged on the diagonal line including at least one of the main diagonal line and the secondary diagonal line).
  • the electrical signals induced by the photosensitive elements corresponding to the two filter units can be read together to increase the speed of signal processing, wherein the two filter units are arranged diagonally.
  • the image sensor further includes a conversion device 340.
  • the conversion device 340 is configured to convert the electrical signal into a Bayer format output signal for the image processing circuit 200 to analyze the image, wherein the electrical signal is an electrical signal induced by a plurality of photosensitive elements corresponding to the smallest repeating unit.
  • the conversion device 340 is configured to: determine the target weight of the neural network model according to the resolution type, wherein the resolution type includes a half-size mode and a full-size mode; The signal is converted into an output signal in the Bayer format.
  • the signal processing may be performed by the conversion device 340.
  • the image processing circuit 200 cannot directly analyze the electrical signals sensed by the pixel unit, where the pixel unit corresponds to the arrangement of the filter units provided in some possible embodiments of the present disclosure. Pixel unit, therefore, it is necessary to perform the following two conversion processes on the read data:
  • the currents on each diagonal are combined and read, for example, the current signals induced by the 16 pixel units corresponding to the smallest repeating unit are combined into 8 pixel readout values, and then some possible implementations according to the present disclosure
  • the conversion device 340 of the example can change 8 pixel readout values into 4 rearranged pixel output values, where the format of the pixel output value is the standard Bayer format;
  • the current values induced by the 16 pixel units corresponding to the smallest repeating unit are respectively read, that is, an induced current value is read for each pixel unit, and then the conversion device 340 of some possible embodiments of the present disclosure is used. Convert the read 16 induced current values into 4x4 standard Bayer bayer format.
  • the conversion device 340 may be a separate bridge chip, which obtains the read current value of the pixel unit through a signal line; in some possible embodiments, the conversion device 340 may be stacked on the same chip with the image sensor.
  • the conversion device 340 may be implemented by a programmable neural network processor (NPU).
  • NPU programmable neural network processor
  • the conversion device can be implemented by the NPU based on the following methods: S1. Read the signal values sensed by the photosensitive unit of the pixel unit 121 (for example, sense the current value in analog form) in sequence, and sequentially enter the buffer area of the NPU; S2. When the buffer area After there is enough data inside (for example, the amount of data is greater than the preset amount), start the NPU, that is, use the pre-trained neural network weights to calculate the processed result; the result of the S3.NPU calculation is sent to the input of the image sensor through the bus Output unit.
  • S1. Read the signal values sensed by the photosensitive unit of the pixel unit 121 (for example, sense the current value in analog form) in sequence, and sequentially enter the buffer area of the NPU; S2. When the buffer area After there is enough data inside (for example, the amount of data is greater than the preset amount), start the N
  • the required weights of the neural network can be performed in the following manner: prepare a large number of RGB images; arrange the filter units according to the color arrangement in the embodiment of the present disclosure, and simulate them as the corresponding photosensitive unit reading
  • the output value that is, the electrical signal reacted by the photosensitive unit
  • the Bayer Bayer format ground truth add simulated noise (for example, independent and identically distributed standard Gaussian noise) to the readout value of the photosensitive unit
  • L1norm of the predicted value of and the correct labeled value ground truth (that is, the aforementioned ground truth) is the objective function, and the stochastic gradient descent SGD algorithm is used to adjust the weight of the neural network until convergence.
  • a 4*4 repeating pattern is used to arrange four-color or five-color filters.
  • the diagonal corners of the four 2*2 sub-units in the repeating unit are used to respectively arrange one of the red filter unit, the green filter unit, the blue filter unit, and the cyan and yellow filter units.
  • the smallest repeating unit 170 of the pattern of the filter array 110 is a 4*4 cell
  • the 4*4 cell includes four 2*2 sub-cells (for example, The four sub-cells (176, 177, 178, 179) in Fig. 6 are divided by two vertical dashed lines passing through the center of the smallest repeating unit 170 (that is, a 4*4 cell).
  • the first sub-cell is arranged with two of the red filter units distributed diagonally (for example, in FIG. 6, the first sub-cell is the smallest repeating unit 170 upper left The two red filter units are represented by two diagonally distributed R marks).
  • the second sub-cell is arranged with two diagonally distributed green filter units (for example, in FIG. 6, the second sub-cell is the upper right sub-cell of the smallest repeating unit 170). Cells, the two green filter units are represented by two diagonally distributed G marks).
  • the third sub-cell is arranged with two of the blue filter units distributed diagonally (for example, in FIG.
  • the third sub-cell is the smallest repeating unit 170 at the bottom right).
  • the two blue filter units are represented by two diagonally distributed B marks).
  • the fourth sub-cell is arranged with two of the yellow filter units and two filter units of at least one color of the cyan filter units (for example, , In FIG. 6, the fourth sub-cell is the sub-cell at the lower left of the smallest repeating unit 170, and the two yellow filter units are represented by two diagonally-distributed Y marks).
  • the meanings of the first, second, third, and fourth subcells please refer to the above description. To avoid repetition, I won’t repeat them here.
  • the R marks are used to indicate the red filter units that transmit red light (the wavelength range is approximately 605nm-700nm) and filter other colors of light, and use G
  • the mark indicates a green filter unit that transmits green light (the wavelength range is approximately 500nm-560nm) and filters other colors of light
  • the B mark indicates that it transmits blue light (the wavelength range is approximately 435nm-480nm) and filters other colors of light
  • the blue filter unit is marked with Y to indicate a yellow filter unit that transmits yellow light (wavelength range is approximately 580nm-595nm) and filters other colors of light
  • C to indicate that it transmits cyan light (wavelength range is approximately 480nm- 490nm) and filter other colors of light cyan filter unit.
  • cyan means that the blue and green filters can be passed at the same time with higher efficiency (for example, higher photon number or higher power), that is, the blue filter unit that controls the cyan filter unit to pass through.
  • the amount of colored light and green light (for example, the power or the number of photons) is greater than the amount of red light passed by the cyan filter unit, which can achieve the purpose of filtering other colored lights through the cyan light.
  • Yellow means that the red and green filters can be passed with higher efficiency at the same time, that is to say, the amount of red light and green light (for example, power or photon number) passed by the yellow filter unit is greater than that passed by the yellow filter unit
  • the amount of blue light can achieve the purpose of providing yellow light to the photosensitive device.
  • the first sub-cell is arranged with two red filter units distributed diagonally
  • the second sub-cell is arranged with two green filter units distributed diagonally
  • the third sub-unit The grid is arranged with two blue filter units distributed diagonally
  • the cyan filter unit is arranged in the fourth sub-cell
  • the two yellow filter units may be located in the first sub-cell, In the third sub-cell or the fourth sub-cell.
  • the subunit where the yellow filter unit is located can be flexibly adjusted to obtain a variety of patterns. In this way, more optional implementations that can simultaneously improve the color perception and the amount of light are provided. example.
  • the first sub-cell is arranged with two red filter units distributed diagonally
  • the second sub-cell is arranged with two green filter units distributed diagonally
  • the third sub-unit The grid is arranged with two blue filter units distributed diagonally
  • the yellow filter unit is arranged in the fourth sub-cell, wherein the two cyan filter units are located in the first sub-cell and the first sub-cell.
  • the subunit where the cyan filter unit is located can be flexibly adjusted to obtain a variety of patterns. In this way, more optional implementations that can simultaneously improve the color perception and the amount of light are provided. example.
  • two of the red filter units are located on the main diagonal of the corresponding sub-cell
  • two of the green filter units are located on the main diagonal of the corresponding sub-cell
  • two The blue filter unit is located on the main diagonal of the corresponding sub-cell
  • the yellow filter unit is located on the main diagonal of the corresponding sub-cell.
  • the red filter unit, the green filter unit, the blue filter unit, and the yellow filter unit are arranged on the main diagonal (ie, the upper left and lower right of the 2*2 matrix). The diagonal line corresponding to the grid) can improve the color perception and the amount of light.
  • the colored filter unit includes: the red filter unit, the green filter unit, the blue filter unit, the yellow filter unit, and the cyan filter unit.
  • the red filter unit, the green filter unit, the blue filter unit, the cyan filter unit, and the yellow filter unit can be arranged diagonally.
  • the white filter unit to increase the amount of light entering to increase the brightness of the image obtained by the analysis.
  • the filter unit includes a red filter unit R, a green filter unit G, a blue filter unit B, and a yellow filter unit Y.
  • the smallest repeating unit 170 shown in FIG. 6 is a 4*4 unit, and the smallest repeating unit 170 includes four 2*2 sub-cells (176,177,178,179).
  • the two Rs in FIG. 6 are distributed on the main diagonal of one of the sub-cells 176, and the sub-diagonal of the sub-cell 176 has no filter unit or two full-color filter units W are arranged.
  • the two Bs in FIG. 6 are distributed on the main diagonal of the sub-cell 178, and the sub-diagonal of the sub-cell 178 has no filter unit or two full-color filter units W are arranged.
  • the two Ys in FIG. 6 are distributed on the main diagonal of the sub-cell 179, and the sub-diagonal of the sub-cell 179 has no filter unit or two full-color filter units W are arranged.
  • FIG. 7 replaces the yellow filter unit of FIG. 6 with a cyan filter unit. That is, in the filter array shown in FIG. 7, the red filter unit R, the green filter unit G, the blue filter unit B, and the cyan filter unit C are arranged on the smallest repeating unit.
  • the pattern arrangement of the filter unit shown in Fig. 8 is different from Fig. 6 in that the cyan filter unit C is added in Fig. 8, and the cyan filter unit C and the red filter unit R in Fig. 8 are bound to the same Sub-cells.
  • the pattern arrangement of the filter unit shown in FIG. 9 can be obtained by rotating the pattern shown in FIG. 8 by 90°.
  • the pattern arrangement of the filter unit shown in FIG. 10 can be obtained by vertically inverting the pattern shown in FIG. 8.
  • the pattern arrangement of the filter unit shown in FIG. 11 is different from that in FIG. 8 in that the cyan filter unit C and the yellow filter unit Y in FIG. 11 are bound in the same sub-cell.
  • the pattern arrangement of the filter unit shown in FIG. 12 can be obtained by rotating the pattern shown in FIG. 11 by 90°.
  • the pattern arrangement of the filter unit shown in FIG. 13 can be obtained by turning the pattern shown in FIG. 11 horizontally and straight.
  • the cyan filter units are arranged on the main diagonal.
  • some possible embodiments of the present disclosure further provide a digital camera 400, and the camera includes an image sensor 100 and a lens 410.
  • the image sensor 100 For the specific structure of the image sensor 100, reference may be made to the above description, and in order to avoid repetition, it will not be repeated here.
  • some possible embodiments of the present disclosure further provide a mobile phone terminal 500, and the mobile phone terminal includes a memory 510, a processor 520, and an image sensor 100.
  • the image sensor 100 For the specific structure of the image sensor 100, reference may be made to the above description, and in order to avoid repetition, it will not be repeated here.
  • some possible embodiments of the present disclosure further provide a video surveillance system 600, and the video surveillance system includes a processor 610, a display 620 and an image sensor 100.
  • the video surveillance system includes a processor 610, a display 620 and an image sensor 100.
  • the image sensor 100 For the specific structure of the image sensor 100, reference may be made to the above description, and in order to avoid repetition, it will not be repeated here.
  • a four-color (for example, red, blue, green, and four-color RGBC or red, blue, green, and yellow four-color RGBY) or five-color light (red, blue, yellow, green, and four-color RGYBC) filter unit for example, Filter
  • red, blue, yellow, green, and four-color RGYBC filter unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Image Signal Generators (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本公开实施例提供一种滤波器阵列、图像传感器、数码相机、手机及监控系统,滤光器阵列包括多个平铺的最小重复单元,每一个最小重复单元包括:配置成透过红色光线的红色过滤器单元;配置成透过绿色光线的绿色过滤器单元;配置成透过蓝色光线的蓝色过滤器单元;以及配置成透过黄色光线的黄色过滤器单元和配置成透过青色光线的青色过滤器单元中的至少一个。采用四色(例如,红蓝绿青四色RGBC或者红蓝绿黄四色RGBY)或者五色光(红蓝黄绿青四色RGYBC)过滤器单元(例如,滤光片)来过滤入射光,一方面,可以通过提升透光效率以提升解析得到的图像的亮度,另一方面,可以通过提升像素单元感受颜色的能力以提升获取的图像显示的颜色效果。

Description

滤波器阵列、图像传感器、数码相机、手机及监控系统
相关申请的交叉引用
本公开要求于2020年06月23日提交中国专利局的申请号为2020105837234、名称为“一种滤波器阵列及图像传感器”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及图像采集处理领域,具体而言,本公开实施例涉及一种滤波器阵列、图像传感器、数码相机、手机及监控系统。
背景技术
现代图像传感器为了得到彩色的图案,会在感光阵列(包括多个光电二极管)上放置能够过滤特色波长范围的颜色阵列(CFA,Color Filter Array)。最经典的颜色阵列就是2x2的拜耳Bayer阵列,通过在周期性的2x2区域内放置两个绿色、一个红色和一个蓝色,之后通过图像处理模块的算法(例如,demosaic算法)获得全尺寸和全颜色的红绿蓝图像。
随着各种终端(例如,手机)或者系统中所需的图像传感器分辨率的扩大、像素的缩小,以及在夜间拍照等应用的普及,更好的颜色阵列设计成为了一个热门的话题。
发明内容
本公开实施例的目的之一在于提供一种滤波器阵列、图像传感器、数码相机、手机及监控系统,本公开实施例提出的滤波器阵列的四色或者五色的颜色排列可以在几乎不损失颜色还原能力的情况下提升进光量,进而提升得到的图像的亮度和颜色感受度。
第一方面,本公开实施例提供一种滤光器阵列,所述滤光器阵列包括多个平铺的最小重复单元,每一个所述最小重复单元包括:配置成透过红色光线的红色过滤器单元;配置成透过绿色光线的绿色过滤器单元;配置成透过蓝色光线的蓝色过滤器单元;以及配置成透过黄色光线的黄色过滤器单元和配置成透过青色光线的青色过滤器单元中的至少一个。
可选地,作为一种可能的实施方式,所述滤波器阵列还包括全色过滤器单元。
可选地,作为一种可能的实施方式,所述最小重复单元包括四行乘四列的单元格,所述四行乘四列的单元格包括四个两行乘两列的子单元格;其中,四个所述子单元格中的第一子单元格布置有呈对角分布的两个所述红色过滤器单元;所述四个所述子单元格中的第二子单元格布置有呈对角分布的两个所述绿色过滤器单元;所述四个所述子单元格中的第三子单元格布置有呈对角分布的两个所述蓝色过滤器单元;所述四个所述子单元格中的第四子单元格布置有呈对角分布的两个所述黄色过滤器单元和两个所述青色过滤器单元中的至少一种颜色的过滤器单元。
可选地,作为一种可能的实施方式,所述第四子单元格中设置所述青色过滤器单元,其中,两个所述黄色过滤器单元位于所述第一子单元格、所述第三子单元格或者所述第四子单元格中。
可选地,作为一种可能的实施方式,所述第四子单元格中设置所述黄色过滤器单元,其中,两个所述青色过滤器单元位于所述第一子单元格、所述第三子单元格或者所述第四子单元格中。
可选地,作为一种可能的实施方式,两个所述红色过滤器单元、两个所述绿色过滤器单元、两个所述蓝色过滤器单元以及所述黄色过滤器单元均位于相应子单元格的主对角线上。
可选地,作为一种可能的实施方式,在所述四个两行乘两列的子单元格中,未布置有色的过滤器单元的多个位置中的至少部分位置,设置全色过滤器单元;其中,所述有色的过滤器单元包括所述红色过滤器单元、所述绿色过滤器单元、所述蓝色过滤器单元、所述黄色过滤器单元和所述青色过滤器单元。
第二方面,本公开实施例提供一种图像传感器,所述图像传感器包括:多个像素单元;以及与所述多个像素单元一一对应设置的多个过滤器单元,其中,所述多个过滤器单元中的各过滤器单元覆盖于所述多个像素单元中的各像素单元上,所述多个过滤器单元包括配置成透过红色光线的红色过滤器单元,配置成透过绿色光线的绿色过滤器单元,配置成透过蓝色光线的蓝色过滤器单元,以及配置成透过黄色光线的黄色过滤器单元和配置成透过青色光线的青色过滤器单元中的至少一个。
可选地,作为一种可能的实施方式,所述多个过滤器单元还包括全色过滤器单元。
可选地,作为一种可能的实施方式,所述多个过滤器单元组成滤光器阵列,所述滤光器阵列的图案的最小重复单元为四行乘四列的单元格,所述四行乘四列的单元格包括四个两行乘两列的子单元格;其中,四个所述子单元格中的第一子单元格布置有呈对角分布的两个所述红色过滤器单元;所述四个所述子单元格中的第二子单元格布置有呈对角分布的两个所述绿色过滤器单元;所述四个所述子单元格中的第三子单元格布置有呈对角分布的两个所述蓝色过滤器单元;所述四个所述子单元格中的第四子单元格布置有呈对角分布的两个所述黄色过滤器单元和两个所述青色过滤器单元中的至少一种颜色的过滤器单元。
可选地,作为一种可能的实施方式,所述第四子单元格中设置所述青色过滤器单元,其中,两个所述黄色过滤器单元位于所述第一子单元格、所述第三子单元格或者所述第四子单元格中。
可选地,作为一种可能的实施方式,所述第四子单元格中设置所述黄色过滤器单元,其中,两个所述青色过滤器单元位于所述第一子单元格、所述第三子单元格或者所述第四子单元格中。
可选地,作为一种可能的实施方式,两个所述红色过滤器单元、两个所述绿色过滤器单元、两个所述蓝色过滤器单元以及所述黄色过滤器单元均位于相应子单元格的主对角线上。
可选地,作为一种可能的实施方式,在所述四个两行乘两列的子单元格中,未布置有色的过滤器单元的多个位置中的至少部分位置,设置全色过滤器单元;其中,所述有色的过滤器单元包括所述红色过滤器单元、所述绿色过滤器单元、所述蓝色过滤器单元、所述黄色过滤器单元和所述青色过滤器单元。
可选地,作为一种可能的实施方式,所述图像传感器还包括读取电路,所述读取电路被配置为合并读取感光元件的感光电流,其中,该感光元件为所述四个两行乘两列的子单元格中各子单元格的对角线 上设置的过滤器单元对应的感光元件,该对角线为子单元格的主对角线和从对角线中的一个。
可选地,作为一种可能的实施方式,所述图像传感器还包括转换装置,所述转换装置被配置为将与最小重复单元对应的多个感光元件感应的电信号转换为拜耳格式的输出信号,以供图像处理电路解析图像。
可选地,作为一种可能的实施方式,所述转换装置被配置为:根据分辨率类型确定神经网络模型的目标权重,其中,所述分辨率类型包括半尺寸模式和全尺寸模式;根据所述所述神经网络模型将输入的待转换的电信号转换为所述拜耳格式的输出信号。
第三方面,本公开实施例提供一种数码相机,所述相机包括镜头以及第一方面所述的滤光器阵列或者第二方面所述的图像传感器。
第四方面,本公开实施例提供一种手机终端,所述手机终端包括存储器、处理器以及上述第一方面所述的滤光器阵列或者第二方面所述的图像传感器。
第五方面,本公开实施例提供一种视频监控系统,所述视频监控系统包括存储器、显示器以及如上述第一方面所述的滤光器阵列或者第二方面所述的图像传感器。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例提供的一种图像传感器的结构示意图;
图2为本公开实施例提供的一种成像系统的组成框图;
图3为本公开实施例提供的过滤器阵列最小重复单元的平面排布框图;
图4为本公开实施例提供的过滤器阵列中最小重复单元包括的过滤器单元的种类示意图;
图5为本公开实施例提供的像素阵列及相关处理电路的平铺结构框图;
图6为本公开实施例提供的过滤器阵列的第一图案示意图;
图7为本公开实施例提供的图像传感器的过滤器阵列第二图案示意图;
图8为本公开实施例提供的图像传感器的过滤器阵列第三图案示意图;
图9为本公开实施例提供的图像传感器的过滤器阵列第四图案示意图;
图10为本公开实施例提供的图像传感器的过滤器阵列第五图案示意图;
图11为本公开实施例提供的图像传感器的过滤器阵列第六图案示意图;
图12为本公开实施例提供的图像传感器的过滤器阵列第七图案示意图;
图13为本公开实施例提供的图像传感器的过滤器阵列第八图案示意图;
图14为本公开实施例提供的图像传感器的过滤器阵列第九图案示意图;
图15为本公开实施例提供的数码相机的组成框图;
图16为本公开实施例提供的手机的组成框图;
图17为本公开实施例提供的监控系统的组成框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行描述。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本公开的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
滤光器阵列的设计可以考虑的指标包括:信噪比、感光能力、颜色还原能力、解析能力以及恢复物体形状和纹理细节的能力。例如,滤波器阵列设计的图案以获取更好的信噪比,尽可能通过更多的光来增加感光能力,更好、更准确的还原颜色,更好的解析力以及尽可能的恢复物体形状和纹理上的细节为目标。
例如,对于以4x4的周期阵列为设计图案的滤波器阵列包括QuadBayer以及RGBW两种设计图案。其中,QuadBayer能够提升分辨率,但是,进光量不是最优的。RGBW相对QuadBayer能够提升进光量,但是,对于颜色还原更差,容易产生颜色噪声。
本公开的一些实施例提供一种四色或者五色排列图案,依据本公开实施例的四色或者五色排列图案布置的滤波器阵列构成的图像传感器可以在几乎不损失颜色还原能力的情况下提升进光量,进而提升解析得到的图像的质量。
请参看图1,图1为本公开实施例提供的一种图像传感器的结构示意图。图1提供的图像传感器100包括过滤器阵列110(即滤光器阵列)以及像素阵列120,其中,过滤器阵列110包括多个过滤器单元111,像素阵列120包括多个像素单元121,且每个像素单元121中包括感光的感光元件(例如,光电二极管,图1未示出),图1中的过滤器单元111与像素单元121一一对应设置。
图1所示的过滤器阵列110中的过滤器单元111光学耦合至,像素阵列120包括的与其位置相应的某个像素单元121上(例如,将过滤后剩余颜色的光引导至像素单元121包括的感光器件,如光电二极管中),通过像素单元121中的感光元件可以采集光信号的强度信息,该强度信息可以为经过过滤器单元111过滤后的相应颜色的光信号的强度信息,并存储该强度信息,即完成了相应像素点的光电转换。
可以理解的是,图1所示的各个过滤器单元111(例如,滤光片)可以将入射的光线进行过滤,保留部分频率的光线(对应于某一种或多种颜色)。为了实现彩色图像的采集,图像传感器中可以设置以一定图案(例如,拜耳(Bayer)图案)排布的过滤器阵列110,以使得图像传感器中的多个像素单元能够接收穿过对应的过滤器单元111的光线,从而生成具有不同色彩通道的像素信号。其中,每个像素单元121能输出一种颜色通道的值的像素信号,其余颜色通道的值的像素信号需要通过插值(即由图像处 理电路200)来获取。
如图2所示,图2所示的该成像系统10可以包括图像传感器100以及图像处理电路200。
图像传感器100可以获取由每个像素单元121(例如,光电二极管)捕捉的光强度和波长(需要过滤器阵列110获取波长信息)信息,并提供可以由图像处理电路200处理的一组图像数据。
在一些可能的示例中,可以通过读出电路(图中未示出)可以将像素阵列120中各像素单元121采集的电信号提供至图像处理电路200进行一步数据处理。例如,一组图像数据可以包括多个第一像素信号、多个第二像素信号、多个第三像素信号以及多个第四像素信号组成的图像数据。图像处理电路200可以按多种格式逐个像素地处理图像数据。例如,每个图像像素可以具有8、10、12或14比特的位深度,图像处理电路200可以对图像数据进行一个或多个图像处理操作、收集关于图像数据的统计信息。处理后的图像数据(例如,彩色图像)可以发送给图像存储器(图中未示出),以便在被显示之前进行另外的处理。经过图像处理电路200处理后的图像数据可以输出给显示器,以供用户观看和/或由图形引擎或GPU(Graphics Processing Unit,图形处理器)进行处理。图像处理电路200确定的统计数据可以包括自动曝光、自动白平衡、自动聚焦、闪烁检测、黑电平补偿等。
下面结合图3和图4阐述本公开一些可能的实施例提供的以一定图案排布的过滤器阵列110。
如图3和图4所示,本公开一些可能的实施例提供的过滤器阵列110包括多个平铺的最小重复单元170,每一个所述最小重复单元170包括:配置成透过红色光线的红色过滤器单元171;配置成透过绿色光线的绿色过滤器单元172;配置成透过蓝色光线的蓝色过滤器单元173;以及配置成透过黄色光线的黄色过滤器单元174和配置成透过青色光线的青色过滤器单元175中的至少一个。
也就是说,在一些可能的实施例中,最小重复单元170包括:红色过滤器单元171、绿色过滤器单元172、蓝色过滤器单元173以及黄色过滤器单元174。在另一些可能的实施例中,最小重复单元170包括:红色过滤器单元171、绿色过滤器单元172、蓝色过滤器单元173以及青色过滤器单元175。在又一些可能的实施例中,最小重复单元170包括:红色过滤器单元171、绿色过滤器单元172、蓝色过滤器单元173,黄色过滤器单元174以及青色过滤器单元175。
在上述示例的基础上,为了增加透光量,在一些可能的实施例中,所述多个过滤器单元还包括全色过滤器单元(图4中未示出)。
可选地,所述最小重复单元的构成不受限制,例如,在一些可能的实施例中,以四行乘四列的单元格为最小重复单元,示例性阐述最小重复单元170中各过滤器单元的布局方式。
其中,所述四行乘四列的单元格包括四个两行乘两列的子单元格。其中,四个所述子单元格中的第一子单元格布置有呈对角分布的两个所述红色过滤器单元。所述四个所述子单元格中的第二子单元格布置有呈对角分布的两个所述绿色过滤器单元。所述四个所述子单元格中的第三子单元格布置有呈对角分布的两个所述蓝色过滤器单元。所述四个所述子单元格中的第四子单元格布置有呈对角分布的两个所述 黄色过滤器单元和两个所述青色过滤器单元中的至少一种颜色的过滤器单元。
需要说明的是,本公开的一些可能的实施例并不限定第一子单元格、第二子单元格、第三子单元格以及第四子单元格在最小重复单元上的相互之间的位置关系,也不限定每个子单元格在单元格上的具体位置。也就是说,在一些可能的实施例中,第一子单元格是位于最小重复单元的左上位置的2*2的子单元格。在另一些可能的实施例中,第一子单元格是位于最小重复单元的左下位置的2*2的子单元格。在一些可能的实施例中,第一子单元格是位于最小重复单元的右上位置的2*2的子单元格。在一些可能的实施例中,第一子单元格是位于最小重复单元的右下位置的2*2的子单元格。同理,其余的第二子单元格、第三子单元格以及第四子单元格的位置也可能位于最小重复单元的左上、左下、右上或者右下的子单元格等。本公开实施例的呈对角分布,包括在主对角线上分布或者在次对角线上分布,其中,主对角线和次对角线的含义可以参考下文描述。
在一些可能的实施例中,最小重复单元170布置有五色滤波器单元。例如,第一子单元格布置有呈对角分布的两个红色过滤器单元,第二子单元格布置有呈对角分布的两个绿色过滤器单元,第三子单元格布置有呈对角分布的两个蓝色过滤器单元,第四子单元格布置有呈对角分布的两个青色过滤器单元,剩余的两个黄色过滤器单元布置于第一子单元格、第三子单元格或者第四子单元格中。也就是说,黄色过滤器单元既可以与红色滤波器单元绑定在一个子单元格中,也可以与蓝色滤波器单元绑定在一个子单元格中,还可以与青色过滤器单元绑定在一个子单元格中。
在一些可能的实施例中,最小重复单元170布置有五色过滤器单元。例如,第一子单元格布置有呈对角分布的两个红色过滤器单元,第二子单元格布置有呈对角分布的两个绿色过滤器单元,第三子单元格布置有呈对角分布的两个蓝色过滤器单元,第四子单元格布置有呈对角分布的两个黄色过滤器单元,剩余的两个青色过滤器单元布置于第一子单元格、第三子单元格或者第四子单元格中。也就是说,青色过滤器单元既可以与红色滤波器单元绑定在一个子单元格中,也可以与蓝色滤波器单元绑定在一个子单元格中,还可以与青色过滤器单元绑定在一个子单元格中。
在一些可能的实施例中,两个所述红色过滤器单元布置在第一子单元格的主对角线上、两个所述绿色过滤器单元布置在第二子单元格的主对角线上、两个所述蓝色过滤器单元布置在第三子单元格的主对角线上以及黄色过滤器单元布置在第四子单元格的主对角线上。可选地,两个青色过滤器单元可以布置于第一子单元格的次对角线(次对角线即各子单元格中左下格和右上格的对角线,如图6的次对角线182)上,也可以布置于第四子单元格的次对角线上。
在一些可能的实施例中,在所述四个两行乘两列的子单元格中,对于未布置有色的过滤器单元的多个位置,该多个位置中的至少部分位置布置有全色过滤器单元。其中,所述有色的过滤器单元包括:所述红色过滤器单元,所述绿色过滤器单元,所述蓝色过滤器单元,所述黄色过滤器单元以及所述青色过滤器单元。也就是说,对于未布置两个红色过滤器单元、两个绿色过滤器单元、两个蓝色过滤器单元、 两个黄色过滤器单元以及两个青色过滤器单元的对角线上,可以全部布置全色过滤器单元,也可以在部分位置布置全色过滤器单元且其它位置不布置任何过滤器单元。
下面结合图5示例性阐述图像传感器100的结构和布局,为了附图简要清晰,图5仅提供了图像传感器100包括的部分单元或者电路,对于图5未示出的图像传感器100包括的其他单元(例如,过滤器阵列的结构和布局请参考图3、图4或者图6-图14)可以参考本公开实施例的其它相关的附图。
如图5所示,本公开一些可能的实施例提供的图像传感器100包括像素阵列120和多个过滤器单元。其中,像素阵列120包括多个像素单元121,所述多个像素单元121与多个过滤器单元一一对应设置(由于平铺图未在图5展示位于每个像素单元上层的过滤器单元)。
也就是说,所述多个过滤器单元中的各过滤器单元覆盖于所述多个像素单元中的各像素单元121(例如,像素单元121的感光器件)上,以实现过滤器单元与像素单元121之间的光耦合。结合上图4可以看出,所述多个过滤器单元包括配置成透过红色光线的红色过滤器单元171,配置成透过绿色光线的绿色过滤器单元172,配置成透过蓝色光线的蓝色过滤器单元173,以及配置成透过黄色光线的黄色过滤器单元174和配置成透过青色光线的青色过滤器单元175中的至少一个。本公开的一些可能的实施例采用四色(例如,红蓝绿青四色RGBC,或者红蓝绿黄四色RGBY)或者五色光(红蓝黄绿青四色RGYBC)来过滤入射光,再通过像素单元121上的感光元件进行光电转换,一方面,通过提升透光效率以提升解析得到的图像的亮度,另一方面,通过提升像素单元感受颜色的能力以提升获取的图像显示的颜色效果。
在一些可能的实施例中,为了增加透光效率,所述多个过滤器单元还包括全色过滤器单元(图5未示出)。
如图5所示,在一些可能的实施例中,所述图像传感器还包括读取电路330。读取电路330被配置为,合并读取所述四个两行乘两列(即2*2)的子单元格中各子单元格的对角线上设置的过滤器单元对应的感光元件的感光电流,其中,该对角线可以为主对角线(主对角线即各子单元格中左上格和右下格的对角线,如图6主对角线181)和从对角线中之一的对角线。
需要说明的是,为了读出各像素单元的感应电信号,需要寻址各个像素单元。例如,图5中某个像素单元的选址过程为:在行驱动电路310的控制下选通某条行地址线311,并在列驱动电路320的控制下选通某条列地址线321,以通过读取线312读出行地址线311和列地址线321交叉处的像素单元所感应的电流信号,其中,该读取线312与读取电路330连接。在本公开的一些可能的实施例中,可以同时读取两个像素单元的电流值,其中,该两个像素单元为位于一个最小重复单元中各子单元格(或者部分子单元格)中对角线(包括主对角线和次对角线中的至少一条对角线)上布置的过滤器单元对应的两个像素单元。在本公开的一些可能的实施例中,可以合并读取两个过滤器单元对应的感光元件感应的电信号,进而提升信号处理的速度,其中,该两个过滤器单元呈对角布置。
如图5所示,在一些可能的实施例中,图像传感器还包括转换装置340。所述转换装置340被配置 为将电信号转换为拜耳格式的输出信号,以供图像处理电路200解析图像,其中,该电信号为与最小重复单元对应的多个感光元件感应的电信号。例如,转换装置340被配置为:根据分辨率类型确定神经网络模型的目标权重,其中,所述分辨率类型包括半尺寸模式和全尺寸模式;根据所述神经网络模型将输入的待转换的电信号转换为所述拜耳格式的输出信号。
也就是说,在本公开的一些可能的实施例中,在将读取的电信号发送至图1所示的图像处理电路200之前,可以通过转换装置340进行信号处理。原因在于,在一些可能的实施例中,图像处理电路200不能直接解析像素单元所感应的电信号,其中,该像素单元为本公开一些可能的实施例提供的过滤器单元的排布方式对应的像素单元,因此,需要对读取的数据进行如下两种转换处理:
对于半尺寸模式,即合并读取各对角线上的电流,例如,将最小重复单元对应的16个像素单元感应的电流信号合并为8个像素读出值,之后根据本公开一些可能的实施例的转换装置340可以将8个像素读出值变为4个重新排列后的像素输出值,其中,该像素输出值的格式为标准拜耳bayer格式;
对于全尺寸模式,即分别读取最小重复单元对应的16个像素单元感应的电流值,即对每个像素单元读出一个感应电流数值,再通过本公开的一些可能的实施例的转换装置340将读出的16个感应电流值转换为4x4的标准拜耳bayer格式。例如,转换装置340可以是一个单独的桥接芯片,通过信号线获取像素单元的读出电流值;在一些可能的实施例中,转换装置340可以与图像传感器堆叠在一个芯片上。
在一些可能的实施例中,转换装置340可以通过可编程的神经网络处理器(NPU)实现。例如,转换装置可以通过NPU基于如下方式实现:S1.依次读取像素单元121的感光单元感应的信号值(例如,感应模拟形式电流值),并依次进入NPU的缓冲区域;S2.当缓冲区域内的数据足够多(例如,数据量大于预设量)之后,启动NPU,即使用预先训练好的神经网络权重,计算处理后的结果;S3.NPU计算的结果通过总线送出到图像传感器的输入输出单元。
可以理解的是,对于所需要的神经网络的权重,可以用如下方式进行:准备大量的RGB图像;按本公开实施例中的颜色排布方式布置过滤器单元,并模拟成对应的感光单元读出值(即感光单元反应的电信号)和拜耳Bayer格式的真实值(ground truth);向感光单元的读出值中加入模拟的噪声(例如,独立同分布的标准高斯噪声);以神经网络的预测值与正确标记值ground truth(即前述的真实值(ground truth))的L1norm为目标函数,使用随机梯度下降SGD算法调整神经网络的权重,直到收敛。
在上述示例的基础上,下面以最小重复单元为4*4的图案为例,并结合图6-图14(为了简介这些图仅通过了四个最小重复单元)示例性阐述过滤器阵列的图案。
在本公开的一些可能的实施例中,采用4*4重复的图案,来布置四色或者五色过滤器。采用重复单元中的四个2*2的子单元中的对角,来分别布置红色过滤器单元、绿色过滤器单元、蓝色过滤器单元、以及青色和黄色过滤器单元中的一个。
在本公开的一些可能的实施例中,滤光器阵列110的图案的最小重复单元170为4*4单元格,所述 4*4单元格包括四个2*2的子单元格(例如,图6的四个子单元格(176,177,178,179),这四个子单元格被经过最小重复单元170(即4*4的单元格)中心的两条垂直虚线分割而成)。
其中,在所述四个子单元格中,第一子单元格布置有呈对角分布的两个所述红色过滤器单元(例如,在图6中,第一子单元格为最小重复单元170左上的子单元格,两个所述红色过滤器单元通过两个呈对角分布的R标识表示)。在所述四个子单元格中,第二子单元格布置有呈对角分布的两个所述绿色过滤器单元(例如,在图6中,第二子单元格为最小重复单元170右上的子单元格,两个所述绿色过滤器单元通过两个呈对角分布的G标识表示)。在所述四个子单元格中,第三子单元格布置有呈对角分布的两个所述蓝色过滤器单元(例如,在图6中,第三子单元格为最小重复单元170右下的子单元格,两个所述蓝色过滤器单元通过两个呈对角分布的B标识表示)。在所述四个子单元格中,第四子单元格布置有呈对角分布的两个所述黄色过滤器单元和两个所述青色过滤器单元中的至少一种颜色的过滤器单元(例如,在图6中,第四子单元格为最小重复单元170左下的子单元格,两个所述黄色过滤器单元通过两个呈对角分布的Y标识表示)。对于第一子单元格、第二子单元格、第三子单元格以及第四子单元格的含义请参考上文所述,为避免重复,在此不做赘述。
应该理解的是,图6-图14这些附图仅用于示例性说明本公开的技术方案,并不能构成对本公开某些实施例的限制。其中,在一些可能的实施例中,在图6-图14中,分别用R标识表示透过红光(波长范围大致为605nm-700nm)并过滤其他颜色的光的红色过滤器单元,用G标识表示透过绿光(波长范围大致为500nm-560nm)并过滤其他颜色的光的绿色过滤器单元,用B标识表示透过蓝光(波长范围大致为435nm-480nm)并过滤其他颜色的光的蓝色过滤器单元,用Y标识表示透过黄光(波长范围大致为580nm-595nm)并过滤其他颜色的光的黄色过滤器单元,用C标识表示透过青光(波长范围大致为480nm-490nm)并过滤其他颜色的光的青色过滤器单元。在一些可能的实施例中,青色表示能同时以较高效率(例如,较高光子数量或者较高功率)通过蓝色与绿色的滤光片,也就是说,控制青色过滤器单元通过的蓝色光和绿色光的量(例如,功率或者光子数)大于青色过滤器单元通过的红色光的量,可以实现透过青光过滤其他色光的目的。黄色表示能同时以较高效率通过红色与绿色的滤光片,也就是说,控制黄色过滤器单元通过的红色光和绿色光的量(例如,功率或者光子数)大于黄色过滤器单元通过的蓝色光的量,可以实现向感光器件提供黄色光的目的。
在一些可能的实施例中,第一子单元格布置有呈对角分布的两个红色过滤器单元,第二子单元格布置有呈对角分布的两个绿色过滤器单元,第三子单元格布置有呈对角分布的两个蓝色过滤器单元,第四子单元格中设置所述青色过滤器单元,其中,两个所述黄色过滤器单元可以位于所述第一子单元格、所述第三子单元格或者所述第四子单元格中。详细内容可参考针对过滤器阵列中相应方案的描述,在此不做过多赘述。在本公开的一些可能的实施例中,可以通过灵活调整黄色过滤器单元所在的子单元,以获取多种图案,如此,提供了更多的可以同时提升颜色感受度和进光量的可选实施例。
在一些可能的实施例中,第一子单元格布置有呈对角分布的两个红色过滤器单元,第二子单元格布置有呈对角分布的两个绿色过滤器单元,第三子单元格布置有呈对角分布的两个蓝色过滤器单元,第四子单元格中设置所述黄色过滤器单元,其中,两个所述青色过滤器单元位于所述第一子单元格、所述第三子单元格或者所述第四子单元格中。详细内容可参考针对过滤器阵列中相应方案的描述,在此不做过多赘述。在本公开的一些可能的实施例中,可以通过灵活调整青色过滤器单元所在的子单元,以获取多种图案,如此,提供了更多的可以同时提升颜色感受度和进光量的可选实施例。
在一些可能的实施例中,两个所述红色过滤器单元位于相应子单元格的主对角线上,两个所述绿色过滤器单元位于相应子单元格的主对角线上,两个所述蓝色过滤器单元位于相应子单元格的主对角线上,所述黄色过滤器单元位于相应子单元格的主对角线上。详细内容可参考针对过滤器阵列中相应方案的描述,在此不做过多赘述。在本公开的一些可能的实施例中,通过将红色过滤器单元、绿色过滤器单元、蓝色过滤器单元以及黄色过滤器单元设置在主对角线(即2*2矩阵的左上和右下格对应的对角线),可以提升颜色感受度和进光量。
在一些可能的实施例中,在所述四个两行乘两列的子单元格中,对于未布置有色的过滤器单元的多个位置,该多个位置的至少部分位置配置成布置有全色过滤器单元。其中,所述有色的过滤器单元包括:所述红色过滤器单元,所述绿色过滤器单元,所述蓝色过滤器单元,所述黄色过滤器单元以及所述青色过滤器单元。详细内容可参考针对过滤器阵列中相应方案的描述,在此不做过多赘述。在本公开的一些可能的实施例中,可以在未设置红色过滤器单元、绿色过滤器单元、蓝色过滤器单元、青色过滤器单元以及黄色过滤器单元的多个位置,设置呈对角分布的白色过滤器单元,从而通过提升进光量,以提升解析得到的图像的亮度。
如图6所示,在一些可能的实施例中,过滤器单元包括红色过滤器单元R、绿色过滤器单元G、蓝色过滤器单元B以及黄色过滤器单元Y。其中,图6所示的最小重复单元170为4*4的单元,最小重复单元170中包括的四个2*2的子单元格(176,177,178,179)。其中,图6的两个R分布在其中一个子单元格176的主对角线上,该子单元格176的次对角线上无过滤器单元或者布置两个全色过滤器单元W。图6的两个G分布在子单元格177的主对角线上,该子单元格177的次对角线上无过滤器单元或者布置两个全色过滤器单元W。图6的两个B分布在子单元格178的主对角线上,该子单元格178的次对角线上无过滤器单元或者布置两个全色过滤器单元W。图6的两个Y分布在子单元格179的主对角线上,该子单元格179的次对角线上无过滤器单元或者布置两个全色过滤器单元W。
图7所示的过滤器单元的图案排布,与图6不同的是,图7将图6的黄色过滤器单元替换为了青色过滤器单元。也就是说,图7所示的过滤器阵列中,最小重复单元上布置了红色过滤器单元R、绿色过滤器单元G、蓝色过滤器单元B以及青色过滤器单元C。
图8所示的过滤器单元的图案排布,与图6不同的是,图8中增加了青色过滤器单元C,且图8的 青色过滤器单元C和红色过滤器单元R绑定在同一个子单元格中。
图9所示的过滤器单元的图案排布,可以是对图8所示的图案旋转90°后得到的。
图10所示的过滤器单元的图案排布,可以是对图8所示的图案垂直翻转后得到的。
图11所示的过滤器单元的图案排布,与图8不同的是,图11的青色过滤器单元C与黄色过滤器单元Y绑定在同一个子单元格中。
图12所示的过滤器单元的图案排布,可以是对图11所示的图案旋转90°后得到的。
图13所示的过滤器单元的图案排布,可以是对图11所示的图案水平直翻转后得到的。
图14所示的过滤器单元的图案排布,在左下方的子单元格中,主对角线上布置青色过滤器单元。
需要说明的是,对图6-图14的颜色排列进行90度旋转、翻转、左右对称、上下对称等变换,或者在2x2子单元格内交换两种颜色(例如,交换图11所示最小重复单元右下角子单元格的两个蓝色过滤器单元与两个全色过滤器单元的位置),应当认为属于与本公开实施例提供的本质相同的颜色排列。
如图15所示,本公开的一些可能的实施例还提供一种数码相机400,所述相机包括图像传感器100和镜头410。图像传感器100的具体结构,可以参考上文描述,为避免重复,在此不做过多赘述。
如图16所示,本公开的一些可能的实施例还提供一种手机终端500,所述手机终端包括存储器510、处理器520以及图像传感器100。图像传感器100的具体结构,可以参考上文描述,为避免重复,在此不做过多赘述。
如图17所示,本公开的一些可能的实施例还提供一种视频监控系统600,所述视频监控系统包括处理器610、显示器620以及图像传感器100。图像传感器100的具体结构,可以参考上文描述,为避免重复,在此不做过多赘述。
以上所述仅为本公开的实施例而已,并不用于限制本公开的保护范围,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应所述以权利要求的保护范围为准。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一 个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
工业实用性
在本公开的一些可能的实施例中,采用四色(例如,红蓝绿青四色RGBC或者红蓝绿黄四色RGBY)或者五色光(红蓝黄绿青四色RGYBC)过滤器单元(例如,滤光片)来过滤入射光,一方面,可以通过提升透光效率以提升解析得到的图像的亮度,另一方面,可以通过提升像素单元感受颜色的能力以提升获取的图像显示的颜色效果。

Claims (20)

  1. 一种滤光器阵列,其中,所述滤光器阵列包括多个平铺的最小重复单元,每一个所述最小重复单元包括:
    配置成透过红色光线的红色过滤器单元;
    配置成透过绿色光线的绿色过滤器单元;
    配置成透过蓝色光线的蓝色过滤器单元;以及
    配置成透过黄色光线的黄色过滤器单元和配置成透过青色光线的青色过滤器单元中的至少一个。
  2. 如权利要求1所述的滤光器阵列,其中,所述滤光器阵列还包括全色过滤器单元。
  3. 如权利要求1或2所述的滤光器阵列,其中,所述最小重复单元包括四行乘四列的单元格,所述四行乘四列的单元格包括四个两行乘两列的子单元格;其中,
    四个所述子单元格中的第一子单元格布置有呈对角分布的两个所述红色过滤器单元;
    所述四个所述子单元格中的第二子单元格布置有呈对角分布的两个所述绿色过滤器单元;
    所述四个所述子单元格中的第三子单元格布置有呈对角分布的两个所述蓝色过滤器单元;
    所述四个所述子单元格中的第四子单元格布置有呈对角分布的两个所述黄色过滤器单元和两个所述青色过滤器单元中的至少一种颜色的过滤器单元。
  4. 如权利要求3所述的滤光器阵列,其中,所述第四子单元格中设置所述青色过滤器单元,其中,两个所述黄色过滤器单元位于所述第一子单元格、所述第三子单元格或者所述第四子单元格中。
  5. 如权利要求3所述的滤光器阵列,其中,所述第四子单元格中设置所述黄色过滤器单元,其中,两个所述青色过滤器单元位于所述第一子单元格、所述第三子单元格或者所述第四子单元格中。
  6. 如权利要求5所述的滤光器阵列,其中,两个所述红色过滤器单元、两个所述绿色过滤器单元、两个所述蓝色过滤器单元以及所述黄色过滤器单元均位于相应的子单元格的主对角线上。
  7. 如权利要求3-6任意一项所述的滤光器阵列,其中,在所述四个两行乘两列的子单元格中,未布置有色的过滤器单元的多个位置中的至少部分位置,设置全色过滤器单元;
    其中,所述有色的过滤器单元包括所述红色过滤器单元、所述绿色过滤器单元、所述蓝色过滤器单元、所述黄色过滤器单元和所述青色过滤器单元。
  8. 一种图像传感器,其中,所述图像传感器包括:
    多个像素单元;以及
    与所述多个像素单元一一对应设置的多个过滤器单元,其中,所述多个过滤器单元中的各过滤器单元覆盖于所述多个像素单元中的各像素单元上,所述多个过滤器单元包括配置成透过红色光线的红色过滤器单元,配置成透过绿色光线的绿色过滤器单元,配置成透过蓝色光线的蓝色过滤器单元,以及配置 成透过黄色光线的黄色过滤器单元和配置成透过青色光线的青色过滤器单元中的至少一个。
  9. 如权利要求8所述的图像传感器,其中,所述多个过滤器单元还包括全色过滤器单元。
  10. 如权利要求8或9所述的图像传感器,其中,所述多个过滤器单元组成滤光器阵列,所述滤光器阵列的图案的最小重复单元为四行乘四列的单元格,所述四行乘四列的单元格包括四个两行乘两列的子单元格;
    其中,
    四个所述子单元格中的第一子单元格布置有呈对角分布的两个所述红色过滤器单元;
    所述四个所述子单元格中的第二子单元格布置有呈对角分布的两个所述绿色过滤器单元;
    所述四个所述子单元格中的第三子单元格布置有呈对角分布的两个所述蓝色过滤器单元;
    所述四个所述子单元格中的第四子单元格布置有呈对角分布的两个所述黄色过滤器单元和两个所述青色过滤器单元中的至少一种颜色的过滤器单元。
  11. 如权利要求10所述的图像传感器,其中,所述第四子单元格中设置所述青色过滤器单元,其中,两个所述黄色过滤器单元位于所述第一子单元格、所述第三子单元格或者所述第四子单元格中。
  12. 如权利要求10所述的图像传感器,其中,所述第四子单元格中设置所述黄色过滤器单元,其中,两个所述青色过滤器单元位于所述第一子单元格、所述第三子单元格或者所述第四子单元格中。
  13. 如权利要求12所述的图像传感器,其中,两个所述红色过滤器单元、两个所述绿色过滤器单元、两个所述蓝色过滤器单元以及所述黄色过滤器单元均位于相应子单元格的主对角线上。
  14. 如权利要求10-13任意一项所述的图像传感器,其中,在所述四个两行乘两列的子单元格中,未布置有色的过滤器单元的多个位置中的至少部分位置,设置全色过滤器单元;
    其中,所述有色的过滤器单元包括所述红色过滤器单元、所述绿色过滤器单元、所述蓝色过滤器单元、所述黄色过滤器单元和所述青色过滤器单元。
  15. 如权利要求10-14任意一项所述的图像传感器,其中,所述图像传感器还包括读取电路,所述读取电路被配置为合并读取感光元件的感光电流,其中,该感光元件为所述四个两行乘两列的子单元格中各子单元格的对角线上设置的过滤器单元对应的感光元件,该对角线为子单元格的主对角线和从对角线中的一个。
  16. 如权利要求10-15任意一项所述的图像传感器,其中,所述图像传感器还包括转换装置,所述转换装置被配置为将与最小重复单元对应的多个感光元件感应的电信号转换为拜耳格式的输出信号,以供图像处理电路解析图像。
  17. 如权利要求16所述的图像传感器,其中,所述转换装置被配置为:
    根据分辨率类型确定神经网络模型的目标权重,其中,所述分辨率类型包括半尺寸模式和全尺寸模式;
    根据所述神经网络模型将输入的待转换的电信号转换为所述拜耳格式的输出信号。
  18. 一种数码相机,其中,所述相机包括:
    镜头;以及
    如权利要求1-10任一项所述滤光器阵列或者如权利要求8-17任一项所述的图像传感器。
  19. 一种手机终端,其中,所述手机终端包括存储器、处理器以及如权利要求1-10任一项所述滤光器阵列或者如权利要求8-17任一项所述的图像传感器。
  20. 一种视频监控系统,其中,所述视频监控系统包括存储器、显示器以及如权利要求1-10任一项所述滤光器阵列或者如权利要求8-17任一项所述的图像传感器。
PCT/CN2020/119484 2020-06-23 2020-09-30 滤波器阵列、图像传感器、数码相机、手机及监控系统 WO2021258577A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010583723.4 2020-06-23
CN202010583723.4A CN111818314A (zh) 2020-06-23 2020-06-23 一种滤波器阵列及图像传感器

Publications (1)

Publication Number Publication Date
WO2021258577A1 true WO2021258577A1 (zh) 2021-12-30

Family

ID=72846472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119484 WO2021258577A1 (zh) 2020-06-23 2020-09-30 滤波器阵列、图像传感器、数码相机、手机及监控系统

Country Status (2)

Country Link
CN (1) CN111818314A (zh)
WO (1) WO2021258577A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112492282B (zh) * 2020-12-02 2022-08-23 维沃移动通信有限公司 图像传感器、摄像头模组及电子设备
CN113676629B (zh) * 2021-08-09 2024-01-09 Oppo广东移动通信有限公司 图像传感器、图像采集装置、图像处理方法及图像处理器
CN114040084A (zh) * 2021-12-01 2022-02-11 Oppo广东移动通信有限公司 图像传感器、摄像模组、电子设备、图像生成方法和装置
CN114125242A (zh) * 2021-12-01 2022-03-01 Oppo广东移动通信有限公司 图像传感器、摄像模组、电子设备、图像生成方法和装置
CN114157795A (zh) * 2021-12-14 2022-03-08 Oppo广东移动通信有限公司 图像传感器、摄像模组、电子设备、图像生成方法和装置
CN114363486A (zh) * 2021-12-14 2022-04-15 Oppo广东移动通信有限公司 图像传感器、摄像模组、电子设备、图像生成方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1441603A (zh) * 2002-02-26 2003-09-10 伊斯曼柯达公司 四色图像感测装置
US20090295973A1 (en) * 2008-05-20 2009-12-03 Texas Instruments Japan, Ltd. Solid-State Image Pickup Device
CN103698832A (zh) * 2013-12-17 2014-04-02 合肥京东方光电科技有限公司 一种彩色滤光片及其制作方法、显示装置
CN105140265A (zh) * 2015-09-15 2015-12-09 京东方科技集团股份有限公司 显示面板及其驱动方法以及显示装置
CN110637459A (zh) * 2017-12-20 2019-12-31 谷歌有限责任公司 用于图像传感器的彩色滤光器阵列

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1441603A (zh) * 2002-02-26 2003-09-10 伊斯曼柯达公司 四色图像感测装置
US20090295973A1 (en) * 2008-05-20 2009-12-03 Texas Instruments Japan, Ltd. Solid-State Image Pickup Device
CN103698832A (zh) * 2013-12-17 2014-04-02 合肥京东方光电科技有限公司 一种彩色滤光片及其制作方法、显示装置
CN105140265A (zh) * 2015-09-15 2015-12-09 京东方科技集团股份有限公司 显示面板及其驱动方法以及显示装置
CN110637459A (zh) * 2017-12-20 2019-12-31 谷歌有限责任公司 用于图像传感器的彩色滤光器阵列

Also Published As

Publication number Publication date
CN111818314A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2021258577A1 (zh) 滤波器阵列、图像传感器、数码相机、手机及监控系统
WO2021227250A1 (zh) 图像传感器和电子设备
US11405576B2 (en) Image sensor and image-capturing device
US8860857B2 (en) System and method for a high performance color filter mosaic array
CN101150735B (zh) 图像拍摄设备、方法和介质
US7847849B2 (en) Solid-state imaging device, driving method thereof, and camera
EP1871091A2 (en) Camera Module
CN104412579B (zh) 彩色摄像元件以及摄像装置
US9184196B2 (en) Color imaging element and imaging device
CN101778221A (zh) 固态成像装置
CN103716558A (zh) 高动态像素阵列、像素单元及图像传感器
EP3902242B1 (en) Image sensor and signal processing method
CN103416067A (zh) 摄像装置及摄像程序
CN212785636U (zh) 滤波器阵列、图像传感器及其应用设备
CN112019823A (zh) 一种滤光器阵列以及图像传感器
CN103546729B (zh) 灰度彩色双模式tdi-cmos图像传感器及控制方法
CN104079903A (zh) 高动态范围的彩色及灰度图像传感器
CN103843319B (zh) 摄像元件及摄像装置
CN207251823U (zh) 成像设备和成像系统
CN212785637U (zh) 滤光器阵列、图像传感器及其应用设备
CN212785638U (zh) 滤光器阵列、图像传感器及其应用设备
JPH0378388A (ja) カラー固体撮像素子
CN112019822A (zh) 一种滤光器阵列以及图像传感器
WO2020237591A1 (zh) 一种色彩滤镜阵列、图像传感器和拍摄装置
CN216086839U (zh) 像素结构、图像传感器和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20941784

Country of ref document: EP

Kind code of ref document: A1