WO2021256499A1 - Optical element, and eyewear - Google Patents

Optical element, and eyewear Download PDF

Info

Publication number
WO2021256499A1
WO2021256499A1 PCT/JP2021/022835 JP2021022835W WO2021256499A1 WO 2021256499 A1 WO2021256499 A1 WO 2021256499A1 JP 2021022835 W JP2021022835 W JP 2021022835W WO 2021256499 A1 WO2021256499 A1 WO 2021256499A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
optical element
crystal layer
state
alignment film
Prior art date
Application number
PCT/JP2021/022835
Other languages
French (fr)
Japanese (ja)
Inventor
司朗 七条
孝毅 高頭
雅浩 伊藤
Original Assignee
三井化学株式会社
公立大学法人山陽小野田市立山口東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社, 公立大学法人山陽小野田市立山口東京理科大学 filed Critical 三井化学株式会社
Priority to JP2022531865A priority Critical patent/JPWO2021256499A1/ja
Publication of WO2021256499A1 publication Critical patent/WO2021256499A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells

Definitions

  • the present invention relates to optical elements and eyewear.
  • a lens for spectacles is known as an example of an optical element (see Patent Document 1).
  • the lens disclosed in Patent Document 1 has a lens base material and a multilayer film.
  • Such a lens has a function of blocking light of a specific wavelength (for example, blue light) at a predetermined ratio.
  • the spectacles in use when the user wears the spectacles (hereinafter referred to as the spectacles in use), if the amount of light incident on the lens from a specific direction (for example, diagonally upward) is large, it may be dazzling and the visibility may be deteriorated. There is sex. To solve this problem, if the light transmittance of the entire lens is lowered (absorption rate is increased), not only the light incident on the lens from diagonally above but also the light incident on the lens from the front is absorbed. Visibility is reduced.
  • An object of the present invention is to provide an optical element and eyewear capable of changing the transmittance according to the incident angle of light incident on the optical element.
  • One aspect of the optical element according to the present invention is A liquid crystal cell containing a liquid crystal molecule and a dichroic dye and having a facing first surface and a second surface is provided.
  • the pretilt angle which is the inclination angle of the dichroic dye in contact with at least one of the first surface and the second surface, with respect to one surface is 5 ° or more.
  • the eyewear according to the present invention is An electrically active lens having the above optical element is provided.
  • an optical element and eyewear that can change the transmittance according to the incident angle of light incident on the optical element.
  • FIG. 1 is a schematic cross-sectional view of the optical element according to the first embodiment of the present invention in the first state.
  • Figure 2 is an enlarged view of X 1 part of FIG.
  • FIG. 3 is a schematic cross-sectional view of the optical element in the second state.
  • FIG. 4 is a diagram showing the relationship between the incident light on the optical element and the emitted light from the optical element.
  • FIG. 5 is a schematic cross-sectional view of the optical element according to the second embodiment of the present invention in the first state.
  • Figure 6 is an enlarged view of the X 2 parts of FIG.
  • FIG. 7 is a diagram showing the relationship between the incident angle, the transmittance, and the tilt angle.
  • FIG. 1 is a schematic cross-sectional view of the optical element according to the first embodiment of the present invention in the first state.
  • Figure 2 is an enlarged view of X 1 part of FIG.
  • FIG. 3 is a schematic cross-sectional view of the optical element in the second state.
  • FIG. 8 is a schematic cross-sectional view of the optical element according to the third embodiment of the present invention in the first state.
  • FIG. 9 is a diagram showing the relationship between the incident light on the optical element and the emitted light from the optical element.
  • FIG. 10 is a schematic cross-sectional view of the optical element according to the fourth embodiment of the present invention in the first state.
  • FIG. 11 is a schematic cross-sectional view of the optical element according to the fifth embodiment of the present invention in the first state.
  • FIG. 12A is a diagram showing the relationship between the incident light on the optical element and the emitted light from the optical element.
  • FIG. 12B is a diagram showing the relationship between the incident angle and the transmittance with respect to the embodiment according to the fifth embodiment.
  • FIG. 13 is a schematic cross-sectional view of the optical element according to an example of the modification of the fifth embodiment in the first state.
  • FIG. 14A is a schematic cross-sectional view of the optical element according to the sixth embodiment of the present invention in the first state.
  • FIG. 14B is a diagram showing the relationship between the incident angle and the transmittance with respect to Examples 1, 2 and 3 according to the sixth embodiment.
  • FIG. 14C is a diagram showing the relationship between the incident angle and the transmittance when the applied voltage is changed according to the second embodiment according to the sixth embodiment.
  • FIG. 15 is a schematic cross-sectional view of the optical element according to an example of the modification of the sixth embodiment of the present invention in the first state.
  • FIG. 14A is a schematic cross-sectional view of the optical element according to the sixth embodiment of the present invention in the first state.
  • FIG. 14B is a diagram showing the relationship between the incident angle and the transmittance with respect to Examples 1, 2 and 3 according to the sixth embodiment.
  • FIG. 14C is
  • FIG. 16 is a schematic cross-sectional view of the optical element according to the seventh embodiment of the present invention.
  • FIG. 17 is a schematic cross-sectional view of the optical element according to the eighth embodiment of the present invention.
  • FIG. 18 is a schematic cross-sectional view of the optical element according to the ninth embodiment of the present invention.
  • FIG. 19 is a schematic cross-sectional view of an optical element according to an example of a modification of the ninth embodiment of the present invention.
  • FIG. 20 is a schematic cross-sectional view of the optical element according to the tenth embodiment of the present invention.
  • FIG. 21 is a schematic cross-sectional view of an optical element according to an example of a modification of the tenth embodiment of the present invention.
  • FIG. 22 is a schematic cross-sectional view of the optical element according to the eleventh embodiment of the present invention.
  • FIG. 23 is a schematic cross-sectional view of the optical element according to the twelfth embodiment of the present invention.
  • FIG. 24 is a perspective view of the electronic eyeglasses according to the thirteenth embodiment of the present invention.
  • FIG. 25 is a front view of the lens.
  • FIG. 26 is a sectional view taken along the line CC of FIG. 25.
  • FIG. 27 is a schematic diagram for explaining an example of the forward tilt angle of the lens.
  • FIG. 28 is a schematic diagram for explaining an example of the forward tilt angle of the lens.
  • FIG. 29 is a schematic diagram of the electronic eyeglasses according to the fourteenth embodiment of the present invention.
  • optical element and eyewear according to the embodiment described later are examples of the optical element and eyewear according to the present invention, and the present invention is not limited to the embodiment.
  • FIG. 1 is a cross-sectional view of the optical element 1 in a state where no voltage is applied to the optical element 1.
  • the optical element 1 changes the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 existing in the liquid crystal layer 14 according to the presence or absence of voltage application, thereby changing the first state and the second state having different optical characteristics. Switch.
  • the first state of the optical element 1 is a state in which no voltage is applied to the optical element 1.
  • the liquid crystal molecules 141 and the dichroic dye 142 present in the liquid crystal layer 14 have the inclination angle of the long axis of the liquid crystal molecules 141 and the dichroic dye 142 in the thickness direction of the optical element 1. From one side (upper side in FIG. 1) to the other side (lower side in FIG. 1), the size becomes smaller (see FIG. 1).
  • the optical element 1 has a property that the absorption rate (transmittance) with respect to the incident light incident on the optical element 1 is asymmetrical with the incident angle of 0 ° (hereinafter referred to as a reference incident angle) as the center (hereinafter referred to as a reference incident angle). , Called anisotropy with respect to transmittance).
  • the second state of the optical element 1 is a state in which a voltage is applied to the optical element 1.
  • the liquid crystal molecules 141 and the dichroic dye 142 present in the liquid crystal layer 14 have the long axes of the liquid crystal molecules 141 and the dichroic dye 142 parallel to the thickness direction of the optical element 1.
  • the optical element 1 has a property that the absorption rate (transmittance) with respect to the incident light incident on the optical element 1 is symmetrical with the reference incident angle as the center. Therefore, the optical element 1 does not have the above-mentioned anisotropy regarding the absorptivity in the second state.
  • Such an optical element 1 is used, for example, in a lens of spectacles or a film for a window.
  • the specific configuration and operation of the optical element 1 will be described.
  • Cartesian coordinate system (X, Y, Z) is used for convenience of explanation.
  • the Cartesian coordinate system (X, Y, Z) shown in each figure is a common Cartesian coordinate system.
  • the Z direction coincides with the direction of the optical axis of the optical element 1 (hereinafter, simply referred to as "optical axis direction").
  • thickness direction means the thickness direction of the optical element 1 and each member constituting the optical element 1.
  • the thickness direction coincides with the Z direction.
  • first surface of each member means the Z direction + side (Z direction plus side) surface of each member
  • second surface the Z direction-side of each member. It means the surface (minus side in the Z direction).
  • the optical element 1 has a laminated structure in which a plurality of plate-shaped or film-shaped constituent members are laminated.
  • the stacking direction of the constituent members coincides with the Z direction.
  • the optical element 1 includes a first substrate 11, a first electrode 12, a first alignment film 13, a liquid crystal layer 14, a second alignment film 15, a second electrode 16, and a second substrate 17 in this order from the front surface to the back surface.
  • a first substrate 11 a first electrode 12, a first alignment film 13, a liquid crystal layer 14, a second alignment film 15, a second electrode 16, and a second substrate 17 in this order from the front surface to the back surface.
  • a second substrate 17 in this order from the front surface to the back surface.
  • Each of the first substrate 11 and the second substrate 17 has a plate shape having transparency to visible light.
  • the first substrate 11 and the second substrate 17 face each other at a predetermined distance in the thickness direction.
  • the first substrate 11 and the second substrate 17 are flat plates parallel to the XY plane, respectively.
  • the first substrate 11 and / or the second substrate 17 may each have a plate shape with a convex front surface and a concave back surface.
  • the first substrate 11 and / or the second substrate 17 are made of inorganic glass, organic glass, or the like, respectively.
  • the first substrate 11 is preferably made of organic glass.
  • the organic glass is a thermosetting material made of thermosetting polyurethanes, polythiourethanes, polyepoxides, or polyepisulfides, a thermoplastic material made of poly (meth) acrylates, or a copolymer thereof. It is one of thermosetting (crosslinked) materials consisting of a mixture.
  • the materials of the first substrate 11 and the second substrate 17 are not limited to these, and various known materials depending on the application can be adopted.
  • the first electrode 12 and the second electrode 16 are a pair of transparent electrodes having translucency.
  • the first electrode 12 is arranged between the first substrate 11 and the first alignment film 13.
  • the second electrode 16 is arranged between the second alignment film 15 and the second substrate 17.
  • the liquid crystal layer 14 is sandwiched between the first electrode 12 and the second electrode 16.
  • the first electrode 12 and the second electrode 16 may be arranged at least within a range in which a voltage can be applied to the liquid crystal layer 14.
  • the materials of the first electrode 12 and the second electrode 16 are not particularly limited as long as they have the desired translucency and conductivity, respectively.
  • Examples of the first electrode 12 and the second electrode 16 include indium tin oxide (ITO) and zinc oxide (ZnO).
  • the materials of the first electrode 12 and the second electrode 16 may be the same or different from each other.
  • the first alignment film 13 and the second alignment film 15 each control the orientation state of the liquid crystal molecules 141 in the liquid crystal layer 14.
  • the first alignment film 13 is arranged between the first electrode 12 and the liquid crystal layer 14.
  • the second alignment film 15 is arranged between the liquid crystal layer 14 and the second electrode 16.
  • the first alignment film 13 is a so-called vertical alignment film, and the long axis of the liquid crystal molecules 141 in contact with or close to the first alignment film 13 is the first surface (Z direction + side) of the liquid crystal layer 14.
  • the orientation state of the liquid crystal molecule 141 is controlled so as to coincide with the normal direction of the surface).
  • the second alignment film 15 is an alignment film (also referred to as a pretilt alignment film) for imparting a pretilt angle to the liquid crystal molecules 141 in contact with or adjacent to the second alignment film 15.
  • the long axis of the liquid crystal molecules 141 in contact with or close to the second alignment film 15 has a predetermined angle (pretilt described later) with respect to the second surface (Z-direction-side surface) of the liquid crystal layer 14.
  • the orientation state of the liquid crystal molecule 141 is controlled so as to form an angle). The orientation state of the liquid crystal molecule 141 will be described later.
  • the first alignment film 13 and the second alignment film 15 as described above are each subjected to an orientation treatment for imparting orientation to the first alignment film 13 and the second alignment film 15, respectively.
  • the alignment treatment is a known treatment method such as a rubbing treatment and a photo-alignment treatment.
  • the material of the first alignment film 13 a known material used as the alignment film of the liquid crystal material can be used.
  • Examples of the material of the first alignment film 13 include polyimide.
  • the liquid crystal layer 14 is sandwiched between the first alignment film 13 and the second alignment film 15.
  • the liquid crystal layer 14 has a front surface defined by the back surface of the first alignment film 13 and a back surface defined by the front surface of the second alignment film 15.
  • the liquid crystal layer 14 is surrounded by a sealing material (not shown).
  • the liquid crystal layer 14 is provided in a space surrounded by a sealing material between the first alignment film 13 and the second alignment film 15.
  • a surface direction of the liquid crystal layer 14 corresponds to an example of a liquid crystal cell.
  • the liquid crystal layer 14, the first alignment film 13, and the second alignment film 15 may be regarded as an example of a liquid crystal cell.
  • the liquid crystal layer 14 switches between a first state and a second state in which the optical characteristics are different from each other depending on the presence or absence of voltage application.
  • the first state of the liquid crystal layer 14 corresponds to the first state of the optical element 1, and is the state of the liquid crystal layer 14 when no voltage is applied to the liquid crystal layer 14.
  • FIG. 1 shows the first state of the optical element 1 and the liquid crystal layer 14.
  • the second state of the liquid crystal layer 14 corresponds to the second state of the optical element 1, and is the state of the liquid crystal layer 14 when a voltage is applied to the liquid crystal layer 14.
  • FIG. 3 shows the second state of the optical element 1 and the liquid crystal layer 14.
  • the liquid crystal layer 14 has a plurality of liquid crystal molecules 141 and a plurality of dichroic dyes 142.
  • the liquid crystal molecule 141 has a substantially rod shape having a major axis and a minor axis.
  • the liquid crystal molecules 141 are present in the liquid crystal layer 14 side by side in the plane direction and the thickness direction of the liquid crystal layer 14.
  • the dichroic dye 142 has a substantially rod shape having a major axis and a minor axis.
  • the shape of the dichroic dye 142 is almost the same as the shape of the liquid crystal molecule 141.
  • the dichroic dye 142 exists in the liquid crystal layer 14 between the liquid crystal molecules 141 adjacent to each other in the plane direction and / or the thickness direction of the liquid crystal layer 14.
  • the dichroic dye 142 has a property that the absorption rate of light in the major axis direction of the molecule and the absorption rate of light in the minor axis direction are different. Such properties of the dichroic dye 142 realize anisotropy regarding the absorptivity of the optical element 1.
  • the light incident on the dichroic dye 142 from the normal direction of the plane including the long axis of the dichroic dye 142 is referred to as the long axis side incident light.
  • the normal direction of the plane including the long axis of the dichroic dye 142 is referred to as a maximum absorption direction.
  • the long-axis side incident light is light that travels in a plane including the long axis of the dichroic dye 142 and is parallel to the Z direction (first plane), and has two colors. It means the light incident on the dichroic dye 142 from the direction orthogonal to the long axis of the sex dye 142.
  • the first plane corresponds to the incident surface of the incident light on the long axis side.
  • the light incident on the dichroic dye 142 from the direction parallel to the long axis of the dichroic dye 142 is referred to as the light incident on the short axis side.
  • the normal direction of the plane including the minor axis of the dichroic dye 142 is referred to as the minimum absorption direction.
  • the minimum absorption direction is also a direction parallel to the long axis of the dichroic dye 142.
  • the dichroic dye 142 also has a predetermined absorption rate (transmittance) for such light.
  • absorption rate transmittance
  • the dichroic dye 142 has a property that the absorption rate for the long-axis side incident light is larger than the absorption rate for the short-axis side incident light.
  • the absorption rate of the dichroic dye 142 has the maximum absorption rate for the long-axis side incident light and the minimum absorption rate for the short-axis side incident light. That is, the dichroic dye 142 has a property that the light absorption rate differs depending on the incident direction.
  • the dichroic dye 142 has a long axis side incident light absorption rate with respect to a so-called P wave (also referred to as a vertical vibration component of the long axis side incident light) among the components of the long axis side incident light. It has a property larger than the absorption rate of the incident light for the so-called S wave (also referred to as the horizontal vibration component of the incident light on the long axis side).
  • P wave also referred to as a vertical vibration component of the long axis side incident light
  • S wave also referred to as the horizontal vibration component of the incident light on the long axis side
  • the orientation state of the liquid crystal molecule 141 is controlled by the first alignment film 13 and the second alignment film 15.
  • the orientation state of the dichroic dye 142 is the same as the orientation state of the liquid crystal molecule 141, and changes depending on the orientation state of the liquid crystal molecule 141. Therefore, it may be considered that the alignment state of the dichroic dye 142 is also controlled by the first alignment film 13 and the second alignment film 15.
  • a region containing the liquid crystal molecules 141 and the dichroic dye 142 in contact with the back surface of the first alignment film 13 (the front surface of the liquid crystal layer 14) and parallel to the plane direction of the liquid crystal layer 14 is the first of the liquid crystal layer 14. It is defined as a region R 1.
  • a region containing the liquid crystal molecules 141 and the dichroic dye 142 in contact with the front surface of the second alignment film 15 (the back surface of the liquid crystal layer 14) and parallel to the plane direction of the liquid crystal layer 14 is the second of the liquid crystal layer 14. It is defined as a region R 2.
  • first region R 1 the second region R 2 , and the intermediate region R 3 may be collectively referred to as the entire region.
  • the liquid crystal molecules 141 and the dichroic dye 142 present in the entire region are each tilted with respect to the plane direction of the liquid crystal layer 14.
  • the orientation state of the liquid crystal layer 14 in this embodiment is a so-called hybrid orientation.
  • the inclination angle of the liquid crystal molecule 141 and / or the dichroic dye 142 means the inclination angle of the major axis of the liquid crystal molecule 141 and / or the dichroic dye 142 with respect to the plane direction of the liquid crystal layer 14.
  • the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 decreases from the first region R 1 increases toward the second region R 2.
  • the tilt angle of the liquid crystal molecule 141 and the dichroic dye 142 is determined in relation to the incident angle of the incident light for which the absorption rate is desired to be increased.
  • the tilt angle of the liquid crystal molecule 141 and the dichroic dye 142 is the smaller angle (including 90 °) between the major axis of the liquid crystal molecule 141 and the surface direction of the liquid crystal layer 14.
  • the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the first region R 1 is + phi 1.
  • the clockwise direction is the + side with respect to the tilt angle, with the state in which the major axes of the liquid crystal molecules 141 and the dichroic dye 142 are parallel to the plane direction of the liquid crystal layer 14 as zero (reference). Called (plus side).
  • the direction opposite to the major axis of the liquid crystal molecule 141 and the dichroic dye 142 is referred to as a minus side (minus side) with respect to the inclination angle.
  • the tilt angle + ⁇ 1 may be referred to as the tilt angle + ⁇ 1 of the liquid crystal molecule 141.
  • the tilt angle ⁇ 1 of the liquid crystal molecule 141 is + 90 °.
  • the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the second region R 2 is + phi 2.
  • a tilt angle + phi 2 also referred to as pre-tilt angle + phi 2 of the liquid crystal molecules 141.
  • the absolute value of the pretilt angle + ⁇ 2 is 5 °.
  • the absolute value of the pretilt angle + ⁇ 2 is preferably 5 ° or more.
  • the absolute value of the pretilt angle phi 2 is more preferably a 10 ° or more.
  • the tilt angle + ⁇ 3 may be referred to as the tilt angle + ⁇ 3 of the liquid crystal molecule 141.
  • the tilt angle ⁇ 3 of the liquid crystal molecules 141 is + 45 °.
  • FIG. 1 for convenience of explanation, only shows more of the liquid crystal molecules 141 and the dichroic dye 142 is present in the intermediate region R 3. However, in the intermediate region R 3, the liquid crystal molecules 141 and the dichroic dye 142 of multiple layers in the thickness direction of the liquid crystal molecules 141 are present.
  • the liquid crystal layer 14 is not physically divided into a plurality of layers.
  • the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the intermediate region R 3 decreases continuously from the front surface to the back surface of the liquid crystal layer 14. Therefore, the tilt angle + ⁇ 3 of the liquid crystal molecules 141 and the dichroic dye 142 existing in the intermediate region R 3 is different for each row.
  • the entire area or an intermediate area liquid crystal molecules 141 and the dichroic in the region other than the vicinity of the boundary surface between the first region R 1 and the second region R 2 in R 3 The tilt angle of the sex dye 142 is the same or almost the same.
  • FIG. 1 shows a state (first state) of the liquid crystal layer 14 in a state where no voltage is applied.
  • the state of the liquid crystal layer 14 transitions from the first state shown in FIG. 1 to the second state shown in FIG. In the second state of the liquid crystal layer 14, all the long axes of the liquid crystal molecules 141 and the dichroic dye 142 point in the same direction (in the case of this embodiment, the direction parallel to the thickness direction of the liquid crystal layer 14).
  • incident light L shows, by way of example, of the incident light L, incident light L 1 from the thickness direction parallel to the direction (Z direction) of the optical element 1, tilted + theta with respect to the thickness direction of the optical element 1
  • the incident light L 2 from the direction and the incident light L 3 from a direction tilted by ⁇ with respect to the thickness direction of the optical element 1 are shown.
  • the incident light L 2 and the incident light L 3 have a line-symmetrical relationship with respect to the incident light L 1.
  • the incident angle of the incident light L is an angle formed by the incident light L and the normal line of the surface (first surface) of the optical element 1.
  • the incident angle of the incident light L is 0 ° when the incident light L and the normal line are parallel to each other.
  • the incident angle of the incident light L 1 is 0 °.
  • the incident angle of the incident light L 2 is + ⁇ .
  • the incident angle of the incident light L 3 is ⁇ .
  • the incident light L 1 , the incident light L 2 , and the incident light L 3 are shown in FIG. 1, the incident light L is incident on the optical element 1 from various angles.
  • the angle of incidence of the incident light L on the optical element 1 may be collectively referred to as an incident angle ⁇ .
  • the incident light L is incident on the liquid crystal layer 14 without being refracted. Therefore, the incident light L 1 , the incident light L 2 , and the incident light L 3 are incident on the liquid crystal layer 14 while maintaining the incident angle ⁇ with respect to the optical element 1.
  • the range of the incident angle ⁇ of the incident light L is ⁇ 90 ° to + 90 °.
  • the clockwise direction in FIGS. 1 and 2 is defined as the + side (plus side) with respect to the incident angle with respect to the incident angle of 0 °.
  • the direction opposite to the clockwise direction in FIGS. 1 and 2 is defined as the ⁇ side (minus side) with respect to the incident angle.
  • the absorption rate of the dichroic dye 142 has the maximum absorption rate for the long-axis side incident light and the minimum absorption rate for the short-axis side incident light. Further, the dichroic dye 142 has a property that the absorption rate of the long-axis side incident light for the P wave is larger than the absorption rate of the long-axis side incident light for the S wave.
  • Each of the dichroic dyes 142 absorbs a P wave in the incident light L incident on the optical element 1 from the maximum absorption direction. At this time, the S wave of the incident light L incident on the optical element 1 from the maximum absorption direction is not absorbed by the dichroic dye 142 and is transmitted.
  • each of the dichroic dyes 142 is on the + side with respect to the inclination angle which is the clockwise direction with the direction parallel to the plane direction of the liquid crystal layer 14 as zero (reference). It is tilted. Therefore, as shown in FIG. 1, the maximum absorption direction of each of the dichroic dyes 142 is related to the incident angle which is a clockwise direction with respect to the incident angle of 0 ° (normal direction of the surface of the optical element 1). Included on the + side.
  • incident light L incident on the dichroic dye 142 from the maximum absorption direction (hereinafter referred to as incident light L related to the maximum absorption direction) is incident on the optical element 1 from the + side with respect to the incident angle in FIG. Light L.
  • the dichroic dye 142 absorbs the P wave of the incident light L (for example, the incident light L 2 in FIG. 1) incident on the optical element 1 from the + side with respect to the incident angle in FIG. 1, and transmits the S wave. ..
  • incident light L incident on the dichroic dye 142 from the minimum absorption direction is the incident light L incident on the optical element 1 from the ⁇ side with respect to the incident angle. ..
  • the dichroic dye 142 transmits the P wave and the S wave of the incident light L (for example, the incident light L 3 in FIG. 1) incident on the optical element 1 from the ⁇ side with respect to the incident angle.
  • FIG. 4 exaggerates an example of the relationship between the P wave P 1a and the S wave S 1a of the incident light L regarding the maximum absorption direction and the P wave P 2a and the S wave S 2a of the emitted light regarding the maximum absorption direction. It is shown.
  • the emitted light with respect to the maximum absorption direction is the emitted light emitted from the optical element 1 among the incident light L with respect to the maximum absorption direction.
  • the length of the arrow in FIG. 4 corresponds to the amount of light.
  • the absorptivity a for the incident light L is obtained by the following equation 1.
  • L in is the length of the arrow of the incident light
  • L out is the length of the arrow of the emitted light.
  • the P wave P 1a of the incident light L in the maximum absorption direction is absorbed by the dichroic dye 142, the P wave P 2a of the emitted light in the maximum absorption direction is the incident light in the maximum absorption direction. It is significantly smaller than the P wave P 1a of L.
  • the S wave S 1a of the incident light L relating to the maximum absorption direction passes through the dichroic dye 142, the S wave S 2a of the emitted light regarding the maximum absorption direction is the S wave S 1a of the incident light L relating to the maximum absorption direction. Is almost the same.
  • FIG. 4 also shows an example of the relationship between the P wave P 1b and the S wave S 1b in the incident light L in the minimum absorption direction and the P wave P 2b and the S wave S 2b in the emitted light in the minimum absorption direction.
  • the emitted light with respect to the minimum absorption direction is the emitted light emitted from the optical element 1 among the incident light L with respect to the minimum absorption direction.
  • the P wave P 1b and the S wave S 1b in the incident light L in the minimum absorption direction pass through the bicolor dye 142, respectively, the P wave P 2b and S in the emitted light in the minimum absorption direction are transmitted.
  • the wave S 2b is substantially the same as the P wave P 1b and the S wave S 1b in the incident light L with respect to the minimum absorption direction.
  • the amount of the emitted light emitted from the optical element 1 among the incident light L incident on the optical element 1 from the + side with respect to the incident angle is the optical element 1 from the ⁇ side with respect to the incident angle.
  • the optical element 1 of the present embodiment has anisotropy regarding the light absorption rate in the first state.
  • the optical element 1 does not have the anisotropy regarding the light absorption rate as in the first state.
  • the optical element 1 of the present embodiment applies a voltage between the first state having anisotropy regarding the light absorption rate and the second state having no anisotropy regarding the light absorption rate. It can be switched according to.
  • FIG. 5 is a cross-sectional view showing the first state of the optical element 1B.
  • the optical element 1B according to the present embodiment also has anisotropy regarding the absorption rate by changing the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 present in the liquid crystal layer 14B depending on the presence or absence of voltage application. It switches between the first state and the second state, which has no anisotropy with respect to absorption.
  • the optical element 1B has a first substrate 11, a first electrode 12, a first alignment film 13B, a liquid crystal layer 14B, a second alignment film 15B, and a first surface in this order from the front surface (first surface) to the back surface (second surface). It has two electrodes 16 and a second substrate 17.
  • the structures of the first substrate 11, the first electrode 12, the second electrode 16, and the second substrate 17 are the same as those in the first embodiment.
  • the structures of the first alignment film 13B, the liquid crystal layer 14B, and the second alignment film 15B will be described.
  • the first alignment film 13B and the second alignment film 15B each control the alignment state of the liquid crystal molecules 141 in the liquid crystal layer 14B.
  • the first alignment film 13B is arranged between the first electrode 12 and the liquid crystal layer 14B.
  • the second alignment film 15B is arranged between the liquid crystal layer 14B and the second electrode 16.
  • the major axis direction of the liquid crystal molecules 141 in contact with or close to the first alignment film 13B is a predetermined angle with respect to the surface of the liquid crystal layer 14B (first pretilt angle described later). ), The orientation state of the liquid crystal molecule 141 is controlled.
  • the long axis direction of the liquid crystal molecules 141 in contact with or close to the second alignment film 15B forms a predetermined angle (second pretilt angle described later) with respect to the back surface of the liquid crystal layer 14B.
  • the orientation state of the liquid crystal molecule 141 is controlled.
  • the other structures of the first alignment film 13B and the second alignment film 15B are the same as the structures of the first alignment film 13 and the second alignment film 15 of the first embodiment.
  • the liquid crystal layer 14B switches between a first state and a second state in which the optical characteristics are different from each other depending on the presence or absence of voltage application.
  • the first state of the liquid crystal layer 14B is the state of the liquid crystal layer 14B when no voltage is applied to the liquid crystal layer 14B.
  • FIG. 5 shows the first state of the optical element 1B and the liquid crystal layer 14B.
  • the second state of the liquid crystal layer 14B is the state of the liquid crystal layer 14B when a voltage is applied to the liquid crystal layer 14B. Since the second state of the liquid crystal layer 14B is the same as the second state of the optical element 1 and the liquid crystal layer 14 shown in FIG. 3, the illustration is omitted.
  • the liquid crystal layer 14B has a plurality of liquid crystal molecules 141 and a plurality of dichroic dyes 142.
  • the shape and properties of the liquid crystal molecule 141 and the dichroic dye 142 are the same as those of the liquid crystal molecule 141 and the dichroic dye 142 of the first embodiment.
  • the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 in the first state of the liquid crystal layer 14B is the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 in the first state of the liquid crystal layer 14 of the first embodiment. It is different from the orientation state.
  • the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 in the second state of the liquid crystal layer 14B is the same as the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 in the second state of the liquid crystal layer 14 of the first embodiment. Is.
  • the first region R 1 in a first state of the liquid crystal layer 14B (the state shown in FIG. 5), the first region R 1, the liquid crystal molecules 141 and the dichroic present in the second region R 2, and the intermediate region R 3
  • Each of the dyes 142 exists in a state of being tilted to the + side with respect to the tilt angle with respect to the plane direction of the liquid crystal layer 14B.
  • the inclination angles of the liquid crystal molecules 141 and the dichroic dye 142 are all the same in all regions of the liquid crystal layer 14B.
  • the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the entire region of the liquid crystal layer 14B is a + phi 4.
  • a first pre-tilt of the liquid crystal molecules 141 It is a horn.
  • a second pretilt angle of the liquid crystal molecules 141 present in the second region R 2 (in other words, in contact with the back surface of the liquid crystal layer 14B) tilt angle + phi 4 of the liquid crystal molecules 141 and the dichroic dye 142 is a second pretilt angle of the liquid crystal molecules 141.
  • the first pretilt angle and the second pretilt angle are equal to each other.
  • the tilt angle + ⁇ 4 of the liquid crystal molecules 141 and the dichroic dye 142 existing in the intermediate region R 3 is the tilt angle.
  • the first pretilt angle, the second pretilt angle, and the tilt angle of the liquid crystal molecule 141 and the dichroic dye 142 are equal.
  • the absolute values of the first pre-tilt angle + ⁇ 4 , the second pre-tilt angle + ⁇ 4 , and the tilt angle + ⁇ 4 are 60 °.
  • the absolute values of the first pre-tilt angle + ⁇ 4 , the second pre-tilt angle + ⁇ 4 , and the tilt angle + ⁇ 4 are preferably 40 ° or more and 70 ° or less.
  • the absolute values of the first pre-tilt angle + ⁇ 4 , the second pre-tilt angle + ⁇ 4 , and the tilt angle + ⁇ 4 may be appropriately set in relation to the maximum absorption direction of the dichroic dye 142, for example.
  • the liquid crystal layer 14B having the above configuration switches between a first state and a second state in which the optical characteristics are different from each other depending on whether or not a voltage is applied.
  • FIG. 5 shows the liquid crystal layer 14B in a state where no voltage is applied (first state).
  • the state of the liquid crystal layer 14B switches from the first state shown in FIG. 5 to the second state (see FIG. 3).
  • the major axes of all the liquid crystal molecules 141 and the dichroic dye 142 coincide with the same direction (in the case of this embodiment, the direction parallel to the thickness direction of the liquid crystal layer 14B). ..
  • the dichroic dye 142 present in the entire region of the liquid crystal layer 14B is inclined to the + side with respect to the inclination angle. Therefore, the maximum absorption direction of each of the dichroic dyes 142 is included on the + side with respect to the incident angle.
  • the incident light L with respect to the maximum absorption direction is the incident light L incident on the optical element 1B from the + side with respect to the incident angle in FIG.
  • the angle of incidence is equal incident light L with the inclination angle + phi 4 of the dichroic dye 142.
  • the dichroic dye 142 absorbs the P wave of the incident light L whose incident angle is equal to + ⁇ 4 , and transmits the S wave of the incident light L.
  • the incident light L with respect to the minimum absorption direction is the incident light L incident on the optical element 1B from the ⁇ side with respect to the incident angle in FIG.
  • the incident light L with respect to the minimum absorption direction is the incident light L whose incident angle is equal to ⁇ .
  • the dichroic dye 142 the incident angle is transmitted through the P-wave and S wave equal incident light -.phi 4.
  • the light amount of the light beam emitted from the optical element 1B of the incident angle is equal to + phi 4 incident light quantity of the outgoing light incident angle is emitted from the optical element 1B of equal incident light -.phi 4 Less than. That is, the optical element 1B of the present embodiment also has anisotropy regarding the light absorption rate in the first state.
  • the major axes of all the liquid crystal molecules 141 and the dichroic dye 142 face the same direction (in the case of this embodiment, the direction parallel to the thickness direction of the liquid crystal layer 14B). .. Therefore, in the second state, the optical element 1B does not have the anisotropy regarding the light absorption rate as in the first state.
  • the optical element 1B of the present embodiment also applies a voltage between the first state having anisotropy regarding the light absorption rate and the second state having no anisotropy regarding the light absorption rate. It can be switched according to.
  • the incident light L incident on the optical element 1B from a specific direction (in the case of the present embodiment). while increasing the absorption rate of the light incident angle with respect to equal the incident light L) to + phi 4, it can be reduced absorption of light to the incident light L incident from a specific direction to the optical element 1B.
  • FIG. 7 is a diagram showing the results of simulating the relationship between the tilt angle of the liquid crystal molecule 141 and the dichroic dye 142, the angle of incidence on the optical element 1B, and the transmittance of the optical element 1B.
  • the transmittance with respect to the incident light incident on the optical element 1 is symmetrical with respect to the reference incident angle (0 °). become.
  • the transmittance with respect to the incident light incident on the optical element 1 becomes asymmetric around the reference incident angle (0 °). That is, the optical element 1 has anisotropy regarding the absorptivity.
  • the transmittance (0.4) for the incident light having an incident angle of 60 ° corresponding to the maximum absorption direction is the minimum absorption. It can be seen that it is smaller than the transmittance (0.7) for the incident light having an incident angle of -60 ° corresponding to the direction.
  • the transmittance changes linearly (decreases) from the incident angle of -30 °, which maximizes the transmittance, to the incident angle of 50 °.
  • Such a portion contributes to the improvement of visibility because the transmittance gradually changes in the same direction.
  • the absorption rate for the incident light having an incident angle of 60 ° corresponding to the maximum absorption direction is the largest (the transmittance is the smallest), and the incident angle corresponding to the minimum absorption direction-
  • the absorption rate for 60 ° incident light is the lowest (the transmittance is the highest).
  • the relationship between the incident angle and the transmittance shown in FIG. 7 does not have such a relationship. Such a shift in relationship is due to various factors relating to elements other than the dichroic dye 142.
  • FIG. 8 is a cross-sectional view showing the first state of the optical element 1C.
  • the optical element 1C according to the present embodiment also has anisotropy regarding the absorption rate by changing the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 existing in the liquid crystal layer 14 depending on the presence or absence of voltage application. It switches between the first state and the second state, which has no anisotropy with respect to absorption.
  • the optical element 1C has a first substrate 11, a first electrode 12, a first alignment film 13, a liquid crystal layer 14, a second alignment film 15, and a first surface in this order from the front surface (first surface) to the back surface (second surface). It has two electrodes 16, a second substrate 17, and a polarizing plate 18.
  • the optical element 1C of the present embodiment is composed of a first substrate 11, a first electrode 12, a first alignment film 13, a liquid crystal layer 14, a second alignment film 15, a second electrode 16, and a second substrate 17.
  • the optical element has the same operation and effect as the optical element 1 of the first embodiment.
  • the polarizing plate 18 has a function of absorbing a component in the first direction of light incident on the polarizing plate 18 and transmitting a component in the second direction orthogonal to the first direction.
  • the polarizing plate 18 is fixed to the back surface of the second substrate 17.
  • the position of the polarizing plate 18 is not limited to the case of this embodiment.
  • Such a polarizing plate 18 is provided to absorb a component (S wave) that was not absorbed by the dichroic dye 142 in the incident light L (that is, the long-axis side incident light) with respect to the maximum absorption direction.
  • the polarizing plate 18 has a function of transmitting a P wave in the incident light (light emitted from the second substrate 17) to the polarizing plate 18 and absorbing an S wave in the incident light on the polarizing plate 18. ..
  • the incident light on the optical element is the same as the incident light on the optical element in FIG. Further, in FIG. 9, the incident light on the polarizing plate is the same as the emitted light of the optical element in FIG.
  • the incident light incident on the polarizing plate 18 from the maximum absorption direction is such that the S wave S 2a is larger than the P wave P 2a.
  • the polarizing plate 18 absorbs the S wave S 2a in the incident light.
  • the P wave P 3a and the S wave S 3a in the light emitted from the polarizing plate 18 are significantly smaller than the P wave P 1a and the S wave S 1b in the incident light L to the optical element 1C. Become.
  • the polarizing plate 18 also absorbs the S wave S 2b of the incident light incident on the polarizing plate 18 from the minimum absorption direction. Therefore, with respect to the minimum absorption direction, the S wave S 3b in the light emitted from the polarizing plate 18 is significantly smaller than the S wave S 1b in the incident light L to the optical element 1C.
  • FIG. 10 is a cross-sectional view showing the first state of the optical element 1D.
  • the optical element 1D according to the present embodiment also has anisotropy regarding the absorption rate by changing the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 present in the liquid crystal layer 14B depending on the presence or absence of voltage application. It switches between the first state and the second state, which has no anisotropy with respect to absorption.
  • the optical element 1D has a first substrate 11, a first electrode 12, a first alignment film 13B, a liquid crystal layer 14B, a second alignment film 15B, and a first surface in this order from the front surface (first surface) to the back surface (second surface). It has two electrodes 16, a second substrate 17, and a polarizing plate 18.
  • the structures of the first substrate 11, the first electrode 12, the first alignment film 13B, the liquid crystal layer 14B, the second alignment film 15B, the second electrode 16, and the second substrate 17 are the same as those in the second embodiment.
  • the optical element 1D of the present embodiment is composed of the first substrate 11, the first electrode 12, the first alignment film 13B, the liquid crystal layer 14B, the second alignment film 15B, the second electrode 16, and the second substrate 17.
  • the optical element has the same operation and effect as the optical element 1B of the second embodiment.
  • the polarizing plate 18 is the same as the polarizing plate 18 of the third embodiment.
  • FIG. 11 is a cross-sectional view showing the first state of the optical element 1E.
  • the optical element 1E according to the present embodiment also has anisotropy regarding the absorption rate by changing the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 present in the liquid crystal layer 14B depending on the presence or absence of voltage application. It switches between the first state and the second state, which has no anisotropy with respect to absorption.
  • the optical element 1E has a first element 101e, a half-wave plate 19, and a second element 102e in this order from the front surface (first surface) to the back surface (second surface).
  • the first element 101e has a first substrate 11, a first electrode 12, a first alignment film 13B, a liquid crystal layer 14B, a second alignment film 15B, a second electrode 16, and a second substrate 17 in order from the front surface to the back surface.
  • the structure of the first element 101e is the same as that of the optical element 1B of the second embodiment. Therefore, the first element 101e has the same operation and effect as the optical element 1B.
  • the second element 102e has the first substrate 11, the first electrode 12, the first alignment film 13B, the liquid crystal layer 14B, the second alignment film 15B, the second electrode 16, and the second in order from the front surface to the back surface. It has a substrate 17.
  • the structure of the second element 102e is also the same as that of the optical element 1B of the second embodiment. Therefore, the first element 101e has the same operation and effect as the optical element 1B.
  • the liquid crystal layer 14B of the first element 101e corresponds to an example of the first liquid crystal cell. Further, the liquid crystal layer 14B of the second element 102e corresponds to an example of the second liquid crystal cell.
  • first electrode 12 and the second electrode 16 of the first element 101e correspond to an example of a pair of first transparent electrodes.
  • the pair of first transparent electrodes directly or indirectly sandwich the first liquid crystal cell.
  • first electrode 12 and the second electrode 16 of the second element 102e correspond to an example of a pair of second transparent electrodes.
  • the pair of second transparent electrodes directly or indirectly sandwich the second liquid crystal cell.
  • first alignment film 13B and the second alignment film 15B of the first element 101e correspond to an example of a pair of first diagonal alignment films.
  • the pair of first diagonal alignment films directly or indirectly sandwich the first liquid crystal cell.
  • the first alignment film 13B and the second alignment film 15B of the second element 102e correspond to an example of a pair of second diagonal alignment films.
  • the pair of second diagonally oriented films directly or indirectly sandwich the second liquid crystal cell.
  • the half-wave plate 19 is provided between the first element 101e and the second element 102e.
  • the front surface of the half-wave plate 19 is fixed to the back surface of the first element 101e via the first adhesive layer 20.
  • the back surface of the half-wave plate 19 is fixed to the surface of the second element 102e via the second adhesive layer 21.
  • the half-wave plate 19 has a function of generating a phase difference ⁇ (180 °) between the P wave and the S wave of the incident light and outputting the plate. Such a half-wave plate 19 converts the S wave of the incident light into a P wave and emits it.
  • the incident light on the half-wave plate 19 is the emitted light emitted from the first element 101e.
  • the incident light on the half-wave plate 19 with respect to the maximum absorption direction is such that the P wave P 2a is smaller than the S wave S 2a.
  • the P wave P 3a is larger than the S wave S 3a. In this way, the half-wave plate 19 converts the S wave of the incident light on the half-wave plate 19 into a P wave and emits it.
  • the amount of light incident on the optical element 1E and the amount of light emitted from the optical element 1E are the same or almost the same.
  • the optical element 1E in the first state of the optical element 1E, as in the fourth embodiment, has an incident light having an incident angle ⁇ equal to + ⁇ 4 (that is, an optical element from the maximum absorption direction). It is possible to absorb the vertical component and the horizontal component of the incident light incident on 1E).
  • first electrode 12 which is a thin film made of ITO
  • second electrode 16 which is a thin film made of ITO
  • the surface of the first electrode 12 formed on the first substrate 11 is coated with a polyimide solution in which polyimide as a vertical alignment film material and polyimide as a horizontal alignment film material are mixed at a predetermined ratio.
  • a thin film was formed.
  • 80% of the polyimide solution was used as a vertical alignment film material, and 20% of the polyimide solution was used as a horizontal alignment film material.
  • the thickness of the first thin film was 100 nm.
  • a second thin film was formed by applying the above-mentioned polyimide solution to the surface of the second electrode 16 formed on the second substrate 17.
  • the thickness of the second thin film was 100 nm.
  • the surface of the first thin film formed on the first substrate 11 was subjected to a rubbing treatment, which is an alignment treatment of the liquid crystal material, to form the first alignment film 13B. Further, the surface of the second thin film formed on the second substrate 17 was also subjected to a rubbing treatment to form the second alignment film 15. Here, it was confirmed that the pretilt angles of the first alignment film 13B and the second alignment film 15B were 25 °.
  • the first substrate 11 and the second substrate 17 were combined so that the first alignment film 13 and the second alignment film 15 face each other.
  • the direction of the rubbing treatment of the first alignment film 13 and the direction of the rubbing treatment of the second alignment film 15 (hereinafter, simply referred to as the rubbing direction). was parallel and opposite.
  • silica spacers having a diameter of 5 ⁇ m are dispersed and arranged between the vicinity of the outer edge of the surface facing the second substrate 17 on the first substrate 11 and the vicinity of the outer edge of the surface facing the first substrate 11 on the second substrate 17.
  • the first substrate 11 and the second substrate 17 were fixed by applying the adhesive. With the first substrate 11 and the second substrate 17 fixed, the distance between the first alignment film 13B and the second alignment film 15B was set to 5 ⁇ m.
  • a liquid crystal composition was injected between the first alignment film 13B and the second alignment film 15B by utilizing the capillary phenomenon. ..
  • a liquid crystal composition in which 1 wt% of a bicolor black dye NKX-4173 (manufactured by Hayashibara Co., Ltd.) was added to the nematic liquid crystal material ZLI-4792 (manufactured by Merck) was used.
  • the first element 101e and the second element 102e were manufactured by the above method.
  • a cellophane adhesive tape NO.405 manufactured by Nichiban Co., Ltd.
  • This cellophane adhesive tape is the half-wave plate 19.
  • the optical element 1E was manufactured by fixing the front surface of the second element 102e to the back surface of the first element 101e (lower surface in FIG. 11) via the cellophane adhesive tape. With the second element 102e fixed to the first element 101e, the rubbing direction of the first alignment film 13B in the first element 101e is parallel to and the same direction as the rubbing direction of the first alignment film 13B in the second element 102e. did.
  • the incident angle dependence of the transmittance in the direction parallel to the rubbing direction of the first alignment film 13B and the second alignment film 15B in the first element 101e and the second element 102e is determined. It was measured.
  • the rubbing direction of the first element 101f and the second element 102f was set to the minus direction.
  • FIG. 12B shows the result of the above measurement.
  • the horizontal axis represents the incident angle and the vertical axis represents the transmittance.
  • the optical element 1E is asymmetric because the transmittance for the incident light having an incident angle of ⁇ 30 ° is 35% and the transmittance for the incident light having an incident angle of + 30 ° is 18%. It has an incident angle dependence of the transmittance.
  • FIG. 13 is a diagram showing an example of a modification of the fifth embodiment.
  • the optical element 1Eb according to this modification is the second substrate 17 of the first element 101e, the first substrate 11 of the second element 102e, the first adhesive layer 20, and the second adhesive. Layer 21 is omitted.
  • the optical element 1Eb of such a modification the number of parts is reduced, so that the manufacturing cost is low.
  • the structure, action, and effect of the other optical elements 1Eb are the same as those of the optical element 1E.
  • FIG. 14A is a cross-sectional view showing the first state of the optical element 1F.
  • the optical element 1F according to the present embodiment also has anisotropy regarding the absorption rate by changing the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 existing in the liquid crystal layer 14 depending on the presence or absence of voltage application. It switches between the first state and the second state, which has no anisotropy with respect to absorption.
  • the optical element 1F has a first element 101f, a half-wave plate 19, and a second element 102f in this order from the front surface (first surface) to the back surface (second surface).
  • the first element 101f has a first substrate 11, a first electrode 12, a first alignment film 13, a liquid crystal layer 14, a second alignment film 15, a second electrode 16, and a second substrate 17 in this order from the front surface to the back surface.
  • the structure of the first element 101f is the same as that of the optical element 1 of the first embodiment. Therefore, the first element 101f has the same operation and effect as the optical element 1.
  • the second element 102f has a first substrate 11, a first electrode 12, a first alignment film 13, a liquid crystal layer 14, a second alignment film 15, a second electrode 16, and a second electrode in this order from the front surface to the back surface. It has a substrate 17.
  • the structure of the second element 102e is also the same as that of the optical element 1 of the first embodiment. Therefore, the second element 102f has the same operation and effect as the optical element 1.
  • the half-wave plate 19 is provided between the first element 101f and the second element 102f, and is the same as the half-wave plate 19 of the optical element 1E in the fifth embodiment.
  • the front surface of the half-wave plate 19 is fixed to the back surface of the first element 101f via the first adhesive layer 20.
  • the back surface of the half-wave plate 19 is fixed to the surface of the second element 102f via the second adhesive layer 21.
  • the incident light L incident on the optical element 1F from the + side with respect to the incident angle in FIG. 14A (for example, not only P-wave of the incident light L 1) of FIG. 14A, can absorb the S wave.
  • Example 1 (Example 1 according to the sixth embodiment)
  • Example 1 relating to the optical element 1F according to the above-described 6th embodiment will be described.
  • first electrode 12 which is a thin film made of ITO
  • second electrode 16 which is a thin film made of ITO
  • a first thin film made of polyimide SE04811 (manufactured by Nissan Chemical Industries, Ltd.), which is a vertical alignment film material, was formed on the surface of the first electrode 12 formed on the first substrate 11.
  • the thickness of the first thin film was 100 nm.
  • a second thin film made of a horizontally oriented polyimide film material was formed on the surface of the second electrode 16 formed on the second substrate 17.
  • the thickness of the second thin film was 100 nm.
  • the surface of the first thin film formed on the first substrate 11 was subjected to a rubbing treatment, which is an alignment treatment of the liquid crystal material, to form the first alignment film 13. Further, the surface of the second thin film formed on the second substrate 17 was subjected to a rubbing treatment so that the pretilt angle of the liquid crystal molecules 141 and the dichroic dye 142 was 6 ° to form the second alignment film 15. ..
  • the first substrate 11 and the second substrate 17 were combined so that the first alignment film 13 and the second alignment film 15 face each other.
  • the direction of the rubbing treatment of the first alignment film 13 and the direction of the rubbing treatment of the second alignment film 15 (hereinafter, simply referred to as the rubbing direction). was parallel and opposite.
  • silica spacers having a diameter of 5 ⁇ m are dispersed and arranged between the vicinity of the outer edge of the surface facing the second substrate 17 on the first substrate 11 and the vicinity of the outer edge of the surface facing the first substrate 11 on the second substrate 17.
  • the first substrate 11 and the second substrate 17 were fixed by applying the adhesive. With the first substrate 11 and the second substrate 17 fixed, the distance between the first alignment film 13 and the second alignment film 15 was set to 5 ⁇ m.
  • a liquid crystal composition was injected between the first alignment film 13 and the second alignment film 15 by utilizing the capillary phenomenon. ..
  • a liquid crystal composition in which 1 wt% of a bicolor black dye NKX-4173 (manufactured by Hayashibara Co., Ltd.) was added to the nematic liquid crystal material ZLI-4792 (manufactured by Merck) was used.
  • the first element 101f and the second element 102f were manufactured by the above method.
  • a cellophane adhesive tape NO.405 manufactured by Nichiban Co., Ltd.
  • This cellophane adhesive tape is the half-wave plate 19.
  • the optical element 1F was manufactured by fixing the front surface of the second element 102f to the back surface of the first element 101f (lower surface in FIG. 14A) via the cellophane adhesive tape.
  • the rubbing direction of the first alignment film 13 in the first element 101f is parallel to and in the same direction as the rubbing direction of the first alignment film 13 in the second element 102f. be.
  • the incident angle dependence of the transmittance in the direction parallel to the rubbing direction of the first alignment film 13 and the second alignment film 15 in the first element 101f and the second element 102f is determined. It was measured (hereinafter, this measurement is referred to as measurement 1).
  • the rubbing direction of the first element 101f and the second element 102f is set to the minus direction.
  • FIG. 14B shows the result of the above measurement 1.
  • the horizontal axis represents the incident angle and the vertical axis represents the transmittance.
  • the optical element 1F is asymmetric because the transmittance for the incident light having an incident angle of ⁇ 45 ° is 35% and the transmittance for the incident light having an incident angle of + 45 ° is 20%. It has an incident angle dependence of the transmittance.
  • Example 2 Regard the optical element 1F according to the sixth embodiment
  • the optical element 1F was produced by the same method as in Example 1 described above, except that the concentration of the dichroic dye with respect to the liquid crystal composition ZLI-4792 was set to 3 wt%. Then, using the optical element 1F, the incident angle dependence of the transmittance in the direction parallel to the rubbing direction of the first alignment film 13 and the second alignment film 15 in the first element 101f and the second element 102f was measured (hereinafter,). , This measurement is referred to as measurement 2-1).
  • FIG. 14B shows the result of the above measurement 2-1.
  • the transmittance for incident light having an incident angle of ⁇ 45 ° is 19%
  • the transmittance for incident light having an incident angle of + 45 ° is 6%. Therefore, the optical element 1F of this example also has a transmittance of 6%.
  • the applied voltage applied to the optical element 1F of this example is 0V, 1V, 3V, 5V, 10V
  • the first alignment film 13 and the second alignment film 15 in the first element 101f and the second element 102f The incident angle dependence of the transmittance in the direction parallel to the rubbing direction was measured (hereinafter, this measurement is referred to as measurement 2-2).
  • FIG. 14C shows the result of the above measurement 2-2.
  • Example 3 Regard the optical element 1F according to the sixth embodiment
  • the optical element 1F was produced by the same method as in Example 1 described above, except that the concentration of the dichroic dye with respect to the liquid crystal composition ZLI-4792 was set to 5 wt%. Then, using the optical element 1F, the incident angle dependence of the transmittance in the direction parallel to the rubbing direction of the first alignment film 13 and the second alignment film 15 in the first element 101f and the second element 102f was measured (hereinafter,). , This measurement is referred to as measurement 3).
  • FIG. 14B shows the result of the above measurement 3.
  • the transmittance for incident light having an incident angle of ⁇ 45 ° is 7%
  • the transmittance for incident light having an incident angle of + 45 ° is 1%. Therefore, the optical element 1F of this example also has a transmittance of 1%.
  • FIG. 15 is a diagram showing an example of a modification of the sixth embodiment.
  • the optical element 1Fb according to this modification is the second substrate 17 of the first element 101f, the first substrate 11 of the second element 102f, the first adhesive layer 20, and the second adhesive. Layer 21 is omitted.
  • the optical element 1Fb of such a modification the number of parts is reduced, so that the manufacturing cost is low.
  • the structure, action, and effect of the other optical elements 1Fb are the same as those of the optical element 1F.
  • FIG. 16 is a cross-sectional view of the optical element 1G.
  • the optical element 1G does not have a function of switching the state depending on whether or not a voltage is applied. Therefore, the liquid crystal layer 14 of the optical element 1G is always in the same orientation state.
  • the optical element 1G has a structure in which the first electrode 12 and the second electrode 16 are omitted from the optical element 1 of the first embodiment. Specifically, the optical element 1G has a first substrate 11, a first alignment film 13, a liquid crystal layer 14, a second alignment film 15, and a second substrate 17 in this order from the front surface to the back surface.
  • the first substrate 11, the first alignment film 13, the liquid crystal layer 14, the second alignment film 15, and the second substrate 17 of the optical element 1G are the first substrate 11, the first alignment film 13 in the optical element 1 of the first embodiment.
  • the orientation state of the liquid crystal layer 14 in the optical element 1G having the above configuration is the same as the orientation state of the liquid crystal layer 14 in the first state of the optical element 1 of the first embodiment. Therefore, the optical element 1G has the same operation and effect as the first state of the optical element 1 of the first embodiment.
  • FIG. 17 is a cross-sectional view of the optical element 1H.
  • the optical element 1H does not have a function of switching the state depending on whether or not a voltage is applied. Therefore, the liquid crystal layer 14B of the optical element 1H is always in the same orientation state.
  • the optical element 1H has a structure in which the first electrode 12 and the second electrode 16 are omitted from the optical element 1B of the second embodiment. Specifically, the optical element 1H has the first substrate 11, the first alignment film 13B, the liquid crystal layer 14B, the second alignment film 15B, and the like in order from the front surface (first surface) to the back surface (second surface). It has a second substrate 17.
  • the first substrate 11, the first alignment film 13B, the liquid crystal layer 14B, the second alignment film 15B, and the second substrate 17 of the optical element 1H are the first substrate 11, the first alignment film 13B in the optical element 1B of the second embodiment.
  • the orientation state of the liquid crystal layer 14B of the optical element 1H having the above configuration is the same as the orientation state of the liquid crystal layer 14B in the first state of the optical element 1B of the second embodiment. Therefore, the optical element 1H has the same operation and effect as the first state of the optical element 1B of the second embodiment.
  • FIG. 18 is a cross-sectional view of the optical element 1J.
  • the optical element 1J does not have a function of switching the state depending on whether or not a voltage is applied. Therefore, the liquid crystal layer 14B of the optical element 1J is always in the same orientation state.
  • the optical element 1J has a structure in which the first electrode 12 and the second electrode 16 are omitted from each of the first element 101e and the second element 102e in the optical element 1E of the fifth embodiment.
  • the optical element 1J has a first element 101j, a half-wave plate 19, and a second element 102j in this order from the front surface (first surface) to the back surface (second surface).
  • the first element 101j has a first substrate 11, a first alignment film 13B, a liquid crystal layer 14B, a second alignment film 15B, and a second substrate 17 in this order from the front surface to the back surface.
  • the first substrate 11, the first alignment film 13B, the liquid crystal layer 14B, the second alignment film 15B, and the second substrate 17 of the first element 101j are the first substrate 11, the first orientation of the first element 101e in the fifth embodiment. This is the same as the film 13B, the liquid crystal layer 14B, the second alignment film 15B, and the second substrate 17.
  • the orientation state of the liquid crystal layer 14B in the first element 101j is always the same as the orientation state of the liquid crystal layer 14B in the first state of the first element 101e of the fifth embodiment. Therefore, the first element 101j has the same operation and effect as the first state of the first element 101e of the fifth embodiment.
  • the second element 102j has a first substrate 11, a first alignment film 13B, a liquid crystal layer 14B, a second alignment film 15B, and a second substrate 17 in this order from the front surface to the back surface.
  • the first substrate 11, the first alignment film 13B, the liquid crystal layer 14B, the second alignment film 15B, and the second substrate 17 of the second element 102j are the first substrate 11, the first orientation of the second element 102e in the fifth embodiment. This is the same as the film 13B, the liquid crystal layer 14B, the second alignment film 15B, and the second substrate 17.
  • the orientation state of the liquid crystal layer 14B in the second element 102j is always the same as the orientation state of the liquid crystal layer 14B in the first state of the second element 102e of the fifth embodiment. Therefore, the second element 102j has the same operation and effect as the first state of the second element 102e of the fifth embodiment.
  • the half-wave plate 19 is the same as the half-wave plate 19 of the optical element 1E in the fifth embodiment.
  • the orientation state of the liquid crystal layer 14B in the optical element 1J having the above configuration is the same as the orientation state of the liquid crystal layer 14B in the first state of the optical element 1E according to the fifth embodiment. Therefore, the optical element 1J has the same operation and effect as the first state of the optical element 1E of the fifth embodiment.
  • FIG. 19 is a diagram showing an example of a modification of the ninth embodiment.
  • the optical element 1Jb according to this modification is the second substrate 17 of the first element 101j, the first substrate 11 of the second element 102j, the first adhesive layer 20, and the second adhesive. Layer 21 is omitted.
  • the optical element 1Jb of such a modification the number of parts is reduced, so that the manufacturing cost is low.
  • the structure, action, and effect of the other optical elements 1Jb are the same as those of the optical element 1J.
  • FIG. 20 is a cross-sectional view of the optical element 1K.
  • the optical element 1K does not have a function of switching the state depending on whether or not a voltage is applied. Therefore, the liquid crystal layer 14 of the optical element 1K is always in the same orientation state.
  • the optical element 1K has a structure in which the first electrode 12 and the second electrode 16 are omitted from each of the first element 101f and the second element 102f in the optical element 1F of the sixth embodiment.
  • the optical element 1K has a first element 101k, a half-wave plate 19, and a second element 102k in order from the front surface (first surface) to the back surface (second surface).
  • the first element 101k has a first substrate 11, a first alignment film 13, a liquid crystal layer 14, a second alignment film 15, and a second substrate 17 in this order from the front surface to the back surface.
  • the first substrate 11, the first alignment film 13, the liquid crystal layer 14, the second alignment film 15, and the second substrate 17 of the first element 101k are the first substrate 11, the first orientation of the first element 101f in the sixth embodiment. This is the same as the film 13, the liquid crystal layer 14, the second alignment film 15, and the second substrate 17.
  • the orientation state of the liquid crystal layer 14 in the first element 101k is always the same as the orientation state of the liquid crystal layer 14 in the first state of the first element 101f of the sixth embodiment. Therefore, the first element 101k has the same operation and effect as the first state of the first element 101f of the sixth embodiment.
  • the second element 102k has a first substrate 11, a first alignment film 13, a liquid crystal layer 14, a second alignment film 15, and a second substrate 17 in this order from the front surface to the back surface.
  • the first substrate 11, the first alignment film 13, the liquid crystal layer 14, the second alignment film 15, and the second substrate 17 of the second element 102k are the first substrate 11, the first orientation of the second element 102f in the sixth embodiment. This is the same as the film 13, the liquid crystal layer 14, the second alignment film 15, and the second substrate 17.
  • the orientation state of the liquid crystal layer 14 in the second element 102k is always the same as the orientation state of the liquid crystal layer 14 in the first state of the second element 102k of the sixth embodiment. Therefore, the second element 102k has the same operation and effect as the first state of the second element 102f of the 68th embodiment.
  • the half-wave plate 19 is the same as the half-wave plate 19 of the optical element 1F in the sixth embodiment.
  • the orientation state of the liquid crystal layer 14 in the optical element 1K having the above configuration is the same as the orientation state of the liquid crystal layer 14 in the first state of the optical element 1F according to the sixth embodiment. Therefore, the optical element 1K has the same operation and effect as the first state of the optical element 1F of the fifth embodiment.
  • FIG. 21 is a diagram showing an example of a modification of the tenth embodiment.
  • the optical element 1Kb according to this modification among the optical elements 1K shown in FIG. 20, the second substrate 17 of the first element 101k and the first substrate 11 of the second element 102k are omitted.
  • the optical element 1Kb of such a modification the number of parts is reduced, so that the manufacturing cost is low.
  • the structure, action, and effect of the other optical elements 1Kb are the same as those of the optical element 1K.
  • FIG. 22 is a cross-sectional view of the optical element 1L.
  • the optical element 1L does not have a function of switching the state depending on whether or not a voltage is applied. Therefore, the first liquid crystal layer 14L1 and the second liquid crystal layer 14L2 of the optical element 1L are always in the same orientation state.
  • the optical element 1L has a first substrate 11, a first alignment film 13L, a first liquid crystal layer 14L1, a half-wave plate 19, and a second liquid crystal layer 14L2 in order from the front surface (first surface) to the back surface (second surface). , A second alignment film 15L, and a second substrate 17.
  • the first substrate 11 and the second substrate 17 of the optical element 1L are the same as those in the first embodiment.
  • the first alignment film 13L is a so-called horizontal alignment film, so that the major axis of the liquid crystal molecules 141 in contact with or adjacent to the first alignment film 13L is parallel to or substantially parallel to the surface of the first liquid crystal layer 14L1. , Controls the orientation state of the liquid crystal molecule 141.
  • the second alignment film 15L is a so-called horizontal alignment film, so that the major axis of the liquid crystal molecules 141 in contact with or adjacent to the second alignment film 15L is parallel to or substantially parallel to the back surface of the second liquid crystal layer 14L2. , Controls the orientation state of the liquid crystal molecule 141.
  • the first liquid crystal layer 14L1 has a plurality of liquid crystal molecules 141 and a plurality of dichroic dyes 142.
  • the shape and properties of the liquid crystal molecule 141 and the dichroic dye 142 are the same as those of the liquid crystal molecule 141 and the dichroic dye 142 of the first embodiment.
  • the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 in the first liquid crystal layer 14L1 does not always change.
  • the liquid crystal molecules 141 and the dichroic dye 142 present in the entire region of the first liquid crystal layer 14L1 each exist in a state of being inclined with respect to the plane direction of the first liquid crystal layer 14L1.
  • the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 is continuously increased from the first region R 1 increases toward the second region R 2.
  • the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the first liquid crystal layer 14L1 approaches 90 ° toward the half-wave plate 19 described later.
  • the inclination angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the first region R 1 of the first liquid crystal layer 14L1 is + theta 1.
  • the tilt angle + ⁇ 1 may be referred to as the pre-tilt angle + ⁇ 1 of the first liquid crystal layer 14L1.
  • the absolute value of the pretilt angle + ⁇ 1 is 5 °.
  • the absolute value of the pretilt angle + ⁇ 1 is preferably 5 ° or more.
  • the absolute value of the pretilt angle ⁇ 1 is more preferably 10 ° or more.
  • the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the second region R 2 of the first liquid crystal layer 14L1 is + phi 2.
  • the inclination angle + phi 2 also referred to as a tilt angle + phi 2 of the first liquid crystal layer 14L1.
  • the tilt angle phi 2 is + 90 °.
  • the liquid crystal molecules 141 have the property of spontaneously arranging in the 90 ° direction with respect to the interface. Utilizing such a property, it is possible to orient the pretilt angle of the liquid crystal molecule 141 in the second region R2 to 90 ° in the absence of the vertical alignment film.
  • liquid crystal molecule 141 and the dichroic dye 142 are solidified or filmed while preserving the state. It is possible to make it.
  • the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 is present in the intermediate region R 3 of the first liquid crystal layer 14L1 is + phi 3.
  • the inclination angle + phi 3 also referred to as a tilt angle + phi 3 of the first liquid crystal layer 14L1. If the first liquid crystal layer 14L1 of FIG. 22, the tilt angle phi 3 is a + 45 °.
  • the second liquid crystal layer 14L2 has a plurality of liquid crystal molecules 141 and a plurality of dichroic dyes 142.
  • the shape and properties of the liquid crystal molecule 141 and the dichroic dye 142 are the same as those of the liquid crystal molecule 141 and the dichroic dye 142 of the first embodiment.
  • the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 in the second liquid crystal layer 14L2 does not always change.
  • the liquid crystal molecules 141 and the dichroic dye 142 present in the entire region of the second liquid crystal layer 14L2 each exist in a state of being tilted with respect to the plane direction of the second liquid crystal layer 14L2.
  • the inclination angle of the major axis of the liquid crystal molecules 141 and the dichroic dye 142 decreases from the first region R 1 increases toward the second region R 2.
  • the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the second liquid crystal layer 14L2 approaches 90 ° toward the half-wave plate 19.
  • the inclination angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the first region R 1 of the second liquid crystal layer 14L2 is + phi 1.
  • the inclination angle + phi also referred to as a tilt angle + phi 1 of the second liquid crystal layer 14L2.
  • the tilt angle ⁇ 1 is + 90 °.
  • the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the second region R 2 of the second liquid crystal layer 14L2 is + phi 2.
  • the inclination angle + ⁇ 2 may be referred to as the pretilt angle + ⁇ 2 of the liquid crystal molecule 141 and the dichroic dye 142 present in the second region R 2.
  • the absolute value of the pretilt angle + ⁇ 2 is 5 °.
  • the absolute value of the pretilt angle + ⁇ 2 is preferably 5 ° or more.
  • the absolute value of the pretilt angle phi 2 is more preferably a 10 ° or more.
  • the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 is present in the intermediate region R 3 of the second liquid crystal layer 14L2 is + phi 3.
  • the inclination angle + phi 3 also referred to as a tilt angle + phi 3 of the second liquid crystal layer 14L2. If the second liquid crystal layer 14L2 of FIG. 22, the tilt angle phi 3 of the liquid crystal molecules 141 and the dichroic dye 142 is present in the intermediate region R 3 is + 45 °.
  • the half-wave plate 19 is provided between the first liquid crystal layer 14L1 and the second liquid crystal layer 14L2.
  • the front surface of the half-wave plate 19 is fixed to the back surface of the first liquid crystal layer 14L1 via the first adhesive layer 20.
  • the back surface of the half-wave plate 19 is fixed to the surface of the second liquid crystal layer 14L2 via the second adhesive layer 21.
  • the configuration of the other half-wave plate 19 is the same as the configuration of the half-wave plate 19 of the fifth embodiment.
  • the action and effect of the optical element 1L having the above configuration is the same as the action and effect of the optical element 1F of the sixth embodiment. According to the optical element 1L of the present embodiment as described above, the number of parts is reduced, so that the manufacturing cost is low.
  • FIG. 23 is a cross-sectional view of the optical element 1M.
  • the optical element 1M does not have a function of switching the state depending on whether or not a voltage is applied. Therefore, the first liquid crystal layer 14M1 and the second liquid crystal layer 14M2 of the optical element 1M are always in the same orientation state.
  • the optical element 1M has a first liquid crystal layer 14L1, a first alignment film 13M, a half-wave plate 19, a second alignment film 15M, and a second liquid crystal in order from the front surface (first surface) to the back surface (second surface). It has a layer 14L2.
  • the first alignment film 13M is fixed to the back surface of the first liquid crystal layer 14M1.
  • the first alignment film 13M is a so-called horizontal alignment film, and the major axis of the liquid crystal molecule 141 in contact with or in the vicinity of the first alignment film 13M is parallel to or substantially parallel to the back surface of the first liquid crystal layer 14M1.
  • the orientation state of the liquid crystal molecule 141 in the first liquid crystal layer 14L1 is controlled.
  • the second alignment film 15M is fixed to the surface of the second liquid crystal layer 14M2.
  • the second alignment film 15M is a so-called horizontal alignment film, so that the major axis of the liquid crystal molecules 141 in contact with or adjacent to the second alignment film 15M is parallel to or substantially parallel to the surface of the second liquid crystal layer 14M2. , The orientation state of the liquid crystal molecule 141 in the second liquid crystal layer 14M2 is controlled.
  • the first liquid crystal layer 14M1 has a plurality of liquid crystal molecules 141 and a plurality of dichroic dyes 142.
  • the shape and properties of the liquid crystal molecule 141 and the dichroic dye 142 are the same as those of the liquid crystal molecule 141 and the dichroic dye 142 of the first embodiment.
  • the surface (first surface) of the first liquid crystal layer 14M1 is not fixed to other members. In other words, the surface of the first liquid crystal layer 14M1 is exposed to the outside in a state of being exposed to the outside air.
  • the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 in the first liquid crystal layer 14M1 does not change at all times.
  • the liquid crystal molecules 141 and the dichroic dye 142 present in the entire region of the first liquid crystal layer 14M1 each exist in a state of being tilted with respect to the plane direction of the first liquid crystal layer 14M1.
  • the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142, from the first region R 1 increases toward the second region R 2, successively smaller.
  • the tilt angle of the liquid crystal molecule 141 and the dichroic dye 142 approaches 90 ° toward the surface of the first liquid crystal layer 14M1 (that is, the boundary between the first liquid crystal layer 14M1 and the outside air).
  • the inclination angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the first region R 1 of the first liquid crystal layer 14M1 is + phi 1.
  • the inclination angle + phi also referred to as a tilt angle + phi 1 of the first liquid crystal layer 14M1.
  • the tilt angle ⁇ 1 is + 90 °.
  • the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the second region R 2 of the first liquid crystal layer 14M1 is + phi 2.
  • the tilt angle + ⁇ 2 is the pretilt angle.
  • the absolute value of the pretilt angle + ⁇ 2 is 5 °.
  • the absolute value of the pretilt angle + ⁇ 2 is preferably 5 ° or more.
  • the absolute value of the pretilt angle phi 2 is more preferably a 10 ° or more.
  • the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 is present in the intermediate region R 3 of the first liquid crystal layer 14M1 is + phi 3.
  • the inclination angle + ⁇ 3 may be referred to as a tilt angle + ⁇ 3 of the liquid crystal molecule 141 and the dichroic dye 142 existing in the intermediate region R 3.
  • the tilt angle phi 3 is a + 45 °.
  • the second liquid crystal layer 14M2 has a plurality of liquid crystal molecules 141 and a plurality of dichroic dyes 142.
  • the shape and properties of the liquid crystal molecule 141 and the dichroic dye 142 are the same as those of the liquid crystal molecule 141 and the dichroic dye 142 of the first embodiment.
  • the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 in the second liquid crystal layer 14M2 does not always change.
  • the liquid crystal molecules 141 and the dichroic dye 142 present in the entire region of the second liquid crystal layer 14M2 each exist in a state of being tilted with respect to the plane direction of the second liquid crystal layer 14M2.
  • the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 is increased from the first region R 1 increases toward the second region R 2.
  • the inclination angle of the liquid crystal molecule 141 and the dichroic dye 142 approaches 90 ° toward the back surface of the second liquid crystal layer 14M2 (that is, the boundary between the second liquid crystal layer 14M2 and the outside air).
  • the inclination angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the first region R 1 of the second liquid crystal layer 14M2 is + phi 1.
  • the inclination angle + ⁇ 1 is the pretilt angle.
  • the absolute value of the pretilt angle + ⁇ 1 is 5 °.
  • the absolute value of the pretilt angle + ⁇ 1 is preferably 5 ° or more.
  • the absolute value of the pretilt angle ⁇ 1 is more preferably 10 ° or more.
  • the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the second region R 2 of the second liquid crystal layer 14M2 is + phi 2.
  • the inclination angle + phi 2 also referred to as a tilt angle + phi 2 of the second liquid crystal layer 14M2.
  • the tilt angle phi 2 is + 90 °.
  • the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 is present in the intermediate region R 3 of the second liquid crystal layer 14M2 is + phi 3.
  • the inclination angle + ⁇ 3 may be referred to as a tilt angle + ⁇ 3 of the liquid crystal molecule 141 and the dichroic dye 142 existing in the intermediate region R 3. If the second liquid crystal layer 14M2 shown in FIG. 23, the tilt angle phi 3 of the liquid crystal molecules 141 and the dichroic dye 142 is present in the intermediate region R 3 is + 45 °.
  • the half-wave plate 19 is provided between the first alignment film 13M and the second alignment film 15M.
  • the configuration of the other half-wave plate 19 is the same as the configuration of the half-wave plate 19 of the fifth embodiment.
  • the action and effect of the optical element 1M having the above configuration is the same as the action and effect of the optical element 1F of the sixth embodiment.
  • the optical element 1L of the present embodiment as described above, the number of parts is reduced, so that the manufacturing cost is low.
  • FIG. 24 is a perspective view showing an example of the configuration of the electronic eyeglasses 5.
  • FIG. 25 is a front view of the lens 51.
  • FIG. 26 is a sectional view taken along the line CC of FIG. 25.
  • the electronic eyeglasses 5 have a frame 50, a pair of lenses 51, control units 55a and 55b, detection units 54a and 54b, and power supplies 56a and 56b.
  • the frame 50 has a front 501 and a pair of temples 502a, 502b.
  • the portion where the front 501 is arranged is referred to as the front (front) of the electronic glasses 5.
  • each of the pair of temples 502a and 502b is supported by the front 501.
  • the pair of temples 502a and 502b hold detection units 54a and 54b, control units 55a and 55b, and power supplies 56a and 56b, respectively.
  • the user (wearer) of the electronic eyeglasses 5 operates (for example, a touch operation) the detection unit 54a provided on one of the temples 502a to obtain the optical characteristics (for example, transmittance) of the first optical element 52 in the lens 51. ) Is switched.
  • the control unit 55a switches between a state in which a voltage is applied to the first optical element 52 and a state in which a voltage is not applied, based on the operation.
  • the user (wearer) of the electronic eyeglasses 5 operates (for example, a touch operation) the detection unit 54b provided on the other temple 502b to obtain the optical characteristics (for example, for example) of the second optical element 53 of the lens 51. Transparency) is switched.
  • the second optical element 53 is the optical element 1B of the second embodiment described above.
  • the second optical element 53 is provided on the upper surface (Z direction + side) of the first optical element 52.
  • Cartesian coordinate system (X, Y, Z) shown in FIGS. 25 to 26 will be used for convenience of explanation.
  • the Cartesian coordinate system (X, Y, Z) shown in FIGS. 25 to 26 corresponds to the Cartesian coordinate system (X, Y, Z) shown in each figure used in the description of the first to twelfth embodiments. ing.
  • the lens 51 is curved in a convex shape toward the + side in the Z direction.
  • the curvature of the lens 51 is shown as zero.
  • the pair of lenses 51 are formed so as to be symmetrical when the electronic spectacles 5 are viewed from the front, and have the same components as each other. Therefore, in the following description, the lens 51 for the right eye of the electronic eyeglasses 5 will be described, and the description of the lens 51 for the left eye will be omitted.
  • the lens 51 corresponds to an example of an electrically active lens whose state changes according to the application of a voltage, and has a first optical element 52 and a second optical element 53.
  • the first optical element 52 and the second optical element 53 are laminated in the Z direction.
  • the first optical element 52 has a liquid crystal lens unit 521 and a normal lens unit 522 which is a portion other than the liquid crystal lens unit 521.
  • the liquid crystal lens unit 521 includes a first substrate 523, a first electrode 524, a liquid crystal layer 525, a second electrode 526, and a second substrate 527 in this order from the rear side (Z direction ⁇ side).
  • the first electrode 524, the liquid crystal layer 525, and the second electrode 526 constitute an electric element.
  • the normal lens portion 522 has a first substrate 523, a first electrode 524, an adhesive layer 528, a second electrode 526, and a second substrate 527 in this order from the rear side.
  • the liquid crystal lens unit 521 and the normal lens unit 522 share a first substrate 523, a first electrode 524, a second electrode 526, and a second substrate 527.
  • the components of the liquid crystal lens unit 521 and the normal lens unit 522 each have translucency with respect to visible light.
  • the first substrate 523 has a plate shape that curves convexly toward the + side in the Z direction (upper side in FIG. 26).
  • the surface of the first substrate 523 (the surface on the + side in the Z direction) is a convex curved surface that curves convexly toward the + side in the Z direction.
  • the back surface (the surface on the Z direction ⁇ side) of the first substrate 523 is a concave curved surface that curves concavely toward the + side in the Z direction.
  • the first substrate 523 has a diffraction region 523a in a portion of the surface corresponding to the liquid crystal lens portion 521.
  • the diffraction region 523a has a hemispherical convex portion 523b arranged in the central portion and a plurality of annular first convex portions 523c arranged on a concentric circle centered on the convex portion 523b.
  • An example of the shape of the convex portion 523b and the first convex strip 523c is a Fresnel lens shape.
  • a part of the convex portion 523b and the first convex strip 523c may have a Fresnel lens shape, or all of them may have a Fresnel lens shape.
  • the first substrate 523 is made of inorganic glass or organic glass.
  • the first substrate 523 is preferably made of organic glass.
  • the organic glass is a thermosetting material made of thermosetting polyurethanes, polythiourethanes, polyepoxides, or polyepisulfides, a thermoplastic material made of poly (meth) acrylates, or a copolymer thereof. It is one of thermosetting (crosslinked) materials consisting of a mixture.
  • the material of the first substrate 523 is not limited to these, and a known material used as a lens material can be adopted.
  • the first electrode 524 and the second electrode 526 are a pair of transparent electrodes having translucency.
  • the first electrode 524 is arranged between the first substrate 523 and the liquid crystal layer 525.
  • the second electrode 526 is arranged between the liquid crystal layer 525 and the second substrate 527.
  • the first electrode 524 and the second electrode 526 may be arranged at least over a range in which a voltage can be applied to the liquid crystal layer 525 (liquid crystal lens portion 521).
  • the materials of the first electrode 524 and the second electrode 526 are not particularly limited as long as they have the desired translucency and conductivity.
  • Examples of the first electrode 524 and the second electrode 526 include indium tin oxide (ITO) and zinc oxide (ZnO).
  • the materials of the first electrode 524 and the second electrode 526 may be the same as or different from each other.
  • the liquid crystal layer 525 is arranged between the first electrode 524 and the second electrode 526.
  • the liquid crystal layer 525 is configured so that its refractive index changes depending on the presence or absence of application of a voltage.
  • the refractive index of the liquid crystal layer 525 is substantially the same as the refractive index of the first substrate 523 and the refractive index of the second substrate 527 in a state where no voltage is applied to the liquid crystal layer 525 (also referred to as the first state of the liquid crystal layer 525). Adjusted to be the same.
  • the refractive index of the liquid crystal layer 525 is the refractive index of the first substrate 523 and the refractive index of the second substrate 527 in a state where a voltage is applied to the liquid crystal layer 525 (also referred to as a second state of the liquid crystal layer 525). Adjusted to be different from.
  • the liquid crystal layer 525 contains a liquid crystal material.
  • the orientation state of the liquid crystal molecules in the liquid crystal material when the voltage is applied and the orientation state of the liquid crystal molecules when the voltage is not applied are different from each other.
  • the liquid crystal molecule can be appropriately selected depending on the refractive index of the first substrate 523 and the refractive index of the second substrate 527.
  • the liquid crystal material may be composed of a cholesteric liquid crystal, a nematic liquid crystal, or the like.
  • the second substrate 527 is arranged behind the first substrate 523 and facing the back surface of the first substrate 523.
  • the second substrate 527 has a plate shape that curves convexly toward the front side.
  • the surface of the second substrate 527 is a convex curved surface that curves convexly toward the + side in the Z direction.
  • the back surface of the second substrate 527 is a concave curved surface that curves concavely toward the + side in the Z direction.
  • the adhesive layer 528 is usually arranged between the first substrate 523 and the second substrate 527 in the lens portion 522, and adheres the first substrate 523 and the second substrate 527.
  • the adhesive layer 528 is arranged between the first electrode 524 and the second electrode 526.
  • the adhesive layer 528 also has a function of sealing the liquid crystal material constituting the liquid crystal layer 525.
  • the first optical element 52 may further have other components having translucency, if necessary.
  • other components include insulating layers and alignment films.
  • the insulating layer prevents conduction between the first electrode 524 and the second electrode 526.
  • the insulating layer is arranged between the first electrode 524 and the liquid crystal layer 525, and between the liquid crystal layer 525 and the second electrode 526, respectively.
  • the alignment film controls the alignment state of the liquid crystal material in the liquid crystal layer 525.
  • the alignment film is arranged between the first electrode 524 and the liquid crystal layer 525, and between the liquid crystal layer 525 and the second electrode 526, respectively.
  • the second optical element 53 is the optical element 1B according to the second embodiment described above.
  • the second optical element 53 is fixed to the first surface (the surface on the + side in the Z direction) of the first optical element 52 by a fixing means such as adhesion.
  • the second optical element 53 is provided so that the right side (X direction + side) in FIG. 5 coincides with the upper side in FIG. 25.
  • the second optical element 53 is provided so that the right side (X direction + side) in FIG. 5 coincides with the upper side of the lens 51 in the state of using the spectacles.
  • the + side (+ ⁇ side) with respect to the incident angle ⁇ is the upper side of the lens 51 in the state of using the spectacles.
  • the ⁇ side ( ⁇ side) with respect to the incident angle ⁇ is the lower side of the lens 51 in the state of using the spectacles.
  • the incident light L incident on the optical element 1B from the + side with respect to the incident angle the amount of light emitted from the optical element 1B is incident on the optical element 1B from the-side with respect to the incident angle.
  • the incident light L has a property (anisity regarding the absorption rate) that is smaller than the amount of the emitted light emitted from the optical element 1B.
  • the second optical element 53 (optical element 1B) has an absorption rate with respect to the incident light L incident on the second optical element 53 (optical element 1B) from above in the state of using the glasses, and the second optical element 53 from below. It has a property (anisity regarding the absorption rate) that is larger than the absorption rate for the incident light L incident on the (optical element 1B).
  • Each of the detection units 54a and 54b has, for example, a capacitance type detection pad.
  • the detection pad may be a known detection pad that can be used as a touch sensor.
  • the detection units 54a and 54b detect the change in capacitance caused by the contact, respectively.
  • the detection unit 54a is provided on one of the temples 502a. A part of the detection unit 54a is exposed to the outside from one of the temples 502a. The user touch-operates the portion exposed to the outside in the detection unit 54a.
  • the detection unit 54b is provided on the other temple 502b. A part of the detection unit 54b is exposed to the outside from the other temple 502b. The user touch-operates the portion exposed to the outside in the detection unit 54b.
  • control unit 55a switches between a state in which a voltage is applied to the first optical element 52 and a state in which the voltage is not applied, based on the operation of the user.
  • the control unit 55a is electrically connected to the detection pad of the detection unit 54a via the wiring 57a. Further, the control unit 55a is electrically connected to the first electrode 524 and the second electrode 526 of the first optical element 52 via the wiring 57a.
  • the control unit 55a applies a voltage to the first optical element 52 or stops applying the voltage to the first optical element 52 to obtain the first optical.
  • the focal length (power) of the liquid crystal lens unit 521 in the element 52 is switched.
  • the other control unit 55b switches between a state in which a voltage is applied to the second optical element 53 (optical element 1B) and a state in which a voltage is not applied, based on the user's operation.
  • the control unit 55b is electrically connected to the detection pad of the detection unit 54b via the wiring 57b. Further, the control unit 55b is electrically connected to the first electrode 12 and the second electrode 16 (see FIG. 1) of the second optical element 53 (optical element 1B) via the wiring 57b.
  • the control unit 55b applies a voltage to the second optical element 53 (optical element 1B) or a voltage to the second optical element 53 (optical element 1B) when the detection unit 54b detects contact with the object. Is stopped, and the orientation state of the liquid crystal layer 14 in the second optical element 53 (optical element 1B) is switched.
  • the second optical element 53 switches between the first state and the second state.
  • the first state and the second state of the second optical element 53 are as described above.
  • One power source 56a supplies electric power to the control unit 55a and the detection unit 54a.
  • the power supply 56a is a rechargeable battery pack that is detachably held at the rear end portion (second end portion) of one temple 502a.
  • the power source 56a may be, for example, a nickel-metal hydride rechargeable battery.
  • the other power source 56b supplies power to the control unit 55b and the detection unit 54b.
  • the power supply 56b is a rechargeable battery pack that is detachably held at the rear end portion (second end portion) of the other temple 502b.
  • the power source 56b may be, for example, a nickel-metal hydride rechargeable battery.
  • the refractive index of the liquid crystal layer 525 and the refractive index of the first substrate 523 and the second substrate 527 are almost the same. Therefore, in the first optical element 52, the lens effect caused by the liquid crystal layer 525 does not occur.
  • the detection unit 54a When one of the detection units 54a detects contact with an object (for example, a user's finger) which is a conductor in the first off state, the detection unit 54a sends detection information based on this contact to the control unit 55a. .. The control unit 55a applies a voltage to the first optical element 52 based on the acquired detection information of the detection unit 54a in the first off state.
  • an object for example, a user's finger
  • the orientation state of the liquid crystal material in the liquid crystal layer 525 of the first optical element 52 changes, and the power (refractive index) of this liquid crystal layer changes.
  • the state in which the voltage is applied to the first optical element 52 is referred to as the first on state of the electronic eyeglasses 5.
  • the refractive index of the liquid crystal layer 525 in the first optical element 52 and the refractive index of the first substrate 523 and the second substrate 527 are different from each other. Therefore, the lens effect caused by the liquid crystal layer 525 occurs in the first optical element 52. As a result, the power of the region corresponding to the liquid crystal layer 525 in the first optical element 52 changes.
  • the detection unit 54a detects the contact of an object (for example, a user's finger) which is a conductor in the first ON state
  • the detection unit 54a outputs the detection information based on this contact to the control unit 55a.
  • the control unit 55a stops applying the voltage to the first optical element 52 based on the acquired detection information of the detection unit 54a in the first on state. As a result, the state of the first optical element 52 becomes the first off state.
  • the state in which the voltage is not applied to the second optical element 53 of the electronic eyeglasses 5 corresponds to the first state of the optical element 1B described above.
  • the second optical element 53 As described above, in the second off state, the second optical element 53 (optical element 1B) has anisotropy regarding the absorptivity. Therefore, in the second off state, in the second optical element 53 (optical element 1B), the absorption rate of the incident light L incident on the second optical element 53 (optical element 1B) from above is incident on the optical element 1B from below. It is larger than the absorption rate for the incident light L.
  • the detection unit 54b When the other detection unit 54b detects contact with an object (for example, a user's finger) which is a conductor in the second off state, the detection unit 54b sends detection information based on this contact to the control unit 55b. ..
  • the control unit 55b applies a voltage to the second optical element 53 (optical element 1B) based on the acquired detection information of the detection unit 54b in the second off state.
  • the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 in the liquid crystal layer 14 (see FIG. 1) of the second optical element 53 (optical element 1B) changes.
  • the state in which the voltage is applied to the second optical element 53 (optical element 1B) is referred to as the second on state of the electronic eyeglasses 5.
  • the second on state corresponds to the second state of the optical element 1B.
  • the second optical element 53 does not have anisotropy regarding the absorptivity in the second on state. Therefore, in the second ON state, the second optical element 53 (optical element 1B) has the absorption rate for the incident light L incident on the second optical element 53 (optical element 1B) from above and the second optical element 53 from below.
  • the absorption rate for the incident light L incident on (optical element 1B) is equal to or substantially equal to.
  • the detection unit 54b detects contact with an object (for example, a user's finger) which is a conductor in the second ON state
  • the detection unit 54b sends detection information based on this contact to the control unit 55b. ..
  • the control unit 55b stops applying a voltage to the second optical element 53 (optical element 1B) based on the acquired detection information of the detection unit 54b in the second ON state. As a result, the state of the first optical element 52 becomes the first off state.
  • the state of the first optical element 52 (first off state and first on state) and the state of the second optical element 53 (optical element 1B) (second off state and second on state) are defined by the user. It may be realized by an appropriate combination based on the operation.
  • the lens 51 shown in FIG. 27 is provided so that the thickness direction of the lens 51 is parallel to the front-back direction (left-right direction in FIG. 27) of the user.
  • the forward tilt angle ⁇ 51 (see FIG. 28) of the lens 51 shown in FIG. 27 is 0 °.
  • Light incident on the lens 51 in a direction parallel (Z-direction) in the longitudinal direction of the user is the incident light L 1.
  • light incident obliquely from above of the user to the lens 51 is incident light L 2 to be incident on the lens 51 from about the incident angle + side (+ theta side) in FIG. 27.
  • Light incident obliquely from below of the user to the lens 51 is directed to the incident angle of 27 - an incident light L 3 incident from the side (- [theta] side) lens 51.
  • FIG. 28 shows the lens 51 when the thickness direction of the lens 51 is tilted by 30 ° with respect to the user's front-back direction (left-right direction in FIG. 27).
  • the forward tilt angle ⁇ 51 of the lens 51 shown in FIG. 28 is 30 °.
  • the state having anisotropy regarding the absorption rate (first state) and the difference regarding the absorption rate depending on the application of the voltage to the second optical element 53 (optical element 1B). It is possible to switch between a state without anisotropy (second state) and a state without anisotropy.
  • the absorption rate for the incident light L incident on the lens 51 from above is larger than the absorption rate for the incident light L incident on the lens 51 from below. .. If the second off state is realized in the daytime when the position of the sun is high, the absorption rate for sunlight incident on the lens 51 from above can be increased. As a result, the visibility of the user can be improved.
  • the second optical element 53 is not limited to the optical element 1B of the second embodiment.
  • the second optical element 53 may be any of the optical elements according to the first to twelfth embodiments.
  • the second optical element 53 (optical element 1B) includes a direction including the maximum absorption direction of each of the dichroic dyes 142 of the second optical element 53 (optical element 1B) (in the case of the present embodiment).
  • the + side with respect to the incident angle ⁇ ) is arranged so as to coincide with the upper side of the lens 51 in the state of use of the spectacles.
  • the arrangement of the second optical element 53 is not limited to this.
  • the maximum absorption direction of each of the dichroic dyes 142 of the second optical element 53 is included.
  • the second optical element 53 may be arranged so that the direction (in the case of the present embodiment, the + side with respect to the incident angle ⁇ ) coincides with the right side of the lens 51 in the state of using the spectacles.
  • the arrangement mode of the second optical element 53 may be different between the left and right lenses 51.
  • FIG. 29 is a schematic diagram of the electronic eyeglasses 5B.
  • the electronic eyeglasses 5B of the present embodiment are different from the electronic eyeglasses 5 of the thirteenth embodiment in that the first optical element 52 and the second optical element 53 are independently provided.
  • the other configurations of the first optical element 52 and the configuration of the second optical element 53 are the same as those of the thirteenth embodiment.
  • the electronic eyeglasses 5B of the present embodiment has a forward tilt angle adjusting mechanism 7 for adjusting the forward tilt angle of the second optical element 53.
  • the forward tilt angle adjusting mechanism 7 is provided on the frame 50, and has a first support portion 71, a second support portion 72, and a connection portion 73 connecting the first support portion 71 and the second support portion 72. Have.
  • the first support portion 71 supports the first optical element 52 in a non-swingable state. Further, the second support portion 72 supports the second optical element 53 in a swingable state. The user can adjust the forward tilt angle of the second optical element 53 by swinging the second optical element 53.
  • the chain double-dashed line in FIG. 29 shows the second optical element 53 in the reference state where the forward tilt angle is 0 °.
  • the user for example, when to the second rotating optical element 53 30 ° in the direction indicated by the arrow A 1 in FIG. 29, the forward inclination of the second optical element 53 becomes the 30 ° as shown in Figure 28.
  • the user can adjust the direction of the incident light L for which the absorption rate is desired to be increased (in other words, the transmittance is desired to be increased) by adjusting the forward tilt angle of the second optical element 53.
  • the application target of the optical element according to the present invention is electronic eyeglasses.
  • the application target of the optical element according to the present invention is not limited to electronic eyeglasses.
  • the optical element according to the present invention can be applied to various eyewear.
  • the optical element according to the present invention can also be applied to smart glasses having a lens having an information display function.
  • the optical element according to the present invention By applying the optical element according to the present invention to such smart glasses, it is possible to increase the absorption rate for incident light incident on the lens from a specific direction. As a result, it is possible to improve the visibility of the information displayed on the portion of the lens corresponding to the specific direction.
  • the optical element according to the present invention can also be applied to VR (Virtual Reality) glass and the like.
  • optical element according to the present invention can be applied to various eyewear.

Abstract

This optical element is provided with a liquid crystal cell which includes liquid crystal molecules and a dichroic pigment, and which has a first surface and a second surface that face one another, wherein a pre-tilt angle, which is the angle of inclination of the dichroic pigment in contact with at least one surface among the first surface and the second surface, relative to said one surface, is at least equal to 5°.

Description

光学素子及びアイウェアOptical elements and eyewear
 本発明は、光学素子及びアイウェアに関する。 The present invention relates to optical elements and eyewear.
 従来、眼鏡用のレンズが、光学素子の一例として知られている(特許文献1参照)。特許文献1に開示されたレンズは、レンズ基材と、多層膜と、を有している。このようなレンズは、特定の波長の光(例えば、青色光)を所定の割合で遮断する機能を有する。 Conventionally, a lens for spectacles is known as an example of an optical element (see Patent Document 1). The lens disclosed in Patent Document 1 has a lens base material and a multilayer film. Such a lens has a function of blocking light of a specific wavelength (for example, blue light) at a predetermined ratio.
特開2019-82718号公報Japanese Unexamined Patent Publication No. 2019-82718
 ところで、ユーザが眼鏡を装着した状態(以下、眼鏡の使用状態と称する。)において、特定方向(例えば、斜め上方)からレンズに入射する光の量が多いと、眩しくて視認性が低下する可能性がある。この問題に対して、レンズ全体の光の透過率を下げる(吸収率を上げる)と、斜め上方からレンズに入射する光だけでなく、正面からレンズに入射する光も吸収してしまうため、正面に対する視認性が低下してしまう。 By the way, when the user wears the spectacles (hereinafter referred to as the spectacles in use), if the amount of light incident on the lens from a specific direction (for example, diagonally upward) is large, it may be dazzling and the visibility may be deteriorated. There is sex. To solve this problem, if the light transmittance of the entire lens is lowered (absorption rate is increased), not only the light incident on the lens from diagonally above but also the light incident on the lens from the front is absorbed. Visibility is reduced.
 本発明の目的は、光学素子に入射する光の入射角に応じて、透過率を変えることができる光学素子及びアイウェアを提供することである。 An object of the present invention is to provide an optical element and eyewear capable of changing the transmittance according to the incident angle of light incident on the optical element.
 本発明に係る光学素子の一態様は、
 液晶分子と二色性色素とを含み、対面する第一面及び第二面を有する液晶セルを備え、
 第一面及び第二面の少なくとも一方の面に接する二色性色素の、一方の面に対する傾斜角であるプレチルト角が、5°以上である。
One aspect of the optical element according to the present invention is
A liquid crystal cell containing a liquid crystal molecule and a dichroic dye and having a facing first surface and a second surface is provided.
The pretilt angle, which is the inclination angle of the dichroic dye in contact with at least one of the first surface and the second surface, with respect to one surface is 5 ° or more.
 本発明に係るアイウェアは、
 上記光学素子を有する電気活性レンズを備える。
The eyewear according to the present invention is
An electrically active lens having the above optical element is provided.
 本発明によれば、光学素子に入射する光の入射角に応じて、透過率を変えることができる光学素子及びアイウェアを提供できる。 According to the present invention, it is possible to provide an optical element and eyewear that can change the transmittance according to the incident angle of light incident on the optical element.
図1は、本発明の実施形態1に係る光学素子の第一状態における断面模式図である。FIG. 1 is a schematic cross-sectional view of the optical element according to the first embodiment of the present invention in the first state. 図2は、図1のX部の拡大図である。Figure 2 is an enlarged view of X 1 part of FIG. 図3は、光学素子の第二状態における断面模式図である。FIG. 3 is a schematic cross-sectional view of the optical element in the second state. 図4は、光学素子への入射光と光学素子からの出射光との関係を示す図である。FIG. 4 is a diagram showing the relationship between the incident light on the optical element and the emitted light from the optical element. 図5は、本発明の実施形態2に係る光学素子の第一状態における断面模式図である。FIG. 5 is a schematic cross-sectional view of the optical element according to the second embodiment of the present invention in the first state. 図6は、図5のX部の拡大図である。Figure 6 is an enlarged view of the X 2 parts of FIG. 図7は、入射角、透過率、及びチルト角の関係を示す線図である。FIG. 7 is a diagram showing the relationship between the incident angle, the transmittance, and the tilt angle. 図8は、本発明の実施形態3に係る光学素子の第一状態における断面模式図である。FIG. 8 is a schematic cross-sectional view of the optical element according to the third embodiment of the present invention in the first state. 図9は、光学素子への入射光と光学素子からの出射光との関係を示す図である。FIG. 9 is a diagram showing the relationship between the incident light on the optical element and the emitted light from the optical element. 図10は、本発明の実施形態4に係る光学素子の第一状態における断面模式図である。FIG. 10 is a schematic cross-sectional view of the optical element according to the fourth embodiment of the present invention in the first state. 図11は、本発明の実施形態5に係る光学素子の第一状態における断面模式図である。FIG. 11 is a schematic cross-sectional view of the optical element according to the fifth embodiment of the present invention in the first state. 図12Aは、光学素子への入射光と光学素子からの出射光との関係を示す図である。FIG. 12A is a diagram showing the relationship between the incident light on the optical element and the emitted light from the optical element. 図12Bは、実施形態5に係る実施例に関する、入射角と透過率との関係を示す図である。FIG. 12B is a diagram showing the relationship between the incident angle and the transmittance with respect to the embodiment according to the fifth embodiment. 図13は、実施形態5の変形例の一例に係る光学素子の第一状態における断面模式図である。FIG. 13 is a schematic cross-sectional view of the optical element according to an example of the modification of the fifth embodiment in the first state. 図14Aは、本発明の実施形態6に係る光学素子の第一状態における断面模式図である。FIG. 14A is a schematic cross-sectional view of the optical element according to the sixth embodiment of the present invention in the first state. 図14Bは、実施形態6に係る実施例1、2、3に関する、入射角と透過率との関係を示す図である。FIG. 14B is a diagram showing the relationship between the incident angle and the transmittance with respect to Examples 1, 2 and 3 according to the sixth embodiment. 図14Cは、実施形態6に係る実施例2に関する、印加電圧を変えた場合の、入射角と透過率との関係を示す図である。FIG. 14C is a diagram showing the relationship between the incident angle and the transmittance when the applied voltage is changed according to the second embodiment according to the sixth embodiment. 図15は、本発明の実施形態6の変形例の一例に係る光学素子の第一状態における断面模式図である。FIG. 15 is a schematic cross-sectional view of the optical element according to an example of the modification of the sixth embodiment of the present invention in the first state. 図16は、本発明の実施形態7に係る光学素子の断面模式図である。FIG. 16 is a schematic cross-sectional view of the optical element according to the seventh embodiment of the present invention. 図17は、本発明の実施形態8に係る光学素子の断面模式図である。FIG. 17 is a schematic cross-sectional view of the optical element according to the eighth embodiment of the present invention. 図18は、本発明の実施形態9に係る光学素子の断面模式図である。FIG. 18 is a schematic cross-sectional view of the optical element according to the ninth embodiment of the present invention. 図19は、本発明の実施形態9の変形例の一例に係る光学素子の断面模式図である。FIG. 19 is a schematic cross-sectional view of an optical element according to an example of a modification of the ninth embodiment of the present invention. 図20は、本発明の実施形態10に係る光学素子の断面模式図である。FIG. 20 is a schematic cross-sectional view of the optical element according to the tenth embodiment of the present invention. 図21は、本発明の実施形態10の変形例の一例に係る光学素子の断面模式図である。FIG. 21 is a schematic cross-sectional view of an optical element according to an example of a modification of the tenth embodiment of the present invention. 図22は、本発明の実施形態11に係る光学素子の断面模式図である。FIG. 22 is a schematic cross-sectional view of the optical element according to the eleventh embodiment of the present invention. 図23は、本発明の実施形態12に係る光学素子の断面模式図である。FIG. 23 is a schematic cross-sectional view of the optical element according to the twelfth embodiment of the present invention. 図24は、本発明の実施形態13に係る電子眼鏡の斜視図である。FIG. 24 is a perspective view of the electronic eyeglasses according to the thirteenth embodiment of the present invention. 図25は、レンズの正面図である。FIG. 25 is a front view of the lens. 図26は、図25のC-C断面図である。FIG. 26 is a sectional view taken along the line CC of FIG. 25. 図27は、レンズの前傾角の一例を説明するための模式図である。FIG. 27 is a schematic diagram for explaining an example of the forward tilt angle of the lens. 図28は、レンズの前傾角の一例を説明するための模式図である。FIG. 28 is a schematic diagram for explaining an example of the forward tilt angle of the lens. 図29は、本発明の実施形態14に係る電子眼鏡の模式図である。FIG. 29 is a schematic diagram of the electronic eyeglasses according to the fourteenth embodiment of the present invention.
 以下、本発明の実施形態について図面に基づいて詳細に説明する。尚、後述の実施形態に係る光学素子及びアイウェアは、本発明に係る光学素子及びアイウェアの一例であり、本発明は実施形態により限定されない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The optical element and eyewear according to the embodiment described later are examples of the optical element and eyewear according to the present invention, and the present invention is not limited to the embodiment.
 [実施形態1]
 以下、図1~図4を参照して、本発明の実施形態1に係る光学素子1について説明する。
[Embodiment 1]
Hereinafter, the optical element 1 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
 <光学素子>
 図1は、光学素子1に電圧が印加されていない状態における光学素子1の断面図である。光学素子1は、電圧の印加の有無に応じて、液晶層14に存在する液晶分子141及び二色性色素142の配向状態を変えることにより、光学特性が異なる第一状態と第二状態とを切り替える。
<Optical element>
FIG. 1 is a cross-sectional view of the optical element 1 in a state where no voltage is applied to the optical element 1. The optical element 1 changes the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 existing in the liquid crystal layer 14 according to the presence or absence of voltage application, thereby changing the first state and the second state having different optical characteristics. Switch.
 光学素子1の第一状態は、光学素子1に電圧が印加されていない状態である。光学素子1の第一状態において、液晶層14に存在する液晶分子141及び二色性色素142は、液晶分子141及び二色性色素142の長軸の傾斜角が、光学素子1の厚さ方向における一方側(図1における上側)から他方側(図1における下側)に向かうほど小さくなる(図1参照)。 The first state of the optical element 1 is a state in which no voltage is applied to the optical element 1. In the first state of the optical element 1, the liquid crystal molecules 141 and the dichroic dye 142 present in the liquid crystal layer 14 have the inclination angle of the long axis of the liquid crystal molecules 141 and the dichroic dye 142 in the thickness direction of the optical element 1. From one side (upper side in FIG. 1) to the other side (lower side in FIG. 1), the size becomes smaller (see FIG. 1).
 光学素子1は、第一状態において、入射角0°(以下、基準入射角と称する。)を中心として、光学素子1に入射する入射光に対する吸収率(透過率)が非対称となる性質(以下、吸収率に関する異方性と称する。)を有する。 In the first state, the optical element 1 has a property that the absorption rate (transmittance) with respect to the incident light incident on the optical element 1 is asymmetrical with the incident angle of 0 ° (hereinafter referred to as a reference incident angle) as the center (hereinafter referred to as a reference incident angle). , Called anisotropy with respect to transmittance).
 一方、光学素子1の第二状態は、光学素子1に電圧が印加されている状態である。光学素子1の第二状態において、液晶層14に存在する液晶分子141及び二色性色素142は、液晶分子141及び二色性色素142の長軸が、光学素子1の厚さ方向に平行となる。 On the other hand, the second state of the optical element 1 is a state in which a voltage is applied to the optical element 1. In the second state of the optical element 1, the liquid crystal molecules 141 and the dichroic dye 142 present in the liquid crystal layer 14 have the long axes of the liquid crystal molecules 141 and the dichroic dye 142 parallel to the thickness direction of the optical element 1. Become.
 光学素子1は、第二状態において、基準入射角を中心として、光学素子1に入射する入射光に対する吸収率(透過率)が対称となる性質を有する。よって、光学素子1は、第二状態において、上述の吸収率に関する異方性を有していない。このような光学素子1は、例えば、眼鏡のレンズや窓用フィルムに用いられる。以下、光学素子1の具体的な構成及び作用について説明する。 In the second state, the optical element 1 has a property that the absorption rate (transmittance) with respect to the incident light incident on the optical element 1 is symmetrical with the reference incident angle as the center. Therefore, the optical element 1 does not have the above-mentioned anisotropy regarding the absorptivity in the second state. Such an optical element 1 is used, for example, in a lens of spectacles or a film for a window. Hereinafter, the specific configuration and operation of the optical element 1 will be described.
 光学素子1の具体的な構成を説明するにあたり、説明の便宜のために、直交座標系(X,Y,Z)を使用する。各図に示される直交座標系(X,Y,Z)は、共通の直交座標系である。Z方向は、光学素子1の光軸の方向(以下、単に「光軸方向」と称する。)に一致する。 In explaining the specific configuration of the optical element 1, a Cartesian coordinate system (X, Y, Z) is used for convenience of explanation. The Cartesian coordinate system (X, Y, Z) shown in each figure is a common Cartesian coordinate system. The Z direction coincides with the direction of the optical axis of the optical element 1 (hereinafter, simply referred to as "optical axis direction").
 又、以下の説明において、特に断ることなく「厚さ方向」といった場合には、光学素子1及び光学素子1を構成する各部材の厚さ方向を意味する。厚さ方向は、Z方向に一致する。 Further, in the following description, when the term "thickness direction" is used without particular notice, it means the thickness direction of the optical element 1 and each member constituting the optical element 1. The thickness direction coincides with the Z direction.
 又、各部材の表面(第一面)は、各部材のZ方向+側(Z方向プラス側)の面を意味し、各部材の裏面(第二面)は、各部材のZ方向-側(Z方向マイナス側)の面を意味する。 Further, the front surface (first surface) of each member means the Z direction + side (Z direction plus side) surface of each member, and the back surface (second surface) of each member is the Z direction-side of each member. It means the surface (minus side in the Z direction).
 光学素子1は、板状又はフィルム状の複数の構成部材が積層された積層構造を有する。構成部材の積層方向は、Z方向に一致している。 The optical element 1 has a laminated structure in which a plurality of plate-shaped or film-shaped constituent members are laminated. The stacking direction of the constituent members coincides with the Z direction.
 光学素子1は、表面から裏面に向かって順に、第一基板11、第一電極12、第一配向膜13、液晶層14、第二配向膜15、第二電極16、及び第二基板17を有する。尚、以下の説明において、これら各エレメント11~17に関する説明の順序は、適宜入れ替える。 The optical element 1 includes a first substrate 11, a first electrode 12, a first alignment film 13, a liquid crystal layer 14, a second alignment film 15, a second electrode 16, and a second substrate 17 in this order from the front surface to the back surface. Have. In the following description, the order of the description of each of the elements 11 to 17 will be changed as appropriate.
 (第一基板及び第二基板)
 第一基板11及び第二基板17はそれぞれ、可視光に対して透光性を有する板状である。第一基板11と第二基板17とは、厚さ方向において、所定の距離間隔をあけて対面している。
(First board and second board)
Each of the first substrate 11 and the second substrate 17 has a plate shape having transparency to visible light. The first substrate 11 and the second substrate 17 face each other at a predetermined distance in the thickness direction.
 図1に示すように、第一基板11及び第二基板17はそれぞれ、XY平面に平行な平板である。ただし、第一基板11及び/又は第二基板17はそれぞれ、表面が凸状に裏面が凹状に湾曲した板状であってもよい。 As shown in FIG. 1, the first substrate 11 and the second substrate 17 are flat plates parallel to the XY plane, respectively. However, the first substrate 11 and / or the second substrate 17 may each have a plate shape with a convex front surface and a concave back surface.
 第一基板11及び/又は第二基板17はそれぞれ、無機ガラス又は有機ガラス等から造られる。第一基板11は、有機ガラスから造られるのが好ましい。 The first substrate 11 and / or the second substrate 17 are made of inorganic glass, organic glass, or the like, respectively. The first substrate 11 is preferably made of organic glass.
 有機ガラスは、熱硬化性ポリウレタン類、ポリチオウレタン類、ポリエポキシド類、若しくはポリエピスルフィド類からなる熱硬化性材料、若しくはポリ(メタ)アクリレート類からなる熱可塑性材料、又は、これらの共重合体若しくは混合物からなる熱硬化性(架橋した)材料の何れかである。ただし、第一基板11及び第二基板17の材料は、これらに限定されず、用途に応じた種々の公知の材料が採用されうる。 The organic glass is a thermosetting material made of thermosetting polyurethanes, polythiourethanes, polyepoxides, or polyepisulfides, a thermoplastic material made of poly (meth) acrylates, or a copolymer thereof. It is one of thermosetting (crosslinked) materials consisting of a mixture. However, the materials of the first substrate 11 and the second substrate 17 are not limited to these, and various known materials depending on the application can be adopted.
 (第一電極及び第二電極)
 第一電極12及び第二電極16は、透光性を有する一対の透明電極である。第一電極12は、第一基板11と第一配向膜13との間に配置されている。第二電極16は、第二配向膜15と第二基板17との間に配置される。第一電極12と第二電極16とは、液晶層14を挟持している。
(1st electrode and 2nd electrode)
The first electrode 12 and the second electrode 16 are a pair of transparent electrodes having translucency. The first electrode 12 is arranged between the first substrate 11 and the first alignment film 13. The second electrode 16 is arranged between the second alignment film 15 and the second substrate 17. The liquid crystal layer 14 is sandwiched between the first electrode 12 and the second electrode 16.
 第一電極12及び第二電極16はそれぞれ、少なくとも液晶層14に電圧を印加できる範囲に配置されていればよい。 The first electrode 12 and the second electrode 16 may be arranged at least within a range in which a voltage can be applied to the liquid crystal layer 14.
 第一電極12及び第二電極16の材料はそれぞれ、所期の透光性及び導電性を有していれば特に限定されない。第一電極12及び第二電極16それぞれの例として、酸化インジウムスズ(ITO)及び酸化亜鉛(ZnO)が挙げられる。第一電極12及び第二電極16の材料は、互いに同じ又は異なっていてもよい。 The materials of the first electrode 12 and the second electrode 16 are not particularly limited as long as they have the desired translucency and conductivity, respectively. Examples of the first electrode 12 and the second electrode 16 include indium tin oxide (ITO) and zinc oxide (ZnO). The materials of the first electrode 12 and the second electrode 16 may be the same or different from each other.
 (第一配向膜及び第二配向膜)
 第一配向膜13及び第二配向膜15はそれぞれ、液晶層14における液晶分子141の配向状態を制御する。第一配向膜13は、第一電極12と液晶層14との間に配置されている。第二配向膜15は、液晶層14と第二電極16との間に配置されている。
(First alignment film and second alignment film)
The first alignment film 13 and the second alignment film 15 each control the orientation state of the liquid crystal molecules 141 in the liquid crystal layer 14. The first alignment film 13 is arranged between the first electrode 12 and the liquid crystal layer 14. The second alignment film 15 is arranged between the liquid crystal layer 14 and the second electrode 16.
 本実施形態の場合、第一配向膜13は、所謂垂直配向膜であって、第一配向膜13に接する又は近接する液晶分子141の長軸が液晶層14の第一面(Z方向+側の面)の法線方向に一致するように、液晶分子141の配向状態を制御する。 In the case of the present embodiment, the first alignment film 13 is a so-called vertical alignment film, and the long axis of the liquid crystal molecules 141 in contact with or close to the first alignment film 13 is the first surface (Z direction + side) of the liquid crystal layer 14. The orientation state of the liquid crystal molecule 141 is controlled so as to coincide with the normal direction of the surface).
 第二配向膜15は、第二配向膜15に接する又は近接する液晶分子141にプレチルト角を付与するための配向膜(プレチルト配向膜とも称する。)である。第二配向膜15は、第二配向膜15に接する又は近接する液晶分子141の長軸が液晶層14の第二面(Z方向-側の面)に対して、所定の角度(後述のプレチルト角)をなすように、液晶分子141の配向状態を制御する。尚、液晶分子141の配向状態については後述する。 The second alignment film 15 is an alignment film (also referred to as a pretilt alignment film) for imparting a pretilt angle to the liquid crystal molecules 141 in contact with or adjacent to the second alignment film 15. In the second alignment film 15, the long axis of the liquid crystal molecules 141 in contact with or close to the second alignment film 15 has a predetermined angle (pretilt described later) with respect to the second surface (Z-direction-side surface) of the liquid crystal layer 14. The orientation state of the liquid crystal molecule 141 is controlled so as to form an angle). The orientation state of the liquid crystal molecule 141 will be described later.
 以上のような第一配向膜13及び第二配向膜15はそれぞれ、第一配向膜13及び第二配向膜15のそれぞれに配向性を与えるための配向処理を施されている。配向処理は、ラビング処理や光配向処理等の公知の処理方法である。 The first alignment film 13 and the second alignment film 15 as described above are each subjected to an orientation treatment for imparting orientation to the first alignment film 13 and the second alignment film 15, respectively. The alignment treatment is a known treatment method such as a rubbing treatment and a photo-alignment treatment.
 第一配向膜13の材料としては、液晶材料の配向膜として使用される公知の材料が使用されうる。第一配向膜13の材料の例には、ポリイミドが含まれる。 As the material of the first alignment film 13, a known material used as the alignment film of the liquid crystal material can be used. Examples of the material of the first alignment film 13 include polyimide.
 (液晶層)
 液晶層14は、第一配向膜13と第二配向膜15とにより挟持されている。液晶層14は、第一配向膜13の裏面により画定された表面と、第二配向膜15の表面により画定された裏面とを有する。液晶層14の周囲は、シール材(不図示)により囲まれている。
(Liquid crystal layer)
The liquid crystal layer 14 is sandwiched between the first alignment film 13 and the second alignment film 15. The liquid crystal layer 14 has a front surface defined by the back surface of the first alignment film 13 and a back surface defined by the front surface of the second alignment film 15. The liquid crystal layer 14 is surrounded by a sealing material (not shown).
 液晶層14は、第一配向膜13と第二配向膜15との間において、シール材により囲まれた空間に設けられている。以下、液晶層14の表面及び裏面に平行な方向を液晶層14の面方向と称する。液晶層14は、液晶セルの一例に該当する。液晶層14、第一配向膜13、及び第二配向膜15が液晶セルの一例に該当すると捉えてもよい。 The liquid crystal layer 14 is provided in a space surrounded by a sealing material between the first alignment film 13 and the second alignment film 15. Hereinafter, the direction parallel to the front surface and the back surface of the liquid crystal layer 14 is referred to as a surface direction of the liquid crystal layer 14. The liquid crystal layer 14 corresponds to an example of a liquid crystal cell. The liquid crystal layer 14, the first alignment film 13, and the second alignment film 15 may be regarded as an example of a liquid crystal cell.
 液晶層14は、電圧の印加の有無に応じて、互いに光学特性が異なる第一状態と第二状態とを切り替える。液晶層14の第一状態は、光学素子1の第一状態に対応し、液晶層14に電圧が印加されていない場合の液晶層14の状態である。図1は、光学素子1及び液晶層14の第一状態を示している。 The liquid crystal layer 14 switches between a first state and a second state in which the optical characteristics are different from each other depending on the presence or absence of voltage application. The first state of the liquid crystal layer 14 corresponds to the first state of the optical element 1, and is the state of the liquid crystal layer 14 when no voltage is applied to the liquid crystal layer 14. FIG. 1 shows the first state of the optical element 1 and the liquid crystal layer 14.
 液晶層14の第二状態は、光学素子1の第二状態に対応し、液晶層14に電圧が印加されている場合の液晶層14の状態である。図3は、光学素子1及び液晶層14の第二状態を示している。 The second state of the liquid crystal layer 14 corresponds to the second state of the optical element 1, and is the state of the liquid crystal layer 14 when a voltage is applied to the liquid crystal layer 14. FIG. 3 shows the second state of the optical element 1 and the liquid crystal layer 14.
 液晶層14は、複数の液晶分子141と、複数の二色性色素142と、を有する。 The liquid crystal layer 14 has a plurality of liquid crystal molecules 141 and a plurality of dichroic dyes 142.
 液晶分子141は、長軸及び短軸を有する略棒状である。液晶分子141は、液晶層14において、液晶層14の面方向及び厚さ方向に並んで存在している。 The liquid crystal molecule 141 has a substantially rod shape having a major axis and a minor axis. The liquid crystal molecules 141 are present in the liquid crystal layer 14 side by side in the plane direction and the thickness direction of the liquid crystal layer 14.
 二色性色素142は、長軸及び短軸を有する略棒状である。二色性色素142の形状は、液晶分子141の形状とほぼ同様である。二色性色素142は、液晶層14において、液晶層14の面方向及び/又は厚さ方向に隣り合う液晶分子141同士の間に存在している。 The dichroic dye 142 has a substantially rod shape having a major axis and a minor axis. The shape of the dichroic dye 142 is almost the same as the shape of the liquid crystal molecule 141. The dichroic dye 142 exists in the liquid crystal layer 14 between the liquid crystal molecules 141 adjacent to each other in the plane direction and / or the thickness direction of the liquid crystal layer 14.
 二色性色素142は、分子の長軸方向における光の吸収率と、短軸方向における光の吸収率とが異なる性質を有する。このような二色性色素142の性質が、光学素子1の吸収率に関する異方性を実現している。 The dichroic dye 142 has a property that the absorption rate of light in the major axis direction of the molecule and the absorption rate of light in the minor axis direction are different. Such properties of the dichroic dye 142 realize anisotropy regarding the absorptivity of the optical element 1.
 以下、二色性色素142の長軸を含む平面の法線方向から二色性色素142に入射する光を、長軸側入射光と称する。又、二色性色素142の長軸を含む平面の法線方向を、最大吸収方向と称する。 Hereinafter, the light incident on the dichroic dye 142 from the normal direction of the plane including the long axis of the dichroic dye 142 is referred to as the long axis side incident light. Further, the normal direction of the plane including the long axis of the dichroic dye 142 is referred to as a maximum absorption direction.
 尚、本明細書において、長軸側入射光とは、二色性色素142の長軸を含む平面であり且つZ方向に平行な平面(第一平面)内を進む光であって、二色性色素142の長軸に直交する方向から二色性色素142に入射する光を意味する。尚、上記第一平面は、長軸側入射光の入射面に相当する。 In the present specification, the long-axis side incident light is light that travels in a plane including the long axis of the dichroic dye 142 and is parallel to the Z direction (first plane), and has two colors. It means the light incident on the dichroic dye 142 from the direction orthogonal to the long axis of the sex dye 142. The first plane corresponds to the incident surface of the incident light on the long axis side.
 又、二色性色素142の長軸に平行な方向から二色性色素142に入射する光を、短軸側入射光と称する。二色性色素142の短軸を含む平面の法線方向を、最小吸収方向と称する。最小吸収方向は、二色性色素142の長軸に平行な方向でもある。 Further, the light incident on the dichroic dye 142 from the direction parallel to the long axis of the dichroic dye 142 is referred to as the light incident on the short axis side. The normal direction of the plane including the minor axis of the dichroic dye 142 is referred to as the minimum absorption direction. The minimum absorption direction is also a direction parallel to the long axis of the dichroic dye 142.
 当然ながら、二色性色素142には、長軸側入射光及び短軸側入射光以外の光も入射する。二色性色素142は、このような光に対しても、所定の吸収率(透過率)を有する。ただし、以下の説明では、本実施形態の光学素子1の特徴を端的に説明するために、二色性色素142と長軸側入射光及び短軸側入射光との関係を中心に言及する。 As a matter of course, light other than the long-axis side incident light and the short-axis side incident light is also incident on the dichroic dye 142. The dichroic dye 142 also has a predetermined absorption rate (transmittance) for such light. However, in the following description, in order to briefly explain the characteristics of the optical element 1 of the present embodiment, the relationship between the dichroic dye 142 and the long-axis side incident light and the short-axis side incident light will be mainly referred to.
 二色性色素142は、長軸側入射光に対する吸収率が、短軸側入射光に対する吸収率よりも大きい性質を有する。 The dichroic dye 142 has a property that the absorption rate for the long-axis side incident light is larger than the absorption rate for the short-axis side incident light.
 具体的には、二色性色素142の吸収率は、長軸側入射光に対する吸収率が最大であり、短軸側入射光に対する吸収率が最小である。つまり、二色性色素142は、入射方向に応じて、光の吸収率が異なる性質を有する。 Specifically, the absorption rate of the dichroic dye 142 has the maximum absorption rate for the long-axis side incident light and the minimum absorption rate for the short-axis side incident light. That is, the dichroic dye 142 has a property that the light absorption rate differs depending on the incident direction.
 又、二色性色素142は、長軸側入射光の成分のうち、長軸側入射光の所謂P波(長軸側入射光の垂直振動成分とも称する。)に対する吸収率が、長軸側入射光の所謂S波(長軸側入射光の水平振動成分とも称する。)に対する吸収率よりも大きい性質を有する。 Further, the dichroic dye 142 has a long axis side incident light absorption rate with respect to a so-called P wave (also referred to as a vertical vibration component of the long axis side incident light) among the components of the long axis side incident light. It has a property larger than the absorption rate of the incident light for the so-called S wave (also referred to as the horizontal vibration component of the incident light on the long axis side).
 液晶分子141の配向状態は、第一配向膜13及び第二配向膜15により制御されている。二色性色素142の配向状態は、液晶分子141の配向状態と同じであり、液晶分子141の配向状態に応じて変わる。よって、二色性色素142の配向状態も、第一配向膜13及び第二配向膜15により制御されていると捉えてもよい。 The orientation state of the liquid crystal molecule 141 is controlled by the first alignment film 13 and the second alignment film 15. The orientation state of the dichroic dye 142 is the same as the orientation state of the liquid crystal molecule 141, and changes depending on the orientation state of the liquid crystal molecule 141. Therefore, it may be considered that the alignment state of the dichroic dye 142 is also controlled by the first alignment film 13 and the second alignment film 15.
 ここで、第一配向膜13の裏面(液晶層14の表面)に接する液晶分子141及び二色性色素142を含み、且つ、液晶層14の面方向に平行な領域を、液晶層14の第一領域Rと定義する。 Here, a region containing the liquid crystal molecules 141 and the dichroic dye 142 in contact with the back surface of the first alignment film 13 (the front surface of the liquid crystal layer 14) and parallel to the plane direction of the liquid crystal layer 14 is the first of the liquid crystal layer 14. It is defined as a region R 1.
 又、第二配向膜15の表面(液晶層14の裏面)に接する液晶分子141及び二色性色素142を含み、且つ、液晶層14の面方向に平行な領域を、液晶層14の第二領域Rと定義する。 Further, a region containing the liquid crystal molecules 141 and the dichroic dye 142 in contact with the front surface of the second alignment film 15 (the back surface of the liquid crystal layer 14) and parallel to the plane direction of the liquid crystal layer 14 is the second of the liquid crystal layer 14. It is defined as a region R 2.
 更に、液晶層14の厚さ方向において第一領域Rと第二領域Rとの間に存在し、且つ、液晶層14の面方向に平行な領域を中間領域Rと定義する。液晶層に対する第一領域、第二領域、及び中間領域の定義は、他の実施形態についても同様である。以下、第一領域R、第二領域R、及び中間領域Rを合わせて、全領域と称することもある。 Further, it exists between in the thickness direction of the liquid crystal layer 14 and the first region R 1 and the second region R 2, and defines a region parallel to the plane direction of the liquid crystal layer 14 and the intermediate region R 3. The definitions of the first region, the second region, and the intermediate region with respect to the liquid crystal layer are the same for other embodiments. Hereinafter, the first region R 1 , the second region R 2 , and the intermediate region R 3 may be collectively referred to as the entire region.
 液晶分子141及び二色性色素142は、第一領域Rから第二領域Rにかけて、液晶層14の厚さ方向に隣り合って並んでいる。 Liquid crystal molecules 141 and the dichroic dye 142, from the first region R 1 by applying to the second region R 2, are arranged adjacent in the thickness direction of the liquid crystal layer 14.
 液晶層14の第一状態(図1に示す状態)において、全領域に存在する液晶分子141及び二色性色素142はそれぞれ、液晶層14の面方向に対して傾いている。本実施形態における液晶層14の配向状態は、所謂ハイブリッド配向である。 In the first state of the liquid crystal layer 14 (the state shown in FIG. 1), the liquid crystal molecules 141 and the dichroic dye 142 present in the entire region are each tilted with respect to the plane direction of the liquid crystal layer 14. The orientation state of the liquid crystal layer 14 in this embodiment is a so-called hybrid orientation.
 以下、液晶分子141及び/又は二色性色素142の傾斜角といった場合には、液晶層14の面方向に対する、液晶分子141及び/又は二色性色素142における長軸の傾斜角を意味する。 Hereinafter, when the inclination angle of the liquid crystal molecule 141 and / or the dichroic dye 142 is referred to, it means the inclination angle of the major axis of the liquid crystal molecule 141 and / or the dichroic dye 142 with respect to the plane direction of the liquid crystal layer 14.
 液晶層14の第一状態において、液晶分子141及び二色性色素142の傾斜角は、第一領域Rから第二領域Rに向かうほど小さくなる。液晶分子141及び二色性色素142の傾斜角は、吸収率を高めたい入射光の入射角度との関係で決定される。 In the first state of the liquid crystal layer 14, the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 decreases from the first region R 1 increases toward the second region R 2. The tilt angle of the liquid crystal molecule 141 and the dichroic dye 142 is determined in relation to the incident angle of the incident light for which the absorption rate is desired to be increased.
 尚、液晶分子141及び二色性色素142の傾斜角は、液晶分子141の長軸と液晶層14の面方向とのなす角のうち、小さい方の角度(90°含む)である。 The tilt angle of the liquid crystal molecule 141 and the dichroic dye 142 is the smaller angle (including 90 °) between the major axis of the liquid crystal molecule 141 and the surface direction of the liquid crystal layer 14.
 具体的には、液晶層14の第一状態において、第一領域Rに存在する液晶分子141及び二色性色素142の傾斜角は、+φである。 Specifically, in a first state of the liquid crystal layer 14, the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the first region R 1 is + phi 1.
 尚、図1及び図2において、液晶分子141及び二色性色素142の長軸が液晶層14の面方向と平行な状態をゼロ(基準)として、時計回りの方向を、傾斜角に関する+側(プラス側)と称する。 In FIGS. 1 and 2, the clockwise direction is the + side with respect to the tilt angle, with the state in which the major axes of the liquid crystal molecules 141 and the dichroic dye 142 are parallel to the plane direction of the liquid crystal layer 14 as zero (reference). Called (plus side).
 又、図1及び図2において、液晶分子141及び二色性色素142の長軸がと反対方向を、傾斜角に関する-側(マイナス側)と称する。 Further, in FIGS. 1 and 2, the direction opposite to the major axis of the liquid crystal molecule 141 and the dichroic dye 142 is referred to as a minus side (minus side) with respect to the inclination angle.
 以下、傾斜角+φを、液晶分子141のチルト角+φと称することもある。本実施形態の場合、液晶分子141のチルト角φは、+90°である。 Hereinafter, the tilt angle + φ 1 may be referred to as the tilt angle + φ 1 of the liquid crystal molecule 141. In the case of this embodiment, the tilt angle φ 1 of the liquid crystal molecule 141 is + 90 °.
 液晶層14の第一状態において、第二領域Rに存在する液晶分子141及び二色性色素142の傾斜角は、+φである。 In the first state of the liquid crystal layer 14, the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the second region R 2 is + phi 2.
 以下、傾斜角+φを、液晶分子141のプレチルト角+φと称することもある。本実施形態の場合、プレチルト角+φの絶対値は、5°である。プレチルト角+φの絶対値は、5°以上であると好ましい。プレチルト角φの絶対値は、10°以上であるとより好ましい。 Hereinafter, a tilt angle + phi 2, also referred to as pre-tilt angle + phi 2 of the liquid crystal molecules 141. In the case of this embodiment, the absolute value of the pretilt angle + φ 2 is 5 °. The absolute value of the pretilt angle + φ 2 is preferably 5 ° or more. The absolute value of the pretilt angle phi 2 is more preferably a 10 ° or more.
 又、液晶層14の第一状態において、中間領域Rに存在する液晶分子141及び二色性色素142の傾斜角は、+φである。以下、傾斜角+φを、液晶分子141のチルト角+φと称することもある。図1に示す液晶層14の場合、液晶分子141のチルト角φは、+45°である。 Further, in the first state of the liquid crystal layer 14, the inclination angle of the liquid crystal molecules 141 and the dichroic dye 142 existing in the intermediate region R 3 is + φ 3 . Hereinafter, the tilt angle + φ 3 may be referred to as the tilt angle + φ 3 of the liquid crystal molecule 141. In the case of the liquid crystal layer 14 shown in FIG. 1, the tilt angle φ 3 of the liquid crystal molecules 141 is + 45 °.
 尚、図1には、説明の便宜のため、中間領域Rに存在する一層の液晶分子141及び二色性色素142のみ示している。ただし、中間領域Rには、液晶分子141の厚さ方向に複数層の液晶分子141及び二色性色素142が存在する。尚、液晶層14は、物理的に複数の層に区切られている訳ではない。 Incidentally, in FIG. 1, for convenience of explanation, only shows more of the liquid crystal molecules 141 and the dichroic dye 142 is present in the intermediate region R 3. However, in the intermediate region R 3, the liquid crystal molecules 141 and the dichroic dye 142 of multiple layers in the thickness direction of the liquid crystal molecules 141 are present. The liquid crystal layer 14 is not physically divided into a plurality of layers.
 中間領域Rに存在する液晶分子141及び二色性色素142の傾斜角は、液晶層14の表面から裏面に向かって連続的に小さくなる。よって、中間領域Rに存在する液晶分子141及び二色性色素142のチルト角+φは、列毎に異なる。 The tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the intermediate region R 3 decreases continuously from the front surface to the back surface of the liquid crystal layer 14. Therefore, the tilt angle + φ 3 of the liquid crystal molecules 141 and the dichroic dye 142 existing in the intermediate region R 3 is different for each row.
 液晶層14の第二状態(図3に示す状態)において、全領域又は中間領域Rにおける第一領域R及び第二領域Rとの境界面近傍以外の領域における液晶分子141及び二色性色素142の傾斜角は、同じ又はほぼ同じである。 In the second state of the liquid crystal layer 14 (the state shown in FIG. 3), the entire area or an intermediate area liquid crystal molecules 141 and the dichroic in the region other than the vicinity of the boundary surface between the first region R 1 and the second region R 2 in R 3 The tilt angle of the sex dye 142 is the same or almost the same.
 (本実施形態のまとめ)
 以上のような構成を有する液晶層14は、電圧の印加の有無に応じて、光学特性が異なる第一状態と第二状態とを切り替える。図1は、電圧が印加されていない状態における液晶層14の状態(第一状態)を示している。
(Summary of this embodiment)
The liquid crystal layer 14 having the above configuration switches between a first state and a second state having different optical characteristics depending on whether or not a voltage is applied. FIG. 1 shows a state (first state) of the liquid crystal layer 14 in a state where no voltage is applied.
 液晶層14に電圧が印加されると、液晶層14の状態は、図1に示す第一状態から図3に示す第二状態に遷移する。液晶層14の第二状態において、総ての液晶分子141及び二色性色素142の長軸は、同一方向(本実施形態の場合、液晶層14の厚さ方向に平行な方向)を向く。 When a voltage is applied to the liquid crystal layer 14, the state of the liquid crystal layer 14 transitions from the first state shown in FIG. 1 to the second state shown in FIG. In the second state of the liquid crystal layer 14, all the long axes of the liquid crystal molecules 141 and the dichroic dye 142 point in the same direction (in the case of this embodiment, the direction parallel to the thickness direction of the liquid crystal layer 14).
 ここで、光学素子1に入射する入射光を、単に入射光Lと称する。図1には、例示的に、入射光Lのうち、光学素子1の厚さ方向(Z方向)に平行な方向からの入射光L、光学素子1の厚さ方向に対して+θ傾いた方向からの入射光L、及び光学素子1の厚さ方向に対して-θ傾いた方向からの入射光Lが示されている。入射光Lと入射光Lとは、入射光Lに関して線対称の関係である。入射光Lの入射角は、入射光Lと光学素子1における表面(第一面)の法線とのなす角である。入射光Lの入射角は、入射光Lと上記法線とが平行な場合を0°とする。 Here, the incident light incident on the optical element 1 is simply referred to as incident light L. 1 shows, by way of example, of the incident light L, incident light L 1 from the thickness direction parallel to the direction (Z direction) of the optical element 1, tilted + theta with respect to the thickness direction of the optical element 1 The incident light L 2 from the direction and the incident light L 3 from a direction tilted by −θ with respect to the thickness direction of the optical element 1 are shown. The incident light L 2 and the incident light L 3 have a line-symmetrical relationship with respect to the incident light L 1. The incident angle of the incident light L is an angle formed by the incident light L and the normal line of the surface (first surface) of the optical element 1. The incident angle of the incident light L is 0 ° when the incident light L and the normal line are parallel to each other.
 よって、入射光Lの入射角は、0°である。入射光Lの入射角は、+θである。入射光Lの入射角は、-θである。尚、図1には、入射光L、入射光L、及び入射光Lが示されているが、入射光Lは、種々の角度から光学素子1に入射する。光学素子1への入射光Lの入射角を、まとめて入射角θと称することもある。 Therefore, the incident angle of the incident light L 1 is 0 °. The incident angle of the incident light L 2 is + θ. The incident angle of the incident light L 3 is −θ. Although the incident light L 1 , the incident light L 2 , and the incident light L 3 are shown in FIG. 1, the incident light L is incident on the optical element 1 from various angles. The angle of incidence of the incident light L on the optical element 1 may be collectively referred to as an incident angle θ.
 以下の説明では、入射光Lは、屈折することなく液晶層14に入射するものと仮定する。よって、入射光L、入射光L、及び入射光Lは、光学素子1に対する入射角θを維持しつつ液晶層14に入射する。 In the following description, it is assumed that the incident light L is incident on the liquid crystal layer 14 without being refracted. Therefore, the incident light L 1 , the incident light L 2 , and the incident light L 3 are incident on the liquid crystal layer 14 while maintaining the incident angle θ with respect to the optical element 1.
 尚、図1及び図2において、入射光Lの入射角θの範囲は、-90°~+90°である。説明の便宜のため、入射角0°を基準として、図1及び図2における時計回りの方向を、入射角に関する+側(プラス側)とする。又、入射角0°を基準として、図1及び図2における時計回りの方向と反対方向を、入射角に関する-側(マイナス側)とする。 In FIGS. 1 and 2, the range of the incident angle θ of the incident light L is −90 ° to + 90 °. For convenience of explanation, the clockwise direction in FIGS. 1 and 2 is defined as the + side (plus side) with respect to the incident angle with respect to the incident angle of 0 °. Further, with respect to the incident angle of 0 °, the direction opposite to the clockwise direction in FIGS. 1 and 2 is defined as the − side (minus side) with respect to the incident angle.
 既述のように、二色性色素142の吸収率は、長軸側入射光に対する吸収率が最大であり、短軸側入射光に対する吸収率が最小である。又、二色性色素142は、長軸側入射光のP波に対する吸収率が、長軸側入射光のS波に対する吸収率よりも大きい性質を有する。 As described above, the absorption rate of the dichroic dye 142 has the maximum absorption rate for the long-axis side incident light and the minimum absorption rate for the short-axis side incident light. Further, the dichroic dye 142 has a property that the absorption rate of the long-axis side incident light for the P wave is larger than the absorption rate of the long-axis side incident light for the S wave.
 二色性色素142はそれぞれ、最大吸収方向から光学素子1に入射する入射光LにおけるP波を吸収する。この際、最大吸収方向から光学素子1に入射する入射光LのS波は、二色性色素142に吸収されず透過する。 Each of the dichroic dyes 142 absorbs a P wave in the incident light L incident on the optical element 1 from the maximum absorption direction. At this time, the S wave of the incident light L incident on the optical element 1 from the maximum absorption direction is not absorbed by the dichroic dye 142 and is transmitted.
 本実施形態の場合、二色性色素142のそれぞれが、図2に示すように、液晶層14の面方向と平行な方向をゼロ(基準)として時計回りの方向である傾斜角に関する+側に傾斜している。このため、二色性色素142それぞれの最大吸収方向は、図1に示すように、入射角0°(光学素子1の表面の法線方向)を基準として、時計回りの方向である入射角に関する+側に含まれる。 In the case of the present embodiment, as shown in FIG. 2, each of the dichroic dyes 142 is on the + side with respect to the inclination angle which is the clockwise direction with the direction parallel to the plane direction of the liquid crystal layer 14 as zero (reference). It is tilted. Therefore, as shown in FIG. 1, the maximum absorption direction of each of the dichroic dyes 142 is related to the incident angle which is a clockwise direction with respect to the incident angle of 0 ° (normal direction of the surface of the optical element 1). Included on the + side.
 よって、最大吸収方向から二色性色素142に入射する入射光L(以下、最大吸収方向に関する入射光Lと称する。)は、図1において、入射角に関する+側から光学素子1に入射する入射光Lである。 Therefore, the incident light L incident on the dichroic dye 142 from the maximum absorption direction (hereinafter referred to as incident light L related to the maximum absorption direction) is incident on the optical element 1 from the + side with respect to the incident angle in FIG. Light L.
 つまり、二色性色素142は、図1において入射角に関する+側から光学素子1に入射する入射光L(例えば、図1の入射光L)のP波を吸収し、S波を透過させる。 That is, the dichroic dye 142 absorbs the P wave of the incident light L (for example, the incident light L 2 in FIG. 1) incident on the optical element 1 from the + side with respect to the incident angle in FIG. 1, and transmits the S wave. ..
 一方、最小吸収方向から二色性色素142に入射する入射光L(以下、最小吸収方向に関する入射光Lと称する。)は、入射角に関する-側から光学素子1に入射する入射光Lである。 On the other hand, the incident light L incident on the dichroic dye 142 from the minimum absorption direction (hereinafter referred to as incident light L related to the minimum absorption direction) is the incident light L incident on the optical element 1 from the − side with respect to the incident angle. ..
 つまり、二色性色素142は、入射角に関する-側から光学素子1に入射する入射光L(例えば、図1の入射光L)のP波及びS波を透過させる。 That is, the dichroic dye 142 transmits the P wave and the S wave of the incident light L (for example, the incident light L 3 in FIG. 1) incident on the optical element 1 from the − side with respect to the incident angle.
 図4には、最大吸収方向に関する入射光LのP波P1a及びS波S1aと、最大吸収方向に関する出射光のP波P2a及びS波S2aとの関係の一例が、誇張して示されている。最大吸収方向に関する出射光は、最大吸収方向に関する入射光Lのうち光学素子1から出射される出射光である。 FIG. 4 exaggerates an example of the relationship between the P wave P 1a and the S wave S 1a of the incident light L regarding the maximum absorption direction and the P wave P 2a and the S wave S 2a of the emitted light regarding the maximum absorption direction. It is shown. The emitted light with respect to the maximum absorption direction is the emitted light emitted from the optical element 1 among the incident light L with respect to the maximum absorption direction.
 図4における矢印の長さは、光量に対応する。入射光Lに対する吸収率aは、下記式1により求められる。下記式1において、Linは、入射光の矢印の長さであり、Loutは、出射光の矢印の長さである。 The length of the arrow in FIG. 4 corresponds to the amount of light. The absorptivity a for the incident light L is obtained by the following equation 1. In formula 1, L in is the length of the arrow of the incident light, L out is the length of the arrow of the emitted light.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図4に示すように、最大吸収方向に関する入射光LのP波P1aは二色性色素142により吸収されるため、最大吸収方向に関する出射光のP波P2aは、最大吸収方向に関する入射光LのP波P1aより大幅に小さい。 As shown in FIG. 4, since the P wave P 1a of the incident light L in the maximum absorption direction is absorbed by the dichroic dye 142, the P wave P 2a of the emitted light in the maximum absorption direction is the incident light in the maximum absorption direction. It is significantly smaller than the P wave P 1a of L.
 又、最大吸収方向に関する入射光LのS波S1aは二色性色素142を透過するため、最大吸収方向に関する出射光のS波S2aは、最大吸収方向に関する入射光LのS波S1aと、ほぼ同じである。 Further, since the S wave S 1a of the incident light L relating to the maximum absorption direction passes through the dichroic dye 142, the S wave S 2a of the emitted light regarding the maximum absorption direction is the S wave S 1a of the incident light L relating to the maximum absorption direction. Is almost the same.
 又、図4には、最小吸収方向に関する入射光LにおけるP波P1b及びS波S1bと、最小吸収方向に関する出射光におけるP波P2b及びS波S2bとの関係の一例も示されている。最小吸収方向に関する出射光は、最小吸収方向に関する入射光Lのうち光学素子1から出射される出射光である。 Further, FIG. 4 also shows an example of the relationship between the P wave P 1b and the S wave S 1b in the incident light L in the minimum absorption direction and the P wave P 2b and the S wave S 2b in the emitted light in the minimum absorption direction. ing. The emitted light with respect to the minimum absorption direction is the emitted light emitted from the optical element 1 among the incident light L with respect to the minimum absorption direction.
 図4に示すように、最小吸収方向に関する入射光LにおけるP波P1b及びS波S1bはそれぞれ、二色性色素142を透過するため、最小吸収方向に関する出射光におけるP波P2b及びS波S2bは、最小吸収方向に関する入射光LにおけるP波P1b及びS波S1bと、ほぼ同じである。 As shown in FIG. 4, since the P wave P 1b and the S wave S 1b in the incident light L in the minimum absorption direction pass through the bicolor dye 142, respectively, the P wave P 2b and S in the emitted light in the minimum absorption direction are transmitted. The wave S 2b is substantially the same as the P wave P 1b and the S wave S 1b in the incident light L with respect to the minimum absorption direction.
 以上のように、本実施形態の場合、入射角に関する+側から光学素子1に入射する入射光Lのうち光学素子1から出射される出射光の光量は、入射角に関する-側から光学素子1に入射する入射光Lのうち光学素子1から出射される出射光の光量よりも少なくなる。つまり、本実施形態の光学素子1は、第一状態において、光の吸収率に関する異方性を有する。 As described above, in the case of the present embodiment, the amount of the emitted light emitted from the optical element 1 among the incident light L incident on the optical element 1 from the + side with respect to the incident angle is the optical element 1 from the − side with respect to the incident angle. Of the incident light L incident on the That is, the optical element 1 of the present embodiment has anisotropy regarding the light absorption rate in the first state.
 又、液晶層14の第二状態において、総ての液晶分子141及び二色性色素142の長軸が同一方向(本実施形態の場合、液晶層14の厚さ方向に平行な方向)を向く。このため、光学素子1は、第二状態において、第一状態のような光の吸収率に関する異方性を有していない。 Further, in the second state of the liquid crystal layer 14, all the long axes of the liquid crystal molecules 141 and the dichroic dye 142 point in the same direction (in the case of this embodiment, the direction parallel to the thickness direction of the liquid crystal layer 14). .. Therefore, in the second state, the optical element 1 does not have the anisotropy regarding the light absorption rate as in the first state.
 このように、本実施形態の光学素子1は、光の吸収率に関する異方性を有する第一状態と、光の吸収率に関する異方性を有していない第二状態とを、電圧の印加に応じて切り替えることができる。 As described above, the optical element 1 of the present embodiment applies a voltage between the first state having anisotropy regarding the light absorption rate and the second state having no anisotropy regarding the light absorption rate. It can be switched according to.
 [実施形態2]
 図5~図7を参照して、本発明に係る実施形態2について説明する。図5は、光学素子1Bの第一状態を示す断面図である。
[Embodiment 2]
The second embodiment according to the present invention will be described with reference to FIGS. 5 to 7. FIG. 5 is a cross-sectional view showing the first state of the optical element 1B.
 本実施形態に係る光学素子1Bも、電圧の印加の有無に応じて、液晶層14Bに存在する液晶分子141及び二色性色素142の配向状態を変えることにより、吸収率に関する異方性を有する第一状態と、吸収率に関する異方性を有していない第二状態とを切り替える。 The optical element 1B according to the present embodiment also has anisotropy regarding the absorption rate by changing the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 present in the liquid crystal layer 14B depending on the presence or absence of voltage application. It switches between the first state and the second state, which has no anisotropy with respect to absorption.
 光学素子1Bは、表面(第一面)から裏面(第二面)に向かって順に、第一基板11、第一電極12、第一配向膜13B、液晶層14B、第二配向膜15B、第二電極16、及び第二基板17を有する。 The optical element 1B has a first substrate 11, a first electrode 12, a first alignment film 13B, a liquid crystal layer 14B, a second alignment film 15B, and a first surface in this order from the front surface (first surface) to the back surface (second surface). It has two electrodes 16 and a second substrate 17.
 第一基板11、第一電極12、第二電極16、及び第二基板17の構造は、実施形態1と同様である。以下、第一配向膜13B、液晶層14B、及び第二配向膜15Bの構造について説明する。 The structures of the first substrate 11, the first electrode 12, the second electrode 16, and the second substrate 17 are the same as those in the first embodiment. Hereinafter, the structures of the first alignment film 13B, the liquid crystal layer 14B, and the second alignment film 15B will be described.
 (第一配向膜及び第二配向膜)
 第一配向膜13B及び第二配向膜15Bはそれぞれ、液晶層14Bにおける液晶分子141の配向状態を制御する。第一配向膜13Bは、第一電極12と液晶層14Bとの間に配置されている。第二配向膜15Bは、液晶層14Bと第二電極16との間に配置されている。
(First alignment film and second alignment film)
The first alignment film 13B and the second alignment film 15B each control the alignment state of the liquid crystal molecules 141 in the liquid crystal layer 14B. The first alignment film 13B is arranged between the first electrode 12 and the liquid crystal layer 14B. The second alignment film 15B is arranged between the liquid crystal layer 14B and the second electrode 16.
 本実施形態の場合、第一配向膜13Bは、第一配向膜13Bに接する又は近接する液晶分子141の長軸方向が、液晶層14Bの表面に対して所定の角度(後述の第一プレチルト角)をなすように、液晶分子141の配向状態を制御する。 In the case of the present embodiment, in the first alignment film 13B, the major axis direction of the liquid crystal molecules 141 in contact with or close to the first alignment film 13B is a predetermined angle with respect to the surface of the liquid crystal layer 14B (first pretilt angle described later). ), The orientation state of the liquid crystal molecule 141 is controlled.
 又、第二配向膜15Bは、第二配向膜15Bに接する又は近接する液晶分子141の長軸方向が、液晶層14Bの裏面に対して所定の角度(後述の第二プレチルト角)をなすように、液晶分子141の配向状態を制御する。その他の第一配向膜13B及び第二配向膜15Bの構造は、実施形態1の第一配向膜13及び第二配向膜15の構造と同様である。 Further, in the second alignment film 15B, the long axis direction of the liquid crystal molecules 141 in contact with or close to the second alignment film 15B forms a predetermined angle (second pretilt angle described later) with respect to the back surface of the liquid crystal layer 14B. In addition, the orientation state of the liquid crystal molecule 141 is controlled. The other structures of the first alignment film 13B and the second alignment film 15B are the same as the structures of the first alignment film 13 and the second alignment film 15 of the first embodiment.
 (液晶層)
 液晶層14Bは、電圧の印加の有無に応じて、互いに光学特性が異なる第一状態と第二状態とを切り替える。液晶層14Bの第一状態は、液晶層14Bに電圧が印加されていない場合の液晶層14Bの状態である。図5は、光学素子1B及び液晶層14Bの第一状態を示している。
(Liquid crystal layer)
The liquid crystal layer 14B switches between a first state and a second state in which the optical characteristics are different from each other depending on the presence or absence of voltage application. The first state of the liquid crystal layer 14B is the state of the liquid crystal layer 14B when no voltage is applied to the liquid crystal layer 14B. FIG. 5 shows the first state of the optical element 1B and the liquid crystal layer 14B.
 液晶層14Bの第二状態は、液晶層14Bに電圧が印加されている場合の液晶層14Bの状態である。液晶層14Bの第二状態は、図3に示す光学素子1及び液晶層14の第二状態と同様であるため、図示を省略する。 The second state of the liquid crystal layer 14B is the state of the liquid crystal layer 14B when a voltage is applied to the liquid crystal layer 14B. Since the second state of the liquid crystal layer 14B is the same as the second state of the optical element 1 and the liquid crystal layer 14 shown in FIG. 3, the illustration is omitted.
 液晶層14Bは、複数の液晶分子141と、複数の二色性色素142と、を有する。 The liquid crystal layer 14B has a plurality of liquid crystal molecules 141 and a plurality of dichroic dyes 142.
 液晶分子141及び二色性色素142の形状及び性質は、実施形態1の液晶分子141及び二色性色素142と同様である。本実施形態の場合、液晶層14Bの第一状態における液晶分子141及び二色性色素142の配向状態が、実施形態1の液晶層14の第一状態における液晶分子141及び二色性色素142の配向状態と異なる。 The shape and properties of the liquid crystal molecule 141 and the dichroic dye 142 are the same as those of the liquid crystal molecule 141 and the dichroic dye 142 of the first embodiment. In the case of the present embodiment, the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 in the first state of the liquid crystal layer 14B is the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 in the first state of the liquid crystal layer 14 of the first embodiment. It is different from the orientation state.
 尚、液晶層14Bの第二状態における液晶分子141及び二色性色素142の配向状態は、実施形態1の液晶層14の第二状態における液晶分子141及び二色性色素142の配向状態と同様である。 The orientation state of the liquid crystal molecules 141 and the dichroic dye 142 in the second state of the liquid crystal layer 14B is the same as the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 in the second state of the liquid crystal layer 14 of the first embodiment. Is.
 本実施形態の場合も、液晶層14Bの第一状態(図5に示す状態)において、第一領域R、第二領域R、及び中間領域Rに存在する液晶分子141及び二色性色素142はそれぞれ、液晶層14Bの面方向に対して、傾斜角に関する+側に傾いた状態で存在している。 Also in this embodiment, in a first state of the liquid crystal layer 14B (the state shown in FIG. 5), the first region R 1, the liquid crystal molecules 141 and the dichroic present in the second region R 2, and the intermediate region R 3 Each of the dyes 142 exists in a state of being tilted to the + side with respect to the tilt angle with respect to the plane direction of the liquid crystal layer 14B.
 本実施形態の場合、液晶層14Bの第一状態において、液晶分子141及び二色性色素142の傾斜角は、液晶層14Bの全領域で総て同じである。 In the case of the present embodiment, in the first state of the liquid crystal layer 14B, the inclination angles of the liquid crystal molecules 141 and the dichroic dye 142 are all the same in all regions of the liquid crystal layer 14B.
 具体的には、液晶層14Bの第一状態において、液晶層14Bの全領域に存在する液晶分子141及び二色性色素142の傾斜角は、+φである。 Specifically, in a first state of the liquid crystal layer 14B, the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the entire region of the liquid crystal layer 14B is a + phi 4.
 本実施形態の場合、第一領域Rに存在する(換言すれば、液晶層14Bの表面に接する)液晶分子141及び二色性色素142の傾斜角+φが、液晶分子141の第一プレチルト角である。 In this embodiment, present in the first region R 1 (in other words, contact with the surface of the liquid crystal layer 14B) tilt angle + phi 4 of the liquid crystal molecules 141 and the dichroic dye 142, a first pre-tilt of the liquid crystal molecules 141 It is a horn.
 又、第二領域Rに存在する(換言すれば、液晶層14Bの裏面に接する)液晶分子141及び二色性色素142の傾斜角+φが、液晶分子141の第二プレチルト角である。本実施形態の場合、第一プレチルト角と第二プレチルト角とは等しい。 Also, present in the second region R 2 (in other words, in contact with the back surface of the liquid crystal layer 14B) tilt angle + phi 4 of the liquid crystal molecules 141 and the dichroic dye 142 is a second pretilt angle of the liquid crystal molecules 141. In the case of this embodiment, the first pretilt angle and the second pretilt angle are equal to each other.
 又、中間領域Rに存在する液晶分子141及び二色性色素142の傾斜角+φが、チルト角である。本実施形態の場合、液晶分子141及び二色性色素142の第一プレチルト角、第二プレチルト角、及びチルト角は、等しい。 Further, the tilt angle + φ 4 of the liquid crystal molecules 141 and the dichroic dye 142 existing in the intermediate region R 3 is the tilt angle. In the case of the present embodiment, the first pretilt angle, the second pretilt angle, and the tilt angle of the liquid crystal molecule 141 and the dichroic dye 142 are equal.
 本実施形態の場合、例えば、第一プレチルト角+φ、第二プレチルト角+φ、及びチルト角+φの絶対値は、60°である。第一プレチルト角+φ、第二プレチルト角+φ、及びチルト角+φの絶対値は、40°以上70°以下であると好ましい。尚、第一プレチルト角+φ、第二プレチルト角+φ、及びチルト角+φの絶対値は、例えば、二色性色素142の最大吸収方向との関係で適宜設定されてよい。 In the case of the present embodiment, for example, the absolute values of the first pre-tilt angle + φ 4 , the second pre-tilt angle + φ 4 , and the tilt angle + φ 4 are 60 °. The absolute values of the first pre-tilt angle + φ 4 , the second pre-tilt angle + φ 4 , and the tilt angle + φ 4 are preferably 40 ° or more and 70 ° or less. The absolute values of the first pre-tilt angle + φ 4 , the second pre-tilt angle + φ 4 , and the tilt angle + φ 4 may be appropriately set in relation to the maximum absorption direction of the dichroic dye 142, for example.
 (本実施形態のまとめ)
 以上のような構成を有する液晶層14Bは、電圧の印加の有無に応じて、互いに光学特性が異なる第一状態と第二状態とを切り替える。図5は、電圧が印加されていない状態(第一状態)における液晶層14Bを示している。
(Summary of this embodiment)
The liquid crystal layer 14B having the above configuration switches between a first state and a second state in which the optical characteristics are different from each other depending on whether or not a voltage is applied. FIG. 5 shows the liquid crystal layer 14B in a state where no voltage is applied (first state).
 液晶層14Bに電圧が印加されると、液晶層14Bの状態は、図5に示す第一状態から第二状態(図3参照)に切り替わる。液晶層14Bの第二状態において、総ての液晶分子141及び二色性色素142の長軸は、同一方向(本実施形態の場合、液晶層14Bの厚さ方向に平行な方向)に一致する。 When a voltage is applied to the liquid crystal layer 14B, the state of the liquid crystal layer 14B switches from the first state shown in FIG. 5 to the second state (see FIG. 3). In the second state of the liquid crystal layer 14B, the major axes of all the liquid crystal molecules 141 and the dichroic dye 142 coincide with the same direction (in the case of this embodiment, the direction parallel to the thickness direction of the liquid crystal layer 14B). ..
 本実施形態の場合、液晶層14Bの第一状態において、液晶層14Bの全領域に存在する二色性色素142が、傾斜角に関する+側に傾斜している。このため、二色性色素142それぞれの最大吸収方向は、入射角に関する+側に含まれる。 In the case of the present embodiment, in the first state of the liquid crystal layer 14B, the dichroic dye 142 present in the entire region of the liquid crystal layer 14B is inclined to the + side with respect to the inclination angle. Therefore, the maximum absorption direction of each of the dichroic dyes 142 is included on the + side with respect to the incident angle.
 よって、最大吸収方向に関する入射光Lは、図5において、入射角に関する+側から光学素子1Bに入射する入射光Lである。具体的には、最大吸収方向に関する入射光Lは、入射角が、二色性色素142の傾斜角+φに等しい入射光Lである。 Therefore, the incident light L with respect to the maximum absorption direction is the incident light L incident on the optical element 1B from the + side with respect to the incident angle in FIG. Specifically, the incident light L on the maximum absorption direction, the angle of incidence is equal incident light L with the inclination angle + phi 4 of the dichroic dye 142.
 従って、二色性色素142は、入射角が+φに等しい入射光LのP波を吸収し、この入射光LのS波を透過させる。 Therefore, the dichroic dye 142 absorbs the P wave of the incident light L whose incident angle is equal to + φ 4 , and transmits the S wave of the incident light L.
 一方、最小吸収方向に関する入射光Lは、図5において、入射角に関する-側から光学素子1Bに入射する入射光Lである。具体的には、最小吸収方向に関する入射光Lは、入射角が-φに等しい入射光Lである。 On the other hand, the incident light L with respect to the minimum absorption direction is the incident light L incident on the optical element 1B from the − side with respect to the incident angle in FIG. Specifically, the incident light L with respect to the minimum absorption direction is the incident light L whose incident angle is equal to −φ.
 従って、二色性色素142は、入射角が-φに等しい入射光のP波及びS波を透過させる。 Therefore, the dichroic dye 142, the incident angle is transmitted through the P-wave and S wave equal incident light -.phi 4.
 この結果、入射角が+φに等しい入射光のうち光学素子1Bから出射される出射光の光量は、入射角が-φに等しい入射光のうち光学素子1Bから出射される出射光の光量よりも少なくなる。つまり、本実施形態の光学素子1Bも、第一状態において、光の吸収率に関する異方性を有する。 As a result, the light amount of the light beam emitted from the optical element 1B of the incident angle is equal to + phi 4 incident light quantity of the outgoing light incident angle is emitted from the optical element 1B of equal incident light -.phi 4 Less than. That is, the optical element 1B of the present embodiment also has anisotropy regarding the light absorption rate in the first state.
 又、液晶層14Bの第二状態において、総ての液晶分子141及び二色性色素142の長軸が同一方向(本実施形態の場合、液晶層14Bの厚さ方向に平行な方向)を向く。このため、光学素子1Bは、第二状態において、第一状態のような光の吸収率に関する異方性を有していない。 Further, in the second state of the liquid crystal layer 14B, the major axes of all the liquid crystal molecules 141 and the dichroic dye 142 face the same direction (in the case of this embodiment, the direction parallel to the thickness direction of the liquid crystal layer 14B). .. Therefore, in the second state, the optical element 1B does not have the anisotropy regarding the light absorption rate as in the first state.
 このように、本実施形態の光学素子1Bも、光の吸収率に関する異方性を有する第一状態と、光の吸収率に関する異方性を有していない第二状態とを、電圧の印加に応じて切り替えることができる。 As described above, the optical element 1B of the present embodiment also applies a voltage between the first state having anisotropy regarding the light absorption rate and the second state having no anisotropy regarding the light absorption rate. It can be switched according to.
 特に、本実施形態の場合、液晶層14Bの全領域に存在する二色性色素142の傾斜角が同じであるため、特定方向から光学素子1Bに入射する入射光L(本実施形態の場合、入射角が+φに等しい入射光L)に対する光の吸収率を大きくしつつ、特定方向から光学素子1Bに入射する入射光Lに対する光の吸収率を小さくできる。 In particular, in the case of the present embodiment, since the inclination angles of the dichroic dye 142 existing in the entire region of the liquid crystal layer 14B are the same, the incident light L incident on the optical element 1B from a specific direction (in the case of the present embodiment). while increasing the absorption rate of the light incident angle with respect to equal the incident light L) to + phi 4, it can be reduced absorption of light to the incident light L incident from a specific direction to the optical element 1B.
 尚、図7は、液晶分子141及び二色性色素142のチルト角と、光学素子1Bへの入射角と、光学素子1Bの透過率と、の関係をシミュレーションした結果を示す線図である。 Note that FIG. 7 is a diagram showing the results of simulating the relationship between the tilt angle of the liquid crystal molecule 141 and the dichroic dye 142, the angle of incidence on the optical element 1B, and the transmittance of the optical element 1B.
 本実施形態の光学素子1Bの第二状態に対応する、チルト角が0°及び90°の場合、基準入射角(0°)を中心として、光学素子1に入射する入射光に対する透過率が対称になる。 When the tilt angles are 0 ° and 90 °, which correspond to the second state of the optical element 1B of the present embodiment, the transmittance with respect to the incident light incident on the optical element 1 is symmetrical with respect to the reference incident angle (0 °). become.
 一方、チルト角が0°より大きく且つ90°未満の場合、基準入射角(0°)を中心として、光学素子1に入射する入射光に対する透過率が非対称になる。つまり、光学素子1は、吸収率に関する異方性を有する。 On the other hand, when the tilt angle is larger than 0 ° and less than 90 °, the transmittance with respect to the incident light incident on the optical element 1 becomes asymmetric around the reference incident angle (0 °). That is, the optical element 1 has anisotropy regarding the absorptivity.
 図7によれば、光学素子1Bの第二状態に対応する、チルト角が60°の場合、最大吸収方向に対応する入射角60°の入射光に対する透過率(0.4)は、最小吸収方向に対応する入射角-60°の入射光に対する透過率(0.7)よりも小さいことが分かる。 According to FIG. 7, when the tilt angle corresponding to the second state of the optical element 1B is 60 °, the transmittance (0.4) for the incident light having an incident angle of 60 ° corresponding to the maximum absorption direction is the minimum absorption. It can be seen that it is smaller than the transmittance (0.7) for the incident light having an incident angle of -60 ° corresponding to the direction.
 又、チルト角が60°の場合、透過率が最大となる入射角-30°から入射角50°にかけて、透過率が線形的に変化している(減少している)。このような部分は、透過率が同一方向に徐々に変化するため、視認性の向上に寄与する。 Further, when the tilt angle is 60 °, the transmittance changes linearly (decreases) from the incident angle of -30 °, which maximizes the transmittance, to the incident angle of 50 °. Such a portion contributes to the improvement of visibility because the transmittance gradually changes in the same direction.
 尚、二色性色素142を単体で見た場合、最大吸収方向に対応する入射角60°の入射光に対する吸収率が最も大きく(透過率が最も小さく)、最小吸収方向に対応する入射角-60°の入射光に対する吸収率が最も小さい(透過率が最も大きい)。しかしながら、図7に示す入射角と透過率との関係は、このような関係になっていない。このような関係性のずれは、二色性色素142以外のエレメントに関する種々の要因に起因するものである。 When the dichroic dye 142 is viewed alone, the absorption rate for the incident light having an incident angle of 60 ° corresponding to the maximum absorption direction is the largest (the transmittance is the smallest), and the incident angle corresponding to the minimum absorption direction- The absorption rate for 60 ° incident light is the lowest (the transmittance is the highest). However, the relationship between the incident angle and the transmittance shown in FIG. 7 does not have such a relationship. Such a shift in relationship is due to various factors relating to elements other than the dichroic dye 142.
 [実施形態3]
 図8を参照して、本発明の実施形態3に係る光学素子1Cについて説明する。図8は、光学素子1Cの第一状態を示す断面図である。
[Embodiment 3]
The optical element 1C according to the third embodiment of the present invention will be described with reference to FIG. FIG. 8 is a cross-sectional view showing the first state of the optical element 1C.
 本実施形態に係る光学素子1Cも、電圧の印加の有無に応じて、液晶層14に存在する液晶分子141及び二色性色素142の配向状態を変えることにより、吸収率に関する異方性を有する第一状態と、吸収率に関する異方性を有していない第二状態とを切り替える。 The optical element 1C according to the present embodiment also has anisotropy regarding the absorption rate by changing the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 existing in the liquid crystal layer 14 depending on the presence or absence of voltage application. It switches between the first state and the second state, which has no anisotropy with respect to absorption.
 光学素子1Cは、表面(第一面)から裏面(第二面)に向かって順に、第一基板11、第一電極12、第一配向膜13、液晶層14、第二配向膜15、第二電極16、第二基板17、及び偏光板18を有する。 The optical element 1C has a first substrate 11, a first electrode 12, a first alignment film 13, a liquid crystal layer 14, a second alignment film 15, and a first surface in this order from the front surface (first surface) to the back surface (second surface). It has two electrodes 16, a second substrate 17, and a polarizing plate 18.
 第一基板11、第一電極12、第一配向膜13、液晶層14、第二配向膜15、第二電極16、及び第二基板17の構造は、実施形態1と同様である。よって、本実施形態の光学素子1Cにおいて、第一基板11、第一電極12、第一配向膜13、液晶層14、第二配向膜15、第二電極16、及び第二基板17により構成される光学素子は、実施形態1の光学素子1と同様の作用及び効果を奏する。 The structures of the first substrate 11, the first electrode 12, the first alignment film 13, the liquid crystal layer 14, the second alignment film 15, the second electrode 16, and the second substrate 17 are the same as those in the first embodiment. Therefore, the optical element 1C of the present embodiment is composed of a first substrate 11, a first electrode 12, a first alignment film 13, a liquid crystal layer 14, a second alignment film 15, a second electrode 16, and a second substrate 17. The optical element has the same operation and effect as the optical element 1 of the first embodiment.
 (偏光板)
 偏光板18は、偏光板18への入射光における第一方向の成分を吸収し、第一方向に直交する第二方向の成分を透過させる機能を有する。本実施形態の場合、偏光板18は、第二基板17の裏面に固定されている。ただし、偏光板18の位置は、本実施形態の場合に限定されない。
(Polarizer)
The polarizing plate 18 has a function of absorbing a component in the first direction of light incident on the polarizing plate 18 and transmitting a component in the second direction orthogonal to the first direction. In the case of this embodiment, the polarizing plate 18 is fixed to the back surface of the second substrate 17. However, the position of the polarizing plate 18 is not limited to the case of this embodiment.
 このような偏光板18は、最大吸収方向に関する入射光L(つまり、長軸側入射光)において二色性色素142により吸収されなかった成分(S波)を吸収するために設けられている。 Such a polarizing plate 18 is provided to absorb a component (S wave) that was not absorbed by the dichroic dye 142 in the incident light L (that is, the long-axis side incident light) with respect to the maximum absorption direction.
 具体的には、偏光板18は、偏光板18への入射光(第二基板17からの出射光)におけるP波を透過し、偏光板18への入射光におけるS波を吸収する機能を有する。 Specifically, the polarizing plate 18 has a function of transmitting a P wave in the incident light (light emitted from the second substrate 17) to the polarizing plate 18 and absorbing an S wave in the incident light on the polarizing plate 18. ..
 (本実施形態のまとめ)
 図9には、本実施形態の光学素子1Cに関して、光学素子1Cの第一状態における、最大吸収方向及び最小吸収方向に関する、光学素子への入射光のP波及びS波と、光学素子からの出射光のP波及びS波との関係の一例が、誇張して示されている。
(Summary of this embodiment)
In FIG. 9, regarding the optical element 1C of the present embodiment, the P wave and the S wave of the incident light to the optical element and the P wave and the S wave from the optical element regarding the maximum absorption direction and the minimum absorption direction in the first state of the optical element 1C are shown. An example of the relationship between the emitted light and the P wave and the S wave is exaggerated.
 図9において、光学素子への入射光は、図4における光学素子への入射光と同様である。又、図9において、偏光板への入射光は、図4における光学素子の出射光と同様である。 In FIG. 9, the incident light on the optical element is the same as the incident light on the optical element in FIG. Further, in FIG. 9, the incident light on the polarizing plate is the same as the emitted light of the optical element in FIG.
 図9に示すように、最大吸収方向から偏光板18に入射する入射光は、S波S2aが、P波P2aよりも大きい。偏光板18は、この入射光におけるS波S2aを吸収する。 As shown in FIG. 9, the incident light incident on the polarizing plate 18 from the maximum absorption direction is such that the S wave S 2a is larger than the P wave P 2a. The polarizing plate 18 absorbs the S wave S 2a in the incident light.
 この結果、最大吸収方向に関して、偏光板18からの出射光におけるP波P3a及びS波S3aは、光学素子1Cへの入射光LにおけるP波P1a及びS波S1bよりも大幅に小さくなる。 As a result, with respect to the maximum absorption direction, the P wave P 3a and the S wave S 3a in the light emitted from the polarizing plate 18 are significantly smaller than the P wave P 1a and the S wave S 1b in the incident light L to the optical element 1C. Become.
 尚、偏光板18は、最小吸収方向から偏光板18に入射する入射光のS波S2bも吸収する。このため、最小吸収方向に関して、偏光板18からの出射光におけるS波S3bは、光学素子1Cへの入射光LにおけるS波S1bよりも大幅に小さくなる。 The polarizing plate 18 also absorbs the S wave S 2b of the incident light incident on the polarizing plate 18 from the minimum absorption direction. Therefore, with respect to the minimum absorption direction, the S wave S 3b in the light emitted from the polarizing plate 18 is significantly smaller than the S wave S 1b in the incident light L to the optical element 1C.
 [実施形態4]
 図10を参照して、本発明の実施形態4に係る光学素子1Dについて説明する。図10は、光学素子1Dの第一状態を示す断面図である。
[Embodiment 4]
The optical element 1D according to the fourth embodiment of the present invention will be described with reference to FIG. FIG. 10 is a cross-sectional view showing the first state of the optical element 1D.
 本実施形態に係る光学素子1Dも、電圧の印加の有無に応じて、液晶層14Bに存在する液晶分子141及び二色性色素142の配向状態を変えることにより、吸収率に関する異方性を有する第一状態と、吸収率に関する異方性を有していない第二状態とを切り替える。 The optical element 1D according to the present embodiment also has anisotropy regarding the absorption rate by changing the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 present in the liquid crystal layer 14B depending on the presence or absence of voltage application. It switches between the first state and the second state, which has no anisotropy with respect to absorption.
 光学素子1Dは、表面(第一面)から裏面(第二面)に向かって順に、第一基板11、第一電極12、第一配向膜13B、液晶層14B、第二配向膜15B、第二電極16、第二基板17、及び偏光板18を有する。 The optical element 1D has a first substrate 11, a first electrode 12, a first alignment film 13B, a liquid crystal layer 14B, a second alignment film 15B, and a first surface in this order from the front surface (first surface) to the back surface (second surface). It has two electrodes 16, a second substrate 17, and a polarizing plate 18.
 第一基板11、第一電極12、第一配向膜13B、液晶層14B、第二配向膜15B、第二電極16、及び第二基板17の構造は、実施形態2と同様である。 The structures of the first substrate 11, the first electrode 12, the first alignment film 13B, the liquid crystal layer 14B, the second alignment film 15B, the second electrode 16, and the second substrate 17 are the same as those in the second embodiment.
 よって、本実施形態の光学素子1Dにおいて、第一基板11、第一電極12、第一配向膜13B、液晶層14B、第二配向膜15B、第二電極16、及び第二基板17により構成される光学素子は、実施形態2の光学素子1Bと同様の作用及び効果を奏する。 Therefore, the optical element 1D of the present embodiment is composed of the first substrate 11, the first electrode 12, the first alignment film 13B, the liquid crystal layer 14B, the second alignment film 15B, the second electrode 16, and the second substrate 17. The optical element has the same operation and effect as the optical element 1B of the second embodiment.
 又、偏光板18は、実施形態3の偏光板18と同様である。このような本実施形態の光学素子1Dは、光学素子1Dの第一状態において、入射角θが+φに等しい入射光(つまり、最大吸収方向から光学素子1Dに入射する入射光)の垂直成分及び水平成分を吸収することができる。 Further, the polarizing plate 18 is the same as the polarizing plate 18 of the third embodiment. The optical element 1D of this embodiment as described above, in a first state of the optical element 1D, the vertical component of the incident angle θ is + phi 4 equal incident light (i.e., light incident from the maximum absorption direction to the optical element 1D) And can absorb horizontal components.
 [実施形態5]
 図11を参照して、本発明の実施形態5に係る光学素子1Eについて説明する。図11は、光学素子1Eの第一状態を示す断面図である。
[Embodiment 5]
The optical element 1E according to the fifth embodiment of the present invention will be described with reference to FIG. FIG. 11 is a cross-sectional view showing the first state of the optical element 1E.
 本実施形態に係る光学素子1Eも、電圧の印加の有無に応じて、液晶層14Bに存在する液晶分子141及び二色性色素142の配向状態を変えることにより、吸収率に関する異方性を有する第一状態と、吸収率に関する異方性を有していない第二状態とを切り替える。 The optical element 1E according to the present embodiment also has anisotropy regarding the absorption rate by changing the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 present in the liquid crystal layer 14B depending on the presence or absence of voltage application. It switches between the first state and the second state, which has no anisotropy with respect to absorption.
 光学素子1Eは、表面(第一面)から裏面(第二面)に向かって順に、第一素子101e、半波長板19、及び第二素子102eを有する。 The optical element 1E has a first element 101e, a half-wave plate 19, and a second element 102e in this order from the front surface (first surface) to the back surface (second surface).
 第一素子101eは、表面から裏面に向かって順に、第一基板11、第一電極12、第一配向膜13B、液晶層14B、第二配向膜15B、第二電極16、及び第二基板17を有する。第一素子101eの構造は、実施形態2の光学素子1Bと同様である。従って、第一素子101eは、光学素子1Bと同様の作用及び効果を奏する。 The first element 101e has a first substrate 11, a first electrode 12, a first alignment film 13B, a liquid crystal layer 14B, a second alignment film 15B, a second electrode 16, and a second substrate 17 in order from the front surface to the back surface. Has. The structure of the first element 101e is the same as that of the optical element 1B of the second embodiment. Therefore, the first element 101e has the same operation and effect as the optical element 1B.
 又、第二素子102eは、表面から裏面に向かって順に、第一基板11、第一電極12、第一配向膜13B、液晶層14B、第二配向膜15B、第二電極16、及び第二基板17を有する。第二素子102eの構造も、実施形態2の光学素子1Bと同様である。従って、第一素子101eは、光学素子1Bと同様の作用及び効果を奏する。 Further, the second element 102e has the first substrate 11, the first electrode 12, the first alignment film 13B, the liquid crystal layer 14B, the second alignment film 15B, the second electrode 16, and the second in order from the front surface to the back surface. It has a substrate 17. The structure of the second element 102e is also the same as that of the optical element 1B of the second embodiment. Therefore, the first element 101e has the same operation and effect as the optical element 1B.
 尚、第一素子101eの液晶層14Bは、第一液晶セルの一例に該当する。又、第二素子102eの液晶層14Bは、第二液晶セルの一例に該当する。 The liquid crystal layer 14B of the first element 101e corresponds to an example of the first liquid crystal cell. Further, the liquid crystal layer 14B of the second element 102e corresponds to an example of the second liquid crystal cell.
 又、第一素子101eの第一電極12及び第二電極16は、一対の第一透明電極の一例に該当する。一対の第一透明電極は、第一液晶セルを、直接的又は間接的に挟持している。又、第二素子102eの第一電極12及び第二電極16は、一対の第二透明電極の一例に該当する。一対の第二透明電極は、第二液晶セルを直接的又は間接的に挟持している。 Further, the first electrode 12 and the second electrode 16 of the first element 101e correspond to an example of a pair of first transparent electrodes. The pair of first transparent electrodes directly or indirectly sandwich the first liquid crystal cell. Further, the first electrode 12 and the second electrode 16 of the second element 102e correspond to an example of a pair of second transparent electrodes. The pair of second transparent electrodes directly or indirectly sandwich the second liquid crystal cell.
 又、第一素子101eの第一配向膜13B及び第二配向膜15Bは、一対の第一斜め配向膜の一例に該当する。一対の第一斜め配向膜は、第一液晶セルを直接的又は間接的に挟持している。又、第二素子102eの第一配向膜13B及び第二配向膜15Bは、一対の第二斜め配向膜の一例に該当する。一対の第二斜め配向膜は、第二液晶セルを直接的又は間接的に挟持している。 Further, the first alignment film 13B and the second alignment film 15B of the first element 101e correspond to an example of a pair of first diagonal alignment films. The pair of first diagonal alignment films directly or indirectly sandwich the first liquid crystal cell. Further, the first alignment film 13B and the second alignment film 15B of the second element 102e correspond to an example of a pair of second diagonal alignment films. The pair of second diagonally oriented films directly or indirectly sandwich the second liquid crystal cell.
 半波長板19は、第一素子101eと第二素子102eとの間に設けられている。半波長板19の表面は、第一素子101eの裏面に、第一接着層20を介して固定されている。半波長板19の裏面は、第二素子102eの表面に、第二接着層21を介して固定されている。 The half-wave plate 19 is provided between the first element 101e and the second element 102e. The front surface of the half-wave plate 19 is fixed to the back surface of the first element 101e via the first adhesive layer 20. The back surface of the half-wave plate 19 is fixed to the surface of the second element 102e via the second adhesive layer 21.
 半波長板19は、入射光のP波とS波との間に位相差π(180°)を生じさせて出力する機能を有する。このような半波長板19は、入射光のS波を、P波に変えて出射する。 The half-wave plate 19 has a function of generating a phase difference π (180 °) between the P wave and the S wave of the incident light and outputting the plate. Such a half-wave plate 19 converts the S wave of the incident light into a P wave and emits it.
 本実施形態の場合、半波長板19への入射光は、第一素子101eから出射される出射光である。 In the case of the present embodiment, the incident light on the half-wave plate 19 is the emitted light emitted from the first element 101e.
 本実施形態の場合、図12Aに示すように、最大吸収方向に関する半波長板19への入射光は、P波P2aが、S波S2aよりも小さい。又、最大吸収方向に関する半波長板19からの出射光は、P波P3aが、S波S3aよりも大きい。このように半波長板19は、半波長板19への入射光のS波を、P波に変えて出射する。 In the case of the present embodiment, as shown in FIG. 12A, the incident light on the half-wave plate 19 with respect to the maximum absorption direction is such that the P wave P 2a is smaller than the S wave S 2a. Further, as for the light emitted from the half-wave plate 19 in relation to the maximum absorption direction, the P wave P 3a is larger than the S wave S 3a. In this way, the half-wave plate 19 converts the S wave of the incident light on the half-wave plate 19 into a P wave and emits it.
 そして、最大吸収方向に関して、半波長板19からの出射光が第二素子102eに入射すると、図12Aに示すように、第二素子102eによりP波が吸収された出射光が、第二素子102eから出射される。 Then, when the emitted light from the half-wave plate 19 is incident on the second element 102e with respect to the maximum absorption direction, as shown in FIG. 12A, the emitted light absorbed by the second element 102e with the P wave is the second element 102e. Is emitted from.
 尚、最小吸収方向に関しては、図12Aに示すように、光学素子1Eへの入射光の光量と光学素子1Eからの出射光の光量とは、同じ又はほぼ同じである。 Regarding the minimum absorption direction, as shown in FIG. 12A, the amount of light incident on the optical element 1E and the amount of light emitted from the optical element 1E are the same or almost the same.
 このような本実施形態の場合も、光学素子1Eの第一状態において、実施形態4と同様に、光学素子1Eは、入射角θが+φに等しい入射光(つまり、最大吸収方向から光学素子1Eに入射する入射光)の垂直成分及び水平成分を吸収することができる。 In the case of this embodiment as well, in the first state of the optical element 1E, as in the fourth embodiment, the optical element 1E has an incident light having an incident angle θ equal to + φ 4 (that is, an optical element from the maximum absorption direction). It is possible to absorb the vertical component and the horizontal component of the incident light incident on 1E).
 (実施形態5に係る実施例)
 以下、既述の実施形態5に係る光学素子1Fに関する実施例について説明する。
(Example according to the fifth embodiment)
Hereinafter, examples of the optical element 1F according to the fifth embodiment described above will be described.
 (光学素子の製造について)
 先ず、それぞれが25mm×25mmのガラス板である第一基板11及び第二基板17を用意した。次に、第一基板11の表面に、ITO製の薄膜である第一電極12を形成し、第二基板17の表面にITO製の薄膜である第二電極16を形成した。
(Manufacturing of optical elements)
First, a first substrate 11 and a second substrate 17, each of which is a glass plate having a size of 25 mm × 25 mm, were prepared. Next, the first electrode 12, which is a thin film made of ITO, was formed on the surface of the first substrate 11, and the second electrode 16, which is a thin film made of ITO, was formed on the surface of the second substrate 17.
 次に、第一基板11に形成された第一電極12の表面に、垂直配向膜材料であるポリイミドと水平配向膜材料であるポリイミドとを所定の割合で混合したポリイミド溶液を塗布することにより第一薄膜を形成した。本例の場合、上記ポリイミド溶液の80%を垂直配向膜材料とし、上記ポリイミド溶液の20%を水平配向膜材料とした。又、第一薄膜の厚さは、100nmとした。 Next, the surface of the first electrode 12 formed on the first substrate 11 is coated with a polyimide solution in which polyimide as a vertical alignment film material and polyimide as a horizontal alignment film material are mixed at a predetermined ratio. A thin film was formed. In the case of this example, 80% of the polyimide solution was used as a vertical alignment film material, and 20% of the polyimide solution was used as a horizontal alignment film material. The thickness of the first thin film was 100 nm.
 次に、第二基板17に形成された第二電極16の表面にも、上記ポリイミド溶液を塗布することにより第二薄膜を形成した。第二薄膜の厚さは、100nmとした。 Next, a second thin film was formed by applying the above-mentioned polyimide solution to the surface of the second electrode 16 formed on the second substrate 17. The thickness of the second thin film was 100 nm.
 次に、第一基板11に形成された第一薄膜の表面に、液晶材料の配向処理であるラビング処理を施すことにより、第一配向膜13Bを形成した。又、第二基板17に形成された第二薄膜の表面にもラビング処理を施して、第二配向膜15を形成した。ここで、第一配向膜13B及び第二配向膜15Bのプレチルト角が25°であることを確認した。 Next, the surface of the first thin film formed on the first substrate 11 was subjected to a rubbing treatment, which is an alignment treatment of the liquid crystal material, to form the first alignment film 13B. Further, the surface of the second thin film formed on the second substrate 17 was also subjected to a rubbing treatment to form the second alignment film 15. Here, it was confirmed that the pretilt angles of the first alignment film 13B and the second alignment film 15B were 25 °.
 次に、第一基板11と第二基板17とを、第一配向膜13と第二配向膜15とが向き合うように組み合わせた。第一基板11と第二基板17とが組み合わされた状態で、第一配向膜13のラビング処理の方向と第二配向膜15のラビング処理の方向(以下、単に、ラビング方向と称する。)とを、平行且つ逆方向とした。 Next, the first substrate 11 and the second substrate 17 were combined so that the first alignment film 13 and the second alignment film 15 face each other. With the first substrate 11 and the second substrate 17 combined, the direction of the rubbing treatment of the first alignment film 13 and the direction of the rubbing treatment of the second alignment film 15 (hereinafter, simply referred to as the rubbing direction). Was parallel and opposite.
 次に、第一基板11において第二基板17と対向する面の外縁近傍と、第二基板17において第一基板11と対向する面の外縁近傍との間に、直径5μmのシリカスペーサーを分散配置した接着剤を塗布することにより、第一基板11と第二基板17とを固定した。第一基板11と第二基板17とが固定された状態で、第一配向膜13Bと第二配向膜15Bとの距離を、5μmとした。 Next, silica spacers having a diameter of 5 μm are dispersed and arranged between the vicinity of the outer edge of the surface facing the second substrate 17 on the first substrate 11 and the vicinity of the outer edge of the surface facing the first substrate 11 on the second substrate 17. The first substrate 11 and the second substrate 17 were fixed by applying the adhesive. With the first substrate 11 and the second substrate 17 fixed, the distance between the first alignment film 13B and the second alignment film 15B was set to 5 μm.
 次に、第一基板11と第二基板17とが固定された状態で、第一配向膜13Bと第二配向膜15Bとの間に、液晶性組成物を、毛細管現象を利用して注入した。液晶性組成物として、ネマティック液晶材料ZLI-4792(メルク社製)に2色性黒色色素NKX-4173((株)林原製)を1wt%添加した液晶性組成物を使用した。 Next, with the first substrate 11 and the second substrate 17 fixed, a liquid crystal composition was injected between the first alignment film 13B and the second alignment film 15B by utilizing the capillary phenomenon. .. As the liquid crystal composition, a liquid crystal composition in which 1 wt% of a bicolor black dye NKX-4173 (manufactured by Hayashibara Co., Ltd.) was added to the nematic liquid crystal material ZLI-4792 (manufactured by Merck) was used.
 上記方法により、第一素子101e及び第二素子102eを作製した。次に、第一素子101eの裏面(図11における下面)に半波長板としての特性を有するセロハン粘着テープNO.405(ニチバン社製)を延伸方向が第一素子101eのラビング方向に対して45°傾斜するように貼付した。このセロハン粘着テープが、半波長板19である。 The first element 101e and the second element 102e were manufactured by the above method. Next, a cellophane adhesive tape NO.405 (manufactured by Nichiban Co., Ltd.) having a characteristic as a half-wave plate is stretched on the back surface (lower surface in FIG. 11) of the first element 101e in a stretching direction 45 with respect to the rubbing direction of the first element 101e. ° Attached so that it is tilted. This cellophane adhesive tape is the half-wave plate 19.
 そして、第二素子102eの表面を、第一素子101eの裏面(図11における下面)に、上記セロハン粘着テープを介して、固定することにより、光学素子1Eを作製した。第二素子102eが第一素子101eに固定された状態で、第一素子101eにおける第一配向膜13Bのラビング方向を、第二素子102eにおける第一配向膜13Bのラビング方向と平行且つ同じ向きとした。 Then, the optical element 1E was manufactured by fixing the front surface of the second element 102e to the back surface of the first element 101e (lower surface in FIG. 11) via the cellophane adhesive tape. With the second element 102e fixed to the first element 101e, the rubbing direction of the first alignment film 13B in the first element 101e is parallel to and the same direction as the rubbing direction of the first alignment film 13B in the second element 102e. did.
 このようにして作製した光学素子1Eを用いて、第一素子101e及び第二素子102eにおける第一配向膜13B及び第二配向膜15Bのラビング方向と平行な方向の透過率の入射角依存性を測定した。尚、第一素子101f及び第二素子102fのラビング方向をマイナス方向とした。 Using the optical element 1E thus produced, the incident angle dependence of the transmittance in the direction parallel to the rubbing direction of the first alignment film 13B and the second alignment film 15B in the first element 101e and the second element 102e is determined. It was measured. The rubbing direction of the first element 101f and the second element 102f was set to the minus direction.
 図12Bには、上記測定の結果が示されている。図12Bにおいて、横軸は入射角を示しており、縦軸は透過率を示している。図12Bに示すように、入射角が-30°の入射光に対する透過率が35%であり、入射角が+30°の入射光に対する透過率が18%であるため、光学素子1Eは、非対称な透過率の入射角依存性を有している。 FIG. 12B shows the result of the above measurement. In FIG. 12B, the horizontal axis represents the incident angle and the vertical axis represents the transmittance. As shown in FIG. 12B, the optical element 1E is asymmetric because the transmittance for the incident light having an incident angle of −30 ° is 35% and the transmittance for the incident light having an incident angle of + 30 ° is 18%. It has an incident angle dependence of the transmittance.
 尚、図13は、実施形態5の変形例の一例を示す図である。この変形例に係る光学素子1Ebは、図11に示す光学素子1Eのうち、第一素子101eの第二基板17、第二素子102eの第一基板11、第一接着層20、及び第二接着層21が省略されている。このような変形例の光学素子1Ebによれば、部品点数が少なくなるため、製造コストが低くなる。その他の光学素子1Ebの構造、作用、及び効果は、光学素子1Eと同様である。 Note that FIG. 13 is a diagram showing an example of a modification of the fifth embodiment. Among the optical elements 1E shown in FIG. 11, the optical element 1Eb according to this modification is the second substrate 17 of the first element 101e, the first substrate 11 of the second element 102e, the first adhesive layer 20, and the second adhesive. Layer 21 is omitted. According to the optical element 1Eb of such a modification, the number of parts is reduced, so that the manufacturing cost is low. The structure, action, and effect of the other optical elements 1Eb are the same as those of the optical element 1E.
 [実施形態6]
 図14Aを参照して、本発明の実施形態6に係る光学素子1Fについて説明する。図14Aは、光学素子1Fの第一状態を示す断面図である。
[Embodiment 6]
The optical element 1F according to the sixth embodiment of the present invention will be described with reference to FIG. 14A. FIG. 14A is a cross-sectional view showing the first state of the optical element 1F.
 本実施形態に係る光学素子1Fも、電圧の印加の有無に応じて、液晶層14に存在する液晶分子141及び二色性色素142の配向状態を変えることにより、吸収率に関する異方性を有する第一状態と、吸収率に関する異方性を有していない第二状態とを切り替える。 The optical element 1F according to the present embodiment also has anisotropy regarding the absorption rate by changing the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 existing in the liquid crystal layer 14 depending on the presence or absence of voltage application. It switches between the first state and the second state, which has no anisotropy with respect to absorption.
 光学素子1Fは、表面(第一面)から裏面(第二面)に向かって順に、第一素子101f、半波長板19、及び第二素子102fを有する。 The optical element 1F has a first element 101f, a half-wave plate 19, and a second element 102f in this order from the front surface (first surface) to the back surface (second surface).
 第一素子101fは、表面から裏面に向かって順に、第一基板11、第一電極12、第一配向膜13、液晶層14、第二配向膜15、第二電極16、及び第二基板17を有する。第一素子101fの構造は、実施形態1の光学素子1と同様である。従って、第一素子101fは、光学素子1と同様の作用及び効果を奏する。 The first element 101f has a first substrate 11, a first electrode 12, a first alignment film 13, a liquid crystal layer 14, a second alignment film 15, a second electrode 16, and a second substrate 17 in this order from the front surface to the back surface. Has. The structure of the first element 101f is the same as that of the optical element 1 of the first embodiment. Therefore, the first element 101f has the same operation and effect as the optical element 1.
 又、第二素子102fは、表面から裏面に向かって順に、第一基板11、第一電極12、第一配向膜13、液晶層14、第二配向膜15、第二電極16、及び第二基板17を有する。第二素子102eの構造も、実施形態1の光学素子1と同様である。従って、第二素子102fは、光学素子1と同様の作用及び効果を奏する。 Further, the second element 102f has a first substrate 11, a first electrode 12, a first alignment film 13, a liquid crystal layer 14, a second alignment film 15, a second electrode 16, and a second electrode in this order from the front surface to the back surface. It has a substrate 17. The structure of the second element 102e is also the same as that of the optical element 1 of the first embodiment. Therefore, the second element 102f has the same operation and effect as the optical element 1.
 半波長板19は、第一素子101fと第二素子102fとの間に設けられており、実施形態5における光学素子1Eの半波長板19と同様である。半波長板19の表面は、第一素子101fの裏面に、第一接着層20を介して固定されている。半波長板19の裏面は、第二素子102fの表面に、第二接着層21を介して固定されている。 The half-wave plate 19 is provided between the first element 101f and the second element 102f, and is the same as the half-wave plate 19 of the optical element 1E in the fifth embodiment. The front surface of the half-wave plate 19 is fixed to the back surface of the first element 101f via the first adhesive layer 20. The back surface of the half-wave plate 19 is fixed to the surface of the second element 102f via the second adhesive layer 21.
 このような本実施形態の場合も、実施形態5の光学素子1Eと同様に、光学素子1Fの第一状態において、図14Aにおいて入射角に関する+側から光学素子1Fに入射する入射光L(例えば、図14Aの入射光L)のP波だけでなく、S波も吸収できる。 In the case of this embodiment as well, similarly to the optical element 1E of the fifth embodiment, in the first state of the optical element 1F, the incident light L incident on the optical element 1F from the + side with respect to the incident angle in FIG. 14A (for example, not only P-wave of the incident light L 1) of FIG. 14A, can absorb the S wave.
 (実施形態6に係る実施例1)
 以下、既述の実施形態6に係る光学素子1Fに関する実施例1について説明する。
(Example 1 according to the sixth embodiment)
Hereinafter, Example 1 relating to the optical element 1F according to the above-described 6th embodiment will be described.
 (光学素子の製造について)
 先ず、それぞれが25mm×25mmのガラス板である第一基板11及び第二基板17を用意した。次に、第一基板11の表面に、ITO製の薄膜である第一電極12を形成し、第二基板17の表面にITO製の薄膜である第二電極16を形成した。
(Manufacturing of optical elements)
First, a first substrate 11 and a second substrate 17, each of which is a glass plate having a size of 25 mm × 25 mm, were prepared. Next, the first electrode 12, which is a thin film made of ITO, was formed on the surface of the first substrate 11, and the second electrode 16, which is a thin film made of ITO, was formed on the surface of the second substrate 17.
 次に、第一基板11に形成された第一電極12の表面に、垂直配向膜材料であるポリイミドSE04811(日産化学社製)からなる第一薄膜を形成した。第一薄膜の厚さは、100nmとした。 Next, a first thin film made of polyimide SE04811 (manufactured by Nissan Chemical Industries, Ltd.), which is a vertical alignment film material, was formed on the surface of the first electrode 12 formed on the first substrate 11. The thickness of the first thin film was 100 nm.
 又、第二基板17に形成された第二電極16の表面に、水平配向ポリイミド膜材料からなる薄膜である第二薄膜を形成した。第二薄膜の厚さは、100nmとした。 Further, a second thin film made of a horizontally oriented polyimide film material was formed on the surface of the second electrode 16 formed on the second substrate 17. The thickness of the second thin film was 100 nm.
 次に、第一基板11に形成された第一薄膜の表面に、液晶材料の配向処理であるラビング処理を施すことにより、第一配向膜13を形成した。又、第二基板17に形成された第二薄膜の表面に、液晶分子141及び二色性色素142のプレチルト角が6°になるようにラビング処理を施して、第二配向膜15を形成した。 Next, the surface of the first thin film formed on the first substrate 11 was subjected to a rubbing treatment, which is an alignment treatment of the liquid crystal material, to form the first alignment film 13. Further, the surface of the second thin film formed on the second substrate 17 was subjected to a rubbing treatment so that the pretilt angle of the liquid crystal molecules 141 and the dichroic dye 142 was 6 ° to form the second alignment film 15. ..
 次に、第一基板11と第二基板17とを、第一配向膜13と第二配向膜15とが向き合うように組み合わせた。第一基板11と第二基板17とが組み合わされた状態で、第一配向膜13のラビング処理の方向と第二配向膜15のラビング処理の方向(以下、単に、ラビング方向と称する。)とを、平行且つ逆方向とした。 Next, the first substrate 11 and the second substrate 17 were combined so that the first alignment film 13 and the second alignment film 15 face each other. With the first substrate 11 and the second substrate 17 combined, the direction of the rubbing treatment of the first alignment film 13 and the direction of the rubbing treatment of the second alignment film 15 (hereinafter, simply referred to as the rubbing direction). Was parallel and opposite.
 次に、第一基板11において第二基板17と対向する面の外縁近傍と、第二基板17において第一基板11と対向する面の外縁近傍との間に、直径5μmのシリカスペーサーを分散配置した接着剤を塗布することにより、第一基板11と第二基板17とを固定した。第一基板11と第二基板17とが固定された状態で、第一配向膜13と第二配向膜15との距離を、5μmとした。 Next, silica spacers having a diameter of 5 μm are dispersed and arranged between the vicinity of the outer edge of the surface facing the second substrate 17 on the first substrate 11 and the vicinity of the outer edge of the surface facing the first substrate 11 on the second substrate 17. The first substrate 11 and the second substrate 17 were fixed by applying the adhesive. With the first substrate 11 and the second substrate 17 fixed, the distance between the first alignment film 13 and the second alignment film 15 was set to 5 μm.
 次に、第一基板11と第二基板17とが固定された状態で、第一配向膜13と第二配向膜15との間に、液晶性組成物を、毛細管現象を利用して注入した。液晶性組成物として、ネマティック液晶材料ZLI-4792(メルク社製)に2色性黒色色素NKX-4173((株)林原製)を1wt%添加した液晶性組成物を使用した。 Next, with the first substrate 11 and the second substrate 17 fixed, a liquid crystal composition was injected between the first alignment film 13 and the second alignment film 15 by utilizing the capillary phenomenon. .. As the liquid crystal composition, a liquid crystal composition in which 1 wt% of a bicolor black dye NKX-4173 (manufactured by Hayashibara Co., Ltd.) was added to the nematic liquid crystal material ZLI-4792 (manufactured by Merck) was used.
 上記方法により、第一素子101f及び第二素子102fを作製した。次に、第一素子101fの裏面(図14Aにおける下面)に半波長板としての特性を有するセロハン粘着テープNO.405(ニチバン社製)を延伸方向が第一素子101fのラビング方向に対して45°傾斜するように貼付した。このセロハン粘着テープが、半波長板19である。 The first element 101f and the second element 102f were manufactured by the above method. Next, a cellophane adhesive tape NO.405 (manufactured by Nichiban Co., Ltd.) having a characteristic as a half-wave plate is placed on the back surface (lower surface in FIG. 14A) of the first element 101f in a stretching direction 45 with respect to the rubbing direction of the first element 101f. ° Attached so that it is tilted. This cellophane adhesive tape is the half-wave plate 19.
 そして、第二素子102fの表面を、第一素子101fの裏面(図14Aにおける下面)に、上記セロハン粘着テープを介して、固定することにより、光学素子1Fを作製した。第二素子102fが第一素子101fに固定された状態で、第一素子101fにおける第一配向膜13のラビング方向は、第二素子102fにおける第一配向膜13のラビング方向と平行且つ同じ向きである。 Then, the optical element 1F was manufactured by fixing the front surface of the second element 102f to the back surface of the first element 101f (lower surface in FIG. 14A) via the cellophane adhesive tape. With the second element 102f fixed to the first element 101f, the rubbing direction of the first alignment film 13 in the first element 101f is parallel to and in the same direction as the rubbing direction of the first alignment film 13 in the second element 102f. be.
 このようにして作製した光学素子1Fを用いて、第一素子101f及び第二素子102fにおける第一配向膜13及び第二配向膜15のラビング方向と平行な方向の透過率の入射角依存性を測定した(以下、この測定を測定1と称する)。尚、第一素子101f及び第二素子102fのラビング方向をマイナス方向としている。 Using the optical element 1F thus produced, the incident angle dependence of the transmittance in the direction parallel to the rubbing direction of the first alignment film 13 and the second alignment film 15 in the first element 101f and the second element 102f is determined. It was measured (hereinafter, this measurement is referred to as measurement 1). The rubbing direction of the first element 101f and the second element 102f is set to the minus direction.
 図14Bには、上記測定1の結果が示されている。図14Bにおいて、横軸は入射角を示しており、縦軸は透過率を示している。図14Bに示すように、入射角が-45°の入射光に対する透過率が35%であり、入射角が+45°の入射光に対する透過率が20%であるため、光学素子1Fは、非対称な透過率の入射角依存性を有している。 FIG. 14B shows the result of the above measurement 1. In FIG. 14B, the horizontal axis represents the incident angle and the vertical axis represents the transmittance. As shown in FIG. 14B, the optical element 1F is asymmetric because the transmittance for the incident light having an incident angle of −45 ° is 35% and the transmittance for the incident light having an incident angle of + 45 ° is 20%. It has an incident angle dependence of the transmittance.
 (実施形態6に係る実施例2)
 次に、実施形態6に係る光学素子1Fに関する実施例2について説明する。
(Example 2 according to the sixth embodiment)
Next, Example 2 regarding the optical element 1F according to the sixth embodiment will be described.
 (光学素子の製造について)
 液晶性組成物ZLI-4792に対する2色性色素の濃度を3wt%にしたこと以外は、既述の実施例1と同様の方法で、光学素子1Fを作製した。そして、光学素子1Fを用いて、第一素子101f及び第二素子102fにおける第一配向膜13及び第二配向膜15のラビング方向と平行な方向の透過率の入射角依存性を測定した(以下、この測定を測定2-1と称する)。
(Manufacturing of optical elements)
The optical element 1F was produced by the same method as in Example 1 described above, except that the concentration of the dichroic dye with respect to the liquid crystal composition ZLI-4792 was set to 3 wt%. Then, using the optical element 1F, the incident angle dependence of the transmittance in the direction parallel to the rubbing direction of the first alignment film 13 and the second alignment film 15 in the first element 101f and the second element 102f was measured (hereinafter,). , This measurement is referred to as measurement 2-1).
 図14Bには、上記測定2-1の結果が示されている。図14Bに示すように、入射角が―45°の入射光に対する透過率が19%であり、入射角が+45°の入射光に対する透過率が6%であるため、本例の光学素子1Fも、非対称な透過率の入射角依存性を有している。 FIG. 14B shows the result of the above measurement 2-1. As shown in FIG. 14B, the transmittance for incident light having an incident angle of −45 ° is 19%, and the transmittance for incident light having an incident angle of + 45 ° is 6%. Therefore, the optical element 1F of this example also has a transmittance of 6%. , Has an asymmetric transmittance incident angle dependence.
 又、本例の光学素子1Fに印加する印加電圧を0V、1V、3V、5V、10Vとした場合の、第一素子101f及び第二素子102fにおける第一配向膜13及び第二配向膜15のラビング方向と平行な方向の透過率の入射角依存性を測定した(以下、この測定を測定2-2と称する)。図14Cには、上記測定2-2の結果が示されている。電圧印加により、光学素子1Fにおける透過率の入射角依存性がなくなり、非対称性が失われている。 Further, when the applied voltage applied to the optical element 1F of this example is 0V, 1V, 3V, 5V, 10V, the first alignment film 13 and the second alignment film 15 in the first element 101f and the second element 102f The incident angle dependence of the transmittance in the direction parallel to the rubbing direction was measured (hereinafter, this measurement is referred to as measurement 2-2). FIG. 14C shows the result of the above measurement 2-2. By applying a voltage, the incident angle dependence of the transmittance in the optical element 1F disappears, and the asymmetry is lost.
 (実施形態6に係る実施例3)
 次に、実施形態6に係る光学素子1Fに関する実施例3について説明する。
(Example 3 according to the sixth embodiment)
Next, Example 3 regarding the optical element 1F according to the sixth embodiment will be described.
 (光学素子の製造について)
 液晶性組成物ZLI-4792に対する2色性色素の濃度を5wt%にしたこと以外は、既述の実施例1と同様の方法で、光学素子1Fを作製した。そして、光学素子1Fを用いて、第一素子101f及び第二素子102fにおける第一配向膜13及び第二配向膜15のラビング方向と平行な方向の透過率の入射角依存性を測定した(以下、この測定を測定3と称する)。
(Manufacturing of optical elements)
The optical element 1F was produced by the same method as in Example 1 described above, except that the concentration of the dichroic dye with respect to the liquid crystal composition ZLI-4792 was set to 5 wt%. Then, using the optical element 1F, the incident angle dependence of the transmittance in the direction parallel to the rubbing direction of the first alignment film 13 and the second alignment film 15 in the first element 101f and the second element 102f was measured (hereinafter,). , This measurement is referred to as measurement 3).
 図14Bには、上記測定3の結果が示されている。図14Bに示すように、入射角が―45°の入射光に対する透過率が7%であり、入射角が+45°の入射光に対する透過率が1%であるため、本例の光学素子1Fも、非対称な透過率の入射角依存性を有している。 FIG. 14B shows the result of the above measurement 3. As shown in FIG. 14B, the transmittance for incident light having an incident angle of −45 ° is 7%, and the transmittance for incident light having an incident angle of + 45 ° is 1%. Therefore, the optical element 1F of this example also has a transmittance of 1%. , Has an asymmetric transmittance incident angle dependence.
 尚、図15は、実施形態6の変形例の一例を示す図である。この変形例に係る光学素子1Fbは、図14Aに示す光学素子1Fのうち、第一素子101fの第二基板17、第二素子102fの第一基板11、第一接着層20、及び第二接着層21が省略されている。このような変形例の光学素子1Fbによれば、部品点数が少なくなるため、製造コストが低くなる。その他の光学素子1Fbの構造、作用、及び効果は、光学素子1Fと同様である。 Note that FIG. 15 is a diagram showing an example of a modification of the sixth embodiment. Among the optical elements 1F shown in FIG. 14A, the optical element 1Fb according to this modification is the second substrate 17 of the first element 101f, the first substrate 11 of the second element 102f, the first adhesive layer 20, and the second adhesive. Layer 21 is omitted. According to the optical element 1Fb of such a modification, the number of parts is reduced, so that the manufacturing cost is low. The structure, action, and effect of the other optical elements 1Fb are the same as those of the optical element 1F.
 [実施形態7]
 図16を参照して、本発明の実施形態7に係る光学素子1Gについて説明する。図16は、光学素子1Gの断面図である。
[Embodiment 7]
The optical element 1G according to the seventh embodiment of the present invention will be described with reference to FIG. FIG. 16 is a cross-sectional view of the optical element 1G.
 本実施形態の場合、光学素子1Gは、電圧の印加の有無に応じて、状態を切り替える機能を備えていない。従って、光学素子1Gの液晶層14は、常時同じ配向状態である。 In the case of the present embodiment, the optical element 1G does not have a function of switching the state depending on whether or not a voltage is applied. Therefore, the liquid crystal layer 14 of the optical element 1G is always in the same orientation state.
 光学素子1Gは、実施形態1の光学素子1から第一電極12及び第二電極16を省略した構造を有する。具体的には、光学素子1Gは、表面から裏面に向かって順に、第一基板11、第一配向膜13、液晶層14、第二配向膜15、及び第二基板17を有する。 The optical element 1G has a structure in which the first electrode 12 and the second electrode 16 are omitted from the optical element 1 of the first embodiment. Specifically, the optical element 1G has a first substrate 11, a first alignment film 13, a liquid crystal layer 14, a second alignment film 15, and a second substrate 17 in this order from the front surface to the back surface.
 光学素子1Gの第一基板11、第一配向膜13、液晶層14、第二配向膜15、及び第二基板17は、実施形態1の光学素子1における第一基板11、第一配向膜13、液晶層14、第二配向膜15、及び第二基板17と同様である。 The first substrate 11, the first alignment film 13, the liquid crystal layer 14, the second alignment film 15, and the second substrate 17 of the optical element 1G are the first substrate 11, the first alignment film 13 in the optical element 1 of the first embodiment. , The liquid crystal layer 14, the second alignment film 15, and the second substrate 17.
 以上のような構成を有する光学素子1Gにおける液晶層14の配向状態は、実施形態1の光学素子1の第一状態における液晶層14の配向状態と同様である。よって、光学素子1Gは、実施形態1の光学素子1の第一状態と同様の作用及び効果を奏する。 The orientation state of the liquid crystal layer 14 in the optical element 1G having the above configuration is the same as the orientation state of the liquid crystal layer 14 in the first state of the optical element 1 of the first embodiment. Therefore, the optical element 1G has the same operation and effect as the first state of the optical element 1 of the first embodiment.
 [実施形態8]
 図17を参照して、本発明の実施形態8に係る光学素子1Hについて説明する。図17は、光学素子1Hの断面図である。
[Embodiment 8]
The optical element 1H according to the eighth embodiment of the present invention will be described with reference to FIG. FIG. 17 is a cross-sectional view of the optical element 1H.
 本実施形態の場合、光学素子1Hは、電圧の印加の有無に応じて、状態を切り替える機能を備えていない。従って、光学素子1Hの液晶層14Bは、常時同じ配向状態である。 In the case of the present embodiment, the optical element 1H does not have a function of switching the state depending on whether or not a voltage is applied. Therefore, the liquid crystal layer 14B of the optical element 1H is always in the same orientation state.
 光学素子1Hは、実施形態2の光学素子1Bから第一電極12及び第二電極16を省略した構造を有する。具体的には、光学素子1Hは、表面(第一面)から裏面(第二面)に向かって順に、第一基板11、第一配向膜13B、液晶層14B、第二配向膜15B、及び第二基板17を有する。 The optical element 1H has a structure in which the first electrode 12 and the second electrode 16 are omitted from the optical element 1B of the second embodiment. Specifically, the optical element 1H has the first substrate 11, the first alignment film 13B, the liquid crystal layer 14B, the second alignment film 15B, and the like in order from the front surface (first surface) to the back surface (second surface). It has a second substrate 17.
 光学素子1Hの第一基板11、第一配向膜13B、液晶層14B、第二配向膜15B、及び第二基板17は、実施形態2の光学素子1Bにおける第一基板11、第一配向膜13B、液晶層14B、第二配向膜15B、及び第二基板17と同様である。 The first substrate 11, the first alignment film 13B, the liquid crystal layer 14B, the second alignment film 15B, and the second substrate 17 of the optical element 1H are the first substrate 11, the first alignment film 13B in the optical element 1B of the second embodiment. , The liquid crystal layer 14B, the second alignment film 15B, and the second substrate 17.
 以上のような構成を有する光学素子1Hの液晶層14Bの配向状態は、実施形態2の光学素子1Bの第一状態における液晶層14Bの配向状態と同様である。よって、光学素子1Hは、実施形態2の光学素子1Bの第一状態と同様の作用及び効果を奏する。 The orientation state of the liquid crystal layer 14B of the optical element 1H having the above configuration is the same as the orientation state of the liquid crystal layer 14B in the first state of the optical element 1B of the second embodiment. Therefore, the optical element 1H has the same operation and effect as the first state of the optical element 1B of the second embodiment.
 [実施形態9]
 図18を参照して、本発明の実施形態9に係る光学素子1Jについて説明する。図18は、光学素子1Jの断面図である。
[Embodiment 9]
The optical element 1J according to the ninth embodiment of the present invention will be described with reference to FIG. FIG. 18 is a cross-sectional view of the optical element 1J.
 本実施形態の場合、光学素子1Jは、電圧の印加の有無に応じて、状態を切り替える機能を備えていない。従って、光学素子1Jの液晶層14Bは、常時同じ配向状態である。 In the case of this embodiment, the optical element 1J does not have a function of switching the state depending on whether or not a voltage is applied. Therefore, the liquid crystal layer 14B of the optical element 1J is always in the same orientation state.
 光学素子1Jは、実施形態5の光学素子1Eにおける第一素子101e及び第二素子102eのそれぞれから第一電極12及び第二電極16を省略した構造を有する。 The optical element 1J has a structure in which the first electrode 12 and the second electrode 16 are omitted from each of the first element 101e and the second element 102e in the optical element 1E of the fifth embodiment.
 具体的には、光学素子1Jは、表面(第一面)から裏面(第二面)に向かって順に、第一素子101j、半波長板19、及び第二素子102jを有する。 Specifically, the optical element 1J has a first element 101j, a half-wave plate 19, and a second element 102j in this order from the front surface (first surface) to the back surface (second surface).
 第一素子101jは、表面から裏面に向かって順に、第一基板11、第一配向膜13B、液晶層14B、第二配向膜15B、及び第二基板17を有する。 The first element 101j has a first substrate 11, a first alignment film 13B, a liquid crystal layer 14B, a second alignment film 15B, and a second substrate 17 in this order from the front surface to the back surface.
 第一素子101jの第一基板11、第一配向膜13B、液晶層14B、第二配向膜15B、及び第二基板17は、実施形態5における第一素子101eの第一基板11、第一配向膜13B、液晶層14B、第二配向膜15B、及び第二基板17と同様である。 The first substrate 11, the first alignment film 13B, the liquid crystal layer 14B, the second alignment film 15B, and the second substrate 17 of the first element 101j are the first substrate 11, the first orientation of the first element 101e in the fifth embodiment. This is the same as the film 13B, the liquid crystal layer 14B, the second alignment film 15B, and the second substrate 17.
 尚、第一素子101jにおける液晶層14Bの配向状態は、常時、実施形態5の第一素子101eの第一状態における、液晶層14Bの配向状態と同様である。よって、第一素子101jは、実施形態5の第一素子101eの第一状態と同様の作用及び効果を奏する。 The orientation state of the liquid crystal layer 14B in the first element 101j is always the same as the orientation state of the liquid crystal layer 14B in the first state of the first element 101e of the fifth embodiment. Therefore, the first element 101j has the same operation and effect as the first state of the first element 101e of the fifth embodiment.
 又、第二素子102jは、表面から裏面に向かって順に、第一基板11、第一配向膜13B、液晶層14B、第二配向膜15B、及び第二基板17を有する。 Further, the second element 102j has a first substrate 11, a first alignment film 13B, a liquid crystal layer 14B, a second alignment film 15B, and a second substrate 17 in this order from the front surface to the back surface.
 第二素子102jの第一基板11、第一配向膜13B、液晶層14B、第二配向膜15B、及び第二基板17は、実施形態5における第二素子102eの第一基板11、第一配向膜13B、液晶層14B、第二配向膜15B、及び第二基板17と同様である。 The first substrate 11, the first alignment film 13B, the liquid crystal layer 14B, the second alignment film 15B, and the second substrate 17 of the second element 102j are the first substrate 11, the first orientation of the second element 102e in the fifth embodiment. This is the same as the film 13B, the liquid crystal layer 14B, the second alignment film 15B, and the second substrate 17.
 尚、第二素子102jにおける液晶層14Bの配向状態は、常時、実施形態5の第二素子102eの第一状態における、液晶層14Bの配向状態と同様である。よって、第二素子102jは、実施形態5の第二素子102eの第一状態と同様の作用及び効果を奏する。 The orientation state of the liquid crystal layer 14B in the second element 102j is always the same as the orientation state of the liquid crystal layer 14B in the first state of the second element 102e of the fifth embodiment. Therefore, the second element 102j has the same operation and effect as the first state of the second element 102e of the fifth embodiment.
 半波長板19は、実施形態5における光学素子1Eの半波長板19と同様である。 The half-wave plate 19 is the same as the half-wave plate 19 of the optical element 1E in the fifth embodiment.
 以上のような構成を有する光学素子1Jにおける液晶層14Bの配向状態はそれぞれ、実施形態5に係る光学素子1Eの第一状態における液晶層14Bの配向状態と同様である。よって、光学素子1Jは、実施形態5の光学素子1Eの第一状態と同様の作用及び効果を奏する。 The orientation state of the liquid crystal layer 14B in the optical element 1J having the above configuration is the same as the orientation state of the liquid crystal layer 14B in the first state of the optical element 1E according to the fifth embodiment. Therefore, the optical element 1J has the same operation and effect as the first state of the optical element 1E of the fifth embodiment.
 尚、図19は、実施形態9の変形例の一例を示す図である。この変形例に係る光学素子1Jbは、図18に示す光学素子1Jのうち、第一素子101jの第二基板17、第二素子102jの第一基板11、第一接着層20、及び第二接着層21が省略されている。このような変形例の光学素子1Jbによれば、部品点数が少なくなるため、製造コストが低くなる。その他の光学素子1Jbの構造、作用、及び効果は、光学素子1Jと同様である。 Note that FIG. 19 is a diagram showing an example of a modification of the ninth embodiment. Among the optical elements 1J shown in FIG. 18, the optical element 1Jb according to this modification is the second substrate 17 of the first element 101j, the first substrate 11 of the second element 102j, the first adhesive layer 20, and the second adhesive. Layer 21 is omitted. According to the optical element 1Jb of such a modification, the number of parts is reduced, so that the manufacturing cost is low. The structure, action, and effect of the other optical elements 1Jb are the same as those of the optical element 1J.
 [実施形態10]
 図20を参照して、本発明の実施形態10に係る光学素子1Kについて説明する。図20は、光学素子1Kの断面図である。
[Embodiment 10]
The optical element 1K according to the tenth embodiment of the present invention will be described with reference to FIG. 20. FIG. 20 is a cross-sectional view of the optical element 1K.
 本実施形態の場合、光学素子1Kは、電圧の印加の有無に応じて、状態を切り替える機能を備えていない。従って、光学素子1Kの液晶層14は、常時同じ配向状態である。 In the case of this embodiment, the optical element 1K does not have a function of switching the state depending on whether or not a voltage is applied. Therefore, the liquid crystal layer 14 of the optical element 1K is always in the same orientation state.
 光学素子1Kは、実施形態6の光学素子1Fにおける第一素子101f及び第二素子102fのそれぞれから第一電極12及び第二電極16を省略した構造を有する。 The optical element 1K has a structure in which the first electrode 12 and the second electrode 16 are omitted from each of the first element 101f and the second element 102f in the optical element 1F of the sixth embodiment.
 具体的には、光学素子1Kは、表面(第一面)から裏面(第二面)に向かって順に、第一素子101k、半波長板19、及び第二素子102kを有する。 Specifically, the optical element 1K has a first element 101k, a half-wave plate 19, and a second element 102k in order from the front surface (first surface) to the back surface (second surface).
 第一素子101kは、表面から裏面に向かって順に、第一基板11、第一配向膜13、液晶層14、第二配向膜15、及び第二基板17を有する。 The first element 101k has a first substrate 11, a first alignment film 13, a liquid crystal layer 14, a second alignment film 15, and a second substrate 17 in this order from the front surface to the back surface.
 第一素子101kの第一基板11、第一配向膜13、液晶層14、第二配向膜15、及び第二基板17は、実施形態6における第一素子101fの第一基板11、第一配向膜13、液晶層14、第二配向膜15、及び第二基板17と同様である。 The first substrate 11, the first alignment film 13, the liquid crystal layer 14, the second alignment film 15, and the second substrate 17 of the first element 101k are the first substrate 11, the first orientation of the first element 101f in the sixth embodiment. This is the same as the film 13, the liquid crystal layer 14, the second alignment film 15, and the second substrate 17.
 尚、第一素子101kにおける液晶層14の配向状態は、常時、実施形態6の第一素子101fの第一状態における、液晶層14の配向状態と同様である。よって、第一素子101kは、実施形態6の第一素子101fの第一状態と同様の作用及び効果を奏する。 The orientation state of the liquid crystal layer 14 in the first element 101k is always the same as the orientation state of the liquid crystal layer 14 in the first state of the first element 101f of the sixth embodiment. Therefore, the first element 101k has the same operation and effect as the first state of the first element 101f of the sixth embodiment.
 又、第二素子102kは、表面から裏面に向かって順に、第一基板11、第一配向膜13、液晶層14、第二配向膜15、及び第二基板17を有する。 Further, the second element 102k has a first substrate 11, a first alignment film 13, a liquid crystal layer 14, a second alignment film 15, and a second substrate 17 in this order from the front surface to the back surface.
 第二素子102kの第一基板11、第一配向膜13、液晶層14、第二配向膜15、及び第二基板17は、実施形態6における第二素子102fの第一基板11、第一配向膜13、液晶層14、第二配向膜15、及び第二基板17と同様である。 The first substrate 11, the first alignment film 13, the liquid crystal layer 14, the second alignment film 15, and the second substrate 17 of the second element 102k are the first substrate 11, the first orientation of the second element 102f in the sixth embodiment. This is the same as the film 13, the liquid crystal layer 14, the second alignment film 15, and the second substrate 17.
 尚、第二素子102kにおける液晶層14の配向状態は、常時、実施形態6の第二素子102kの第一状態における、液晶層14の配向状態と同様である。よって、第二素子102kは、実施形態68の第二素子102fの第一状態と同様の作用及び効果を奏する。 The orientation state of the liquid crystal layer 14 in the second element 102k is always the same as the orientation state of the liquid crystal layer 14 in the first state of the second element 102k of the sixth embodiment. Therefore, the second element 102k has the same operation and effect as the first state of the second element 102f of the 68th embodiment.
 半波長板19は、実施形態6における光学素子1Fの半波長板19と同様である。 The half-wave plate 19 is the same as the half-wave plate 19 of the optical element 1F in the sixth embodiment.
 以上のような構成を有する光学素子1Kにおける液晶層14の配向状態はそれぞれ、実施形態6に係る光学素子1Fの第一状態における液晶層14の配向状態と同様である。よって、光学素子1Kは、実施形態5の光学素子1Fの第一状態と同様の作用及び効果を奏する。 The orientation state of the liquid crystal layer 14 in the optical element 1K having the above configuration is the same as the orientation state of the liquid crystal layer 14 in the first state of the optical element 1F according to the sixth embodiment. Therefore, the optical element 1K has the same operation and effect as the first state of the optical element 1F of the fifth embodiment.
 尚、図21は、実施形態10の変形例の一例を示す図である。この変形例に係る光学素子1Kbは、図20に示す光学素子1Kのうち、第一素子101kの第二基板17と、第二素子102kの第一基板11が省略されている。このような変形例の光学素子1Kbによれば、部品点数が少なくなるため、製造コストが低くなる。その他の光学素子1Kbの構造、作用、及び効果は、光学素子1Kと同様である。 Note that FIG. 21 is a diagram showing an example of a modification of the tenth embodiment. In the optical element 1Kb according to this modification, among the optical elements 1K shown in FIG. 20, the second substrate 17 of the first element 101k and the first substrate 11 of the second element 102k are omitted. According to the optical element 1Kb of such a modification, the number of parts is reduced, so that the manufacturing cost is low. The structure, action, and effect of the other optical elements 1Kb are the same as those of the optical element 1K.
 [実施形態11]
 図22を参照して、本発明の実施形態11に係る光学素子1Lについて説明する。図22は、光学素子1Lの断面図である。
[Embodiment 11]
The optical element 1L according to the eleventh embodiment of the present invention will be described with reference to FIG. 22. FIG. 22 is a cross-sectional view of the optical element 1L.
 本実施形態の場合、光学素子1Lは、電圧の印加の有無に応じて、状態を切り替える機能を備えていない。従って、光学素子1Lの第一液晶層14L1及び第二液晶層14L2は、常時同じ配向状態である。 In the case of this embodiment, the optical element 1L does not have a function of switching the state depending on whether or not a voltage is applied. Therefore, the first liquid crystal layer 14L1 and the second liquid crystal layer 14L2 of the optical element 1L are always in the same orientation state.
 光学素子1Lは、表面(第一面)から裏面(第二面)に向かって順に、第一基板11、第一配向膜13L、第一液晶層14L1、半波長板19、第二液晶層14L2、第二配向膜15L、及び第二基板17を有する。 The optical element 1L has a first substrate 11, a first alignment film 13L, a first liquid crystal layer 14L1, a half-wave plate 19, and a second liquid crystal layer 14L2 in order from the front surface (first surface) to the back surface (second surface). , A second alignment film 15L, and a second substrate 17.
 光学素子1Lの第一基板11及び第二基板17は、実施形態1と同様である。 The first substrate 11 and the second substrate 17 of the optical element 1L are the same as those in the first embodiment.
 (第一配向膜及び第二配向膜)
 第一配向膜13Lは、所謂水平配向膜であって、第一配向膜13Lに接する又は近接する液晶分子141の長軸が第一液晶層14L1の表面に対して平行又はほぼ平行となるように、液晶分子141の配向状態を制御する。
(First alignment film and second alignment film)
The first alignment film 13L is a so-called horizontal alignment film, so that the major axis of the liquid crystal molecules 141 in contact with or adjacent to the first alignment film 13L is parallel to or substantially parallel to the surface of the first liquid crystal layer 14L1. , Controls the orientation state of the liquid crystal molecule 141.
 第二配向膜15Lは、所謂水平配向膜であって、第二配向膜15Lに接する又は近接する液晶分子141の長軸が第二液晶層14L2の裏面に対して平行又はほぼ平行となるように、液晶分子141の配向状態を制御する。 The second alignment film 15L is a so-called horizontal alignment film, so that the major axis of the liquid crystal molecules 141 in contact with or adjacent to the second alignment film 15L is parallel to or substantially parallel to the back surface of the second liquid crystal layer 14L2. , Controls the orientation state of the liquid crystal molecule 141.
 (第一液晶層及び第二液晶層)
 第一液晶層14L1は、複数の液晶分子141と、複数の二色性色素142と、を有する。液晶分子141及び二色性色素142の形状及び性質は、実施形態1の液晶分子141及び二色性色素142と同様である。
(First liquid crystal layer and second liquid crystal layer)
The first liquid crystal layer 14L1 has a plurality of liquid crystal molecules 141 and a plurality of dichroic dyes 142. The shape and properties of the liquid crystal molecule 141 and the dichroic dye 142 are the same as those of the liquid crystal molecule 141 and the dichroic dye 142 of the first embodiment.
 本実施形態の場合、第一液晶層14L1における液晶分子141及び二色性色素142の配向状態は、常時変わらない。 In the case of the present embodiment, the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 in the first liquid crystal layer 14L1 does not always change.
 第一液晶層14L1における全領域に存在する液晶分子141及び二色性色素142はそれぞれ、第一液晶層14L1の面方向に対して傾いた状態で存在している。 The liquid crystal molecules 141 and the dichroic dye 142 present in the entire region of the first liquid crystal layer 14L1 each exist in a state of being inclined with respect to the plane direction of the first liquid crystal layer 14L1.
 本実施形態の場合、第一液晶層14L1において、液晶分子141及び二色性色素142の傾斜角は、第一領域Rから第二領域Rに向かうほど連続的に大きくなる。換言すれば、第一液晶層14L1に存在する液晶分子141及び二色性色素142の傾斜角は、後述の半波長板19に向かうほど90°に近づく。 In this embodiment, in the first liquid crystal layer 14L1, the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 is continuously increased from the first region R 1 increases toward the second region R 2. In other words, the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the first liquid crystal layer 14L1 approaches 90 ° toward the half-wave plate 19 described later.
 具体的には、第一液晶層14L1の第一領域Rに存在する液晶分子141及び二色性色素142の傾斜角は、+θである。 Specifically, the inclination angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the first region R 1 of the first liquid crystal layer 14L1 is + theta 1.
 以下、傾斜角+φを、第一液晶層14L1のプレチルト角+φと称することもある。本実施形態の場合、プレチルト角+φの絶対値は、5°である。プレチルト角+φの絶対値は、5°以上であると好ましい。プレチルト角φの絶対値は、10°以上であるとより好ましい。 Hereinafter, the tilt angle + φ 1 may be referred to as the pre-tilt angle + φ 1 of the first liquid crystal layer 14L1. In the case of this embodiment, the absolute value of the pretilt angle + φ 1 is 5 °. The absolute value of the pretilt angle + φ 1 is preferably 5 ° or more. The absolute value of the pretilt angle φ 1 is more preferably 10 ° or more.
 第一液晶層14L1の第二領域Rに存在する液晶分子141及び二色性色素142の傾斜角は、+φである。 The tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the second region R 2 of the first liquid crystal layer 14L1 is + phi 2.
 以下、傾斜角+φを、第一液晶層14L1のチルト角+φと称することもある。本実施形態の場合、チルト角φは、+90°である。 Hereinafter, the inclination angle + phi 2, also referred to as a tilt angle + phi 2 of the first liquid crystal layer 14L1. In this embodiment, the tilt angle phi 2 is + 90 °.
 一般に液晶が空気に接する空気界面では、液晶分子141は、界面に対して90°方向に自発的に配列する性質を有することが知られている。このような性質を利用して、垂直配向膜が無い状態で第二領域R2における液晶分子141のプレチルト角を90°に配向させることが可能となる。 Generally, it is known that at the air interface where the liquid crystal is in contact with air, the liquid crystal molecules 141 have the property of spontaneously arranging in the 90 ° direction with respect to the interface. Utilizing such a property, it is possible to orient the pretilt angle of the liquid crystal molecule 141 in the second region R2 to 90 ° in the absence of the vertical alignment film.
 又、液晶分子141として重合基を有する液晶分子を用い、上記のようなハイブリッド配向を形成した後に重合化することにより、液晶分子141及び二色性色素142の状態を保存したまま固体化又はフィルム化することが可能である。 Further, by using a liquid crystal molecule having a polymerizable group as the liquid crystal molecule 141 and polymerizing after forming the hybrid orientation as described above, the liquid crystal molecule 141 and the dichroic dye 142 are solidified or filmed while preserving the state. It is possible to make it.
 又、第一液晶層14L1の中間領域Rに存在する液晶分子141及び二色性色素142の傾斜角は、+φである。 Further, the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 is present in the intermediate region R 3 of the first liquid crystal layer 14L1 is + phi 3.
 以下、傾斜角+φを、第一液晶層14L1のチルト角+φと称することもある。図22に示す第一液晶層14L1の場合、チルト角φは、+45°である。 Hereinafter, the inclination angle + phi 3, also referred to as a tilt angle + phi 3 of the first liquid crystal layer 14L1. If the first liquid crystal layer 14L1 of FIG. 22, the tilt angle phi 3 is a + 45 °.
 第二液晶層14L2は、複数の液晶分子141と、複数の二色性色素142と、を有する。液晶分子141及び二色性色素142の形状及び性質は、実施形態1の液晶分子141及び二色性色素142と同様である。 The second liquid crystal layer 14L2 has a plurality of liquid crystal molecules 141 and a plurality of dichroic dyes 142. The shape and properties of the liquid crystal molecule 141 and the dichroic dye 142 are the same as those of the liquid crystal molecule 141 and the dichroic dye 142 of the first embodiment.
 本実施形態の場合、第二液晶層14L2における液晶分子141及び二色性色素142の配向状態は、常時変わらない。 In the case of this embodiment, the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 in the second liquid crystal layer 14L2 does not always change.
 第二液晶層14L2における全領域に存在する液晶分子141及び二色性色素142はそれぞれ、第二液晶層14L2の面方向に対して傾いた状態で存在している。 The liquid crystal molecules 141 and the dichroic dye 142 present in the entire region of the second liquid crystal layer 14L2 each exist in a state of being tilted with respect to the plane direction of the second liquid crystal layer 14L2.
 本実施形態の場合、第二液晶層14L2において、液晶分子141及び二色性色素142の長軸の傾斜角は、第一領域Rから第二領域Rに向かうほど小さくなる。換言すれば、第二液晶層14L2に存在する液晶分子141及び二色性色素142の傾斜角は、半波長板19に向かうほど90°に近づく。 In this embodiment, in the second liquid crystal layer 14L2, the inclination angle of the major axis of the liquid crystal molecules 141 and the dichroic dye 142 decreases from the first region R 1 increases toward the second region R 2. In other words, the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the second liquid crystal layer 14L2 approaches 90 ° toward the half-wave plate 19.
 具体的には、第二液晶層14L2の第一領域Rに存在する液晶分子141及び二色性色素142の傾斜角は、+φである。 Specifically, the inclination angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the first region R 1 of the second liquid crystal layer 14L2 is + phi 1.
 以下、傾斜角+φを、第二液晶層14L2のチルト角+φと称することもある。本実施形態の場合、チルト角φは、+90°である。 Hereinafter, the inclination angle + phi 1, also referred to as a tilt angle + phi 1 of the second liquid crystal layer 14L2. In the case of this embodiment, the tilt angle φ 1 is + 90 °.
 第二液晶層14L2の第二領域Rに存在する液晶分子141及び二色性色素142の傾斜角は、+φである。 The tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the second region R 2 of the second liquid crystal layer 14L2 is + phi 2.
 以下、傾斜角+φを、第二領域Rに存在する液晶分子141及び二色性色素142のプレチルト角+φと称することもある。本実施形態の場合、プレチルト角+φの絶対値は、5°である。プレチルト角+φの絶対値は、5°以上であると好ましい。プレチルト角φの絶対値は、10°以上であるとより好ましい。 Hereinafter, the inclination angle + φ 2 may be referred to as the pretilt angle + φ 2 of the liquid crystal molecule 141 and the dichroic dye 142 present in the second region R 2. In the case of this embodiment, the absolute value of the pretilt angle + φ 2 is 5 °. The absolute value of the pretilt angle + φ 2 is preferably 5 ° or more. The absolute value of the pretilt angle phi 2 is more preferably a 10 ° or more.
 又、第二液晶層14L2の中間領域Rに存在する液晶分子141及び二色性色素142の傾斜角は、+φである。 Further, the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 is present in the intermediate region R 3 of the second liquid crystal layer 14L2 is + phi 3.
 以下、傾斜角+φを、第二液晶層14L2のチルト角+φと称することもある。図22に示す第二液晶層14L2の場合、中間領域Rに存在する液晶分子141及び二色性色素142のチルト角φは、+45°である。 Hereinafter, the inclination angle + phi 3, also referred to as a tilt angle + phi 3 of the second liquid crystal layer 14L2. If the second liquid crystal layer 14L2 of FIG. 22, the tilt angle phi 3 of the liquid crystal molecules 141 and the dichroic dye 142 is present in the intermediate region R 3 is + 45 °.
 (半波長板)
 半波長板19は、第一液晶層14L1と第二液晶層14L2との間に設けられている。半波長板19の表面は、第一液晶層14L1の裏面に、第一接着層20を介して固定されている。
(Half-wave plate)
The half-wave plate 19 is provided between the first liquid crystal layer 14L1 and the second liquid crystal layer 14L2. The front surface of the half-wave plate 19 is fixed to the back surface of the first liquid crystal layer 14L1 via the first adhesive layer 20.
 半波長板19の裏面は、第二液晶層14L2の表面に、第二接着層21を介して固定されている。その他の半波長板19の構成は、実施形態5の半波長板19の構成と同様である。 The back surface of the half-wave plate 19 is fixed to the surface of the second liquid crystal layer 14L2 via the second adhesive layer 21. The configuration of the other half-wave plate 19 is the same as the configuration of the half-wave plate 19 of the fifth embodiment.
 以上のような構成を有する光学素子1Lの作用及び効果は、実施形態6の光学素子1Fの作用及び効果と同様である。このような本実施形態の光学素子1Lによれば、部品点数が少なくなるため、製造コストが低くなる。 The action and effect of the optical element 1L having the above configuration is the same as the action and effect of the optical element 1F of the sixth embodiment. According to the optical element 1L of the present embodiment as described above, the number of parts is reduced, so that the manufacturing cost is low.
 [実施形態12]
 図23を参照して、本発明の実施形態12に係る光学素子1Mについて説明する。図23は、光学素子1Mの断面図である。
[Embodiment 12]
The optical element 1M according to the twelfth embodiment of the present invention will be described with reference to FIG. 23. FIG. 23 is a cross-sectional view of the optical element 1M.
 本実施形態の場合、光学素子1Mは、電圧の印加の有無に応じて、状態を切り替える機能を備えていない。従って、光学素子1Mの第一液晶層14M1及び第二液晶層14M2は、常時同じ配向状態である。 In the case of this embodiment, the optical element 1M does not have a function of switching the state depending on whether or not a voltage is applied. Therefore, the first liquid crystal layer 14M1 and the second liquid crystal layer 14M2 of the optical element 1M are always in the same orientation state.
 光学素子1Mは、表面(第一面)から裏面(第二面)に向かって順に、第一液晶層14L1、第一配向膜13M、半波長板19、第二配向膜15M、及び第二液晶層14L2を有する。 The optical element 1M has a first liquid crystal layer 14L1, a first alignment film 13M, a half-wave plate 19, a second alignment film 15M, and a second liquid crystal in order from the front surface (first surface) to the back surface (second surface). It has a layer 14L2.
 (第一配向膜及び第二配向膜)
 第一配向膜13Mは、第一液晶層14M1の裏面に固定されている。第一配向膜13Mは、所謂水平配向膜であって、第一配向膜13Mに接する又は近接する液晶分子141の長軸が第一液晶層14M1の裏面に対して平行又はほぼ平行となるように、第一液晶層14L1における液晶分子141の配向状態を制御する。
(First alignment film and second alignment film)
The first alignment film 13M is fixed to the back surface of the first liquid crystal layer 14M1. The first alignment film 13M is a so-called horizontal alignment film, and the major axis of the liquid crystal molecule 141 in contact with or in the vicinity of the first alignment film 13M is parallel to or substantially parallel to the back surface of the first liquid crystal layer 14M1. , The orientation state of the liquid crystal molecule 141 in the first liquid crystal layer 14L1 is controlled.
 第二配向膜15Mは、第二液晶層14M2の表面に固定されている。第二配向膜15Mは、所謂水平配向膜であって、第二配向膜15Mに接する又は近接する液晶分子141の長軸が第二液晶層14M2の表面に対して平行又はほぼ平行となるように、第二液晶層14M2における液晶分子141の配向状態を制御する。 The second alignment film 15M is fixed to the surface of the second liquid crystal layer 14M2. The second alignment film 15M is a so-called horizontal alignment film, so that the major axis of the liquid crystal molecules 141 in contact with or adjacent to the second alignment film 15M is parallel to or substantially parallel to the surface of the second liquid crystal layer 14M2. , The orientation state of the liquid crystal molecule 141 in the second liquid crystal layer 14M2 is controlled.
 (第一液晶層及び第二液晶層)
 第一液晶層14M1は、複数の液晶分子141と、複数の二色性色素142と、を有する。液晶分子141及び二色性色素142の形状及び性質は、実施形態1の液晶分子141及び二色性色素142と同様である。
(First liquid crystal layer and second liquid crystal layer)
The first liquid crystal layer 14M1 has a plurality of liquid crystal molecules 141 and a plurality of dichroic dyes 142. The shape and properties of the liquid crystal molecule 141 and the dichroic dye 142 are the same as those of the liquid crystal molecule 141 and the dichroic dye 142 of the first embodiment.
 本実施形態の場合、第一液晶層14M1の表面(第一面)は、他の部材に固定されていない。換言すれば、第一液晶層14M1の表面は、外気に触れる状態で外部に露出している。 In the case of this embodiment, the surface (first surface) of the first liquid crystal layer 14M1 is not fixed to other members. In other words, the surface of the first liquid crystal layer 14M1 is exposed to the outside in a state of being exposed to the outside air.
 本実施形態の場合、第一液晶層14M1における液晶分子141及び二色性色素142の配向状態は、常時変わらない。 In the case of this embodiment, the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 in the first liquid crystal layer 14M1 does not change at all times.
 第一液晶層14M1の全領域に存在する液晶分子141及び二色性色素142はそれぞれ、第一液晶層14M1の面方向に対して傾いた状態で存在している。 The liquid crystal molecules 141 and the dichroic dye 142 present in the entire region of the first liquid crystal layer 14M1 each exist in a state of being tilted with respect to the plane direction of the first liquid crystal layer 14M1.
 本実施形態の場合、第一液晶層14M1において、液晶分子141及び二色性色素142の傾斜角は、第一領域Rから第二領域Rに向かうほど、連続的に小さくなる。換言すれば、液晶分子141及び二色性色素142の傾斜角は、第一液晶層14M1の表面(つまり、第一液晶層14M1と外気との境界)に向かうほど90°に近づく。 In this embodiment, in the first liquid crystal layer 14M1, the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142, from the first region R 1 increases toward the second region R 2, successively smaller. In other words, the tilt angle of the liquid crystal molecule 141 and the dichroic dye 142 approaches 90 ° toward the surface of the first liquid crystal layer 14M1 (that is, the boundary between the first liquid crystal layer 14M1 and the outside air).
 具体的には、第一液晶層14M1の第一領域Rに存在する液晶分子141及び二色性色素142の傾斜角は、+φである。 Specifically, the inclination angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the first region R 1 of the first liquid crystal layer 14M1 is + phi 1.
 以下、傾斜角+φを、第一液晶層14M1のチルト角+φと称することもある。本実施形態の場合、チルト角φは、+90°である。 Hereinafter, the inclination angle + phi 1, also referred to as a tilt angle + phi 1 of the first liquid crystal layer 14M1. In the case of this embodiment, the tilt angle φ 1 is + 90 °.
 第一液晶層14M1の第二領域Rに存在する液晶分子141及び二色性色素142の傾斜角は、+φである。 The tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the second region R 2 of the first liquid crystal layer 14M1 is + phi 2.
 本実施形態の場合、傾斜角+φが、プレチルト角である。本実施形態の場合、プレチルト角+φの絶対値は、5°である。プレチルト角+φの絶対値は、5°以上であると好ましい。プレチルト角φの絶対値は、10°以上であるとより好ましい。 In the case of this embodiment, the tilt angle + φ 2 is the pretilt angle. In the case of this embodiment, the absolute value of the pretilt angle + φ 2 is 5 °. The absolute value of the pretilt angle + φ 2 is preferably 5 ° or more. The absolute value of the pretilt angle phi 2 is more preferably a 10 ° or more.
 又、第一液晶層14M1の中間領域Rに存在する液晶分子141及び二色性色素142の傾斜角は、+φである。 Further, the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 is present in the intermediate region R 3 of the first liquid crystal layer 14M1 is + phi 3.
 以下、傾斜角+φを、中間領域Rに存在する液晶分子141及び二色性色素142のチルト角+φと称することもある。本実施形態の場合、チルト角φは、+45°である。 Hereinafter, the inclination angle + φ 3 may be referred to as a tilt angle + φ 3 of the liquid crystal molecule 141 and the dichroic dye 142 existing in the intermediate region R 3. In this embodiment, the tilt angle phi 3 is a + 45 °.
 第二液晶層14M2は、複数の液晶分子141と、複数の二色性色素142と、を有する。液晶分子141及び二色性色素142の形状及び性質は、実施形態1の液晶分子141及び二色性色素142と同様である。 The second liquid crystal layer 14M2 has a plurality of liquid crystal molecules 141 and a plurality of dichroic dyes 142. The shape and properties of the liquid crystal molecule 141 and the dichroic dye 142 are the same as those of the liquid crystal molecule 141 and the dichroic dye 142 of the first embodiment.
 本実施形態の場合、第二液晶層14M2における液晶分子141及び二色性色素142の配向状態は、常時変わらない。 In the case of this embodiment, the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 in the second liquid crystal layer 14M2 does not always change.
 第二液晶層14M2の全領域に存在する液晶分子141及び二色性色素142はそれぞれ、第二液晶層14M2の面方向に対して傾いた状態で存在している。 The liquid crystal molecules 141 and the dichroic dye 142 present in the entire region of the second liquid crystal layer 14M2 each exist in a state of being tilted with respect to the plane direction of the second liquid crystal layer 14M2.
 本実施形態の場合、第二液晶層14M2において、液晶分子141及び二色性色素142の傾斜角は、第一領域Rから第二領域Rに向かうほど大きくなる。換言すれば、液晶分子141及び二色性色素142の傾斜角は、第二液晶層14M2の裏面(つまり、第二液晶層14M2と外気との境界)に向かうほど90°に近づく。 In this embodiment, in the second liquid crystal layer 14M2, the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 is increased from the first region R 1 increases toward the second region R 2. In other words, the inclination angle of the liquid crystal molecule 141 and the dichroic dye 142 approaches 90 ° toward the back surface of the second liquid crystal layer 14M2 (that is, the boundary between the second liquid crystal layer 14M2 and the outside air).
 具体的には、第二液晶層14M2の第一領域Rに存在する液晶分子141及び二色性色素142の傾斜角は、+φである。 Specifically, the inclination angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the first region R 1 of the second liquid crystal layer 14M2 is + phi 1.
 本実施形態の場合、上記傾斜角+φが、プレチルト角である。本実施形態の場合、プレチルト角+φの絶対値は、5°である。プレチルト角+φの絶対値は、5°以上であると好ましい。プレチルト角φの絶対値は、10°以上であるとより好ましい。 In the case of this embodiment, the inclination angle + φ 1 is the pretilt angle. In the case of this embodiment, the absolute value of the pretilt angle + φ 1 is 5 °. The absolute value of the pretilt angle + φ 1 is preferably 5 ° or more. The absolute value of the pretilt angle φ 1 is more preferably 10 ° or more.
 第二液晶層14M2の第二領域Rに存在する液晶分子141及び二色性色素142の傾斜角は、+φである。以下、傾斜角+φを、第二液晶層14M2のチルト角+φと称することもある。本実施形態の場合、チルト角φは、+90°である。 The tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 present in the second region R 2 of the second liquid crystal layer 14M2 is + phi 2. Hereinafter, the inclination angle + phi 2, also referred to as a tilt angle + phi 2 of the second liquid crystal layer 14M2. In this embodiment, the tilt angle phi 2 is + 90 °.
 又、第二液晶層14M2の中間領域Rに存在する液晶分子141及び二色性色素142の傾斜角は、+φである。 Further, the tilt angle of the liquid crystal molecules 141 and the dichroic dye 142 is present in the intermediate region R 3 of the second liquid crystal layer 14M2 is + phi 3.
 以下、傾斜角+φを、中間領域Rに存在する液晶分子141及び二色性色素142のチルト角+φと称することもある。図23に示す第二液晶層14M2の場合、中間領域Rに存在する液晶分子141及び二色性色素142のチルト角φは、+45°である。 Hereinafter, the inclination angle + φ 3 may be referred to as a tilt angle + φ 3 of the liquid crystal molecule 141 and the dichroic dye 142 existing in the intermediate region R 3. If the second liquid crystal layer 14M2 shown in FIG. 23, the tilt angle phi 3 of the liquid crystal molecules 141 and the dichroic dye 142 is present in the intermediate region R 3 is + 45 °.
 (半波長板)
 半波長板19は、第一配向膜13Mと第二配向膜15Mとの間に設けられている。その他の半波長板19の構成は、実施形態5の半波長板19の構成と同様である。
(Half-wave plate)
The half-wave plate 19 is provided between the first alignment film 13M and the second alignment film 15M. The configuration of the other half-wave plate 19 is the same as the configuration of the half-wave plate 19 of the fifth embodiment.
 以上のような構成を有する光学素子1Mの作用及び効果は、実施形態6の光学素子1Fの作用及び効果と同様である。このような本実施形態の光学素子1Lによれば、部品点数が少なくなるため、製造コストが低くなる。 The action and effect of the optical element 1M having the above configuration is the same as the action and effect of the optical element 1F of the sixth embodiment. According to the optical element 1L of the present embodiment as described above, the number of parts is reduced, so that the manufacturing cost is low.
 [実施形態13]
 図24~図28を参照して、本発明の実施形態13に係る電子眼鏡5について説明する。図24は、電子眼鏡5の構成の一例を示す斜視図である。図25は、レンズ51の正面図である。図26は、図25のC-C断面図である。
[Embodiment 13]
The electronic eyeglasses 5 according to the thirteenth embodiment of the present invention will be described with reference to FIGS. 24 to 28. FIG. 24 is a perspective view showing an example of the configuration of the electronic eyeglasses 5. FIG. 25 is a front view of the lens 51. FIG. 26 is a sectional view taken along the line CC of FIG. 25.
 電子眼鏡5は、フレーム50、一対のレンズ51、制御部55a、55b、検出部54a、54b、及び電源56a、56bを有する。 The electronic eyeglasses 5 have a frame 50, a pair of lenses 51, control units 55a and 55b, detection units 54a and 54b, and power supplies 56a and 56b.
 (フレーム)
 フレーム50は、フロント501及び一対のテンプル502a、502bを有する。尚、以下、フロント501が配置される部分を電子眼鏡5の正面(前方)とする。
(flame)
The frame 50 has a front 501 and a pair of temples 502a, 502b. Hereinafter, the portion where the front 501 is arranged is referred to as the front (front) of the electronic glasses 5.
 一対のテンプル502a、502bはそれぞれ、前端部(第一端部)が、フロント501に支持されている。一対のテンプル502a、502bはそれぞれ、検出部54a、54b、制御部55a、55b、及び電源56a、56bを保持する。 The front end (first end) of each of the pair of temples 502a and 502b is supported by the front 501. The pair of temples 502a and 502b hold detection units 54a and 54b, control units 55a and 55b, and power supplies 56a and 56b, respectively.
 電子眼鏡5のユーザ(装着者)は、一方のテンプル502aに設けられた検出部54aを操作(例えば、タッチ操作)することにより、レンズ51における第一光学素子52の光学特性(例えば、透過率)を切り替える。 The user (wearer) of the electronic eyeglasses 5 operates (for example, a touch operation) the detection unit 54a provided on one of the temples 502a to obtain the optical characteristics (for example, transmittance) of the first optical element 52 in the lens 51. ) Is switched.
 ユーザにより検出部54aが操作されると、制御部55aは、当該操作に基づいて、第一光学素子52に電圧を印可した状態と、電圧を印可しない状態とを切り替える。 When the detection unit 54a is operated by the user, the control unit 55a switches between a state in which a voltage is applied to the first optical element 52 and a state in which a voltage is not applied, based on the operation.
 又、電子眼鏡5のユーザ(装着者)は、他方のテンプル502bに設けられた検出部54bを操作(例えば、タッチ操作)することにより、レンズ51の第二光学素子53の光学特性(例えば、透過率)を切り替える。本実施形態の場合、第二光学素子53は、既述の実施形態2の光学素子1Bである。第二光学素子53は、第一光学素子52の上面(Z方向+側)に設けられている。 Further, the user (wearer) of the electronic eyeglasses 5 operates (for example, a touch operation) the detection unit 54b provided on the other temple 502b to obtain the optical characteristics (for example, for example) of the second optical element 53 of the lens 51. Transparency) is switched. In the case of the present embodiment, the second optical element 53 is the optical element 1B of the second embodiment described above. The second optical element 53 is provided on the upper surface (Z direction + side) of the first optical element 52.
 (レンズ)
 以下、レンズ51の構成を説明するにあたり、説明の便宜のために、図25~図26に示された直交座標系(X,Y,Z)を使用する。図25~図26に示された直交座標系(X,Y,Z)は、実施形態1~12の説明に用いた各図に示された直交座標系(X,Y,Z)と対応している。
(lens)
Hereinafter, in explaining the configuration of the lens 51, the Cartesian coordinate system (X, Y, Z) shown in FIGS. 25 to 26 will be used for convenience of explanation. The Cartesian coordinate system (X, Y, Z) shown in FIGS. 25 to 26 corresponds to the Cartesian coordinate system (X, Y, Z) shown in each figure used in the description of the first to twelfth embodiments. ing.
 本実施形態の場合、レンズ51は、Z方向+側に向かって凸状に湾曲する。但し、図26において、レンズ51の曲率は、ゼロとして示されている。 In the case of this embodiment, the lens 51 is curved in a convex shape toward the + side in the Z direction. However, in FIG. 26, the curvature of the lens 51 is shown as zero.
 一対のレンズ51は、電子眼鏡5を正面視したときに、左右対称となるように形成されており、互いに同一の構成要素を有する。そこで、以下の説明では、電子眼鏡5の右目用のレンズ51について説明し、左目用のレンズ51については、その説明を省略する。 The pair of lenses 51 are formed so as to be symmetrical when the electronic spectacles 5 are viewed from the front, and have the same components as each other. Therefore, in the following description, the lens 51 for the right eye of the electronic eyeglasses 5 will be described, and the description of the lens 51 for the left eye will be omitted.
 レンズ51は、電圧の印加に応じて状態が変化する電気活性レンズの一例に該当し、第一光学素子52と、第二光学素子53と、を有する。第一光学素子52と第二光学素子53とは、Z方向に積層されている。 The lens 51 corresponds to an example of an electrically active lens whose state changes according to the application of a voltage, and has a first optical element 52 and a second optical element 53. The first optical element 52 and the second optical element 53 are laminated in the Z direction.
 (第一光学素子)
 第一光学素子52は、液晶レンズ部521と、液晶レンズ部521以外の部分である通常レンズ部522と、を有する。
(First optical element)
The first optical element 52 has a liquid crystal lens unit 521 and a normal lens unit 522 which is a portion other than the liquid crystal lens unit 521.
 (液晶レンズ部)
 液晶レンズ部521は、電圧によりその焦点距離(度数)を切替え可能である。図26に示されるように、液晶レンズ部521は、後方側(Z方向-側)から順に、第一基板523、第一電極524、液晶層525、第二電極526、及び第二基板527を有する。尚、第一電極524、液晶層525、及び第二電極526は、電気素子を構成する。
(LCD lens part)
The focal length (power) of the liquid crystal lens unit 521 can be switched by a voltage. As shown in FIG. 26, the liquid crystal lens unit 521 includes a first substrate 523, a first electrode 524, a liquid crystal layer 525, a second electrode 526, and a second substrate 527 in this order from the rear side (Z direction − side). Have. The first electrode 524, the liquid crystal layer 525, and the second electrode 526 constitute an electric element.
 (通常レンズ部)
 通常レンズ部522は、後方側から順に、第一基板523、第一電極524、接着層528、第二電極526、及び第二基板527を有する。液晶レンズ部521と通常レンズ部522とは、第一基板523、第一電極524、第二電極526、及び第二基板527を共有する。液晶レンズ部521及び通常レンズ部522の構成要素はそれぞれ、可視光に対して透光性を有する。
(Normal lens part)
The normal lens portion 522 has a first substrate 523, a first electrode 524, an adhesive layer 528, a second electrode 526, and a second substrate 527 in this order from the rear side. The liquid crystal lens unit 521 and the normal lens unit 522 share a first substrate 523, a first electrode 524, a second electrode 526, and a second substrate 527. The components of the liquid crystal lens unit 521 and the normal lens unit 522 each have translucency with respect to visible light.
 (第一基板)
 第一基板523は、Z方向+側(図26の上側)に向かって凸状に湾曲する板状である。第一基板523の表面(Z方向+側の面)は、Z方向+側に向かって凸状に湾曲する凸曲面である。又、第一基板523の裏面(Z方向-側の面)は、Z方向+側に向かって凹状に湾曲する凹曲面である。
(First board)
The first substrate 523 has a plate shape that curves convexly toward the + side in the Z direction (upper side in FIG. 26). The surface of the first substrate 523 (the surface on the + side in the Z direction) is a convex curved surface that curves convexly toward the + side in the Z direction. Further, the back surface (the surface on the Z direction − side) of the first substrate 523 is a concave curved surface that curves concavely toward the + side in the Z direction.
 第一基板523は、表面の液晶レンズ部521に対応する部分に、回折領域523aを有する。回折領域523aは、中央部分に配置される半球状の凸部523bと、凸部523bを中心とした同心円上に配置される複数の円環状の第一凸条523cとを有する。 The first substrate 523 has a diffraction region 523a in a portion of the surface corresponding to the liquid crystal lens portion 521. The diffraction region 523a has a hemispherical convex portion 523b arranged in the central portion and a plurality of annular first convex portions 523c arranged on a concentric circle centered on the convex portion 523b.
 凸部523b及び第一凸条523cの形状の例として、フレネルレンズ形状が挙げられる。尚、凸部523b及び第一凸条523cは、一部がフレネルレンズ形状であってもよいし、全部がフレネルレンズ形状であってもよい。 An example of the shape of the convex portion 523b and the first convex strip 523c is a Fresnel lens shape. A part of the convex portion 523b and the first convex strip 523c may have a Fresnel lens shape, or all of them may have a Fresnel lens shape.
 第一基板523は、無機ガラス又は有機ガラスから造られる。第一基板523は、有機ガラスから造られるのが好ましい。有機ガラスは、熱硬化性ポリウレタン類、ポリチオウレタン類、ポリエポキシド類、若しくはポリエピスルフィド類からなる熱硬化性材料、若しくはポリ(メタ)アクリレート類からなる熱可塑性材料、又は、これらの共重合体もしくは混合物からなる熱硬化性(架橋した)材料の何れかである。但し、第一基板523の材料は、これらに限定されず、レンズの材料として使用される公知の材料が採用されうる。 The first substrate 523 is made of inorganic glass or organic glass. The first substrate 523 is preferably made of organic glass. The organic glass is a thermosetting material made of thermosetting polyurethanes, polythiourethanes, polyepoxides, or polyepisulfides, a thermoplastic material made of poly (meth) acrylates, or a copolymer thereof. It is one of thermosetting (crosslinked) materials consisting of a mixture. However, the material of the first substrate 523 is not limited to these, and a known material used as a lens material can be adopted.
 (第一電極及び第二電極)
 第一電極524及び第二電極526は、透光性を有する一対の透明電極である。第一電極524は、第一基板523と液晶層525との間に配置される。第二電極526は、液晶層525と第二基板527との間に配置される。
(1st electrode and 2nd electrode)
The first electrode 524 and the second electrode 526 are a pair of transparent electrodes having translucency. The first electrode 524 is arranged between the first substrate 523 and the liquid crystal layer 525. The second electrode 526 is arranged between the liquid crystal layer 525 and the second substrate 527.
 第一電極524及び第二電極526は、少なくとも液晶層525に電圧を印加できる範囲(液晶レンズ部521)にわたって配置されていればよい。 The first electrode 524 and the second electrode 526 may be arranged at least over a range in which a voltage can be applied to the liquid crystal layer 525 (liquid crystal lens portion 521).
 第一電極524及び第二電極526の材料は、所期の透光性および導電性を有していれば特に限定されない。第一電極524及び第二電極526の例として、酸化インジウムスズ(ITO)および酸化亜鉛(ZnO)などが挙げられる。第一電極524及び第二電極526の材料は、互いに同じで、または異なっていてもよい。 The materials of the first electrode 524 and the second electrode 526 are not particularly limited as long as they have the desired translucency and conductivity. Examples of the first electrode 524 and the second electrode 526 include indium tin oxide (ITO) and zinc oxide (ZnO). The materials of the first electrode 524 and the second electrode 526 may be the same as or different from each other.
 (液晶層)
 液晶層525は、第一電極524と第二電極526との間に配置される。液晶層525は、電圧の印加の有無に応じて、その屈折率が変化するように構成される。
(Liquid crystal layer)
The liquid crystal layer 525 is arranged between the first electrode 524 and the second electrode 526. The liquid crystal layer 525 is configured so that its refractive index changes depending on the presence or absence of application of a voltage.
 液晶層525の屈折率は、液晶層525に電圧が印加されていない状態(液晶層525の第一状態とも称する。)において、第一基板523の屈折率及び第二基板527の屈折率とほぼ同じであるように調整される。 The refractive index of the liquid crystal layer 525 is substantially the same as the refractive index of the first substrate 523 and the refractive index of the second substrate 527 in a state where no voltage is applied to the liquid crystal layer 525 (also referred to as the first state of the liquid crystal layer 525). Adjusted to be the same.
 一方、液晶層525の屈折率は、液晶層525に電圧が印加されている状態(液晶層525の第二状態とも称する。)において、第一基板523の屈折率及び第二基板527の屈折率と異なるように調整される。 On the other hand, the refractive index of the liquid crystal layer 525 is the refractive index of the first substrate 523 and the refractive index of the second substrate 527 in a state where a voltage is applied to the liquid crystal layer 525 (also referred to as a second state of the liquid crystal layer 525). Adjusted to be different from.
 液晶層525は、液晶材料を含有する。電圧が印加されているときの液晶材料における液晶分子の配向状態と、電圧が印加されていないときの液晶分子の配向状態とは、互いに異なる。液晶分子は、第一基板523の屈折率及び第二基板527の屈折率に応じて、適宜選択されうる。例えば、液晶材料は、コレステリック液晶やネマチック液晶などにより構成されうる。 The liquid crystal layer 525 contains a liquid crystal material. The orientation state of the liquid crystal molecules in the liquid crystal material when the voltage is applied and the orientation state of the liquid crystal molecules when the voltage is not applied are different from each other. The liquid crystal molecule can be appropriately selected depending on the refractive index of the first substrate 523 and the refractive index of the second substrate 527. For example, the liquid crystal material may be composed of a cholesteric liquid crystal, a nematic liquid crystal, or the like.
 (第二基板)
 第二基板527は、第一基板523よりも後方に、第一基板523の裏面に対向する状態で配置される。第二基板527は、前方側に向かって凸状に湾曲する板状である。第二基板527の表面は、Z方向+側に向かって凸状に湾曲する凸曲面である。第二基板527の裏面は、Z方向+側に向かって凹状に湾曲する凹曲面である。
(Second board)
The second substrate 527 is arranged behind the first substrate 523 and facing the back surface of the first substrate 523. The second substrate 527 has a plate shape that curves convexly toward the front side. The surface of the second substrate 527 is a convex curved surface that curves convexly toward the + side in the Z direction. The back surface of the second substrate 527 is a concave curved surface that curves concavely toward the + side in the Z direction.
 (接着層)
 接着層528は、通常レンズ部522において、第一基板523と第二基板527との間に配置されており、第一基板523と第二基板527とを接着する。第一電極524及び第二電極526が、通常レンズ部522にも配置される場合には、接着層528は、第一電極524と第二電極526との間に配置される。又、接着層528は、液晶層525を構成する液晶材料を封止する機能も有する。
(Adhesive layer)
The adhesive layer 528 is usually arranged between the first substrate 523 and the second substrate 527 in the lens portion 522, and adheres the first substrate 523 and the second substrate 527. When the first electrode 524 and the second electrode 526 are also arranged in the normal lens portion 522, the adhesive layer 528 is arranged between the first electrode 524 and the second electrode 526. The adhesive layer 528 also has a function of sealing the liquid crystal material constituting the liquid crystal layer 525.
 第一光学素子52は、必要に応じて、透光性を有する他の構成要素をさらに有してもよい。当該他の構成要素の例には、絶縁層および配向膜が含まれる。 The first optical element 52 may further have other components having translucency, if necessary. Examples of such other components include insulating layers and alignment films.
 絶縁層は、第一電極524と第二電極526との間の導通を防止する。例えば、絶縁層は、第一電極524と液晶層525との間と、液晶層525と第二電極526との間とにそれぞれ配置される。 The insulating layer prevents conduction between the first electrode 524 and the second electrode 526. For example, the insulating layer is arranged between the first electrode 524 and the liquid crystal layer 525, and between the liquid crystal layer 525 and the second electrode 526, respectively.
 配向膜は、液晶層525における液晶材料の配向状態を制御する。例えば、配向膜は、第一電極524と液晶層525との間、及び、液晶層525と第二電極526との間に、それぞれ配置される。 The alignment film controls the alignment state of the liquid crystal material in the liquid crystal layer 525. For example, the alignment film is arranged between the first electrode 524 and the liquid crystal layer 525, and between the liquid crystal layer 525 and the second electrode 526, respectively.
 (第二光学素子)
 第二光学素子53は、既述の実施形態2に係る光学素子1Bである。第二光学素子53は、第一光学素子52の第一面(Z方向+側の面)に、例えば、接着等の固定手段により固定されている。
(Second optical element)
The second optical element 53 is the optical element 1B according to the second embodiment described above. The second optical element 53 is fixed to the first surface (the surface on the + side in the Z direction) of the first optical element 52 by a fixing means such as adhesion.
 本実施形態の場合、第二光学素子53は、図5における右側(X方向+側)が、図25における上側に一致する状態で設けられている。換言すれば、第二光学素子53は、図5における右側(X方向+側)が、眼鏡の使用状態におけるレンズ51の上側に一致する状態で設けられている。 In the case of the present embodiment, the second optical element 53 is provided so that the right side (X direction + side) in FIG. 5 coincides with the upper side in FIG. 25. In other words, the second optical element 53 is provided so that the right side (X direction + side) in FIG. 5 coincides with the upper side of the lens 51 in the state of using the spectacles.
 よって、図1において、入射角θに関する+側(+θ側)が、眼鏡の使用状態におけるレンズ51の上側である。一方、図1において、入射角θに関する-側(-θ側)が、眼鏡の使用状態におけるレンズ51の下側である。 Therefore, in FIG. 1, the + side (+ θ side) with respect to the incident angle θ is the upper side of the lens 51 in the state of using the spectacles. On the other hand, in FIG. 1, the − side (−θ side) with respect to the incident angle θ is the lower side of the lens 51 in the state of using the spectacles.
 既述のように、実施形態2に係る光学素子1Bは、第一状態において、二色性色素142それぞれの最大吸収方向が、入射角θに関する+側(具体的には、入射角θ=+60°)に含まれる。 As described above, in the optical element 1B according to the second embodiment, in the first state, the maximum absorption direction of each of the dichroic dyes 142 is on the + side with respect to the incident angle θ (specifically, the incident angle θ = +60). °) is included.
 このような光学素子1Bは、入射角に関する+側から光学素子1Bに入射する入射光Lのうち、光学素子1Bから出射される出射光の光量が、入射角に関する-側から光学素子1Bに入射する入射光Lのうち、光学素子1Bから出射される出射光の光量よりも少なくなる性質(吸収率に関する異方性)を有する。 In such an optical element 1B, among the incident light L incident on the optical element 1B from the + side with respect to the incident angle, the amount of light emitted from the optical element 1B is incident on the optical element 1B from the-side with respect to the incident angle. Among the incident light L, the incident light L has a property (anisity regarding the absorption rate) that is smaller than the amount of the emitted light emitted from the optical element 1B.
 よって、第二光学素子53(光学素子1B)は、眼鏡の使用状態において、上方から第二光学素子53(光学素子1B)に入射する入射光Lに対する吸収率が、下方から第二光学素子53(光学素子1B)に入射する入射光Lに対する吸収率よりも大きい性質(吸収率に関する異方性)を有する。 Therefore, the second optical element 53 (optical element 1B) has an absorption rate with respect to the incident light L incident on the second optical element 53 (optical element 1B) from above in the state of using the glasses, and the second optical element 53 from below. It has a property (anisity regarding the absorption rate) that is larger than the absorption rate for the incident light L incident on the (optical element 1B).
 (検出部)
 検出部54a、54bはそれぞれ、例えば、静電容量方式の検出パッドを有する。検出パッドは、タッチセンサとして使用されうる公知の検出パッドであってよい。検出部54a、54bはそれぞれ、ユーザの指が検出部54a、54bに接触したときに、当該接触によって生じる静電容量の変化を検出する。
(Detection unit)
Each of the detection units 54a and 54b has, for example, a capacitance type detection pad. The detection pad may be a known detection pad that can be used as a touch sensor. When the user's finger touches the detection units 54a and 54b, the detection units 54a and 54b detect the change in capacitance caused by the contact, respectively.
 検出部54aは、一方のテンプル502aに設けられている。検出部54aの一部は、一方のテンプル502aから外部に露出している。ユーザは、検出部54aにおいて外部に露出した部分をタッチ操作する。 The detection unit 54a is provided on one of the temples 502a. A part of the detection unit 54a is exposed to the outside from one of the temples 502a. The user touch-operates the portion exposed to the outside in the detection unit 54a.
 検出部54bは、他方のテンプル502bに設けられている。検出部54bの一部は、他方のテンプル502bから外部に露出している。ユーザは、検出部54bにおいて外部に露出した部分をタッチ操作する。 The detection unit 54b is provided on the other temple 502b. A part of the detection unit 54b is exposed to the outside from the other temple 502b. The user touch-operates the portion exposed to the outside in the detection unit 54b.
 (制御部)
 一方の制御部55aは、ユーザの操作に基づいて、第一光学素子52に電圧を印可した状態と、電圧を印可しない状態とを切り替える。
(Control unit)
On the other hand, the control unit 55a switches between a state in which a voltage is applied to the first optical element 52 and a state in which the voltage is not applied, based on the operation of the user.
 制御部55aは、配線57aを介して、検出部54aの検出パッドに電気的に接続されている。又、制御部55aは、配線57aを介して、第一光学素子52の第一電極524及び第二電極526に電気的に接続されている。 The control unit 55a is electrically connected to the detection pad of the detection unit 54a via the wiring 57a. Further, the control unit 55a is electrically connected to the first electrode 524 and the second electrode 526 of the first optical element 52 via the wiring 57a.
 制御部55aは、検出部54aが対象物の接触を検出したときに、第一光学素子52に電圧を印加するか、又は第一光学素子52への電圧の印加を停止して、第一光学素子52における液晶レンズ部521の焦点距離(度数)を切替える。 When the detection unit 54a detects the contact of the object, the control unit 55a applies a voltage to the first optical element 52 or stops applying the voltage to the first optical element 52 to obtain the first optical. The focal length (power) of the liquid crystal lens unit 521 in the element 52 is switched.
 他方の制御部55bは、ユーザの操作に基づいて、第二光学素子53(光学素子1B)に電圧を印可した状態と、電圧を印可しない状態とを切り替える。 The other control unit 55b switches between a state in which a voltage is applied to the second optical element 53 (optical element 1B) and a state in which a voltage is not applied, based on the user's operation.
 制御部55bは、配線57bを介して、検出部54bの検出パッドに電気的に接続されている。又、制御部55bは、配線57bを介して、第二光学素子53(光学素子1B)の第一電極12及び第二電極16(図1参照)に電気的に接続されている。 The control unit 55b is electrically connected to the detection pad of the detection unit 54b via the wiring 57b. Further, the control unit 55b is electrically connected to the first electrode 12 and the second electrode 16 (see FIG. 1) of the second optical element 53 (optical element 1B) via the wiring 57b.
 制御部55bは、検出部54bが対象物の接触を検出したときに、第二光学素子53(光学素子1B)に電圧を印加するか、又は第二光学素子53(光学素子1B)への電圧の印加を停止して、第二光学素子53(光学素子1B)における液晶層14の配向状態を切り替える。 The control unit 55b applies a voltage to the second optical element 53 (optical element 1B) or a voltage to the second optical element 53 (optical element 1B) when the detection unit 54b detects contact with the object. Is stopped, and the orientation state of the liquid crystal layer 14 in the second optical element 53 (optical element 1B) is switched.
 制御部55bの制御下で、第二光学素子53(光学素子1B)は、第一状態と第二状態とを切り替える。第二光学素子53(光学素子1B)の第一状態及び第二状態については、既述の通りである。 Under the control of the control unit 55b, the second optical element 53 (optical element 1B) switches between the first state and the second state. The first state and the second state of the second optical element 53 (optical element 1B) are as described above.
 (電源)
 一方の電源56aは、制御部55a及び検出部54aに電力を供給する。本実施形態では、電源56aは、一方のテンプル502aの後端部(第二端部)に着脱可能に保持される充電式のバッテリーパックである。電源56aは、例えば、ニッケル水素充電池であってよい。
(Power supply)
One power source 56a supplies electric power to the control unit 55a and the detection unit 54a. In the present embodiment, the power supply 56a is a rechargeable battery pack that is detachably held at the rear end portion (second end portion) of one temple 502a. The power source 56a may be, for example, a nickel-metal hydride rechargeable battery.
 他方の電源56bは、制御部55b及び検出部54bに電力を供給する。本実施形態では、電源56bは、他方のテンプル502bの後端部(第二端部)に着脱可能に保持される充電式のバッテリーパックである。電源56bは、例えば、ニッケル水素充電池であってよい。 The other power source 56b supplies power to the control unit 55b and the detection unit 54b. In the present embodiment, the power supply 56b is a rechargeable battery pack that is detachably held at the rear end portion (second end portion) of the other temple 502b. The power source 56b may be, for example, a nickel-metal hydride rechargeable battery.
 (電子眼鏡の動作)
 電子眼鏡5の動作の一例について説明する。先ず、電子眼鏡5の第一光学素子52に電圧が印加されていない状態(第一オフ状態)について説明する。
(Operation of electronic glasses)
An example of the operation of the electronic glasses 5 will be described. First, a state in which a voltage is not applied to the first optical element 52 of the electronic eyeglasses 5 (first off state) will be described.
 第一オフ状態では、第一光学素子52において、液晶層525の屈折率と第一基板523及び第二基板527の屈折率とが、ほぼ同じとなる。このため、第一光学素子52において、液晶層525に起因するレンズ効果は生じない。 In the first off state, in the first optical element 52, the refractive index of the liquid crystal layer 525 and the refractive index of the first substrate 523 and the second substrate 527 are almost the same. Therefore, in the first optical element 52, the lens effect caused by the liquid crystal layer 525 does not occur.
 第一オフ状態において、一方の検出部54aが、導電体である対象物(例えば使用者の指)の接触を検知すると、検出部54aは、この接触に基づく検出情報を、制御部55aに送る。制御部55aは、第一オフ状態において、取得した検出部54aの検出情報に基づいて、第一光学素子52に電圧を印加する。 When one of the detection units 54a detects contact with an object (for example, a user's finger) which is a conductor in the first off state, the detection unit 54a sends detection information based on this contact to the control unit 55a. .. The control unit 55a applies a voltage to the first optical element 52 based on the acquired detection information of the detection unit 54a in the first off state.
 これにより、第一光学素子52の液晶層525における液晶材料の配向状態が変化して、この液晶層の度数(屈折率)が変化する。第一光学素子52に電圧が印加された状態は、電子眼鏡5の第一オン状態と称する。 As a result, the orientation state of the liquid crystal material in the liquid crystal layer 525 of the first optical element 52 changes, and the power (refractive index) of this liquid crystal layer changes. The state in which the voltage is applied to the first optical element 52 is referred to as the first on state of the electronic eyeglasses 5.
 第一オン状態では、第一光学素子52における液晶層525の屈折率と、第一基板523及び第二基板527の屈折率とが、互いに異なる。このため、第一光学素子52に、液晶層525に起因するレンズ効果が生じる。この結果、第一光学素子52において液晶層525に対応する領域の度数が変化する。 In the first on state, the refractive index of the liquid crystal layer 525 in the first optical element 52 and the refractive index of the first substrate 523 and the second substrate 527 are different from each other. Therefore, the lens effect caused by the liquid crystal layer 525 occurs in the first optical element 52. As a result, the power of the region corresponding to the liquid crystal layer 525 in the first optical element 52 changes.
 又、第一オン状態において、一方の検出部54aが、導電体である対象物(例えば使用者の指)の接触を検知すると、検出部54aは、この接触に基づく検出情報を、制御部55aに送る。制御部55aは、第一オン状態において、取得した検出部54aの検出情報に基づいて、第一光学素子52への電圧の印加を停止する。この結果、第一光学素子52の状態は、第一オフ状態となる。 Further, when one of the detection units 54a detects the contact of an object (for example, a user's finger) which is a conductor in the first ON state, the detection unit 54a outputs the detection information based on this contact to the control unit 55a. Send to. The control unit 55a stops applying the voltage to the first optical element 52 based on the acquired detection information of the detection unit 54a in the first on state. As a result, the state of the first optical element 52 becomes the first off state.
 又、電子眼鏡5の第二光学素子53に電圧が印加されていない状態(第二オフ状態)は、既述の光学素子1Bの第一状態に対応する。 Further, the state in which the voltage is not applied to the second optical element 53 of the electronic eyeglasses 5 (second off state) corresponds to the first state of the optical element 1B described above.
 既述の通り、第二オフ状態において、第二光学素子53(光学素子1B)は、吸収率に関する異方性を有する。よって、第二オフ状態において、第二光学素子53(光学素子1B)は、上方から第二光学素子53(光学素子1B)に入射する入射光Lに対する吸収率が、下方から光学素子1Bに入射する入射光Lに対する吸収率よりも大きい。 As described above, in the second off state, the second optical element 53 (optical element 1B) has anisotropy regarding the absorptivity. Therefore, in the second off state, in the second optical element 53 (optical element 1B), the absorption rate of the incident light L incident on the second optical element 53 (optical element 1B) from above is incident on the optical element 1B from below. It is larger than the absorption rate for the incident light L.
 第二オフ状態において、他方の検出部54bが、導電体である対象物(例えば使用者の指)の接触を検知すると、検出部54bは、この接触に基づく検出情報を、制御部55bに送る。制御部55bは、第二オフ状態において、取得した検出部54bの検出情報に基づいて、第二光学素子53(光学素子1B)に電圧を印加する。 When the other detection unit 54b detects contact with an object (for example, a user's finger) which is a conductor in the second off state, the detection unit 54b sends detection information based on this contact to the control unit 55b. .. The control unit 55b applies a voltage to the second optical element 53 (optical element 1B) based on the acquired detection information of the detection unit 54b in the second off state.
 これにより、第二光学素子53(光学素子1B)の液晶層14(図1参照)における液晶分子141及び二色性色素142の配向状態が変化する。第二光学素子53(光学素子1B)に電圧が印加された状態は、電子眼鏡5の第二オン状態と称する。第二オン状態は、光学素子1Bの第二状態に対応する。 As a result, the orientation state of the liquid crystal molecules 141 and the dichroic dye 142 in the liquid crystal layer 14 (see FIG. 1) of the second optical element 53 (optical element 1B) changes. The state in which the voltage is applied to the second optical element 53 (optical element 1B) is referred to as the second on state of the electronic eyeglasses 5. The second on state corresponds to the second state of the optical element 1B.
 既述の通り、第二オン状態において、第二光学素子53(光学素子1B)は、吸収率に関する異方性を有していない。よって、第二オン状態において、第二光学素子53(光学素子1B)は、上方から第二光学素子53(光学素子1B)に入射する入射光Lに対する吸収率と、下方から第二光学素子53(光学素子1B)に入射する入射光Lに対する吸収率とが等しい又はほぼ等しい。 As described above, the second optical element 53 (optical element 1B) does not have anisotropy regarding the absorptivity in the second on state. Therefore, in the second ON state, the second optical element 53 (optical element 1B) has the absorption rate for the incident light L incident on the second optical element 53 (optical element 1B) from above and the second optical element 53 from below. The absorption rate for the incident light L incident on (optical element 1B) is equal to or substantially equal to.
 又、第二オン状態において、検出部54bが、導電体である対象物(例えば使用者の指)の接触を検知すると、検出部54bは、この接触に基づく検出情報を、制御部55bに送る。制御部55bは、第二オン状態において、取得した検出部54bの検出情報に基づいて、第二光学素子53(光学素子1B)への電圧の印加を停止する。この結果、第一光学素子52の状態は、第一オフ状態となる。 Further, when the detection unit 54b detects contact with an object (for example, a user's finger) which is a conductor in the second ON state, the detection unit 54b sends detection information based on this contact to the control unit 55b. .. The control unit 55b stops applying a voltage to the second optical element 53 (optical element 1B) based on the acquired detection information of the detection unit 54b in the second ON state. As a result, the state of the first optical element 52 becomes the first off state.
 尚、第一光学素子52の状態(第一オフ状態及び第一オン状態)と、第二光学素子53(光学素子1B)の状態(第二オフ状態及び第二オン状態)とは、ユーザの操作に基づいて、適宜の組み合わせで実現されてよい。 The state of the first optical element 52 (first off state and first on state) and the state of the second optical element 53 (optical element 1B) (second off state and second on state) are defined by the user. It may be realized by an appropriate combination based on the operation.
 (レンズの前傾角について)
 ここで、レンズ51の前傾角について説明する。図27に示すレンズ51は、レンズ51の厚さ方向が、ユーザの前後方向(図27における左右方向)に平行な状態で設けられている。図27に示すレンズ51の前傾角δ51(図28参照)は、0°である。
(About the forward tilt angle of the lens)
Here, the forward tilt angle of the lens 51 will be described. The lens 51 shown in FIG. 27 is provided so that the thickness direction of the lens 51 is parallel to the front-back direction (left-right direction in FIG. 27) of the user. The forward tilt angle δ 51 (see FIG. 28) of the lens 51 shown in FIG. 27 is 0 °.
 ユーザの前後方向に平行な方向(Z方向)からレンズ51に入射する入射光は、入射光Lである。又、ユーザの斜め上方からレンズ51に入射する入射光は、図27における入射角に関する+側(+θ側)からレンズ51に入射する入射光Lである。ユーザの斜め下方からレンズ51に入射する入射光は、図27における入射角に関する-側(-θ側)からレンズ51に入射する入射光Lである。 Light incident on the lens 51 in a direction parallel (Z-direction) in the longitudinal direction of the user is the incident light L 1. Moreover, light incident obliquely from above of the user to the lens 51 is incident light L 2 to be incident on the lens 51 from about the incident angle + side (+ theta side) in FIG. 27. Light incident obliquely from below of the user to the lens 51 is directed to the incident angle of 27 - an incident light L 3 incident from the side (- [theta] side) lens 51.
 図28には、レンズ51の厚さ方向をユーザの前後方向(図27における左右方向)に対して、30°傾けた場合の、レンズ51が示されている。図28に示すレンズ51の前傾角δ51は、30°である。このように、レンズ51の前傾角δ51を変えることにより、レンズ51の入射角と透過率との関係を、前傾角δ51に応じて、調整することが可能である。つまり、レンズ51の前傾角を調整することにより、吸収率を高くしたい(換言すれば、透過率を高くしたい)入射光Lの方向を調整できる。 FIG. 28 shows the lens 51 when the thickness direction of the lens 51 is tilted by 30 ° with respect to the user's front-back direction (left-right direction in FIG. 27). The forward tilt angle δ 51 of the lens 51 shown in FIG. 28 is 30 °. By changing the forward tilt angle δ 51 of the lens 51 in this way, it is possible to adjust the relationship between the incident angle of the lens 51 and the transmittance according to the forward tilt angle δ 51. That is, by adjusting the forward tilt angle of the lens 51, the direction of the incident light L for which the absorption rate is desired to be increased (in other words, the transmittance is desired to be increased) can be adjusted.
 以上のような電子眼鏡5によれば、第二光学素子53(光学素子1B)への電圧の印加に応じて、吸収率に関する異方性を有する状態(第一状態)と、吸収率に関する異方性を有していない状態(第二状態)と、を切り替えることができる。 According to the electronic glasses 5 as described above, the state having anisotropy regarding the absorption rate (first state) and the difference regarding the absorption rate depending on the application of the voltage to the second optical element 53 (optical element 1B). It is possible to switch between a state without anisotropy (second state) and a state without anisotropy.
 特に、第二光学素子53(光学素子1B)の第二オフ状態において、上方からレンズ51に入射する入射光Lに対する吸収率が、下方からレンズ51に入射する入射光Lに対する吸収率よりも大きい。太陽の位置が高い日中において第二オフ状態を実現させれば、レンズ51に上方から入射する太陽光に対する吸収率を高めることができる。この結果、ユーザの視認性を向上できる。 In particular, in the second off state of the second optical element 53 (optical element 1B), the absorption rate for the incident light L incident on the lens 51 from above is larger than the absorption rate for the incident light L incident on the lens 51 from below. .. If the second off state is realized in the daytime when the position of the sun is high, the absorption rate for sunlight incident on the lens 51 from above can be increased. As a result, the visibility of the user can be improved.
 (本実施形態に関する付記)
 本実施形態では、第二光学素子53として、実施形態2の光学素子1Bを適用した場合について説明した。ただし、第二光学素子53は、実施形態2の光学素子1Bに限定されない。第二光学素子53は、実施形態1~12に係る光学素子のうちの何れかであってもよい。
(Supplementary note regarding this embodiment)
In the present embodiment, the case where the optical element 1B of the second embodiment is applied as the second optical element 53 has been described. However, the second optical element 53 is not limited to the optical element 1B of the second embodiment. The second optical element 53 may be any of the optical elements according to the first to twelfth embodiments.
 又、本実施形態では、第二光学素子53(光学素子1B)は、第二光学素子53(光学素子1B)の二色性色素142それぞれの最大吸収方向が含まれる方向(本実施形態の場合、入射角θに関する+側)が、眼鏡の使用状態におけるレンズ51の上側に一致するように配置されている。 Further, in the present embodiment, the second optical element 53 (optical element 1B) includes a direction including the maximum absorption direction of each of the dichroic dyes 142 of the second optical element 53 (optical element 1B) (in the case of the present embodiment). , The + side with respect to the incident angle θ) is arranged so as to coincide with the upper side of the lens 51 in the state of use of the spectacles.
 ただし、第二光学素子53(光学素子1B)の配置は、これに限定されない。例えば、眼鏡の使用状態において、レンズ51の右方向からレンズ51に入射する入射光に対する吸収率を大きくしたい場合には、第二光学素子53の二色性色素142それぞれの最大吸収方向が含まれる方向(本実施形態の場合、入射角θに関する+側)が、眼鏡の使用状態におけるレンズ51の右側に一致するように、第二光学素子53を配置すればよい。第二光学素子53の配置態様は、左右のレンズ51同士で異なってもよい。 However, the arrangement of the second optical element 53 (optical element 1B) is not limited to this. For example, when it is desired to increase the absorption rate of the incident light incident on the lens 51 from the right direction of the lens 51 in the use state of the spectacles, the maximum absorption direction of each of the dichroic dyes 142 of the second optical element 53 is included. The second optical element 53 may be arranged so that the direction (in the case of the present embodiment, the + side with respect to the incident angle θ) coincides with the right side of the lens 51 in the state of using the spectacles. The arrangement mode of the second optical element 53 may be different between the left and right lenses 51.
 [実施形態14]
 図29を参照して、本発明の実施形態14に係る電子眼鏡5Bについて説明する。図29は、電子眼鏡5Bの模式図である。
[Embodiment 14]
The electronic eyeglasses 5B according to the fourteenth embodiment of the present invention will be described with reference to FIG. 29. FIG. 29 is a schematic diagram of the electronic eyeglasses 5B.
 本実施形態の電子眼鏡5Bは、第一光学素子52と第二光学素子53とが独立して設けられている点で、実施形態13の電子眼鏡5と異なる。その他の第一光学素子52の構成、及び、第二光学素子53の構成は、実施形態13と同様である。 The electronic eyeglasses 5B of the present embodiment are different from the electronic eyeglasses 5 of the thirteenth embodiment in that the first optical element 52 and the second optical element 53 are independently provided. The other configurations of the first optical element 52 and the configuration of the second optical element 53 are the same as those of the thirteenth embodiment.
 又、本実施形態の電子眼鏡5Bは、第二光学素子53の前傾角を調整するための、前傾角調整機構7を有する。前傾角調整機構7は、フレーム50に設けられており、第一支持部71と、第二支持部72と、第一支持部71と第二支持部72とを接続する接続部73と、を有する。 Further, the electronic eyeglasses 5B of the present embodiment has a forward tilt angle adjusting mechanism 7 for adjusting the forward tilt angle of the second optical element 53. The forward tilt angle adjusting mechanism 7 is provided on the frame 50, and has a first support portion 71, a second support portion 72, and a connection portion 73 connecting the first support portion 71 and the second support portion 72. Have.
 第一支持部71は、第一光学素子52を、揺動不可能な状態で支持している。又、第二支持部72は、第二光学素子53を揺動可能な状態で支持している。ユーザは、第二光学素子53を揺動させることにより、第二光学素子53の前傾角を調整できる。 The first support portion 71 supports the first optical element 52 in a non-swingable state. Further, the second support portion 72 supports the second optical element 53 in a swingable state. The user can adjust the forward tilt angle of the second optical element 53 by swinging the second optical element 53.
 図29の二点鎖線は、前傾角が0°である基準状態における第二光学素子53を示している。ユーザは、例えば、図29の矢印Aが指す方向に第二光学素子53を30°回転させると、第二光学素子53の前傾角は、図28に示すように30°となる。 The chain double-dashed line in FIG. 29 shows the second optical element 53 in the reference state where the forward tilt angle is 0 °. The user, for example, when to the second rotating optical element 53 30 ° in the direction indicated by the arrow A 1 in FIG. 29, the forward inclination of the second optical element 53 becomes the 30 ° as shown in Figure 28.
 ユーザは、第二光学素子53の前傾角を調整することにより、吸収率を高くしたい(換言すれば、透過率を高くしたい)入射光Lの方向を調整できる。 The user can adjust the direction of the incident light L for which the absorption rate is desired to be increased (in other words, the transmittance is desired to be increased) by adjusting the forward tilt angle of the second optical element 53.
 (付記)
 以上のように、実施形態13、14では、本発明に係る光学素子の適用対象が電子眼鏡である場合について説明した。ただし、本発明に係る光学素子の適用対象は、電子眼鏡に限定されない。本発明に係る光学素子は、種々のアイウェアに適用できる。
(Additional note)
As described above, in the 13th and 14th embodiments, the case where the application target of the optical element according to the present invention is electronic eyeglasses has been described. However, the application target of the optical element according to the present invention is not limited to electronic eyeglasses. The optical element according to the present invention can be applied to various eyewear.
 例えば、本発明に係る光学素子は、情報の表示機能を備えたレンズを有するスマートグラスにも適用できる。このようなスマートグラスに、本発明に係る光学素子を適用することにより、特定方向からレンズに入射する入射光に対する吸収率を高くできる。この結果、レンズにおいて特定方向に対応する部分に表示される情報の視認性を高めることができる。その他、本発明に係る光学素子は、VR(Virtual Reality)グラス等にも適用できる。 For example, the optical element according to the present invention can also be applied to smart glasses having a lens having an information display function. By applying the optical element according to the present invention to such smart glasses, it is possible to increase the absorption rate for incident light incident on the lens from a specific direction. As a result, it is possible to improve the visibility of the information displayed on the portion of the lens corresponding to the specific direction. In addition, the optical element according to the present invention can also be applied to VR (Virtual Reality) glass and the like.
 2020年6月16日出願の特願2020-104044の日本出願に含まれる明細書、図面、及び要約書の開示内容は、すべて本願に援用される。 The disclosures of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2020-104044 filed on June 16, 2020 are all incorporated herein by reference.
 本発明に係る光学素子は、種々のアイウェアに適用できる。 The optical element according to the present invention can be applied to various eyewear.
 1、1B、1C、1D、1E、1Eb、1F 光学素子
 1G、1H、1J、1Jb、1K、1Kb、1L、1M 光学素子
 101e、101f、101j、101k 第一素子
 102e、102f、102j、102k 第二素子
 11 第一基板
 12 第一電極
 13、13B、13L、13M 第一配向膜
 14、14B 液晶層
 14L1、14M1 第一液晶層
 14L2、14M2 第二液晶層
 141 液晶分子
 142 二色性色素
 R 第一領域
 R 第二領域
 R 中間領域
 15、15B、15L 第二配向膜
 16 第二電極
 17 第二基板
 18 偏光板
 19 半波長板
 20 第一接着層
 21 第二接着層
 5 電子眼鏡
 50 フレーム
 501 フロント
 502a、502b テンプル
 51 レンズ
 52 第一光学素子
 521 液晶レンズ部
 522 通常レンズ部
 523 第一基板
 523a 回折領域
 523b 凸部
 523c 第一凸条
 524 第一電極
 525 液晶層
 526 第二電極
 527 第二基板
 528 接着層
 53 第二光学素子
 54a、54b 検出部
 55a、55b 制御部
 56a、56b 電源
 57a、57b 配線
 7 前傾角調整機構
 71 第一支持部
 72 第二支持部
 73 接続部
1,1B, 1C, 1D, 1E, 1Eb, 1F Optical element 1G, 1H, 1J, 1Jb, 1K, 1Kb, 1L, 1M Optical element 101e, 101f, 101j, 101k First element 102e, 102f, 102j, 102k Two elements 11 First substrate 12 First electrode 13, 13B, 13L, 13M First alignment film 14, 14B Liquid crystal layer 14L1, 14M1 First liquid crystal layer 14L2, 14M2 Second liquid crystal layer 141 Liquid crystal molecule 142 Bicolor dye R 1 1st region R 2 2nd region R 3 Intermediate region 15, 15B, 15L 2nd alignment film 16 2nd electrode 17 2nd substrate 18 Polarizing plate 19 Half wave plate 20 1st adhesive layer 21 2nd adhesive layer 5 Electronic optics 50 Frame 501 Front 502a, 502b Temple 51 Lens 52 First optical element 521 Liquid crystal lens part 522 Normal lens part 523 First substrate 523a Diffraction area 523b Convex part 523c First convex strip 524 First electrode 525 Liquid crystal layer 526 Second electrode 527 Two boards 528 Adhesive layer 53 Second optical element 54a, 54b Detection part 55a, 55b Control part 56a, 56b Power supply 57a, 57b Wiring 7 Forward tilt angle adjustment mechanism 71 First support part 72 Second support part 73 Connection part

Claims (10)

  1.  液晶分子と二色性色素とを含み、対面する第一面及び第二面を有する液晶セルを備え、
     前記第一面及び前記第二面の少なくとも一方の面に接する前記二色性色素の、前記一方の面に対する傾斜角であるプレチルト角が、5°以上である、
     光学素子。
    A liquid crystal cell containing a liquid crystal molecule and a dichroic dye and having a facing first surface and a second surface is provided.
    The pretilt angle, which is the inclination angle of the dichroic dye in contact with at least one of the first surface and the second surface, with respect to the one surface is 5 ° or more.
    Optical element.
  2.  前記第一面又は前記第二面に固定された偏光板を、更に備える、請求項1に記載の光学素子。 The optical element according to claim 1, further comprising a polarizing plate fixed to the first surface or the second surface.
  3.  前記液晶セルを挟持する一対の透明電極を、更に備え、
     前記液晶分子は、前記一対の透明電極への電圧印加に基づいて配向状態が変化する、請求項1又は2に記載の光学素子。
    A pair of transparent electrodes that sandwich the liquid crystal cell are further provided.
    The optical element according to claim 1 or 2, wherein the liquid crystal molecule changes its orientation state based on the application of a voltage to the pair of transparent electrodes.
  4.  前記プレチルト角は、10°以上である、請求項1に記載の光学素子。 The optical element according to claim 1, wherein the pretilt angle is 10 ° or more.
  5.  それぞれが前記液晶セルである第一液晶セル及び第二液晶セルと、
     前記第一液晶セルと前記第二液晶セルとの間に設けられた半波長板と、を備える、請求項1に記載の光学素子。
    The first liquid crystal cell and the second liquid crystal cell, which are the liquid crystal cells, respectively,
    The optical element according to claim 1, further comprising a half-wave plate provided between the first liquid crystal cell and the second liquid crystal cell.
  6.  第一液晶セル及び第二液晶セルのそれぞれは、前記第一面に接する前記液晶分子を含む第一領域と前記第二面に接する前記液晶分子を含む第二領域との間に設けられた中間領域に、前記第一面に対する傾斜角であるチルト角が40°以上70°以下である前記液晶分子を含む、請求項5に記載の光学素子。 Each of the first liquid crystal cell and the second liquid crystal cell is an intermediate provided between a first region containing the liquid crystal molecules in contact with the first surface and a second region containing the liquid crystal molecules in contact with the second surface. The optical element according to claim 5, wherein the region includes the liquid crystal molecule having a tilt angle of 40 ° or more and 70 ° or less, which is an inclination angle with respect to the first surface.
  7.  前記第一液晶セルを挟持する一対の第一透明電極と、前記第二液晶セルを挟持する一対の第二透明電極と、を更に備え、
     前記第一液晶セルは、前記一対の第一透明電極への電圧の印加により液晶分子の配向が変化し、
     前記第二液晶セルは、前記一対の第二透明電極への電圧の印加により液晶分子の配向が変化する、請求項5又は6に記載の光学素子。
    A pair of first transparent electrodes that sandwich the first liquid crystal cell and a pair of second transparent electrodes that sandwich the second liquid crystal cell are further provided.
    In the first liquid crystal cell, the orientation of the liquid crystal molecules is changed by applying a voltage to the pair of first transparent electrodes, and the orientation of the liquid crystal molecules is changed.
    The optical element according to claim 5 or 6, wherein the second liquid crystal cell changes the orientation of liquid crystal molecules by applying a voltage to the pair of second transparent electrodes.
  8.  前記第一液晶セル及び第二液晶セルにおける液晶分子の配向はそれぞれ、ハイブリッド配向である、請求項5~7のいずれか一項に記載の光学素子。 The optical element according to any one of claims 5 to 7, wherein the orientation of the liquid crystal molecules in the first liquid crystal cell and the second liquid crystal cell is a hybrid orientation, respectively.
  9.  前記第一液晶セルは、前記第一液晶セルを挟持する一対の第一斜め配向膜により液晶分子の配向状態が制御され、
     前記第二液晶セルは、前記第二液晶セルを挟持する一対の第二斜め配向膜により液晶分子の配向状態が制御される、請求項5~7のいずれか一項に記載の光学素子。
    In the first liquid crystal cell, the alignment state of the liquid crystal molecules is controlled by a pair of first diagonal alignment films sandwiching the first liquid crystal cell.
    The optical element according to any one of claims 5 to 7, wherein the second liquid crystal cell is controlled by a pair of second diagonally aligned films sandwiching the second liquid crystal cell in an orientation state of liquid crystal molecules.
  10.  請求項1~9の何れか一項に記載の光学素子を有する電気活性レンズを備えたアイウェア。 Eyewear provided with an electrically active lens having the optical element according to any one of claims 1 to 9.
PCT/JP2021/022835 2020-06-16 2021-06-16 Optical element, and eyewear WO2021256499A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022531865A JPWO2021256499A1 (en) 2020-06-16 2021-06-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020104044 2020-06-16
JP2020-104044 2020-06-16

Publications (1)

Publication Number Publication Date
WO2021256499A1 true WO2021256499A1 (en) 2021-12-23

Family

ID=79267978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022835 WO2021256499A1 (en) 2020-06-16 2021-06-16 Optical element, and eyewear

Country Status (2)

Country Link
JP (1) JPWO2021256499A1 (en)
WO (1) WO2021256499A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200064666A1 (en) * 2019-06-29 2020-02-27 Shanghai Tianma Micro-electronics Co., Ltd. Display panel, display device and display method
EP3617786A1 (en) * 2017-04-28 2020-03-04 LG Chem, Ltd. Optical modulation device
CN111149048A (en) * 2017-10-31 2020-05-12 株式会社Lg化学 Variable transmittance device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3617786A1 (en) * 2017-04-28 2020-03-04 LG Chem, Ltd. Optical modulation device
CN111149048A (en) * 2017-10-31 2020-05-12 株式会社Lg化学 Variable transmittance device
US20200064666A1 (en) * 2019-06-29 2020-02-27 Shanghai Tianma Micro-electronics Co., Ltd. Display panel, display device and display method

Also Published As

Publication number Publication date
JPWO2021256499A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
US11852949B1 (en) Hybrid varifocal lens
TWI316630B (en)
TWI639860B (en) Transmittance-variable film and eyewear using the same
KR100789512B1 (en) Liquid crystal display device
US9304322B2 (en) Phase difference element and display unit
KR101364942B1 (en) Optical device
EP3730999B1 (en) Transmission variable film and use thereof
CN104220904A (en) Optical member, polarizing plate set and liquid crystal display device
US10495921B2 (en) Flexible liquid crystal lens
CN110573927A (en) Variable transmittance device
KR101976640B1 (en) Flexible liquid crystal lens
JP7073455B2 (en) Lenses, lens blanks and eyewear
WO2021256499A1 (en) Optical element, and eyewear
US9259906B2 (en) Optical laminated body, method of manufacturing the same, and display unit
JP7354097B2 (en) liquid crystal display device
CN111149048B (en) Variable transmittance device
Ye et al. Liquid crystal anamorphic lens
KR20170040564A (en) Optical Film
KR102079143B1 (en) Optical Device
KR102024266B1 (en) Optical Film
JPH02110511A (en) Sunglass with degree
KR102034462B1 (en) Optical Film
CN220491154U (en) Liquid crystal dimming film assembly
US20190155080A1 (en) Liquid crystal apparatus
TWI416169B (en) Switchable fresnel lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531865

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826910

Country of ref document: EP

Kind code of ref document: A1