WO2021258285A1 - High speed mode for multi cell operations - Google Patents

High speed mode for multi cell operations Download PDF

Info

Publication number
WO2021258285A1
WO2021258285A1 PCT/CN2020/097709 CN2020097709W WO2021258285A1 WO 2021258285 A1 WO2021258285 A1 WO 2021258285A1 CN 2020097709 W CN2020097709 W CN 2020097709W WO 2021258285 A1 WO2021258285 A1 WO 2021258285A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
speed mode
connection
operating according
subscription
Prior art date
Application number
PCT/CN2020/097709
Other languages
French (fr)
Inventor
Jiaheng LIU
Arvind Vardarajan Santhanam
Chinmay Shankar Vaze
Jun Deng
Nitin Pant
Yongle WU
Hewu GU
Aparna NARAYANAN
Uzma Khan Qazi
Yue HONG
Shan QING
Xuqiang ZHANG
Viswanath SANKARAN
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/097709 priority Critical patent/WO2021258285A1/en
Publication of WO2021258285A1 publication Critical patent/WO2021258285A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/324Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by mobility data, e.g. speed data

Definitions

  • the following relates generally to wireless communications and more specifically to high speed mode for multi cell operations.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • UEs may be connected to an LTE cell and to an NR cell and may operate in high speed environments.
  • a UE may be located in a vehicle (e.g., a car, a train, etc. ) travelling at a relatively high speed.
  • a UE travelling at a high speed may experience performance degradation due to frequency issues resulting from the Doppler effect or timing advance issues due to the change in speed.
  • performance degradation may include out-of-sync errors, frequent handover, high power consumption, or low data rates.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support high speed mode for multi cell operations.
  • a user equipment UE
  • the cells may operate according to a same radio access technology (RAT) or different RATs.
  • the UE may receive a system information (SI) message from the first cell that includes an indication of a speed parameter, such as a high speed flag.
  • SI system information
  • the UE may select a speed mode for operation based on the received speed parameter.
  • the UE may determine to operate according to a speed mode when communicating with the second cell based on SI received from the first cell.
  • the UE may perform one or more procedures, such as a channel estimation procedure, according to a set of parameters corresponding to the selected speed mode. Implementing various aspects of the present disclosure may increase performance at a UE and provide for reliable communications services.
  • a method of wireless communications at a UE may include establishing a first connection with a first cell operating according to a first radio access technology, establishing a second connection with a second cell operating according to a second radio access technology, receiving a system information message from the first cell using the first connection, the system information message including an indication of a speed parameter associated with the first cell, switching from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell, and communicating with the second cell according to the second speed mode.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to establish a first connection with a first cell operating according to a first radio access technology, establish a second connection with a second cell operating according to a second radio access technology, receive a system information message from the first cell using the first connection, the system information message including an indication of a speed parameter associated with the first cell, switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell, and communicate with the second cell according to the second speed mode.
  • the apparatus may include means for establishing a first connection with a first cell operating according to a first radio access technology, establishing a second connection with a second cell operating according to a second radio access technology, receiving a system information message from the first cell using the first connection, the system information message including an indication of a speed parameter associated with the first cell, switching from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell, and communicating with the second cell according to the second speed mode.
  • a non-transitory computer-readable medium storing code for wireless communications at a UE is described.
  • the code may include instructions executable by a processor to establish a first connection with a first cell operating according to a first radio access technology, establish a second connection with a second cell operating according to a second radio access technology, receive a system information message from the first cell using the first connection, the system information message including an indication of a speed parameter associated with the first cell, switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell, and communicate with the second cell according to the second speed mode.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing a channel estimation procedure for the second cell according to a first set of parameters when operating according to the first speed mode with the second cell and performing the channel estimation procedure for the second cell according to a second set of parameters when operating according to the second speed mode with the second cell.
  • establishing the first connection may include operations, features, means, or instructions for establishing the first connection using a first subscription
  • establishing the second connection may include operations, features, means, or instructions for establishing the second connection using a second subscription different from the first subscription
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for updating the second subscription with the speed parameter, where switching from operating according to the first speed mode to operating according to the second speed mode may be based on updating the second subscription.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for establishing a third connection with a third cell operating according to the second radio access technology using the first subscription, and switching from operating according to the first speed mode with the third cell to operating according to the second speed mode with the third cell based on the speed parameter associated with the first cell.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for establishing a fourth connection with a fourth cell operating according to the second radio access technology using the second subscription, and switching from operating according to the first speed mode with the fourth cell to operating according to the second speed mode with the fourth cell based on the speed parameter associated with the first cell.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a second system information message from the second cell using the second connection, the second system information message indicating a second speed parameter associated with the second cell, where switching from operating according to the first speed mode to operating according to the second speed mode may be based on the second speed parameter.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for updating the first subscription with the second speed parameter, where switching from operating according to the first speed mode to operating according to the second speed mode may be based on updating the first subscription.
  • establishing the first connection may include operations, features, means, or instructions for establishing the first connection using a first subscription
  • establishing the second connection may include operations, features, means, or instructions for establishing the second connection using the first subscription
  • the second connection with the second cell includes may be a non-standalone connection and the first connection with the first cell may be a standalone connection.
  • the first speed mode includes a normal speed mode and the second speed mode includes a high speed mode.
  • the first speed mode includes a high speed mode and the second speed mode includes a normal speed mode.
  • the first radio access technology may be the same as the second radio access technology.
  • the first radio access technology includes Long-Term Evolution (LTE) and the second radio access technology includes New Radio (NR) .
  • LTE Long-Term Evolution
  • NR New Radio
  • FIG. 1 illustrates an example of a wireless communications system that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a process flow that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a process flow that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • FIG. 5 illustrates an example of a process flow that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • FIG. 6 illustrates an example of a process flow that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • FIGs. 7 and 8 show block diagrams of devices that support high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • FIG. 9 shows a block diagram of a communications manager that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • FIG. 10 shows a diagram of a system including a device that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • FIGs. 11 through 14 show flowcharts illustrating methods that support high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • Some wireless communication systems may include communication devices, such as user equipments (UEs) and base stations, for example, next-generation NodeBs or giga-NodeBs (either of which may be referred to as a gNB) that may support multiple radio access technologies (RATs) including Long-Term Evolution (LTE) , LTE-Advanced (LTE-A) , fifth generation (5G) systems, which may be referred to as New Radio (NR) systems, among others.
  • RATs radio access technologies
  • LTE Long-Term Evolution
  • LTE-A LTE-Advanced
  • 5G fifth generation
  • NR New Radio
  • a UE may establish a connection with multiple cells in a wireless communication system.
  • a UE may establish a connection with a cell that operates using LTE and establish a different, non-standalone or standalone connection with an NR cell, LTE cell, or other cell operating according to a given RAT.
  • the connections may be made using different subscriptions.
  • a UE may be operating in a high speed environment.
  • a UE may be located in a vehicle (e.g., a car, a train, etc. ) travelling at a high speed.
  • a vehicle e.g., a car, a train, etc.
  • a UE travelling at a high speed may experience timing errors or frequency offsets due to an increased doppler effect with respect to a base station. Timing or frequency errors may lead to a performance degradation, which may result in out-of-sync errors, frequent handover, high power consumption, or low data rates. It may be beneficial for a UE to select a speed mode based on the operating environment.
  • a UE may establish a connection with a first cell that operates using a first RAT (e.g., LTE) and a second cell that operates using a second RAT (e.g., LTE, NR) .
  • the UE may receive a system information (SI) message (e.g., an SI block (SIB) ) from the first cell that includes an indication of a speed parameter.
  • SI system information
  • the speed parameter may be a “highSpeedFlag” parameter included in an SIB2 transmission.
  • the UE may determine a speed mode in which to operate with one or more cells, or switch from one speed mode to a different speed mode for operating with one or more cell. For example, if the speed parameter indicates to the UE to enable a high speed mode, the UE may switch from a standard or normal speed mode to a high speed mode. In some examples, the UE may select a speed mode for operation when establishing a connection to a cell based on receiving an SI message from the cell. The UE may operate according to the selected speed mode with the first cell, the second cell, or both. The UE may perform one or more procedures (e.g., a channel estimation procedure) according to a set of parameters corresponding to the selected speed mode, which may differ between a normal speed mode and a high speed mode.
  • procedures e.g., a channel estimation procedure
  • the UE may establish the connection with the first cell using one subscription and establish the connection with the second cell using a different subscription. In such examples, the UE may receive the SI message using the first subscription and may update the second subscription with the speed parameter. In some examples, the first and second cells may operate using a same RAT. In such examples, the UE may receive a second SI message from the second cell that includes a speed parameter associated with the second cell. Accordingly, the UE may select a speed mode for operation based on the speed parameters associated with the first and second cells. In some examples, the UE may establish connection with additional cells (e.g., a third cell, a fourth cell, etc. ) . In such examples, the UE may operate according to the selected speed mode with any number of cells in which connection is established.
  • additional cells e.g., a third cell, a fourth cell, etc.
  • the techniques employed by the described wireless communications systems may provide benefits and enhancements to the operation of the wireless communications system.
  • the described techniques may include features for increasing a reliability of communications by enabling a UE to mitigate or reduce timing or frequency offset errors resulting from operating in a high speed environment.
  • the described techniques include additional features for improving power consumption, spectral efficiency, data rates, reliability, among other benefits.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects are then described with respect to process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to high speed mode for multi cell operations.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (RAT) , such as LTE, LTE-A, LTE-A Pro, NR.
  • RAT radio access technology
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information (SI) ) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different RAT) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular RAT (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) RAT, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the medium access control (MAC) layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • MAC medium access control
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • UEs 115 in the wireless communications systems 100 may operate in high speed environments.
  • a UE 115 may be located in a vehicle (e.g., a car, a train, etc. ) travelling at a high speed.
  • a UE 115 travelling at a high speed may experience timing errors or frequency offsets due to an increased Doppler effect with respect to a base station 105.
  • the UE 115 select a speed mode based on an operating environment.
  • a UE 115 may receive an indication of a speed parameter included in a SI message transmitted by a base station 105 associated with a cell.
  • the UE 115 may select a speed mode for operation based on the received speed parameter and communicate with one or more other base stations 105 according to the selected speed mode.
  • the UE 115 may perform one or more procedures (e.g., a channel estimation procedure) based on the selected speed mode.
  • the UE 115 may perform a channel estimation procedure according to a first set of parameters when operating according to a first speed mode and perform a channel estimation procedure according to a second set of parameters when operating according to a second speed mode.
  • Implementing various aspects of the present disclosure may enable a UE 115 to mitigate or reduce timing or frequency offset errors resulting from operating in a high speed environment.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports high speed recognition in NR cells in accordance with one or more aspects of the present disclosure.
  • the wireless communications system 200 may implement one or more aspects of a wireless communications system 100.
  • the wireless communications system 200 may include a UE 115-a which may be an example of a UE 115 as described with reference to FIG. 1.
  • the wireless communications system 200 may also include a base station 105-a and a base station 105-b which may be examples of a base station 105 as described with reference to FIG. 1.
  • the base stations 105 may be associated with cells which provide wireless communications service with respective coverage areas 110.
  • the UE 115-a may establish a connection with the base station 105-a and with the base station 105-b.
  • the UE 115-a may receive a speed parameter 215 included in a SI message 210 from the base station 105-a over a downlink channel 205.
  • the speed parameter 215 may be a “highSpeedFlag” parameter included in a SI block two (SIB2) message.
  • SIB2 SI block two
  • the UE 115-a may select a speed mode for communicating with the base station 105-b based on the speed parameter 215 received from the base station 105-a.
  • the UE 115-a may determine to operate according to a speed mode after establishing a connection with the base station 105-a and the base station 105-b. Additionally or alternatively, the UE 115-a may switch from operating according to a first speed mode to operating according to a second speed mode with respect to base station 105-b based on the received speed parameter 215. For example, the UE 115-a may switch from operating according to a standard or normal speed mode to operating according to a high speed mode, or vice versa, based on the speed parameter 215. The UE 115-a may perform one or more procedures (e.g., a channel estimation procedure) according to a set of parameters corresponding to the selected speed mode and respective sets of parameters may differ between the normal speed mode and the high speed mode.
  • procedures e.g., a channel estimation procedure
  • the UE 115-a may establish the first and second connections using a same subscription.
  • the base station 105-a may operate according to a first RAT (e.g., LTE)
  • the base station 105-b may operate according to a second RAT (e.g., NR) .
  • the UE 115-a may establish a non-standalone connection with the base station 105-b. Accordingly, the UE 115-a may receive the speed parameter 215 included in the SI message 210 from the base station 105-a and select a speed mode to use when communicating with the base station 105-b.
  • the UE 115-a may establish the first and second connections using different subscriptions. For example, the UE 115-a may establish the first connection with the base station 105-a using a first subscription where the base station 105-a operates according to a first RAT (e.g., LTE) . The UE 115-a may establish the second connection with the base station 105-b using a second subscription where the base station 105-b operates according to a second RAT (e.g., NR) . In some implementations, the UE 115-a may use the second subscription to establish a standalone connection with the base station 105-b.
  • a first RAT e.g., LTE
  • NR second RAT
  • the UE 115-a may use the second subscription to establish a standalone connection with the base station 105-b.
  • the UE 115-a may receive the speed parameter 215 in the SI message 210 from the base station 105-a using the first subscription. After receiving the speed parameter 215, the UE 115-a may update the second subscription with the speed parameter 215 and select a speed mode for operation when communicating using the second subscription based on the speed parameter 215.
  • the UE 115-a may establish connections with additional cells. For example, the UE 115-a may use a first subscription to establish a first connection with the base station 105-a where the base station 105-a operates according to a first RAT (e.g., LTE) . Additionally or alternatively, the UE 115-a may use the first subscription to establish a second connection with a second cell that operates according to a second RAT (e.g., NR) which may be supported by the base station 105-a, the base station 105-b, or another base station or network device. In some implementations the UE 115-a may establish a non- standalone connection with the second cell.
  • a first RAT e.g., LTE
  • NR second RAT
  • the UE 115-a may also use a second subscription to establish a connection with a third cell that operates according to the second RAT which may supported by the base station 105-a, the base station 105-b, or another base station or network device. In some implementations, the UE 115-a may establish a standalone connection with the third cell. The UE 115-a may receive the speed parameter 215 in the SI message 210 from the base station 105-a and select a speed mode for operation when communicating with any combination of the first, the second, or the third cells.
  • the UE 115-a may use a first subscription to establish a connection with a first cell (i.e., with the base station 105-a) that operates according to a first RAT (e.g., LTE) and a connection with a second cell that operates according to a second RAT (e.g., NR) .
  • the UE 115-a may also use a second subscription to establish a connection with a third cell that operates according to the first RAT and a connection with a fourth cell that operates according to the second RAT.
  • the UE 115-a may establish non-standalone connections with the second cell, the fourth cell, or both.
  • the cells may be supported by the base station 105-a, the base station 105-b, or a combination thereof. Accordingly, the UE 115-a may receive the speed parameter 215 in the SI message 210 from a base station which operates according to the first RAT. The UE 115-a may receive the speed parameter 215 using the first subscription, the second subscription, or both. Accordingly, the speed parameter 215 may be exchanged between the first and second subscription and the UE 115-a may select a speed mode for operation based on receiving the speed parameter 215. The UE 115-a may operate according to the selected speed parameter when communicating with any combination of cells in which connection is established.
  • the techniques employed by the described wireless communications system 200 may provide benefits and enhancements to the operation of the wireless communications system 200.
  • the described techniques may include features for increasing a reliability of communications by enabling the UE 115-a to mitigate or reduce timing or frequency offset errors resulting from operating in a high speed environment.
  • FIG. 3 illustrates an example of a process flow 300 that supports high speed recognition in NR cells in accordance with one or more aspects of the present disclosure.
  • the process flow 300 may implement one or more aspects of a wireless communications system 100 or 200.
  • the process flow 300 may include a UE 115-b, a base station 105-c, and a base station 105-d which may be examples of the corresponding devices described herein.
  • Alternative examples of the following may be implemented where some processes are performed in a different order than described or not performed at all.
  • processes may include additional features no mentioned below, or further processes may be added.
  • the UE 115-b may operate using a subscription 305 which includes a module 310-a configured to operate according to a first RAT (e.g., LTE) and a module 310-b configured to operate according to a second RAT (e.g., NR) .
  • the UE 115-b may use the subscription 305 to establish connections with one or more cells as described herein.
  • the UE 115-b may establish connections with the base station 105-c and the base station 105-d.
  • the base station 105-c may operate according to the first RAT and the base station 105-d may operate according to the second RAT.
  • the UE 115-b may establish a non-standalone connection with the base station 105-d.
  • the base station 105-c may transmit a SI message to the UE 115-b that includes a speed parameter associated with the base station 105-c.
  • the speed parameter may be a “highSpeedFlag” included in a SIB2 message.
  • the UE 115-b may select a speed mode for operation based on receiving the speed parameter from the base station 105-c. In some examples, the UE 115-b may determine a speed mode for operation further based on establishing the connection with the base station 105-c, the base station 105-d, or both. In some examples, the UE 115-b may switch from operating according to a first speed mode to operating according to a second speed mode based on the speed parameter. For example, the UE 115-b may switch from operating according to a standard speed mode to operating according to a high speed mode, or vice versa, based on the speed parameter.
  • the UE 115-b may communicate with the base station 105-d according to the selected speed mode.
  • communicating with the base station 105-d may include performing one or more procedures (e.g., a channel estimation procedure) according to a set of parameters based on the selected speed mode.
  • the UE 115-b may perform a channel estimation procedure according to a first set of parameters (or first algorithm, first set of operations, etc. ) when operating according to the first speed mode and according to a second set of parameters (or second algorithm, second set of operations, etc. ) when operating according to the second speed mode.
  • Implementing various aspects of the process flow 300 may increase reliability of communications by enabling the UE 115-b to mitigate or reduce timing or frequency offset errors resulting from operating in a high speed environment.
  • FIG. 4 illustrates an example of a process flow 400 that supports high speed recognition in NR cells in accordance with one or more aspects of the present disclosure.
  • the process flow 400 may implement one or more aspects of a wireless communication system 100 or 200, a process flow 300, or a combination thereof.
  • the process flow 400 may include a UE 115-c, a base station 105-e, and a base station 105-f which may be examples of the corresponding devices described herein.
  • Alternative examples of the following may be implemented where some processes are performed in a different order than described or not performed at all.
  • processes may include additional features not mentioned below, or further processes may be added.
  • the UE 115-c may operate using a first subscription 405-a and a second subscription 405-b.
  • the UE 115-c may use the subscription 405-a and the subscription 405-b to establish connections with one or more cells as described herein.
  • the first subscription 405-a may be associated with a first subscriber identification module (SIM) and the second subscription 405-b may be associated with a second SIM.
  • SIM subscriber identification module
  • the UE 115-c may establish connections with the base station 105-e and the base station 105-f.
  • the base station 104-e may operate according to a first RAT (e.g., LTE) and the base station 105-f may operate according to a second RAT (e.g., NR) .
  • the UE 115-c may establish a standalone connection with the base station 105-f.
  • the UE 115-c may establish the connection with the base station 105-e using the first subscription 405-a and may establish the connection with the base station 105-f using the second subscription 405-b.
  • the base station 105-e may transmit a SI message to the UE 115-c that includes a speed parameter associated with the base station 105-e.
  • the UE 115-c may update the second subscription 405-b with the speed parameter received from the base station 105-e using the first subscription 405-a.
  • the UE 115-c may select a speed mode for operation based on receiving the speed parameter from the base station 105-e. In some examples, the UE 115-c may determine a speed mode for operation further based on establishing the connection with the base station 105-e, the base station 105-f, or both. In some examples, the UE 115-c may switch from operating according to a first speed mode to operating according to a second speed mode based on the speed parameter. For example, the UE 115-c may switch from operating according to a standard speed mode to operating according to a high speed mode, or vice versa, based on the speed parameter.
  • the UE 115-c may communicate with the base station 105-f according to the selected speed mode.
  • communicating with the base station 105-f may include performing one or more procedures (e.g., a channel estimation procedure) according to a set of parameters based on the selected speed mode.
  • the UE 115-c may perform a channel estimation procedure according to a first set of parameters (or first algorithm, first set of operations, etc. ) when operating according to the first speed mode and according to a second set of parameters (or second algorithm, second set of operations, etc. ) when operating according to the second speed mode.
  • Implementing various aspects of the process flow 400 may increase reliability of communications by enabling the UE 115-c to mitigate or reduce timing or frequency offset errors resulting from operating in a high speed environment.
  • FIG. 5 illustrates an example of a process flow 500 that supports high speed recognition in NR cells in accordance with one or more aspects of the present disclosure.
  • the process flow 500 may implement one or more aspects of a wireless communications system 100 or 200, a process flow 300 or 400, or a combination thereof.
  • the process flow 500 may include a UE 115-d, a base station 105-g, a base station 105-h, and a base station 105-i which may be examples of the corresponding devices described herein.
  • Alternative examples of the following may be implemented where some processes are performed in a different order than described or not performed at all.
  • processes may include additional features not mentioned below, or further processes may be added.
  • the UE 115-d may operate using a first subscription 505-a that include a first module 510-a configured to operate according to a first RAT (e.g., LTE) and a second module 510-b configured to operate according to a second RAT (e.g., NR) .
  • the UE 115-d may also include a second subscription 505-b.
  • the UE 115-d may use the subscription 505-a and the subscription 505-b to establish connections with one or more cells as described herein.
  • the first subscription 505-a may be associated with a first SIM and the second subscription 505-b may be associated with a second SIM.
  • the UE 115-d may establish connections with the base station 105-g, the base station 105-h, and the base station 105-i. In some examples, the UE 115-d may establish the connections with the base station 105-g and the base station 105-h using the first subscription 505-a. The UE 115-d may establish the connection with the base station 105-i using the second subscription. In some examples, the base station 105-g may operate according to the first RAT and the base station 105-h and the base station 105-i may operate according to the second RAT. In some examples. the UE 115-d may establish a non-standalone connection with the base station 105-h and a standalone connection with the base station 105-i.
  • the base station 105-g may transmit a SI message to the UE 115-d that includes a speed parameter associated with the base station 105-g.
  • the UE 115-d may update the second subscription 505-b with the speed parameter received from the base station 105-g using the first subscription 505-a.
  • the UE 115-d may select a speed mode for operation based on receiving the speed parameter from the base station 105-g. In some examples, the UE 115-d may determine a speed mode for operation further based on establishing the connection with the base station 105-g, the base station 105-h, the base station 105-i, or a combination thereof. In some examples, the UE 115-d may switch from operating according to a first speed mode to operating according to a second speed mode based on the speed parameter. For example, the UE 115-d may switch from operating according to a standard speed mode to operating according to a high speed mode, or vice versa, based on the speed parameter.
  • the UE 115-d may communicate with the base station 105-h, the base station 105-i, or both, according to the selected speed mode.
  • the UE 115-d may perform one or more procedures (e.g., a channel estimation procedure) according to a set of parameters based on the selected speed mode.
  • the UE 115-d may perform a channel estimation procedure according to a first set of parameters (or first algorithm, first set of operations, etc. ) when operating according to the first speed mode and according to a second set of parameters (or second algorithm, second set of operations, etc. ) when operating according to the second speed mode.
  • Implementing various aspects of the process flow 500 may increase reliability of communications by enabling the UE 115-d to mitigate or reduce timing or frequency offset errors resulting from operating in a high speed environment.
  • FIG. 6 illustrates and example of a process flow 600 that supports high speed recognition in NR cells in accordance with one or more aspects of the present disclosure.
  • the process flow 600 may implement one or more aspects of a wireless communications system 100 or 200, a process flow 300, 400, or 500, or a combination thereof.
  • the process flow 600 may include a UE 115-e, a base station 105-j, a base station 105-k, a base station 105-l, and a base station 105-m which may be examples of the corresponding devices described herein.
  • Alternative examples of the following may be implemented where some processes are performed in a different order than described or not performed at all.
  • processes may include additional features not mentioned below, or further processes may be added.
  • the UE 115-e may operate using a first subscription 605-a that includes a first module 610-a configured to operate according to a first RAT (e.g., LTE) and a second module 610-b configured to operate according to a second RAT (e.g., NR) .
  • the UE 115-e may also include a second subscription 605-b that likewise include a first module 610-c configured to operate according to the first RAT and a second module 610-d configured to operate according to the second RAT.
  • the UE 115-e may use the subscription 605-a and the subscription 605-b to establish connections with one or more cells as described herein.
  • the first subscription 605-a may be associated with a first SIM and the second subscription 605-b may be associated with a second SIM.
  • the UE 115-e may establish connections with the base station 105-j, the base station 105-k, the base station 105-l, and the base station 105-m. In some examples, the UE 115-e may establish the connections with the base station 105-j and the base station 105-k using the first subscription 605-a. The UE 115-e may establish the connections with the base station 105-l and the base station 105-m using the second subscription 605-b. In some examples, the base station 105-j and the base station 105-l may operate according to the first RAT and the base station 105-k and the base station 105-m may operate according to the second RAT. In some examples, the UE 115-e may establish non-standalone connections with the base station 105-k and the base station 105-m.
  • the base station 105-j may transmit a SI message to the UE 115-e that includes a first speed parameter associated with the base station 105-j.
  • the base station 105-l may transmit a SI message to the UE 115-e that include a second speed parameter associated with the base station 105-l.
  • the UE 115-e may exchange the first and second speed parameters between the first subscription 605-a and the second subscription 605-b.
  • the UE 115-e may select a speed mode for operation based on receiving the first speed parameter from the base station 105-j and the second speed parameter from the base station 105-l. In some examples, the UE 115-e may determine a speed mode for operation further based on establishing the connection with the base station 105-j, the base station 105-k, the base station 105-l, the base station 105-l, or a combination thereof. In some examples, the UE 115-d may switch from operating according to a first speed mode to operating according to a second speed mode based on the speed parameters. For example, the UE 115-e may switch from operating according to a standard speed mode to operating according to a high speed mode, or vice versa, based on the speed parameters.
  • the UE 115-e may communicate with the base station 105-k, the base station 105-m, or both, according to the selected speed mode.
  • the UE 115-e may perform one or more procedures (e.g., a channel estimation procedure) according to a set of parameters based on the selected speed mode.
  • the UE 115-e may perform a channel estimation procedure according to a first set of parameters (or first algorithm, first set of operations, etc. ) when operating according to the first speed mode and according to a second set of parameters (or second algorithm, second set of operations, etc. ) when operating according to the second speed mode.
  • Implementing various aspects of the process flow 600 may increase reliability of communications by enabling the UE 115-e to mitigate or reduce timing or frequency offset errors resulting from operating in a high speed environment.
  • FIG. 7 shows a block diagram 700 of a device 705 that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • the device 705 may be an example of aspects of a UE 115 as described herein.
  • the device 705 may include a receiver 710, a communications manager 715, and a transmitter 720.
  • the device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to high speed mode for multi cell operations, etc. ) . Information may be passed on to other components of the device 705.
  • the receiver 710 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • the communications manager 715 may establish a first connection with a first cell operating according to a first RAT, establish a second connection with a second cell operating according to a second RAT, receive a SI message from the first cell using the first connection, the SI message including an indication of a speed parameter associated with the first cell, switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell, and communicate with the second cell according to the second speed mode.
  • the communications manager 715 may be an example of aspects of the communications manager 1010 described herein.
  • the communications manager 715 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 715, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the communications manager 715 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 715, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 715, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 720 may transmit signals generated by other components of the device 705.
  • the transmitter 720 may be collocated with a receiver 710 in a transceiver module.
  • the transmitter 720 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the transmitter 720 may utilize a single antenna or a set of antennas.
  • the communications manager 715 may be implemented as an integrated circuit or chipset for a mobile device modem, and the receiver 710 and transmitter 720 may be implemented as analog components (e.g., amplifiers, filters, antennas) coupled with the mobile device modem to enable wireless transmission and reception over one or more bands.
  • analog components e.g., amplifiers, filters, antennas
  • the communications manager 715 as described herein may be implemented to realize one or more potential advantages.
  • One implementation may allow the device 705 to select a speed mode for operation based on SI received from a cell. Based on the techniques for selecting a speed mode, the device 705 may support performing procedures according to more accurate parameters based on the selected speed mode.
  • the device 705 may mitigate or reduce the effects of timing or frequency offsets resulting from operating in a high speed environment and, accordingly, may communicate over the channel with a greater likelihood of successful communications.
  • the device 705 may experience improved data rates and reliability, as well as lower power consumption, which may enable the device to save power and increase battery life.
  • FIG. 8 shows a block diagram 800 of a device 805 that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • the device 805 may be an example of aspects of a device 705, or a UE 115 as described herein.
  • the device 805 may include a receiver 810, a communications manager 815, and a transmitter 845.
  • the device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to high speed mode for multi cell operations, etc. ) . Information may be passed on to other components of the device 805.
  • the receiver 810 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the receiver 810 may utilize a single antenna or a set of antennas.
  • the communications manager 815 may be an example of aspects of the communications manager 715 as described herein.
  • the communications manager 815 may include a first connection manager 820, a second connection manager 825, a SI receiver 830, a speed mode component 835, and a communicating component 840.
  • the communications manager 815 may be an example of aspects of the communications manager 1010 described herein.
  • the first connection manager 820 may establish a first connection with a first cell operating according to a first RAT.
  • the second connection manager 825 may establish a second connection with a second cell operating according to a second RAT.
  • the SI receiver 830 may receive a SI message from the first cell using the first connection, the SI message including an indication of a speed parameter associated with the first cell.
  • the speed mode component 835 may switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell.
  • the communicating component 840 may communicate with the second cell according to the second speed mode.
  • the transmitter 845 may transmit signals generated by other components of the device 805.
  • the transmitter 845 may be collocated with a receiver 810 in a transceiver module.
  • the transmitter 845 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the transmitter 845 may utilize a single antenna or a set of antennas.
  • FIG. 9 shows a block diagram 900 of a communications manager 905 that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • the communications manager 905 may be an example of aspects of a communications manager 715, a communications manager 815, or a communications manager 1010 described herein.
  • the communications manager 905 may include a first connection manager 910, a second connection manager 915, a SI receiver 920, a speed mode component 925, a communicating component 930, a channel estimation component 935, a subscription manager 940, a third connection manager 945, and a fourth connection manager 950.
  • Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the first connection manager 910 may establish a first connection with a first cell operating according to a first RAT. In some examples, establishing the first connection includes establishing the first connection using a first subscription.
  • the second connection manager 915 may establish a second connection with a second cell operating according to a second RAT.
  • establishing the second connection includes establishing the second connection using a second subscription different from the first subscription.
  • establishing the second connection includes establishing the second connection using the first subscription.
  • the second connection with the second cell includes is a non-standalone connection and the first connection with the first cell is a standalone connection.
  • the first RAT is the same as the second RAT.
  • the first RAT includes LTE and the second RAT includes NR.
  • the SI receiver 920 may receive a SI message from the first cell using the first connection, the SI message including an indication of a speed parameter associated with the first cell. In some examples, the SI receiver 920 may receive a second SI message from the second cell using the second connection, the second SI message indicating a second speed parameter associated with the second cell, where switching from operating according to the first speed mode to operating according to the second speed mode is based on the second speed parameter.
  • the speed mode component 925 may switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell. In some examples, the speed mode component 925 may switch from operating according to the first speed mode with the third cell to operating according to the second speed mode with the third cell based on the speed parameter associated with the first cell. In some examples, the speed mode component 925 may switch from operating according to the first speed mode with the fourth cell to operating according to the second speed mode with the fourth cell based on the speed parameter associated with the first cell. In some cases, the first speed mode includes a normal speed mode and the second speed mode includes a high speed mode. In some cases, the first speed mode includes a high speed mode and the second speed mode includes a normal speed mode.
  • the communicating component 930 may communicate with the second cell according to the second speed mode.
  • the channel estimation component 935 may perform a channel estimation procedure for the second cell according to a first set of parameters when operating according to the first speed mode with the second cell and performing the channel estimation procedure for the second cell according to a second set of parameters when operating according to the second speed mode with the second cell.
  • the subscription manager 940 may update the second subscription with the speed parameter, where switching from operating according to the first speed mode to operating according to the second speed mode is based on updating the second subscription. In some examples, the subscription manager 940 may update the first subscription with the second speed parameter, where switching from operating according to the first speed mode to operating according to the second speed mode is based on updating the first subscription.
  • the third connection manager 945 may establish a third connection with a third cell operating according to the second RAT using the first subscription.
  • the fourth connection manager 950 may establish a fourth connection with a fourth cell operating according to the second RAT using the second subscription.
  • FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of or include the components of device 705, device 805, or a UE 115 as described herein.
  • the device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, an I/O controller 1015, a transceiver 1020, an antenna 1025, memory 1030, and a processor 1040. These components may be in electronic communication via one or more buses (e.g., bus 1045) .
  • buses e.g., bus 1045
  • the communications manager 1010 may establish a first connection with a first cell operating according to a first RAT, establish a second connection with a second cell operating according to a second RAT, receive a SI message from the first cell using the first connection, the SI message including an indication of a speed parameter associated with the first cell, switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell, and communicate with the second cell according to the second speed mode.
  • the I/O controller 1015 may manage input and output signals for the device 1005.
  • the I/O controller 1015 may also manage peripherals not integrated into the device 1005.
  • the I/O controller 1015 may represent a physical connection or port to an external peripheral.
  • the I/O controller 1015 may utilize an operating system such as or another known operating system.
  • the I/O controller 1015 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 1015 may be implemented as part of a processor.
  • a user may interact with the device 1005 via the I/O controller 1015 or via hardware components controlled by the I/O controller 1015.
  • the transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein.
  • the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1025. However, in some cases the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1030 may include random access memory (RAM) and read only memory (ROM) .
  • the memory 1030 may store computer-readable, computer-executable code 1035 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 1030 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 1040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1040 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1040.
  • the processor 1040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1030) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting high speed mode for multi cell operations) .
  • the code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1035 may not be directly executable by the processor 1040 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 11 shows a flowchart illustrating a method 1100 that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • the operations of method 1100 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 7 through 10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may establish a first connection with a first cell operating according to a first RAT.
  • the operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a first connection manager as described with reference to FIGs. 7 through 10.
  • the UE may establish a second connection with a second cell operating according to a second RAT.
  • the operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a second connection manager as described with reference to FIGs. 7 through 10.
  • the UE may receive a SI message from the first cell using the first connection, the SI message including an indication of a speed parameter associated with the first cell.
  • the operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a SI receiver as described with reference to FIGs. 7 through 10.
  • the UE may switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell.
  • the operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by a speed mode component as described with reference to FIGs. 7 through 10.
  • the UE may communicate with the second cell according to the second speed mode.
  • the operations of 1125 may be performed according to the methods described herein. In some examples, aspects of the operations of 1125 may be performed by a communicating component as described with reference to FIGs. 7 through 10.
  • FIG. 12 shows a flowchart illustrating a method 1200 that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • the operations of method 1200 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 7 through 10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may establish a first connection with a first cell operating according to a first RAT.
  • the operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by a first connection manager as described with reference to FIGs. 7 through 10.
  • the UE may establish a second connection with a second cell operating according to a second RAT.
  • the operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a second connection manager as described with reference to FIGs. 7 through 10.
  • the UE may receive a SI message from the first cell using the first connection, the SI message including an indication of a speed parameter associated with the first cell.
  • the operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a SI receiver as described with reference to FIGs. 7 through 10.
  • the UE may switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell.
  • the operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of 1220 may be performed by a speed mode component as described with reference to FIGs. 7 through 10.
  • the UE may perform a channel estimation procedure for the second cell according to a first set of parameters when operating according to the first speed mode with the second cell and performing the channel estimation procedure for the second cell according to a second set of parameters when operating according to the second speed mode with the second cell.
  • the operations of 1225 may be performed according to the methods described herein. In some examples, aspects of the operations of 1225 may be performed by a channel estimation component as described with reference to FIGs. 7 through 10.
  • the UE may communicate with the second cell according to the second speed mode.
  • the operations of 1230 may be performed according to the methods described herein. In some examples, aspects of the operations of 1230 may be performed by a communicating component as described with reference to FIGs. 7 through 10.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 7 through 10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may establish a first connection with a first cell operating according to a first RAT.
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a first connection manager as described with reference to FIGs. 7 through 10.
  • the UE may establish a second connection with a second cell operating according to a second RAT.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a second connection manager as described with reference to FIGs. 7 through 10.
  • the UE may receive a SI message from the first cell using the first connection, the SI message including an indication of a speed parameter associated with the first cell.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a SI receiver as described with reference to FIGs. 7 through 10.
  • the UE may establish a third connection with a third cell operating according to the second RAT using the first subscription.
  • the operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a third connection manager as described with reference to FIGs. 7 through 10.
  • the UE may switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell.
  • the operations of 1325 may be performed according to the methods described herein. In some examples, aspects of the operations of 1325 may be performed by a speed mode component as described with reference to FIGs. 7 through 10.
  • the UE may switch from operating according to the first speed mode with the third cell to operating according to the second speed mode with the third cell based on the speed parameter associated with the first cell.
  • the operations of 1330 may be performed according to the methods described herein. In some examples, aspects of the operations of 1330 may be performed by a speed mode component as described with reference to FIGs. 7 through 10.
  • the UE may communicate with the second cell according to the second speed mode.
  • the operations of 1335 may be performed according to the methods described herein. In some examples, aspects of the operations of 1335 may be performed by a communicating component as described with reference to FIGs. 7 through 10.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 7 through 10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may establish a first connection with a first cell operating according to a first RAT.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a first connection manager as described with reference to FIGs. 7 through 10.
  • the UE may establish a second connection with a second cell operating according to a second RAT.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a second connection manager as described with reference to FIGs. 7 through 10.
  • the UE may receive a SI message from the first cell using the first connection, the SI message including an indication of a speed parameter associated with the first cell.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a SI receiver as described with reference to FIGs. 7 through 10.
  • the UE may establish a third connection with a third cell operating according to the second RAT using the first subscription.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a third connection manager as described with reference to FIGs. 7 through 10.
  • the UE may establish a fourth connection with a fourth cell operating according to the second RAT using the second subscription.
  • the operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a fourth connection manager as described with reference to FIGs. 7 through 10.
  • the UE may switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell.
  • the operations of 1430 may be performed according to the methods described herein. In some examples, aspects of the operations of 1430 may be performed by a speed mode component as described with reference to FIGs. 7 through 10.
  • the UE may switch from operating according to the first speed mode with the third cell to operating according to the second speed mode with the third cell based on the speed parameter associated with the first cell.
  • the operations of 1435 may be performed according to the methods described herein. In some examples, aspects of the operations of 1435 may be performed by a speed mode component as described with reference to FIGs. 7 through 10.
  • the UE may switch from operating according to the first speed mode with the fourth cell to operating according to the second speed mode with the fourth cell based on the speed parameter associated with the first cell.
  • the operations of 1440 may be performed according to the methods described herein. In some examples, aspects of the operations of 1440 may be performed by a speed mode component as described with reference to FIGs. 7 through 10.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described that enable a user equipment (UE) to select a speed mode for multiple cells. The UE may receive a system information message from the first cell that includes an indication of a speed parameter. The UE may select a speed mode for operation based on the received speed parameter. For example, the UE may determine to operate according to a speed mode when communicating with the second cell based on system information received from the first cell. In some examples, the UE may perform one or more procedures according to a set of parameters corresponding to the selected speed mode.

Description

HIGH SPEED MODE FOR MULTI CELL OPERATIONS
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to high speed mode for multi cell operations.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
In some cases, user equipments (UEs) may be connected to an LTE cell and to an NR cell and may operate in high speed environments. For example, a UE may be located in a vehicle (e.g., a car, a train, etc. ) travelling at a relatively high speed. In some cases, a UE travelling at a high speed may experience performance degradation due to frequency issues resulting from the Doppler effect or timing advance issues due to the change in speed. Such performance degradation may include out-of-sync errors, frequent handover, high power consumption, or low data rates.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support high speed mode for multi cell operations. Generally, the described  techniques enable a user equipment (UE) to select a speed mode for establishing or operating using connections with a first and a second cell. The cells may operate according to a same radio access technology (RAT) or different RATs. For example, the UE may receive a system information (SI) message from the first cell that includes an indication of a speed parameter, such as a high speed flag. The UE may select a speed mode for operation based on the received speed parameter. For example, the UE may determine to operate according to a speed mode when communicating with the second cell based on SI received from the first cell. In some examples, the UE may perform one or more procedures, such as a channel estimation procedure, according to a set of parameters corresponding to the selected speed mode. Implementing various aspects of the present disclosure may increase performance at a UE and provide for reliable communications services.
A method of wireless communications at a UE is described. The method may include establishing a first connection with a first cell operating according to a first radio access technology, establishing a second connection with a second cell operating according to a second radio access technology, receiving a system information message from the first cell using the first connection, the system information message including an indication of a speed parameter associated with the first cell, switching from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell, and communicating with the second cell according to the second speed mode.
An apparatus for wireless communications at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to establish a first connection with a first cell operating according to a first radio access technology, establish a second connection with a second cell operating according to a second radio access technology, receive a system information message from the first cell using the first connection, the system information message including an indication of a speed parameter associated with the first cell, switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell, and communicate with the second cell according to the second speed mode.
Another apparatus for wireless communications at a UE is described. The apparatus may include means for establishing a first connection with a first cell operating according to a first radio access technology, establishing a second connection with a second cell operating according to a second radio access technology, receiving a system information message from the first cell using the first connection, the system information message including an indication of a speed parameter associated with the first cell, switching from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell, and communicating with the second cell according to the second speed mode.
A non-transitory computer-readable medium storing code for wireless communications at a UE is described. The code may include instructions executable by a processor to establish a first connection with a first cell operating according to a first radio access technology, establish a second connection with a second cell operating according to a second radio access technology, receive a system information message from the first cell using the first connection, the system information message including an indication of a speed parameter associated with the first cell, switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell, and communicate with the second cell according to the second speed mode.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing a channel estimation procedure for the second cell according to a first set of parameters when operating according to the first speed mode with the second cell and performing the channel estimation procedure for the second cell according to a second set of parameters when operating according to the second speed mode with the second cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, establishing the first connection may include operations, features, means, or instructions for establishing the first connection using a first subscription, and establishing the second connection may include operations, features, means, or instructions for establishing the second connection using a second subscription different from the first subscription.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for updating the second subscription with the speed parameter, where switching from operating according to the first speed mode to operating according to the second speed mode may be based on updating the second subscription.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for establishing a third connection with a third cell operating according to the second radio access technology using the first subscription, and switching from operating according to the first speed mode with the third cell to operating according to the second speed mode with the third cell based on the speed parameter associated with the first cell.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for establishing a fourth connection with a fourth cell operating according to the second radio access technology using the second subscription, and switching from operating according to the first speed mode with the fourth cell to operating according to the second speed mode with the fourth cell based on the speed parameter associated with the first cell.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a second system information message from the second cell using the second connection, the second system information message indicating a second speed parameter associated with the second cell, where switching from operating according to the first speed mode to operating according to the second speed mode may be based on the second speed parameter.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for updating the first subscription with the second speed parameter, where switching from operating according to the first speed mode to operating according to the second speed mode may be based on updating the first subscription.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, establishing the first connection may include operations,  features, means, or instructions for establishing the first connection using a first subscription, and establishing the second connection may include operations, features, means, or instructions for establishing the second connection using the first subscription.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second connection with the second cell includes may be a non-standalone connection and the first connection with the first cell may be a standalone connection.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first speed mode includes a normal speed mode and the second speed mode includes a high speed mode.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first speed mode includes a high speed mode and the second speed mode includes a normal speed mode.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first radio access technology may be the same as the second radio access technology.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first radio access technology includes Long-Term Evolution (LTE) and the second radio access technology includes New Radio (NR) .
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a process flow that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a process flow that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
FIG. 5 illustrates an example of a process flow that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
FIG. 6 illustrates an example of a process flow that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
FIGs. 7 and 8 show block diagrams of devices that support high speed mode for multi cell operations in accordance with aspects of the present disclosure.
FIG. 9 shows a block diagram of a communications manager that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
FIG. 10 shows a diagram of a system including a device that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure.
FIGs. 11 through 14 show flowcharts illustrating methods that support high speed mode for multi cell operations in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Some wireless communication systems may include communication devices, such as user equipments (UEs) and base stations, for example, next-generation NodeBs or giga-NodeBs (either of which may be referred to as a gNB) that may support multiple radio access technologies (RATs) including Long-Term Evolution (LTE) , LTE-Advanced (LTE-A) , fifth generation (5G) systems, which may be referred to as New Radio (NR) systems, among others. In some cases, a UE may establish a connection with multiple cells in a wireless communication system. For example, a UE may establish a connection with a cell that operates using LTE and establish a different, non-standalone or standalone connection with an NR cell, LTE cell, or other cell operating according to a given RAT. In some cases, the connections may be made using different subscriptions.
According to some aspects, a UE may be operating in a high speed environment. For example, a UE may be located in a vehicle (e.g., a car, a train, etc. ) travelling at a high speed. In some cases, a UE travelling at a high speed may experience timing errors or frequency offsets due to an increased doppler effect with respect to a base station. Timing or  frequency errors may lead to a performance degradation, which may result in out-of-sync errors, frequent handover, high power consumption, or low data rates. It may be beneficial for a UE to select a speed mode based on the operating environment.
Some techniques may enable a UE to select a speed mode for operation. In some examples, a UE may establish a connection with a first cell that operates using a first RAT (e.g., LTE) and a second cell that operates using a second RAT (e.g., LTE, NR) . The UE may receive a system information (SI) message (e.g., an SI block (SIB) ) from the first cell that includes an indication of a speed parameter. In some implementations, the speed parameter may be a “highSpeedFlag” parameter included in an SIB2 transmission. In response to receiving the speed parameter, the UE may determine a speed mode in which to operate with one or more cells, or switch from one speed mode to a different speed mode for operating with one or more cell. For example, if the speed parameter indicates to the UE to enable a high speed mode, the UE may switch from a standard or normal speed mode to a high speed mode. In some examples, the UE may select a speed mode for operation when establishing a connection to a cell based on receiving an SI message from the cell. The UE may operate according to the selected speed mode with the first cell, the second cell, or both. The UE may perform one or more procedures (e.g., a channel estimation procedure) according to a set of parameters corresponding to the selected speed mode, which may differ between a normal speed mode and a high speed mode.
In some examples, the UE may establish the connection with the first cell using one subscription and establish the connection with the second cell using a different subscription. In such examples, the UE may receive the SI message using the first subscription and may update the second subscription with the speed parameter. In some examples, the first and second cells may operate using a same RAT. In such examples, the UE may receive a second SI message from the second cell that includes a speed parameter associated with the second cell. Accordingly, the UE may select a speed mode for operation based on the speed parameters associated with the first and second cells. In some examples, the UE may establish connection with additional cells (e.g., a third cell, a fourth cell, etc. ) . In such examples, the UE may operate according to the selected speed mode with any number of cells in which connection is established.
Particular aspects of the subject matter described herein may be implemented to realize one or more of the following potential advantages. The techniques employed by the described wireless communications systems may provide benefits and enhancements to the operation of the wireless communications system. For example, the described techniques may include features for increasing a reliability of communications by enabling a UE to mitigate or reduce timing or frequency offset errors resulting from operating in a high speed environment. The described techniques include additional features for improving power consumption, spectral efficiency, data rates, reliability, among other benefits.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects are then described with respect to process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to high speed mode for multi cell operations.
FIG. 1 illustrates an example of a wireless communications system 100 that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations  105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (RAT) , such as LTE, LTE-A, LTE-A Pro, NR. Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information (SI) ) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different RAT) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular RAT (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with  different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time. For asynchronous operation, the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or  group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at  least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from  30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. The techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) RAT, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station  105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the medium access control (MAC) layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
UEs 115 in the wireless communications systems 100 may operate in high speed environments. For example, a UE 115 may be located in a vehicle (e.g., a car, a train, etc. ) travelling at a high speed. In some cases, a UE 115 travelling at a high speed may experience timing errors or frequency offsets due to an increased Doppler effect with respect to a base station 105. To reduce or mitigate timing or frequency offset errors, the UE 115 select a speed mode based on an operating environment. For example, a UE 115 may receive an indication of a speed parameter included in a SI message transmitted by a base station 105  associated with a cell. The UE 115 may select a speed mode for operation based on the received speed parameter and communicate with one or more other base stations 105 according to the selected speed mode. In some examples, the UE 115 may perform one or more procedures (e.g., a channel estimation procedure) based on the selected speed mode. For example, the UE 115 may perform a channel estimation procedure according to a first set of parameters when operating according to a first speed mode and perform a channel estimation procedure according to a second set of parameters when operating according to a second speed mode. Implementing various aspects of the present disclosure may enable a UE 115 to mitigate or reduce timing or frequency offset errors resulting from operating in a high speed environment.
FIG. 2 illustrates an example of a wireless communications system 200 that supports high speed recognition in NR cells in accordance with one or more aspects of the present disclosure. In some examples, the wireless communications system 200 may implement one or more aspects of a wireless communications system 100. The wireless communications system 200 may include a UE 115-a which may be an example of a UE 115 as described with reference to FIG. 1. The wireless communications system 200 may also include a base station 105-a and a base station 105-b which may be examples of a base station 105 as described with reference to FIG. 1. The base stations 105 may be associated with cells which provide wireless communications service with respective coverage areas 110.
The UE 115-a may establish a connection with the base station 105-a and with the base station 105-b. In some examples, the UE 115-a may receive a speed parameter 215 included in a SI message 210 from the base station 105-a over a downlink channel 205. In some implementations, the speed parameter 215 may be a “highSpeedFlag” parameter included in a SI block two (SIB2) message. The UE 115-a may select a speed mode for communicating with the base station 105-b based on the speed parameter 215 received from the base station 105-a. For example, the UE 115-a may determine to operate according to a speed mode after establishing a connection with the base station 105-a and the base station 105-b. Additionally or alternatively, the UE 115-a may switch from operating according to a first speed mode to operating according to a second speed mode with respect to base station 105-b based on the received speed parameter 215. For example, the UE 115-a may switch from operating according to a standard or normal speed mode to operating according to a  high speed mode, or vice versa, based on the speed parameter 215. The UE 115-a may perform one or more procedures (e.g., a channel estimation procedure) according to a set of parameters corresponding to the selected speed mode and respective sets of parameters may differ between the normal speed mode and the high speed mode.
In some examples, the UE 115-a may establish the first and second connections using a same subscription. In such examples, the base station 105-a may operate according to a first RAT (e.g., LTE) , and the base station 105-b may operate according to a second RAT (e.g., NR) . In some implementations, the UE 115-a may establish a non-standalone connection with the base station 105-b. Accordingly, the UE 115-a may receive the speed parameter 215 included in the SI message 210 from the base station 105-a and select a speed mode to use when communicating with the base station 105-b.
In some examples, the UE 115-a may establish the first and second connections using different subscriptions. For example, the UE 115-a may establish the first connection with the base station 105-a using a first subscription where the base station 105-a operates according to a first RAT (e.g., LTE) . The UE 115-a may establish the second connection with the base station 105-b using a second subscription where the base station 105-b operates according to a second RAT (e.g., NR) . In some implementations, the UE 115-a may use the second subscription to establish a standalone connection with the base station 105-b. If the UE 115-a uses different subscriptions to establish the first and second connections, the UE 115-a may receive the speed parameter 215 in the SI message 210 from the base station 105-a using the first subscription. After receiving the speed parameter 215, the UE 115-a may update the second subscription with the speed parameter 215 and select a speed mode for operation when communicating using the second subscription based on the speed parameter 215.
In some examples, the UE 115-a may establish connections with additional cells. For example, the UE 115-a may use a first subscription to establish a first connection with the base station 105-a where the base station 105-a operates according to a first RAT (e.g., LTE) . Additionally or alternatively, the UE 115-a may use the first subscription to establish a second connection with a second cell that operates according to a second RAT (e.g., NR) which may be supported by the base station 105-a, the base station 105-b, or another base station or network device. In some implementations the UE 115-a may establish a non- standalone connection with the second cell. The UE 115-a may also use a second subscription to establish a connection with a third cell that operates according to the second RAT which may supported by the base station 105-a, the base station 105-b, or another base station or network device. In some implementations, the UE 115-a may establish a standalone connection with the third cell. The UE 115-a may receive the speed parameter 215 in the SI message 210 from the base station 105-a and select a speed mode for operation when communicating with any combination of the first, the second, or the third cells.
In some examples, the UE 115-a may use a first subscription to establish a connection with a first cell (i.e., with the base station 105-a) that operates according to a first RAT (e.g., LTE) and a connection with a second cell that operates according to a second RAT (e.g., NR) . The UE 115-a may also use a second subscription to establish a connection with a third cell that operates according to the first RAT and a connection with a fourth cell that operates according to the second RAT. In some implementations, the UE 115-a may establish non-standalone connections with the second cell, the fourth cell, or both. In some examples, the cells may be supported by the base station 105-a, the base station 105-b, or a combination thereof. Accordingly, the UE 115-a may receive the speed parameter 215 in the SI message 210 from a base station which operates according to the first RAT. The UE 115-a may receive the speed parameter 215 using the first subscription, the second subscription, or both. Accordingly, the speed parameter 215 may be exchanged between the first and second subscription and the UE 115-a may select a speed mode for operation based on receiving the speed parameter 215. The UE 115-a may operate according to the selected speed parameter when communicating with any combination of cells in which connection is established.
Particular aspects of the subject matter described herein may be implemented to realize one or more of the following potential advantages. The techniques employed by the described wireless communications system 200 may provide benefits and enhancements to the operation of the wireless communications system 200. For example, the described techniques may include features for increasing a reliability of communications by enabling the UE 115-a to mitigate or reduce timing or frequency offset errors resulting from operating in a high speed environment.
FIG. 3 illustrates an example of a process flow 300 that supports high speed recognition in NR cells in accordance with one or more aspects of the present disclosure. In  some examples, the process flow 300 may implement one or more aspects of a  wireless communications system  100 or 200. The process flow 300 may include a UE 115-b, a base station 105-c, and a base station 105-d which may be examples of the corresponding devices described herein. Alternative examples of the following may be implemented where some processes are performed in a different order than described or not performed at all. In some implementations, processes may include additional features no mentioned below, or further processes may be added.
In some implementations, the UE 115-b may operate using a subscription 305 which includes a module 310-a configured to operate according to a first RAT (e.g., LTE) and a module 310-b configured to operate according to a second RAT (e.g., NR) . The UE 115-b may use the subscription 305 to establish connections with one or more cells as described herein.
At 315, the UE 115-b may establish connections with the base station 105-c and the base station 105-d. In some implementations, the base station 105-c may operate according to the first RAT and the base station 105-d may operate according to the second RAT. In some examples, the UE 115-b may establish a non-standalone connection with the base station 105-d.
At 320, the base station 105-c may transmit a SI message to the UE 115-b that includes a speed parameter associated with the base station 105-c. In some implementations the speed parameter may be a “highSpeedFlag” included in a SIB2 message.
At 325, the UE 115-b may select a speed mode for operation based on receiving the speed parameter from the base station 105-c. In some examples, the UE 115-b may determine a speed mode for operation further based on establishing the connection with the base station 105-c, the base station 105-d, or both. In some examples, the UE 115-b may switch from operating according to a first speed mode to operating according to a second speed mode based on the speed parameter. For example, the UE 115-b may switch from operating according to a standard speed mode to operating according to a high speed mode, or vice versa, based on the speed parameter.
At 330, the UE 115-b may communicate with the base station 105-d according to the selected speed mode. In some examples, communicating with the base station 105-d may include performing one or more procedures (e.g., a channel estimation procedure) according  to a set of parameters based on the selected speed mode. For example, the UE 115-b may perform a channel estimation procedure according to a first set of parameters (or first algorithm, first set of operations, etc. ) when operating according to the first speed mode and according to a second set of parameters (or second algorithm, second set of operations, etc. ) when operating according to the second speed mode.
Implementing various aspects of the process flow 300 may increase reliability of communications by enabling the UE 115-b to mitigate or reduce timing or frequency offset errors resulting from operating in a high speed environment.
FIG. 4 illustrates an example of a process flow 400 that supports high speed recognition in NR cells in accordance with one or more aspects of the present disclosure. In some examples, the process flow 400 may implement one or more aspects of a  wireless communication system  100 or 200, a process flow 300, or a combination thereof. The process flow 400 may include a UE 115-c, a base station 105-e, and a base station 105-f which may be examples of the corresponding devices described herein. Alternative examples of the following may be implemented where some processes are performed in a different order than described or not performed at all. In some implementations, processes may include additional features not mentioned below, or further processes may be added.
In some implementations, the UE 115-c may operate using a first subscription 405-a and a second subscription 405-b. The UE 115-c may use the subscription 405-a and the subscription 405-b to establish connections with one or more cells as described herein. In some examples, the first subscription 405-a may be associated with a first subscriber identification module (SIM) and the second subscription 405-b may be associated with a second SIM.
At 410, the UE 115-c may establish connections with the base station 105-e and the base station 105-f. In some implementations, the base station 104-e may operate according to a first RAT (e.g., LTE) and the base station 105-f may operate according to a second RAT (e.g., NR) . In some examples, the UE 115-c may establish a standalone connection with the base station 105-f. In some examples, the UE 115-c may establish the connection with the base station 105-e using the first subscription 405-a and may establish the connection with the base station 105-f using the second subscription 405-b.
At 415, the base station 105-e may transmit a SI message to the UE 115-c that includes a speed parameter associated with the base station 105-e.
At 420, the UE 115-c may update the second subscription 405-b with the speed parameter received from the base station 105-e using the first subscription 405-a.
At 425, the UE 115-c may select a speed mode for operation based on receiving the speed parameter from the base station 105-e. In some examples, the UE 115-c may determine a speed mode for operation further based on establishing the connection with the base station 105-e, the base station 105-f, or both. In some examples, the UE 115-c may switch from operating according to a first speed mode to operating according to a second speed mode based on the speed parameter. For example, the UE 115-c may switch from operating according to a standard speed mode to operating according to a high speed mode, or vice versa, based on the speed parameter.
At 430, the UE 115-c may communicate with the base station 105-f according to the selected speed mode. In some examples, communicating with the base station 105-f may include performing one or more procedures (e.g., a channel estimation procedure) according to a set of parameters based on the selected speed mode. For example, the UE 115-c may perform a channel estimation procedure according to a first set of parameters (or first algorithm, first set of operations, etc. ) when operating according to the first speed mode and according to a second set of parameters (or second algorithm, second set of operations, etc. ) when operating according to the second speed mode.
Implementing various aspects of the process flow 400 may increase reliability of communications by enabling the UE 115-c to mitigate or reduce timing or frequency offset errors resulting from operating in a high speed environment.
FIG. 5 illustrates an example of a process flow 500 that supports high speed recognition in NR cells in accordance with one or more aspects of the present disclosure. In some examples, the process flow 500 may implement one or more aspects of a  wireless communications system  100 or 200, a  process flow  300 or 400, or a combination thereof. The process flow 500 may include a UE 115-d, a base station 105-g, a base station 105-h, and a base station 105-i which may be examples of the corresponding devices described herein. Alternative examples of the following may be implemented where some processes are performed in a different order than described or not performed at all. In some  implementations, processes may include additional features not mentioned below, or further processes may be added.
In some implementations, the UE 115-d may operate using a first subscription 505-a that include a first module 510-a configured to operate according to a first RAT (e.g., LTE) and a second module 510-b configured to operate according to a second RAT (e.g., NR) . The UE 115-d may also include a second subscription 505-b. The UE 115-d may use the subscription 505-a and the subscription 505-b to establish connections with one or more cells as described herein. In some examples, the first subscription 505-a may be associated with a first SIM and the second subscription 505-b may be associated with a second SIM.
At 515, the UE 115-d may establish connections with the base station 105-g, the base station 105-h, and the base station 105-i. In some examples, the UE 115-d may establish the connections with the base station 105-g and the base station 105-h using the first subscription 505-a. The UE 115-d may establish the connection with the base station 105-i using the second subscription. In some examples, the base station 105-g may operate according to the first RAT and the base station 105-h and the base station 105-i may operate according to the second RAT. In some examples. the UE 115-d may establish a non-standalone connection with the base station 105-h and a standalone connection with the base station 105-i.
At 520, the base station 105-g may transmit a SI message to the UE 115-d that includes a speed parameter associated with the base station 105-g.
At 525, the UE 115-d may update the second subscription 505-b with the speed parameter received from the base station 105-g using the first subscription 505-a.
At 530, the UE 115-d may select a speed mode for operation based on receiving the speed parameter from the base station 105-g. In some examples, the UE 115-d may determine a speed mode for operation further based on establishing the connection with the base station 105-g, the base station 105-h, the base station 105-i, or a combination thereof. In some examples, the UE 115-d may switch from operating according to a first speed mode to operating according to a second speed mode based on the speed parameter. For example, the UE 115-d may switch from operating according to a standard speed mode to operating according to a high speed mode, or vice versa, based on the speed parameter.
At 535, the UE 115-d may communicate with the base station 105-h, the base station 105-i, or both, according to the selected speed mode. In some examples, the UE 115-d may perform one or more procedures (e.g., a channel estimation procedure) according to a set of parameters based on the selected speed mode. For example, the UE 115-d may perform a channel estimation procedure according to a first set of parameters (or first algorithm, first set of operations, etc. ) when operating according to the first speed mode and according to a second set of parameters (or second algorithm, second set of operations, etc. ) when operating according to the second speed mode.
Implementing various aspects of the process flow 500 may increase reliability of communications by enabling the UE 115-d to mitigate or reduce timing or frequency offset errors resulting from operating in a high speed environment.
FIG. 6 illustrates and example of a process flow 600 that supports high speed recognition in NR cells in accordance with one or more aspects of the present disclosure. In some examples, the process flow 600 may implement one or more aspects of a  wireless communications system  100 or 200, a  process flow  300, 400, or 500, or a combination thereof. The process flow 600 may include a UE 115-e, a base station 105-j, a base station 105-k, a base station 105-l, and a base station 105-m which may be examples of the corresponding devices described herein. Alternative examples of the following may be implemented where some processes are performed in a different order than described or not performed at all. In some implementations, processes may include additional features not mentioned below, or further processes may be added.
In some implementations, the UE 115-e may operate using a first subscription 605-a that includes a first module 610-a configured to operate according to a first RAT (e.g., LTE) and a second module 610-b configured to operate according to a second RAT (e.g., NR) . The UE 115-e may also include a second subscription 605-b that likewise include a first module 610-c configured to operate according to the first RAT and a second module 610-d configured to operate according to the second RAT. The UE 115-e may use the subscription 605-a and the subscription 605-b to establish connections with one or more cells as described herein. In some examples, the first subscription 605-a may be associated with a first SIM and the second subscription 605-b may be associated with a second SIM.
At 615, the UE 115-e may establish connections with the base station 105-j, the base station 105-k, the base station 105-l, and the base station 105-m. In some examples, the UE 115-e may establish the connections with the base station 105-j and the base station 105-k using the first subscription 605-a. The UE 115-e may establish the connections with the base station 105-l and the base station 105-m using the second subscription 605-b. In some examples, the base station 105-j and the base station 105-l may operate according to the first RAT and the base station 105-k and the base station 105-m may operate according to the second RAT. In some examples, the UE 115-e may establish non-standalone connections with the base station 105-k and the base station 105-m.
At 620, the base station 105-j may transmit a SI message to the UE 115-e that includes a first speed parameter associated with the base station 105-j.
At 625, the base station 105-l may transmit a SI message to the UE 115-e that include a second speed parameter associated with the base station 105-l.
At 630, the UE 115-e may exchange the first and second speed parameters between the first subscription 605-a and the second subscription 605-b.
At 635, the UE 115-e may select a speed mode for operation based on receiving the first speed parameter from the base station 105-j and the second speed parameter from the base station 105-l. In some examples, the UE 115-e may determine a speed mode for operation further based on establishing the connection with the base station 105-j, the base station 105-k, the base station 105-l, the base station 105-l, or a combination thereof. In some examples, the UE 115-d may switch from operating according to a first speed mode to operating according to a second speed mode based on the speed parameters. For example, the UE 115-e may switch from operating according to a standard speed mode to operating according to a high speed mode, or vice versa, based on the speed parameters.
At 640, the UE 115-e may communicate with the base station 105-k, the base station 105-m, or both, according to the selected speed mode. In some examples, the UE 115-e may perform one or more procedures (e.g., a channel estimation procedure) according to a set of parameters based on the selected speed mode. For example, the UE 115-e may perform a channel estimation procedure according to a first set of parameters (or first algorithm, first set of operations, etc. ) when operating according to the first speed mode and  according to a second set of parameters (or second algorithm, second set of operations, etc. ) when operating according to the second speed mode.
Implementing various aspects of the process flow 600 may increase reliability of communications by enabling the UE 115-e to mitigate or reduce timing or frequency offset errors resulting from operating in a high speed environment.
FIG. 7 shows a block diagram 700 of a device 705 that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure. The device 705 may be an example of aspects of a UE 115 as described herein. The device 705 may include a receiver 710, a communications manager 715, and a transmitter 720. The device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to high speed mode for multi cell operations, etc. ) . Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The receiver 710 may utilize a single antenna or a set of antennas.
The communications manager 715 may establish a first connection with a first cell operating according to a first RAT, establish a second connection with a second cell operating according to a second RAT, receive a SI message from the first cell using the first connection, the SI message including an indication of a speed parameter associated with the first cell, switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell, and communicate with the second cell according to the second speed mode. The communications manager 715 may be an example of aspects of the communications manager 1010 described herein.
The communications manager 715, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 715, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field  programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 715, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 715, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 715, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 720 may transmit signals generated by other components of the device 705. In some examples, the transmitter 720 may be collocated with a receiver 710 in a transceiver module. For example, the transmitter 720 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The transmitter 720 may utilize a single antenna or a set of antennas.
In some examples, the communications manager 715 may be implemented as an integrated circuit or chipset for a mobile device modem, and the receiver 710 and transmitter 720 may be implemented as analog components (e.g., amplifiers, filters, antennas) coupled with the mobile device modem to enable wireless transmission and reception over one or more bands.
The communications manager 715 as described herein may be implemented to realize one or more potential advantages. One implementation may allow the device 705 to select a speed mode for operation based on SI received from a cell. Based on the techniques for selecting a speed mode, the device 705 may support performing procedures according to more accurate parameters based on the selected speed mode.
As such, the device 705 may mitigate or reduce the effects of timing or frequency offsets resulting from operating in a high speed environment and, accordingly, may communicate over the channel with a greater likelihood of successful communications. In  some examples, the device 705 may experience improved data rates and reliability, as well as lower power consumption, which may enable the device to save power and increase battery life.
FIG. 8 shows a block diagram 800 of a device 805 that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure. The device 805 may be an example of aspects of a device 705, or a UE 115 as described herein. The device 805 may include a receiver 810, a communications manager 815, and a transmitter 845. The device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to high speed mode for multi cell operations, etc. ) . Information may be passed on to other components of the device 805. The receiver 810 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The receiver 810 may utilize a single antenna or a set of antennas.
The communications manager 815 may be an example of aspects of the communications manager 715 as described herein. The communications manager 815 may include a first connection manager 820, a second connection manager 825, a SI receiver 830, a speed mode component 835, and a communicating component 840. The communications manager 815 may be an example of aspects of the communications manager 1010 described herein.
The first connection manager 820 may establish a first connection with a first cell operating according to a first RAT.
The second connection manager 825 may establish a second connection with a second cell operating according to a second RAT.
The SI receiver 830 may receive a SI message from the first cell using the first connection, the SI message including an indication of a speed parameter associated with the first cell.
The speed mode component 835 may switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell.
The communicating component 840 may communicate with the second cell according to the second speed mode.
The transmitter 845 may transmit signals generated by other components of the device 805. In some examples, the transmitter 845 may be collocated with a receiver 810 in a transceiver module. For example, the transmitter 845 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The transmitter 845 may utilize a single antenna or a set of antennas.
FIG. 9 shows a block diagram 900 of a communications manager 905 that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure. The communications manager 905 may be an example of aspects of a communications manager 715, a communications manager 815, or a communications manager 1010 described herein. The communications manager 905 may include a first connection manager 910, a second connection manager 915, a SI receiver 920, a speed mode component 925, a communicating component 930, a channel estimation component 935, a subscription manager 940, a third connection manager 945, and a fourth connection manager 950. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The first connection manager 910 may establish a first connection with a first cell operating according to a first RAT. In some examples, establishing the first connection includes establishing the first connection using a first subscription.
The second connection manager 915 may establish a second connection with a second cell operating according to a second RAT. In some examples, establishing the second connection includes establishing the second connection using a second subscription different from the first subscription. In some examples, establishing the second connection includes establishing the second connection using the first subscription. In some cases, the second connection with the second cell includes is a non-standalone connection and the first connection with the first cell is a standalone connection. In some cases, the first RAT is the  same as the second RAT. In some cases, the first RAT includes LTE and the second RAT includes NR.
The SI receiver 920 may receive a SI message from the first cell using the first connection, the SI message including an indication of a speed parameter associated with the first cell. In some examples, the SI receiver 920 may receive a second SI message from the second cell using the second connection, the second SI message indicating a second speed parameter associated with the second cell, where switching from operating according to the first speed mode to operating according to the second speed mode is based on the second speed parameter.
The speed mode component 925 may switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell. In some examples, the speed mode component 925 may switch from operating according to the first speed mode with the third cell to operating according to the second speed mode with the third cell based on the speed parameter associated with the first cell. In some examples, the speed mode component 925 may switch from operating according to the first speed mode with the fourth cell to operating according to the second speed mode with the fourth cell based on the speed parameter associated with the first cell. In some cases, the first speed mode includes a normal speed mode and the second speed mode includes a high speed mode. In some cases, the first speed mode includes a high speed mode and the second speed mode includes a normal speed mode.
The communicating component 930 may communicate with the second cell according to the second speed mode.
The channel estimation component 935 may perform a channel estimation procedure for the second cell according to a first set of parameters when operating according to the first speed mode with the second cell and performing the channel estimation procedure for the second cell according to a second set of parameters when operating according to the second speed mode with the second cell.
The subscription manager 940 may update the second subscription with the speed parameter, where switching from operating according to the first speed mode to operating according to the second speed mode is based on updating the second subscription. In some  examples, the subscription manager 940 may update the first subscription with the second speed parameter, where switching from operating according to the first speed mode to operating according to the second speed mode is based on updating the first subscription.
The third connection manager 945 may establish a third connection with a third cell operating according to the second RAT using the first subscription.
The fourth connection manager 950 may establish a fourth connection with a fourth cell operating according to the second RAT using the second subscription.
FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure. The device 1005 may be an example of or include the components of device 705, device 805, or a UE 115 as described herein. The device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, an I/O controller 1015, a transceiver 1020, an antenna 1025, memory 1030, and a processor 1040. These components may be in electronic communication via one or more buses (e.g., bus 1045) .
The communications manager 1010 may establish a first connection with a first cell operating according to a first RAT, establish a second connection with a second cell operating according to a second RAT, receive a SI message from the first cell using the first connection, the SI message including an indication of a speed parameter associated with the first cell, switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell, and communicate with the second cell according to the second speed mode.
The I/O controller 1015 may manage input and output signals for the device 1005. The I/O controller 1015 may also manage peripherals not integrated into the device 1005. In some cases, the I/O controller 1015 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 1015 may utilize an operating system such as 
Figure PCTCN2020097709-appb-000001
or another known operating system. In other cases, the I/O controller 1015 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 1015 may be implemented as part of a processor. In some cases, a user may  interact with the device 1005 via the I/O controller 1015 or via hardware components controlled by the I/O controller 1015.
The transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein. For example, the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1025. However, in some cases the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1030 may include random access memory (RAM) and read only memory (ROM) . The memory 1030 may store computer-readable, computer-executable code 1035 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 1030 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1040 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1040. The processor 1040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1030) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting high speed mode for multi cell operations) .
The code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1035 may not be directly executable by the processor 1040  but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 11 shows a flowchart illustrating a method 1100 that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure. The operations of method 1100 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 7 through 10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein. Additionally or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
At 1105, the UE may establish a first connection with a first cell operating according to a first RAT. The operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a first connection manager as described with reference to FIGs. 7 through 10.
At 1110, the UE may establish a second connection with a second cell operating according to a second RAT. The operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a second connection manager as described with reference to FIGs. 7 through 10.
At 1115, the UE may receive a SI message from the first cell using the first connection, the SI message including an indication of a speed parameter associated with the first cell. The operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a SI receiver as described with reference to FIGs. 7 through 10.
At 1120, the UE may switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell. The operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by a speed mode component as described with reference to FIGs. 7 through 10.
At 1125, the UE may communicate with the second cell according to the second speed mode. The operations of 1125 may be performed according to the methods described herein. In some examples, aspects of the operations of 1125 may be performed by a communicating component as described with reference to FIGs. 7 through 10.
FIG. 12 shows a flowchart illustrating a method 1200 that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure. The operations of method 1200 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 7 through 10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein. Additionally or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
At 1205, the UE may establish a first connection with a first cell operating according to a first RAT. The operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by a first connection manager as described with reference to FIGs. 7 through 10.
At 1210, the UE may establish a second connection with a second cell operating according to a second RAT. The operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a second connection manager as described with reference to FIGs. 7 through 10.
At 1215, the UE may receive a SI message from the first cell using the first connection, the SI message including an indication of a speed parameter associated with the first cell. The operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a SI receiver as described with reference to FIGs. 7 through 10.
At 1220, the UE may switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell. The operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of  1220 may be performed by a speed mode component as described with reference to FIGs. 7 through 10.
At 1225, the UE may perform a channel estimation procedure for the second cell according to a first set of parameters when operating according to the first speed mode with the second cell and performing the channel estimation procedure for the second cell according to a second set of parameters when operating according to the second speed mode with the second cell. The operations of 1225 may be performed according to the methods described herein. In some examples, aspects of the operations of 1225 may be performed by a channel estimation component as described with reference to FIGs. 7 through 10.
At 1230, the UE may communicate with the second cell according to the second speed mode. The operations of 1230 may be performed according to the methods described herein. In some examples, aspects of the operations of 1230 may be performed by a communicating component as described with reference to FIGs. 7 through 10.
FIG. 13 shows a flowchart illustrating a method 1300 that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure. The operations of method 1300 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 7 through 10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein. Additionally or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
At 1305, the UE may establish a first connection with a first cell operating according to a first RAT. The operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a first connection manager as described with reference to FIGs. 7 through 10.
At 1310, the UE may establish a second connection with a second cell operating according to a second RAT. The operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a second connection manager as described with reference to FIGs. 7 through 10.
At 1315, the UE may receive a SI message from the first cell using the first connection, the SI message including an indication of a speed parameter associated with the first cell. The operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a SI receiver as described with reference to FIGs. 7 through 10.
At 1320, the UE may establish a third connection with a third cell operating according to the second RAT using the first subscription. The operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a third connection manager as described with reference to FIGs. 7 through 10.
At 1325, the UE may switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell. The operations of 1325 may be performed according to the methods described herein. In some examples, aspects of the operations of 1325 may be performed by a speed mode component as described with reference to FIGs. 7 through 10.
At 1330, the UE may switch from operating according to the first speed mode with the third cell to operating according to the second speed mode with the third cell based on the speed parameter associated with the first cell. The operations of 1330 may be performed according to the methods described herein. In some examples, aspects of the operations of 1330 may be performed by a speed mode component as described with reference to FIGs. 7 through 10.
At 1335, the UE may communicate with the second cell according to the second speed mode. The operations of 1335 may be performed according to the methods described herein. In some examples, aspects of the operations of 1335 may be performed by a communicating component as described with reference to FIGs. 7 through 10.
FIG. 14 shows a flowchart illustrating a method 1400 that supports high speed mode for multi cell operations in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 7 through 10. In some examples, a UE may  execute a set of instructions to control the functional elements of the UE to perform the functions described herein. Additionally or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
At 1405, the UE may establish a first connection with a first cell operating according to a first RAT. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a first connection manager as described with reference to FIGs. 7 through 10.
At 1410, the UE may establish a second connection with a second cell operating according to a second RAT. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a second connection manager as described with reference to FIGs. 7 through 10.
At 1415, the UE may receive a SI message from the first cell using the first connection, the SI message including an indication of a speed parameter associated with the first cell. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a SI receiver as described with reference to FIGs. 7 through 10.
At 1420, the UE may establish a third connection with a third cell operating according to the second RAT using the first subscription. The operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a third connection manager as described with reference to FIGs. 7 through 10.
At 1425, the UE may establish a fourth connection with a fourth cell operating according to the second RAT using the second subscription. The operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a fourth connection manager as described with reference to FIGs. 7 through 10.
At 1430, the UE may switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based on the speed parameter associated with the first cell. The operations of 1430 may be performed  according to the methods described herein. In some examples, aspects of the operations of 1430 may be performed by a speed mode component as described with reference to FIGs. 7 through 10.
At 1435, the UE may switch from operating according to the first speed mode with the third cell to operating according to the second speed mode with the third cell based on the speed parameter associated with the first cell. The operations of 1435 may be performed according to the methods described herein. In some examples, aspects of the operations of 1435 may be performed by a speed mode component as described with reference to FIGs. 7 through 10.
At 1440, the UE may switch from operating according to the first speed mode with the fourth cell to operating according to the second speed mode with the fourth cell based on the speed parameter associated with the first cell. The operations of 1440 may be performed according to the methods described herein. In some examples, aspects of the operations of 1440 may be performed by a speed mode component as described with reference to FIGs. 7 through 10.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the  description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose  processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques,  however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (56)

  1. A method for wireless communications at a user equipment (UE) , comprising:
    establishing a first connection with a first cell operating according to a first radio access technology;
    establishing a second connection with a second cell operating according to a second radio access technology;
    receiving a system information message from the first cell using the first connection, the system information message comprising an indication of a speed parameter associated with the first cell;
    switching from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based at least in part on the speed parameter associated with the first cell; and
    communicating with the second cell according to the second speed mode.
  2. The method of claim 1, further comprising:
    performing a channel estimation procedure for the second cell according to a first set of parameters when operating according to the first speed mode with the second cell and performing the channel estimation procedure for the second cell according to a second set of parameters when operating according to the second speed mode with the second cell.
  3. The method of claim 1, wherein:
    establishing the first connection comprises establishing the first connection using a first subscription; and
    establishing the second connection comprises establishing the second connection using a second subscription different from the first subscription.
  4. The method of claim 3, further comprising:
    updating the second subscription with the speed parameter, wherein switching from operating according to the first speed mode to operating according to the second speed mode is based at least in part on updating the second subscription.
  5. The method of claim 3, further comprising:
    establishing a third connection with a third cell operating according to the second radio access technology using the first subscription; and
    switching from operating according to the first speed mode with the third cell to operating according to the second speed mode with the third cell based at least in part on the speed parameter associated with the first cell.
  6. The method of claim 5, further comprising:
    establishing a fourth connection with a fourth cell operating according to the second radio access technology using the second subscription; and
    switching from operating according to the first speed mode with the fourth cell to operating according to the second speed mode with the fourth cell based at least in part on the speed parameter associated with the first cell.
  7. The method of claim 3, further comprising:
    receiving a second system information message from the second cell using the second connection, the second system information message indicating a second speed parameter associated with the second cell, wherein switching from operating according to the first speed mode to operating according to the second speed mode is based at least in part on the second speed parameter.
  8. The method of claim 7, further comprising:
    updating the first subscription with the second speed parameter, wherein switching from operating according to the first speed mode to operating according to the second speed mode is based at least in part on updating the first subscription.
  9. The method of claim 1, wherein:
    establishing the first connection comprises establishing the first connection using a first subscription; and
    establishing the second connection comprises establishing the second connection using the first subscription.
  10. The method of claim 1, wherein the second connection with the second cell comprises is a non-standalone connection and the first connection with the first cell is a standalone connection.
  11. The method of claim 1, wherein the first speed mode comprises a normal speed mode and the second speed mode comprises a high speed mode.
  12. The method of claim 1, wherein the first speed mode comprises a high speed mode and the second speed mode comprises a normal speed mode.
  13. The method of claim 1, wherein the first radio access technology is the same as the second radio access technology.
  14. The method of claim 1, wherein the first radio access technology comprises Long-Term Evolution (LTE) and the second radio access technology comprises New Radio (NR) .
  15. An apparatus for wireless communications at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    establish a first connection with a first cell operating according to a first radio access technology;
    establish a second connection with a second cell operating according to a second radio access technology;
    receive a system information message from the first cell using the first connection, the system information message comprising an indication of a speed parameter associated with the first cell;
    switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based at least in part on the speed parameter associated with the first cell; and
    communicate with the second cell according to the second speed mode.
  16. The apparatus of claim 15, wherein the instructions are further executable by the processor to cause the apparatus to:
    perform a channel estimation procedure for the second cell according to a first set of parameters when operating according to the first speed mode with the second cell and performing the channel estimation procedure for the second cell according to a second set of parameters when operating according to the second speed mode with the second cell.
  17. The apparatus of claim 15, wherein:
    the instructions to establish the first connection are executable by the processor to cause the apparatus to establish the first connection using a first subscription; and
    the instructions to establish the second connection are executable by the processor to cause the apparatus to establish the second connection using a second subscription different from the first subscription.
  18. The apparatus of claim 17, wherein the instructions are further executable by the processor to cause the apparatus to:
    update the second subscription with the speed parameter, wherein switching from operating according to the first speed mode to operating according to the second speed mode is based at least in part on updating the second subscription.
  19. The apparatus of claim 17, wherein the instructions are further executable by the processor to cause the apparatus to:
    establish a third connection with a third cell operating according to the second radio access technology using the first subscription; and
    switch from operating according to the first speed mode with the third cell to operating according to the second speed mode with the third cell based at least in part on the speed parameter associated with the first cell.
  20. The apparatus of claim 19, wherein the instructions are further executable by the processor to cause the apparatus to:
    establish a fourth connection with a fourth cell operating according to the second radio access technology using the second subscription; and
    switch from operating according to the first speed mode with the fourth cell to operating according to the second speed mode with the fourth cell based at least in part on the speed parameter associated with the first cell.
  21. The apparatus of claim 17, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a second system information message from the second cell using the second connection, the second system information message indicating a second speed parameter associated with the second cell, wherein switching from operating according to the first speed mode to operating according to the second speed mode is based at least in part on the second speed parameter.
  22. The apparatus of claim 21, wherein the instructions are further executable by the processor to cause the apparatus to:
    update the first subscription with the second speed parameter, wherein switching from operating according to the first speed mode to operating according to the second speed mode is based at least in part on updating the first subscription.
  23. The apparatus of claim 15, wherein:
    the instructions to establish the first connection are executable by the processor to cause the apparatus to establish the first connection using a first subscription; and
    the instructions to establish the second connection are executable by the processor to cause the apparatus to establish the second connection using the first subscription.
  24. The apparatus of claim 15, wherein the second connection with the second cell comprises is a non-standalone connection and the first connection with the first cell is a standalone connection.
  25. The apparatus of claim 15, wherein the first speed mode comprises a normal speed mode and the second speed mode comprises a high speed mode.
  26. The apparatus of claim 15, wherein the first speed mode comprises a high speed mode and the second speed mode comprises a normal speed mode.
  27. The apparatus of claim 15, wherein the first radio access technology is the same as the second radio access technology.
  28. The apparatus of claim 15, wherein the first radio access technology comprises Long-Term Evolution (LTE) and the second radio access technology comprises New Radio (NR) .
  29. An apparatus for wireless communications at a user equipment (UE) , comprising:
    means for establishing a first connection with a first cell operating according to a first radio access technology;
    means for establishing a second connection with a second cell operating according to a second radio access technology;
    means for receiving a system information message from the first cell using the first connection, the system information message comprising an indication of a speed parameter associated with the first cell;
    means for switching from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based at least in part on the speed parameter associated with the first cell; and
    means for communicating with the second cell according to the second speed mode.
  30. The apparatus of claim 29, further comprising:
    means for performing a channel estimation procedure for the second cell according to a first set of parameters when operating according to the first speed mode with the second cell and performing the channel estimation procedure for the second cell according to a second set of parameters when operating according to the second speed mode with the second cell.
  31. The apparatus of claim 29, wherein:
    the means for establishing the first connection comprises means for establishing the first connection using a first subscription; and
    the means for establishing the second connection comprises means for establishing the second connection using a second subscription different from the first subscription.
  32. The apparatus of claim 31, further comprising:
    means for updating the second subscription with the speed parameter, wherein switching from operating according to the first speed mode to operating according to the second speed mode is based at least in part on updating the second subscription.
  33. The apparatus of claim 31, further comprising:
    means for establishing a third connection with a third cell operating according to the second radio access technology using the first subscription; and
    means for switching from operating according to the first speed mode with the third cell to operating according to the second speed mode with the third cell based at least in part on the speed parameter associated with the first cell.
  34. The apparatus of claim 33, further comprising:
    means for establishing a fourth connection with a fourth cell operating according to the second radio access technology using the second subscription; and
    means for switching from operating according to the first speed mode with the fourth cell to operating according to the second speed mode with the fourth cell based at least in part on the speed parameter associated with the first cell.
  35. The apparatus of claim 31, further comprising:
    means for receiving a second system information message from the second cell using the second connection, the second system information message indicating a second speed parameter associated with the second cell, wherein switching from operating according to the first speed mode to operating according to the second speed mode is based at least in part on the second speed parameter.
  36. The apparatus of claim 35, further comprising:
    means for updating the first subscription with the second speed parameter, wherein switching from operating according to the first speed mode to operating according to the second speed mode is based at least in part on updating the first subscription.
  37. The apparatus of claim 29, wherein:
    the means for establishing the first connection comprises means for establishing the first connection using a first subscription; and
    the means for establishing the second connection comprises means for establishing the second connection using the first subscription.
  38. The apparatus of claim 29, wherein the second connection with the second cell comprises is a non-standalone connection and the first connection with the first cell is a standalone connection.
  39. The apparatus of claim 29, wherein the first speed mode comprises a normal speed mode and the second speed mode comprises a high speed mode.
  40. The apparatus of claim 29, wherein the first speed mode comprises a high speed mode and the second speed mode comprises a normal speed mode.
  41. The apparatus of claim 29, wherein the first radio access technology is the same as the second radio access technology.
  42. The apparatus of claim 29, wherein the first radio access technology comprises Long-Term Evolution (LTE) and the second radio access technology comprises New Radio (NR) .
  43. A non-transitory computer-readable medium storing code for wireless communications at a user equipment (UE) , the code comprising instructions executable by a processor to:
    establish a first connection with a first cell operating according to a first radio access technology;
    establish a second connection with a second cell operating according to a second radio access technology;
    receive a system information message from the first cell using the first connection, the system information message comprising an indication of a speed parameter associated with the first cell;
    switch from operating according to a first speed mode with the second cell to operating according to a second speed mode with the second cell based at least in part on the speed parameter associated with the first cell; and
    communicate with the second cell according to the second speed mode.
  44. The non-transitory computer-readable medium of claim 43, wherein the instructions are further executable to:
    perform a channel estimation procedure for the second cell according to a first set of parameters when operating according to the first speed mode with the second cell and performing the channel estimation procedure for the second cell according to a second set of parameters when operating according to the second speed mode with the second cell.
  45. The non-transitory computer-readable medium of claim 43, wherein:
    the instructions to establish the first connection are executable by the processor to cause the apparatus to establish the first connection using a first subscription; and
    the instructions to establish the second connection are executable by the processor to cause the apparatus to establish the second connection using a second subscription different from the first subscription.
  46. The non-transitory computer-readable medium of claim 45, wherein the instructions are further executable to:
    update the second subscription with the speed parameter, wherein switching from operating according to the first speed mode to operating according to the second speed mode is based at least in part on updating the second subscription.
  47. The non-transitory computer-readable medium of claim 45, wherein the instructions are further executable to:
    establish a third connection with a third cell operating according to the second radio access technology using the first subscription; and
    switch from operating according to the first speed mode with the third cell to operating according to the second speed mode with the third cell based at least in part on the speed parameter associated with the first cell.
  48. The non-transitory computer-readable medium of claim 47, wherein the instructions are further executable to:
    establish a fourth connection with a fourth cell operating according to the second radio access technology using the second subscription; and
    switch from operating according to the first speed mode with the fourth cell to operating according to the second speed mode with the fourth cell based at least in part on the speed parameter associated with the first cell.
  49. The non-transitory computer-readable medium of claim 45, wherein the instructions are further executable to:
    receive a second system information message from the second cell using the second connection, the second system information message indicating a second speed parameter associated with the second cell, wherein switching from operating according to the first speed mode to operating according to the second speed mode is based at least in part on the second speed parameter.
  50. The non-transitory computer-readable medium of claim 49, wherein the instructions are further executable to:
    update the first subscription with the second speed parameter, wherein switching from operating according to the first speed mode to operating according to the second speed mode is based at least in part on updating the first subscription.
  51. The non-transitory computer-readable medium of claim 43, wherein:
    the instructions to establish the first connection are executable by the processor to cause the apparatus to establish the first connection using a first subscription; and
    the instructions to establish the second connection are executable by the processor to cause the apparatus to establish the second connection using the first subscription.
  52. The non-transitory computer-readable medium of claim 43, wherein the second connection with the second cell comprises is a non-standalone connection and the first connection with the first cell is a standalone connection.
  53. The non-transitory computer-readable medium of claim 43, wherein the first speed mode comprises a normal speed mode and the second speed mode comprises a high speed mode.
  54. The non-transitory computer-readable medium of claim 43, wherein the first speed mode comprises a high speed mode and the second speed mode comprises a normal speed mode.
  55. The non-transitory computer-readable medium of claim 43, wherein the first radio access technology is the same as the second radio access technology.
  56. The non-transitory computer-readable medium of claim 43, wherein the first radio access technology comprises Long-Term Evolution (LTE) and the second radio access technology comprises New Radio (NR) .
PCT/CN2020/097709 2020-06-23 2020-06-23 High speed mode for multi cell operations WO2021258285A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097709 WO2021258285A1 (en) 2020-06-23 2020-06-23 High speed mode for multi cell operations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097709 WO2021258285A1 (en) 2020-06-23 2020-06-23 High speed mode for multi cell operations

Publications (1)

Publication Number Publication Date
WO2021258285A1 true WO2021258285A1 (en) 2021-12-30

Family

ID=79282679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097709 WO2021258285A1 (en) 2020-06-23 2020-06-23 High speed mode for multi cell operations

Country Status (1)

Country Link
WO (1) WO2021258285A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023206240A1 (en) * 2022-04-28 2023-11-02 Qualcomm Incorporated Sidelink resource selection for a user equipment (ue)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016122377A1 (en) * 2015-01-30 2016-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Methods of operating wireless terminals and network nodes using high speed vehicle network indicators and related wireless terminals and network nodes
WO2018111004A1 (en) * 2016-12-16 2018-06-21 Samsung Electronics Co., Ltd. Method and apparatus of signal measurement for terminal moving at high speed in wireless communication system
WO2019157624A1 (en) * 2018-02-13 2019-08-22 Zte Corporation System and method for performing communications in a multi-rat network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016122377A1 (en) * 2015-01-30 2016-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Methods of operating wireless terminals and network nodes using high speed vehicle network indicators and related wireless terminals and network nodes
WO2018111004A1 (en) * 2016-12-16 2018-06-21 Samsung Electronics Co., Ltd. Method and apparatus of signal measurement for terminal moving at high speed in wireless communication system
WO2019157624A1 (en) * 2018-02-13 2019-08-22 Zte Corporation System and method for performing communications in a multi-rat network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOFTBANK (EMAIL DISCUSSION MODERATOR): "New Work Item on Further performance enhancement for LTE in high speed scenario", 3GPP DRAFT; RP-180764_HIGHSPEED_WID_R1, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. La Jolla, CA, USA; 20180611 - 20180614, 6 June 2018 (2018-06-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051455552 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023206240A1 (en) * 2022-04-28 2023-11-02 Qualcomm Incorporated Sidelink resource selection for a user equipment (ue)

Similar Documents

Publication Publication Date Title
WO2021226956A1 (en) Monitoring for downlink repetitions
WO2021068161A1 (en) Indication of synchronization signal and physical broadcasting channel block transmission beam adjustment
WO2022094903A1 (en) Relay selection based on early measurement in l2 relay
EP4018730A1 (en) Uplink power control via mac-ce messaging
US11792753B2 (en) Synchronization signal block time domain pattern design
US11509380B2 (en) Beam failure reporting using data field in uplink control channel
WO2021253258A1 (en) Phase-tracking reference signal alignment for physical shared channel
US20240056918A1 (en) Vehicle-to-everything cell reselection
WO2021258285A1 (en) High speed mode for multi cell operations
WO2022041115A1 (en) A method for protocol stack sharing in dual connectivity
WO2022000484A1 (en) Wake-up signal design for multiple multicast sessions
EP4173196A1 (en) Self-contained feedback transmission for sidelink communication in unlicensed spectrum
WO2021046933A1 (en) Internode measurement configuration signaling
WO2021232408A1 (en) Connection recovery in dual subscriber service
WO2021237508A1 (en) Dual sim route selection descriptor selection
WO2021223056A1 (en) Data stall recovery in wireless communications systems
WO2022061566A1 (en) Resource selection under congested conditions
WO2021258281A1 (en) Timer based network switching to support voice services
WO2021195911A1 (en) Connecting to multi-radio access technology service in non-standalone mode
WO2023087137A1 (en) Changing synchronization cases for vehicle-to-everything deployments
US20240114577A1 (en) Techniques for radio resource control reconfiguration alignment
US20210352674A1 (en) Group common control for coverage enhancement for uplink control channel
WO2022147646A1 (en) Forward handover procedures for l2 relay mobility
WO2023044600A1 (en) Techniques for managing local remote user equipment identifier
WO2021223135A1 (en) Sharing bar cell information in dual new radio user equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942220

Country of ref document: EP

Kind code of ref document: A1