WO2021256594A1 - 모듈화된 세미 허메틱 구조를 구비한 압력센서 - Google Patents

모듈화된 세미 허메틱 구조를 구비한 압력센서 Download PDF

Info

Publication number
WO2021256594A1
WO2021256594A1 PCT/KR2020/008212 KR2020008212W WO2021256594A1 WO 2021256594 A1 WO2021256594 A1 WO 2021256594A1 KR 2020008212 W KR2020008212 W KR 2020008212W WO 2021256594 A1 WO2021256594 A1 WO 2021256594A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
pressure
sensor
housing
substrate
Prior art date
Application number
PCT/KR2020/008212
Other languages
English (en)
French (fr)
Inventor
박세진
권동욱
임형택
장동영
박병권
최진혁
장해섭
Original Assignee
주식회사 에스엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200074752A external-priority patent/KR102194066B1/ko
Priority claimed from KR1020200074756A external-priority patent/KR102194070B1/ko
Application filed by 주식회사 에스엠에스 filed Critical 주식회사 에스엠에스
Publication of WO2021256594A1 publication Critical patent/WO2021256594A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings

Definitions

  • the present invention relates to a pressure sensor having a modularized semi-hermetic structure, and more particularly, a sensor fixing part exposed inside a housing and having a pressure transmission pipe for transmitting pressure, and the pressure on one surface of the sensor fixing part.
  • a pressure sensor positioned so as to be in contact with one end of the transmission pipe, and a receiving groove for accommodating the sensor in the sensor fixing part, and an auxiliary receiving groove to include a part of the receiving groove, thereby bonding strength of the pressure sensor It relates to a pressure sensor that can dramatically increase the
  • micro-mechanical structures for sensing various physical quantities and electronic circuits for changing, amplifying, and correcting various physical quantities into electrical signals are simultaneously manufactured and integrated on one chip. Accordingly, semiconductor sensors with advantages of miniaturization, weight reduction, multi-functionality, and high performance of the sensor as well as cost minimization have been rapidly developed and are being commercialized in the automobile industry.
  • semiconductor pressure sensors were first commercialized in MAP sensors for engine control, and are currently being used in tire pressure sensors and tank fuel pressure sensors.
  • the pressure sensor manufactured using the semiconductor process is made of silicon (ceramic) with high fatigue strength as a structure, so it has very high stability against external load or thermal deformation.
  • the sensor chip is located inside the sensor housing and the fuel cell system is not driven and exposed to low-temperature external pressure for a long time, moisture may condense or freeze between the sensor chip and the housing, causing damage to the diaphragm of the sensor. .
  • the sensor according to the conventional structure has two or more fastening points where leakage may occur, the airtightness of the sensor was inevitably reduced.
  • the present invention has been devised to solve the above problems, and is exposed to the inside of the housing and includes a sensor fixing part having a pressure transmission pipe for transmitting pressure, and one surface of the sensor fixing part to contact one end of the pressure transmission pipe. Including a pressure sensor positioned, the sensor fixing part is further provided with an accommodating groove for accommodating the sensor, and an auxiliary accommodating groove to include a part of the accommodating groove, thereby dramatically increasing the bonding strength of the pressure sensor.
  • An object of the present invention is to provide a pressure sensor having a modularized semi-hermetic structure.
  • the present invention relates to a pressure sensor having a modular semi-hermetic structure.
  • One aspect of the present invention is
  • a cover having one or a plurality of lead holes formed thereon and having a coupling protrusion on a lower side surface of the side wall;
  • a housing having a first accommodating hole formed on a lower surface thereof to communicate with the outside by being fitted with the coupling jaw of the cover through the unevenness of the inner surface;
  • a substrate provided on a space bottom surface of the housing and having a second accommodating hole penetrating the top and bottom surfaces;
  • a sensor fixing part which is inserted into the first accommodating hole of the housing and the second accommodating hole of the substrate, is exposed to the space of the housing, and has a pressure transmission tube formed therein in a longitudinal direction so as to penetrate one surface and the other surface;
  • a pressure sensor positioned on one surface of the sensor fixing part so as to be in contact with one end of the pressure transmission pipe;
  • one or more linear leads having one end in contact with the lower space of the housing and the other end protruding through the lead hole to the outside of the space;
  • a lead support portion positioned on the upper surface of the substrate to fix the lead
  • It relates to a pressure sensor having a modular semi-hermetic structure, characterized in that it comprises a.
  • Another aspect of the present invention is
  • a cover having one or a plurality of lead holes formed thereon and having a coupling protrusion on a lower side surface of the side wall;
  • a housing having a first pressure transmission pipe communicating with the outside in a lower surface thereof, forming a space by being fitted with the coupling jaw of the cover through the unevenness of the inner surface;
  • a substrate provided on the lower surface of the space of the housing and having an accommodation hole penetrating the upper and lower surfaces;
  • a sensor fixing unit inserted into the receiving hole of the substrate and positioned between the lower surface of the housing and the lower surface of the substrate, the sensor fixing part having a second pressure transmission pipe formed therein in a longitudinal direction to communicate with the first pressure transmission pipe;
  • a pressure sensor positioned on one surface of the sensor fixing part so as to be in contact with one end of the pressure transmission pipe;
  • one or more linear leads having one end in contact with the lower space of the housing and the other end protruding through the lead hole to the outside of the space;
  • a lead support portion positioned on the upper surface of the substrate to fix the lead
  • It relates to a pressure sensor having a modular semi-hermetic structure, characterized in that it comprises a.
  • the sensor fixing unit In the present invention, the sensor fixing unit, the sensor fixing unit, and
  • a pressure sensor accommodating groove formed to be recessed in a hexahedral shape on the upper surface and accommodating the pressure sensor therein;
  • a pressure sensor auxiliary accommodating groove formed by recessing an inner surface of the pressure sensor accommodating groove to be bent at a predetermined radius around a height direction edge of the inner surface of the pressure sensor accommodating groove;
  • a bottom surface of the pressure sensor accommodating groove communicates with a pressure transmission pipe or a second pressure transmission pipe formed in the sensor fixing part.
  • the pressure sensor accommodating groove and the pressure sensor may be bonded with any one of a metal adhesive and an organic adhesive or a plurality of adhesives.
  • the sensor fixing part is provided with an extended part extending in the longitudinal direction and exposed to the outside of the housing, and one or a plurality of protruding jaws and O-ring receiving grooves are alternately formed on the outer surface of the extended part, respectively,
  • the housing is provided with an extension portion extending in the direction in which the first pressure transmission pipe is formed on a lower surface thereof, and one or a plurality of protruding jaws and O-ring accommodating grooves are alternately formed on an outer surface of the extension portion.
  • the pressure transmission pipe may be formed to have a narrower diameter from the other surface of the sensor fixing part to one surface.
  • the pressure sensor may be electrically connected to the substrate through wire bonding, and the lead may penetrate the substrate and contact the lower space of the housing.
  • the sensor fixing part may be made of any one or a plurality of metals selected from copper alloy (brass), aluminum, nickel, tin, palladium, tantalum, and zinc.
  • the pressure sensor according to the present invention includes a sensor fixing part having a pressure transmission pipe for transmitting pressure, and a pressure sensor positioned on one surface of the sensor fixing part so as to be in contact with one end of the pressure transmission pipe, the sensor fixing part A receiving groove for accommodating the sensor, and an auxiliary receiving groove for including a part of the receiving groove are further provided, so that the bonding strength of the pressure sensor can be dramatically increased.
  • the auxiliary receiving groove is processed around the four corners formed in the same direction as the processing direction of the receiving groove, but the auxiliary receiving groove is formed before the receiving groove.
  • the application position of the adhesive can be easily determined, and there is an advantage in that the application process is also easy.
  • the sensor can detect an accurate pressure value in an environment where vibration, high temperature, corrosion, etc. may occur without showing hysteresis, and for a medium having an imperfect characteristic pressure generated from fuel such as diesel or gasoline It can have strong resistance.
  • FIG. 1 and 2 are perspective views of a pressure sensor according to the present invention.
  • Figure 3 (a) is a plan view of the pressure sensor according to the present invention.
  • Fig. 3(b) is a cross-sectional view of Fig. 3(a).
  • Figure 4 (a) is a plan view (a) of the pressure sensor according to the present invention.
  • Fig. 4(b) is a cross-sectional view of Fig. 3(a).
  • Figure 7 (a) shows the combination of the sensor fixing part to which the pressure sensor is bonded and the substrate.
  • Fig. 7(b) is a cross-sectional view of Fig. 7(a).
  • FIG. 8(a) shows the combination of the sensor fixing part to which the pressure sensor is attached and the substrate.
  • Fig. 8(b) is a cross-sectional view of Fig. 8(a).
  • FIG. 10 is a diagram illustrating that the substrate is bonded to the sensor fixing part in the pressure sensor according to the present invention.
  • Ad Adhesive
  • the pressure sensor having a modular semi-hermetic structure according to the present invention may be coupled to a pressure measurement object to measure the pressure of a fluid flowing from the pressure measurement object, signal the measured pressure and transmit it to the outside.
  • the pressure sensor may include various parts such as a sensor element for directly measuring pressure, a case for protecting the sensor element, and a transmission means for transmitting pressure to the sensor element.
  • a housing 100 accommodating a pressure sensor (sensor element, 500) therein, a cover 200, and a sensor that is coupled to the housing to fix the sensor and transmit pressure to the inside of the housing It may include a fixing unit 400 , a substrate 300 for converting a signal measured by the sensor into an electrical signal, and a lead 600 connecting the substrate and an external device (such as a power supply).
  • a pressure sensor sensor element, 500
  • cover 200 a cover 200
  • a sensor that is coupled to the housing to fix the sensor and transmit pressure to the inside of the housing It may include a fixing unit 400 , a substrate 300 for converting a signal measured by the sensor into an electrical signal, and a lead 600 connecting the substrate and an external device (such as a power supply).
  • the pressure sensor having the above configuration may be introduced into a pressure transmission pipe formed in the sensor fixing part or a first pressure transmission pipe and a second pressure transmission pipe formed in the housing and the sensor fixing part depending on the shape of the sensor fixing part and the housing.
  • the housing 100 has one side open as shown in FIGS. 3(a) and 3(b) and has a space of a certain size therein, and a first receiving hole 110 for inserting and accommodating a sensor fixing part to be described later.
  • a first receiving hole 110 for inserting and accommodating a sensor fixing part to be described later.
  • 4 (a) and 4 (b) is another aspect of the housing, one side of which is open and has a space of a certain size therein, a first pressure transmission pipe communicating with the outside on the lower surface of the housing body 120 ( 111) is formed to communicate with the second pressure transmission pipe of the sensor fixing part to be described later to transmit external pressure, and the outer surface of the housing body may include a side wall 130 formed to protrude in the longitudinal direction. .
  • the housing has a cylindrical shape with one side generally open and has a space of a certain size therein, and a housing body having an inner surface to receive a substrate and a side wall forming an inner space together with the inner surface are provided.
  • the sidewall may be further formed with irregularities so as to be coupled with the coupling jaw of the cover to be described later.
  • the housing may have irregularities 140 formed on the inner side or bottom surface of the end of the side wall so as to be fitted with the coupling jaw 220 of the cover.
  • the unevenness As the unevenness is formed, a space for accommodating the coupling jaw of the cover is formed between the unevenness and the bottom surface of the housing, and through this, the contact area between the cover and the housing is widened so that the fluid flows into the contact surface between the housing and the cover. invasion can be prevented.
  • the housing may form a first accommodating hole 110 penetrating the bottom to expose one end of the sensor fixing part to the internal space by passing a sensor fixing part to be described later as shown in FIG. 3(b).
  • coupling means may be further provided on the inner peripheral surface of the first accommodating hole and the outer peripheral surface of the sensor fixing part.
  • the coupling means is not limited in the present invention, and examples thereof include irregularities (steps), magnets, adhesive layers, etc. that can be fitted.
  • the housing is formed with a first pressure transmission pipe communicating with a second pressure transmission pipe formed in the longitudinal direction of the sensor fixing part to be described later as shown in FIG. 4(b), and on the lower surface of the housing body, the first pressure An extension 150 formed by extending the transmission tube in the longitudinal direction may be further provided.
  • one or a plurality of protruding jaws and O-ring accommodating grooves are alternately formed on the outer surface of the extension, respectively, to more strongly combine with a fuel tank, etc. It may be provided so as to be in contact with the inner peripheral surface of the connection part.
  • one or a plurality of protruding jaws 151 and O-ring receiving grooves 152 may be alternately formed on the outer surface of the extension.
  • the protruding jaw may be in the form of a screw (thread) that can be coupled through rotation for close coupling with the connection part, and if it is a general type of protruding jaw (support jaw) that can be coupled with other devices through fitting, etc. It does not limit the form.
  • the O-ring accommodating groove is for preventing unnecessary injection of fluid by further increasing adhesion between the outer circumferential surface of the extension portion and the inner circumferential surface of the connection part of the external device, and can accommodate the O-ring 153 , which is a kind of sealing member.
  • the O-ring is formed in a ring shape and is seated to surround the outer circumferential surface of the O-ring accommodating groove, thereby sealing the periphery of the extension and increasing the frictional force between the extension and the external device.
  • the O-ring is provided to block unnecessary injection or outflow of fluid, and it is preferable to use a material that can completely block the bonding gap of the components, has elastic recovery force of at least a certain amount, and has excellent heat resistance and corrosion resistance.
  • a material that can completely block the bonding gap of the components has elastic recovery force of at least a certain amount, and has excellent heat resistance and corrosion resistance.
  • examples of such materials include silicone rubber, fluorosilicone rubber, fluoroelastomer, ethylene-propylene-diene monomer rubber, and nitrile-butadiene rubber, among which silicone rubber or fluorosilicone rubber is preferably used.
  • the housing may be formed of a suitable metal material having heat resistance, impact resistance, etc., and examples thereof include copper alloy, aluminum, nickel, tin and zinc. In addition to these, stainless, copper, bronze , metals such as chromium, titanium, or alloys thereof may be included.
  • the cover 200 is combined with the housing to form a space for accommodating a pressure sensor, a substrate, a lead, etc. therein.
  • one or a plurality of lead holes 210 are formed on the upper surface.
  • the lead hole 210 is formed to expose a lead 600 to be described later to the outside of the space, and the lead exposed to the outside through the lead hole may be directly connected to an external device such as a power source.
  • a coupling means such as a kind of protrusion or a coupling groove may be further provided around the lead hole so that the connection part of the external device can be inserted or connected by fitting or the like.
  • the coupling jaw 220 is formed to protrude from the outer circumferential surface of the end of the side wall in which the outer circumferential surface of the cover extends in the longitudinal direction, precisely in the opposite direction to the exposure direction of the lead, and is fitted with the unevenness and space of the housing. and can be fixed.
  • the cover may form a space in which the opposite surface is opened through coupling with the housing by forming a sidewall.
  • the space formed by the cover is combined with the space of the housing to form a space for accommodating the lead support part 700 , the substrate 300 , the sensor 500 , and the like, which will be described later.
  • the cover has a coupling protrusion 220 formed on the outer circumferential surface of the side wall, thereby increasing the contact area with the housing and preventing the fluid from entering the space of the housing.
  • the coupling of the housing and the cover may depend only on the fitting coupling, but an adhesive or the like may be used to fill the space between the housing and the cover for more reliable sealing.
  • the cover is not limited in material. However, since heat resistance, pressure resistance, impact resistance, etc. must be maintained, it is preferable to use a material that can satisfy the above physical properties.
  • It may be made of reinforced plastic, and more preferably, using a fiber-reinforced plastic containing glass fibers in polyamide as a polymer resin, of which polyamide 6,6 has high rigidity and high fluid resistance, abrasion resistance, It is preferable because it has high dimensional stability and adhesion, and has an excellent thermal deformation temperature.
  • the substrate precisely the printed circuit board 300, is electrically connected to the pressure sensor through a wire, and serves to convert a change in resistance formed through pressure into an electrical signal.
  • the printed circuit board is formed so that the second accommodating hole 310 penetrates through the upper surface and the lower surface so that one surface of the sensor fixing part is exposed to the space of the housing by penetrating the sensor fixing part as shown in FIG.
  • a wire for electrically connecting to the pressure sensor provided on one surface of the sensor fixing part, a through-hole filled with a conductive adhesive so as to be electrically connected while penetrating the lead, may be provided.
  • the printed circuit board is coupled to the outer circumferential surface of the second accommodating hole and the outer circumferential surface of the sensor fixing part in direct contact with the second accommodating hole similarly to a bolt and a nut in order to be more closely coupled with the sensor fixing part.
  • a jaw and a coupling groove are formed, and as the sensor fixing part is rotated and coupled, it may be screwed together.
  • the through-hole may be filled with a conductive adhesive to be electrically connected to the lead while being fixed through the lead 600 as described above.
  • the conductive adhesive is not limited in the present invention, but may be an epoxy containing conductive metal particles such as iron or copper.
  • the through-holes may be formed according to the number of leads. In this case, since the lead penetrates the substrate and comes into contact with the bottom surface of the metal housing, the substrate, the lead, and the housing may all be electrically connected to each other.
  • a buffer member (not shown) may be further provided between the substrate and the housing.
  • the buffer member elastically deforms and absorbs the shock absorber to maintain coupling between the substrate and the housing, and may absorb the shock transmitted to the substrate.
  • the substrate is not limited to a material and a forming method.
  • a wafer made of a silicon oxide material constituting the substrate, and a boron-implanted p-type semiconductor layer formed on the surface of the wafer may be printed in a pattern form, and when the p-type semiconductor layer forms a plurality of layers, the p-type semiconductor layer An insulating layer made of silicon oxide may be further provided between the semiconductor layers.
  • the sensor fixing part 400 is fitted into the first accommodating hole of the housing and the second accommodating hole of the substrate as shown in FIGS. ) to expose the space of the housing, a pressure transmission pipe 410 is formed therein in the longitudinal direction so as to penetrate one surface and the other surface to transmit pressure to the inside of the housing, and the first accommodating hole and the second An extension portion 440 that is not inserted into the accommodation hole is further provided, but one or a plurality of protruding jaws and O-ring accommodation grooves are formed alternately on the outer surface of the extension portion, respectively, so that they are more strongly coupled to the fuel tank, etc. and the intrusion of fluid can prevent
  • the sensor fixing part is inserted into the receiving hole of the substrate as shown in FIGS. 4(b) and 8(a), and is positioned between the bottom surface of the housing and the bottom surface of the substrate, and is inside in the longitudinal direction so as to penetrate one surface and the other surface.
  • a second pressure transmission pipe 411 is formed to communicate with the first pressure transmission pipe 111 of the housing described above to transmit pressure therein.
  • coupling means may be further provided on the inner peripheral surface of the accommodating hole and the outer peripheral surface of the sensor fixing part.
  • the coupling means is not limited in the present invention, and examples thereof include irregularities (steps), magnets, adhesive layers, etc. that can be fitted.
  • the upper surface of the sensor fixing part is formed to be recessed in a hexahedral shape, and a pressure sensor accommodating groove 420 for accommodating the pressure sensor therein;
  • a pressure sensor auxiliary accommodating groove 430 formed by recessing an inner surface of the pressure sensor accommodating groove to be bent at a predetermined radius around a height direction edge of the inner surface of the pressure sensor accommodating groove may be formed.
  • the sensor fixing part forms a receiving groove for accommodating the pressure sensor on the upper surface to protect the pressure sensor, and when the sensor fixing part is viewed in the longitudinal direction from the top surface, the shape of the receiving groove is divided into a rectangle and the rectangle. It can be made to have the shape of a circle centered on the four corners.
  • the sensor fixing part cuts the auxiliary receiving groove first before the receiving groove, and then cuts the receiving groove according to this.
  • the bonding method of the pressure sensor in the present invention including the cutting method of the receiving groove is described in more detail with reference to FIGS. 9(a) to 9(d),
  • step a) is the first step of forming a receiving groove for placing a pressure sensor on the upper surface of the sensor fixing part, and is a step of defining a vertex by drawing an imaginary line in a rectangular shape.
  • the quadrangle may be defined as a general asymmetric quadrangle, but it is preferable to set it as a left-right symmetric quadrangle such as a rectangle or a square. It is preferable to set it to be located.
  • step b the upper surface of the sensor fixing part centered on the vertex of the rectangle is cut into a cylindrical shape in the longitudinal direction to form an auxiliary receiving groove.
  • the auxiliary receiving groove 430 formed in step b) is a virtual virtual machine set in step a). It may be in the form of a circle centered on each vertex among the quadrilaterals. That is, through step b), four auxiliary receiving grooves are formed around the vertices of the quadrangle, respectively.
  • the auxiliary receiving groove may have the same depth as the receiving groove to be described later as shown in FIG. 7(b) or 8(b), and has a cylindrical shape centered on the vertex of the quadrangle as described above.
  • the portion in which the auxiliary accommodating groove is formed replaces the edge formed in the etching direction of the accommodating groove.
  • the receiving groove In general, in order to accommodate a rectangular pressure sensor, the receiving groove must also be machined in a hexahedral shape. The problem is that most milling equipment that forms grooves must be processed by rotating a special type of drill such as a long-edge cutter. In addition, even with this processing, there is a problem in that it is difficult to obtain a flat and straight edge due to the limitation of the processing method, so that the precision of the receiving groove is deteriorated.
  • the amount of adhesive applied is too large, of course, the adhesive spreads wider when pressure is applied. This may reduce the measurement accuracy.
  • the amount of adhesive is not completely the same when applying the adhesive to several places, the amount of adhesive spread is different even if the pressure applied to bond the pressure sensor is constant. The width may not be constant, which may also affect the measurement accuracy of the pressure sensor.
  • the present invention does not first form an accommodating groove for accommodating the pressure sensor, but first sets an imaginary line of the same size as the accommodating groove, and then sets the vertex of the imaginary line as the center After forming the auxiliary receiving groove, it is characterized in that the receiving groove is formed by processing along the virtual line.
  • the position and shape of the receiving groove can be easily determined just by forming the auxiliary receiving groove first, so it is easy to process to an accurate size, and when the receiving groove is formed, the edge in the etching direction is replaced with the auxiliary receiving groove Therefore, there is no need to apply a special type of drill or machining method, and machining costs can be reduced.
  • the application position or amount of the adhesive can be determined according to the position of the auxiliary receiving groove, so that the bonding position of the pressure sensor can be made more precisely.
  • the adhesive is easily adhered to the edge of the pressure sensor without spreading to the pressure transmission pipe by simply adjusting the application position and amount of the adhesive, so that the sensor fixing part It is possible to increase the adhesive strength between the and pressure sensor.
  • the auxiliary accommodating groove does not limit the size or depth of the diameter, but is preferably set in consideration of the ratio with the width of the accommodating groove, which will be described later. Specifically, it is preferable that the diameter (A) of the auxiliary receiving groove has a ratio (A/B) of 0.1 to 0.5 with the width (B) of the receiving groove. If A/B does not satisfy the above range, the bonding process of the pressure sensor may be difficult, or it may be difficult to constantly maintain the bonding strength between the pressure sensor and the receiving groove. Also, the depth may be 0.1 to 1 mm, but the present invention is not limited thereto.
  • the auxiliary receiving groove is not limited to a molding method.
  • the receiving groove is formed to be connected to the auxiliary receiving groove through step c)
  • the edge to be formed in the cutting direction of the receiving groove is replaced with the auxiliary receiving groove as described above.
  • the auxiliary receiving groove On which the pressure transmission pipe is formed so as to communicate with the pressure transmission pipe 410 or the second pressure transmission pipe 411, which will be described later, depending on the shape of the housing and the sensor fixing part.
  • the processing method of the auxiliary receiving groove described above may be applied.
  • the size of the receiving groove is not limited.
  • the width (distance between the opposite corners based on the rectangle of the upper surface) of the receiving groove may be 0.5 to 2 mm, and the depth may be 0.1 to 1 mm, but the depth of the auxiliary receiving groove within the above range It is better to form it so that it is the same as
  • step d an adhesive is applied to the side where the pressure sensor is to be located among the bottom surfaces of the receiving groove, and then the pressure sensor is fixed on the adhesive and cured.
  • the adhesive may be molded into a thin film, and is preferably a metal having good fire resistance, conductivity, and wettability.
  • the pressure sensor-glass (glass film)-metal film may be stacked in the order from the top.
  • step d) is described in more detail, first, an integrated circuit is designed on the upper surface of the silicon wafer forming the pressure sensor, and then a metal film with excellent chemical resistance, conductivity, and wettability is applied to the bottom surface by vapor deposition or sputtering (first 1) is formed. And after manufacturing the pressure sensor by removing the mask for designing the integrated circuit or etching the upper surface on which the mask pattern is formed, a second film of the same material as the first film is formed on the lower surface of the receiving groove, and then the second film It may be formed by arranging the first and second films to be in contact with each other and then heating at a temperature at which the first and second films are melted.
  • gold, titanium, chromium, tungsten, nickel, copper, platinum, tin, germanium, silicon, antimony, etc. may be mentioned, and these may be used alone or in combination of two or more.
  • an alloy such as a tin-gold-copper, gold-tin alloy, gold-germanium-antimony alloy, or gold-silicon alloy having a composition capable of eutectic bonding capable of immediately forming a metal foil on the surface of a silicon substrate is used. it's good
  • the eutectic bonding is a method of bonding by heating an adhesive made of a metal material.
  • metal does not change from a solid to a liquid immediately when heated, but changes to a liquid through a slush state. The longer this slush state continues, and more As the slush state progresses in the part, it acts as a factor to decrease the bonding strength.
  • the heated metal when the metals constituting the alloy are adjusted in a certain ratio, the heated metal changes to a liquid state immediately at the lowest melting point without going through a slush state, so that bonding strength can be increased.
  • the heating temperature is preferably in the range of 350 to 450 °C.
  • the metal films of eutectic material formed on the bonding surface of the temperature sensor and the bottom surface of the receiving groove are melted, respectively, so that the silicon wafer used as the pressure sensor and the sensor fixing unit made of silicon (glass) can be bonded to each other. .
  • a bonding method using a metal adhesive to fix the pressure sensor is given as an example, but in some cases, an organic adhesive may be used instead of the metal adhesive.
  • the organic adhesive has excellent heat resistance and weather resistance and has little dimensional change.
  • the adhesive include any one or more of thermosetting resins such as epoxy, melamine, phenol, unsaturated polyester, urea, resorcinol, etc. may include
  • the pressure sensor When the pressure sensor is bonded to the sensor fixing part as described above, since it has a much higher bonding strength than the conventional solder die bonding method, the pressure inside the housing or the pressure transmitted through the pressure transmission pipe is suddenly changed. Even if it increases, it is preferable because the adhesive force between the pressure sensor and the sensor fixing part can be kept constant.
  • the sensor fixing unit may further include a pressure transmission pipe 410 or a second pressure transmission pipe 411 formed in the longitudinal direction so as to penetrate one surface and the other surface therein depending on the shape.
  • the pressure transmission pipe or the second pressure transmission pipe communicates with an external flow path or the first pressure transmission pipe 111 of the housing through a portion formed on the other surface, respectively, to supply a fluid into the housing, FIG. 3(b) ) or 4(b), it is characterized in that the diameter is narrowed from the other surface of the sensor fixing part to one surface.
  • the sensor fixing part extends in the longitudinal direction to maintain coupling with the connection part of an external device such as an external flow path or other fuel tank described above as shown in FIG. 3(b) and has an extension part 440 exposed to the outside of the housing
  • the outer peripheral surface of the extension portion may be provided in contact with the inner peripheral surface of the connecting portion of the external device.
  • one or a plurality of protruding jaws 441 and O-ring receiving grooves 442 may be alternately formed on the outer surface of the extension.
  • the protruding jaw may be in the form of a screw (thread) that can be coupled through rotation for close coupling with the connection part, and if it is a general type of protruding jaw (support jaw) that can be coupled with other devices through fitting, etc. It does not limit the form.
  • the O-ring accommodating groove is for preventing unnecessary injection of fluid by further increasing adhesion between the outer circumferential surface of the extension and the inner circumferential surface of the connection part of the external device, and can accommodate the O-ring 443 as a kind of sealing member.
  • the O-ring is formed in a ring shape and is seated to surround the outer circumferential surface of the O-ring accommodating groove, thereby sealing the periphery of the extension and increasing the frictional force between the extension and the external device.
  • the O-ring is provided to block unnecessary injection or outflow of fluid, and it is preferable to use a material that can completely block the bonding gap of the components, has elastic recovery force of at least a certain amount, and has excellent heat resistance and corrosion resistance.
  • a material that can completely block the bonding gap of the components has elastic recovery force of at least a certain amount, and has excellent heat resistance and corrosion resistance.
  • examples of such materials include silicone rubber, fluorosilicone rubber, fluoroelastomer, ethylene-propylene-diene monomer rubber, and nitrile-butadiene rubber, among which silicone rubber or fluorosilicone rubber is preferably used.
  • the sensor fixing part is not limited in material, but is preferably made of a metal material in order to minimize the difference in the coefficient of thermal expansion with the above-described metal adhesive, etc., and to secure heat resistance and corrosion resistance, for example, copper alloy, aluminum, nickel, tin, palladium, tantalum and zinc; and the like. In this case, it is preferable to use the metal alone or two or more, and it is most preferable to use a copper alloy in terms of weather resistance and heat resistance.
  • the pressure sensor 500 is positioned to be embedded in the receiving groove formed on the upper surface of the sensor fixing unit as described above, and is protected from fluids or external shocks (heat, pressure, other physical shocks), and through the wire It may be electrically connected to the substrate to perform a function of transmitting an electrical signal according to a change in pressure.
  • the pressure sensor (pressure sensor) is connected to a diaphragm having a piezo-resistive effect such as single crystal silicon, a plurality of semiconductor strain gauges (resistors) are formed on the diaphragm, and a connection circuit connected to the semiconductor strain gauge, the circuit An integrated circuit such as an amplification circuit and an arithmetic processing circuit for increasing the output from the controller may be included.
  • the pressure sensor may be electrically connected to the substrate through the above-described wire.
  • the resistance disposed on the surface is also deformed. At this time, the resistance value of the surface also changes according to the shape deformation, and an electrical signal generated by the change in resistance may be transmitted to the substrate through a pressure sensor.
  • the type of the pressure sensor is not limited.
  • the pressure sensor is classified into a method of converting the stress generated in the diaphragm into an electrical signal, and the conversion method includes a natural frequency change of a vibrator, a method using a surface acoustic wave, a piezoresistive type and a capacitive type, and the like. Among these, it is preferable to apply a piezoresistive type or a capacitive type.
  • a piezoresistive body capable of measuring a change in pressure is formed between two silicon substrates, and when the substrate is deformed by the pressure, the pressure of the piezoresistive body is sensed to measure the pressure.
  • Such a piezoresistive type has a severe change in pressure according to temperature and poor circuit compatibility, but has advantages of simple structure and process and simple circuit.
  • the capacitive type is provided with electrodes spaced apart by a certain distance to face each other, and when the distance between the electrodes is changed by external pressure, the capacitance between the electrodes also changes. to be.
  • the capacitive type has a precise and complex structure and poor responsiveness, but is relatively less affected by temperature and can detect minute changes.
  • the pressure sensor can be manufactured by designing an integrated circuit on the upper surface of a silicon wafer and then etching the integrated circuit. At this time, it is common to form the silicon wafer integrally on the lower glass substrate in terms of securing insulation. are connected up and down.
  • the lead 600 is a kind of connection terminal for sending a signal transmitted to the substrate to an external device and supplying power to the substrate, etc., and passes through the substrate as shown in FIGS. 5 and 6 to pass through the housing. In contact with the bottom surface of the inner space of the housing, the substrate and the pressure sensor may be electrically connected.
  • the lead is vertically connected to the bottom surface of the inner space of the housing, and in this case, it may be fixed by a conductive adhesive or welding.
  • a certain portion may be bent and located in the inner space of the housing, but may have elasticity in a direction perpendicular to the substrate and the housing.
  • the number of the leads is not limited, it is preferable to be provided with three separate leads for external input/output, driving voltage supply, and grounding, as shown in FIG. 1 .
  • the material of the lead is not limited, it is preferable that the lead is made of a material having conductivity similar to that of the housing. Examples of such materials include brass, aluminum, nickel, tin and zinc, and these may be used alone or in the form of two or more alloys.
  • the lead support part 700 is supported on the upper surface of the substrate as shown in FIGS. 5 and 6 and is provided with a coupling member to guide and fix the plurality of leads described above, and may be located on the upper surface of the substrate in the housing. .
  • the lead support part is basically supported on the upper surface of the substrate as shown in FIG. 6 and may have various lengths, shapes, etc. depending on the shape and position of the lead.
  • the upper surface is in contact with a bent portion of the outer peripheral surface of the lead. It is possible to keep the electrical connection between the lead and the board from being broken even in case of an impact.
  • the lead support part does not limit the fixing method or shape of the lead.
  • the lead support part may further include a protrusion on the bottom surface to be fitted with the coupling groove formed on the substrate, and the lead support part and the substrate are coupled using an adhesive without having to provide a protrusion or coupling groove. You may.
  • the lead support portion may further include one or more gripping means 710 on the side as shown in FIG. 6 to fix the lead.
  • the gripping means is provided on the side to accommodate a portion of the outer peripheral surface of the lead by fitting with the lead, and it is possible to more firmly fix the lead to prevent breakage of the electrical connection that may occur due to an impact.
  • the material of the lead support part is not limited in the present invention, it is preferable to use a polymer material that satisfies heat resistance, impact resistance, insulation properties, and the like, similarly to the cover.
  • glass fiber is mixed with any one or a plurality of polymer resins selected from polyolefin, polyamide, polyacrylic, polyurethane, polyimide, polyethylene terephthalate, polyethylene naphthalate and polybutylene terephthalate. Fiber-reinforced plastic may be mentioned, and in addition, various materials satisfying the above physical properties may be used.
  • the pressure sensor according to the present invention includes a sensor fixing part having a pressure transmission pipe for transmitting pressure, and a pressure sensor positioned on one surface of the sensor fixing part so as to be in contact with one end of the pressure transmission pipe,
  • the sensor fixing part is further provided with an accommodating groove for accommodating the sensor, and an auxiliary accommodating groove to include a part of the accommodating groove, so that the bonding strength of the pressure sensor can be dramatically increased.
  • the pressure sensor can detect an accurate pressure value in an environment where vibration, high temperature, corrosion, etc. may occur without showing a hysteresis phenomenon, and a medium having an imperfect characteristic pressure generated from fuel such as diesel or gasoline. can have strong resistance to

Abstract

본 발명에 따른 압력센서는 압력을 전달하는 압력전달관이 형성된 센서고정부와, 상기 센서고정부의 일면에 상기 압력전달관의 일단과 접촉하도록 위치하는 압력센서를 포함하되, 상기 센서고정부에 상기 센서를 수용하는 수용홈과, 상기 수용홈의 일부가 포함되도록 하는 보조수용홈이 더 구비됨으로써 압력센서의 접합강도를 비약적으로 상승시킬 수 있다. 이를 통해 상기 압력센서는 이력 현상을 나타내지 않으면서도 진동이나 높은 온도, 부식 등이 발생할 수 있는 환경에서 정확한 압력값을 검출할 수 있으며, 경유나 휘발유와 같은 연료에서 발생하는 불완전한 특성의 압력을 가지는 매체에 대해 강한 내성을 가질 수 있다.

Description

모듈화된 세미 허메틱 구조를 구비한 압력센서
본 발명은 모듈화된 세미 허메틱 구조를 구비한 압력센서에 관한 것으로, 상세하게는 하우징 내부로 노출되며, 압력을 전달하는 압력전달관이 형성된 센서고정부와, 상기 센서고정부의 일면에 상기 압력전달관의 일단과 접촉하도록 위치하는 압력센서를 포함하되, 상기 센서고정부에 상기 센서를 수용하는 수용홈과, 상기 수용홈의 일부가 포함되도록 하는 보조수용홈이 더 구비됨으로써 압력센서의 접합강도를 비약적으로 상승시킬 수 있는 압력센서에 관한 것이다.
반도체 집적회로 제작 기술을 기반으로 하여 각종 물리량 감지를 위한 미세기계구조물과 각종 물리량을 전기신호로의 변화, 증폭, 보정을 위한 전자회로를 동시에 제작하여 하나의 칩 상에 집적화하는 MEMS기술이 등장함에 따라 센서의 소형화, 경량화, 다기능화, 고성능화와 함께 비용을 최소화할 수 있는 장점을 가진 반도체 센서가 급격하게 개발되어 자동차 산업에 상용화되고 있다. 특히 반도체 압력센서는 엔진 제어용 MAP센서에서 가장 먼저 상품화되었으며, 현재 타이어압 센서 그리고 탱크 연료압력센서에 사용되고 있다.
반도체 공정을 이용하여 제작된 압력센서는 구조물로 높은 피로강도를 가지는 실리콘(세라믹)으로 제작되어 외부 하중이나 열적 변형이 매우 높은 안정성을 가진다.
일반적인 세라믹 타입 압력 센서의 경우, 세라믹으로 이루어지는 원형 형상의 센서 칩과 내부 누설을 방지하기 위하여 센서 주위로 구비될 수 있는 내부 오링, 외부에서의 누설을 방지하기 위한 외부 오링, 인쇄회로기판, 하우징 및 커넥터를 포함한다. 그러나 센서의 칩이 센서 하우징 내부에 위치하여 연료전지 시스템이 구동되지 않고 저온의 외기압에 장시간 노출되는 경우, 센서 칩과 하우징 사이에서 수분이 응축되거나, 나아가 빙결되어 센서의 다이아프램부가 파손될 수 있었다. 또한 종래 구조에 의한 센서는 누설이 발생할 수 있는 체결 포인트가 2군데 이상 형성됨에 따라, 센서의 기밀성이 떨어질 수밖에 없었다.
또한 상기 세라믹 타입의 압력센서를 패키징하기 위해 양극접합, 융착 접합, 프릿 유리 접합, 에폭시 접합 등의 여러 방법이 있으나, 각각 호환성, 허메틱 밀봉 여부, 일괄공정 적용 여부 등의 문제점이 있으며, 특히 에폭시 접합의 경우 에폭시들의 고분자를 중간 접합 매개 물질로 사용하여 접합하는 것으로서 저온공정이 가능한 장점이 있으나, 이러한 방법은 허메틱하지 않고, 시간에 따른 노화 현상에 의해 제작되는 소자의 특성이 흔들리는 이동 특성을 보이기 때문에 이러한 압력센서의 레벨 접합 기술에 대한 연구가 절실한 실정이다.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 하우징 내부로 노출되며, 압력을 전달하는 압력전달관이 형성된 센서고정부와, 상기 센서고정부의 일면에 상기 압력전달관의 일단과 접촉하도록 위치하는 압력센서를 포함하되, 상기 센서고정부에 상기 센서를 수용하는 수용홈과, 상기 수용홈의 일부가 포함되도록 하는 보조수용홈이 더 구비됨으로써 압력센서의 접합강도를 비약적으로 상승시킬 수 있는 모듈화된 세미 허메틱 구조를 가지는 압력센서의 제공을 목적으로 한다.
본 발명은 모듈화된 세미 허메틱 구조를 가지는 압력센서에 관한 것이다.
본 발명의 일 양태는,
하나 또는 복수의 리드홀이 형성되며 측벽 하측면에 결합턱을 구비하는 커버;
내측면의 요철을 통해 상기 커버의 결합턱과 끼움결합하여 공간을 형성하며, 하면에 외부와 연통하는 제1수용홀이 형성된 하우징;
상기 하우징의 공간 저면에 구비되며, 상면과 저면을 관통하는 제2수용홀이 형성된 기판;
각각 상기 하우징의 제1수용홀과 상기 기판의 제2수용홀에 삽입되어 하우징의 공간으로 노출되며, 일면과 타면을 관통하도록 길이방향으로 내부에 압력전달관이 형성되는 센서고정부;
상기 센서고정부의 일면에 상기 압력전달관의 일단과 접촉하도록 위치하는 압력센서;
일단이 상기 하우징의 공간 하면과 접촉하며, 타단이 상기 리드홀을 관통하여 공간 외부로 돌출되도록 형성되는 선형의 하나 또는 복수의 리드; 및
상기 기판의 상면에 위치하여 상기 리드를 고정하는 리드지지부;
를 포함하는 것을 특징으로 하는 모듈화된 세미 허메틱 구조를 가지는 압력센서에 관한 것이다.
본 발명의 다른 양태는,
하나 또는 복수의 리드홀이 형성되며 측벽 하측면에 결합턱을 구비하는 커버;
내측면의 요철을 통해 상기 커버의 결합턱과 끼움결합하여 공간을 형성하며, 하면에 외부와 연통하는 제1압력전달관이 형성된 하우징;
상기 하우징의 공간 저면에 구비되며, 상면과 저면을 관통하는 수용홀이 형성된 기판;
상기 기판의 수용홀에 삽입되어 상기 하우징의 저면과 상기 기판의 하면 사이에 위치하며, 상기 제1압력전달관과 연통되도록 길이방향으로 내부에 제2압력전달관이 형성되는 센서고정부;
상기 센서고정부의 일면에 상기 압력전달관의 일단과 접촉하도록 위치하는 압력센서;
일단이 상기 하우징의 공간 하면과 접촉하며, 타단이 상기 리드홀을 관통하여 공간 외부로 돌출되도록 형성되는 선형의 하나 또는 복수의 리드; 및
상기 기판의 상면에 위치하여 상기 리드를 고정하는 리드지지부;
를 포함하는 것을 특징으로 하는 모듈화된 세미 허메틱 구조를 가지는 압력센서에 관한 것이다.
본 발명에서 상기 센서고정부는,
상면에 육면체 형상으로 함몰되게 형성되며, 내부에 압력센서를 수용하는 압력센서 수용홈; 및
상기 압력센서 수용홈의 내측면 높이방향 모서리를 중심으로 일정 반경으로 굴곡지도록 내측면을 함몰하여 형성한 압력센서 보조 수용홈;
을 더 구비하며,
상기 압력센서 수용홈의 저면은 상기 센서고정부에 형성된 압력전달관 또는 제2압력전달관과 연통되는 것을 특징으로 한다.
또한 상기 압력센서 수용홈과 상기 압력센서는 금속 접착제 및 유기 접착제 중 어느 하나 또는 복수의 접착제로 접합할 수 있다.
본 발명에서 상기 센서고정부는, 길이방향으로 연장되어 상기 하우징의 외부로 노출되는 연장부를 구비하되, 상기 연장부의 외측면에는 하나 또는 복수의 돌출턱과 오링수용홈이 각각 교호로 형성되거나,
상기 하우징은, 하면에 제1압력전달관의 형성 방향으로 연장된 연장부를 구비하되, 상기 연장부의 외측면에는 하나 또는 복수의 돌출턱과 오링수용홈이 각각 교호로 형성되는 것을 특징으로 한다.
또한 상기 압력전달관은, 상기 센서고정부의 타면에서 일면으로 갈수록 직경이 좁아지도록 형성될 수 있다.
본 발명에서 상기 압력센서는 상기 기판과 와이어본딩을 통해 전기적으로 연결될 수 있으며, 상기 리드는 상기 기판을 관통하여 상기 하우징의 공간 하면과 접촉할 수 있다.
또한 상기 센서고정부는 구리합금(황동), 알루미늄, 니켈, 주석, 팔라듐, 탄탈륨 및 아연에서 선택되는 어느 하나 또는 복수의 금속으로 제조될 수 있다.
본 발명에 따른 압력센서는 압력을 전달하는 압력전달관이 형성된 센서고정부와, 상기 센서고정부의 일면에 상기 압력전달관의 일단과 접촉하도록 위치하는 압력센서를 포함하되, 상기 센서고정부에 상기 센서를 수용하는 수용홈과, 상기 수용홈의 일부가 포함되도록 하는 보조수용홈이 더 구비됨으로써 압력센서의 접합강도를 비약적으로 상승시킬 수 있다.
특히 상기 압력센서는 센서를 수용 및 보호하는 수용홈을 형성할 때 상기 수용홈의 가공방향과 동일한 방향으로 형성되는 네 모서리를 중심으로 보조수용홈을 가공하되, 상기 수용홈보다 보조수용홈을 먼저 형성함으로써 접착제의 도포 위치를 쉽게 결정할 수 있으며, 도포 공정도 용이한 장점이 있다. 또한 상기 센서가 이력현상을 나타내지 않으면서도 진동이나 높은 온도, 부식 등이 발생할 수 있는 환경에서 정확한 압력값을 검출할 수 있으며, 경유나 휘발유와 같은 연료에서 발생하는 불완전한 특성의 압력을 가지는 매체에 대해 강한 내성을 가질 수 있다.
도 1 및 도 2는 본 발명에 따른 압력센서의 사시도이다.
도 3(a)는 본 발명에 따른 압력센서의 평면도이다.
도 3(b)는 도 3(a)의 단면도이다.
도 4(a)는 본 발명에 따른 압력센서의 평면도(a)이다.
도 4(b)는 도 3(a)의 단면도이다.
도 5 및 도 6은 본 발명에서 기판, 압력센서, 리드 및 리드지지부가 결합된 것을 도시한 것이다.
도 7(a)는 압력센서가 접합된 센서고정부와 기판이 결합된 것을 도시한 것이다.
도 7(b)는 도 7(a)의 단면도이다.
도 8(a)은 압력센서가 접합된 센서고정부와 기판이 결합된 것을 도시한 것이다.
도 8(b)는 도 8(a)의 단면도이다.
도 9(a), (b), (c) 및 (d)는 본 발명에 따른 압력센서에서 상기 센서고정부의 형성 과정을 도시한 것이다.
도 10은 본 발명에 따른 압력센서에서 상기 센서고정부에 기판이 접합된 것을 도시한 것이다.
*도면의 주요부호에 대한 상세한 설명*
100 : 하우징
110 : 제1수용홀
111 : 제1압력전달관
120 : 하우징바디
130 : 측벽
140 : 요철
150 : 연장부
151 : 돌출턱
152 : 오링수용홈
153 : 오링
200 : 커버
210 : 리드홀
220 : 결합턱
300 : 기판
310 : 제2수용홀
400 : 센서고정부
410 : 압력전달관
411 : 제2압력전달관
420 : 수용홈
430 : 보조수용홈
440 : 연장부
441 : 돌출턱
442 : 오링수용홈
443 : 오링
500 : 압력센서
600 : 리드
700 : 리드지지부
710 : 파지수단
Ad : 접착제
V : 가상선
이하, 실시예 및 비교예를 들어 본 발명에 따른 모듈화된 세미 허메틱 구조를 가지는 압력센서를 더욱 상세히 설명한다. 다만 다음에 소개되는 구체예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다.
따라서 본 발명은 이하 제시되는 구체예들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 구체예들은 본 발명의 사상을 명확히 하기 위해 기재된 것일 뿐, 본 발명이 이에 제한되는 것은 아니다.
이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
또한 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.
또한 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다. 또한 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
또한 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.
본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
본 발명에 따른 모듈화된 세미 허메틱 구조를 가지는 압력센서는 압력 측정 대상에 체결되어 압력 측정 대상으로부터 유입되는 유체의 압력을 측정하고, 측정된 압력을 신호화하여 외부로 전달할 수 있다. 이를 위해 상기 압력센서는 압력을 직접적으로 측정하는 센서소자와, 상기 센서소자를 보호하는 케이스 및 상기 센서소자에 압력을 전달하기 위한 전달 수단 등 다양한 부품을 포함할 수 있다.
더욱 상세하게 도 1 등과 같이 내부에 압력센서(센서소자, 500)를 수용하는 하우징(100)과, 커버(200), 상기 하우징과 결합하여 상기 센서를 고정하고, 하우징 내부로 압력을 전달하는 센서고정부(400), 상기 센서를 통해 측정한 신호를 전기적 신호로 변경하는 기판(300) 및 상기 기판과 외부 장치(전원부 등)를 연결하는 리드(600) 등을 포함할 수 있다.
상기와 같은 구성을 갖는 압력센서는 상기 센서고정부 및 하우징의 형태에 따라 상기 센서고정부에 형성된 압력전달관으로 인입되거나 상기 하우징 및 센서고정부에 형성된 제1압력전달관 및 제2압력전달관으로 인입된 유체가 압력센서에 압력을 가하면 상기 압력센서 상부에 위치한 다이어프램이 변형되면서 스트레인 게이지의 저항값이 미세하게 변화된다. 이러한 압력에 의해 발생하는 미세 저항의 변화는 전기 신호로 변환되어 출력되며, 상기 리드를 통해 이러한 전기적 신호가 전자제어장치 등과 같은 외부 장치에 전달된다.
본 발명에서 상기 하우징(100)은 도 3(a) 및 3(b)와 같이 일면이 개방되며 내부에 일정 크기의 공간을 가지되, 후술할 센서고정부를 삽입 수용할 제1수용홀(110)이 저면을 관통하여 형성된 하우징바디(120)와 상기 하우징 바디의 외측면이 길이 방향으로 돌출되어 형성된 측벽(130)을 포함할 수 있다.
도 4(a) 및 4(b)는 상기 하우징의 다른 양태로, 일면이 개방되며 내부에 일정 크기의 공간을 가지되, 하우징바디(120)의 하면에 외부와 연통하는 제1압력전달관(111)이 형성되어 있어 후술할 센서고정부의 제2압력전달관과 연통되어 외부의 압력을 전달할 수 있으며, 상기 하우징 바디의 외측면이 길이 방향으로 돌출되어 형성된 측벽(130)을 포함할 수 있다.
상기 하우징은 상기와 같이 대체로 일면이 개방된 원통형으로 내부에 일정 크기의 공간을 가지며, 기판을 수용하도록 내면이 형성된 하우징바디와 상기 내면과 함께 내부 공간을 형성하는 측벽이 구비된다. 이때 상기 측벽은 상술한 바와 같이 후술할 커버의 결합턱과 결합하도록 요철이 더 형성될 수도 있다.
이를 더욱 상세히 설명하면, 상기 하우징은 상기 커버의 결합턱(220)과 끼움 결합하도록 측벽의 끝단 내측면 또는 저면부에 요철(140)이 형성될 수도 있다. 상기 요철이 형성됨에 따라 상기 요철과 상기 하우징의 저면 간에 상기 커버의 결합턱을 수용할 수 있는 공간이 형성되며, 이를 통해 상기 커버와 하우징 간의 접촉면적을 넓혀 유체가 상기 하우징과 커버와의 접촉면으로 침범하는 것을 방지할 수 있다.
또한 상기 하우징은 도 3(b)과 같이 후술할 센서고정부를 통과시켜 내부 공간에 상기 센서고정부의 일단을 노출시키도록 저면을 관통하는 제1수용홀(110)을 형성할 수 있다.
이때 상기 제1수용홀과 상기 센서고정부의 결합력을 더욱 높이기 위해 상기 제1수용홀의 내주면과, 상기 센서고정부의 외주면에는 결합수단(미도시)을 더 구비할 수도 있다. 상기 결합수단은 본 발명에서 한정하지 않으며, 일예로 끼움결합이 가능한 요철(단차), 자석, 접착층 등이 있으며, 이 외에도 당업계에서 통상적으로 적용 가능한 다양한 결합수단을 예시할 수 있다.
또한 상기 하우징은 도 4(b)와 같이 후술할 센서고정부의 길이방향으로 형성된 제2압력전달관과 연통되는 제1압력전달관이 형성되되, 상기 하우징바디의 하면에는 내부에 상기 제1압력전달관이 길이방향으로 연장되어 형성된 연장부(150)가 더 구비될 수 있다. 이때 상기 연장부의 외측면에는 하나 또는 복수의 돌출턱과 오링수용홈이 각각 교호로 형성되어 연료탱크 등과 더욱 강력하게 결합함과 동시에 유체의 침입을 방지함과 동시에 상기 연장부의 외주면이 상기 외부기기의 연결부의 내주면과 접촉하도록 구비할 수 있다.
이를 위해 상기 연장부는 외측면에 하나 또는 복수의 돌출턱(151)과 오링수용홈(152)이 각각 교호로 형성될 수 있다.
상기 돌출턱은 상기 연결부와의 긴밀한 결합을 위해 회전을 통해 결합 가능한 스크류(나사산) 형태일 수도 있으며, 이외에도 끼움결합 등을 통해 다른 기기와의 결합이 가능한 일반적인 형태의 돌출턱(지지턱)이라면 그 형태를 한정하지 않는다.
상기 오링수용홈은 상기 연장부의 외주면과 외부 기기의 연결부 내주면과의 밀착성을 더욱 높여 유체의 불필요한 주입을 방지하기 위한 것으로, 일종의 실링부재인 오링(153)을 수용할 수 있다.
상기 오링은 링 형태로 이루어져 있어 상기 오링수용홈의 외주면을 감싸도록 안착함으로써 상기 연장부 주변을 실링함과 동시에 상기 연장부와 외부기기 간의 마찰력을 높일 수 있다.
상기 오링은 유체의 불필요한 주입 또는 유출을 차단하기 위해 구비되는 것으로, 상기 구성들의 결합 틈새를 완전히 차단할 수 있으며 일정 이상 탄성회복력을 가지고, 내열성, 내부식성이 우수한 물질을 사용하는 것이 바람직하다. 이러한 물질의 예를 들면, 실리콘 고무, 플루오로실리콘 고무, 플루오로엘라스토머, 에틸렌-프로필렌-디엔 단량체 고무 및 니트릴-부타디엔 고무 등이 있으며, 이들 중 실리콘고무 또는 플루오로실리콘고무를 사용하는 것이 바람직하다.
상기 하우징은 내열성, 내충격성 등을 가질 수 있는 적당한 금속재질로 형성될 수 있으며, 이들의 예를 들면, 구리합금, 알루미늄, 니켈, 주석 및 아연 등을 들 수 있으며, 이들 이외에도 스테인레스, 구리, 청동, 크롬, 티타늄 등의 금속 또는 이들의 합금을 포함하여도 무방하다.
본 발명에서 상기 커버(200)는 상기 하우징과 결합하여 내부에 압력센서, 기판, 리드 등을 수용하는 공간을 형성하는 것으로, 도 3, 4 등과 같이 상면에 하나 또는 복수로 형성된 리드홀(210), 상기 하우징과 유사하게 외측면이 길이 방향으로 연장하여 형성한 측벽과, 상기 측벽의 외주면에 돌출되도록 형성되어 상술한 상기 하우징의 요철 및 공간과 끼움결합하여 공간을 밀폐하는 결합턱(220)을 포함하는 것을 특징으로 한다.
본 발명에서 상기 리드홀(210)은 후술할 리드(600)를 상기 공간 외부로 노출시키기 위해 형성하는 것으로, 상기 리드홀을 통해 외부로 노출된 리드는 전원 등과 같은 외부 기기와 직접 연결될 수 있다. 이를 위해 상기 리드홀 주변에는 상기 외부 기기의 연결부가 삽입되거나 끼움결합 등으로 연결될 수 있도록 일종의 돌출턱, 결합홈과 같은 결합수단이 더 구비될 수 있다.
상기 결합턱(220)은 상기 커버의 외주면이 길이방향, 정확하게는 상기 리드의 노출방향과 반대방향으로 연장되어 형성되는 측벽의 끝단 외주면에 돌출되어 형성되는 것으로, 상기 하우징의 요철 및 공간과 끼움결합되어 고정될 수 있다.
상기 커버는 측벽이 형성됨으로써 상기 하우징과 결합을 통해 대향하는 면이 개구된 공간을 형성할 수 있다. 상기 커버가 형성하는 공간은 상기 하우징의 공간과 합쳐져 후술할 리드지지부(700), 기판(300), 센서(500) 등을 수용하는 공간을 형성하게 된다.
또한 상기 커버는 상술한 바와 같이 측벽의 외주면에 결합턱(220)이 형성됨으로써 상기 하우징과의 접촉면적을 넓히고 유체가 하우징의 공간 내부로 침입하는 것을 방지할 수 있다. 다만 상기 하우징과 커버의 결합은 끼움결합에만 의지할 수도 있으나, 더욱 확실한 밀봉을 위해 접착제 등을 사용하여 상기 하우징과 커버간의 공간을 채울 수도 있다.
상기 커버는 재질을 한정하지 않는다. 다만 내열성, 내압성 및 내충격성 등을 유지하여야 하므로 상기와 같은 물성을 만족할 수 있는 재질을 사용하여 제조하는 것이 바람직하다. 이러한 재질의 예를 들면 폴리올레핀, 폴리아미드, 폴리아크릴, 폴리우레탄, 폴리이미드, 폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트 및 폴리부틸렌테레프탈레이트에서 선택되는 어느 하나 또는 복수의 고분자 수지에 유리섬유를 포함하는 섬유강화플라스틱으로 제조된 것일 수 있으며, 더욱 바람직하게는 고분자 수지로 폴리아미드, 이 중 폴리아미드 6,6에 유리섬유를 포함하는 섬유강화플라스틱을 사용하는 것이 높은 강성 및 유체에 대한 높은 내성, 내마모성, 치수안정성, 접착성 등이 높고, 우수한 열변형온도를 가져 바람직하다.
본 발명에서 상기 기판, 정확하게는 인쇄회로기판(300)은 와이어를 통해 상기 압력센서와 전기적으로 연결되어 압력을 통해 형성된 저항변화를 전기 신호로 변환하는 역할을 한다.
보다 구체적으로 상기 인쇄회로기판은 도 5 등과 같이 상기 센서고정부를 관통시켜 상기 센서고정부의 일면이 상기 하우징의 공간으로 노출하도록 제2수용홀(310)이 상면과 저면을 관통하도록 형성되며, 상기 센서고정부의 일면에 구비되는 압력센서와 전기적으로 연결하기 위한 와이어, 상기 리드를 관통시키면서도 전기적으로 연결될 수 있도록 전도성 접착제가 충전된 쓰루홀 등이 구비될 수 있다.
이때 상기 인쇄회로기판은 상기 센서고정부와 보다 긴밀히 결합하기 위해 볼트와 너트와 유사하게 상기 제2수용홀의 내주면과 상기 센서고정부의 외주면 중 상기 제2수용홀과 직접적으로 접촉하는 외주면에 각각 결합턱과 결합홈이 형성되어 상기 센서고정부를 회전하면서 결합함에 따라 스크류 결합하여도 무방하다.
상기 쓰루홀은 상술한 바와 같이 상기 리드(600)를 통과시켜 고정함과 동시에 상기 리드와 전기적으로 연결되도록 전도성 접착제가 충전될 수 있다. 이때 상기 전도성 접착제는 본 발명에서 한정하지 않으나, 철, 구리 등과 같이 전도성 금속입자가 포함되는 에폭시일 수 있다.
상기 쓰루홀은 리드의 개수에 맞춰 형성될 수 있다. 이때 상기 리드는 상기 기판을 관통하여 상기 금속 재질의 하우징의 저면과 접촉하므로, 결국 기판과 리드 및 하우징이 모두 전기적으로 연결될 수 있다.
또한 상기 기판과 상기 하우징의 사이에는 완충부재(미도시)를 더 구비할 수도 있다. 상기 완충부재는 외부에서 작은 압력이 가해지는 경우, 이를 탄성 변형하여 흡수함으로써 상기 기판과 하우징 결합을 유지하고, 상기 기판에 전해지는 충격을 흡수할 수도 있다.
본 발명에서 상기 기판은 재질 및 형성방법 등을 한정하지 않는다. 구체적으로 기판을 이루는 산화규소 재질의 웨이퍼와, 상기 웨이퍼의 표면에 형성되는 붕소가 주입된 p형 반도체층이 패턴 형태로 인쇄될 수 있으며, p형 반도체층이 복수의 층을 이룰 경우 상기 p형 반도체층 사이에는 산화규소 재질의 절연층이 더 구비될 수도 있다.
본 발명에서 상기 센서고정부(400)는 도 3(b), 7(a) 등과 같이 상기 하우징의 제1수용홀 및 상기 기판의 제2수용홀로 끼움결합되어 상기 압력센서가 접합된 일면(상면)을 상기 하우징의 공간으로 노출하기 위한 것으로, 일면과 타면을 관통하도록 길이 방향으로 내부에 압력전달관(410)이 형성되어 상기 하우징 내부로 압력을 전달할 수 있으며, 상기 제1수용홀 및 제2수용홀에 삽입되지 않는 연장부(440)가 더 구비되되 상기 연장부의 외측면에는 하나 또는 복수의 돌출턱과 오링수용홈이 각각 교호로 형성되어 연료탱크 등과 더욱 강력하게 결합함과 동시에 유체의 침입을 방지할 수 있다.
또한 상기 센서고정부는 도 4(b), 8(a) 등과 같이 상기 기판의 수용홀에 삽입되어 상기 하우징의 저면과 상기 기판의 하면 사이에 위치하며, 일면과 타면을 관통하도록 길이 방향으로 내부에 제2압력전달관(411)이 형성되어 상술한 상기 하우징의 제1압력전달관(111)과 연통되어 내부로 압력을 전달할 수 있다.
이때 상기 수용홀과 상기 센서고정부 및 상기 하우징의 저면 등과의 결합력을 더욱 높이기 위해 상기 수용홀의 내주면과, 상기 센서고정부의 외주면에는 결합수단(미도시)을 더 구비할 수도 있다. 상기 결합수단은 본 발명에서 한정하지 않으며, 일예로 끼움결합이 가능한 요철(단차), 자석, 접착층 등이 있으며, 이 외에도 당업계에서 통상적으로 적용 가능한 다양한 결합수단을 예시할 수 있다.
도 7을 통해 상기 센서고정부와 압력센서의 접합을 더욱 상세하게 설명하면, 상기 센서고정부의 상면에는 육면체 형상으로 함몰되게 형성되며, 내부에 압력센서를 수용하는 압력센서 수용홈(420) 및 상기 압력센서 수용홈의 내측면 높이방향 모서리를 중심으로 일정 반경으로 굴곡지도록 내측면을 함몰하여 형성한 압력센서 보조수용홈(430)이 형성될 수 있다.
즉, 상기 센서고정부는 상기 압력센서를 보호하기 위해 상면에 압력센서를 수용하는 수용홈을 형성하되, 상기 센서고정부를 상면에서 길이방향으로 바라보았을 때 수용홈의 형태를 사각형과 상기 사각형에서 각 네 모서리를 중심으로 하는 원이 합쳐진 형태를 갖도록 할 수 있다.
또한 상기 센서고정부는 수용홈보다 먼저 보조 수용홈을 먼저 절삭한 후, 여기에 맞춰 수용홈을 절삭하는 것이 바람직하다. 도 9(a) 내지 9(d)를 참고하여 상기 수용홈의 절삭방법을 포함하여 본 발명에서 상기 압력센서의 접합방법을 더욱 상세히 설명하면,
a) 상기 센서고정부의 상면에 사각형의 가상의 선(V)을 그려 상기 사각형의 꼭지점을 결정하는 단계;
b) 상기 꼭지점을 중심으로 하여 상기 센서고정부의 상면을 길이방향의 원통형으로 절삭하여 보조 수용홈(430)을 형성하는 단계;
c) 상기 사각형을 중심으로 상기 센서고정부의 상면을 길이방향의 육면체로 절삭하여 수용홈(420)을 형성하는 단계; 및
d) 상기 수용홈의 저면에 접착제를 도포한 후, 상기 접착제 상에 압력센서를 고정하고 이를 경화하는 단계;
를 포함할 수 있다.
본 발명에서 상기 a) 단계는 센서고정부의 상면에 압력센서를 놓기 위한 수용홈 형성의 첫 번째 단계로, 사각형태의 가상의 선을 그려 꼭지점을 정하는 단계이다. 이때 상기 사각형은 일반적인 비대칭 사각형으로 정하여도 무방하나, 직사각형 또는 정사각형과 같이 좌우 대칭인 사각형으로 정하는 것이 바람직하며, 상기 수용홈이 상기 압력전달관(410)과 타통되도록 상기 사각형 내에 상기 압력전달관이 위치하도록 설정하는 것이 바람직하다.
다음으로 상기 b) 단계와 같이 상기 사각형의 꼭지점을 중심으로 한 센서고정부의 상면을 길이 방향의 원통형으로 절삭하여 보조 수용홈을 형성하는 단계이다.
도 7 내지 9를 통해 이를 더욱 상세히 설명하면, 상기 b) 단계를 통해 형성되는 보조수용홈(430)은 상기 센서고정부의 상면에서 길이 방향으로 바라보았을 때 상기 a) 단계를 통해 설정한 가상의 사각형 중 각 꼭지점을 중심으로 하는 원 형태일 수 있다. 즉, 상기 b) 단계를 통해 보조수용홈이 상기 사각형의 꼭지점을 중심으로 각각 4개 형성되는 것이다.
이때 상기 보조수용홈은 도 7(b) 또는 8(b)과 같이 후술할 수용홈과 동일한 깊이를 가질 수 있으며, 상기와 같이 상기 사각형의 꼭지점을 중심으로 한 원통 형상을 이루므로, 당연히 상기 보조수용홈과 상기 수용홈이 합쳐진 경우 상기 보조수용홈이 형성된 부분이 상기 수용홈의 식각방향으로 형성되는 모서리를 대체하는 것이다.
일반적으로 사각형의 압력센서를 수용하기 위해서는 수용홈 또한 육면체 형상으로 가공되어야 한다. 문제는 홈을 형성하는 대부분의 밀링장비는 롱에지 커터와 같은 특수한 형태의 드릴을 회전시켜 가공하여야 하며, 이 경우에도 커터의 회전 시 중심을 계속적으로 이동시켜야 하는 문제점이 있다. 또한 이렇게 가공함에도 가공방법의 제한으로 평탄하고 일직선의 모서리를 얻기 어려워 수용홈의 정밀도가 떨어지는 문제점이 있다.
또한 상기 수용홈에 접착제를 도포한 후 상기 접착제 상에 압력센서를 놓고 압력을 가하게 되면, 접착제가 상기 수용홈과 압력센서 사이에서 넓게 펴지는 식으로 접합 면적이 넓어져 접합이 이루어지므로, 이에 따른 문제가 발생할 수 있다.
예를 들어 접착제의 도포량이 지나치게 많은 경우, 당연히 압력을 받았을 때 접착제가 더 넓게 펴지게 되므로, 접착제가 펼쳐지는 면적이 지나치게 확장될 경우 상기 압력전달관까지 펼쳐지게 되어 압력센서로의 압력 전달에 영향을 주어 측정 정확도가 떨어질 수 있다. 또한 접착제를 여러 곳에 도포할 때 도포량이 완전히 동일하지 않는 경우, 압력센서를 접착하기 위해 가하는 압력이 일정하여도 접착제가 펼쳐지는 양이 서로 다르기 때문에 압력전달관이 형성된 수용홈의 면과 압력센서 사이의 폭이 일정하지 않을 수 있어 이 또한 압력센서의 측정 정확도에 영향을 줄 수 있다.
본 발명은 상기와 같은 문제점을 해결하기 위해 압력센서를 수용하는 수용홈을 먼저 형성하는 것이 아닌, 상기 수용홈과 동일한 크기의 사각형의 가상선을 먼저 설정한 후, 상기 가상선의 꼭지점을 중심으로 하는 보조수용홈을 형성한 뒤 상기 가상선을 따라 가공함으로써 수용홈을 형성하는 것을 특징으로 한다.
이 경우 보조수용홈을 먼저 형성하는 것만으로도 수용홈의 위치 및 형태를 쉽게 결정할 수 있어 정확한 치수로 가공이 용이하며, 상기 수용홈을 형성할 때 식각되는 방향의 모서리가 상기 보조수용홈으로 대체되기 때문에 특수한 형태의 드릴이나 가공방법을 적용할 필요가 없으며, 가공비용을 절감할 수 있다. 또한 도 9(d)와 같이 상기 보조수용홈의 위치에 따라 접착제의 도포 위치나 양을 결정할 수 있어 압력센서의 접합 위치를 보다 정밀하게 할 수 있다. 여기에 도 10과 같이 상기 보조수용홈에 접착제를 도포할 때 접착제의 도포 위치와 양을 조절하는 것만으로 상기 접착제가 압력전달관까지 퍼지는 일이 없이 압력센서의 모서리까지 쉽게 접착함으로써 상기 센서고정부와 압력센서 간의 접착강도를 높일 수 있다.
본 발명에서 상기 보조수용홈은 직경의 크기나 깊이 등을 한정하지 않으나, 후술할 상기 수용홈의 폭과의 비를 고려하여 설정하는 것이 바람직하다. 구체적으로, 상기 보조수용홈의 직경(A)은 상기 수용홈의 폭(B)과의 비(A/B)가 0.1 내지 0.5인 것이 바람직하다. A/B가 상기 범위를 만족하지 않은 경우 압력센서의 접합공정이 어려워지거나, 압력센서와 수용홈 간의 접착강도를 일정하게 유지하기 어려울 수 있다. 또한 깊이는 0.1 내지 1㎜일 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
본 발명에서 상기 보조수용홈은 성형 방법을 한정하지 않는다. 예를 들어 드릴 가공, 레이저 가공, 방전 가공, 전자빔 가공, 숫돌 입자 가공, 프레스 가공 등이 있으며, 이들 중 레이저 가공을 적용하는 것이 가장 바람직하다.
다음으로, 상기 b) 단계를 통해 성형된 보조수용홈의 중심을 연결한 육면체인 가상선(V)을 절삭하여 상기 보조수용홈과 연결된 수용홈을 성형하는 단계이다.
상기 c) 단계를 통해 보조수용홈과 연결되도록 수용홈을 형성함에 따라 상술한 바와 같이 수용홈의 절삭 방향으로 형성되어야 할 모서리가 상기 보조수용홈으로 대체되는 효과를 가진다. 이를 통해 상기 수용홈을 원하는 곳에 정밀하게 형성할 수 있으며, 접착제의 도포 위치 및 압력센서의 접합 위치를 간편하게 결정할 수 있어 센서의 접착강도와 압력 측정 정확도를 향상시킬 수 있다.
상기 수용홈은 상기 하우징 및 센서고정부의 형태에 따라 후술할 압력전달관(410) 또는 제2압력전달관(411)과 타통되도록 상기 압력전달관이 형성된 상면을 가공하는 것이 바람직하며, 가공방법은 상술한 보조수용홈의 가공방법을 적용하여도 무방하다.
또한 상기 수용홈은 크기를 한정하지 않는다. 일예로 상기 수용홈의 폭(상면의 사각형을 기준으로 서로 대향하는 모서리 간의 거리)은 0.5 내지 2㎜일 수 있으며, 깊이는 0.1 내지 1㎜일 수 있으나, 상기 범위 내에서 상기 보조수용홈의 깊이와 동일하도록 형성하는 것이 좋다.
다음으로 상기 d) 단계와 같이 상기 수용홈의 저면 중 상기 압력센서가 위치할 면에 접착제를 도포한 후, 상기 접착제 상에 압력센서를 고정하고 이를 경화한다.
이때 상기 접착제는 박막 형태로 성형될 수 있으며, 내화성이나 전도성, 젖음성이 좋은 특성을 가지는 금속인 것이 바람직하다. 이 경우 상기 압력센서가 상기 센서고정부와 접합하였을 때의 구조를 길이방향으로 보면, 상면부터 압력센서-글래스(유리막)-금속막 순서로 적층된 형태를 가질 수 있다.
상기 d) 단계를 더욱 상세히 설명하면, 먼저 압력센서를 형성하는 실리콘 웨이퍼의 상면에 집적회로를 설계한 후, 기상증착법이나 스퍼터링법을 이용하여 저면에 내화학성이나 전도성, 젖음성이 우수한 금속막(제1막)을 형성한다. 그리고 상기 집적회로를 설계하기 위한 마스크를 제거하거나 마스크 패턴이 형성된 상면을 식각함으로써 압력센서를 제조한 후, 상기 수용홈의 저면에 상기 제1막과 동일한 재질의 제2막을 형성한 후, 상기 제1막과 제2막이 서로 마주본 상태로 접촉되도록 정렬한 후, 상기 제1막과 제2막이 용융되는 온도에서 가열함으로써 형성할 수 있다.
본 발명에서 상기와 같은 금속막으로는 금, 티타늄, 크롬, 텅스텐, 니켈, 구리, 백금, 주석, 게르마늄, 규소, 안티몬 등을 들 수 있으며, 이들은 단독으로 또는 둘 이상을 혼합하여 사용하여도 좋다. 더욱 바람직하게는 실리콘 기판 표면에 금속박을 즉시 형성할 수 있는 유테틱 접합이 가능한 조성의 주석-금-구리, 금-주석 합금, 금-게르마늄-안티몬 합금, 금-규소 합금과 같은 합금을 사용하는 것이 좋다.
상기 유테틱 접합은 금속 재질의 접착제를 가열하여 접합하는 방법으로, 일반적인 금속은 가열 시 고체에서 액체로 바로 변화하는 것이 아니라 슬러시 상태를 거쳐 액체로 변화하는데, 이러한 슬러시 상태가 오래 지속될수록, 그리고 많은 부분에서 슬러시 상태가 진행될수록 접합강도를 떨어뜨리는 요인으로 작용한다. 유테틱은 합금을 구성하는 금속들을 일정 비율로 조절할 때, 가열되는 금속이 슬러시 상태를 거치지 않고 최저의 융점에서 바로 액체상태로 변화하게 되어 접합강도를 높일 수 있다.
상기 금속박의 가열 시 가열온도는 350 내지 450℃의 범위를 갖는 것이 바람직하다. 상기 온도 범위에서 각각 상기 온도센서의 접합면과 상기 수용홈의 저면에 형성된 유테틱 재질의 금속막들이 용융되어 압력센서로 사용되는 실리콘 웨이퍼와 실리콘(글래스) 재질의 센서고정부가 서로 접합할 수 있다.
다만 본 발명에서는 상기 압력센서를 고정하기 위해 금속 접착제를 이용한 접합방법을 예로 들고 있으나, 경우에 따라 상기 금속 접착제 대신 유기 접착제를 사용하여도 무방하다. 이때 상기 유기 접착제는 내열성과 내후성이 우수하며 치수 변화가 적은 것이 좋으며, 이러한 접착제의 예를 들면 에폭시, 멜라민, 페놀, 불포화 폴리에스테르, 요소, 레졸시놀 등과 같은 열경화성 수지들 중 어느 하나 또는 복수를 포함할 수 있다.
상기와 같이 압력센서를 센서고정부와 접합하였을 때, 기존의 솔더 다이본딩 방식에 비해 훨씬 높은 접합강도를 가지므로, 하우징 내부 압력의 변화나 상기 압력전달관을 통해 전달되는 압력의 크기가 갑작스럽게 증가하는 경우에도 압력센서와 센서고정부 간의 접착력을 일정하게 유지할 수 있어 바람직하다.
또한 상기 센서고정부는 상술한 바와 같이 형태에 따라 내부에 일면과 타면을 관통하도록 길이방향으로 형성된 압력전달관(410) 또는 제2압력전달관(411)이 더 구비될 수 있다.
상기 압력전달관 또는 제2압력전달관은 타면에 형성된 부분을 통해 각각 외부 유로 또는 상기 하우징의 제1압력전달관(111)과 연통되어 상기 하우징 내부로 유체를 공급하기 위한 것으로, 도 3(b) 또는 4(b)와 같이 상기 센서고정부의 타면에서 일면으로 갈수록 직경이 좁아지도록 형성되는 것을 특징으로 한다.
또한 상기 센서고정부는 도 3(b)과 같이 상술한 외부 유로 또는 기타 연료탱크 등 외부 기기의 연결부과 결합을 유지하기 위해 길이방향으로 연장되어 상기 하우징의 외부로 노출되는 연장부(440)를 구비하여 상기 연장부의 외주면이 상기 외부기기의 연결부의 내주면과 접촉하도록 구비할 수 있다.
이를 위해 상기 연장부는 외측면에 하나 또는 복수의 돌출턱(441)과 오링수용홈(442)이 각각 교호로 형성될 수 있다.
상기 돌출턱은 상기 연결부와의 긴밀한 결합을 위해 회전을 통해 결합 가능한 스크류(나사산) 형태일 수도 있으며, 이외에도 끼움결합 등을 통해 다른 기기와의 결합이 가능한 일반적인 형태의 돌출턱(지지턱)이라면 그 형태를 한정하지 않는다.
상기 오링수용홈은 상기 연장부의 외주면과 외부 기기의 연결부 내주면과의 밀착성을 더욱 높여 유체의 불필요한 주입을 방지하기 위한 것으로, 일종의 실링부재인 오링(443)을 수용할 수 있다.
상기 오링은 링 형태로 이루어져 있어 상기 오링수용홈의 외주면을 감싸도록 안착함으로써 상기 연장부 주변을 실링함과 동시에 상기 연장부와 외부기기 간의 마찰력을 높일 수 있다.
상기 오링은 유체의 불필요한 주입 또는 유출을 차단하기 위해 구비되는 것으로, 상기 구성들의 결합 틈새를 완전히 차단할 수 있으며 일정 이상 탄성회복력을 가지고, 내열성, 내부식성이 우수한 물질을 사용하는 것이 바람직하다. 이러한 물질의 예를 들면, 실리콘 고무, 플루오로실리콘 고무, 플루오로엘라스토머, 에틸렌-프로필렌-디엔 단량체 고무 및 니트릴-부타디엔 고무 등이 있으며, 이들 중 실리콘고무 또는 플루오로실리콘고무를 사용하는 것이 바람직하다.
상기 센서고정부는 재질을 한정하지 않으나, 상술한 금속 접착제 등과의 열팽창계수 차이를 최대한 줄이고, 내열성 및 내부식성을 확보하기 위해 금속 재질인 것이 바람직하며, 이들의 예를 들면 구리합금, 알루미늄, 니켈, 주석, 팔라듐, 탄탈륨 및 아연 등을 포함할 수 있다. 이때 상기 금속은 단독으로 또는 둘 이상 사용하는 것이 바람직하며, 내후성 및 내열성 측면에서 구리합금을 사용하는 것이 가장 바람직하다.
본 발명에서 상기 압력센서(500)는 상술한 바와 같이 상기 센서고정부의 상면에 형성된 수용홈 내에 매립되도록 위치하여 유체나 외부 충격(열, 압력, 기타 물리적 충격)으로부터 보호받으며, 상기 와이어를 통해 상기 기판과 전기적으로 연결되어 압력변화에 따른 전기신호를 전달하는 기능을 수행할 수 있다.
상기 압력센서(압력센서)는 단결정 실리콘 등과 같이 피에조 저항 효과를 가지는 다이어프램과 연결되며, 상기 다이어프램 상에 복수의 반도체 변형게이지(저항)를 형성하고, 이러한 반도체 변형게이지와 연결되는 연결회로, 상기 회로로부터의 출력을 높이는 증폭회로 및 연산처리회로 등의 집적회로가 포함될 수 있다. 또한 상기 압력센서는 상술한 와이어를 통해 상기 기판과 전기적으로 접속할 수 있다.
상기 압력센서의 동작방식을 설명하면 먼저 상기 압력전달관을 통해 전달받은 압력에 의해 다이어프램이 변형되면, 표면에 배치된 저항도 함께 변형된다. 이때 상기 저항은 형태적인 변형에 따라 표면의 저항값도 함께 변화하는데, 이러한 저항의 변화로 생성된 전기신호는 압력센서를 통해 상기 기판으로 전달될 수 있다.
본 발명에서 상기 압력센서는 종류를 한정하지 않는다. 상기 압력센서는 다이어프램에서 발생하는 응력을 전기적 신호로 변환하는 방법으로 구분하는 바, 변환 방법으로 진동자의 고유진동수 변화와, 표면 탄성파를 이용하는 방법, 압저항형과 정전용량형 등을 들 수 있으며, 이들 중 압저항형 또는 정전용량형을 적용하는 것이 바람직하다.
상기 압저항형은 두 층의 실리콘 기판 사이에 압력의 변화를 측정할 수 있는 압저항체를 형성하여 압력에 의해 기판이 변형되면 압저항체의 압력이 달라지는 것을 감지하여 압력을 측정하는 방식이다. 이러한 압저항형은 온도에 따라 측정되는 압력의 변화가 심하며 회로호환성이 떨어지지만, 구조와 공정이 단순하고, 회로가 간단한 장점이 있다.
상기 정전용량형은 서로 마주보도록 일정 거리로 전극을 이격하여 구비하며, 상기 전극간의 간격이 외부 압력에 의해 변화하면 전극 간의 정전용량 또한 변화하는데, 이러한 정전용량 변화를 전기신호로 변화시켜 측정하는 방식이다. 상기 정전용량형은 구조가 정밀하고 복잡하며 응답성이 나쁘나, 온도에 영향을 상대적으로 덜 받으며 미세한 변화도 감지할 수 있다.
본 발명에서 상기 압력센서는 상술한 바와 같이 실리콘 웨이퍼의 상면에 집적회로를 설계한 후, 이를 식각함으로써 제조할 수 있다. 이때 상기 실리콘 웨이퍼는 하부 유리기판 상에 일체로 형성하는 것이 절연성 확보 측면에서 일반적인데, 이러한 유리기판과 센서고정부 간의 접착성을 향상시키기 위해 상술한 유테틱 본딩 방식으로 상기 유리기판과 센서고정부를 상하로 접합한다.
본 발명에서 상기 리드(600)는 상기 기판에 전달된 신호를 외부 기기로 보냄과 동시에 상기 기판 등으로 전원 등을 공급하기 위한 일종의 접속단자로, 도 5, 6 등과 같이 상기 기판을 관통하여 상기 하우징의 내부 공간 저면과 접촉하여 상기 하우징, 기판 및 압력센서 등과 전기적으로 접속될 수 있다.
상기 리드는 상기 하우징의 내부 공간 저면과 수직으로 접속되는데, 이때 도전성 접착제나 용접 등에 의해 고정될 수 있다. 또한 상기 리드와 기판 또는 하우징 간의 전기적인 접촉 상태를 안정적으로 유지하기 위해 일정 부분이 구부러진 형태로 하우징 내부 공간 내에 위치하되 상기 기판 및 하우징에 수직한 방향으로 탄성을 가질 수 있다.
한편 상기 리드는 개수를 한정하는 것은 아니나, 도 1 등과 같이 외부입출력용, 구동전압공급용 및 접지용의 3 개의 개별 리드로 구비되는 것이 바람직하다.
상기 리드는 그 재질을 한정하는 것은 아니나, 상기 하우징과 유사하게 전도성을 가지는 물질으로 제조되는 것이 바람직하다. 상기와 같은 재질의 예를 들면, 황동, 알루미늄, 니켈, 주석 및 아연 등이 있으며, 이들은 단독으로 사용하거나 둘 이상 합금 형태로 사용하여도 무방하다.
상기 리드지지부(700)는 도 5, 6과 같이 상기 기판의 상면에 지지되어 상술한 복수의 리드를 가이드하고 고정시키기 위해 결합부재 등이 구비되는 것으로, 상기 하우징 내부 중 기판 상면에 위치할 수 있다.
상기 리드지지부는 도 6과 같이 기본적으로 상기 기판의 상면에 지지되면서 상기 리드의 형태 및 위치 등에 따라 길이, 형태 등을 다양하게 구비할 수 있으며, 특히 상면이 상기 리드의 외주면 중 구부러진 부분과 접촉하여 충격 등에도 리드와 기판 간의 전기적 연결이 끊어지지 않도록 유지할 수 있다.
상기 리드지지부는 상기 리드의 고정방식이나 형태 등을 한정하지 않는다. 일예로, 상기 리드지지부는 상기 기판 상에 형성된 결합홈과 끼움결합할 수 있도록 저면에 돌출부를 더 구비할 수도 있으며, 돌출부나 결합홈을 구비할 필요 없이 접착제 등을 이용하여 리드지지부와 기판을 결합할 수도 있다.
또한 상기 리드지지부는 상기 리드를 고정하기 위해 도 6과 같이 측면에 하나 또는 둘 이상의 파지수단(710)을 더 구비할 수도 있다. 상기 파지수단은 리드와 끼움결합하여 리드의 외주면 일부분을 수용할 수 있도록 측면에 구비되며, 상기 리드를 더욱 단단히 고정하여 충격으로 발생할 수 있는 전기적 연결의 끊어짐을 방지할 수 있다.
본 발명에서 상기 리드지지부는 재질을 한정하지는 않으나, 상기 커버와 유사하게 내열성, 내충격성, 절연성 등을 만족하는 고분자 물질을 사용하는 것이 바람직하다. 이러한 물질의 예를 들면, 폴리올레핀, 폴리아미드, 폴리아크릴, 폴리우레탄, 폴리이미드, 폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트 및 폴리부틸렌테레프탈레이트에서 선택되는 어느 하나 또는 복수의 고분자 수지에 유리섬유를 혼합한 섬유강화플라스틱을 들 수 있으며, 이외에도 상기와 같은 물성을 만족하는 다양한 재질을 사용할 수 있다.
이상의 설명과 같이 본 발명에 따른 압력센서는 압력을 전달하는 압력전달관이 형성된 센서고정부와, 상기 센서고정부의 일면에 상기 압력전달관의 일단과 접촉하도록 위치하는 압력센서를 포함하되, 상기 센서고정부에 상기 센서를 수용하는 수용홈과, 상기 수용홈의 일부가 포함되도록 하는 보조수용홈이 더 구비됨으로써 압력센서의 접합강도를 비약적으로 상승시킬 수 있다.
이를 통해 상기 압력센서는 이력 현상을 나타내지 않으면서도 진동이나 높은 온도, 부식 등이 발생할 수 있는 환경에서 정확한 압력값을 검출할 수 있으며, 경유나 휘발유와 같은 연료에서 발생하는 불완전한 특성의 압력을 가지는 매체에 대해 강한 내성을 가질 수 있다.
상기와 같이 본 발명의 다양한 실시예들을 제시하여 설명하였으나 본 발명이 반드시 이에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함을 쉽게 알 수 있을 것이다.

Claims (15)

  1. 하나 또는 복수의 리드홀이 형성되며 측벽 하측면에 결합턱을 구비하는 커버;
    내측면의 요철을 통해 상기 커버의 결합턱과 끼움결합하여 공간을 형성하며, 하면에 외부와 연통하는 제1수용홀이 형성된 하우징;
    상기 하우징의 공간 저면에 구비되며, 상면과 저면을 관통하는 제2수용홀이 형성된 기판;
    각각 상기 하우징의 제1수용홀과 상기 기판의 제2수용홀에 삽입되어 하우징의 공간으로 노출되며, 일면과 타면을 관통하도록 길이방향으로 내부에 압력전달관이 형성되는 센서고정부;
    상기 센서고정부의 일면에 상기 압력전달관의 일단과 접촉하도록 위치하는 압력센서;
    일단이 상기 하우징의 공간 하면과 접촉하며, 타단이 상기 리드홀을 관통하여 공간 외부로 돌출되도록 형성되는 선형의 하나 또는 복수의 리드; 및
    상기 기판의 상면에 위치하여 상기 리드를 고정하는 리드지지부;
    를 포함하는 것을 특징으로 하는 모듈화된 세미 허메틱 구조를 구비한 압력센서.
  2. 제 1항에 있어서,
    상기 센서고정부는,
    상면에 육면체 형상으로 함몰되게 형성되며, 내부에 압력센서를 수용하는 압력센서 수용홈; 및
    상기 압력센서 수용홈의 내측면 높이방향 모서리를 중심으로 일정 반경으로 굴곡지도록 내측면을 함몰하여 형성한 압력센서 보조 수용홈;
    을 더 구비하며,
    상기 압력센서 수용홈의 저면은 상기 압력전달관과 연통되는 것을 특징으로 하는 모듈화된 세미 허메틱 구조를 구비한 압력센서.
  3. 제 2항에 있어서,
    상기 압력센서 수용홈과 상기 압력센서는 금속 접착제 및 유기 접착제 중 어느 하나 또는 복수의 접착제로 접합하는 것을 특징으로 하는 모듈화된 세미 허메틱 구조를 구비한 압력센서.
  4. 제 1항에 있어서,
    상기 센서고정부는,
    길이방향으로 연장되어 상기 하우징의 외부로 노출되는 연장부를 구비하되,
    상기 연장부의 외측면에는 하나 또는 복수의 돌출턱과 오링수용홈이 각각 교호로 형성되는 것을 특징으로 하는 모듈화된 세미 허메틱 구조를 구비한 압력센서.
  5. 제 1항에 있어서,
    상기 압력전달관은,
    상기 센서고정부의 타면에서 일면으로 갈수록 직경이 좁아지도록 형성되는 것을 특징으로 하는 모듈화된 세미 허메틱 구조를 구비한 압력센서.
  6. 제 1항에 있어서,
    상기 압력센서는 상기 기판과 와이어본딩을 통해 전기적으로 연결되는 것을 특징으로 하는 모듈화된 세미 허메틱 구조를 구비한 압력센서.
  7. 제 1항에 있어서,
    상기 리드는 상기 기판을 관통하여 상기 하우징의 공간 하면과 접촉하는 것을 특징으로 하는 모듈화된 세미 허메틱 구조를 구비한 압력센서.
  8. 제 1항에 있어서,
    상기 센서고정부는 구리합금, 알루미늄, 니켈, 주석, 팔라듐, 탄탈륨 및 아연에서 선택되는 어느 하나 또는 복수의 금속으로 제조되는 것을 특징으로 하는 모듈화된 세미 허메틱 구조를 구비한 압력센서.
  9. 하나 또는 복수의 리드홀이 형성되며 측벽 하측면에 결합턱을 구비하는 커버;
    내측면의 요철을 통해 상기 커버의 결합턱과 끼움결합하여 공간을 형성하며, 하면에 외부와 연통하는 제1압력전달관이 형성된 하우징;
    상기 하우징의 공간 저면에 구비되며, 상면과 저면을 관통하는 수용홀이 형성된 기판;
    상기 기판의 수용홀에 삽입되어 상기 하우징의 저면과 상기 기판의 하면 사이에 위치하며, 상기 제1압력전달관과 연통되도록 길이방향으로 내부에 제2압력전달관이 형성되는 센서고정부;
    상기 센서고정부의 일면에 상기 압력전달관의 일단과 접촉하도록 위치하는 압력센서;
    일단이 상기 하우징의 공간 하면과 접촉하며, 타단이 상기 리드홀을 관통하여 공간 외부로 돌출되도록 형성되는 선형의 하나 또는 복수의 리드; 및
    상기 기판의 상면에 위치하여 상기 리드를 고정하는 리드지지부;
    를 포함하는 것을 특징으로 하는 모듈화된 세미 허메틱 구조를 구비한 압력센서.
  10. 제 9항에 있어서,
    상기 센서고정부는,
    상면에 육면체 형상으로 함몰되게 형성되며, 내부에 압력센서를 수용하는 압력센서 수용홈; 및
    상기 압력센서 수용홈의 내측면 높이방향 모서리를 중심으로 일정 반경으로 굴곡지도록 내측면을 함몰하여 형성한 압력센서 보조 수용홈;
    을 더 구비하며,
    상기 압력센서 수용홈의 저면은 상기 제2압력전달관과 연통되는 것을 특징으로 하는 모듈화된 세미 허메틱 구조를 구비한 압력센서.
  11. 제 10항에 있어서,
    상기 압력센서 수용홈과 상기 압력센서는 금속 접착제 및 유기 접착제 중 어느 하나 또는 복수의 접착제로 접합하는 것을 특징으로 하는 모듈화된 세미 허메틱 구조를 구비한 압력센서.
  12. 제 9항에 있어서,
    상기 하우징은,
    하면에 제1압력전달관의 형성 방향으로 연장된 연장부를 구비하되,
    상기 연장부의 외측면에는 하나 또는 복수의 돌출턱과 오링수용홈이 각각 교호로 형성되는 것을 특징으로 하는 모듈화된 세미 허메틱 구조를 구비한 압력센서.
  13. 제 9항에 있어서,
    상기 압력센서는 상기 기판과 와이어본딩을 통해 전기적으로 연결되는 것을 특징으로 하는 모듈화된 세미 허메틱 구조를 구비한 압력센서.
  14. 제 9항에 있어서,
    상기 리드는 상기 기판을 관통하여 상기 하우징의 공간 하면과 접촉하는 것을 특징으로 하는 모듈화된 세미 허메틱 구조를 구비한 압력센서.
  15. 제 9항에 있어서,
    상기 센서고정부는 구리합금, 알루미늄, 니켈, 주석, 팔라듐, 탄탈륨 및 아연에서 선택되는 어느 하나 또는 복수의 금속으로 제조되는 것을 특징으로 하는 모듈화된 세미 허메틱 구조를 구비한 압력센서.
PCT/KR2020/008212 2020-06-19 2020-06-24 모듈화된 세미 허메틱 구조를 구비한 압력센서 WO2021256594A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0074752 2020-06-19
KR10-2020-0074756 2020-06-19
KR1020200074752A KR102194066B1 (ko) 2020-06-19 2020-06-19 모듈화된 세미 허메틱 구조를 구비한 압력센서
KR1020200074756A KR102194070B1 (ko) 2020-06-19 2020-06-19 모듈화된 세미 허메틱 구조를 구비한 압력센서

Publications (1)

Publication Number Publication Date
WO2021256594A1 true WO2021256594A1 (ko) 2021-12-23

Family

ID=79268124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008212 WO2021256594A1 (ko) 2020-06-19 2020-06-24 모듈화된 세미 허메틱 구조를 구비한 압력센서

Country Status (1)

Country Link
WO (1) WO2021256594A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116481700A (zh) * 2023-06-05 2023-07-25 山东慧点智能技术有限公司 一种压力传感器及压力传感系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295174A (ja) * 1998-04-09 1999-10-29 Fujikoki Corp 圧力センサ
KR100590275B1 (ko) * 1999-11-02 2006-06-15 가부시기가이샤 후지고오키 압력 센서
JP3956809B2 (ja) * 2002-09-09 2007-08-08 株式会社デンソー 圧力センサ
JP2013003112A (ja) * 2011-06-21 2013-01-07 Denso Corp 構造体
KR101236678B1 (ko) * 2005-03-23 2013-02-22 후지 덴키 가부시키가이샤 압력 센서 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295174A (ja) * 1998-04-09 1999-10-29 Fujikoki Corp 圧力センサ
KR100590275B1 (ko) * 1999-11-02 2006-06-15 가부시기가이샤 후지고오키 압력 센서
JP3956809B2 (ja) * 2002-09-09 2007-08-08 株式会社デンソー 圧力センサ
KR101236678B1 (ko) * 2005-03-23 2013-02-22 후지 덴키 가부시키가이샤 압력 센서 장치
JP2013003112A (ja) * 2011-06-21 2013-01-07 Denso Corp 構造体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116481700A (zh) * 2023-06-05 2023-07-25 山东慧点智能技术有限公司 一种压力传感器及压力传感系统
CN116481700B (zh) * 2023-06-05 2024-03-08 山东慧点智能技术有限公司 一种压力传感器及压力传感系统

Similar Documents

Publication Publication Date Title
KR100402875B1 (ko) 매개체에적합한마이크로센서구조물및이의제조방법
US5157972A (en) Pressure sensor with high modules support
EP0539555B1 (en) Arrangement for encasing a functional device, and a process for the production of same
US6848306B2 (en) Semiconductor dynamic sensor
EP0381187B1 (en) Force detector using resistance elements
CN1113226C (zh) 带有气密封接的应力隔绝座以保护传感器芯的压力传感器
US5583295A (en) Pressure sensor having gauge resistors and temperature compensating resistors on the same surface
US6158283A (en) Semiconductor acceleration sensor
WO2021256594A1 (ko) 모듈화된 세미 허메틱 구조를 구비한 압력센서
US8127617B2 (en) Pressure sensor, manufacturing method thereof, and electronic component provided therewith
JPH10148591A (ja) 圧力検出装置
US20080087095A1 (en) Package structure of pressure sensor
WO2017078392A1 (ko) 카메라 모듈
US5535626A (en) Sensor having direct-mounted sensing element
JP2009241164A (ja) 半導体センサー装置およびその製造方法
US6194789B1 (en) Flexible hermetic sealing
US4530001A (en) High voltage integrated semiconductor devices using a thermoplastic resin layer
KR102194070B1 (ko) 모듈화된 세미 허메틱 구조를 구비한 압력센서
KR102194066B1 (ko) 모듈화된 세미 허메틱 구조를 구비한 압력센서
US20050012188A1 (en) Device for the hermetic encapsulation of a component that must be protected against all stresses
WO2014115929A1 (ko) 반도체칩의 밀폐형 패키지 및 공정 방법
US11851319B2 (en) High-range semiconductor load sensor device
US7830023B2 (en) Resin molded semiconductor device
EP1240544B1 (en) Active device assembly
WO2021145677A1 (ko) 발전장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941143

Country of ref document: EP

Kind code of ref document: A1