WO2021256750A1 - Sirna의 생성 및 기능 증진 활성을 갖는 cmtr1의 신규용도 - Google Patents

Sirna의 생성 및 기능 증진 활성을 갖는 cmtr1의 신규용도 Download PDF

Info

Publication number
WO2021256750A1
WO2021256750A1 PCT/KR2021/006979 KR2021006979W WO2021256750A1 WO 2021256750 A1 WO2021256750 A1 WO 2021256750A1 KR 2021006979 W KR2021006979 W KR 2021006979W WO 2021256750 A1 WO2021256750 A1 WO 2021256750A1
Authority
WO
WIPO (PCT)
Prior art keywords
sirna
cmtr1
seq
dcmtr1
gene silencing
Prior art date
Application number
PCT/KR2021/006979
Other languages
English (en)
French (fr)
Inventor
이영식
이승재
홍재상
임도환
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to US18/000,996 priority Critical patent/US20230210960A1/en
Publication of WO2021256750A1 publication Critical patent/WO2021256750A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/45Transferases (2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/01Methyltransferases (2.1.1)
    • C12Y201/01057Methyltransferases (2.1.1) mRNA (nucleoside-2'-O-)-methyltransferase (2.1.1.57)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Definitions

  • the present invention relates to a novel use of CMTR1 (cap1 2′-O-ribose methyltransferase) having siRNA production and function enhancing activity.
  • CMTR1 cap1 2′-O-ribose methyltransferase
  • RNAi is an evolutionarily conserved phenomenon in eukaryotes. It functions to regulate gene expression by degrading sequence complementary mRNA or inhibiting translation into protein by RNA (siRNA, miRNA) having a length of 21-23 nucleotides.
  • siRNA miRNA
  • miRNA RNA having a length of 21-23 nucleotides.
  • RNAi is closely related to various biological processes, such as the development and physiology of living organisms, cell differentiation, proliferation, death, and genome stability through inhibition of transposon activity.
  • studies for application to drug development, disease diagnosis/treatment, and livestock and livestock fields are being actively conducted.
  • RNAi mechanism so far is that double-stranded RNA (dsRNA) or hairpin miRNA precursor (pre-miRNA) expressed from the genome of a cell is recognized and processed by Dicer in the cytoplasm, resulting in two classes of small RNAs. After being converted into siRNA and miRNA, it binds to RISC (RNA-induced silencing complex), which has Argonaute (Ago) family protein as a key component, and inhibits cleavage/degradation or translation of the sequence complementary mRNA into protein suppress the expression of RISC (RNA-induced silencing complex), which has Argonaute (Ago) family protein as a key component, and inhibits cleavage/degradation or translation of the sequence complementary mRNA into protein suppress the expression of RISC (RNA-induced silencing complex), which has Argonaute (Ago) family protein as a key component, and inhibits cleavage/degradation or translation of the sequence complementary mRNA into protein suppress the expression of
  • RISC
  • Dicer is known to play an important role in the formation of RISC as well as the production of siRNA and miRNA.
  • Dicer acts by interacting with factors having various dsRNA-binding domains (TRBP, PACT, R2D2, or Loqs) as needed, and is known to interact with Ago family proteins.
  • TRBP dsRNA-binding domains
  • PACT PACT
  • R2D2 R2D2
  • Loqs dsRNA-binding domains
  • Ago Another major RNAi factor, Ago, additionally interacts with various proteins, such as FMRP, Gemin3, Gemin4, MOV10, and TNRC6B, and is known to regulate RNAi phenomena.
  • RNA interference (RNAi) treatment Onpattro patisiran
  • Onpattro patisiran
  • Onpattro is an siRNA treatment drug and is the first and only treatment approved by the FDA for this indication.
  • a number of therapeutics for various diseases using gene suppression technology through siRNA are in the clinical stage.
  • siRNA expressed in somatic cells of various mammals as well as Drosophila is generated from precursors of cis-dsRNA, trans-dsRNA, and long hairpin structures, and maintains genome stability by inhibiting transposon activity, and also protein coding It is reported to perform an important biological function that regulates the expression of genes.
  • RNAi regulators such as Dicer and Ago proteins
  • various additional RNAi regulators are likely to perform functions to regulate gene expression in a tissue- or cell-specific manner, and thus identification of biological functions of the RNAi regulators may play an important role in improving the production and capacity of disease therapeutics through siRNA in the future.
  • siRNA plays an important role in the RNAi phenomenon, but there are various problems in using it as a therapeutic agent.
  • siRNA is easily degraded by enzymes and rapidly removed from the kidney due to its small size. Since it is easily removed, there is a problem in that the therapeutic effect is reduced.
  • siRNA has a problem in that it is not easy to move between cell membranes because it has a negative charge (40-50 negative phosphate charge).
  • siRNA a technology for efficient delivery and stability enhancement of siRNA was developed by improving these problems.
  • chemical groups such as 2'-O-methyl, 2-H, and 2-fluoro for 2'-OH of siRNA sugar
  • stability was improved.
  • Methods for increasing the in vivo permeability of siRNA by using cationic polymers such as liposomes, polyethylenimine (PEI), poly-L-lysine (PPL), chitosan, and dendrimers have been developed.
  • PEI polyethylenimine
  • PPL poly-L-lysine
  • dendrimers dendrimers
  • the conventionally developed technology is to improve the function of siRNA through chemical modification, so it is possible to discover a regulator that can regulate the function of siRNA in the cell without chemical modification, and develop a new technology that can improve the production and function of siRNA through the regulator I need this.
  • CMTR1 cap1 2'-O-ribose methyltransferase
  • CMTR1 cap1 2′-O-ribose methyltransferase
  • Another object of the present invention is to provide a composition for enhancing gene silencing activity by siRNA, comprising CMTR1 (cap1 2′-O-ribose methyltransferase) protein as an active ingredient.
  • CMTR1 cap1 2′-O-ribose methyltransferase
  • Another object of the present invention is to provide a method for producing siRNA for gene silencing in vitro, comprising treating the cell with an expression vector containing a gene encoding the amino acid sequence of CMTR1. .
  • the present invention provides a composition for enhancing the production of siRNA, comprising CMTR1 (cap1 2'-O-ribose methyltransferase) protein as an active ingredient.
  • the CMTR1 protein may consist of the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 5.
  • the CMTR1 protein may be encoded by the nucleotide sequence of SEQ ID NO: 2 or SEQ ID NO: 6.
  • the CMTR1 is a dsRNA-initiated RNAi pathway (pathway), and the CMTR1 is a dsRNA-initiated RNAi pathway (pathway), cap1 structure by 2'-O-ribose methylation It may be to increase the generation of siRNA from dsRNA through formation, and to increase gene silencing activity by promoting the formation of a holo-RISC (RNA-induced silencing complex) capable of cleaving the target mRNA of gene silencing.
  • a holo-RISC RNA-induced silencing complex
  • the carboxyl terminal region of CMTR1 may bind to the carboxyl terminal region of R2D2 in the holo-RISC complex.
  • the carboxyl-terminal region of CMTR1 consists of amino acids from positions 388 to 788 of SEQ ID NO: 1, and the carboxyl-terminal region of R2D2 is 237 in the R2D2 amino acid sequence of SEQ ID NO: 3 It may be composed of the amino acid sequence from th to 311 th.
  • the CMTR1 (cap1 2'-O-ribose methyltransferase) may be one in which a gene encoding the CMTR1 amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 5 is inserted into an expression vector.
  • the present invention also provides a composition for enhancing gene silencing activity by siRNA, comprising CMTR1 (cap1 2'-O-ribose methyltransferase) protein as an active ingredient.
  • CMTR1 cap1 2'-O-ribose methyltransferase
  • the CMTR1 protein may consist of the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 5.
  • the CMTR1 protein may be encoded by the nucleotide sequence of SEQ ID NO: 2 or SEQ ID NO: 6.
  • the CMTR1 increases the generation of siRNA from dsRNA through cap1 structure formation by 2'-O-ribose methylation in the RNAi pathway initiated by dsRNA to increase gene silencing activity.
  • the carboxyl-terminal region of CMTR1 binds to the carboxyl-terminal region of R2D2 in the holo-RISC complex to promote the formation of a holo-RISC (RNA-induced silencing complex) capable of cleaving the target mRNA of gene silencing.
  • the carboxyl-terminal region of CMTR1 consists of amino acids from positions 388 to 788 of SEQ ID NO: 1, and the carboxyl-terminal region of R2D2 is 237 in the R2D2 amino acid sequence of SEQ ID NO: 3 It may be composed of the amino acid sequence from th to 311 th.
  • the present invention also provides a method for producing siRNA for gene silencing in vitro, comprising treating cells with an expression vector comprising a gene encoding the CMTR1 amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 5 provides
  • the gene may be composed of the nucleotide sequence of SEQ ID NO: 2 or SEQ ID NO: 6.
  • the present invention relates to a composition for enhancing the production of siRNA comprising CMTR1 (cap1 2'-O-ribose methyltransferase) protein as an active ingredient, and a composition for enhancing gene silencing activity by siRNA. It relates to a method for producing siRNA for gene silencing in CMTR1 according to the present invention can enhance the generation of siRNA for gene silencing and, at the same time, promote the formation of a holo-RISC (RNA-induced silencing complex) that acts on the silencing of a target gene in the RNAi mechanism. It has the effect of enhancing the production and function of siRNA without modification. Therefore, when the CMTR1 of the present invention is used, it can be usefully used in the development of pharmaceuticals using siRNA as a therapeutic agent.
  • CMTR1 cap1 2'-O-ribose methyltransferase
  • FIG. 2 shows the results of identification of dCMTR1 of Drosophila identified as a gene related to gene silencing in the present invention and orthologs having the same function as dCMTR1 of Drosophila in each eukaryote.
  • Figure 3 shows the results of confirming whether GMR-wIR-induced white RNAi according to the cap1 2'-O-ribose methyltransferase (2'-O-MTase) activity in the dCMTR1 W231X mutant, respectively, (A) dCMTR1 + ; GMR-GAL4, GMR-wIR/+ (B) dCMTR1 W231X ; GMR-GAL4, GMR-wIR/+ (C) dCMTR1 W231X ; GMR-GAL4, GMR-wIR/UAS-dCMTR1 (D) dCMTR1 W231X ; GMR-GAL4, GMR-wIR/UAS-dCMTR1 K179A (E) dCMTR1 W231X ; GMR-GAL4, GMR-wIR/UAS-hCMTR1 (F) dCMTR1 W231X ; The results for GMR-GAL4, GMR-wIR/UAS-dCM
  • FIG. 6 shows the results of confirming the increase in gene silencing according to the cap1 structure of dsRNA, where A shows the structure of no cap, cap0, and cap1, and B shows the silencing activity of the GFP gene for them. The results of the analysis are shown.
  • FIG. 11 shows the results of confirming the physical interaction between dCMTR1 and R2D2, which is an essential factor for initiating the formation of the holo-RISC complex
  • a and C are immunoprecipitation results confirmed by western blotting
  • B is immune After staining, the photograph observed with a confocal microscope is shown.
  • FIG. 13 shows the results of co-immunoprecipitation and Western blotting to confirm the binding of various defective fragments of R2D2 to dCMTR1 in order to confirm the binding site between dCMTR1 and R2D2.
  • the present invention is a new technology capable of enhancing the production of siRNA itself that induces gene silencing of a target gene and improving the gene silencing function, out of the conventional method of focusing only on efficient delivery and stability enhancement of siRNA in the field of disease treatment using siRNA During the study, it was first identified that CMTR1 (cap1 2'-O-ribose methyltransferase) has an activity to enhance the production and function of siRNA.
  • the present inventors induced a mutation in the X chromosome of Drosophila using EMS in Drosophila in vivo, and Drosophila having two GMR-wIR transgenes expressing a hairpin dsRNA that induces white gene silencing as a genetic background.
  • white gene silencing was inhibited to identify a mutant in which the white eye turns yellow, and as a result of identifying the mutation-bearing gene through genetic mapping, it was confirmed that the CG6379 gene in Drosophila was mutated, and the mutant was It was confirmed that the 2'-O-MTase domain could not function, and it was named dCMTR1 W231X in an embodiment of the present invention.
  • the GMR-wIR is a gene that enables the expression of hairpin dsRNA that induces RNAi of the white gene in the eyes of a fruit fly.
  • Drosophila having two GMR-wIR genes has red eyes due to gene silencing of the white gene in the eyes. become white
  • CMTR1 conserved in various advanced organisms 2'-O-ribose methyltransferase
  • CMTR1 cap1 2'-O-ribose methyltransferase
  • CMTR1 methylates cap0-mRNA to 2'-O-ribose to form a cap1 structure. Accordingly, the present inventors induced overexpression of the full-length human CMTR1 (hCMTR1) gene in the eye tissue with respect to the dark orange-eyed dCMTR1 W231X mutant in which gene silencing induced by one GMR-wIR transgene was inhibited. As a result, white gene silencing was induced. Inhibition was restored and the dark orange eyes turned into pale orange eyes.
  • CMTR1 cap1 2'-O-ribose methyltransferase
  • cap1 methyltransferase activity by the 2'-O-methyltransferase domain of CMTR1 is involved in the RNAi mechanism.
  • the profile change of the cap1 structure was analyzed for the dCMTR1 W231X mutant whose gene silencing was inhibited.
  • the dCMTR1 W231X mutant 2'-O-methyluridine 5'-monophosphate derived from the mRNA transcript , 2'-O-methylguanosine 5'-monophosphate and 2'-O-methylcytidine 5'-monophosphate were not detected, and 2'-O-methyladenosine 5'-monophosphate was detected in very small amounts.
  • wild-type dCMTR1 or human CMTR1 gene was overexpressed, it was confirmed that the amount of 2'-O-ribose methylated nucleotide was increased.
  • CMTR1 of the present invention has a function of cap1 methyltransferase
  • RNAi gene silencing
  • CMTR1 W231X a mutant with inhibited gene silencing in Drosophila
  • wild-type Drosophila normal control
  • the dCMTR1 W231X mutant showed a significantly reduced amount of siRNA compared to the normal control group, whereas overexpressing the wild-type dCMTR1 gene in the mutant increased the amount of reduced siRNA.
  • CMTR1 can increase the production of siRNA for gene silencing through these results.
  • CMTR1 RNA-induced silencing complex
  • RISC RNA-induced silencing complex
  • CMTR1 RNA-induced silencing complex
  • dsRNA present in cells is cut by a ribonucleic acid hydrolase called Dicer and converted into small RNAs of 21-23 bp, and the cut small RNA form is called siRNA (short interfering RNA).
  • Cytoplasmic cleaved siRNA binds to the RISC (RNA-induced silencing complex) complex.
  • RISC assembly begins with the binding of duplex siRNA to the R2D2/Dicer-2 heterodimer to form the R2D2/Dicer-2 initiator (RDI) complex, which is then Other proteins bind to the RDI complex to form a RISC-loading complex (RLC), where Argonaute-2 (Ago2) binds to form pre-RISC. After that, when the duplex siRNA is unwinding, a holo-RISC capable of cleaving the target mRNA is formed.
  • RLC RISC-loading complex
  • the present inventors analyzed the effect of CMTR1 on the formation of holo-RISC capable of cleaving the target mRNA.
  • CMTR1 W231X mutant with loss of CMTR1 function in native gel electrophoresis analysis of the RISC complex, Compared to holo-RISC, it was found that the electrical migration was delayed.
  • duplex siRNA of pre-RISC When unwinded, it is converted into holo-RISC that can cut target mRNA. Mobility is further increased.
  • CMTR1 can enhance gene silencing activity in RNAi (gene silencing) by promoting the conversion from pre-RISC to holo-RISC.
  • CMTR1 and R2D2 performed co-immunoprecipitation with CMTR1 and R2D2 in Drosophila S2 cells to confirm whether CMTR1 has a physical binding action with R2D2, which is an essential factor for initiation of holo-RISC complex formation.
  • CMTR1 of the present invention interacts with R2D2, and can ultimately improve the silencing of the target gene by siRNA by promoting the conversion from pre-RISC to holo-RISC.
  • the present invention can provide a composition for enhancing the function of siRNA, comprising CMTR1 (cap1 2'-O-ribose methyltransferase) protein as an active ingredient.
  • CMTR1 cap1 2'-O-ribose methyltransferase
  • the CMTR1 may consist of the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 5, wherein SEQ ID NO: 1 is an amino acid sequence for Drosophila CMTR1 protein, and SEQ ID NO: 5 is an amino acid for human CMTR1 protein is a sequence
  • CMTR1 protein of SEQ ID NO: 1 is encoded by the nucleotide sequence of SEQ ID NO: 2
  • the CMTR1 protein of SEQ ID NO: 5 may be encoded by the nucleotide sequence of SEQ ID NO: 6, but is not limited thereto, and the sequence may be included within the scope of the present invention.
  • the CMTR1 has at least 70%, more preferably at least 80%, even more preferably at least 90%, most preferably at least 95% sequence homology with the nucleotide sequence of SEQ ID NO: 2 or SEQ ID NO: 6, respectively. sequence may be included.
  • the "% sequence homology" for a polynucleotide is determined by comparing two optimally aligned sequences with a comparison region, wherein a portion of the polynucleotide sequence in the comparison region is a reference sequence (additions or deletions) to the optimal alignment of the two sequences. may include additions or deletions (ie, gaps) compared to (not including).
  • CMTR1 of the present invention can increase the production of siRNA through cap1 methylation of dsRNA in the RNAi pathway by dsRNA, and holo-RISC (RNA-induced silencing complex) capable of cleaving target mRNA of gene silencing can promote the formation of
  • holo-RISC RNA-induced silencing complex
  • the CMTR1 can promote the formation of pre-RISC to holo-RISC by mutual binding with the carboxyl-terminal region of R2D2 in which the carboxyl-terminal region is included in the holo-RISC complex.
  • the carboxyl terminal region of CMTR1 mutually binding with R2D2 is a region consisting of the 388th to 788th amino acid sequence of SEQ ID NO: 1, which corresponds to a region consisting of the 1162th to 2367th nucleotide sequence of SEQ ID NO: 2 .
  • carboxyl terminal region of R2D2 mutually binding with CMTR1 is a region consisting of the 237 to 311 amino acid sequence of SEQ ID NO: 3, which corresponds to a region consisting of the 709 to 936 nucleotide sequence of SEQ ID NO: 4 do.
  • CMTR1 contained in the composition may be included in the form of a protein, or a gene encoding the CMTR1 amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 5 may be included in the form inserted into an expression vector.
  • the present invention can provide a composition for enhancing gene silencing activity by siRNA, comprising CMTR1 (cap1 2′-O-ribose methyltransferase) protein as an active ingredient.
  • CMTR1 cap1 2′-O-ribose methyltransferase
  • CMTR1 of the present invention induces cap1 methylation and has an activity to increase the generation of siRNA for gene silencing, and cleavage of the target mRNA by promoting the formation of pre-RISC to holo-RISC. It was confirmed that the silencing activity of the target gene through
  • composition comprising CMTR1 of the present invention can enhance target gene silencing activity by siRNA.
  • the present invention provides a method for producing siRNA for gene silencing in vitro, comprising treating cells with an expression vector comprising a gene encoding the CMTR1 amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 5 can provide
  • siRNA for gene silencing can be mass-produced from the cell.
  • composition for enhancing the production of siRNA and the composition for enhancing gene silencing activity by siRNA according to the present invention can be particularly useful in the development of a therapeutic agent using siRNA.
  • dCMTR1 W231X mutant was isolated through a genetic screen method based on mosaic analysis of the X chromosome with FRT19A for adult eyes in the genetic background of GMR-wIR. FRT19A strain was used as a wild type and w 1118 strain was used as a control.
  • the dcr-2 L811fsX , Ago2 414 and Ago2 V966M alleles are described in Kim et al., 2007; Lee et al., 2004; As described in Okamura et al., 2004, strain Ago2 414 was provided by M. Siomi (University of Tokyo, Tokyo, Japan) and used.
  • the full-length cDNA of each gene was synthesized using the primers in Table 1 below through reverse transcription and PCR, and then NotI and XbaI restriction enzyme sites were used. and inserted into the pUAST vector.
  • site-directed mutagenesis was performed using PfuUltra High-Fidelity DNA polymerase (Stratagene, San Diego, CA, USA) and full-length cDNA of dCMTR1 or hCMTR1 cap1 MTase-dead mutants (dCMTR1K 179A or hCMTR1 K239A )
  • a UAS-transgene line expressing the was prepared.
  • the primer sets used for this are as described in Table 1 above.
  • Each of the prepared DNA constructs was co-microinjected into w 1118 embryos with P ⁇ 2-3 ⁇ expressing transposase.
  • GFP green fluorescent protein
  • Wild-type dCMTR1 or its deletion derivatives having a triple-HA epitope at the amino terminus were expressed in S2 cells, and the full-length cDNA of dCMTR1 or its deletion variants was PCR amplified using the primers in Table 1 above, and EcoRI/NotI restriction enzyme sites were was used and cloned into pMT-HA vector.
  • Eye pigments were obtained from 30 adult Drosophila, homogenized with ethanol containing 0.01M HCl, and incubated at 65° C. for 10 minutes. After centrifugation was performed, a supernatant of each sample was obtained, and absorbance was measured at 480 nm.
  • Preparation of the embryo extract and cleavage of the target RNA were performed by a known method known by Pham et al.
  • native gel electrophoresis was performed using a Pp-luc siRNA duplex having a G:U wobble at the 5' end of the sense strand and a highly asymmetric Pp-luc siRNA duplex to maintain the guide strand in Ago2.
  • Unwinding analysis of siRNA was performed using an asymmetric Pp-luc siRNA duplex, and the sequences of the sense and antisense strands of Pp-luc siRNA are as shown in Table 1 above.
  • Hairpin RNA expressed from GMR-wIR was detected by Northern blot, where the 5'-end synthesized through PCR using the hp-w(Ex3)-F and hp-w(Ex3)-R primers of Table 1 above. This labeled DNA probe was used.
  • Northern blot is a method for detecting small RNA, and 5'-end labeled DNA oligonucleotide was used.
  • RNA Clean & Concentrator-5 Zymo Research, Irvine, CA, USA.
  • RNA was completely degraded into 5'-monophosphate nucleosides by reacting at 37 °C for 2 hours using Nuclease P1 (Sigma).
  • Mononucleotide was developed in two dimensions, one direction was performed using solvent A, and then, using solvent B or C, it was developed in a direction perpendicular to the first direction.
  • the composition of the solvents used at this time is as follows.
  • Solvent A isobutyric acid/25% ammonia/water [66:1:33 (v:v:v)]
  • Solvent B 0.1M sodium phosphate buffer (pH 6.8)/ammonium sulfate/1-propanol [100:60:2 v:v:v]
  • Solvent C isopropanol/concentrated HCl/water [68:18:14 (v:v:v)]
  • the TLC plate was then dried in air and the spots were visualized by radiographic imaging.
  • Drosophila S2 cells and copper sulfate-inducible, GFP-expressing S2 cell line Schneider's Drosophila medium containing 10% fetal bovine serum (HyClone, Logan, UT, USA) and 100 U/mL penicillin-streptomycin (HyClone) at 25 °C ( GIBCO, Gaithersburg, MD, USA) was used for culture.
  • 5'ppp-, cap0- or cap1-GFP dsRNA 5'ppp-, cap0- or cap1-GFP dsRNA, a DNA template for GFP sense (602 nucleotides) and an antisense (586 nucleotides) strand of dsRNA were prepared by amplifying through PCR using the primer sets in Table 1.
  • RNA Clean & Concentrator-5 The PCR product was used for transcription reaction in vitro using T7 RNA polymerase (New England Biolabs) in the presence of [ ⁇ - 32 P]-UTP, the transcription products were gel-purified, and 5'ppp-GFP dsRNA was used for production did An aliquot of each RNA strand was first capped with 7-methyl guanosine to the transcribed nucleotide using the Vaccinia Capping System (New England Biolabs), which was then used to produce cap0-GFP dsRNA. Cap0-methylated RNA strands were purified using RNA Clean & Concentrator-5.
  • RNA was cap1- It was used for the production of GFP dsRNA.
  • Complementary strands were mixed in an annealing buffer [30 mM HEPES-KOH (pH 7.5), 100 mM potassium acetate, and 2 mM magnesium acetate] in a 1:1 ratio, then heat treated at 95 °C for 1 minute, and then slowly cooled to room temperature. After cooling to temperature, 5'ppp-, cap0- or cap1-GFP dsRNAs were prepared.
  • dsRNA for LacZ was also prepared using the gene-specific primers in Table 1.
  • GFP expression in S2 cells was induced by the addition of 0.7 mM CuSO 4 , and after 24 hours of expression induction, the cells (1 ⁇ 10 6 cells/well) were treated with 2 ⁇ g of mock or each dsRNA with Lipofectamine 2000 ( Invitrogen), and 12 hours later, the cells were incubated with cold lysis buffer [20 mM Tris-HCl (pH 8.0), 150 mM NaCl, 5 mM MgCl 2 , 2 mM DTT, 0.1% Triton X-100 and protease). After dissolution with inhibitor cocktail (Roche, Basel, Switzerland)], Western blot was performed.
  • Co-IP Co-immunoprecipitation
  • Co-immunoprecipitation was performed as follows. S2 cells were co-transfected with DNA expressing two proteins tagged with different epitopes using FuGENE HD Transfection reagent (Promega, Madison, WI, USA). Induction of gene expression was induced by the addition of 0.7 mM CuSO 4 , and after transfection for 48 hours, the cells were prepared as a cell lysate using the cold cell lysis buffer used above. After centrifugation at a speed of 15,000xg to separate the supernatant (500 ⁇ g), it was used for immunoprecipitation.
  • RNase treatment was performed in the following manner, and 20 ⁇ L RNase A/T1 mix (Thermo Fisher Scientific) was first added to the supernatant of the obtained cell lysate prior to the addition of the antibody, and then at a temperature of 37° C. for 15 minutes. reacted. Each immunoprecipitated sample was analyzed by Western blot.
  • DNA constructs for expressing HA-tagged dCMTR1 and FLAG-tagged R2D2 were co-transfected into S2 cells using FuGENE HD Transfection reagent. Then, expression was induced by the addition of 0.7 mM CuSO 4 , and after transfection for 48 hours, the cells were treated as primary antibodies with anti-FLAG (1:200 dilution; Sigma) and anti-HA (1:200 dilution; Sigma) Antibodies were used to react, followed by secondary Alexa-Fluor-488- and Alexa-Fluor-594-conjugated antibodies (1:500 dilution for each; Molecular Probes, Mulgrave, VIC, Australia), respectively.
  • the samples were placed on a Vectashield mounting medium containing 4',6-diamidino-2-phenylindole (DAPI; Vector Laboratories, Stonesfield, UK) and observed with a confocal laser scanning microscope (Carl Zeiss, Oberkochen, Germany).
  • DAPI 4',6-diamidino-2-phenylindole
  • the present inventors confirmed that the mutated gene in the mutant discovered through genetic mapping was confirmed to be a CG6379 gene, and furthermore, the CG6379 gene is evolutionarily conserved in various eukaryotes including humans. It was confirmed that it is an ortholog of CMTR1 (cap1 2'-O-ribose methyltransferase; cap1 2'-O-MTase).
  • the CG6379 gene identified in the present invention has a 2'-O-MTase domain, and as a result of DNA sequencing, the discovered mutant is a premature stop codon in the 2'-O-MTase domain. ) was confirmed to have W231X (see FIG. 2).
  • the mutant is unable to the 2'-O-MTase domain function, according to appear to exhibit a phenotype, such as dCMTR1 null mutations, the inventors named the excavated mutants in dCMTR1 W231X mutant (dCMTR1 W231X mutant) did
  • CMTR1 induces cap0-mRNA to form cap1 structure by 2'-O-ribose methylation. Accordingly, the present inventors used the Drosophila GAL4/UAS system to determine whether the loss of cap1 MTase function of the dCMTR1 W231X mutant affects the white gene silencing induced by GMR-wIR, specifically in the eye tissue of the dCMTR1 W231X mutant. induced overexpression of CMTR1 protein.
  • CMTR1 human CMTR1
  • GMR-GAL4 restored (recovered) inhibition of white gene silencing caused by mutation of dCMTR1 gene in the eye tissue of dCMTR1 W231X mutant
  • CMTR1 catalytic dead proteins hCMTR1 K249A , dCMTR1 K179A
  • GMR-GAL4 did not restore the inhibition of white gene silencing caused by mutation of the dCMTR1 gene in the eye tissue of dCMTR1 W231X mutant ( see Fig. 3).
  • the present inventors have carried out an analysis of 2D-TLC (two-dimensional thin -layer chromatography) to determine the profile (profile) changes whether the cap1 structure of dCMTR1 W231X mutants by cap1 MTase function loss dCMTR1 W231X mutants.
  • 2D-TLC two-dimensional thin -layer chromatography
  • Drosophila S2 cells expressing GFP was a GFP expression in accordance with CuSO 4 to be made of the presence or absence
  • the stabilized cell line was transfected with plasmid DNA by inserting a GFP cDNA sequence in pMT vector with a CuSO 4 -inducible promoter.
  • cap1 structure of dsRNA in Drosophila S2 cells has an activity to increase gene silencing.
  • siRNA generated from GMR-wIR hairpin dsRNA was measured using Northern blotting.
  • the dCMTR1 W231X mutant showed a decrease in the amount of wIR siRNA compared to the wild-type control (see FIG. 7a ).
  • a phenomenon that decreases wIR siRNA amount at dCMTR1 W231X mutant is by overexpression of the wild-type dCMTR1 using the GAL4 / UAS system in flies appeared to be restored, recovery in the case sikyeoteul overexpressing the catalytic dead protein dCMTR1 K179A of dCMTR1 It was found that it was not possible (see Fig. 7b). Therefore, these results suggest that the catalytic activity of dCMTR1 is related to the biosynthesis of siRNA.
  • the present inventors performed an experiment to confirm whether dCMTR1 also affects the downstream mechanism of RNAi after the generation of siRNA. Specifically, in vitro cleavage of siRNA-triggered target mRNA was confirmed to see if dCMTR1 is related to RISC assembly and downstream mechanisms after siRNA generation such as RISC-directed cleavage of target mRNA.
  • RNAi complex was analyzed for RISC assembly through native gel electrophoresis.
  • RISC assembly begins with the binding of duplex siRNA to the R2D2/Dicer-2 heterodimer to form the R2D2/Dicer-2 initiator (RDI) complex.
  • RLC RLC
  • pre-RISC is formed by binding of Ago2 to RLC.
  • dCMTR1 W231X mutant expression group was confirmed to have a similar mobility and Ago2 V966M mutant expression group (see Fig. 9b ).
  • the dCMTR1 W231X mutant expression group had a problem in conversion from pre-RISC to holo-RISC during RISC formation, similar to the Ago2 V966M mutant expression group.
  • the dCMTR1 W231X mutant expression group significantly reduced the degree of unwinding of duplex siRNA compared to the wild-type control group (see FIG. 10 ).
  • dCMTR1 plays an important role in the RNAi downstream mechanism after siRNA generation by promoting the conversion of holo-RISC from pre-RISC.
  • HA-tagged dCMTR1 and FLAG-tagged RNAi-related proteins were expressed in Drosophila S2 cells, and then co-immunoprecipitation (co-IP) was performed.
  • co-IP co-immunoprecipitation
  • FLAG-tagged RNAi-related proteins using an anti-FLAG antibody
  • FLAG-R2D2 showed that HA-dCMTR1 co-immunoprecipitated.
  • HA-dCMTR1 colocalized in both the nucleus and cytoplasm of FLAG-R2D2 and Drosophila S2 cells (see FIG. 11b ).
  • co-immunoprecipitation was also performed using anti-R2D2 and anti-dCMTR1 antibodies.
  • dCMTR1 protein is largely composed of Glycine rich domain, G-patch domain, RNA methyltransferase domain, and carboxyl-terminal region.
  • the dCMTR1 deficient protein fragment was constructed by deleting each domain, and HA was used as an affinity tag.
  • R2D2 protein is largely composed of two double-stranded RNA-binding domains (dsRBD) and a carboxyl-terminal region.
  • the R2D2 deletion protein fragment was constructed by deleting each domain, and FLAG was used as an affinity tag. HA-tagged dCMTR1 and dCMTR1 deficient protein fragments were expressed in Drosophila S2 cells expressing FLAG-R2D2 protein, respectively, and then co-immunoprecipitation was performed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Virology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 siRNA의 생성 및 기능 증진 활성을 갖는 CMTR1의 신규용도에 관한 것으로, 구체적으로 본 발명은 CMTR1(cap1 2'-O-ribose methyltransferase) 단백질을 유효성분으로 포함하는 siRNA의 생성 증진용 조성물 및 siRNA에 의한 유전자 침묵(gene silencing) 활성 증진용 조성물에 관한 것이며, 또한 본 발명은 시험관 내에서 유전자 침묵(gene silencing)을 위한 siRNA를 생산하는 방법에 관한 것이다. 본 발명에 따른 CMTR1은 유전자 침묵을 위한 siRNA의 생성을 증진시킬 수 있고 동시에 RNAi 기전에서 타겟 유전자의 침묵에 작용하는 holo-RISC(RNA-induced silencing complex)의 형성 증진을 통해 궁극적으로 siRNA의 인위적인 화학적 변형 없이도 siRNA의 생성 및 기능을 증진시키는 효과가 있다. 따라서 본 발명의 CMTR1을 이용할 경우 siRNA를 치료제로 하는 의약품의 개발에 유용하게 사용될 수 있다.

Description

siRNA의 생성 및 기능 증진 활성을 갖는 CMTR1의 신규용도
본 발명은 CMTR1(cap1 2‘-O-ribose methyltransferase)의 siRNA의 생성 및 기능 증진 활성을 갖는 신규 용도에 관한 것이다.
RNAi는 진핵생물에서 진화적으로 보존되는 현상으로, 21-23개의 뉴클레오티드 길이를 갖는 RNA(siRNA, miRNA)에 의해 염기서열 상보적인 mRNA를 분해하거나 단백질로의 번역을 억제함으로써 유전자 발현을 조절하는 기능을 갖는다. RNAi는 생체의 발생 및 생리, 세포의 분화, 증식, 사멸, 트랜스포존(transposon)의 활성억제를 통한 유전체 안정성 등 다양한 생물학적 과정에 밀접하게 관련되어 있다. 또한 바이러스에 대한 저항성 및 다양한 인간 질병과도 밀접하게 연관되어 있어 의약품 개발, 질병의 진단/치료 및 농축산 분야 등에 응용하기 위한 연구들이 활발히 진행되고 있다.
현재까지의 대표적 RNAi 기전은 세포의 유전체로부터 발현되는 이중 가닥 RNA(dsRNA) 또는 헤어핀(hairpin) miRNA 전구체(pre-miRNA)가 세포질(cytoplasm)에서 Dicer에 의해 인식되어 프로세싱 됨으로써 두 부류의 작은 RNA들인 siRNA와 miRNA로 전환된 후, Argonaute(Ago) 패밀리 단백질을 핵심 구성성분으로 갖는 RISC(RNA-induced silencing complex)와 결합해 염기서열 상보적인 mRNA를 절단/분해 또는 단백질로 번역되는 것을 저해하여 해당 유전자의 발현을 억제한다.
또한, 이러한 RNAi 현상에는 다양한 단백질 인자들이 관여하는 것으로 보고되고 있는데, 예를 들어 Dicer는 siRNA와 miRNA의 생산뿐만 아니라, RISC의 형성에도 중요한 역할을 한다고 알려져 있다. Dicer는 다양한 dsRNA-결합 도메인을 지닌 인자들(TRBP, PACT, R2D2, 또는 Loqs)과 필요에 따라 상호결합을 하여 작용하며, Ago 패밀리 단백질과도 상호작용 하는 것으로 알려져 있다. 또 다른 주요 RNAi 인자인 Ago는 추가적으로 FMRP, Gemin3, Gemin4, MOV10, TNRC6B 등 다양한 단백질과 상호작용하며 RNAi 현상을 조절하는 것으로 알려져 있다.
최근에는 siRNA를 질병 치료제로 이용하기 위한 연구가 활발히 진행되고 있으며, FDA는 2018년 앨나이람 파마슈티컬스(Alnylam Pharmaceuticals)의 RNA 간섭(RNAi)치료제인 온파트로(Onpattro, patisiran)를 유전성 트랜스티레틴 매개성(hATTR) 아밀로이드증 성인 환자의 다발신경병증에 대한 치료제로 승인한 바 있다. 온파트로는 siRNA 치료제 약물로 FDA가 이 적응증에 승인한 최초이자 유일한 치료제이다. 이 외에도 siRNA를 통한 유전자 억제 기술을 이용한 다양한 질병 치료제가 다수 임상 단계에 있다.
초파리뿐만 아니라 다양한 포유동물의 체세포(somatic cell)에서 발현되는 siRNA는 cis-dsRNA, trans-dsRNA, long hairpin 구조의 전구체로부터 생성되며, 트랜스포존의 활성을 억제함으로써 유전체의 안정성을 유지하며, 또한 단백질 코딩 유전자의 발현을 조절하는 중요한 생물학적 기능을 수행하는 것으로 보고되고 있다.
Dicer와 Ago 단백질들과 같은 주요 RNAi 조절인자 이외에 다양한 추가 RNAi 조절인자들은 조직 또는 세포 특이적인 방식에 유전자 발현을 조절하기 위한 기능을 수행할 가능성이 높고, 그에 따른 해당 RNAi 조절인자의 생물학적 기능의 규명은 향후 siRNA를 통한 질병 치료제의 생산 및 능력을 향상시키는데 중요한 역할을 할 수 있다.
한편, siRNA는 RNAi 현상에 중요한 역할을 담당하고 있지만 치료제로 사용하기에는 다양한 문제점이 존재한다. 우선 siRNA는 효소에 의해 쉽게 분해되고 작은 크기로 인해 신장에서 빠르게 제거되며, siRNA가 혈액 순환 시, 간, 췌장에서 옵소닌 작용에 의해 RES(Reticuloendothelial system)/MPS(mononuclear phagocytic system)를 통해 인식되어 쉽게 제거되므로 치료효과가 감소한다는 문제점이 있다. 또한 siRNA는 음전하(40-50 negative phosphate charge)를 띄기 때문에 세포막간 이동이 쉽지 않다는 문제점이 있다.
이에 이러한 문제점을 개선하여 siRNA의 효율적인 전달 및 안정성 증진을 위한 기술이 개발되었는데, siRNA 당의 2’-OH를 2’-O-methyl, 2-H, 2-fluoro와 같은 화학적 그룹으로 치환함으로써 안정성을 높이거나, 리포좀, PEI (polyethylenimine), PPL (poly-L-lysine), 키토산, 덴드리머와 같은 양이온 폴리머를 이용하여 siRNA의 생체 내 투과율을 높이려는 방법이 개발된 바 있다.
그러나 종래 개발된 기술은 화학적 변형을 통한 siRNA의 기능 향상으로서 화학적 변형 없이 세포 내에서 siRNA의 기능을 조절할 수 있는 조절자를 발굴하고 해당 조절자를 통해 siRNA의 생산과 기능을 향상시킬 수 있는 새로운 기술의 개발이 필요하다.
이에 본 발명자들은 CMTR1(cap1 2‘-O-ribose methyltransferase)이 siRNA의 생산과 기능을 증진시키는 활성이 있음을 최초로 규명하였다.
따라서 본 발명의 목적은 CMTR1(cap1 2‘-O-ribose methyltransferase) 단백질을 유효성분으로 포함하는 siRNA의 생성 증진용 조성물을 제공하는 것이다.
본 발명의 다른 목적은 CMTR1(cap1 2‘-O-ribose methyltransferase) 단백질을 유효성분으로 포함하는, siRNA에 의한 유전자 침묵(gene silencing) 활성 증진용 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 CMTR1의 아미노산 서열을 코딩하는 유전자를 포함하는 발현벡터를 세포에 처리하는 단계를 포함하는, 시험관 내에서 유전자 침묵(gene silencing)을 위한 siRNA를 생산하는 방법을 제공하는 것이다.
그러므로 본 발명은 CMTR1(cap1 2‘-O-ribose methyltransferase) 단백질을 유효성분으로 포함하는, siRNA의 생성 증진용 조성물을 제공한다.
본 발명의 일실시예에 있어서, 상기 CMTR1 단백질은 서열번호 1 또는 서열번호 5의 아미노산 서열로 이루어진 것일 수 있다.
본 발명의 일실시예에 있어서, 상기 CMTR1 단백질은 서열번호 2 또는 서열번호 6의 염기서열로 암호화된 것일 수 있다.
본 발명의 일실시예에 있어서, 상기 CMTR1은 dsRNA에 의해 시작되는 RNAi 경로(pathway)에서, 상기 CMTR1은 dsRNA에 의해 시작되는 RNAi 경로(pathway)에서, 2’-O-ribose methylation에 의한 cap1 구조 형성을 통해 dsRNA로부터 siRNA의 생성을 증가시키며, 유전자 침묵의 타겟 mRNA을 절단할 수 있는 holo-RISC(RNA-induced silencing complex)의 형성을 촉진시켜 유전자 침묵 활성을 증가시키는 것일 수 있다.
본 발명의 일실시예에 있어서, 상기 CMTR1의 카르복실 말단 영역은 holo-RISC 복합체 중에서 R2D2의 카르복실 말단 영역과 결합할 수 있다.
본 발명의 일실시예에 있어서, 상기 CMTR1의 카르복실 말단 영역은 서열번호 1의 388번째부터 788번째의 아미노산 서열로 이루어진 것이고, 상기 R2D2의 카르복실 말단 영역은 서열번호 3의 R2D2 아미노산 서열에서 237번째부터 311번째의 아미노산 서열로 이루어진 것일 수 있다.
본 발명의 일실시예에 있어서, 상기 CMTR1(cap1 2‘-O-ribose methyltransferase)은 서열번호 1 또는 서열번호 5의 CMTR1 아미노산 서열을 코딩하는 유전자가 발현벡터에 삽입되어 있는 것일 수 있다.
또한 본 발명은 CMTR1(cap1 2‘-O-ribose methyltransferase) 단백질을 유효성분으로 포함하는, siRNA에 의한 유전자 침묵(gene silencing) 활성 증진용 조성물을 제공한다.
본 발명의 일실시예에 있어서, 상기 CMTR1 단백질은 서열번호 1 또는 서열번호 5의 아미노산 서열로 이루어진 것일 수 있다.
본 발명의 일실시예에 있어서, 상기 CMTR1 단백질은 서열번호 2 또는 서열번호 6의 염기서열로 암호화된 것일 수 있다.
본 발명의 일실시예에 있어서, 상기 CMTR1은 dsRNA에 의해 시작되는 RNAi 경로(pathway)에서, 2’-O-ribose methylation에 의한 cap1 구조 형성을 통해 dsRNA로부터 siRNA의 생성을 증가시켜 유전자 침묵 활성을 증가시키며, CMTR1의 카르복실 말단 영역은 holo-RISC 복합체 중에서 R2D2의 카르복실 말단 영역과 결합하여 유전자 침묵의 타겟 mRNA을 절단할 수 있는 holo-RISC(RNA-induced silencing complex)의 형성을 촉진시킬 수 있다.
본 발명의 일실시예에 있어서, 상기 CMTR1의 카르복실 말단 영역은 서열번호 1의 388번째부터 788번째의 아미노산 서열로 이루어진 것이고, 상기 R2D2의 카르복실 말단 영역은 서열번호 3의 R2D2 아미노산 서열에서 237번째부터 311번째의 아미노산 서열로 이루어진 것일 수 있다.
또한 본 발명은 서열번호 1 또는 서열번호 5의 CMTR1 아미노산 서열을 코딩하는 유전자를 포함하는 발현벡터를 세포에 처리하는 단계를 포함하는, 시험관 내에서 유전자 침묵(gene silencing)을 위한 siRNA를 생산하는 방법을 제공한다.
본 발명의 일실시예에 있어서, 상기 유전자는 서열번호 2 또는 서열번호 6의 염기서열로 이루어진 것일 수 있다.
본 발명은 CMTR1(cap1 2‘-O-ribose methyltransferase) 단백질을 유효성분으로 포함하는 siRNA의 생성 증진용 조성물 및 siRNA에 의한 유전자 침묵(gene silencing) 활성 증진용 조성물에 관한 것이며, 또한 본 발명은 시험관 내에서 유전자 침묵(gene silencing)을 위한 siRNA를 생산하는 방법에 관한 것이다. 본 발명에 따른 CMTR1은 유전자 침묵을 위한 siRNA의 생성을 증진시킬 수 있고 동시에 RNAi 기전에서 타겟 유전자의 침묵에 작용하는 holo-RISC(RNA-induced silencing complex)의 형성 증진을 통해 궁극적으로 siRNA의 인위적인 화학적 변형 없이도 siRNA의 생성 및 기능을 증진시키는 효과가 있다. 따라서 본 발명의 CMTR1을 이용할 경우 siRNA를 치료제로 하는 의약품의 개발에 유용하게 사용될 수 있다.
도 1은 GMR-wIR 전이유전자를 유전적 배경으로 갖고 있으며 EMS 처리에 의한 초파리 X 염색체상 돌연변이를 갖는 dCMTR1W231X 돌연변이체, Ago2414 돌연변이체와 야생형 초파리에 대한 눈의 색깔을 확인한 결과를 나타낸 것이다.
도 2는 본 발명에서 유전자 침묵과 관련된 유전자로 동정된 초파리의 dCMTR1와 각 진핵생물에서 초파리의 dCMTR1와 같은 기능을 갖는 동원체(ortholog)들에 대한 규명결과를 나타낸 것이다.
도 3은 dCMTR1W231X 돌연변이체에서 cap1 2‘-O-ribose methyltransferase(2’-O-MTase) 활성에 따른 GMR-wIR 유도 white RNAi 여부를 확인한 결과를 각각 나타낸 것으로, (A) dCMTR1+; GMR-GAL4, GMR-wIR/+ (B) dCMTR1W231X; GMR-GAL4, GMR-wIR/+ (C) dCMTR1W231X; GMR-GAL4, GMR-wIR/UAS-dCMTR1 (D) dCMTR1W231X; GMR-GAL4, GMR-wIR/UAS-dCMTR1K179A (E) dCMTR1W231X; GMR-GAL4, GMR-wIR/UAS-hCMTR1 (F) dCMTR1W231X; GMR-GAL4, GMR-wIR/UAS-dCMTR1K239A에 대한 결과를 초파리 눈의 색으로 나타낸 것이고(3A), 이에 대한 흡광도 측정결과를 그래프로 나타낸 것이다(3B).
도 4는 2D-TLC를 통한 dCMTR1W231X 돌연변이체에서의 2'-O-ribose methylation을 확인한 결과를 나타낸 것으로, (A) 2‘-O-ribose methylation의 유무에 따른 standard mononucleotides의 2D-TLC 결과를 나타낸 것이고, (B) Wild-type과 dCMTR1W231X 돌연변이체에서의 2D-TLC 결과를 나타낸 것이다.
도 5는 2D-TLC를 통한 dCMTR1W231X 돌연변이체에서의 CMTR1 및 dCMTR1의 catalytic dead 단백질의 과발현을 통한 2'-O-ribose 메틸화를 확인한 결과를 나타낸 것이다.
도 6은 dsRNA의 cap1 구조에 따른 유전자 침묵 현상 증가를 확인한 결과를 나타낸 것으로, A는 cap 구조 없음(no cap), cap0, cap1의 구조를 나타낸 것이고, B는 이들에 대한 GFP 유전자의 침묵 활성을 분석한 결과를 나타낸 것이다.
도 7은 dCMTR1의 siRNA 생성과의 연관성을 노던블럿(northern blotting)을 통해 확인한 결과를 나타낸 것이다.
도 8은 dCMTR1W231X 돌연변이체에서의 siRNA 유발 타겟 mRNA의 절단 감소활성을 확인한 결과를 나타낸 것이다.
도 9는 dCMTR1W231X 돌연변이체에서의 RISC 복합체 형성 감소를 native 겔 전기영동을 통해 확인한 결과를 나타낸 것이다.
도 10은 dCMTR1W231X 돌연변이체에 의한 duplex siRNA로부터 단일가닥 siRNA로의 풀림(unwinding) 감소 현상을 확인한 결과를 나타낸 것이다.
도 11은 dCMTR1와 holo-RISC 복합체 형성의 시작을 위한 필수인자인 R2D2의 물리적 상호작용을 확인한 결과를 나타낸 것으로, A 및 C는 면역침강 결과를 웨스턴 블럿(western blotting)으로 확인한 것이고, B는 면역염색 후 공초점 현미경으로 관찰한 사진을 나타낸 것이다.
도 12는 dCMTR1와 R2D2와의 결합부위를 확인하기 위해, dCMTR1의 다양한 결손 단편들과 R2D2의 결합여부를 공동면역침강 후, 웨스턴 블럿으로 확인한 결과를 나타낸 것이다.
도 13은 dCMTR1와 R2D2와의 결합부위를 확인하기 위해, R2D2의 다양한 결손 단편들과 dCMTR1의 결합여부를 공동면역침강 후, 웨스턴 블럿으로 확인한 결과를 나타낸 것이다.
본 발명은 siRNA를 이용한 질병 치료제 기술분야에서 종래 siRNA의 효율적인 전달 및 안정성 증진에만 주력하는 방법을 벗어나 타겟 유전자의 유전자 침묵을 유도하는 siRNA 자체의 생산을 증진시키고 유전자 침묵 기능을 향상시킬 수 있는 새로운 기술을 연구하던 중, CMTR1(cap1 2‘-O-ribose methyltransferase)이 siRNA의 생산과 기능을 증진시키는 활성이 있음을 최초로 규명하였다.
구체적으로 본 발명자들은 초파리 생체 내에서 EMS를 이용하여 초파리의 X 염색체에 돌연변이를 유도하였고, white 유전자의 침묵을 유도하는 hairpin dsRNA를 발현하는 GMR-wIR 전이유전자 2개를 유전적 배경으로 가지고 있는 초파리에서 white 유전자 침묵이 저해되어 흰색의 눈이 노란색으로 변하는 돌연변이체를 동정하였고, 유전자 맵핑(genetic mapping)을 통해 돌연변이 보유 유전자를 동정한 결과, 초파리의 CG6379 유전자가 돌연변이 되었음을 확인하였고, 상기 돌연변이체는 2’-O-MTase 도메인이 기능하지 못할 것으로 확인하였으며 이를 본 발명의 일실시예에서는 dCMTR1W231X 으로 명명하였다.
여기서 상기 GMR-wIR은 초파리 눈에서 white 유전자의 RNAi를 유도하는 hairpin dsRNA를 발현 가능하게 하는 유전자로서, 2개의 GMR-wIR 유전자를 갖는 초파리는 눈에서 white 유전자에 대한 유전자 침묵 현상에 의해 빨간색 눈이 흰색이 된다.
RNAi와 관련하여 동정된 초파리의 CG6379 유전자에 대하여, 진핵생물의 유전체를 대상으로 다른 종간에 동일한 기능을 가질 것으로 예상되는 동원체(ortholog) 유전자들을 분석한 결과, 다양한 진행생물에서 보존되어 있는 CMTR1(cap1 2‘-O-ribose methyltransferase)임을 확인하였다.
이에 본 발명자들은 CMTR1(cap1 2‘-O-ribose methyltransferase)의 효소활성이 dsRNA에 기인한 RNAi와 관련성이 있는지와 그 RNAi 경로 상에서 어떤 단계에 관련성이 있는지를 확인하기 위한 실험을 수행하였다.
CMTR1은 cap0-mRNA를 2’-O-ribose 메틸화시켜 cap1 구조를 형성하도록 한다. 이에 본 발명자들은 GMR-wIR 전이유전자 1개에 의해 유도되는 유전자 침묵이 저해된 짙은 주황색 눈의 dCMTR1W231X 돌연변이체에 대하여 전장 인간 CMTR1(hCMTR1) 유전자의 과발현을 눈 조직에서 유도한 결과, white 유전자 침묵의 저해가 복구되어 짙은 주황색 눈이 옅은 주황색 눈으로 변한 것으로 나타났다.
반면, 2’-O-MTase 활성이 상실된 CMTR1을 발현하는 hCMTR1K249A 또는 dCMTR1K179A 돌연변이 유전자의 과발현을 눈 조직에서 유도한 경우에는 white 유전자 침묵의 저해가 복구되지 못하는 것으로 나타났다.
이러한 결과를 통해 본 발명자들은 CMTR1(cap1 2‘-O-ribose methyltransferase)이 유전자 침묵에 관여한다는 것을 알 수 있었고, CMTR1의 2’-O-methyltransferase 도메인에 의한 cap1 methyltransferase 활성이 RNAi 기전에 관여한다는 것을 알 수 있었다.
또한 본 발명의 다른 일실시예에서는 유전자 침묵이 저해된 dCMTR1W231X 돌연변이체에 대하여 cap1 구조에 대한 프로파일 변화를 분석하였는데, dCMTR1W231X 돌연변이체에서는 mRNA 전사체 유래의 2'-O-methyluridine 5’-monophosphate, 2'-O-methylguanosine 5’-monophosphate 및 2'-O-methylcytidine 5’-monophosphate은 검출되지 않았고, 2'-O-methyladenosine 5’-monophosphate도 극히 미량으로 검출되었다. 반면, 야생형 dCMTR1 또는 인간 CMTR1 유전자를 과발현시킨 경우, 2'-O-ribose methylated nucleotide의 양이 증가됨을 확인하였다.
따라서 이는 유전자 침묵이 저해된 dCMTR1W231X 돌연변이체의 경우, 즉, CMTR1의 작용이 제대로 작동하지 못하는 경우, 2'-O-ribose methylated nucleotide의 생성이 저해됨을 의미하며, 또한 CMTR1이 cap1 methyltransferase 의 활성을 가지고 있음을 의미한다.
또한 본 발명의 다른 일실시예에서는 본 발명의 CMTR1이 cap1 methyltransferase의 기능이 있음을 상기에서 확인한 바에 의해, CMTR1에 의한 dsRNA의 cap1 메틸화가 유전자 침묵(RNAi)과 관련이 있는지 확인하기 위해, CuSO4 유무에 따라 GFP를 발현하는 초파리 세포에 5'ppp(no cap)-, cap0-, 또는 cap1-GFP dsRNA를 도입시킨 후, 유전자 침묵 현상을 분석하였다.
그 결과, 5'ppp- 및 cap0-GFP dsRNA에 의한 GFP 유전자 침묵의 활성 변화를 확인할 수 없었다. 그러나 cap1-GFP dsRNA에 의한 GFP 유전자 침묵의 활성은 크게 증가되었음을 확인할 수 있었다.
따라서 dsRNA의 cap1 구조가 유전자 침묵현상을 증가시키는데 기여함을 알 수 있었고, 본 발명의 CMTR1이 cap1 methyltransferase의 작용을 통해 dsRNA의 cap1 구조를 형성하도록 하며 이를 통해 유전자 침묵현상을 증가시킬 수 있음을 알수 있었다.
또한 본 발명자들은 본 발명의 CMTR1이 siRNA의 생성 및 유전자 침묵 기전에 있어서 어떻게 구체적으로 작용하는지 확인하기 위해, 초파리를 대상으로 유전자 침묵이 저해된 돌연변이체인 dCMTR1W231X 및 야생형 초파리(정상대조군)을 대상으로 wIR siRNA의 생성양을 노던블럿을 통해 확인하였다.
그 결과, dCMTR1W231X 돌연변이체는 정상대조군에 비해 siRNA의 양이 현저하게 감소된 것으로 나타났고, 반면 상기 돌연변이체에 야생형 dCMTR1 유전자를 과발현시킨 경우, 감소된 siRNA의 양이 증가되는 것으로 나타났다.
한편, 2’-O-MTase 활성을 상실시키는 돌연변이를 갖는 dCMTR1K179A 유전자를 과발현시킨 경우에는 감소된 siRNA의 양이 증가되지 못하는 것으로 나타났다.
따라서 이러한 결과를 통해 CMTR1은 유전자 침묵을 위한 siRNA의 생성을 증가시킬 수 있음을 알 수 있었다.
또한 본 발명자들은 siRNA에 의한 유전자 침묵에 관여하는 기전에 있어서, CMTR1이 RISC(RNA-induced silencing complex) 복합체와의 관련성을 확인하기 위해, dCMTR1W231X 돌연변이체 및 야생형 정상대조군에서 siRNA에 의한 타겟 mRNA의 절단 정도를 분석하였는데, 그 결과 야생형 정상대조군이 돌연변이체에 비해 절단된 타겟 mRNA의 양이 더 증가한 것으로 나타났다.
또한, RISC 복합체(RNA-induced silencing complex)에 미치는 CMTR1의 영향도 분석하였는데, dCMTR1W231X 돌연변이체는 타겟 mRNA의 분해에 필요한 holo-RISC의 형성에 이상을 초래함을 확인하였다.
일반적으로 세포 내에서 존재하는 dsRNA는 Dicer라는 리보핵산 가수분해효소에 의해 잘려 21-23bp의 작은 RNA로 전환되며, 잘린 작은 RNA 형태를 siRNA (short interfering RNA)이라 한다. 세포질에서 잘린 siRNA는 RISC (RNA-induced silencing complex) 복합체와 결합하는데, RISC assembly는 duplex siRNA가 R2D2/Dicer-2 heterodimer에 결합하여 R2D2/Dicer-2 initiator(RDI) 복합체의 형성으로 시작되며, 이후 다른 단백질들이 RDI 복합체에 결합하여 RISC-loading complex(RLC)가 형성되며 여기에 Argonaute-2(Ago2)가 결합하여 pre-RISC가 형성된다. 이후 duplex siRNA가 풀림(unwinding)이 진행되면 타겟 mRNA를 절단할 수 있는 holo-RISC가 형성된다.
이에 본 발명자들은 타겟 mRNA를 절단할 수 있는 holo-RISC의 형성에 CMTR1이 미치는 영향을 분석하였는데, 그 결과, CMTR1의 기능이 상실된 dCMTR1W231X 돌연변이체의 경우, RISC 복합체에 대한 native 겔 전기영동 분석에서 holo-RISC에 비해 전기적 이동이 늦는 현상으로 나타났다.
이는 pre-RISC의 duplex siRNA가 풀림(unwinding)이 되면 타겟 mRNA를 절단할 수 있는 holo-RISC로 전환이 되며, siRNA의 풀림으로 인해 holo-RISC는 pre-RISC에 비해 크기가 감소하여 전기영동에서 이동성이 더 증가되어진다.
그러나, dCMTR1W231X 돌연변이체에서는 native 겔 전기영동에서 RISC 복합체의 이동이 holo-RISC에 비해 전기적 이동이 늦는 현상으로 확인됨에 따라 pre-RISC에서 holo-RISC로 전환되지 못함을 알 수 있었으며, 정상군에 비해 duplex siRNA의 풀림(unwinding) 정도가 감소됨을 알 수 있었다.
이는 CMTR1이 RNAi(유전자 침묵)에 있어서, pre-RISC 에서 holo-RISC로의 전환 촉진을 통해 유전자 침묵 활성을 증진시킬 수 있음을 의미한다.
뿐만 아니라 본 발명자들은 CMTR1이 holo-RISC 복합체 형성의 시작을 위한 필수인자인 R2D2와 물리적인 결합작용을 갖는지 확인하기 위해, 초파리 S2 세포 내에서 CMTR1과 R2D2와의 공동 면역침강을 수행하였다.
그 결과, CMTR1과 R2D2간의 상호 물리적인 결합을 확인할 수 있었고, 특히 CMTR1의 카르복실-말단 영역과 R2D2의 카르복실-말단 영역이 서로 결합하고 있음을 알 수 있었다.
이러한 결과를 통해 본 발명자들은 본 발명의 CMTR1이 R2D2와 상호작용 하며, pre-RISC에서 holo-RISC로의 전환 촉진을 통해 궁극적으로 siRNA에 의한 타겟 유전자의 침묵을 향상시킬 수 있음을 알 수 있었다.
그러므로, 본 발명은 CMTR1(cap1 2‘-O-ribose methyltransferase) 단백질을 유효성분으로 포함하는, siRNA의 기능 증진용 조성물을 제공할 수 있다.
본 발명에서 상기 CMTR1은 서열번호 1 또는 서열번호 5의 아미노산 서열로 이루어진 것일 수 있으며, 상기 서열번호 1은 초파리(Drosophila) CMTR1 단백질에 대한 아미노산 서열이며, 상기 서열번호 5는 인간 CMTR1 단백질에 대한 아미노산 서열이다.
또한, 상기 서열번호 1의 CMTR1 단백질은 서열번호 2의 염기서열로 암호화되어 있고, 상기 서열번호 5의 CMTR1 단백질은 서열번호 6의 염기서열로 암호화된 것일 수 있으나, 이에 제한되지는 않으며, 상기 서열의 상동체가 본 발명의 범위에 포함될 수 있다.
구체적으로, 상기 CMTR1은 서열번호 2 또는 서열번호 6의 염기서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더욱더 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 서열을 포함할 수 있다.
폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열 (추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제 (즉, 갭)를 포함할 수 있다.
본 발명의 CMTR1은 dsRNA에 의한 RNAi 경로(pathway)에서, dsRNA의 cap1 메틸화를 통해 siRNA의 생성을 증가시킬 수 있고, 유전자 침묵의 타겟 mRNA을 절단할 수 있는 holo-RISC(RNA-induced silencing complex)의 형성을 촉진시킬 수 있다.
상기 CMTR1은 카르복실 말단 영역이 holo-RISC 복합체에 포함되는 R2D2의 카르복실 말단 영역과 상호결합하여, pre-RISC에서 holo-RISC로의 형성을 촉진시킬 수 있다.
여기서 상기 R2D2와 상호결합하는 CMTR1의 카르복실 말단 영역은 서열번호 1의 388번째부터 788번째의 아미노산 서열로 이루어진 영역이며, 이는 서열번호 2의 1162번째부터 2367번째의 염기서열로 이루어진 영역에 해당한다.
또한, 상기 CMTR1과 상호결합하는 R2D2의 카르복실 말단 영역은 서열번호 3의 237번째부터 311번째의 아미노산 서열로 이루어진 영역이며, 이는 서열번호 4의 709번째부터 936번째의 염기서열로 이루어진 영역에 해당한다.
상기 조성물에 함유된 CMTR1은 단백질 형태로 포함될 수도 있고, 서열번호 1 또는 서열번호 5의 CMTR1 아미노산 서열을 코딩하는 유전자가 발현벡터에 삽입된 형태로 포함될 수도 있다.
또한 본 발명은 CMTR1(cap1 2‘-O-ribose methyltransferase) 단백질을 유효성분으로 포함하는, siRNA에 의한 유전자 침묵(gene silencing) 활성 증진용 조성물을 제공할 수 있다.
앞서 기술한 바와 같이, 본 발명의 CMTR1은 cap1 메틸화를 유도하며, 유전자 침묵을 위한 siRNA의 생성을 증가시키는 활성이 있음을 확인하였고, pre-RISC에서 holo-RISC로의 형성 촉진을 통해 타겟 mRNA의 절단을 통한 타겟 유전자의 침묵 활성을 증가시킬 수 있음을 확인하였다.
그러므로 본 발명의 CMTR1을 포함하는 조성물은 siRNA에 의한 타겟 유전자 침묵(gene silencing) 활성을 증진시킬 수 있다.
나아가 본 발명은 서열번호 1 또는 서열번호 5의 CMTR1 아미노산 서열을 코딩하는 유전자를 포함하는 발현벡터를 세포에 처리하는 단계를 포함하는, 시험관 내에서 유전자 침묵(gene silencing)을 위한 siRNA를 생산하는 방법을 제공할 수 있다.
즉, 시험관 내에서 세포에 CMTR1 유전자가 삽입된 발현벡터를 도입하여 상기 세포내에서 CMTR1의 과발현 유도를 통해, 상기 세포로부터 유전자 침묵을 위한 siRNA를 대량 생산할 수 있다.
본 발명에 따른 siRNA의 생성 증진용 조성물 및 siRNA에 의한 유전자 침묵(gene silencing) 활성 증진용 조성물은 특히 siRNA를 이용한 치료제의 개발에 유용하게 사용될 수 있다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
<준비예 및 실험방법>
재료
모든 파리는 25 ℃에서 표준 옥수수 가루/한천 배지를 이용하여 사육하였다. 또한, dCMTR1W231X 돌연변이체는 GMR-wIR의 유전적 배경에서 성체 눈에 대한 FRT19A를 갖는 X 염색체의 모자이크 분석을 기반으로 한 유전자 스크린 방법을 통해 분리하였다. FRT19A 균주는 야생형으로 사용하였고 w1118 균주는 대조군으로 사용하였다. dcr-2L811fsX, Ago2414 및 Ago2V966M 대립 유전자는 Kim et al., 2007; Lee et al., 2004; Okamura et al., 2004 문헌에 기술된 바와 같으며, Ago2414 균주는 M. Siomi(도쿄 대학, 도쿄, 일본)으로부터 제공받아 사용하였다.
형질전환 초파리의 제조
GAL4/UAS 시스템을 통한 야생형 dCMTR1 또는 hCMTR1 발현 형질전환 초파리를 만들기 위해 각 유전자의 전장 cDNA를 하기 표 1의 프라이머들을 이용하여 역전사 반응 및 PCR 방법을 통해 합성한 후, NotI 및 XbaI 제한효소 사이트를 이용하여 pUAST 벡터에 삽입하였다.
Figure PCTKR2021006979-appb-img-000001
또한, Site-directed mutagenesis는 PfuUltra High-Fidelity DNA 중합효소(Stratagene, San Diego, CA, USA) 및 dCMTR1 또는 hCMTR1의 전장 cDNA를 이용하여 진행한 후 cap1 MTase-dead 변이체들(dCMTR1K179A 또는 hCMTR1K239A)을 발현하는 UAS-전이유전자(transgene)라인을 제조하였다. 이를 위해 사용한 프라이머 세트들은 상기 표 1에 기재된 바와 같다. 제조한 각 DNA 구축물(construct)은 유전자전이효소(transposase)를 발현하는 P{Δ2-3}와 함께 w1118 배아로 공동 미세주입 되었다. 아미노 말단에 트리플 FLAG 에피토프(epitope)를 갖는 야생형 R2D2 또는 이의 결실 유도체 발현은 S2세포에서 유도시켰다. 또한 S2 세포에서 발현된 아미노 말단에 트리플-HA 또는 FLAG 에피토프를 갖는 녹색 형광 단백질(GFP)은 이종 대조군으로 사용하였고, GFP 코딩서열은 상기 표 1의 프라이머를 이용하여 PCR 방법으로 증폭시켰고, SpeI/EcoRI 제한효소 사이트를 이용하여 pMT-HA 또는 pMT-FLAG 벡터로 클로닝하였다. 아미노 말단에 트리플-HA 에피토프를 갖는 야생형 dCMTR1 또는 이의 결실 유도체들은 S2 세포에서 발현시켰고, dCMTR1의 전장 cDNA 또는 이의 결실 변이체들은 상기 표 1의 프라이머들을 이용하여 PCR 증폭하였으며, EcoRI/NotI 제한효소 사이트를 이용하여 pMT-HA 벡터로 클로닝하였다.
눈 색소분석(Eye pigment assay)
눈 색소는 30마리의 성체 초파리로부터 수득하였고, 0.01M HCl이 함유된 에탄올로 균질화시킨 후, 65℃에서 10분 동안 배양하였다. 이후 원심분리 수행 후, 각 샘플의 상층액을 수득한 후, 480nm에서 흡광도를 측정하였다.
시험관 내 RNAi 및 siRNA의 풀림 분석(unwinding assays)
배아 추출물의 준비 및 타겟 RNA의 절단은 Pham 등에 의해 알려진 공지의 방법에 의해 수행하였다. RISC assembly는 센스 가닥의 5’말단에 G : U wobble이 있으며 Ago2에서 가이드 가닥의 유지를 위해 고도로 비대칭을 갖는 Pp-luc siRNA duplex를 사용하여 native 겔 전기영동을 수행하였다. siRNA 의 풀림 분석은 비대칭적인 Pp-luc siRNA duplex를 이용하여 수행하였고, Pp-luc siRNA의 센스 및 안티센스 가닥의 서열은 상기 표 1에 기재된 바와 같다.
RNA 분석
GMR-wIR로부터 발현된 헤어핀 RNA은 노던블럿으로 검출하였는데, 이때 상기 표 1의 hp-w(Ex3)-F 및 hp-w(Ex3)-R 프라이머를 이용하여 PCR을 통해 합성된 5’-말단이 표지된 DNA 프로브(probe)를 사용하였다. 노던블럿은 작은 RNA를 검출하는 방법으로, 5′-말단 표지된 DNA 올리고뉴클레오티드(oligonucleotide)를 이용하였다.
웨스턴블럿
웨스턴블럿은 anti-dCMTR1 (1:200 dilution; Abmart, Berkeley Heights, NJ, USA), anti-hCMTR1 (1:1000 dilution; Abcam, Cambridge, UK), anti-R2D2(1:1000 dilution; a gift from M. Siomi), anti-FLAG (1:1000 dilution; Sigma, St. Louis, MO, USA), anti-HA (1:1000 dilution; Sigma), anti-Dcr-2 (1:1000 dilution; Abcam), anti-Dcr-1 (1:500 dilution; Abcam), anti-Ago2 (1:3 dilution; a gift from M. Siomi), anti-Ago1 (1:1000 dilution; Abcam), anti-dFMR (1:1000 dilution; a gift from G. Hannon, University of Cambridge, Cambridge, UK) 및 anti-VIG (1:1000 dilution; a gift from G. Hannon)의 항체들을 이용하여 수행하였다. 또한 Anti-β-actin (1:1000 dilution; Santa Cruz Biotechnology, Dallas, TX, USA)은 로딩 대조군으로 사용하였다.
TLC(Thin-layer chromatography) 분석
총 RNA는 유전자형별 20 마리의 성체 초파리 또는 유전자형별 100마리의 성체 초파리로부터 트리졸 시약을 이용하여 추출하였다. 이후 magnetic mRNA 분리 키트(New England Biolabs, Ipswich, MA, USA)를 이용하여 총 RNA로부터 mRNA를 정제하였다. 정제한 mRNA는 RNA 5′ pyrophosphohydrolase (New England Biolabs)를 이용하여 37℃에서 1시간 반응하여 디캡핑(decapping)하였고, 이후 FastAP thermosensitive alkaline phosphatase를 처리하고 37℃에서 10분 동안 추가 반응시켰다. 그런 뒤, 페놀-클로로포름 추출을 수행하고 에탄올 침전 후, RNA의 5’말단은 T4 polynucleotide kinase(PNK; New England Biolabs) 및 [γ-32P]-ATP를 이용하여 37℃에서 30분 동안 반응시켜 방사선 표지시켰다. 또한 상기 표 1의 합성된 RNA 올리고뉴클레오티드도 T4 PNK 및 [γ-32P]-ATP로 방사선 표지시켰다. 이후 열처리로 PNK를 불활성화 시키고, 표지되지 않은 방사선 동위원소는 RNA Clean & Concentrator-5 (Zymo Research, Irvine, CA, USA)를 이용하여 제거하였다. 이후 32P 표지된 RNA는 Nuclease P1 (Sigma)을 이용하여 37 ℃에서 2시간 동안 반응시킴으로써 5′-monophosphate nucleosides로 완전하게 분해시켰다. Mononucleotide는 2차원으로 전개시켰는데, 한 방향은 용매 A를 이용하여 수행하였고, 이후 용매 B 또는 C를 이용하여 첫 번째 방향에 대한 직각 방향으로 전개시켰다. 이때 사용된 용매들의 조성은 다음과 같다.
용매 A: isobutyric acid/25% ammonia/water [66:1:33 (v:v:v)]
용매 B: 0.1M sodium phosphate buffer (pH 6.8)/ammonium sulfate/1-propanol [100:60:2 v:v:v]
용매 C: isopropanol/concentrated HCl/water [68:18:14 (v:v:v)]
이후 TLC 플레이트를 공기 중에서 건조시켰고 스팟(spot)은 방사선 촬영을 통해 가시화시켰다.
세포배양
Drosophila S2 세포 및 copper sulfate-inducible, GFP-발현 S2 세포주는 25℃에서 10% fetal bovine serum(HyClone, Logan, UT, USA) 및 100 U/mL penicillin-streptomycin(HyClone)을 함유한 Schneider's Drosophila 배지(GIBCO, Gaithersburg, MD, USA)를 이용하여 배양하였다.
RNAi-매개 유전자 넉다운(knockdown)
5′ppp-, cap0- 또는 cap1-GFP dsRNA, GFP 센스(602 nucleotides)에 대한 DNA 주형 및 dsRNA의 안티센스(586 nucleotides) 가닥은 상기 표 1의 프라이머 세트들을 이용하여 PCR을 통해 증폭하여 제조되었다. PCR 산물은 [α-32P]-UTP 존재하에서 T7 RNA polymerase(New England Biolabs)를 이용하여 시험관에서 전사반응에 사용하였고, 전사 산물들은 겔 정제되었고, 5'ppp-GFP dsRNA를 생산을 위해 사용하였다. 각 RNA 가닥의 분주물(aliquot)은 처음으로 전사된 뉴클레오타이드에 7-메틸 구아노신을 Vaccinia Capping System (New England Biolabs)을 사용하여 캡핑하였고, 이후 cap0-GFP dsRNA를 생산을 위해 사용되었다. Cap0-methylated RNA 가닥은 RNA Clean & Concentrator-5를 이용하여 정제하였다. 그 뒤, 2'-O-ribose 메틸화는 ScriptCap 2'-O-Methyltransferase 키트 (CELLSCRIPT, Madison, WI, USA)를 이용하여 cap0 메틸화로 변형된 첫 번째 전사 뉴클레오티드에 부가되었고, 생성된 RNA는 cap1-GFP dsRNA의 생산에 사용되었다. 상보적인 가닥들은 어닐링 버퍼[30 mM HEPES-KOH (pH 7.5), 100 mM potassium acetate 및 2 mM magnesium acetate]에서 1:1의 비로 혼합한 다음, 95℃에서 1분 동안 열처리 한 후, 천천히 상온의 온도로 식혀 5′ppp-, cap0- 또는 cap1-GFP dsRNAs을 제조하였다. LacZ에 대한 dsRNA도 상기 표 1의 유전자 특이적 프라이머를 이용하여 제조하였다.
S2 세포에서 GFP의 발현은 0.7 mM의 CuSO4의 첨가로 유도하였고, 24시간 발현 유도 후 상기 세포들(1 × 106 cells/well)은 2 μg의 mock 또는 각각의 dsRNA를 리포펙타민 2000(Invitrogen)을 이용하여 형질감염시켰고, 12시간 후 상기 세포들을 차가운 용해버퍼[20 mM Tris-HCl (pH 8.0), 150 mM NaCl, 5 mM MgCl2, 2 mM DTT, 0.1% Triton X-100 및 protease inhibitor cocktail (Roche, Basel, Switzerland)]로 용해시킨 후 웨스턴블럿을 수행하였다.
공동면역침강[Co-immunoprecipitation (Co-IP)] 및 RNase의 처리
공동면역침강은 다음과 같은 방법으로 수행하였다. S2 세포를 서로 다른 에피토프가 태그(tag)된 2개의 단백질을 발현하는 DNA를 FuGENE HD Transfection 시약 (Promega, Madison, WI, USA)을 이용하여 공동형질 감염시켰다. 유전자 발현의 유도는 0.7 mM의 CuSO4 첨가로 유도하였고, 48시간 동안 형질감염 시킨 후, 세포를 상기 사용한 차가운 세포 용해 버퍼를 이용하여 세포 용해물을 제조하였다. 이후 15,000x g의 속도로 원심분리하여 상층액을(500 μg)을 분리한 후, 이를 면역침강에 사용하였다.
RNase의 처리는 다음과 같은 방법으로 수행하였는데, 상기 수득한 세포 용해물의 상층액에 항체 첨가 이전에 먼저 20 μL RNase A/T1 mix(Thermo Fisher Scientific)를 첨가하고 37℃의 온도에서 15분 동안 반응시켰다. 면역침강시킨 각 시료들은 웨스턴블럿을 통해 분석하였다.
면역형광 세포 염색(Immunofluorescence cell staining)
HA-태깅 dCMTR1 및 FLAG-태깅 R2D2을 발현시키기 위한 DNA 구조물을 FuGENE HD Transfection 시약을 이용하여 S2 세포에 공동 형질감염시켰다. 이후 0.7 mM의 CuSO4 첨가로 발현을 유도하였고, 48시간 동안 형질감염 시킨 후, 세포들을 1차 항체로서 anti-FLAG (1:200 dilution; Sigma) 및 anti-HA (1:200 dilution; Sigma) 항체를 사용하여 반응시켰고, 이후 2차 Alexa-Fluor-488- 및 Alexa-Fluor-594-conjugated 항체(1:500 dilution for each; Molecular Probes, Mulgrave, VIC, Australia)로 각각 반응시켰다. 이후 시료들을 4′,6-diamidino-2-phenylindole (DAPI; Vector Laboratories, Stonesfield, UK)이 함유된 Vectashield 마운팅 배지에 놓고 공초점 레이저 스캐닝 현미경(Carl Zeiss, Oberkochen, Germany)으로 관찰하였다.
<실시예 1>
RNAi 양성조절 인자로서 CMTR1의 동정 및 확인
siRNA를 통한 유전자 침묵(gene silencing)과 관련된 새로운 유전자의 발굴을 위해, 초파리(Drosophila melanogaster) 생체 내에서 white 유전자의 침묵을 유도하는 hairpin dsRNA를 발현하는 GMR-wIR 전이유전자(transgene)를 유전적 배경(genetic background)으로 가지고 있는 초파리의 X 염색체에 EMS로 유도시킨 돌연변이체의 스크리닝을 수행하였다. EMS로 유도된 돌연변이 스크리닝 분석 결과, GMR-wIR 2 카피(copy)에 의한 white 유전자 침묵 현상이 부분적으로 저해되어 눈색이 하얀색에서 노란색으로 변하는 RNAi 양성조절 인자 동형접합 돌연변이체(homozygous mutant)를 동정하였다(도 1 참조).
또한 본 발명자들은 유전적 매핑을 통해 발굴된 돌연변이체에서 돌연변이가 일어난 유전자를 확인한 결과, CG6379 유전자임을 확인하였고, 더 나아가 상기 CG6379 유전자가 진화적으로 인간을 포함한 다양한 진핵생물(eukaryote)에 보존되어있는 CMTR1(cap1 2’-O-ribose methyltransferase; cap1 2’-O-MTase)의 동원체(ortholog)라는 것을 확인하였다. 또한 본 발명에서 동정한 상기 CG6379 유전자는 2’-O-MTase 도메인(domain)을 갖고 있으며, DNA 염기서열 분석 결과, 발굴된 돌연변이체는 2’-O-MTase 도메인에 조기 중지 코돈(premature stop codon) W231X를 가지고 있음을 확인하였다(도 2 참조).
또한 상기 돌연변이체는 2’-O-MTase 도메인이 기능하지 못하고, dCMTR1 null 돌연변이와 같은 표현형을 보이는 것으로 나타남에 따라, 본 발명자들은 상기 발굴된 돌연변이체를 dCMTR1W231X 돌연변이체(dCMTR1W231X mutant)로 명명하였다.
<실시예 2>
dsRNA-triggered RNAi 경로에서 cap1 2’-O-MTase 활성과의 연관성 분석
고등 진핵생물에서 CMTR1은 cap0-mRNA를 2’-O-ribose 메틸화에 의해 mRNA가 cap1 구조를 형성하도록 한다. 이에 본 발명자들은 dCMTR1W231X 돌연변이체의 cap1 MTase 기능 손실이 GMR-wIR에 의해 유도되는 white 유전자 침묵에 영향을 끼치는지를 확인하기 위해, 초파리 GAL4/UAS 시스템을 이용해 dCMTR1W231X 돌연변이체의 눈 조직에서 특이적으로 CMTR1 단백질의 과발현을 유도하였다.
그 결과 GMR-GAL4에 의한 인간 CMTR1(hCMTR1) 단백질의 과발현이 dCMTR1W231X 돌연변이체의 눈 조직에서 dCMTR1 유전자의 돌연변이로 인해 발생하는 white 유전자 침묵의 저해가 회복(복구)되어짐을 확인할 수 있었다(도 3 참조). 한편, GMR-GAL4에 의한 CMTR1의 catalytic dead 단백질(hCMTR1K249A, dCMTR1K179A)의 과발현은 dCMTR1W231X 돌연변이체의 눈 조직에서 dCMTR1 유전자의 돌연변이로 인해 발생하는 white 유전자 침묵의 저해를 회복시키지 못하는 것으로 나타났다(도 3 참조). 이러한 결과는 cap1 MTase 활성이 초파리에서 dsRNA에 의해서 시작되는 RNAi 경로와 관련성이 있음을 의미한다.
또한 본 발명자들은 dCMTR1W231X 돌연변이체의 cap1 MTase 기능 손실에 의해 dCMTR1W231X 돌연변이체의 cap1 구조의 프로파일(profile) 변화 여부를 확인하기 위해 2D-TLC(two-dimensional thin-layer chromatography) 분석을 수행하였다.
그 결과, dCMTR1W231X 돌연변이체의 mRNA 전사체(transcript)에서 유래된 2'-O-methyluridine 5’-monophosphate, 2'-O-methylguanosine 5’-monophosphate 및 2'-O-methylcytidine 5’-monophosphate은 검출할 수 있는 양이 존재하지 않았으며, 2'-O-methyladenosine 5’-monophosphate은 야생형 대조군의 2D-TLC 결과와 비교했을 때 상대적으로 급격하게 감소되어 있는 것으로 나타났다. 따라서 이러한 결과를 통해 dCMTR1W231X 돌연변이체에서는 2'-O-ribose 메틸화된 뉴클레오티드가 제대로 생성되지 못하고 있음을 알 수 있었다(도 4 참조).
또한, 초파리 GAL4/UAS 시스템을 이용하여 dCMTR1W231X 돌연변이체의 눈 조직에서 특이적으로 야생형 dCMTR1과 human CMTR1 cDNA의 과발현을 유도한 결과, 2'-O-ribose 메틸화된 뉴클레오티드의 양이 증가하는 것을 확인할 수 있었다(도 5 참조). 이러한 결과는, dCMTR1 유전자가 포유동물의 동원체들과 유사하게 cap1 MTase 활성을 가지고 있음을 의미한다.
<실시예 3>
dsRNA의 cap1 구조에 따른 유전자 침묵 현상 증가확인
dsRNA의 dCMTR1에 의한 cap1 메틸화가 RNAi와 연관성이 있는지 확인하기 위해, CuSO4 유무에 따라 GFP를 발현하는 초파리 S2 세포에 5'ppp-, cap0-, 또는 cap1-GFP dsRNA를 형질감염 시켰다. GFP를 발현하는 초파리 S2 세포는 CuSO4-inducible promoter를 가지고 있는 pMT 벡터에 GFP cDNA 서열을 삽입한 plasmid DNA로 형질감염 시킨 후, 안정화된 세포주로 만든 것으로 CuSO4 유무에 따라 GFP를 발현한다.
분석 결과, 5'ppp-와 cap0-GFP dsRNA의 GFP 유전자에 대한 침묵 활성(silencing activity)의 차이는 확인할 수 없었다. 그러나 cap1-GFP dsRNA의 GFP 유전자에 대한 침묵 활성(silencing activity)은 크게 증가하는 것으로 나타났다(도 6 참조).
따라서 이러한 결과를 통해, 초파리 S2 세포에서 dsRNA의 cap1 구조는 유전자의 침묵 현상을 증가시키는 활성이 있음을 알 수 있었다.
<실시예 4>
dCMTR1의 siRNA 양적(abundance) 조절능 확인
dCMTR1에 의한 cap1 메틸화가 siRNA 생성과 연관성이 있는지 확인하기 위해, GMR-wIR 헤어핀 dsRNA로부터 생성되는 siRNA의 양을 노던 블럿팅을 이용하여 측정하였다.
그 결과, dCMTR1W231X 돌연변이체는 야생형 대조군(control)에 비해서 wIR siRNA 양이 감소한 것으로 나타났다(도 7a 참조). 한편, dCMTR1W231X 돌연변이체에서 wIR siRNA양이 감소하는 현상은 초파리의 GAL4/UAS 시스템을 이용하여 야생형 dCMTR1을 과발현시킴으로써 다시 회복되는 것으로 나타났고, dCMTR1의 catalytic dead 단백질인 dCMTR1K179A를 과발현시켰을 경우에는 회복되지 못하는 것으로 나타났다(도 7b 참조). 그러므로 이러한 결과를 통해 dCMTR1의 촉매적 활성(catalytic activity)이 siRNA의 생합성과 관련성이 있음을 알 수 있었다.
<실시예 5>
dCMTR1의 siRNA 생성 이후 하류기전(downstream)에 대한 영향 분석
본 발명자들은 dCMTR1이 siRNA의 생성 이후 RNAi의 하류기전에도 영향을 미치는지 확인하기 위한 실험을 수행하였다. 구체적으로, dCMTR1이 RISC assembly 및 타겟 mRNA의 RISC-directed cleavage와 같은 siRNA 생성 이후 하류기전과 관련이 있는지 보기 위해서, in vitro 상에서 siRNA-triggered target mRNA의 절단을 확인하였다.
그 결과, dCMTR1W231X 돌연변이체가 발현된 세포 용해물에서 야생형 대조군의 용해물에 비해 타겟 절단 활성이 감소한 것으로 나타났다(도 8 참조).
또한 dCMTR1W231X 돌연변이체에 의한 타겟 절단 활성의 감소가 타겟 mRNA의 분해에 필요한 holo-RISC의 형성에 문제가 있는지를 확인하기 위하여 RNAi 복합체를 native 겔 전기영동을 통해 RISC assembly에 대한 분석을 수행하였다.
초파리에서 RISC assembly는 duplex siRNA가 R2D2/Dicer-2 heterodimer에 결합하여 R2D2/Dicer-2 initiator(RDI) complex를 형성하는 것으로 시작되며, 그 후 다른 여러 단백질들이 RDI 복합체에 결합하여 RISC-loading complex(RLC)를 만들고, RLC에 Ago2가 결합함으로써 pre-RISC가 형성된다. 형성된 pre-RISC의 duplex siRNA 가 풀림(unwinding)이 되면 타겟 mRNA을 절단할 수 있는 holo-RISC가 형성된다.
이러한 점을 고려하여 dCMTR1W231X 돌연변이체의 경우, 야생형 대조군에 비해 상대적으로 겔 전기영동 결과에서 holo-RISC의 이동성이 늦어지는 것을 확인할 수 있었다(도 9a 참조). RISC assembly시 Ago2 slicer activity가 결여된 Ago2V966M 돌연변이체는 duplex siRNA의 풀림활성(unwinding activity)에 문제가 있어 passenger siRNA strand가 제거되어 단일 가닥의 guide siRNA를 포함하는 holo-RISC 보다 duplex siRNA를 포함하는 pre-RISC에 정지되어 있었다. Pre-RISC는 siRNA passenger strand를 내보내어 holo-RISC로 전환되지 못하기 때문에 native 겔 전기영동 시, holo-RISC에 비해서 전기 이동성이 늦는다.
또한 Ago2V966M 돌연변이체의 용해물을 포함하여 RNAi complex에 대한 native 겔 전기영동을 수행한 결과, dCMTR1W231X 돌연변이체 발현군은 Ago2V966M 돌연변이체 발현군과 비슷한 이동성을 가지는 것을 확인할 수 있었다(도 9b 참조).
따라서 dCMTR1W231X 돌연변이체 발현군은 Ago2V966M 돌연변이체 발현군과 유사하게 RISC 형성시 pre-RISC에서 holo-RISC로의 전환에 문제가 있다는 것을 알 수 있었다. 또한, dCMTR1W231X 돌연변이체 발현군은 야생형 대조군에 비해 duplex siRNA의 풀림 정도가 상당히 감소되는 것을 확인할 수 있었다(도 10 참조).
그러므로 이러한 결과를 통해, 본 발명자들은 dCMTR1은 pre-RISC에서 holo-RISC의 전환을 촉진함으로써 siRNA 생성 이후의 RNAi 하류기전(downstream)에 중요한 역할을 하고 있다는 것을 알 수 있었다.
<실시예 6>
dCMTR1과 R2D2의 물리적 상호작용 확인
dCMTR1과 다양한 RNAi 관련 단백질과의 상호작용을 확인하기 위해서 초파리 S2 세포에 HA-태깅 dCMTR1과 FLAG-태깅 RNAi 관련 단백질을 발현시킨 후 공동-면역침강(co-IP)을 진행하였다. Anti-FLAG 항체를 이용하여 FLAG-태깅 RNAi 관련 단백질을 침전시킨 결과, 오직 FLAG-R2D2의 경우에만 HA-dCMTR1이 공동면역침강이 되는 것으로 나타났다. 또한 면역침강 전에 RNase A/T1을 처리하여도 HA-dCMTR1과 FLAG-R2D2의 상호작용에는 영향을 끼치지 못하는 것으로 나타났다(도 11a 참조).
이를 통하여 HA-dCMTR1과 FLAG-R2D2의 상호작용은 RNA 유무에 상관이 없다는 것을 알 수 있었다.
또한, HA-dCMTR1은 FLAG-R2D2와 초파리 S2 세포의 핵과 세포질 둘 다에서 공존(colocalization)하는 것을 확인할 수 있었다(도 11b 참조). R2D2와 dCMTR1사이의 상호작용을 확인하기 위해서 anti-R2D2 및 anti-dCMTR1 항체를 이용하여 공동 면역침강도 수행하였다.
그 결과, 초파리 S2 세포에서 endogenous dCMTR1은 endogenous R2D2와 물리적 상호작용을 한다는 것을 확인할 수 있었다. 이러한 결과를 통해 dCMTR1은 RISC assembly를 개시하는 RDI complex를 구성하는 단백질인 R2D2와 상호작용함을 알 수 있었다(도 11c 참조).
또한, 상호작용이 확인된 dCMTR1과 R2D2의 상호작용 위치를 확인하기 위해, 초파리 S2 세포내에서 친화 태그(affinity tag)가 접합된 각각의 결손(deletion) 단백질 단편을 발현시킨 후, 공동 면역침강을 수행하였다. dCMTR1 단백질은 크게 Glycine rich domain인 G-patch domain, RNA methyltransferase domain 및 carboxyl-terminal region으로 구성되어 있다. dCMTR1 결손 단백질 단편은 각각의 domain을 결손시켜 제작하였고, 친화 태그로 HA를 사용하였다. 또한 R2D2 단백질은 크게 double-stranded RNA-binding domain(dsRBD) 2개와 carboxyl-terminal 영역으로 구성되어 있다. R2D2 결손 단백질 단편은 각각의 도메인을 결손시켜 제작하였으며 친화 태그로 FLAG를 사용하였다. FLAG-R2D2 단백질을 발현하는 초파리 S2 세포에 HA-tagged dCMTR1 및 dCMTR1 결손 단백질 단편들을 각각 발현시킨 후 공동 면역침강을 수행하였다.
그 결과 dCMTR1 단백질에서 G-path 및 RNA methyltransferase 도메인이 결손된 경우에는 FLAG-R2D2 단백질과의 상호작용에 영향을 미치지 못한다는 것을 알 수 있었다. 한편, carboxyl-terminal 영역이 결손된 경우에는 FLAG-R2D2 단백질과의 상호작용이 현저히 감소한 것으로 나타났다(도 12 참조).
이러한 결과를 통해 dCMTR1의 carboxyl-terminal 영역이 R2D2와의 상호작용에 매우 중요하다는 것을 알 수 있었다.
나아가 R2D2 단백질의 경우도 carboxyl-terminal 영역이 결손된 2종류의 FLAG-R2D2 결손 단백질 단편 경우에만 HA-dCMTR1 단백질과의 상호작용이 감소하는 것으로 나타났다. 더 나아가 R2D2의 carboxyl-terminal의 237-311 잔기(residues)가 dCMTR1과 상호작용에 중요하다는 것을 확인할 수 있었고(도 13 참조). 이를 통해 dCMTR1과 R2D2는 서로의 carboxyl-terminal 영역을 통해 서로 상호작용한다는 것을 확인할 수 있었다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (14)

  1. CMTR1(cap1 2‘-O-ribose methyltransferase) 단백질을 유효성분으로 포함하는, siRNA의 생성 증진용 조성물.
  2. 제1항에 있어서,
    상기 CMTR1 단백질은 서열번호 1 또는 서열번호 5의 아미노산 서열로 이루어진 것을 특징으로 하는, siRNA의 생성 증진용 조성물.
  3. 제1항에 있어서,
    상기 CMTR1 단백질은 서열번호 2 또는 서열번호 6의 염기서열로 암호화된 것을 특징으로 하는, siRNA의 생성 증진용 조성물.
  4. 제1항에 있어서,
    상기 CMTR1은 dsRNA에 의해 시작되는 RNAi 경로(pathway)에서,
    상기 CMTR1은 dsRNA에 의해 시작되는 RNAi 경로(pathway)에서, 2’-O-ribose methylation에 의한 cap1 구조 형성을 통해 dsRNA로부터 siRNA의 생성을 증가시키며, 유전자 침묵의 타겟 mRNA을 절단할 수 있는 holo-RISC(RNA-induced silencing complex)의 형성을 촉진시켜 유전자 침묵 활성을 증가시키는 것을 특징으로 하는, siRNA의 생성 증진용 조성물.
  5. 제1항에 있어서,
    상기 CMTR1의 카르복실 말단 영역은 holo-RISC 복합체 중에서 R2D2의 카르복실 말단 영역과 결합하는 것을 특징으로 하는, siRNA의 생성 증진용 조성물.
  6. 제5항에 있어서,
    상기 CMTR1의 카르복실 말단 영역은 서열번호 1의 388번째부터 788번째의 아미노산 서열로 이루어진 것이고, 상기 R2D2의 카르복실 말단 영역은 서열번호 3의 R2D2 아미노산 서열에서 237번째부터 311번째의 아미노산 서열로 이루어진 것을 특징으로 하는, siRNA의 생성 증진용 조성물.
  7. 제1항에 있어서,
    상기 CMTR1(cap1 2‘-O-ribose methyltransferase)은 서열번호 1 또는 서열번호 5의 CMTR1 아미노산 서열을 코딩하는 유전자가 발현벡터에 삽입되어 있는 것을 특징으로 하는, siRNA의 생성 증진용 조성물.
  8. CMTR1(cap1 2‘-O-ribose methyltransferase) 단백질을 유효성분으로 포함하는, siRNA에 의한 유전자 침묵(gene silencing) 활성 증진용 조성물.
  9. 제8항에 있어서,
    상기 CMTR1 단백질은 서열번호 1 또는 서열번호 5의 아미노산 서열로 이루어진 것을 특징으로 하는, siRNA에 의한 유전자 침묵(gene silencing) 활성 증진용 조성물.
  10. 제8항에 있어서,
    상기 CMTR1 단백질은 서열번호 2 또는 서열번호 6의 염기서열로 암호화된 것을 특징으로 하는, siRNA에 의한 유전자 침묵(gene silencing) 활성 증진용 조성물.
  11. 제8항에 있어서,
    상기 CMTR1은 dsRNA에 의해 시작되는 RNAi 경로(pathway)에서,
    2’-O-ribose methylation에 의한 cap1 구조 형성을 통해 dsRNA로부터 siRNA의 생성을 증가시켜 유전자 침묵 활성을 증가시키며,
    CMTR1의 카르복실 말단 영역은 holo-RISC 복합체 중에서 R2D2의 카르복실 말단 영역과 결합하여 유전자 침묵의 타겟 mRNA을 절단할 수 있는 holo-RISC(RNA-induced silencing complex)의 형성을 촉진시키는 것을 특징으로 하는, siRNA에 의한 유전자 침묵(gene silencing) 활성 증진용 조성물.
  12. 제11항에 있어서,
    상기 CMTR1의 카르복실 말단 영역은 서열번호 1의 388번째부터 788번째의 아미노산 서열로 이루어진 것이고, 상기 R2D2의 카르복실 말단 영역은 서열번호 3의 R2D2 아미노산 서열에서 237번째부터 311번째의 아미노산 서열로 이루어진 것을 특징으로 하는, siRNA에 의한 유전자 침묵(gene silencing) 활성 증진용 조성물.
  13. 서열번호 1 또는 서열번호 5의 CMTR1 아미노산 서열을 코딩하는 유전자를 포함하는 발현벡터를 세포에 처리하는 단계를 포함하는,
    시험관 내에서 유전자 침묵(gene silencing)을 위한 siRNA를 생산하는 방법.
  14. 제13항에 있어서,
    상기 유전자는 서열번호 2 또는 서열번호 6의 염기서열로 이루어진 것을 특징으로 하는, 시험관 내에서 유전자 침묵(gene silencing)을 위한 siRNA를 생산하는 방법.
PCT/KR2021/006979 2020-06-18 2021-06-03 Sirna의 생성 및 기능 증진 활성을 갖는 cmtr1의 신규용도 WO2021256750A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/000,996 US20230210960A1 (en) 2020-06-18 2021-06-03 New use of cmtr1 having sirna production and function enhancing activity

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0074360 2020-06-18
KR20200074360 2020-06-18
KR10-2020-0111757 2020-09-02
KR1020200111757A KR102361479B1 (ko) 2020-06-18 2020-09-02 siRNA의 생성 및 기능 증진 활성을 갖는 CMTR1의 신규용도

Publications (1)

Publication Number Publication Date
WO2021256750A1 true WO2021256750A1 (ko) 2021-12-23

Family

ID=79177398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006979 WO2021256750A1 (ko) 2020-06-18 2021-06-03 Sirna의 생성 및 기능 증진 활성을 갖는 cmtr1의 신규용도

Country Status (3)

Country Link
US (1) US20230210960A1 (ko)
KR (1) KR102361479B1 (ko)
WO (1) WO2021256750A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130196434A1 (en) * 2008-07-25 2013-08-01 Alnylam Pharmaceuticals, Inc. ENHANCEMENT OF siRNA SILENCING ACTIVITY USING UNIVERSAL BASES OR MISMATCHES IN THE SENSE STRAND
KR20140033492A (ko) * 2011-06-08 2014-03-18 닛토덴코 가부시키가이샤 표적 약물 전달체 및 siRNA 활성을 증가시키는 화합물

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201511191D0 (en) * 2015-06-25 2015-08-12 Immatics Biotechnologies Gmbh T-cell epitopes for the immunotherapy of myeloma

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130196434A1 (en) * 2008-07-25 2013-08-01 Alnylam Pharmaceuticals, Inc. ENHANCEMENT OF siRNA SILENCING ACTIVITY USING UNIVERSAL BASES OR MISMATCHES IN THE SENSE STRAND
KR20140033492A (ko) * 2011-06-08 2014-03-18 닛토덴코 가부시키가이샤 표적 약물 전달체 및 siRNA 활성을 증가시키는 화합물

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE Protein 22 April 2020 (2020-04-22), ANONYMOUS: "uncharacterized protein Dmel_CG6379, isoform B [Drosophila melanogaster]", XP055882263, retrieved from Genbank Database accession no. NP_001284851 *
FRANÇOIS BÉLANGER; JANUSZ STEPINSKI; EDWARD DARZYNKIEWICZ; JERRY PELLETIER: "Characterization of hMTr1, a Human Cap1 2′- O -Ribose Methyltransferase", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 285, no. 43, 22 October 2010 (2010-10-22), pages 33037 - 33044, XP055443707, ISSN: 0021-9258, DOI: 10.1074/jbc.M110.155283 *
LEE SEUNGJAE; HONG JAE-SANG; LIM DO-HWAN; LEE YOUNG SIK: "Roles for Drosophila cap1 2′-O-ribose methyltransferase in the small RNA silencing pathway associated with Argonaute 2", INSECTS BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 123, 3 June 2020 (2020-06-03), pages 1 - 10, XP086241522, ISSN: 0965-1748, DOI: 10.1016/j.ibmb.2020.103415 *
PHAM JOHN W., SONTHEIMER ERIK J.: "Molecular Requirements for RNA-induced Silencing Complex Assembly in the Drosophila RNA Interference Pathway", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 2580, no. 47, 1 November 2005 (2005-11-01), pages 39278 - 39283, XP055882238, ISSN: 0021-9258, DOI: 10.1074/jbc.M509202200 *

Also Published As

Publication number Publication date
KR102361479B1 (ko) 2022-02-11
US20230210960A1 (en) 2023-07-06
KR20210156707A (ko) 2021-12-27

Similar Documents

Publication Publication Date Title
Nishida et al. Respective functions of two distinct Siwi complexes assembled during PIWI-interacting RNA biogenesis in Bombyx germ cells
Gilleard et al. ELT-3: ACaenorhabditis elegansGATA Factor Expressed in the Embryonic Epidermis during Morphogenesis
Juge et al. Control of poly (A) polymerase level is essential to cytoplasmic polyadenylation and early development in Drosophila
Sedkov et al. The bithorax complex is regulated by trithorax earlier during Drosophila embryogenesis than is the Antennapedia complex, correlating with a bithorax-like expression pattern of distinct early trithorax transcripts
Brooks et al. The Stage-regulated Expression of Leishmania mexicanaCPB Cysteine Proteases Is Mediated by an Intercistronic Sequence Element
Pursley et al. Intracellular localization and tissue specificity of the Methoprene-tolerant (Met) gene product in Drosophila melanogaster
JP2014094008A (ja) マイクロrna分子
US20110136171A1 (en) Improved protein expression system
WO2021256750A1 (ko) Sirna의 생성 및 기능 증진 활성을 갖는 cmtr1의 신규용도
WO2022065689A1 (ko) 편집 효율이 향상된 프라임 편집 기반 유전자 교정용 조성물 및 이의 용도
Mottes et al. Tissue-specific alternative splicing of hybrid Shaker/lacZ genes correlates with kinetic differences in Shaker K+ currents in vivo
Kaser et al. Brix from Xenopus laevis and Brx1p from yeast define a new family of proteins involved in the biogenesis of large ribosomal subunits
Xie et al. Cyclin A2 is differentially expressed during oocyte maturation between gynogenetic silver crucian carp and gonochoristic color crucian carp
WO2022270969A1 (ko) 비천연 5&#39;-비번역 영역 및 3&#39;-비번역 영역 및 그의 용도
Kendirgi et al. An ovarian follicular epithelium protein of the silkworm (Bombyx mori) that associates with the vitelline membrane and contributes to the structural integrity of the follicle
WO2017188666A1 (ko) 항노화 형질전환 예쁜꼬마선충
WO2023214801A1 (ko) 단백질의 발현 수준 및 발현 위치 조절을 위한 utr 서열 및 이를 포함하는 mrna 서열
Catalano et al. Developmental expression and characterization of FS39, a testis complementary DNA encoding an intermediate filament-related protein of the sperm fibrous sheath
WO2020139031A1 (ko) Crispr-cas를 기반으로 하는 유전자 교정용 조성물
WO2023121131A1 (ko) 코로나바이러스 백신
Kuchino et al. Nonsense suppression in mammalian cells
WO2024014770A1 (ko) mRNA 백신 및 치료제의 제조를 위한 변형된 RNA
McKinney et al. Molecular characterization of a novel fission yeast gene spUAP2 that interacts with the splicing factor spU2AF59
WO2024054006A1 (ko) 신규한 유전체 세이프 하버 및 이의 용도
Yamaki et al. The mouse Edr2 (Mph2) gene has two forms of mRNA encoding 90-and 36-kDa polypeptides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826900

Country of ref document: EP

Kind code of ref document: A1