WO2021256258A1 - Plasma treatment apparatus and plasma treatment method - Google Patents

Plasma treatment apparatus and plasma treatment method Download PDF

Info

Publication number
WO2021256258A1
WO2021256258A1 PCT/JP2021/020961 JP2021020961W WO2021256258A1 WO 2021256258 A1 WO2021256258 A1 WO 2021256258A1 JP 2021020961 W JP2021020961 W JP 2021020961W WO 2021256258 A1 WO2021256258 A1 WO 2021256258A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
gas
carbon
substrate
processing container
Prior art date
Application number
PCT/JP2021/020961
Other languages
French (fr)
Japanese (ja)
Inventor
貴士 松本
亮 清水
珠樹 湯浅
亮太 井福
真 和田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2021256258A1 publication Critical patent/WO2021256258A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • This disclosure relates to a plasma processing apparatus and a plasma processing method.
  • a microwave introduction module which is arranged on the top plate of a processing container and introduces a microwave for generating plasma from gas into the inside of the processing container, and a top plate of the processing container are formed.
  • a microwave plasma processing apparatus having a plurality of gas supply holes for introducing gas into the plasma processing space, each of the plurality of gas supply holes expanding from the pores of the gas supply hole and described above.
  • Plasma treatment having a cavity that opens into the plasma processing space, the diameter of the cavity on the plasma processing space side is 3 mm or more, and is 1/8 or less of the surface wave wavelength of the microwave in the plasma.
  • the device is disclosed.
  • the inside surface of the top plate of the processing container has been described to spray yttria (Y 2 O 3).
  • the technology according to the present disclosure performs suitable plasma treatment by suppressing the generation of particles and the generation of abnormal discharge.
  • One aspect of the present disclosure is an apparatus for plasma-treating a substrate in a processing container, wherein the processing container has a side wall and a top plate portion, is arranged on the top plate portion, and microwaves for generating plasma.
  • the gas is introduced through the microwave introducing means for introducing the gas into the processing container, the mounting table provided in the processing container on which the substrate is placed, and the gas supply hole provided in the top plate portion. It has a gas supply mechanism for supplying into the processing container, and the surface inside the processing container and the inner surface of the gas supply hole in the top plate portion are covered with a oxalic acid anodic oxide film.
  • Y 2 O 3 sprayed coating, fine particle size Y 2 O 3 sprayed coating is a graph showing changes in the number of particles with respect to the output of each microwave oxalate anodic oxide coating .. It is sectional drawing of the conventional gas supply hole in which an abnormal discharge occurred.
  • a carbon-based film for example, a carbon material such as graphene, carbon nanotube, or diamond-like carbon is formed on a substrate, for example, a semiconductor wafer (hereinafter, may be referred to as a “wafer”).
  • a plasma CVD device and an ALD device have been conventionally used.
  • the inner wall of the chamber made of aluminum alloy is covered with yttria (Y 2 O 3) sprayed coating to protect from wear by plasma.
  • Hydrogen gas (H 2 ) which is a reducing gas, is used in the film forming process for forming the carbon material, but the Y 2 O 3 spray film is damaged by the plasma containing H 2, and the wafer.
  • the problem is that a large amount of particles are generated on the top. Therefore, there is a demand for a material having higher resistance to plasma containing H 2 than the Y 2 O 3 sprayed film.
  • the technique according to the present disclosure suppresses both particle generation and abnormal discharge at the same time by applying a protective film in the chamber, which is more resistant to plasma containing H 2 than the Y 2 O 3 sprayed film. And perform suitable plasma treatment.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the plasma processing apparatus 1 according to the embodiment.
  • the plasma processing apparatus 1 is arranged in a processing container 11 which is a chamber for accommodating a wafer W and performing plasma processing, a mounting table 12 on which the wafer W is placed, and a processing container 11.
  • the processing container 11 is grounded.
  • the processing container 11 is formed of a metal material such as aluminum and an alloy thereof, has a substantially cylindrical shape, and has a plate-shaped top plate portion 21 and a bottom portion 22 and a side wall 23 connecting them. ..
  • the microwave introduction device 15 is provided on the upper part of the processing container 11 and functions as a plasma generation means for introducing an electromagnetic wave (microwave) into the processing container 11 to generate plasma.
  • the top plate portion 21 has a plurality of openings into which the microwave radiation mechanism 53 and the gas introduction nozzle 41, which will be described later, of the microwave introduction device 15 are fitted.
  • the side wall 23 has an loading / unloading port 24 for loading / unloading the wafer W, which is a substrate to be processed, with and from a transport chamber (not shown) adjacent to the processing container 11.
  • the carry-in outlet 24 is opened and closed by the gate valve 25.
  • An exhaust device 14 is provided on the bottom portion 22.
  • the exhaust device 14 is connected to an exhaust pipe 26 provided at the bottom 22.
  • the exhaust device 14 includes a vacuum pump (not shown).
  • the inside of the processing container 11 is exhausted through the exhaust pipe 26 by this vacuum pump.
  • the pressure in the processing container 11 is controlled by a pressure control valve (not shown) provided in the exhaust device 14.
  • the mounting table 12 has a disk shape and is made of ceramics such as AlN.
  • the mounting table 12 is supported by a support member 30 made of ceramics such as cylindrical AlN extending upward from the center of the bottom of the processing container 11.
  • a guide ring 31 for guiding the wafer W is provided on the outer edge of the mounting table 12.
  • an elevating pin (not shown) for raising and lowering the wafer W is provided so as to be retractable with respect to the upper surface of the mounting table 12.
  • a heater 32 is embedded inside the mounting table 12, and the heater 32 heats the wafer W on the mounting table 12 by the electric power supplied from the heater power supply 33.
  • thermocouple (not shown) is inserted in the mounting table 12, and the temperature of the wafer W can be heated to a desired temperature in the range of, for example, 150 to 800 ° C. based on the signal from the thermocouple. ..
  • An electrode 34 having the same size as the wafer W is embedded above the heater 32 in the mounting table 12, and a high-frequency power supply 35 is electrically connected to the electrode 34.
  • a high frequency bias for drawing ions is applied from the high frequency power supply 35 to the mounting table 12.
  • the high frequency power supply 35 does not need to be provided depending on the characteristics of the plasma processing. Further, in this example, the high frequency bias has been described as an example for drawing in ions, but a DC bias may be applied by connecting a DC power supply. It is not necessary to provide a DC power supply specially depending on the characteristics of plasma processing.
  • the gas supply mechanism 13 is for introducing the plasma-generated gas and the raw material gas for forming the graphene structure into the processing container 11, and has a plurality of gas introduction nozzles 41.
  • the gas introduction nozzle 41 is provided on the top plate portion 21 of the processing container 11.
  • Each gas introduction nozzle 41 is connected to a gas supply pipe 42.
  • the gas supply pipe 42 is branched into five branch pipes 42a, 42b, 42c, 42d, and 42e, and these branch pipes 42a, 42b, 42c, 42d, and 42e are designated as rare gases that are plasma-producing gases, respectively.
  • a cleaning gas supplied O 2 gas as an oxidizing gas is O 2 gas supply source 44, N 2 gas supply source 45 supplying N 2 gas used as a purge gas or the like ,
  • the branch pipes 42a, 42b, 42c, 42d, and 42e are provided with a mass flow controller for flow rate control and valves arranged before and after the mass flow controller.
  • the plasma generation gas is not limited to Ar gas, and may be, for example, He gas, Ne gas, Kr gas, or Xe gas.
  • the carbon-containing gas is not limited to acetylene (C 2 H 2 ) gas, and may be, for example, ethylene (C 2 H 4 ) gas, methane (CH 4 ) gas, or propylene (C 3 H 6 ) gas.
  • the microwave introduction device 15 is provided above the processing container 11 and functions as a plasma generation means for introducing an electromagnetic wave (microwave) into the processing container 11 to generate plasma.
  • the microwave introduction device 15 includes a top plate portion 21 of a processing container 11 that functions as a top plate, a microwave output unit 50 that generates microwaves and distributes and outputs microwaves to a plurality of paths, and microwaves. It has an antenna unit 51 that introduces microwaves output from the output unit 50 into the processing container 11.
  • the microwave output unit 50 includes a microwave power supply (not shown), a microwave oscillator, an amplifier that amplifies the microwave oscillated by the microwave oscillator, and a distributor that distributes the microwave amplified by the amplifier to a plurality of paths.
  • the microwave oscillator oscillates microwaves (eg, PLL oscillation) at 860 MHz, for example.
  • the microwave frequency is not limited to 860 MHz, and a microwave frequency in the range of 700 MHz to 10 GHz such as 2.45 GHz, 8.35 GHz, 5.8 GHz, 1.98 GHz, etc. can be used.
  • the antenna unit 51 includes a plurality of antenna modules (not shown), and each antenna module has an amplifier unit 52 that amplifies and outputs microwaves from the microwave output unit 50, and a micro that is output from the amplifier unit 52. It has a microwave radiation mechanism 53 that radiates waves into the processing container 11.
  • a plurality of microwave radiation mechanisms 53 are provided on the top plate portion 21, and each microwave radiation mechanism 53 has a microwave transmission plate 54 exposed in the processing container 11.
  • the microwave transmission plate 54 is made of a dielectric and has a shape capable of efficiently radiating microwaves in the TE mode, for example, a disk shape as shown in FIG.
  • the top plate portion 21 is arranged at six locations at equal intervals in and around the center of the top plate portion 21.
  • the corresponding microwave transmission plate 54 is evenly hexagonal around the center of the top plate portion 21 and its periphery. It is arranged so that it is in the closest arrangement. That is, one of the seven microwave transmission plates 54 is arranged in the center of the top plate portion 21, and the other six microwave transmission plates 54 are arranged at equal intervals around the center. These seven microwave transmission plates 54 are arranged so that the adjacent microwave transmission plates are all evenly spaced.
  • the number of microwave radiation mechanisms 53 is not limited to seven.
  • a fluorine-based resin such as quartz, ceramics, or polytetrafluoroethylene resin, a polyimide resin, or the like can be used.
  • the plurality of gas introduction nozzles 41 of the gas supply mechanism 13 are arranged so as to surround the periphery of the central microwave transmission plate 54. More specifically, in the present embodiment, for example, 12 gas introduction nozzles 41 are provided on the top plate portion 21 so as to surround the periphery of the central microwave transmission plate 54 at equal intervals.
  • a gas supply hole 71 opened in the processing container 11 is formed at the tip of the gas introduction nozzle 41.
  • the gas supply hole 71 is located in a recess 72 called a dimple formed on the lower surface side of the top plate portion 21.
  • the surface of the top plate 21 facing the inside of the processing container 11, the inner surface of the gas supply hole 71, and the surface of the recess 72 are covered with the oxalic acid anodic oxide film FCY. Further, a plurality of minute pores (pores) of the oxalic acid anodic oxide film are sealed with SiO 2 by ethyl silicate in a silane solution.
  • the control unit 16 typically consists of a computer and controls each unit of the plasma processing device 1.
  • the control unit 16 includes a storage unit that stores a process sequence of the plasma processing apparatus 1 and a process recipe that is a control parameter, an input means, a display, and the like, and can perform predetermined control according to a selected process recipe. It is possible. That is, the control unit 16 having such a configuration is a plasma processing device necessary for forming a carbon-based film on the wafer W by, for example, plasma treatment described later, that is, plasma using a mixed gas of carbon-containing gas, hydrogen, and a rare gas. Control each part of 1.
  • the wafer W is processed by hydrogen plasma, or before the step of forming the carbon-based film, a dummy wafer is placed on the mounting table 12.
  • Each part of the plasma processing apparatus 1 is controlled so as to form a carbon-based protective film on the surface inside the processing container 11 by plasma generated by a mixed gas of a carbon-containing gas and a rare gas.
  • a gas supply mechanism 13, an exhaust device 14, and a microwave introduction device 15 can be exemplified.
  • the wafer W is first carried into the processing container 11 and placed on a mounting table 12. Place it. Then, acetylene (C 2 H 2 ) as a carbon-containing gas, which is a film-forming raw material gas, is supplied into the processing container to turn the film-forming raw material gas into plasma.
  • acetylene (C 2 H 2 ) as a carbon-containing gas which is a film-forming raw material gas
  • Ar gas which is a plasma generating gas
  • Ar gas is supplied directly under the top plate portion 21 of the processing container 11 from the gas supply hole 71 via the gas introduction nozzle 41, and the microwave output of the microwave introduction device 15 is provided.
  • the microwaves distributed and output from the unit 50 are irradiated from the microwave transmission plate 54 into the processing container 11 via the microwave radiation mechanism 53.
  • surface wave plasma by Ar gas is generated in the region directly below the top plate portion 21, and that region becomes the plasma generation region.
  • acetylene (C 2 H 2 ) gas as a carbon-containing gas which is a film-forming raw material gas, and H 2 gas, if necessary, are supplied from the gas introduction nozzle 41. These are excited by plasma, dissociated, and supplied to the wafer W placed on the mounting table 12.
  • the wafer W is arranged in a region distant from the plasma generation region, and since the plasma diffused from the plasma generation region is supplied to the wafer W, the plasma becomes a low electron temperature plasma on the wafer W and the damage is low. Moreover, it becomes a high-density plasma mainly composed of radicals.
  • the carbon-containing gas can be reacted on the wafer surface, and a carbon-based film having good crystallinity (for example, a graphene structure) can be formed on the wafer surface.
  • the graphene structure can be more preferably formed on the wafer W. Cleaning of the surface of the wafer W can be performed by, for example, hydrogen plasma.
  • Ar gas from the Ar gas supply source 43, the H 2 gas from the H 2 gas supply source 46 is supplied through the gas supply holes 71 into the processing vessel 11 through the gas introduction nozzle 41. Further, such surface treatment with hydrogen plasma is performed under the following conditions, for example.
  • Gas flow rate: Ar / H 2 0 to 2000/1 to 2000 sccm Pressure: 0.001 to 5 Torr (0.13 to 666 Pa)
  • the carbon-based film can be more preferably formed on the surface of the wafer W.
  • a carbon-based protective film may be formed on the surface of the processing container 11 by plasma using a mixed gas of a carbon-containing gas and a rare gas.
  • a mixed gas of a carbon-containing gas and a rare gas it is possible to prevent the surface inside the processing container 11 from being damaged by the plasma generated during the film formation of the graphene structure, particularly hydrogen plasma.
  • a dummy wafer is once placed on the mounting table 12, and a carbon-based protective film is formed on the surface inside the processing container 11 in that state.
  • the dummy wafer is carried out from the processing container 11, and then the wafer to be film-formed is carried into the processing container 11 to clean the wafer surface with the hydrogen plasma described above.
  • a treatment for forming a target carbon-based film such as a graphene structure may be performed.
  • the dummy wafer is carried into the processing container 11 to form a carbon-based protective film on the surface inside the processing container 11, and then the dummy wafer is formed. May be carried out from the processing container 11, and then the wafer to be film-formed may be carried into the processing container 11 to form a target carbon-based film such as a graphene structure.
  • Cleaning treatment with hydrogen plasma, forming process of a carbon-based protective film if the plasma treatment of the formation process, such as carbon-based films of interest are formed in generally the surface of the processing container Y 2 O 3 sprayed coating As described above, it is particularly susceptible to damage by plasma containing H 2, and as a result, many particles may be generated on a substrate such as a wafer.
  • the processing container 11 of the plasma processing apparatus 1 has an oxalic acid anodic oxide film on the surface inside the processing container 11 in the top plate portion 21, the inner surface of the gas supply hole 71, and the surface of the recess 72. Since the plurality of minute pores (pores) of the oxalic acid anodic oxide film are sealed with SiO 2 by silane solution ethyl silicate, they are highly resistant to plasma containing H 2. It has, and it is possible to significantly suppress the generation of particles.
  • the graph of FIG. 5 shows particles when the treatment time is 10 minutes and the pressure is changed to 1 Torr (133 Pa), 1.5 Torr (200 Pa), and 2 Torr (266 Pa) under the same plasma conditions as the experimental results shown in FIG. Shows the number.
  • a sealing treatment has been oxalate anodic oxide coating is SiO 2 with the silane solution of ethyl silicate, Y 2 O 3 sprayed coating, fine particle size Y 2 O 3 sprayed coating.
  • the number of particles generated is about 1/1000 to about 1/6 (against Y 2 O 3 sprayed film) and about 1/1000 to about 1/3 (against fine particle size Y 2 O 3 sprayed film). It was confirmed that there were few. Therefore, also in the plasma at low pressure, it was found that the hydrogen plasma resistance is remarkably improved than Y 2 O 3 sprayed coating, fine particle size Y 2 O 3 sprayed coating.
  • the oxalic acid anodic oxide film is a particle generated more than the Y 2 O 3 sprayed film and the fine particle size Y 2 O 3 sprayed film. It was confirmed that the number of was extremely small. In the graph of FIG. 6, data could not be obtained for the oxalic acid anodic oxide film when the microwave output was "100/200 x 6", but the tendency was the same as for other outputs. It can be inferred.
  • the oxalic acid anodic oxide film sealed with SiO 2 by silane solution ethyl silicate was compared with the oxalic acid anodic acid film filled with pressurized steam and the hard alumite sealed. It has also been confirmed that there is little change in the surface layer and therefore little physical change in the surface.
  • the oxalic acid anodic oxide film FCY sealed with SiO 2 by the silane solution ethyl silicate can form the oxalic acid anodized film FCY even on the inner surface of the gas supply hole 71. Therefore, the occurrence of abnormal discharge could be significantly suppressed, and the occurrence of by-product Z could not be confirmed. Therefore, by covering the inner surface of the treatment container 11, particularly the top plate portion 21, the recess 72, and the inner surface of the gas supply hole 71 with the oxalic acid anodic oxide film sealed with SiO 2 by the silane solution ethyl silicate. , The generation of particles can be greatly suppressed.
  • the side wall 23 of the treatment container 11 is specially sealed with SiO 2 by silane solution ethyl silicate. Even if the treated oxalic acid anodic oxide film protective film is not formed, it does not affect the formation process of the carbon-based film, and the generation of particles is not significantly increased. This has been confirmed in the experimental results described above. Therefore, in the case of the carbon-based film forming treatment or the like, it is not necessary to form the oxalic acid anodic oxide film protective film sealed with SiO 2 by the silane solution on the side wall 23 of the processing container 11.
  • Plasma processing device 11 Processing container 12 Mounting table 13 Gas supply mechanism 14 Exhaust device 15 Microwave introduction device 16 Control unit 21 Top plate unit 23 Side wall 71 Gas supply hole W wafer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

An apparatus for performing plasma treatment on a substrate in a treatment container having side walls and a top plate section, the apparatus comprising: a microwave introduction device that is disposed on the top plate section, and that introduces microwaves for generating plasma into the treatment container; a placement stage that is provided in the treatment container and on which the substrate is placed; and a gas supply mechanism that supplies a gas into the treatment container through a gas supply hole provided in the top plate section, wherein a surface inside the treatment container of the top plate section and an inner surface of the gas supply hole are covered by an oxalic acid anodic oxide coating.

Description

プラズマ処理装置及びプラズマ処理方法Plasma processing equipment and plasma processing method
 本開示は、プラズマ処理装置及びプラズマ処理方法に関する。 This disclosure relates to a plasma processing apparatus and a plasma processing method.
 特許文献1には、処理容器の天板部に配置され、ガスからプラズマを生成するためのマイクロ波を該処理容器の内部に導入するマイクロ波導入モジュールと、前記処理容器の天板部に形成され、ガスをプラズマ処理空間に導入する複数のガス供給孔と、を有するマイクロ波プラズマ処理装置であって、前記複数のガス供給孔のそれぞれは、前記ガス供給孔の細孔から拡大し、前記プラズマ処理空間に開口する空洞部を有し、前記空洞部のプラズマ処理空間側の直径は3mm以上であって、かつ、プラズマ中のマイクロ波の表面波波長の1/8以下である、プラズマ処理装置が開示されている。また処理容器の天板部の内部表面には、イットリア(Y)を溶射することが記載されている。 In Patent Document 1, a microwave introduction module, which is arranged on the top plate of a processing container and introduces a microwave for generating plasma from gas into the inside of the processing container, and a top plate of the processing container are formed. A microwave plasma processing apparatus having a plurality of gas supply holes for introducing gas into the plasma processing space, each of the plurality of gas supply holes expanding from the pores of the gas supply hole and described above. Plasma treatment having a cavity that opens into the plasma processing space, the diameter of the cavity on the plasma processing space side is 3 mm or more, and is 1/8 or less of the surface wave wavelength of the microwave in the plasma. The device is disclosed. The inside surface of the top plate of the processing container, has been described to spray yttria (Y 2 O 3).
特開2018-195548号公報Japanese Unexamined Patent Publication No. 2018-195548
 本開示にかかる技術は、パーティクルの発生と異常放電の発生を抑えて好適なプラズマ処理を行う。 The technology according to the present disclosure performs suitable plasma treatment by suppressing the generation of particles and the generation of abnormal discharge.
 本開示の一態様は、処理容器内の基板にプラズマ処理する装置であって、前記処理容器は側壁及び天板部を有し、前記天板部に配置され、プラズマを生成するためのマイクロ波を前記処理容器内に導入するマイクロ波導入手段と、前記処理容器内に設けられて、前記基板を載置する載置台と、前記天板部に設けられたガス供給孔を介してガスを前記処理容器内に供給するガス供給機構と、を有し、前記天板部における前記処理容器内の表面及び前記ガス供給孔の内部表面は、シュウ酸陽極酸化被膜によって被覆されている。 One aspect of the present disclosure is an apparatus for plasma-treating a substrate in a processing container, wherein the processing container has a side wall and a top plate portion, is arranged on the top plate portion, and microwaves for generating plasma. The gas is introduced through the microwave introducing means for introducing the gas into the processing container, the mounting table provided in the processing container on which the substrate is placed, and the gas supply hole provided in the top plate portion. It has a gas supply mechanism for supplying into the processing container, and the surface inside the processing container and the inner surface of the gas supply hole in the top plate portion are covered with a oxalic acid anodic oxide film.
 本開示によれば、パーティクルの発生と異常放電の発生を抑えて好適なプラズマ処理を行うことができる。 According to the present disclosure, it is possible to perform suitable plasma treatment by suppressing the generation of particles and the generation of abnormal discharge.
本実施形態にかかるプラズマ処理装置の構成の概略を模式的に示した縦断面の説明図である。It is explanatory drawing of the vertical section which showed the outline of the structure of the plasma processing apparatus which concerns on this embodiment schematically. 図1のプラズマ処理装置における天板部の底面図である。It is a bottom view of the top plate part in the plasma processing apparatus of FIG. 図1のプラズマ処理装置におけるガス供給孔の断面図である。It is sectional drawing of the gas supply hole in the plasma processing apparatus of FIG. ウェハに1分間マイクロ波による水素プラズマ処理をした際の、Y溶射膜、微小粒径Y溶射膜、シュウ酸陽極酸化被膜の各圧力に対するパーティクル数の変化を示すグラフである。Is a graph showing the time in which the hydrogen plasma treatment with a 1 minute microwave wafer, Y 2 O 3 sprayed coating, fine particle size Y 2 O 3 sprayed coating, the change in the number of particles for each pressure oxalate anodic oxide coating .. ウェハに10分間マイクロ波による水素プラズマ処理をした際の、Y溶射膜、微小粒径Y溶射膜、シュウ酸陽極酸化被膜の各圧力に対するパーティクル数の変化を示すグラフである。Is a graph showing the time in which the hydrogen plasma treatment by 10 minutes microwave wafer, Y 2 O 3 sprayed coating, fine particle size Y 2 O 3 sprayed coating, the change in the number of particles for each pressure oxalate anodic oxide coating .. ウェハに1分間水素プラズマ処理をした際の、Y溶射膜、微小粒径Y溶射膜、シュウ酸陽極酸化被膜の各マイクロ波の出力に対するパーティクル数の変化を示すグラフである。At the time of the 1 minute hydrogen plasma treatment on the wafer, Y 2 O 3 sprayed coating, fine particle size Y 2 O 3 sprayed coating is a graph showing changes in the number of particles with respect to the output of each microwave oxalate anodic oxide coating .. 異常放電が発生した従来のガス供給孔の断面図である。It is sectional drawing of the conventional gas supply hole in which an abnormal discharge occurred.
 半導体デバイスの製造プロセスにおいては、基板、例えば半導体ウェハ(以下、「ウェハ」という場合がある。)に対して、カーボン系膜、たとえばグラフェン、カーボンナノチューブ、ダイヤモンドライクカーボン等のカーボン材料を成膜する際に、従来からプラズマCVD装置、ALD装置が用いられている。これらの装置においては、アルミニウム合金製のチャンバー内壁は、プラズマによる損耗から保護する目的でイットリア(Y)溶射膜で覆われている。 In the process of manufacturing a semiconductor device, a carbon-based film, for example, a carbon material such as graphene, carbon nanotube, or diamond-like carbon is formed on a substrate, for example, a semiconductor wafer (hereinafter, may be referred to as a “wafer”). At this time, a plasma CVD device and an ALD device have been conventionally used. In these devices, the inner wall of the chamber made of aluminum alloy is covered with yttria (Y 2 O 3) sprayed coating to protect from wear by plasma.
 前記したカーボン材料を成膜する成膜プロセスにおいては、還元ガスである水素ガス(H)を使用しているが、Hを含むプラズマによってY溶射膜が損傷を受けて、ウェハ上にパーティクルを大量に発生させることが問題となっている。そのためHを含むプラズマに対してY溶射膜よりも耐性の高い材料が求められている。 Hydrogen gas (H 2 ), which is a reducing gas, is used in the film forming process for forming the carbon material, but the Y 2 O 3 spray film is damaged by the plasma containing H 2, and the wafer. The problem is that a large amount of particles are generated on the top. Therefore, there is a demand for a material having higher resistance to plasma containing H 2 than the Y 2 O 3 sprayed film.
 他方で、例えば前記した成膜プロセスにおいては、各種の処理ガスがチャンバー内に供給されるが、チャンバーの天板部に設けられたガス供給孔内にY溶射膜を形成するのは技術的に難しく、そのためガス供給孔内にY溶射膜が形成できなかった場合や、形成できたとしても斑のある状態では、異常放電が発生する可能性がある。 On the other hand, for example, in the film formation process described above, various processing gas is supplied into the chamber, to form a Y 2 O 3 sprayed coating into the gas supply holes provided in the top plate portion of the chamber technically difficult, therefore or if Y 2 O 3 sprayed coating can not be formed in the gas supply hole, in the state in which even a plaque as could be formed, there is a possibility that abnormal discharge occurs.
 そこで、本開示にかかる技術は、Hを含むプラズマに対してY溶射膜よりも耐性の高い保護膜をチャンバー内に施すことで、パーティクルの発生と異常放電との双方を同時に抑えて好適なプラズマ処理を行う。 Therefore, the technique according to the present disclosure suppresses both particle generation and abnormal discharge at the same time by applying a protective film in the chamber, which is more resistant to plasma containing H 2 than the Y 2 O 3 sprayed film. And perform suitable plasma treatment.
 以下、本実施形態にかかるプラズマ処理装置の構成について、図面を参照しながら説明する。なお、本明細書において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 Hereinafter, the configuration of the plasma processing apparatus according to this embodiment will be described with reference to the drawings. In the present specification, elements having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.
 図1は、実施形態にかかるプラズマ処理装置1の構成を模式的に示す断面図である。このプラズマ処理装置1は、ウェハWを収容してプラズマ処理を行うチャンバーである処理容器11と、処理容器11の内部に配置され、ウェハWを載置する載置台12と、処理容器11内にガスを供給するガス供給機構13と、処理容器11内を排気する排気装置14と、処理容器11内にプラズマを生成させるためのマイクロ波を発生させ、処理容器11内にマイクロ波を導入するマイクロ波導入装置15と、制御部16とを備えている。処理容器11は接地されている。 FIG. 1 is a cross-sectional view schematically showing the configuration of the plasma processing apparatus 1 according to the embodiment. The plasma processing apparatus 1 is arranged in a processing container 11 which is a chamber for accommodating a wafer W and performing plasma processing, a mounting table 12 on which the wafer W is placed, and a processing container 11. A gas supply mechanism 13 for supplying gas, an exhaust device 14 for exhausting the inside of the processing container 11, and a micro for generating plasma for generating plasma in the processing container 11 and introducing the microwave into the processing container 11. It includes a wave introduction device 15 and a control unit 16. The processing container 11 is grounded.
 処理容器11は、例えばアルミニウムおよびその合金等の金属材料によって形成され、略円筒形状をなしており、板状の天板部21および底部22と、これらを連結する側壁23とを有している。マイクロ波導入装置15は、処理容器11の上部に設けられ、処理容器11内に電磁波(マイクロ波)を導入してプラズマを生成するプラズマ生成手段として機能する。 The processing container 11 is formed of a metal material such as aluminum and an alloy thereof, has a substantially cylindrical shape, and has a plate-shaped top plate portion 21 and a bottom portion 22 and a side wall 23 connecting them. .. The microwave introduction device 15 is provided on the upper part of the processing container 11 and functions as a plasma generation means for introducing an electromagnetic wave (microwave) into the processing container 11 to generate plasma.
 天板部21には、マイクロ波導入装置15の後述するマイクロ波放射機構53およびガス導入ノズル41が嵌め込まれる複数の開口部を有している。側壁23は、処理容器11に隣接する搬送室(図示せず)との間で被処理基板であるウェハWの搬入出を行うための搬入出口24を有している。搬入出口24はゲートバルブ25により開閉される。底部22には排気装置14が設けられている。排気装置14は底部22に設けられた排気管26に接続されている。排気装置14は真空ポンプ(図示せず)を備えている。この真空ポンプにより排気管26を介して処理容器11内が排気される。処理容器11内の圧力は排気装置14が備えている圧力制御バルブ(図示せず)により制御される。 The top plate portion 21 has a plurality of openings into which the microwave radiation mechanism 53 and the gas introduction nozzle 41, which will be described later, of the microwave introduction device 15 are fitted. The side wall 23 has an loading / unloading port 24 for loading / unloading the wafer W, which is a substrate to be processed, with and from a transport chamber (not shown) adjacent to the processing container 11. The carry-in outlet 24 is opened and closed by the gate valve 25. An exhaust device 14 is provided on the bottom portion 22. The exhaust device 14 is connected to an exhaust pipe 26 provided at the bottom 22. The exhaust device 14 includes a vacuum pump (not shown). The inside of the processing container 11 is exhausted through the exhaust pipe 26 by this vacuum pump. The pressure in the processing container 11 is controlled by a pressure control valve (not shown) provided in the exhaust device 14.
 載置台12は、円板状をなしており、AlN等のセラミックスからなっている。載置台12は、処理容器11の底部中央から上方に延びる円筒状のAlN等のセラミックスからなる支持部材30により支持されている。載置台12の外縁部にはウェハWをガイドするためのガイドリング31が設けられている。載置台12の内部には、ウェハWを昇降するための昇降ピン(図示せず)が載置台12の上面に対して突没可能に設けられている。さらに、載置台12の内部にはヒータ32が埋め込まれており、このヒータ32はヒータ電源33から供給される電力により、載置台12上のウェハWを加熱する。 The mounting table 12 has a disk shape and is made of ceramics such as AlN. The mounting table 12 is supported by a support member 30 made of ceramics such as cylindrical AlN extending upward from the center of the bottom of the processing container 11. A guide ring 31 for guiding the wafer W is provided on the outer edge of the mounting table 12. Inside the mounting table 12, an elevating pin (not shown) for raising and lowering the wafer W is provided so as to be retractable with respect to the upper surface of the mounting table 12. Further, a heater 32 is embedded inside the mounting table 12, and the heater 32 heats the wafer W on the mounting table 12 by the electric power supplied from the heater power supply 33.
 載置台12には、熱電対(図示せず)が挿入されており、熱電対からの信号に基づいて、ウェハWの温度を、例えば150~800℃の範囲の所望の温度に加熱可能である。載置台12内のヒータ32の上方には、ウェハWと同程度の大きさの電極34が埋設されており、この電極34には、高周波電源35が電気的に接続されている。この高周波電源35から載置台12に、イオンを引き込むための高周波バイアスが印加される。なお、高周波電源35はプラズマ処理の特性によっては設ける必要はない。また本例では、イオンを引き込むための一例として高周波バイアスについて説明したが、直流電源を接続してDCバイアスを印加してもよい。なお、直流電源はプラズマ処理の特性によっては格別設ける必要はない。 A thermocouple (not shown) is inserted in the mounting table 12, and the temperature of the wafer W can be heated to a desired temperature in the range of, for example, 150 to 800 ° C. based on the signal from the thermocouple. .. An electrode 34 having the same size as the wafer W is embedded above the heater 32 in the mounting table 12, and a high-frequency power supply 35 is electrically connected to the electrode 34. A high frequency bias for drawing ions is applied from the high frequency power supply 35 to the mounting table 12. The high frequency power supply 35 does not need to be provided depending on the characteristics of the plasma processing. Further, in this example, the high frequency bias has been described as an example for drawing in ions, but a DC bias may be applied by connecting a DC power supply. It is not necessary to provide a DC power supply specially depending on the characteristics of plasma processing.
 ガス供給機構13は、プラズマ生成ガス、およびグラフェン構造体を形成するための原料ガスを処理容器11内に導入するためのものであり、複数のガス導入ノズル41を有している。ガス導入ノズル41は、処理容器11の天板部21に設けられている。各ガス導入ノズル41は、ガス供給配管42と接続されている。このガス供給配管42は分岐管42a、42b、42c、42d、42eの5つに分岐しており、これら分岐管42a、42b、42c、42d、42eには、それぞれプラズマ生成ガスである希ガスとしてのArガスを供給するArガス供給源43、クリーニングガスである酸化ガスとしてのOガスを供給するOガス供給源44、パージガス等として用いられるNガスを供給するNガス供給源45、還元性ガスとしてのHガスを供給するHガス供給源46、成膜原料ガスである炭素含有ガスとしてのアセチレン(C)ガスを供給するCガス供給源47が接続されている。なお、分岐管42a、42b、42c、42d、42eには、図示してはいないが、流量制御用のマスフローコントローラおよびその前後に配置されるバルブが設けられている。プラズマ生成ガスはArガスに限らず、例えば、Heガス、Neガス、Krガス、Xeガスであってもよい。また、炭素含有ガスはアセチレン(C)ガスに限られず、例えば、エチレン(C)ガス、メタン(CH)ガス、プロピレン(C)ガスであってもよい。 The gas supply mechanism 13 is for introducing the plasma-generated gas and the raw material gas for forming the graphene structure into the processing container 11, and has a plurality of gas introduction nozzles 41. The gas introduction nozzle 41 is provided on the top plate portion 21 of the processing container 11. Each gas introduction nozzle 41 is connected to a gas supply pipe 42. The gas supply pipe 42 is branched into five branch pipes 42a, 42b, 42c, 42d, and 42e, and these branch pipes 42a, 42b, 42c, 42d, and 42e are designated as rare gases that are plasma-producing gases, respectively. of supplying the Ar gas Ar gas supply source 43, a cleaning gas supplied O 2 gas as an oxidizing gas is O 2 gas supply source 44, N 2 gas supply source 45 supplying N 2 gas used as a purge gas or the like , The H 2 gas supply source 46 that supplies the H 2 gas as the reducing gas, and the C 2 H 2 gas supply source 47 that supplies the acetylene (C 2 H 2 ) gas as the carbon-containing gas that is the film forming raw material gas. It is connected. Although not shown, the branch pipes 42a, 42b, 42c, 42d, and 42e are provided with a mass flow controller for flow rate control and valves arranged before and after the mass flow controller. The plasma generation gas is not limited to Ar gas, and may be, for example, He gas, Ne gas, Kr gas, or Xe gas. Further, the carbon-containing gas is not limited to acetylene (C 2 H 2 ) gas, and may be, for example, ethylene (C 2 H 4 ) gas, methane (CH 4 ) gas, or propylene (C 3 H 6 ) gas.
 マイクロ波導入装置15は、既述したように、処理容器11の上方に設けられ、処理容器11内に電磁波(マイクロ波)を導入してプラズマを生成するプラズマ生成手段として機能する。マイクロ波導入装置15は、天板として機能する処理容器11の天板部21と、マイクロ波を生成するとともに、マイクロ波を複数の経路に分配して出力するマイクロ波出力部50と、マイクロ波出力部50から出力されたマイクロ波を処理容器11に導入するアンテナユニット51とを有する。 As described above, the microwave introduction device 15 is provided above the processing container 11 and functions as a plasma generation means for introducing an electromagnetic wave (microwave) into the processing container 11 to generate plasma. The microwave introduction device 15 includes a top plate portion 21 of a processing container 11 that functions as a top plate, a microwave output unit 50 that generates microwaves and distributes and outputs microwaves to a plurality of paths, and microwaves. It has an antenna unit 51 that introduces microwaves output from the output unit 50 into the processing container 11.
 マイクロ波出力部50は、図示しないマイクロ波電源、マイクロ波発振器、当該マイクロ波発振器によって発振されたマイクロ波を増幅するアンプ、当該アンプによって増幅されたマイクロ波を複数の経路に分配する分配器を有している。マイクロ波発振器は例えば、860MHzでマイクロ波を発振(例えば、PLL発振)させる。なおマイクロ波の周波数は、860MHzに限らず、2.45GHz、8.35GHz、5.8GHz、1.98GHz等、700MHzから10GHzの範囲のものを用いることができる。 The microwave output unit 50 includes a microwave power supply (not shown), a microwave oscillator, an amplifier that amplifies the microwave oscillated by the microwave oscillator, and a distributor that distributes the microwave amplified by the amplifier to a plurality of paths. Have. The microwave oscillator oscillates microwaves (eg, PLL oscillation) at 860 MHz, for example. The microwave frequency is not limited to 860 MHz, and a microwave frequency in the range of 700 MHz to 10 GHz such as 2.45 GHz, 8.35 GHz, 5.8 GHz, 1.98 GHz, etc. can be used.
 アンテナユニット51は、複数のアンテナモジュール(図示せず)を備え、各アンテナモジュールは、マイクロ波出力部50からのマイクロ波を増幅して出力するアンプ部52と、アンプ部52から出力されたマイクロ波を処理容器11内に放射するマイクロ波放射機構53とを有する。 The antenna unit 51 includes a plurality of antenna modules (not shown), and each antenna module has an amplifier unit 52 that amplifies and outputs microwaves from the microwave output unit 50, and a micro that is output from the amplifier unit 52. It has a microwave radiation mechanism 53 that radiates waves into the processing container 11.
 図1に示すように、複数のマイクロ波放射機構53は、天板部21に設けられており、各マイクロ波放射機構53は、処理容器11内に露出したマイクロ波透過板54を有している。マイクロ波透過板54は誘電体で構成され、マイクロ波をTEモードで効率的に放射することができるような形状、例えば図2に示したような円板形状を有している。本実施の形態では、天板部21の中心とその周囲に等間隔で6か所に配置されている。 As shown in FIG. 1, a plurality of microwave radiation mechanisms 53 are provided on the top plate portion 21, and each microwave radiation mechanism 53 has a microwave transmission plate 54 exposed in the processing container 11. There is. The microwave transmission plate 54 is made of a dielectric and has a shape capable of efficiently radiating microwaves in the TE mode, for example, a disk shape as shown in FIG. In the present embodiment, the top plate portion 21 is arranged at six locations at equal intervals in and around the center of the top plate portion 21.
 より詳述すれば、この実施の形態では、マイクロ波放射機構53は7本設けられており、これらに対応するマイクロ波透過板54は、天板部21の中心と、その周囲に均等に六方最密配置になるように配置されている。すなわち、7つのマイクロ波透過板54のうち1つは、天板部21の中央に配置され、その周囲に、他の6つのマイクロ波透過板54が等間隔で配置されている。これら7つのマイクロ波透過板54は隣接するマイクロ波透過板がすべて等間隔になるように配置されている。マイクロ波放射機構53の数は7本に限るものではない。
 なおマイクロ波透過板54を構成する材料としては、例えば、石英やセラミックス、ポリテトラフルオロエチレン樹脂等のフッ素系樹脂、ポリイミド樹脂等を用いることができる。
More specifically, in this embodiment, seven microwave radiation mechanisms 53 are provided, and the corresponding microwave transmission plate 54 is evenly hexagonal around the center of the top plate portion 21 and its periphery. It is arranged so that it is in the closest arrangement. That is, one of the seven microwave transmission plates 54 is arranged in the center of the top plate portion 21, and the other six microwave transmission plates 54 are arranged at equal intervals around the center. These seven microwave transmission plates 54 are arranged so that the adjacent microwave transmission plates are all evenly spaced. The number of microwave radiation mechanisms 53 is not limited to seven.
As the material constituting the microwave transmission plate 54, for example, a fluorine-based resin such as quartz, ceramics, or polytetrafluoroethylene resin, a polyimide resin, or the like can be used.
 そしてガス供給機構13の複数のガス導入ノズル41は、中央のマイクロ波透過板54の周囲を囲むように配置されている。より詳述すれば、本実施の形態では、中央のマイクロ波透過板54の周囲を等間隔で囲むように、例えば12本のガス導入ノズル41が天板部21に設けられている。 The plurality of gas introduction nozzles 41 of the gas supply mechanism 13 are arranged so as to surround the periphery of the central microwave transmission plate 54. More specifically, in the present embodiment, for example, 12 gas introduction nozzles 41 are provided on the top plate portion 21 so as to surround the periphery of the central microwave transmission plate 54 at equal intervals.
 そしてガス導入ノズル41の先端には、図3に示したように、処理容器11内に開口したガス供給孔71が形成されている。このガス供給孔71は、天板部21の下面側に形成されたディンプルと呼称される凹部72内に位置している。 And, as shown in FIG. 3, a gas supply hole 71 opened in the processing container 11 is formed at the tip of the gas introduction nozzle 41. The gas supply hole 71 is located in a recess 72 called a dimple formed on the lower surface side of the top plate portion 21.
 そして天板部21における処理容器11内に面した表面、及びガス供給孔71の内部表面、凹部72の表面は、図3に示したように、シュウ酸陽極酸化被膜FCYによって被覆されている。またシュウ酸陽極酸化被膜の複数の微小な孔(ポア)は、シラン溶液エチルシリケートによるSiOで封孔処理されている。 As shown in FIG. 3, the surface of the top plate 21 facing the inside of the processing container 11, the inner surface of the gas supply hole 71, and the surface of the recess 72 are covered with the oxalic acid anodic oxide film FCY. Further, a plurality of minute pores (pores) of the oxalic acid anodic oxide film are sealed with SiO 2 by ethyl silicate in a silane solution.
 制御部16は、典型的にはコンピュータからなり、プラズマ処理装置1の各部を制御するようになっている。たとえば制御部16は、プラズマ処理装置1のプロセスシーケンスおよび制御パラメータであるプロセスレシピを記憶した記憶部や、入力手段およびディスプレイ等を備えており、選択されたプロセスレシピに従って所定の制御を行うことが可能である。すなわち、かかる構成を有する制御部16は、例えば後述するプラズマ処理、すなわち炭素含有ガスと水素と希ガスの混合ガスによるプラズマによって、ウェハW上にカーボン系膜を形成する際に必要なプラズマ処理装置1の各部を制御する。またそのようなカーボン系膜を形成する工程の前に、水素プラズマによってウェハWを処理したり、カーボン系膜を形成する工程の前に、載置台12上にダミーのウェハを載置した状態で、炭素含有ガスと希ガスの混合ガスによるプラズマによって、処理容器11内の表面にカーボン系保護膜を形成するように、プラズマ処理装置1の各部を制御する。当該制御の対象としては、例えばガス供給機構13、排気装置14、マイクロ波導入装置15を例示することができる。 The control unit 16 typically consists of a computer and controls each unit of the plasma processing device 1. For example, the control unit 16 includes a storage unit that stores a process sequence of the plasma processing apparatus 1 and a process recipe that is a control parameter, an input means, a display, and the like, and can perform predetermined control according to a selected process recipe. It is possible. That is, the control unit 16 having such a configuration is a plasma processing device necessary for forming a carbon-based film on the wafer W by, for example, plasma treatment described later, that is, plasma using a mixed gas of carbon-containing gas, hydrogen, and a rare gas. Control each part of 1. Further, before the step of forming such a carbon-based film, the wafer W is processed by hydrogen plasma, or before the step of forming the carbon-based film, a dummy wafer is placed on the mounting table 12. Each part of the plasma processing apparatus 1 is controlled so as to form a carbon-based protective film on the surface inside the processing container 11 by plasma generated by a mixed gas of a carbon-containing gas and a rare gas. As the object of the control, for example, a gas supply mechanism 13, an exhaust device 14, and a microwave introduction device 15 can be exemplified.
 以上のように構成されたプラズマ処理装置1を用いて、カーボン系膜を基板、例えばウェハWの表面に形成するには、まず処理容器11内にウェハWを搬入し、載置台12の上に載置する。そして成膜原料ガスである炭素含有ガスとしてのアセチレン(C)を処理容器内に供給して、成膜原料ガスをプラズマ化させる。 In order to form a carbon-based film on the surface of a substrate, for example, a wafer W by using the plasma processing apparatus 1 configured as described above, the wafer W is first carried into the processing container 11 and placed on a mounting table 12. Place it. Then, acetylene (C 2 H 2 ) as a carbon-containing gas, which is a film-forming raw material gas, is supplied into the processing container to turn the film-forming raw material gas into plasma.
 具体的には、ガス導入ノズル41を介してガス供給孔71から、プラズマ生成ガスであるArガスを処理容器11の天板部21の直下に供給するとともに、マイクロ波導入装置15のマイクロ波出力部50から複数に分配して出力されたマイクロ波を、マイクロ波放射機構53を介してマイクロ波透過板54から処理容器11内に照射する。これによって天板部21の直下領域に、Arガスによる表面波プラズマが生成され、その領域がプラズマ生成領域となる。 Specifically, Ar gas, which is a plasma generating gas, is supplied directly under the top plate portion 21 of the processing container 11 from the gas supply hole 71 via the gas introduction nozzle 41, and the microwave output of the microwave introduction device 15 is provided. The microwaves distributed and output from the unit 50 are irradiated from the microwave transmission plate 54 into the processing container 11 via the microwave radiation mechanism 53. As a result, surface wave plasma by Ar gas is generated in the region directly below the top plate portion 21, and that region becomes the plasma generation region.
 そして、プラズマが着火したタイミングでガス導入ノズル41から成膜原料ガスである炭素含有ガスとしてのアセチレン(C)ガス、および必要に応じてHガスを供給する。これらはプラズマにより励起されて解離し、載置台12上に載置されたウェハWに供給される。ウェハWは、プラズマ生成領域とは離れた領域に配置されており、ウェハWへは、プラズマ生成領域から拡散したプラズマが供給されるため、ウェハW上では低電子温度のプラズマとなって低ダメージ、かつラジカル主体の高密度のプラズマとなる。このようなプラズマにより、ウェハ表面で炭素含有ガスを反応させることができ、結晶性が良好なカーボン系膜(例えば、グラフェン構造体)をウェハ表面に形成することができる。 Then, at the timing when the plasma is ignited, acetylene (C 2 H 2 ) gas as a carbon-containing gas, which is a film-forming raw material gas, and H 2 gas, if necessary, are supplied from the gas introduction nozzle 41. These are excited by plasma, dissociated, and supplied to the wafer W placed on the mounting table 12. The wafer W is arranged in a region distant from the plasma generation region, and since the plasma diffused from the plasma generation region is supplied to the wafer W, the plasma becomes a low electron temperature plasma on the wafer W and the damage is low. Moreover, it becomes a high-density plasma mainly composed of radicals. By such plasma, the carbon-containing gas can be reacted on the wafer surface, and a carbon-based film having good crystallinity (for example, a graphene structure) can be formed on the wafer surface.
 またそのようなグラフェン構造体の成膜に先立って、ウェハWの表面の清浄化を行うことで、より好適にグラフェン構造体をウェハW上に形成することができる。このようなウェハWの表面の清浄化は、例えば水素プラズマによって行うことができる。 Further, by cleaning the surface of the wafer W prior to the film formation of such a graphene structure, the graphene structure can be more preferably formed on the wafer W. Cleaning of the surface of the wafer W can be performed by, for example, hydrogen plasma.
 この場合、Arガス供給源43からのArガス、Hガス供給源46からのHガスが、ガス導入ノズル41を介してガス供給孔71から処理容器11内に供給される。またこのような水素プラズマによる表面処理は、例えば次のような条件で行われる。
 ガス流量:Ar/H=0~2000/1~2000sccm
 圧力:0.001~5Torr(0.13~666Pa)
 ウェハ温度:27(室温)~800℃
 処理時間:10~120min
In this case, Ar gas from the Ar gas supply source 43, the H 2 gas from the H 2 gas supply source 46 is supplied through the gas supply holes 71 into the processing vessel 11 through the gas introduction nozzle 41. Further, such surface treatment with hydrogen plasma is performed under the following conditions, for example.
Gas flow rate: Ar / H 2 = 0 to 2000/1 to 2000 sccm
Pressure: 0.001 to 5 Torr (0.13 to 666 Pa)
Wafer temperature: 27 (room temperature) -800 ° C
Processing time: 10 to 120 min
 このようにカーボン系膜の形成に先立ってウェハWの表面を水素プラズマによって清浄化することで、より好適にウェハWの表面に、カーボン系膜を形成することができる。 By cleaning the surface of the wafer W with hydrogen plasma prior to the formation of the carbon-based film in this way, the carbon-based film can be more preferably formed on the surface of the wafer W.
 また前記した水素プラズマによるウェハ表面の清浄化処理前に、処理容器11内の表面に、炭素含有ガスと希ガスの混合ガスによるプラズマによって、カーボン系保護膜を形成するようにしてもよい。これによって、グラフェン構造体の成膜時に生成されるプラズマ、とりわけ水素プラズマによって、処理容器11内の表面が損傷を受けることを抑えることができる。かかる場合、一旦ダミーのウェハを載置台12に載置し、その状態でカーボン系保護膜を処理容器11内の表面に形成する。そしてカーボン系保護膜の形成処理が終われば、ダミーのウェハを処理容器11から搬出し、次いで成膜対象のウェハを処理容器11内に搬入し、前記した水素プラズマによるウェハ表面の清浄化処理、及びグラフェン構造体等の目的のカーボン系膜の形成処理を行うようにしてもよい。 Further, before the cleaning treatment of the wafer surface by the hydrogen plasma described above, a carbon-based protective film may be formed on the surface of the processing container 11 by plasma using a mixed gas of a carbon-containing gas and a rare gas. As a result, it is possible to prevent the surface inside the processing container 11 from being damaged by the plasma generated during the film formation of the graphene structure, particularly hydrogen plasma. In such a case, a dummy wafer is once placed on the mounting table 12, and a carbon-based protective film is formed on the surface inside the processing container 11 in that state. After the carbon-based protective film formation process is completed, the dummy wafer is carried out from the processing container 11, and then the wafer to be film-formed is carried into the processing container 11 to clean the wafer surface with the hydrogen plasma described above. In addition, a treatment for forming a target carbon-based film such as a graphene structure may be performed.
 また前記したような水素プラズマによるウェハ表面の清浄化処理を行なわずに、ダミーのウェハを処理容器11内に搬入してカーボン系保護膜を処理容器11内の表面に形成し、その後ダミーのウェハを処理容器11から搬出し、次いで成膜対象のウェハを処理容器11内に搬入し、グラフェン構造体等の目的のカーボン系膜の形成処理を行うようにしてもよい。 Further, without performing the wafer surface cleaning treatment with hydrogen plasma as described above, the dummy wafer is carried into the processing container 11 to form a carbon-based protective film on the surface inside the processing container 11, and then the dummy wafer is formed. May be carried out from the processing container 11, and then the wafer to be film-formed may be carried into the processing container 11 to form a target carbon-based film such as a graphene structure.
 水素プラズマによる清浄化処理、カーボン系保護膜の形成処理、目的のカーボン系膜の形成処理等のプラズマ処理を行う場合、一般的に処理容器内の表面に形成されているY溶射膜は、既述したように、特にHを含むプラズマによって損傷を受けやすく、その結果ウェハ等の基板上に多くのパーティクルが発生することがあった。 Cleaning treatment with hydrogen plasma, forming process of a carbon-based protective film, if the plasma treatment of the formation process, such as carbon-based films of interest are formed in generally the surface of the processing container Y 2 O 3 sprayed coating As described above, it is particularly susceptible to damage by plasma containing H 2, and as a result, many particles may be generated on a substrate such as a wafer.
 この点、実施の形態にかかるプラズマ処理装置1の処理容器11は、天板部21における処理容器11内の表面、及びガス供給孔71の内部表面、凹部72の表面は、シュウ酸陽極酸化被膜によって被覆され、また当該シュウ酸陽極酸化被膜の複数の微小な孔(ポア)は、シラン溶液エチルシリケートによるSiOで封孔処理されているので、Hを含むプラズマに対しても高い耐性を有しており、パーティクルの発生を大幅に抑えることが可能になっている。 In this respect, the processing container 11 of the plasma processing apparatus 1 according to the embodiment has an oxalic acid anodic oxide film on the surface inside the processing container 11 in the top plate portion 21, the inner surface of the gas supply hole 71, and the surface of the recess 72. Since the plurality of minute pores (pores) of the oxalic acid anodic oxide film are sealed with SiO 2 by silane solution ethyl silicate, they are highly resistant to plasma containing H 2. It has, and it is possible to significantly suppress the generation of particles.
 図4は、発明者らが実験的に、ウェハに1分間マイクロ波による水素プラズマ処理をした際の、Y溶射膜、微小粒径Y溶射膜、シュウ酸陽極酸化被膜の各圧力に対するパーティクル数の変化を示すグラフである。計測したパーティクルは60nm以上の粒径のものであり、ウェハ上のパーティクルの実数を計測した。なお図4のグラフ中、FC1はY溶射膜、FCXは微小粒径Y溶射膜、FCYはシラン溶液エチルシリケートによるSiOで封孔処理されたシュウ酸陽極酸化被膜を表わしている(図5、図6のグラフにおいても同じ)。
 このときのプラズマ条件は、下記の通りである。
 ガス流量:Ar/H=500/200sccm
 圧力:0.05~0.4Torr(6.65~53.2Pa)
 ウェハ温度:550℃
 マイクロ波の出力:700~2500W
 処理時間:1min
4, inventors have experimentally, when the hydrogen plasma treatment with a 1 minute microwave wafer, Y 2 O 3 sprayed coating, fine particle size Y 2 O 3 sprayed coating, oxalic acid anodized film It is a graph which shows the change of the number of particles with respect to each pressure. The measured particles had a particle size of 60 nm or more, and the actual number of particles on the wafer was measured. In the graph of FIG. 4, FC1 represents a Y 2 O 3 sprayed film, FCX represents a fine particle size Y 2 O 3 sprayed film, and FCY represents a oxalic acid anodic oxide film sealed with SiO 2 by silane solution ethyl silicate. (The same applies to the graphs of FIGS. 5 and 6).
The plasma conditions at this time are as follows.
Gas flow rate: Ar / H 2 = 500/200 sccm
Pressure: 0.05 to 0.4 Torr (6.65 to 53.2 Pa)
Wafer temperature: 550 ° C
Microwave output: 700-2500W
Processing time: 1 min
 この結果によれば、シラン溶液エチルシリケートによるSiOで封孔処理されたシュウ酸陽極酸化被膜では、Y溶射膜、微小粒径Y溶射膜と比べ、圧力変化に殆ど左右されずに、50(個)程度の極めて低いパーティクル数しか確認できなかった。したがって、Y溶射膜、微小粒径Y溶射膜よりも水素プラズマ耐性が大幅に向上していることが分かる。 According to this result, in the oxalic acid anodized film which is sealing treatment with SiO 2 with the silane solution of ethyl silicate, Y 2 O 3 sprayed coating, compared to the minute particle diameter Y 2 O 3 sprayed coating, little influenced by the pressure change Without doing so, only an extremely low number of particles of about 50 (pieces) could be confirmed. Therefore, it can be seen that the hydrogen plasma resistance is significantly improved as compared with the Y 2 O 3 sprayed film and the fine particle size Y 2 O 3 sprayed film.
 図5のグラフは、図4に示した実験結果と同じプラズマ条件で、処理時間を10分として、圧力を1Torr(133Pa)、1.5Torr(200Pa)、2Torr(266Pa)に変えた時のパーティクル数を示している。 The graph of FIG. 5 shows particles when the treatment time is 10 minutes and the pressure is changed to 1 Torr (133 Pa), 1.5 Torr (200 Pa), and 2 Torr (266 Pa) under the same plasma conditions as the experimental results shown in FIG. Shows the number.
 この結果、パーティクルが発生しやすい低圧力の下でも、シラン溶液エチルシリケートによるSiOで封孔処理されたシュウ酸陽極酸化被膜は、Y溶射膜、微小粒径Y溶射膜よりも発生するパーティクル数は、約1/1000~約1/6(対Y溶射膜)、約1/1000~約1/3(対微小粒径Y溶射膜)と極めて少ないことが確認できた。したがって、低圧力でのプラズマにおいても、Y溶射膜、微小粒径Y溶射膜よりも水素プラズマ耐性が大幅に向上していることが分かった。 As a result, even under a low pressure of particles is likely to occur, a sealing treatment has been oxalate anodic oxide coating is SiO 2 with the silane solution of ethyl silicate, Y 2 O 3 sprayed coating, fine particle size Y 2 O 3 sprayed coating The number of particles generated is about 1/1000 to about 1/6 (against Y 2 O 3 sprayed film) and about 1/1000 to about 1/3 (against fine particle size Y 2 O 3 sprayed film). It was confirmed that there were few. Therefore, also in the plasma at low pressure, it was found that the hydrogen plasma resistance is remarkably improved than Y 2 O 3 sprayed coating, fine particle size Y 2 O 3 sprayed coating.
 次にウェハに1分間水素プラズマ処理をした際の、Y溶射膜、微小粒径Y溶射膜、シュウ酸陽極酸化被膜の各マイクロ波の出力に対するパーティクル数の変化を図6のグラフに示す。処理時間は1分、処理容器内圧力は、50mTorr(6.65Pa)であり、他のプラズマ条件は、図4、図5のグラフの実験と同じである。なお図6のグラフ中、例えば「100/200×6」とあるのは、天板部21の中心のマイクロ波放射機構53に対する出力が100W、中心部のマイクロ波放射機構53の周辺の6本のマイクロ波放射機構53に対する出力が各々200Wであることを表わしている。 Next, when the wafer is subjected to hydrogen plasma treatment for 1 minute, the change in the number of particles with respect to the output of each microwave of the Y 2 O 3 sprayed film, the fine particle size Y 2 O 3 sprayed film, and the oxalic acid anodic oxide film is shown in FIG. It is shown in the graph of. The treatment time is 1 minute, the pressure inside the treatment container is 50 mTorr (6.65 Pa), and other plasma conditions are the same as those in the graphs of FIGS. 4 and 5. In the graph of FIG. 6, for example, "100/200 x 6" means that the output to the microwave radiation mechanism 53 at the center of the top plate 21 is 100 W, and six around the microwave radiation mechanism 53 at the center. The output to the microwave radiation mechanism 53 of the above is 200 W, respectively.
 この結果によれば、パーティクルが発生しやすい高出力下での水素プラズマの場合でも、シュウ酸陽極酸化被膜は、Y溶射膜、微小粒径Y溶射膜よりも発生するパーティクルの数が極めて少ないことが確認できた。なお図6のグラフ中、マイクロ波出力が「100/200×6」のときのシュウ酸陽極酸化被膜については、データが取得できなかったが、他の出力の場合と同様な傾向であることが推認できる。 According to this result, even in the case of hydrogen plasma under high output where particles are likely to be generated, the oxalic acid anodic oxide film is a particle generated more than the Y 2 O 3 sprayed film and the fine particle size Y 2 O 3 sprayed film. It was confirmed that the number of was extremely small. In the graph of FIG. 6, data could not be obtained for the oxalic acid anodic oxide film when the microwave output was "100/200 x 6", but the tendency was the same as for other outputs. It can be inferred.
 以上の各実験結果から、シュウ酸陽極酸化被膜は、Y溶射膜、微小粒径Y溶射膜よりもパーティクルの発生が極めて少なく、したがって水素プラズマに対する耐性が大幅に向上していることが分かる。 From each experimental results of the above, oxalic acid anodized coating, Y 2 O 3 sprayed coating, extremely low generation of particles than the fine particle size Y 2 O 3 sprayed coating, thus resistant to hydrogen plasma significantly improved You can see that there is.
 またシラン溶液エチルシリケートによるSiOで封孔処理されたシュウ酸陽極酸化被膜は、別な実験によれば、加圧蒸気封入シュウ酸陽極酸化被膜、封孔処理された硬質アルマイトと比較して、表層の変化が少なく、それゆえ表面の物理的変化が少ないことも確認されている。 Further, according to another experiment, the oxalic acid anodic oxide film sealed with SiO 2 by silane solution ethyl silicate was compared with the oxalic acid anodic acid film filled with pressurized steam and the hard alumite sealed. It has also been confirmed that there is little change in the surface layer and therefore little physical change in the surface.
 より詳述すれば、(1)H/Arプラズマの下で2時間曝した場合、(2)Hプラズマの下で2時間曝した場合、(3)H/Arプラズマの下で8時間曝した場合について、これらの材料の表面を目視にて観察した。その結果、封孔処理された硬質アルマイトは(1)、(2)の場合とも変色したが、シラン溶液エチルシリケートによるSiOで封孔処理されたシュウ酸陽極酸化被膜、加圧蒸気封入シュウ酸陽極酸化被膜は(1)、(2)のいずれの場合にも変色が見られなかった。そして(3)の場合には、加圧蒸気封入シュウ酸陽極酸化被膜については、明らかな変色が確認できたが、SiOで封孔処理されたシュウ酸陽極酸化被膜は、わずかな変色しか確認できなかった。したがって、SiOで封孔処理されたシュウ酸陽極酸化被膜は、加圧蒸気封入シュウ酸陽極酸化被膜よりもプラズマ耐性が大きいことが推認できる。また断面TEM観察の結果から、硬質アルマイトはH/Arプラズマ照射後に封孔部に変質(空乏)が発生していることが確認できたが、シュウ酸アルマイト(シラン封入、加圧蒸気封入)では、封孔部の変化が確認できなかった。 More specifically, (1) exposure under H 2 / Ar plasma for 2 hours, (2) exposure under H 2 plasma for 2 hours, (3) exposure under H 2 / Ar plasma 8 The surfaces of these materials were visually observed for time exposure. As a result, the hard alumite that had been sealed was discolored in both cases (1) and (2), but the oxalic acid anodic oxide film that was sealed with SiO 2 by the silane solution ethyl silicate, and the oxalic acid filled with pressurized steam. No discoloration was observed in the anodized film in any of the cases (1) and (2). In the case of (3), a clear discoloration was confirmed for the oxalic acid anodic oxide film filled with pressurized steam, but only a slight discoloration was confirmed for the oxalic acid anodic oxide film sealed with SiO 2. could not. Therefore, it can be inferred that the oxalic acid anodic oxide film sealed with SiO 2 has higher plasma resistance than the pressurized steam-filled oxalic acid anodic oxide film. In addition, from the results of cross-sectional TEM observation, it was confirmed that the hard alumite had altered (poor) in the sealed portion after H 2 / Ar plasma irradiation, but oxalic acid alumite (silane-filled, pressurized steam-filled). Then, the change in the sealed part could not be confirmed.
 ところで、既述した水素プラズマによる清浄化処理、カーボン系保護膜の形成処理、目的のカーボン系膜の形成処理を行う場合、既述したように、従来のY溶射膜による保護膜形成では、処理容器11の天板部21に設けられたガス供給孔71の内部表面にまで、Y溶射膜FC1またはFCXを形成することが技術的に難しかった。その結果異常放電が発生して、図7に示したように、凹部72からガス供給孔71にかけて、異常放電に起因する副生成物Zが付着、堆積したり、素材のアルミニウム合金が溶解することがあった。異常放電自体もプラズマ処理に悪影響を与えるが、副生成物Zや素材の溶解はガス供給孔71を閉塞する恐れがある。 Meanwhile, the cleaning treatment with hydrogen plasma already described, forming process of a carbon-based protective layer, when performing processing of forming carbon film of interest, as described above, the protective film formed by the conventional Y 2 O 3 sprayed coating in, to the inside surface of the gas supply holes 71 provided in the top plate portion 21 of the processing vessel 11, it is difficult technically to form a Y 2 O 3 sprayed coating FC1 or FCX. As a result, an abnormal discharge occurs, and as shown in FIG. 7, by-products Z caused by the abnormal discharge adhere to and accumulate from the recess 72 to the gas supply hole 71, or the aluminum alloy of the material melts. was there. The abnormal discharge itself adversely affects the plasma treatment, but the dissolution of the by-product Z and the material may block the gas supply hole 71.
 これに対し、図3に示したように、シラン溶液エチルシリケートによるSiOで封孔処理されたシュウ酸陽極酸化被膜FCYは、ガス供給孔71の内部表面にまで、これを形成することができるから、異常放電の発生を大幅に抑えることができ、また副生成物Zの発生も確認できなかった。したがって、シラン溶液エチルシリケートによるSiOで封孔処理されたシュウ酸陽極酸化被膜によって処理容器11の内側表面、とりわけ天板部21、並びに凹部72、ガス供給孔71の内部表面を被覆することで、パーティクルの発生を大きく抑えることができる。また同時に、従来のアルミニウム無垢表面と比較してAl絶縁被膜を形成して耐電圧を高めることで、前記したような異常放電の発生を大幅に抑えて、凹部72、ガス供給孔71付近に副生成物Zが付着、堆積することを防止することが可能である。 On the other hand, as shown in FIG. 3, the oxalic acid anodic oxide film FCY sealed with SiO 2 by the silane solution ethyl silicate can form the oxalic acid anodized film FCY even on the inner surface of the gas supply hole 71. Therefore, the occurrence of abnormal discharge could be significantly suppressed, and the occurrence of by-product Z could not be confirmed. Therefore, by covering the inner surface of the treatment container 11, particularly the top plate portion 21, the recess 72, and the inner surface of the gas supply hole 71 with the oxalic acid anodic oxide film sealed with SiO 2 by the silane solution ethyl silicate. , The generation of particles can be greatly suppressed. At the same time, by forming an Al 2 O 3 insulating film to increase the withstand voltage as compared with the conventional solid aluminum surface, the occurrence of abnormal discharge as described above is significantly suppressed, and the recess 72 and the gas supply hole 71 are formed. It is possible to prevent the by-product Z from adhering and accumulating in the vicinity.
 なお前記したような、カーボン系膜の形成処理等のプラズマ処理を処理容器11内で行う場合には、処理容器11の側壁23に対しては、格別、シラン溶液エチルシリケートによるSiOで封孔処理されたシュウ酸陽極酸化被膜保護膜を形成しなくとも、カーボン系膜の形成処理に影響を与えず、またパーティクルの発生も大きく増加することはない。このことは既述の実験結果でも確認されている。したがって、カーボン系膜の形成処理等の場合には、処理容器11の側壁23にシラン溶液によるSiOで封孔処理されたシュウ酸陽極酸化被膜保護膜を形成しなくてもよい。 When plasma treatment such as carbon-based film formation treatment as described above is performed in the treatment container 11, the side wall 23 of the treatment container 11 is specially sealed with SiO 2 by silane solution ethyl silicate. Even if the treated oxalic acid anodic oxide film protective film is not formed, it does not affect the formation process of the carbon-based film, and the generation of particles is not significantly increased. This has been confirmed in the experimental results described above. Therefore, in the case of the carbon-based film forming treatment or the like, it is not necessary to form the oxalic acid anodic oxide film protective film sealed with SiO 2 by the silane solution on the side wall 23 of the processing container 11.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The above embodiments may be omitted, replaced or modified in various forms without departing from the scope of the claims and their gist.
  1   プラズマ処理装置
 11   処理容器
 12   載置台
 13   ガス供給機構
 14   排気装置
 15   マイクロ波導入装置
 16   制御部
 21   天板部
 23   側壁
 71   ガス供給孔
  W   ウェハ
1 Plasma processing device 11 Processing container 12 Mounting table 13 Gas supply mechanism 14 Exhaust device 15 Microwave introduction device 16 Control unit 21 Top plate unit 23 Side wall 71 Gas supply hole W wafer

Claims (11)

  1. 処理容器内の基板にプラズマ処理する装置であって、
    前記処理容器は側壁及び天板部を有し、
    前記天板部に配置され、プラズマを生成するためのマイクロ波を前記処理容器内に導入するマイクロ波導入装置と、
    前記処理容器内に設けられて、前記基板を載置する載置台と、
    前記天板部に設けられたガス供給孔を介してガスを前記処理容器内に供給するガス供給機構と、を有し、
    前記天板部における前記処理容器内の表面及び前記ガス供給孔の内部表面は、シュウ酸陽極酸化被膜によって被覆されている、プラズマ処理装置。
    A device that plasma-treats the substrate inside the processing container.
    The processing container has a side wall and a top plate portion, and has a side wall and a top plate portion.
    A microwave introduction device arranged on the top plate and introducing microwaves for generating plasma into the processing container, and a microwave introduction device.
    A mounting table provided in the processing container on which the substrate is placed, and
    It has a gas supply mechanism for supplying gas into the processing container through a gas supply hole provided in the top plate portion.
    A plasma processing apparatus in which the surface inside the processing container and the inner surface of the gas supply hole in the top plate portion are covered with an oxalic acid anodic oxide film.
  2. 前記側壁における前記処理容器内の表面は、前記シュウ酸陽極酸化被膜が被覆されていない、請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the surface of the side wall in the processing container is not covered with the oxalic acid anodic oxide film.
  3. 前記シュウ酸陽極酸化被膜は、シラン溶液エチルシリケートによるSiOで封孔処理されている、請求項1または2のいずれか一項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 or 2, wherein the oxalic acid anodic oxide film is sealed with SiO 2 using a silane solution ethyl silicate.
  4. 前記プラズマは水素プラズマである、請求項1~3のいずれか一項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 3, wherein the plasma is hydrogen plasma.
  5. 前記シュウ酸陽極酸化被膜の厚さは、1~100μmである、請求項1~4のいずれか一項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 4, wherein the oxalic acid anodic oxide film has a thickness of 1 to 100 μm.
  6. 制御部を有し、
    前記制御部は、炭素含有ガスと水素と希ガスの混合ガスによるプラズマによって、前記基板上にカーボン系膜を形成するように、前記プラズマ処理装置を制御する、請求項1~5のいずれか一項に記載のプラズマ処理装置。
    Has a control unit
    One of claims 1 to 5, wherein the control unit controls the plasma processing apparatus so as to form a carbon-based film on the substrate by plasma generated by a mixed gas of a carbon-containing gas, hydrogen, and a rare gas. The plasma processing apparatus according to the section.
  7. 前記制御部は、前記基板上に前記カーボン系膜を形成する工程の前に、水素プラズマによって前記基板を処理するように前記プラズマ処理装置を制御する、請求項6に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 6, wherein the control unit controls the plasma processing apparatus so as to process the substrate by hydrogen plasma before the step of forming the carbon-based film on the substrate.
  8. 前記制御部は、前記基板上に前記カーボン系膜を形成する工程の前に、前記載置台上にダミーの基板を載置した状態で、炭素含有ガスと希ガスの混合ガスによるプラズマによって、前記処理容器内表面にカーボン系保護膜を形成するように、前記プラズマ処理装置を制御する、請求項6に記載のプラズマ処理装置。 Prior to the step of forming the carbon-based film on the substrate, the control unit uses plasma of a mixed gas of a carbon-containing gas and a rare gas in a state where a dummy substrate is placed on the above-mentioned table. The plasma processing apparatus according to claim 6, wherein the plasma processing apparatus is controlled so as to form a carbon-based protective film on the inner surface of the processing container.
  9. 請求項1~8のいずれか一項に記載のプラズマ処理装置を用いたプラズマ処理方法であって、
    炭素含有ガスと水素と希ガスの混合ガスによるプラズマによって、基板上にカーボン系膜を形成する工程を有する、プラズマ処理方法。
    A plasma processing method using the plasma processing apparatus according to any one of claims 1 to 8.
    A plasma treatment method comprising a step of forming a carbon-based film on a substrate by plasma using a mixed gas of a carbon-containing gas, hydrogen, and a rare gas.
  10. 前記基板上にカーボン系膜を形成する工程の前に、水素プラズマによって前記基板を処理する工程を有する、請求項9に記載のプラズマ処理方法。 The plasma treatment method according to claim 9, further comprising a step of treating the substrate with hydrogen plasma before the step of forming a carbon-based film on the substrate.
  11. 前記基板上にカーボン系膜を形成する工程の前に、前記載置台上にダミーの基板を載置した状態で、炭素含有ガスと希ガスの混合ガスによるプラズマによって、前記処理容器内表面にカーボン系保護膜を形成する工程を有する、請求項9に記載のプラズマ処理方法。 Before the step of forming a carbon-based film on the substrate, the dummy substrate is placed on the above-mentioned table, and plasma is applied to the inner surface of the processing container by plasma using a mixed gas of a carbon-containing gas and a rare gas. The plasma treatment method according to claim 9, further comprising a step of forming a system protective film.
PCT/JP2021/020961 2020-06-15 2021-06-02 Plasma treatment apparatus and plasma treatment method WO2021256258A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020103080A JP2021195594A (en) 2020-06-15 2020-06-15 Plasma treatment apparatus and plasma treatment method
JP2020-103080 2020-06-15

Publications (1)

Publication Number Publication Date
WO2021256258A1 true WO2021256258A1 (en) 2021-12-23

Family

ID=79197377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020961 WO2021256258A1 (en) 2020-06-15 2021-06-02 Plasma treatment apparatus and plasma treatment method

Country Status (2)

Country Link
JP (1) JP2021195594A (en)
WO (1) WO2021256258A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102686817B1 (en) * 2022-03-31 2024-07-19 한국핵융합에너지연구원 Diamond film forming apparatus using microwave plasma chemical vapor deposition method
JP2024088507A (en) * 2022-12-20 2024-07-02 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180091A (en) * 1993-12-22 1995-07-18 Sumitomo Metal Ind Ltd Aluminum sheet, its production and deposition preventive cover using the sheet
JP2009173965A (en) * 2008-01-22 2009-08-06 Tokyo Electron Ltd Component for substrate treating apparatus and method for forming film
JP2011054781A (en) * 2009-09-02 2011-03-17 Tokyo Electron Ltd Plasma processing apparatus
JP2012176856A (en) * 2011-02-25 2012-09-13 Tokyo Electron Ltd Carbon nanotube forming method, pre-treatment method therefor, electron emitter, and lighting apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180091A (en) * 1993-12-22 1995-07-18 Sumitomo Metal Ind Ltd Aluminum sheet, its production and deposition preventive cover using the sheet
JP2009173965A (en) * 2008-01-22 2009-08-06 Tokyo Electron Ltd Component for substrate treating apparatus and method for forming film
JP2011054781A (en) * 2009-09-02 2011-03-17 Tokyo Electron Ltd Plasma processing apparatus
JP2012176856A (en) * 2011-02-25 2012-09-13 Tokyo Electron Ltd Carbon nanotube forming method, pre-treatment method therefor, electron emitter, and lighting apparatus

Also Published As

Publication number Publication date
JP2021195594A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
JP7079686B2 (en) Film formation method and film formation equipment
KR101256120B1 (en) Plasma processing apparatus and plasma processing method
KR101317018B1 (en) Plasma treatment apparatus
WO2007088894A1 (en) Substrate processing apparatus, substrate placing table used for same, and member exposed to plasma
US12018375B2 (en) Flim forming method of carbon-containing film by microwave plasma
WO2021256258A1 (en) Plasma treatment apparatus and plasma treatment method
WO2021220841A1 (en) Pre-coating method and treatment device
JP5479013B2 (en) Plasma processing apparatus and slow wave plate used therefor
JP5860392B2 (en) Plasma nitriding method and plasma nitriding apparatus
WO2021033612A1 (en) Cleaning method and microwave plasma treatment device
KR100887271B1 (en) Plasma processing apparatus
KR20080011123A (en) Plasma surface treatment method, quartz member, plasma processign apparatus and plasma processing method
KR102695578B1 (en) Processing device and membrane method
JP2016058536A (en) Plasma processing apparatus and cleaning method
WO2021205928A1 (en) Cleaning method and plasma treatment device
JP2009283794A (en) Substrate processing apparatus
WO2022107611A1 (en) Film forming method and film forming device
JP5728565B2 (en) Plasma processing apparatus and slow wave plate used therefor
WO2022102463A1 (en) Substrate treatment method and substrate treatment device
JP2022027040A (en) Plasma processing device and plasma processing method
JP2023157446A (en) Plasma processing method, plasma processing device, and stage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825377

Country of ref document: EP

Kind code of ref document: A1