WO2021256539A1 - 寿命消費量推定装置 - Google Patents

寿命消費量推定装置 Download PDF

Info

Publication number
WO2021256539A1
WO2021256539A1 PCT/JP2021/023058 JP2021023058W WO2021256539A1 WO 2021256539 A1 WO2021256539 A1 WO 2021256539A1 JP 2021023058 W JP2021023058 W JP 2021023058W WO 2021256539 A1 WO2021256539 A1 WO 2021256539A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
gas turbine
expected
life consumption
load
Prior art date
Application number
PCT/JP2021/023058
Other languages
English (en)
French (fr)
Inventor
貴洋 山内
利彦 新家
悟 毛利
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Priority to US17/928,464 priority Critical patent/US20230213410A1/en
Priority to JP2022531914A priority patent/JP7326616B2/ja
Priority to DE112021003289.5T priority patent/DE112021003289T5/de
Priority to KR1020227043439A priority patent/KR20230011339A/ko
Priority to CN202180042265.6A priority patent/CN115698485A/zh
Publication of WO2021256539A1 publication Critical patent/WO2021256539A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/82Forecasts
    • F05D2260/821Parameter estimation or prediction

Definitions

  • the present disclosure relates to a lifetime consumption estimation device.
  • This application claims priority based on Japanese Patent Application No. 2020-104451 filed with the Japan Patent Office on June 17, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 the equivalent operating time obtained by evaluating the degree of damage to the parts constituting the gas turbine by the operating time is calculated during the operation by using the operating information of the gas turbine and the process information measured during the operation of the gas turbine.
  • a method for diagnosing the state of a gas turbine based on the calculated equivalent operating time and a predetermined management standard is disclosed.
  • the remaining life is calculated when the calculated equivalent operation time is smaller than the management standard of each device.
  • the method based on the regression analysis of the data so far, the method based on the operation pattern of the design standard, and the method based on the rate of change (differential value) at the time of evaluation can be used for the calculation of the remaining life. ing.
  • the life consumption estimation device for estimating the life consumption of at least one component of a gas turbine.
  • An expected temperature information acquisition unit configured to acquire expected temperature information regarding future temperatures
  • An expected load information acquisition unit configured to acquire expected load information regarding the future load of the gas turbine
  • an expected load information acquisition unit At least one gas turbine state quantity relating to the future state quantity of the gas turbine based on the forecast temperature information acquired by the forecast temperature information acquisition unit and the forecast load information acquired by the forecast load information acquisition unit.
  • a gas turbine state quantity estimator configured to estimate,
  • a lifetime consumption estimation unit configured to estimate the lifetime consumption of the at least one component based on the at least one gas turbine state quantity estimated by the gas turbine state quantity estimation unit.
  • a life consumption estimation device capable of accurately estimating the future life consumption of gas turbine parts.
  • expressions such as “same”, “equal”, and “homogeneous” that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • the expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or a chamfer within the range where the same effect can be obtained. It shall also represent the shape including the part and the like.
  • the expressions “equipped”, “equipped”, “equipped”, “included”, or “have” one component are not exclusive expressions excluding the existence of other components.
  • FIG. 1 is a block diagram showing a schematic hardware configuration of the life consumption estimation device 2 according to the embodiment.
  • FIG. 2 is a block diagram showing a functional schematic configuration of the life consumption estimation device 2 shown in FIG.
  • the life consumption estimation device 2 includes a CPU (Central Processing Unit) 72, a RAM (Random Access Memory) 74, a ROM (Read Only Memory) 76, an HDD (Hard Disk Drive) 78, and an input I / It includes an F80 and an output I / F82, which are configured using a computer connected to each other via a bus 84.
  • the hardware configuration of the life consumption estimation device 2 is not limited to the above, and may be configured by a combination of a control circuit and a storage device. Further, the life consumption estimation device 2 is configured by a computer executing a program that realizes each function of the life consumption estimation device 2.
  • each part in the life consumption estimation device 2 described below are realized, for example, by loading the program held in the ROM 76 into the RAM 74 and executing the program in the CPU 72, and reading and writing the data in the RAM 74 and the ROM 76. To.
  • the life consumption estimation device 2 includes an expected temperature information acquisition unit 4, an expected load information acquisition unit 6, a turbine inlet temperature estimation unit 8 (gas turbine state quantity estimation unit), and a life consumption estimation unit 9. And a life consumption addition unit 10 is provided, and is configured to estimate the life consumption of at least one component of the gas turbine.
  • the gas turbine component is a high-temperature component whose life consumption changes depending on the load of the gas turbine, and is, for example, a combustor liner of a gas turbine, a combustor tail tube, a turbine stationary blade, or a turbine drive blade.
  • the “turbine inlet temperature” means the temperature of the combustion gas at the turbine inlet of the gas turbine.
  • the expected temperature information acquisition unit 4 includes the expected temperature input reception unit 12 and the temperature frequency distribution generation unit 14.
  • the expected temperature input receiving unit 12 is configured to receive the input of the expected temperature information P regarding the future expected temperature, and the expected temperature information acquisition unit 4 receives the expected temperature information P via the expected temperature input receiving unit 12. get.
  • the expected temperature information P may be, for example, information on the minimum temperature of the future day, and in this case, for example, it is an average value obtained by averaging the minimum temperature of the day for each month (average minimum temperature of each month). May be good.
  • the predicted temperature input receiving unit 12 may receive the input of the predicted temperature information P via an input device (not shown) provided outside the life consumption estimation device 2, or the life consumption estimation device 2 may be used.
  • the input of the predicted temperature information P may be accepted via an input device (for example, the above-mentioned input I / F80) provided inside the above.
  • the temperature frequency distribution generation unit 14 is based on the past temperature information R regarding the past temperature and the expected temperature information P input received by the expected temperature input receiving unit 12, and the temperature frequency distribution for each future time zone ( It is configured to generate the air temperature frequency distribution information S indicating the relationship between the air temperature for each future time zone and the appearance frequency of the air temperature).
  • the past temperature information R includes a plurality of fluctuation patterns of the time fluctuation of the temperature in a day and the appearance frequency of each of the plurality of fluctuation patterns. Multiple fluctuation patterns and their frequency of occurrence are generated based on past temperature statistics.
  • the past temperature information R including the plurality of fluctuation patterns and the frequency of occurrence of each of the fluctuation patterns is stored in the storage unit 16, and the temperature frequency distribution generation unit 14 is read from the storage unit 16.
  • the temperature frequency distribution information S is generated based on the plurality of fluctuation patterns, the frequency of appearance of each of the fluctuation patterns, and the expected temperature information P for which the input is received by the expected temperature input receiving unit 12.
  • the expected load information acquisition unit 6 includes an expected load input receiving unit 18 and a peak load factor estimation unit 20.
  • the expected load input receiving unit 18 is configured to receive an input of expected load information Q regarding a future expected load of a gas turbine (not shown), and the expected load information acquisition unit 6 is configured via the expected load input receiving unit 18. It is configured to acquire the expected load information Q.
  • the expected load information Q is, for example, the expected value of the peak load for each future time zone (estimated peak load for each future time zone) and the expected value of the average load for each future time zone (for each future time zone). Estimated average load), expected value of future operation rate of gas turbine (expected future operation rate of gas turbine), and expected value of future start number of gas turbine (expected number of future start of gas turbine) include.
  • the predicted load input receiving unit 18 may receive the input of the predicted load information Q via an input device (not shown) provided outside the life consumption estimation device 2, or the life consumption estimation device 2 may be used.
  • the input of the expected load information Q may be accepted via an input device (for example, the above-mentioned input I / F80) provided inside the above.
  • the peak load factor estimation unit 20 is based on the past load information V regarding the past load and the expected load information Q input received by the expected load input receiving unit 18, and the time ratio of the peak load for each future time zone. It is configured to estimate the peak load factor, which is (the time ratio of the time when the load of the gas turbine is the peak load in the time zone).
  • the past load information V is load frequency distribution information showing the frequency distribution of the gas turbine load for each past time zone (frequency distribution showing the relationship between the gas turbine load for each past time zone and the appearance frequency of the load). including.
  • the past load information V including the past load frequency distribution information is stored in the storage unit 16, and the peak load factor estimation unit 20 is the past load frequency distribution information read from the storage unit 16.
  • the peak load factor for each future time zone is estimated based on the expected load information Q input received by the expected load input receiving unit 18.
  • the peak load factor estimation unit 20 includes past load frequency distribution information read from the storage unit 16, expected peak load for each time period when input is received by the expected load input receiving unit 18, and expected load input receiving unit 18. Based on the expected value of the average load for each time zone for which the input was received, the peak load factor for each future time zone is estimated.
  • the peak load factor estimation unit 20 uses only the peak load factor for each future time zone based on the past load frequency distribution information, the predicted value of the peak load for each time zone, and the predicted value of the average load for each time zone. Instead, the load frequency distribution information L showing the load frequency distribution for each future time zone (frequency distribution showing the relationship between the load and the appearance frequency of the load for each future time zone) may be generated.
  • the turbine inlet temperature estimation unit 8 relates to the future state quantity of the gas turbine based on the expected temperature information P acquired by the expected temperature information acquisition unit 4 and the expected load information Q acquired by the expected load information acquisition unit 6. It is configured to estimate the future turbine inlet temperature T1T as the gas turbine state quantity.
  • the turbine inlet temperature estimation unit 8 shows the temperature frequency distribution information S generated by the temperature frequency distribution generation unit 14 and the load frequency distribution for each future time zone estimated by the peak load factor estimation unit 20. Based on the information L, the weighted average of the turbine inlet temperature T1T is calculated for each future time zone.
  • the turbine inlet temperature estimation unit 8 may use only the predicted value of the peak load received by the predicted load input receiving unit 18 from the load frequency distribution in the load frequency distribution information L to calculate the weighted average. good.
  • the turbine inlet temperature estimation unit 8 has the temperature frequency distribution information S generated by the temperature frequency distribution generation unit 14 and the predicted value of the peak load for each future time zone when the input is received by the expected load input reception unit 18.
  • the turbine inlet temperature T1T for each future time zone is estimated based on.
  • the life consumption estimation unit 9 predicts the turbine inlet temperature T1T for each future time zone estimated by the turbine inlet temperature estimation unit 8 and the peak load factor for each future time zone estimated by the peak load factor estimation unit 20. Life consumption of at least one component of the gas turbine U based on the predicted value of the operating rate that received the input by the load input receiving unit 18 and the predicted value of the number of starts that received the input by the predicted load input receiving unit 18. Is configured to estimate.
  • the life consumption addition unit 10 is configured to add the life consumption U of the component estimated by the life consumption estimation unit 9 to the past life consumption of the component.
  • FIG. 3 is a diagram showing an example of a flow for estimating the life consumption U of the parts of the gas turbine by the life consumption estimation device 2.
  • the expected temperature input receiving unit 12 receives the input of the expected temperature information P regarding the future expected temperature.
  • the expected temperature input receiving unit 12 accepts the input of the expected value of the average minimum temperature for each month as the expected temperature information P.
  • the expected value of the monthly average minimum temperature corresponds to the average value obtained by averaging the daily minimum temperature every month, and is information on the future daily minimum temperature.
  • the expected load input receiving unit 18 receives the input of the expected load information Q regarding the future expected load of the gas turbine.
  • the predicted load input receiving unit 18 predicts the peak load of the gas turbine for each future time zone and the average load of the gas turbine during operation for each future time zone. Accepts value input.
  • the expected load input receiving unit 18 receives an input of an estimated value of the future monthly operation rate of the gas turbine and an estimated value of the expected number of future monthly activations of the gas turbine.
  • the temperature frequency distribution generation unit 14 is shown in FIG. 7 based on the past temperature information R regarding the past temperature and the expected temperature information P whose input is received by the expected temperature input receiving unit 12.
  • the temperature frequency distribution information S showing the temperature frequency distribution for each time zone for each future month is generated.
  • the temperature frequency distribution information S shown in FIG. 7 divides a predetermined temperature range into a plurality of temperature zones divided by a predetermined temperature range, and shows the probability that the temperature belongs to each temperature zone for each time zone in the future month. Information.
  • the illustrated exemplary temperature frequency distribution information S divides the temperature range from 0 to 35 degrees into seven temperature zones divided by 5 degrees, and the temperature belongs to each temperature zone in each future monthly time zone. Shows the probability.
  • the past temperature information R regarding the past temperature includes a plurality of fluctuation patterns (see FIG. 8) showing patterns of time fluctuations of the temperature during the day, and each minimum temperature zone to which the minimum temperature of the day belongs. It includes the frequency of occurrence of each of the plurality of fluctuation patterns (see FIG. 9).
  • Each of the plurality of fluctuation patterns shown in FIG. 8 is a fluctuation pattern of the difference between the temperature of each time zone and the minimum temperature of the day in the day.
  • the appearance frequency of the fluctuation pattern shown in FIG. 9 is divided into a plurality of minimum temperature zones in which a predetermined temperature range is divided by a predetermined temperature range, and the appearance frequency of each fluctuation pattern is divided into the minimum temperature zones to which the daily minimum temperature belongs. (Probability of occurrence) is shown.
  • the temperature range from 0 ° C to 30 ° C is divided into 6 minimum temperature zones divided by 5 ° C, and the frequency of appearance of each fluctuation pattern is determined for each minimum temperature zone to which the daily minimum temperature belongs. Shows.
  • the statistical data of the past time-by-time temperature as illustrated in FIG. 10 is the difference between the daily minimum temperature and the daily temperature at each time and the minimum temperature.
  • the pattern is converted into the variation pattern information associated with the pattern, and the variation pattern of the variation pattern information is clustered into a plurality of variation patterns as shown in FIG.
  • the temperature fluctuation pattern is clustered into 12 fluctuation patterns.
  • the appearance frequency of each of the plurality of fluctuation patterns is set for each minimum temperature zone to which the daily minimum temperature belongs. Is generated.
  • the past temperature information R may be generated outside the life consumption estimation device 2 and stored in the storage unit 16, or may be generated by the life consumption estimation device 2 and stored in the storage unit 16. Then, it may be acquired from the outside of the life consumption estimation device 2 and used by the temperature frequency distribution generation unit 14 to generate the temperature frequency distribution information S without going through the storage unit 16.
  • the standard deviation ⁇ of the minimum temperature is calculated for each past month as shown in FIG. 13 based on the daily minimum temperature in the fluctuation pattern information shown in FIG.
  • S202 based on the standard deviation ⁇ of the past monthly minimum temperature calculated in S201 and the expected value of the future monthly average minimum temperature included in the expected temperature information P acquired in S101.
  • a minimum temperature corresponding to a normal distribution having the standard deviation ⁇ and the average minimum temperature is randomly and simulated for each future day.
  • a temperature fluctuation pattern is randomly generated in a simulated manner based on the frequency of appearance based on the lowest temperature zone to which the lowest temperature of each day in the future belongs, and assigned to each day.
  • the temperature frequency distribution information S shown in FIG. 7 is generated by arranging the expected temperature for each time of each future date generated in S204 for each time zone of each future month.
  • the peak load factor estimation unit 20 is based on the past load information V regarding the past load and the expected load information Q input received by the expected load input receiving unit 18.
  • the peak load factor which is the time ratio of the peak load
  • the peak load factor estimation unit 20 uses the load frequency distribution information L including the peak load factor as the load frequency distribution of the gas turbine for each future time zone (load for each future time zone). And the frequency distribution showing the relationship with the predicted value of the appearance frequency of the load) is generated.
  • the load frequency distribution information L shown in FIG. 17 is information that divides a predetermined load range into a plurality of load zones and indicates the probability that the load belongs to each load zone for each future time zone.
  • the past load information V regarding the past load is, as shown in FIG. 18, the frequency distribution of the gas turbine load for each past time zone (the gas turbine load for each past time zone and the appearance frequency of the load). Includes past load frequency distribution information that indicates the frequency distribution that indicates the relationship with.
  • the past load frequency distribution information shown in FIG. 18 is information showing the probability that a predetermined load range is divided into a plurality of load zones and the load belongs to each load zone for each past time zone.
  • the past load frequency distribution information in the past load information V can be obtained, for example, by extracting and organizing the load at each time in the past from the operation data of the past gas turbine.
  • the peak load factor estimation unit 20 changes the peak load in the past load frequency distribution information shown in FIG. 18 to the expected value of the peak load in the expected load information Q, and then averages the load frequency distribution information.
  • the future load frequency distribution information L shown in FIG. 17 is generated. There is.
  • the past load frequency distribution information in the past load information V may be generated outside the life consumption estimation device 2 and stored in the storage unit 16, or may be generated by the life consumption estimation device 2 and stored in the storage unit 2. It may be stored in 16, or it may be acquired from the outside of the life consumption estimation device 2 and loaded frequency distribution information including the peak load factor for each future time zone in the peak load factor estimation unit 20 without going through the storage unit 16. It may be used to generate L.
  • the turbine inlet temperature estimation unit 8 estimates the turbine inlet temperature T1T for each future time zone based on the temperature frequency distribution information S generated in S103 and the load frequency distribution information L generated in S104. ..
  • the turbine inlet temperature estimation unit 8 sets the peak load for each time zone in the load frequency distribution information L.
  • the turbine inlet temperature T1T for each time zone may be calculated for each future month based on the temperature frequency distribution for each time zone for each future month in the temperature frequency distribution information S.
  • the weighted average of the turbine inlet temperature may be calculated by weighting with the temperature frequency (probability that the temperature in each future time zone belongs to each temperature zone) in the temperature frequency distribution information S.
  • the predicted value (MW) of the peak load is a0 and the i-th temperature in the temperature frequency distribution information S is Ti (the number of temperature zones in the temperature frequency distribution information S is n), n
  • the temperature indicating the i-th temperature zone in the temperature zone), the turbine inlet temperature when the expected peak load is a0 and the temperature is Ti are T1T (a0, Ti), and the frequency at which the temperature Ti occurs (the i-th temperature).
  • the weighted average T1Tt0 obtained by weighting the turbine inlet temperature T1T (a0, Ti) in the time zone t0 by the frequency pi can be expressed by the following equation (1).
  • the expected peak load value and the turbine inlet temperature T1T (a0, Ti) based on each temperature are calculated for each temperature zone, and the turbine inlet temperature T1T for each temperature zone is calculated.
  • the weighted average of the turbine inlet temperature T1T can be calculated by adding the result of multiplying (a0, Ti) by the frequency pi of the temperature zone for all the temperature zones.
  • the relationship between the peak load, the air temperature, and the turbine inlet temperature T1T can be obtained from the past operation data of the gas turbine, and is read from the storage unit 16 and used for estimating the turbine inlet temperature, for example.
  • the exhaust temperature of the gas turbine is calculated from the peak load and the temperature
  • the compression ratio of the gas turbine is calculated from the peak load
  • the turbine inlet temperature is calculated from the exhaust temperature and the compression ratio of the gas turbine. May be good.
  • the life consumption estimation unit 9 of the gas turbine component is based on the turbine inlet temperature T1T (weighted average of the turbine inlet temperature T1T in the above example) for each future time zone estimated in S105. Estimate future life consumption.
  • the life consumption of gas turbine parts in the future evaluation period can be estimated by the following method.
  • the life consumption LF per unit time in a certain operating load can be estimated from the state quantity of the gas turbine (for example, turbine inlet temperature, pressure ratio and / or exhaust gas temperature, etc.).
  • the life consumption LFEOH of the gas turbine in the evaluation period can be estimated.
  • LFEOHv2 of the gas turbine parts for each time zone (every hour in the illustrated example) in the future evaluation period as shown in FIG. 20 peaks at LFEOHv1 when the number of times the gas turbine is started is not taken into consideration. It can be calculated by multiplying the load factor and the operating rate.
  • LFEOHv1 is a provisional life consumption amount for each time zone in the future.
  • LFEOHv1 has a positive correlation with the turbine inlet temperature T1T, and is expressed as a function of, for example, the turbine inlet temperature T1T for each gas turbine component. Information indicating the correlation between the turbine inlet temperature T1T and LFEOHv1 is stored in, for example, a storage unit 16 and is read out for calculation of LFEOH.
  • the monthly life consumption LFEOHv3 of the gas turbine parts in the future evaluation period as shown in FIG. 21 can be calculated by adding the influence of the number of starts to the parts life to LFEOHv2.
  • the life consumption LFEOH in the entire evaluation period from the present to a certain point in the future is equal to the integrated value obtained by integrating LFEOHv3 over the entire evaluation period from the present to a certain point in the future.
  • the past life consumption LFEOH of the part is added to the life consumption LFEOH of the part estimated in S106 from the present to a certain point in the future. This makes it possible to calculate the life consumption LFEOH from the start of use of the component to a certain point in the future. Further, the remaining life of the component may be obtained by subtracting the life consumption LFEOH from the start of use of the component calculated in S107 to a certain point in the future from the life of the component.
  • the life consumption of the gas turbine is estimated based on the turbine inlet temperature T1T, which is an example of the gas turbine state amount, but the life of the gas turbine is estimated based on at least one gas turbine state amount other than the turbine inlet temperature.
  • the consumption may be estimated.
  • the combustion gas temperature in the target stage of the gas turbine is estimated in order to accurately predict the life of the rear stage of the turbine.
  • the gas turbine state estimation unit estimates and estimates the combustion gas temperature of each stage of the gas turbine from the predicted turbine inlet temperature T1T and pressure ratio in consideration of the temperature drop due to the expansion by the turbine and the mixing of cooling air.
  • the life consumption estimation unit estimates the life consumption of the parts of the target stage based on the combustion gas temperature of the target stage.
  • the estimated life consumption is compared with the remaining life of the part, but the remaining life is changed to the nominal value and the repair history of the part (crack generation, TBC peeling, etc.) It is also possible to use the one calculated based on the inspection record).
  • the pressure ratio, the turbine inlet temperature T1T, and the exhaust gas temperature are calculated for each time zone based on the above-mentioned temperature frequency distribution information S and load frequency distribution information L, and the gas turbine is calculated based on them.
  • the inlet temperature of the n-stage stationary blade (n is an integer of 1 or more) is calculated. Then, based on the calculated inlet temperature of the n-stage stationary blade and the correlation information between the inlet temperature of the n-stage stationary blade and the life consumption of the n-stage stationary blade, the life consumption of the n-stage stationary blade in each time zone is calculated, and the life consumption of the n-stage stationary blade is calculated for each time zone.
  • the integrated value obtained by integrating the calculated life consumption of the n-stage stationary blade over the entire evaluation period is calculated. Further, the remaining life of the n-stage stationary blade is calculated based on the latest life evaluation of the gas turbine and the inspection record of the n-stage stationary blade, and the remaining life and the life consumption of the n-stage stationary blade are integrated over the entire evaluation period. By comparing with the integrated value of, it is possible to predict the time when the life of the n-stage stationary blade will be reached.
  • each of the pressure ratio, the turbine inlet temperature T1T, the exhaust gas temperature, and the n-stage stationary blade inlet temperature corresponds to the gas turbine state quantity with respect to the future state quantity of the gas turbine. All of the modifications described above can be applied in combination with each other.
  • the present disclosure is not limited to the above-mentioned embodiment, and includes a form in which the above-mentioned embodiment is modified and a form in which these forms are appropriately combined.
  • the life consumption estimation device (for example, the above-mentioned life consumption estimation device 2) according to the present disclosure is A life consumption estimation device for estimating the life consumption of at least one component of a gas turbine.
  • a forecast temperature information acquisition unit (for example, the above-mentioned forecast temperature information acquisition unit 4) configured to acquire forecast temperature information regarding future temperature
  • An expected load information acquisition unit (for example, the above-mentioned expected load information acquisition unit 6) configured to acquire expected load information regarding the future load of the gas turbine, and At least one gas turbine state amount related to the future state amount of the gas turbine based on the predicted temperature information acquired by the expected temperature information acquisition unit and the expected load information acquired by the expected load information acquisition unit.
  • a gas turbine state quantity estimation unit (for example, the above-mentioned turbine inlet temperature estimation unit 8) configured to estimate A lifetime consumption estimation unit configured to estimate the lifetime consumption of the at least one component based on the at least one gas turbine state quantity estimated by the gas turbine state quantity estimation unit (for example, the above-mentioned lifetime consumption).
  • Quantity estimation unit 9) and To prepare for.
  • the life consumption of many parts used in gas turbines correlates with the state quantity of gas turbines.
  • the state quantity of the gas turbine may correlate with the load of the gas turbine and the air temperature. Therefore, in the life consumption estimation device according to (1) above, at least one gas turbine state amount regarding the future state amount of the gas turbine is estimated based on the expected temperature information and the expected load information, and the estimated gas turbine.
  • the life consumption of gas turbine parts is estimated based on the state quantity. Therefore, it is possible to accurately estimate the life consumption of the gas turbine parts based on the gas turbine state quantity estimated in consideration of the future load and temperature of the gas turbine.
  • the life consumption estimation device is used.
  • the gas turbine state quantity estimation unit is configured to estimate a future turbine inlet temperature as the gas turbine state quantity.
  • the lifetime consumption estimation unit is configured to estimate the lifetime consumption of the at least one component based on the future turbine inlet temperature estimated by the gas turbine state quantity estimation unit.
  • the life consumption of many components used in gas turbines correlates with the turbine inlet temperature.
  • the turbine inlet temperature correlates with the gas turbine load and air temperature. Therefore, in the life consumption estimation device described in (1) above, the future turbine inlet temperature of the gas turbine is estimated based on the expected temperature information and the expected load information, and the gas turbine is estimated based on the estimated turbine inlet temperature. Estimates the life consumption of parts. Therefore, it is possible to accurately estimate the life consumption of the gas turbine parts based on the turbine inlet temperature estimated in consideration of the future load of the gas turbine and the air temperature.
  • the life consumption estimation device is used.
  • the expected temperature information acquisition unit An expected temperature input receiving unit (for example, the above-mentioned expected temperature input receiving unit 12) configured to accept input of the expected temperature information, and Based on the past temperature information regarding the past temperature and the expected temperature information input received by the expected temperature input receiving unit, the temperature frequency distribution information indicating the frequency distribution of the temperature for each future time zone is generated.
  • the temperature frequency distribution generation unit (for example, the above-mentioned temperature frequency distribution generation unit 14) configured in Including
  • the gas turbine state amount estimation unit obtains the gas turbine state amount based on the temperature frequency distribution information generated by the temperature frequency distribution generation unit and the expected load information acquired by the expected load information acquisition unit. It is configured to estimate for each future time zone.
  • the temperature frequency distribution information showing the temperature frequency distribution for each future time zone is generated in consideration of the past temperature information and the expected temperature information.
  • the gas turbine state amount is estimated for each future time zone based on the temperature frequency distribution information. Therefore, it is possible to accurately estimate the gas turbine state quantity and the life consumption of the parts in consideration of the time change of the air temperature.
  • the life consumption estimation device is used.
  • the expected temperature input receiving unit is configured to receive input of information regarding the minimum daily temperature as the expected temperature information.
  • the pattern of time fluctuations in temperature during the day correlates with the minimum temperature in the day. Therefore, as described in (4) above, by accepting the input of information regarding the minimum daily temperature, it is possible to accurately estimate the temperature for each future time zone in consideration of the minimum temperature. Therefore, the state quantity of the gas turbine and the life consumption of the parts can be estimated accurately.
  • the life consumption estimation device in the life consumption estimation device according to (3) or (4) above, is used.
  • the past temperature information includes a plurality of fluctuation patterns of the time fluctuation of the temperature in a day and the appearance frequency of each of the plurality of fluctuation patterns.
  • the life consumption estimation device described in (5) above it is possible to accurately estimate the temperature for each future time zone in consideration of a plurality of fluctuation patterns of the past temperature and their appearance frequencies. This makes it possible to accurately estimate the future gas turbine state quantity and the life consumption of the parts.
  • the life consumption estimation device in the life consumption estimation device according to (5) above, the life consumption estimation device is used.
  • a storage unit (for example, the above-mentioned storage unit 16) that stores the plurality of fluctuation patterns and the frequency of appearance of each of the fluctuation patterns is further provided.
  • the expected load information acquisition unit The expected load input receiving unit (for example, the above-mentioned expected load input receiving unit 18) configured to receive the input of the expected load information, and the expected load input receiving unit 18 Based on the past load information regarding the past load of the gas turbine and the expected load information input received by the expected load input receiving unit, the peak load factor, which is the time ratio of the peak load, is calculated for each future time zone.
  • a peak load factor estimation unit configured to estimate (for example, the peak load factor estimation unit 20 described above) and including.
  • the peak load of the gas turbine has a dominant effect on the gas turbine state quantity (especially the turbine inlet temperature) than other loads. Therefore, as described in (7) above, by estimating the peak load factor for each future time zone based on the past load information and the expected load information, the future time zone is taken into consideration in consideration of the peak load factor. It is possible to accurately calculate the state quantity of each gas turbine (particularly the turbine inlet temperature) and the life consumption of parts.
  • the life consumption estimation device is used.
  • the expected load input receiving unit is configured to receive the expected value of the peak load for each future time zone and the expected value of the average load for each future time zone as the expected load information.
  • the peak load factor can be estimated accurately in consideration of the predicted value of the peak load and the predicted value of the average load. This makes it possible to accurately calculate the gas turbine state quantity and the life consumption of parts for each future time zone.
  • the expected load information includes an estimated value of the future operating rate of the gas turbine.
  • the life consumption estimation unit has the future life based on the gas turbine state quantity estimated by the gas turbine state quantity estimation unit and the expected value of the operating rate acquired by the expected load information acquisition unit. It is configured to estimate consumption.
  • the life consumption of parts can be accurately estimated in consideration of the gas turbine state quantity estimated in the future and the expected value of the operating rate.
  • the expected load information includes an estimated value of the number of future starts of the gas turbine.
  • the life consumption estimation unit is based on the gas turbine state amount estimated by the gas turbine state amount estimation unit and the predicted value of the number of starts acquired by the expected load information acquisition unit. Is configured to estimate.
  • the gas turbine state amount estimation unit is based on the temperature frequency distribution information showing the temperature frequency distribution for each future time zone and the load frequency distribution information showing the load frequency distribution for each future time zone. It is configured to calculate the weighted average of the gas turbine state amount for each time zone.
  • the future gas turbine state quantity and lifetime consumption are accurately estimated in consideration of the frequency distribution of temperature and the frequency distribution of load for each future time zone. can do.
  • the life consumption estimation device in the life consumption estimation device according to (11) above, is used.
  • the gas turbine state quantity estimation unit is configured to use only the peak load of the load distribution of the load frequency distribution information for calculating the weighted average.
  • the peak load of the gas turbine has a dominant effect on the gas turbine state quantity estimation unit (especially the turbine inlet temperature) than other loads. Therefore, as described in (12) above, by using only the peak load of the load distribution for the calculation of the weighted average, the gas turbine state quantity and parts for each future time zone can be calculated simply based on the peak load. Life consumption can be calculated accurately.
  • a life consumption addition unit configured to add the life consumption of the component estimated by the life consumption estimation unit to the past life consumption of the component.
  • the gas turbine state amount estimation unit is configured to estimate the combustion gas temperature of each stage of the gas turbine as the gas turbine state amount.
  • the life consumption estimation unit is configured to estimate the life consumption of parts of the target stage based on the combustion gas temperature of the target stage estimated by the gas turbine state quantity estimation unit.
  • the temperature of the combustion gas decreases toward the downstream side (rear stage side) in the flow direction of the combustion gas, so the temperature of the combustion gas is estimated for each stage of the gas turbine as described in (14) above.
  • the life consumption of the parts of the symmetrical stage based on the temperature of the combustion gas of the stage, the life consumption of the parts can be calculated accurately.
  • Lifetime consumption estimation device 2 Lifetime consumption estimation device 4 Expected temperature information acquisition unit 6 Expected load information acquisition unit 8 Turbine inlet temperature estimation unit 9 Lifetime consumption estimation unit 10 Lifetime consumption amount addition unit 12 Expected temperature input reception unit 14 Temperature frequency distribution generation unit 16 Storage Part 18 Expected load input reception part 20 Peak load factor estimation part 72 CPU 84 bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

ガスタービンの少なくとも1つの部品の寿命消費量を推定するための寿命消費量推定装置であって、将来の気温に関する予想気温情報を取得するように構成された予想気温情報取得部と、ガスタービンの将来の負荷に関する予想負荷情報を取得するように構成された予想負荷情報取得部と、予想気温情報取得部によって取得した予想気温情報と、予想負荷情報取得部によって取得した予想負荷情報と、に基づいて、将来の少なくとも1つのガスタービン状態量を推定するように構成されたガスタービン状態量推定部と、推定された少なくとも1つのガスタービン状態量に基づいて、少なくとも1つの部品の寿命消費量を推定するように構成された寿命消費量推定部と、を備える。

Description

寿命消費量推定装置
 本開示は、寿命消費量推定装置に関する。
 本願は、2020年6月17日に日本国特許庁に出願された特願2020-104451号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1には、ガスタービンの運転情報とガスタービンの運転中に計測されたプロセス情報とを用いてガスタービンを構成する部品の損傷程度を運転時間で評価した等価運転時間を運転中に算出し、算出された等価運転時間及びあらかじめ決められている管理基準に基づいてガス夕一ビンの状態を診断するガスタービンの状態診断方法が開示されている。
 また、算出された等価運転時間が個々の機器の管理基準より小さい場合に残寿命の計算が行われる。ここで、残寿命の計算には、これまでのデータの回帰分析による方法、設計基準の運転パターンを基準とした方法、評価時点の変化率(微分値)による方法が利用されうることが記載されている。
再公表特許第2002/103177号
 例えば特許文献1に記載の方法でガスタービンの部品の残寿命を求める場合、当該部品の将来の寿命消費量に影響を与えるパラメータを適切に考慮できていないため、部品の将来の寿命消費量を精度良く推定することができず、部品の残寿命を推定する精度も限定的となりやすい。
 上述の事情に鑑みて、本開示は、ガスタービンの部品の将来の寿命消費量を精度良く推定することができる寿命消費量推定装置を提供することを目的とする。
 上記目的を達成するため、本開示に係る寿命消費量推定装置は、
 ガスタービンの少なくとも1つの部品の寿命消費量を推定するための寿命消費量推定装置であって、
 将来の気温に関する予想気温情報を取得するように構成された予想気温情報取得部と、
 前記ガスタービンの将来の負荷に関する予想負荷情報を取得するように構成された予想負荷情報取得部と、
 前記予想気温情報取得部によって取得した前記予想気温情報と、前記予想負荷情報取得部によって取得した前記予想負荷情報と、に基づいて、前記ガスタービンの将来の状態量に関する少なくとも1つのガスタービン状態量を推定するように構成されたガスタービン状態量推定部と、
 前記ガスタービン状態量推定部によって推定した前記少なくとも1つのガスタービン状態量に基づいて、前記少なくとも1つの部品の寿命消費量を推定するように構成された寿命消費量推定部と、
 を備える。
 本開示によれば、ガスタービンの部品の将来の寿命消費量を精度良く推定することができる寿命消費量推定装置が提供される。
一実施形態に係る寿命消費量推定装置2の概略的なハードウェア構成を示すブロック図である。 図1に示した寿命消費量推定装置2の機能的な概略構成を示すブロック図である。 寿命消費量推定装置2によってガスタービンの部品の寿命消費量を推定する方法の一例を示すフローチャートである。 予想気温入力受付部12によって入力を受け付ける情報を説明するための図である。 予想負荷入力受付部18によって入力を受け付ける情報の一部を説明するための図である。 予想負荷入力受付部18によって入力を受け付ける情報の一部を説明するための図である。 気温頻度分布情報Sを説明するための図である。 1日の中での気温の時間変動のパターンを示す複数の変動パターンについて説明するための図である。 1日の最低気温が属する最低気温帯毎の複数の変動パターンの各々の出現頻度を示す図である。 過去の時刻毎の気温の統計データについて説明するための図である。 変動パターン情報を説明するための図である。 気温頻度分布情報Sを生成する方法の一例を示すフローチャートである。 過去の月毎に最低気温の標準偏差σを示す図である。 将来の日毎にランダムで模擬的に生成した最低気温を示す図である。 気温の変動パターンを将来の各日に割り当てる方法を説明するための図である。 将来の各日付について時刻毎に生成した気温を示す図である。 将来の負荷頻度分布情報Lを説明するための図である。 過去の負荷頻度分布情報を説明するための図である。 将来の時間帯毎のピーク負荷、気温帯毎のタービン入口温度T1T等を示す図である。 将来の評価期間における時間帯毎のガスタービンの部品の寿命消費量LFEOHv2等を示す図である。 将来の評価期間における月毎の寿命消費量LFEOHv3等を示す図である。 タービン入口温度T1Tに基づく寿命予測の変形例を説明するための図である。
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 図1は、一実施形態に係る寿命消費量推定装置2の概略的なハードウェア構成を示すブロック図である。図2は、図1に示した寿命消費量推定装置2の機能的な概略構成を示すブロック図である。
 図1に示すように、寿命消費量推定装置2は、CPU(Central Processing Unit)72、RAM(Random Access Memory)74、ROM(Read Only Memory)76、HDD (Hard Disk Drive)78、入力I/F80、及び出力I/F82を含み、これらがバス84を介して互いに接続されたコンピュータを用いて構成される。なお、寿命消費量推定装置2のハードウェア構成は上記に限定されず、制御回路と記憶装置との組み合わせにより構成されてもよい。また寿命消費量推定装置2は、寿命消費量推定装置2の各機能を実現するプログラムをコンピュータが実行することにより構成される。以下で説明する寿命消費量推定装置2における各部の機能は、例えばROM76に保持されるプログラムをRAM74にロードしてCPU72で実行するとともに、RAM74やROM76におけるデータの読み出し及び書き込みを行うことで実現される。
 図2に示すように、寿命消費量推定装置2は、予想気温情報取得部4、予想負荷情報取得部6、タービン入口温度推定部8(ガスタービン状態量推定部)、寿命消費量推定部9及び寿命消費量加算部10を備えており、ガスタービンの少なくとも1つの部品の寿命消費量を推定するように構成されている。なお、ガスタービンの部品は、ガスタービンの負荷によって寿命消費量が変化する高温部品であり、例えば、ガスタービンの燃焼器ライナ、燃焼器尾筒、タービン静翼又はタービン動翼である。また、以下において、「タービン入口温度」とは、ガスタービンのタービンの入口での燃焼ガスの温度を意味する。
 予想気温情報取得部4は、予想気温入力受付部12及び気温頻度分布生成部14を含む。予想気温入力受付部12は、将来の予想気温に関する予想気温情報Pの入力を受け付けるように構成されており、予想気温情報取得部4は、予想気温入力受付部12を介して予想気温情報Pを取得する。予想気温情報Pは、例えば将来の1日の最低気温に関する情報であってもよく、この場合、例えば1日の最低気温を月毎に平均した平均値(各月の平均最低気温)であってもよい。また、予想気温入力受付部12は、寿命消費量推定装置2の外部に設けられた入力装置(不図示)を介して予想気温情報Pの入力を受け付けてもよいし、寿命消費量推定装置2の内部に設けられた入力装置(例えば上述の入力I/F80)を介して予想気温情報Pの入力を受け付けてもよい。
 気温頻度分布生成部14は、過去の気温に関する過去気温情報Rと、予想気温入力受付部12によって入力を受け付けた予想気温情報Pと、に基づいて、将来の時間帯毎の気温の頻度分布(将来の時間帯毎の気温と該気温の出現頻度との関係を示す頻度分布)を示す気温頻度分布情報Sを生成するように構成されている。過去気温情報Rは、1日の中での気温の時間変動の複数の変動パターンと、複数の変動パターンの各々の出現頻度とを含む。複数の変動パターンとその出現頻度とは、過去の気温の統計情報に基づいて生成される。図示する例示的形態では、複数の変動パターンと変動パターンの各々の出現頻度とを含む過去気温情報Rは記憶部16に記憶されており、気温頻度分布生成部14は、記憶部16から読み込んだ複数の変動パターンと、変動パターンの各々の出現頻度と、予想気温入力受付部12によって入力を受け付けた予想気温情報Pとに基づいて気温頻度分布情報Sを生成する。
 予想負荷情報取得部6は、予想負荷入力受付部18及びピーク負荷率推定部20を含む。予想負荷入力受付部18は、不図示のガスタービンの将来の予想負荷に関する予想負荷情報Qの入力を受け付けるように構成されており、予想負荷情報取得部6は、予想負荷入力受付部18を介して予想負荷情報Qを取得するように構成されている。
 予想負荷情報Qは、例えば、将来の時間帯毎のピーク負荷の予想値(将来の時間帯毎の予想ピーク負荷)と、将来の時間帯毎の平均負荷の予想値(将来の時間帯毎の予想平均負荷)と、ガスタービンの将来の稼働率の予想値(ガスタービンの将来の予想稼働率)と、ガスタービンの将来の起動回数の予想値(ガスタービンの将来の予想起動回数)とを含む。なお、予想負荷入力受付部18は、寿命消費量推定装置2の外部に設けられた入力装置(不図示)を介して予想負荷情報Qの入力を受け付けてもよいし、寿命消費量推定装置2の内部に設けられた入力装置(例えば上述の入力I/F80)を介して予想負荷情報Qの入力を受け付けてもよい。
 ピーク負荷率推定部20は、過去の負荷に関する過去負荷情報Vと、予想負荷入力受付部18によって入力を受け付けた予想負荷情報Q、とに基づいて、将来の時間帯毎にピーク負荷の時間割合(当該時間帯のうちガスタービンの負荷がピーク負荷である時間が占める時間割合)であるピーク負荷率を推定するように構成される。
 過去負荷情報Vは、過去の時間帯毎のガスタービンの負荷の頻度分布(過去の時間帯毎のガスタービンの負荷と該負荷の出現頻度との関係を示す頻度分布)を示す負荷頻度分布情報を含む。図示する例示的形態では、過去の負荷頻度分布情報を含む過去負荷情報Vは記憶部16に記憶されており、ピーク負荷率推定部20は、記憶部16から読み込んだ過去の負荷頻度分布情報と、予想負荷入力受付部18によって入力を受け付けた予想負荷情報Qとに基づいて将来の時間帯毎のピーク負荷率を推定する。
 例えば、ピーク負荷率推定部20は、記憶部16から読み込んだ過去の負荷頻度分布情報と、予想負荷入力受付部18によって入力を受け付けた時間帯毎の予想ピーク負荷と、予想負荷入力受付部18によって入力を受け付けた時間帯毎の平均負荷の予想値と、に基づいて、将来の時間帯毎のピーク負荷率を推定する。ピーク負荷率推定部20は、過去の負荷頻度分布情報、時間帯毎のピーク負荷の予想値、及び時間帯毎の平均負荷の予想値に基づいて、将来の時間帯毎のピーク負荷率だけでなく、将来の時間帯毎の負荷の頻度分布(将来の時間帯毎の、負荷と該負荷の出現頻度との関係を示す頻度分布)を示す負荷頻度分布情報Lを生成してもよい。
 タービン入口温度推定部8は、予想気温情報取得部4によって取得した予想気温情報Pと、予想負荷情報取得部6によって取得した予想負荷情報Qと、に基づいて、ガスタービンの将来の状態量に関するガスタービン状態量として、将来のタービン入口温度T1Tを推定するように構成される。例えば、タービン入口温度推定部8は、気温頻度分布生成部14によって生成した気温頻度分布情報Sと、ピーク負荷率推定部20によって推定した将来の時間帯毎の負荷の頻度分布を示す負荷頻度分布情報Lと、に基づいて、将来の時間帯毎にタービン入口温度T1Tの加重平均を算出する。この場合、タービン入口温度推定部8は、負荷頻度分布情報Lにおける負荷の頻度分布のうち予想負荷入力受付部18によって入力を受け付けたピーク負荷の予想値のみを上記加重平均の算出に用いてもよい。この場合、タービン入口温度推定部8は、気温頻度分布生成部14によって生成した気温頻度分布情報Sと、予想負荷入力受付部18によって入力を受け付けた将来の時間帯毎のピーク負荷の予想値とに基づいて、将来の時間帯毎のタービン入口温度T1Tを推定する。
 寿命消費量推定部9は、タービン入口温度推定部8によって推定した将来の時間帯毎のタービン入口温度T1Tと、ピーク負荷率推定部20によって推定した将来の時間帯毎のピーク負荷率と、予想負荷入力受付部18によって入力を受け付けた稼働率の予想値と、予想負荷入力受付部18によって入力を受け付けた起動回数の予想値とに基づいて、ガスタービンの少なくとも1つの部品の寿命消費量Uを推定するように構成されている。
 寿命消費量加算部10は、寿命消費量推定部9によって推定した部品の寿命消費量Uを当該部品の過去の寿命消費量に加算するように構成されている。
 次に、図3を用いて、上述した寿命消費量推定装置2によってガスタービンの部品の寿命消費量Uを推定するフローの具体例を説明する。
 図3は、寿命消費量推定装置2によってガスタービンの部品の寿命消費量Uを推定するフローの一例を示す図である。
 図3に示すように、S101において、予想気温入力受付部12は、将来の予想気温に関する予想気温情報Pの入力を受け付ける。ここで、予想気温入力受付部12は、図4に示すように、予想気温情報Pとして、月毎の平均最低気温の予想値の入力を受け付ける。月毎の平均最低気温の予想値は、1日の最低気温を月毎に平均した平均値に相当し、将来の1日の最低気温に関する情報である。
 次に、S102において、予想負荷入力受付部18は、ガスタービンの将来の予想負荷に関する予想負荷情報Qの入力を受け付ける。ここで、予想負荷入力受付部18は、図5に示すように、将来の時間帯毎のガスタービンのピーク負荷の予想値と、将来の時間帯毎のガスタービンの稼働時の平均負荷の予想値の入力を受け付ける。また、予想負荷入力受付部18は、図6に示すように、ガスタービンの将来の月毎の稼働率の予想値と、ガスタービンの将来の月毎の起動回数の予想値の入力を受け付ける。
 次に、S103において、気温頻度分布生成部14は、過去の気温に関する過去気温情報Rと、予想気温入力受付部12によって入力を受け付けた予想気温情報Pと、に基づいて、図7に示すように、将来の各月について時間帯毎の気温の頻度分布を示す気温頻度分布情報Sを生成する。図7に示す気温頻度分布情報Sは、所定の温度範囲を所定の温度幅ずつ区切った複数の気温帯に分けて、将来の各月について時間帯毎に気温が各気温帯に属する確率を示した情報である。図示する例示的な気温頻度分布情報Sは、0度から35度までの温度範囲を5度ずつ区切った7つの気温帯に分けて、将来の月毎時間帯毎に気温が各気温帯に属する確率を示している。
 S103において、過去の気温に関する過去気温情報Rは、1日の中での気温の時間変動のパターンを示す複数の変動パターン(図8参照)と、1日の最低気温が属する最低気温帯毎の複数の変動パターンの各々の出現頻度(図9参照)とを含む。
 図8に示す複数の変動パターンの各々は、1日の中で各時間帯の温度と1日の最低気温との差の変動パターンである。図9に示す変動パターンの出現頻度は、所定の温度範囲を所定の温度幅ずつ区切った複数の最低気温帯に分けて、1日の最低気温が属する最低気温帯毎に各変動パターンの出現頻度(発生確率)を示している。図9に示す例では、0度から30度までの温度範囲を5度ずつ区切った6つの最低気温帯に分けて、1日の最低気温が属する最低気温帯毎に各変動パターンの出現頻度を示している。
 ここで、複数の変動パターンとその出現頻度の生成方法の一例について説明する。まず、図10に例示するような過去の時刻毎の気温の統計データを、図11に例示するように、日毎の最低気温と、日毎の各時刻の気温と該最低気温との差である変動パターンと、を紐づけた変動パターン情報に変換して、この変動パターン情報の変動パターンを図8に示すように複数の変動パターンにクラスタリングする。図8に示す例では気温の変動パターンは12個の変動パターンにクラスタリングされている。そして、クラスタリングされた複数の変動パターン毎に上記変動パターン情報を整理することにより、図9に示すように、1日の最低気温が属する最低気温帯毎に、複数の変動パターンの各々の出現頻度が生成される。
 なお、過去気温情報Rは、寿命消費量推定装置2の外部で生成されて記憶部16に記憶されてもよいし、寿命消費量推定装置2で生成されて記憶部16に記憶されてもよいし、寿命消費量推定装置2の外部から取得して記憶部16を介さずに気温頻度分布生成部14で気温頻度分布情報Sの生成に使用されてもよい。
 次に、S103における気温頻度分布情報Sを生成する方法の一例について図12に示すフローチャートを用いて説明する。
 図12に示すように、S201において、図11に示した変動パターン情報における日毎の最低気温に基づいて、図13に示すように過去の月毎に最低気温の標準偏差σを算出する。次に、S202において、S201で算出した過去の月毎の最低気温の標準偏差σと、S101で取得した予想気温情報Pに含まれる将来の月毎の平均最低気温の予想値と、に基づいて、図14に示すように、上記標準偏差σ及び上記平均最低気温を有する正規分布に応じた最低気温を将来の日毎にランダムで模擬的に生成する。
 そして、S203において、S202で生成した将来の日毎の最低気温と、図8に示した複数の変動パターンと、図9に示した最低気温帯毎の各変動パターンの出現頻度と、に基づいて、図15に示すように、将来の各日の最低気温が属する最低気温帯に基づく出現頻度で気温の変動パターンをランダムで模擬的に生成して各日に割り当てる。
 そして、S204において、S202で生成した将来の日毎の最低気温と、S203で将来の日毎に割り当てた気温の変動パターンと、図8に示した気温の変動パターンの各々における各時間帯の気温と最低気温との気温差と、に基づいて、図16に示すように将来の各日付について時刻毎の予想気温を生成する。
 そして、S205において、S204で生成した将来の各日付についての時刻毎の予想気温を、将来の各月の各時間帯について整理することで、図7に示した気温頻度分布情報Sを生成する。
 次に、図3に戻り、S104で、ピーク負荷率推定部20は、過去の負荷に関する過去負荷情報Vと、予想負荷入力受付部18によって入力を受け付けた予想負荷情報Q、とに基づいて、図17に示すように、将来の時間帯毎にピーク負荷の時間割合であるピーク負荷率を推定する。図17に示す例では、ピーク負荷率推定部20は、ピーク負荷率を含む負荷頻度分布情報Lとして、将来の時間帯毎のガスタービンの負荷の頻度分布(将来の各時間帯についての、負荷と該負荷の出現頻度の予想値との関係を示す頻度分布)を生成している。図17に示す負荷頻度分布情報Lは、所定の負荷範囲を複数の負荷帯に分けて、将来の時間帯毎に負荷が各負荷帯に属する確率を示した情報である。
 S104において、過去の負荷に関する過去負荷情報Vは、図18に示すように、過去の時間帯毎のガスタービンの負荷の頻度分布(過去の時間帯毎のガスタービンの負荷と該負荷の出現頻度との関係を示す頻度分布)を示す過去の負荷頻度分布情報を含む。図18に示す過去の負荷頻度分布情報は、所定の負荷範囲を複数の負荷帯に分けて、過去の時間帯毎に負荷が各負荷帯に属する確率を示した情報である。過去負荷情報Vにおける過去の負荷頻度分布情報は、例えば過去のガスタービンの運転データから過去の各時刻の負荷を抽出して整理することにより取得することができる。
 S104において、ピーク負荷率推定部20は、図18に示した過去の負荷頻度分布情報におけるピーク負荷を、予想負荷情報Qのピーク負荷の予想値に変更した上で、当該負荷頻度分布情報における平均負荷が予想負荷情報Qの平均負荷の予想値に一致するように、当該負荷頻度分布情報の各負荷の頻度を調整することで、図17に示した将来の負荷頻度分布情報Lを生成している。
 なお、過去負荷情報Vにおける過去の負荷頻度分布情報は、寿命消費量推定装置2の外部で生成されて記憶部16に記憶されてもよいし、寿命消費量推定装置2で生成されて記憶部16に記憶されてもよいし、寿命消費量推定装置2の外部から取得して記憶部16を介さずにピーク負荷率推定部20で将来の時間帯毎のピーク負荷率を含む負荷頻度分布情報Lの生成に使用されてもよい。
 次に、S105において、S103で生成した気温頻度分布情報SとS104で生成した負荷頻度分布情報Lとに基づいて、将来の時間帯毎のタービン入口温度T1Tをタービン入口温度推定部8が推定する。ここで、ガスタービンのピーク負荷は他の負荷よりもタービン入口温度T1Tに対して支配的な影響を与えるため、タービン入口温度推定部8は、負荷頻度分布情報Lにおける時間帯毎のピーク負荷と、気温頻度分布情報Sにおける将来の各月についての時間帯毎の気温の頻度分布と、に基づいて、将来の各月について時間帯毎のタービン入口温度T1Tを算出してもよい。この場合、気温頻度分布情報Sにおける気温の頻度(将来の各時間帯における気温が各気温帯に属する確率)で重み付けしてタービン入口温度の加重平均を算出してもよい。
 例えば、ある時間帯t0において、ピーク負荷の予想値(MW)をa0、気温頻度分布情報Sにおけるi番目の気温をTi(気温頻度分布情報Sにおける気温帯の数をnとすると、n個の気温帯のうちi番目の気温帯を示す温度)、ピーク負荷の予想値がa0で気温がTiのときのタービン入口温度をT1T(a0,Ti)、気温Tiが発生する頻度(i番目の気温帯に気温が属する頻度)をpiとすると、時間帯t0におけるタービン入口温度T1T(a0,Ti)を頻度piで重み付けした加重平均T1Tt0は、以下の式(1)によって表すことができる。
Figure JPOXMLDOC01-appb-M000001
 すなわち、例えば図19に示すように、各時間帯について、気温帯毎にピーク負荷の予想値と各気温に基づくタービン入口温度T1T(a0,Ti)を算出し、気温帯毎のタービン入口温度T1T(a0,Ti)に当該気温帯の頻度piを乗じた結果を全ての気温帯について足し合わせることにより、タービン入口温度T1Tの加重平均を算出することができる。ここで、ピーク負荷と気温とタービン入口温度T1Tとの関係は、ガスタービンの過去の運転データから求めることができ、例えば記憶部16から読み込んでタービン入口温度の推定に用いられる。幾つかの実施形態では、ピーク負荷と気温とからガスタービンの排気温度を算出し、ピーク負荷からガスタービンの圧縮比を算出し、ガスタービンの排気温度と圧縮比からタービン入口温度を算出してもよい。
 次に、S106において、寿命消費量推定部9は、S105において推定した将来の時間帯毎のタービン入口温度T1T(上記の例ではタービン入口温度T1Tの加重平均)に基づいて、ガスタービンの部品の将来の寿命消費量を推定する。
 ここで、寿命消費量推定部9によるガスタービンの部品の将来の寿命消費量の推定方法について説明する。ガスタービンの部品の将来の評価期間における寿命消費量は以下の方法で推定することができる。ある運転負荷における、単位時間あたりの寿命消費量LFは、ガスタービンの状態量(例えばタービン入口温度、圧力比及び/又は排ガス温度等)から推定することができる。このLFにその負荷でのガスタービンの運転時間AOHを掛け合わせることにより、評価期間におけるガスタービンの寿命消費量LFEOHを推定できる。ただし、上記では、クリープ等、運転時間の影響しか考慮できていないため、実際のLFEOHの算出についてはガスタービンの起動回数の影響も加える必要がある。
 また、図20に示すような将来の評価期間における時間帯毎(図示する例では1時間毎)のガスタービンの部品の寿命消費量LFEOHv2は、ガスタービンの起動回数を考慮しない場合、LFEOHv1にピーク負荷率と稼働率を掛け合わせることで計算できる。ここで、LFEOHv1は、将来の各時間帯の仮の寿命消費量である。LFEOHv1は、タービン入口温度T1Tと正の相関関係を有しており、ガスタービンの部品ごとに例えばタービン入口温度T1Tの関数として表される。タービン入口温度T1TとLFEOHv1との相関関係を示す情報は、例えば、記憶部16に記憶されていてLFEOHの算出のために読み出される。
 そして、図21に示すような将来の評価期間における月毎のガスタービンの部品の寿命消費量LFEOHv3は、LFEOHv2に起動回数が部品寿命に与える影響を加えることで算出することができる。
 さらに、現在から将来のある時点までの評価期間全体での寿命消費量LFEOHは、LFEOHv3を現在から将来のある時点までの評価期間全体に亘って積算した積算値と等しくなる。
 次に、S107において、S106で推定した部品の現在から将来のある時点までの寿命消費量LFEOHに、当該部品の過去の寿命消費量LFEOHを加算する。これにより、当該部品の使用開始から将来のある時点までの寿命消費量LFEOHを算出することができる。また、S107で算出した部品の使用開始から将来のある時点までの寿命消費量LFEOHを当該部品の寿命から減算することにより、当該部品の残寿命を求めてもよい。
 次に、本実施例で説明したタービン入口温度T1Tに基づく寿命予測の変形例について説明する。上述した実施形態ではガスタービン状態量の一例であるタービン入口温度T1Tに基づいてガスタービンの寿命消費量を推定したが、タービン入口温度以外の少なくとも1つのガスタービン状態量に基づいてガスタービンの寿命消費量を推定してもよい。
 例えばタービン後方段が曝される燃焼ガス温度の温度はタービン入口温度T1Tよりも低下しているから、タービン後方段の寿命を精度よく予測するためにはガスタービンの対象段における燃焼ガス温度を推定して用いることができる。具体的には、予測したタービン入口温度T1Tや圧力比からタービンによる膨張と冷却空気の混合による温度低下を考慮してガスタービンの各段の燃焼ガス温度をガスタービン状態推定部が推定し、推定した対象段の燃焼ガス温度に基づいて対象段の部品の寿命消費量を寿命消費量推定部が推定する。また、部品の寿命消費の要因として高温酸化よりも低サイクル疲労(LCF)が支配的である場合、将来予想される負荷変化率(%load/min)の積算値に基づく寿命消費量を算出したうえで、前述したタービン入口温度T1Tに基づいて推定した寿命消費量と比較して大きい方を寿命消費量の推定値として採用することができる。
 さらに、ある部品の寿命到達時期を予想するにあたっては推定した寿命消費量と当該部品の残寿命を比較するが、残寿命は公称値にかえて当該部品の補修履歴(クラック発生やTBC剥離などの検査記録)に基づき算出したものを用いることも可能である。
 例えば図22に示す例では、上述の気温頻度分布情報Sと負荷頻度分布情報Lとに基づいて、圧力比、タービン入口温度T1T及び排ガス温度を各時間帯について算出し、それらに基づいてガスタービンのn段静翼(nは1以上の整数)の入口温度を算出する。そして、算出したn段静翼の入口温度と、n段静翼の入口温度とn段静翼の寿命消費量との相関情報とに基づいて、各時間帯のn段静翼の寿命消費量を算出し、各時間帯について算出したn段静翼の寿命消費量を評価期間全体に亘って積算した積算値を算出する。さらに、ガスタービンの最新の寿命評価と、n段静翼の検査記録とに基づいてn段静翼の残寿命を算出し、この残寿命と、n段静翼の寿命消費量を評価期間全体に亘って積算した上述の積算値とを比較することで、n段静翼の寿命到達時期を予想することができる。なお、図22に示す例では、圧力比、タービン入口温度T1T、排ガス温度及びn段静翼入口温度の各々が、ガスタービンの将来の状態量に関するガスタービン状態量に相当する。
 以上で述べた変形例は全て相互に組み合わせて適用することも可能である。
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
 (1)本開示に係る寿命消費量推定装置(例えば上述の寿命消費量推定装置2)は、
 ガスタービンの少なくとも1つの部品の寿命消費量を推定するための寿命消費量推定装置であって、
 将来の気温に関する予想気温情報を取得するように構成された予想気温情報取得部(例えば上述の予想気温情報取得部4)と、
 前記ガスタービンの将来の負荷に関する予想負荷情報を取得するように構成された予想負荷情報取得部(例えば上述の予想負荷情報取得部6)と、
 前記予想気温情報取得部によって取得した前記予想気温情報と、前記予想負荷情報取得部によって取得した前記予想負荷情報と、に基づいて、前記ガスタービンの将来の状態量に関する少なくとも1つのガスタービン状態量を推定するように構成されたガスタービン状態量推定部(例えば上述のタービン入口温度推定部8)と、
 前記ガスタービン状態量推定部によって推定した前記少なくとも1つのガスタービン状態量に基づいて、前記少なくとも1つの部品の寿命消費量を推定するように構成された寿命消費量推定部(例えば上述の寿命消費量推定部9)と、
 を備える。
 ガスタービンに使用される多くの部品の寿命消費量は、ガスタービンの状態量と相関がある。また、ガスタービンの状態量は、ガスタービンの負荷及び気温と相関をもつ場合がある。
 そこで、上記(1)に記載の寿命消費量推定装置では、ガスタービンの将来の状態量に関する少なくとも1つのガスタービン状態量を、予想気温情報及び予想負荷情報に基づいて推定し、推定したガスタービン状態量に基づいてガスタービンの部品の寿命消費量を推定している。このため、ガスタービンの将来の負荷及び気温を考慮して推定したガスタービン状態量に基づいて、ガスタービンの部品の寿命消費量を精度良く推定することができる。
 (2)幾つかの実施形態では、上記(1)に記載の寿命消費量推定装置において、
 前記ガスタービン状態量推定部は、前記ガスタービン状態量として将来のタービン入口温度を推定するように構成され、
 前記寿命消費量推定部は、前記ガスタービン状態量推定部によって推定した将来の前記タービン入口温度に基づいて、前記少なくとも1つの部品の寿命消費量を推定するように構成される。
 ガスタービンに使用される多くの部品の寿命消費量は、タービン入口温度と相関がある。また、タービン入口温度は、ガスタービンの負荷及び気温と相関がある。
 そこで、上記(1)に記載の寿命消費量推定装置では、ガスタービンの将来のタービン入口温度を、予想気温情報及び予想負荷情報に基づいて推定し、推定したタービン入口温度に基づいてガスタービンの部品の寿命消費量を推定している。このため、ガスタービンの将来の負荷及び気温を考慮して推定したタービン入口温度に基づいて、ガスタービンの部品の寿命消費量を精度良く推定することができる。
 (3)幾つかの実施形態では、上記(1)又は(2)に記載の寿命消費量推定装置において、
 前記予想気温情報取得部は、
  前記予想気温情報の入力を受け付けるように構成された予想気温入力受付部(例えば上述の予想気温入力受付部12)と、
  過去の気温に関する過去気温情報と、前記予想気温入力受付部によって入力を受け付けた前記予想気温情報と、に基づいて、将来の時間帯毎の気温の頻度分布を示す気温頻度分布情報を生成するように構成された気温頻度分布生成部(例えば上述の気温頻度分布生成部14)と、
 を含み、
  前記ガスタービン状態量推定部は、前記気温頻度分布生成部によって生成した前記気温頻度分布情報と、前記予想負荷情報取得部によって取得した前記予想負荷情報と、に基づいて、前記ガスタービン状態量を将来の時間帯毎に推定するように構成される。
 気温は時間によって変化するため、将来の時間帯毎のガスタービン状態量を精度良く推定するためには、将来の時間帯毎の予想気温に基づいてガスタービン状態量を推定することが望ましい。
 そこで、上記(3)に記載の寿命消費量推定装置によれば、過去気温情報と予想気温情報とを考慮して将来の時間帯毎の気温の頻度分布を示す気温頻度分布情報を生成して、該気温頻度分布情報に基づいてガスタービン状態量を将来の時間帯毎に推定している。このため、気温の時間変化を考慮してガスタービン状態量及び部品の寿命消費量を精度良く推定することができる。
 (4)幾つかの実施形態では、上記(3)に記載の寿命消費量推定装置において、
  前記予想気温入力受付部は、前記予想気温情報として、1日の最低気温に関する情報の入力を受け付けるように構成される。
 1日の中での気温の時間変動のパターンは、1日の最低気温と相関がある。このため、上記(4)に記載のように、1日の最低気温に関する情報の入力を受け付けることにより、該最低気温を考慮して将来の時間帯毎の気温を精度良く推定することができる。このため、ガスタービン状態量及び部品の寿命消費量を精度良く推定することができる。
 (5)幾つかの実施形態では、上記(3)又は(4)に記載の寿命消費量推定装置において、
 前記過去気温情報は、1日の中での気温の時間変動の複数の変動パターンと、前記複数の変動パターンの各々の出現頻度とを含む。
 上記(5)に記載の寿命消費量推定装置によれば、過去の気温の複数の変動パターンとその出現頻度とを考慮して、将来の時間帯毎の気温を精度良く推定することができる。これにより、将来のガスタービン状態量及び部品の寿命消費量を精度良く推定することができる。
 (6)幾つかの実施形態では、上記(5)に記載の寿命消費量推定装置において、
 前記複数の変動パターンと前記変動パターンの各々の出現頻度とを記憶した記憶部(例えば上述の記憶部16)を更に備える。
 上記(6)に記載の寿命消費量推定装置によれば、記憶部に記憶した複数の変動パターンとその出現頻度とに基づいて将来の時間帯毎の気温を精度良く推定することができる。
 (7)幾つかの実施形態では、上記(1)乃至(6)の何れかに記載の寿命消費量推定装置において、
 前記予想負荷情報取得部は、
  前記予想負荷情報の入力を受け付けるように構成された予想負荷入力受付部(例えば上述の予想負荷入力受付部18)と、
  前記ガスタービンの過去の負荷に関する過去負荷情報と、前記予想負荷入力受付部によって入力を受け付けた前記予想負荷情報とに基づいて、将来の時間帯毎にピーク負荷の時間割合であるピーク負荷率を推定するように構成されたピーク負荷率推定部(例えば上述のピーク負荷率推定部20)と、
 を含む。
 ガスタービンのピーク負荷は他の負荷よりもガスタービン状態量(特にタービン入口温度)に対して支配的な影響を与える。このため、上記(7)に記載のように、過去負荷情報と予想負荷情報とに基づいて将来の時間帯毎にピーク負荷率を推定することにより、ピーク負荷率を考慮して将来の時間帯毎のガスタービン状態量(特にタービン入口温度)及び部品の寿命消費量を精度良く算出することができる。
 (8)幾つかの実施形態では、上記(7)に記載の寿命消費量推定装置において、
 前記予想負荷入力受付部は、将来の時間帯毎のピーク負荷の予想値と、将来の時間帯毎の平均負荷の予想値とを前記予想負荷情報として受け付けるように構成される。
 上記(8)に記載の寿命消費量推定装置によれば、ピーク負荷の予想値及び平均負荷の予想値を考慮してピーク負荷率を精度良く推定することができる。これにより、将来の時間帯毎のガスタービン状態量及び部品の寿命消費量を精度良く算出することができる。
 (9)幾つかの実施形態では、上記(1)乃至(8)の何れかに記載の寿命消費量推定装置において、
 前記予想負荷情報は、前記ガスタービンの将来の稼働率の予想値を含み、
 前記寿命消費量推定部は、前記ガスタービン状態量推定部によって推定した前記ガスタービン状態量と、前記予想負荷情報取得部によって取得した前記稼働率の予想値と、に基づいて、前記将来の寿命消費量を推定するように構成される。
 上記(9)に記載の寿命消費量推定装置によれば、将来の推定したガスタービン状態量と稼働率の予想値とを考慮して、部品の寿命消費量を精度良く推定することができる。
 (10)幾つかの実施形態では、上記(1)乃至(9)の何れかに記載の寿命消費量推定装置において、
 前記予想負荷情報は、前記ガスタービンの将来の起動回数の予想値を含み、
 前記寿命消費量推定部は、前記ガスタービン状態量推定部によって推定した前記ガスタービン状態量と、前記予想負荷情報取得部によって取得した前記起動回数の予想値と、に基づいて、前記寿命消費量を推定するように構成される。
 上記(10)に記載の寿命消費量推定装置によれば、将来の推定したガスタービン状態量と起動回数の予想値とを考慮して部品の寿命消費量を精度良く推定することができる。
 (11)幾つかの実施形態では、上記(1)乃至(10)の何れかに記載の寿命消費量推定装置において、
 前記ガスタービン状態量推定部は、将来の時間帯毎の気温の頻度分布を示す気温頻度分布情報と、将来の時間帯毎の負荷の頻度分布を示す負荷頻度分布情報と、に基づいて、将来の時間帯毎に前記ガスタービン状態量の加重平均を算出するように構成される。
 上記(11)に記載の寿命消費量推定装置によれば、将来の時間帯毎の気温の頻度分布及び負荷の頻度分布を考慮して、将来のガスタービン状態量及び寿命消費量を精度良く推定することができる。
 (12)幾つかの実施形態では、上記(11)に記載の寿命消費量推定装置において、
 前記ガスタービン状態量推定部は、前記負荷頻度分布情報の負荷分布のうちピーク負荷のみを前記加重平均の算出に用いるように構成される。
 ガスタービンのピーク負荷は他の負荷よりもガスタービン状態量推定部(特にタービン入口温度)に対して支配的な影響を与える。このため、上記(12)に記載のように、負荷分布のうちピーク負荷のみを加重平均の算出に用いることにより、ピーク負荷に基づく簡易な計算で将来の時間帯毎のガスタービン状態量及び部品の寿命消費量を精度良く算出することができる。
 (13)幾つかの実施形態では、上記(1)乃至(12)の何れかに記載の寿命消費量推定装置において、
 前記寿命消費量推定部によって推定した前記部品の寿命消費量を前記部品の過去の寿命消費量に加算するように構成された寿命消費量加算部を更に備える。
 上記(13)に記載の寿命消費量推定装置によれば、部品の過去から将来のある時点までに消費した寿命消費量を算出することができる。
 (14)幾つかの実施形態では、上記(1)乃至(13)の何れかに記載の寿命消費量推定装置において、
 前記ガスタービン状態量推定部は、前記ガスタービン状態量として、前記ガスタービンの各段の燃焼ガス温度を推定するように構成され、
 前記寿命消費量推定部は、前記ガスタービン状態量推定部によって推定した対象段の燃焼ガス温度に基づいて、前記対象段の部品の寿命消費量を推定するように構成される。
 ガスタービンでは燃焼ガスの流れ方向における下流側(後方段側)に向かうにつれて燃焼ガスの温度は低下するため、上記(14)のようにガスタービンの段毎に燃焼ガスの温度を推定して対象段の燃焼ガスの温度に基づいて対称段の部品の寿命消費量を推定することにより、部品の寿命消費量を精度良く算出することができる。
2 寿命消費量推定装置
4 予想気温情報取得部
6 予想負荷情報取得部
8 タービン入口温度推定部
9 寿命消費量推定部
10 寿命消費量加算部
12 予想気温入力受付部
14 気温頻度分布生成部
16 記憶部
18 予想負荷入力受付部
20 ピーク負荷率推定部
72 CPU
84 バス

Claims (14)

  1.  ガスタービンの少なくとも1つの部品の寿命消費量を推定するための寿命消費量推定装置であって、
     将来の気温に関する予想気温情報を取得するように構成された予想気温情報取得部と、
     前記ガスタービンの将来の負荷に関する予想負荷情報を取得するように構成された予想負荷情報取得部と、
     前記予想気温情報取得部によって取得した前記予想気温情報と、前記予想負荷情報取得部によって取得した前記予想負荷情報と、に基づいて、前記ガスタービンの将来の状態量に関する少なくとも1つのガスタービン状態量を推定するように構成されたガスタービン状態量推定部と、
     前記ガスタービン状態量推定部によって推定した前記少なくとも1つのガスタービン状態量に基づいて、前記少なくとも1つの部品の寿命消費量を推定するように構成された寿命消費量推定部と、
     を備える、寿命消費量推定装置。
  2.  前記ガスタービン状態量推定部は、前記ガスタービン状態量として将来のタービン入口温度を推定するように構成され、
     前記寿命消費量推定部は、前記ガスタービン状態量推定部によって推定した将来の前記タービン入口温度に基づいて、前記少なくとも1つの部品の寿命消費量を推定するように構成された、請求項1に記載の寿命消費量推定装置。
  3.  前記予想気温情報取得部は、
      前記予想気温情報の入力を受け付けるように構成された予想気温入力受付部と、
      過去の気温に関する過去気温情報と、前記予想気温入力受付部によって入力を受け付けた前記予想気温情報と、に基づいて、将来の時間帯毎の気温の頻度分布を示す気温頻度分布情報を生成するように構成された気温頻度分布生成部と、
     を含み、
      前記ガスタービン状態量推定部は、前記気温頻度分布生成部によって生成した前記気温頻度分布情報と、前記予想負荷情報取得部によって取得した前記予想負荷情報と、に基づいて、前記ガスタービン状態量を将来の時間帯毎に推定するように構成された、請求項1又は2に記載の寿命消費量推定装置。
  4.  前記予想気温入力受付部は、前記予想気温情報として、1日の最低気温に関する情報の入力を受け付けるように構成された、請求項3に記載の寿命消費量推定装置。
  5.  前記過去気温情報は、1日の中での気温の時間変動の複数の変動パターンと、前記複数の変動パターンの各々の出現頻度とを含む、請求項3又は4に記載の寿命消費量推定装置。
  6.  前記複数の変動パターンと前記変動パターンの各々の出現頻度とを記憶した記憶部を更に備える、請求項5に記載の寿命消費量推定装置。
  7.  前記予想負荷情報取得部は、
      前記予想負荷情報の入力を受け付けるように構成された予想負荷入力受付部と、
      前記ガスタービンの過去の負荷に関する過去負荷情報と、前記予想負荷入力受付部によって入力を受け付けた前記予想負荷情報とに基づいて、将来の時間帯毎にピーク負荷の時間割合であるピーク負荷率を推定するように構成されたピーク負荷率推定部と、
     を含む、請求項1乃至6の何れか1項に記載の寿命消費量推定装置。
  8.  前記予想負荷入力受付部は、将来の時間帯毎のピーク負荷の予想値と、将来の時間帯毎の平均負荷の予想値とを前記予想負荷情報として受け付けるように構成された、請求項7に記載の寿命消費量推定装置。
  9.  前記予想負荷情報は、前記ガスタービンの将来の稼働率の予想値を含み、
     前記寿命消費量推定部は、前記ガスタービン状態量推定部によって推定した前記ガスタービン状態量と、前記予想負荷情報取得部によって取得した前記稼働率の予想値と、に基づいて、前記寿命消費量を推定するように構成された、請求項1乃至8の何れか1項に記載の寿命消費量推定装置。
  10.  前記予想負荷情報は、前記ガスタービンの将来の起動回数の予想値を含み、
     前記寿命消費量推定部は、前記ガスタービン状態量推定部によって推定した前記ガスタービン状態量と、前記予想負荷情報取得部によって取得した前記起動回数の予想値と、に基づいて、前記寿命消費量を推定するように構成された、請求項1乃至9の何れか1項に記載の寿命消費量推定装置。
  11.  前記ガスタービン状態量推定部は、将来の時間帯毎の気温の頻度分布を示す気温頻度分布情報と、将来の時間帯毎の負荷の頻度分布を示す負荷頻度分布情報と、に基づいて、将来の時間帯毎に前記ガスタービン状態量の加重平均を算出するように構成される、請求項1乃至10の何れか1項に記載の寿命消費量推定装置。
  12.  前記ガスタービン状態量推定部は、前記負荷頻度分布情報の負荷のうちピーク負荷のみを前記加重平均の算出に用いるように構成された、請求項11に記載の寿命消費量推定装置。
  13.  前記寿命消費量推定部によって推定した前記部品の寿命消費量を前記部品の過去の寿命消費量に加算するように構成された寿命消費量加算部を更に備える、請求項1乃至12の何れか1項に記載の寿命消費量推定装置。
  14.  前記ガスタービン状態量推定部は、前記ガスタービン状態量として、前記ガスタービンの各段の燃焼ガス温度を推定するように構成され、
     前記寿命消費量推定部は、前記ガスタービン状態量推定部によって推定した対象段の燃焼ガス温度に基づいて、前記対象段の部品の寿命消費量を推定するように構成された、請求項1乃至13の何れか1項に記載の寿命消費量推定装置。
PCT/JP2021/023058 2020-06-17 2021-06-17 寿命消費量推定装置 WO2021256539A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/928,464 US20230213410A1 (en) 2020-06-17 2021-06-17 Life consumption estimation device
JP2022531914A JP7326616B2 (ja) 2020-06-17 2021-06-17 寿命消費量推定装置
DE112021003289.5T DE112021003289T5 (de) 2020-06-17 2021-06-17 Lebensdauerverbrauch-Schätzvorrichtung
KR1020227043439A KR20230011339A (ko) 2020-06-17 2021-06-17 수명 소비량 추정 장치
CN202180042265.6A CN115698485A (zh) 2020-06-17 2021-06-17 寿命消耗量推定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-104451 2020-06-17
JP2020104451 2020-06-17

Publications (1)

Publication Number Publication Date
WO2021256539A1 true WO2021256539A1 (ja) 2021-12-23

Family

ID=79268089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023058 WO2021256539A1 (ja) 2020-06-17 2021-06-17 寿命消費量推定装置

Country Status (6)

Country Link
US (1) US20230213410A1 (ja)
JP (1) JP7326616B2 (ja)
KR (1) KR20230011339A (ja)
CN (1) CN115698485A (ja)
DE (1) DE112021003289T5 (ja)
WO (1) WO2021256539A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080140360A1 (en) * 2006-12-07 2008-06-12 General Electric Company System and method for damage propagation estimation
JP2012008782A (ja) * 2010-06-24 2012-01-12 Mitsubishi Heavy Ind Ltd プラントの機能を診断する方法、及びプラント監視装置
JP2017227174A (ja) * 2016-06-22 2017-12-28 株式会社Ihi ガスタービンのタービン出口温度予測方法及びその装置
JP2018200682A (ja) * 2017-03-31 2018-12-20 ゼネラル・エレクトリック・カンパニイ ガスタービンのディスパッチオプティマイザのリアルタイム指令および動作

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103177A (ja) 2000-09-27 2002-04-09 Disco Abrasive Syst Ltd 排水装置
JP4459943B2 (ja) * 2006-10-19 2010-04-28 株式会社日立製作所 ガスタービン

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080140360A1 (en) * 2006-12-07 2008-06-12 General Electric Company System and method for damage propagation estimation
JP2012008782A (ja) * 2010-06-24 2012-01-12 Mitsubishi Heavy Ind Ltd プラントの機能を診断する方法、及びプラント監視装置
JP2017227174A (ja) * 2016-06-22 2017-12-28 株式会社Ihi ガスタービンのタービン出口温度予測方法及びその装置
JP2018200682A (ja) * 2017-03-31 2018-12-20 ゼネラル・エレクトリック・カンパニイ ガスタービンのディスパッチオプティマイザのリアルタイム指令および動作

Also Published As

Publication number Publication date
JPWO2021256539A1 (ja) 2021-12-23
KR20230011339A (ko) 2023-01-20
DE112021003289T5 (de) 2023-05-25
US20230213410A1 (en) 2023-07-06
JP7326616B2 (ja) 2023-08-15
CN115698485A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
Keatley et al. Estimating power plant start costs in cyclic operation
JP5844978B2 (ja) ガスタービンを監視するためのシステム及び方法
US8712739B2 (en) System and method for hybrid risk modeling of turbomachinery
US8505181B1 (en) Process for re-designing a distressed component used under thermal and structural loading
Hwang et al. Quasi-renewal time-delay fault-removal consideration in software reliability modeling
US20100332187A1 (en) Systems and method for power plant performance reconciliation
Vermeulen et al. Simplified high-level investigation methodology for energy saving initiatives on deep-level mine compressed air systems
US20090271149A1 (en) Analysis Method
US20120078567A1 (en) Combustion reference temperature estimation
Hanachi et al. A framework with nonlinear system model and nonparametric noise for gas turbine degradation state estimation
Mambro et al. Experimental study and modelling of the ventilation power and maximum temperature of low-pressure steam turbine last stages at low load
WO2021256539A1 (ja) 寿命消費量推定装置
US10197472B2 (en) Method for performing maintenance on an engine
Ishii et al. Two-dimensional software reliability models and their application
Alozie et al. An adaptive model-based framework for prognostics of gas path faults in aircraft gas turbine engines
Lange et al. Impact of manufacturing variability and non-axisymmetry on high-pressure compressor stage performance
CN112088244B (zh) 基于传感器计算燃气涡轮的服务间隔
Moeckel et al. Toleranced designs of cooled turbine blades through probabilistic thermal analysis of manufacturing variability
Arkhipov et al. Probabilistic life assessment of turbine vanes
Chen et al. Gas-path component fault diagnosis for gas turbine engine: a review
Daroogheh et al. Engine life evaluation based on a probabilistic approach
Jarrett et al. Validation of a Gas Turbine Thermodynamic Model Without Accurate Component Maps
Dazer et al. Effect of Interval Censoring on the Probability of Test Success in Reliability Demonstration
Botros et al. Effects of Engine Wash Frequency on GT Degradation in Natural Gas Compressor Stations
Spieler et al. Probabilistic engine performance scatter and deterioration modeling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21824952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531914

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227043439

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21824952

Country of ref document: EP

Kind code of ref document: A1