WO2021256049A1 - Variable magnification objective lens and photometric colorimeter provided therewith - Google Patents

Variable magnification objective lens and photometric colorimeter provided therewith Download PDF

Info

Publication number
WO2021256049A1
WO2021256049A1 PCT/JP2021/013654 JP2021013654W WO2021256049A1 WO 2021256049 A1 WO2021256049 A1 WO 2021256049A1 JP 2021013654 W JP2021013654 W JP 2021013654W WO 2021256049 A1 WO2021256049 A1 WO 2021256049A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
variable magnification
objective lens
group
Prior art date
Application number
PCT/JP2021/013654
Other languages
French (fr)
Japanese (ja)
Inventor
眞由 植田
賢治 金野
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2022532316A priority Critical patent/JPWO2021256049A1/ja
Priority to CN202180042744.8A priority patent/CN115917392A/en
Publication of WO2021256049A1 publication Critical patent/WO2021256049A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Definitions

  • the present invention relates to a variable magnification objective lens and a photometric colorimeter including the same.
  • Luminance meters, color luminance meters, spectrophotometers, etc. are used in quality control of display products. These devices are devices that measure the optical properties of a display and are used to control or adjust the brightness and chromaticity of the display. As one of such optical characteristic measuring devices, there is an optical characteristic measuring device disclosed in International Publication No. 2015/182571 (Patent Document 1).
  • Display includes, for example, micro OLED (Organic Light Emitting Diode), micro LED (Light Emitting Diode), smartphone display, TV receiver (for example, 4K TV, 8K TV, etc.).
  • OLED Organic Light Emitting Diode
  • micro LED Light Emitting Diode
  • smartphone display TV receiver (for example, 4K TV, 8K TV, etc.).
  • TV receiver for example, 4K TV, 8K TV, etc.
  • Patent Document 1 discloses an optical characteristic measuring device for measuring the luminance and chromaticity of a light emitter.
  • This measuring device has a first optical system and a second optical system.
  • the first optical system spectroscopically measures a certain fixed measurement range within the measured area of the object to be measured.
  • the second optical system can measure the object to be measured two-dimensionally with three stimulus values at the same time as the measurement by the first optical system.
  • the second optical system has only one variable magnification group, whereby the measurement diameter on the image side can be made variable.
  • the focused measurement light is guided to the sensor through a filter having a spectral response degree close to the CIE color matching function. The brightness and chromaticity of the object to be measured are calculated based on the three stimulus values.
  • the measurement diameter can be changed by changing the amount of extension of the lens.
  • the F number on the image side fluctuates as the measured diameter changes. Therefore, as the measurement diameter changes, the amount of light taken into the sensor of the measuring device may decrease.
  • the dynamic range of the measuring instrument is narrowed. Since the dynamic range of the measuring instrument is narrow, it is assumed that the dynamic range of the display product is measured narrower than the original performance. Moreover, it is difficult to greatly change the measured diameter by using only one variable magnification system.
  • the optical system disclosed in Patent Document 1 has one variable magnification group.
  • the measurement diameter is variable.
  • the measurement angle changes as the measurement diameter changes.
  • the incident angle of the light incident on the filter changes.
  • the closer the spectral sensitivity is to the color matching function the closer the measured value is to the true value (value calculated by the matching color function), so it is important that the spectral sensitivity of the filter is closer to the matching color function.
  • an interference film filter is generally used. When the incident angle of the light incident on the interference film filter changes, the optical path difference in the interference film changes.
  • the present invention has been made in view of such a problem, and is a variable magnification objective lens capable of making the measurement diameter variable while reducing the fluctuation of the F number on the image side, and a photometric colorimeter including the same. Is to provide.
  • the variable magnification objective lens is a variable magnification objective lens that forms an intermediate image at a position conjugate with the image plane, and is changed from the first lens group, which is a variable magnification group, in order from the object side. It has a second lens group that is a magnification group and a third lens group that does not substantially change magnification, and at the time of magnification change, two adjacent lenses among the first lens group, the second lens group, and the third lens group. The distance between the two lens groups changes, an intermediate image is formed between the first lens group and the second lens group, the third lens group has an aperture aperture, and the conjugate image of the aperture aperture is the first lens group.
  • the opening aperture is arranged so that it is closer to the object than the lens.
  • the photometric colorimeter according to a certain aspect of the present invention includes the above-mentioned variable magnification objective lens.
  • variable magnification objective lens capable of making the measurement diameter variable while reducing the fluctuation of the F number on the image side
  • photometric colorimeter provided with the variable magnification objective lens
  • FIG. 1 is a block diagram showing an example of a photometric colorimeter equipped with a variable magnification objective lens according to an embodiment of the present invention.
  • the photometric colorimeter 10 according to the present embodiment is used, for example, in an inspection process of a display manufacturing line, and measures the brightness (luminance) and chromaticity of the display surface 12 of the display.
  • the photometric colorimeter 10 (hereinafter, also simply referred to as “colorimeter 10”) according to the present embodiment is realized as a tristimulus value type colorimeter.
  • the colorimeter 10 includes a measuring probe unit 14 and a measuring instrument main body unit 16.
  • the measuring probe unit 14 and the measuring instrument main body unit 16 are integrally configured.
  • the measurement probe unit 14 is arranged so as to face each other at a predetermined distance (for example, 3 cm) from the display surface 12 of the display, which is the object to be measured.
  • the measuring probe unit 14 photoelectrically converts the light from the display surface 12 of the display into an electric signal (analog signal), and transmits the electric signal to the measuring instrument main body unit 16.
  • the measurement probe unit 14 is composed of a measurement optical system 27 and a light receiving system 28.
  • the measurement optical system 27 includes a variable magnification objective lens 21 according to the present embodiment and a luminous flux dividing member 24.
  • the variable magnification objective lens 21 is provided as an incident portion for incident light from the object to be measured.
  • the variable magnification objective lens 21 is shown as a single lens in order to show that the colorimeter 10 has the variable magnification objective lens 21.
  • the detailed configuration of the variable magnification objective lens 21 according to the present embodiment will be described in detail later.
  • the luminous flux dividing member 24 is provided as a light guide unit that guides the light incidented by the variable magnification objective lens 21.
  • the luminous flux dividing member 24 divides the luminous flux transmitted through the variable magnification objective lens 21 into three luminous fluxes.
  • the light receiving system 28 has a filter unit 23, a photoelectric conversion unit 25, and an amplification unit 26.
  • the luminous flux divided by the luminous flux dividing member 24 passes through the filter unit 23 and is incident on the photoelectric conversion unit 25.
  • the photoelectric conversion unit 25 has a light receiving sensor (not shown) for converting incident light into an electric signal.
  • the filter unit 23 has a spectral sensitivity correction filter (not shown) for allowing the light receiving sensor of the photoelectric conversion unit 25 to have the spectral sensitivity of a standard observer defined by CIE.
  • the spectral sensitivity correction filter is a filter having a spectral sensitivity close to that of a color matching function. An interference film filter can be used as the spectral sensitivity correction filter.
  • the amplification unit 26 amplifies the electric signal (voltage) output from the light receiving sensor of the photoelectric conversion unit 25 to a predetermined level.
  • the measuring instrument main body 16 converts an electric signal (analog signal) input from the measuring probe 14 into a digital signal, and performs predetermined arithmetic processing.
  • the measuring instrument main body 16 has tristimulus values (X, Y, Z), xyY (chromaticity coordinates, luminance), and T ⁇ uvY (correlated color temperature,) established by the CIE (International Commission on Illumination) by its arithmetic processing.
  • CIE International Commission on Illumination
  • the measuring instrument main body 16 has an A / D conversion unit 31, a data memory 32, a display unit 34, an operation unit 35, a control unit 36, and a power supply unit 37.
  • the A / D conversion unit 31 converts the received light signal input from the measurement probe unit 14 into a digital signal (hereinafter referred to as measurement data).
  • the data memory 32 stores the measurement data output from the A / D conversion unit 31.
  • the control unit 36 controls the measurement operation by centrally controlling the operation of the measurement probe unit 14 and the operation of each unit in the measuring instrument main body 16.
  • the control unit 36 calculates the tristimulus values (X, Y, Z), xyY, T ⁇ uvY, etc. defined by the CIE, using the measurement data stored in the data memory 32.
  • the display unit 34 displays the calculation result of the control unit 36.
  • Various information related to measurement is input to the operation unit 35.
  • the power supply unit 37 transforms the voltage of the electric power supplied from the external AC adapter (not shown) and supplies electric power to each component via the control unit 36.
  • the photometric colorimeter 10 may be a spectrophotometer.
  • the filter unit 23 shown in FIG. 1 is replaced with a spectroscopic unit.
  • the light emitted from the display surface 12 of the display is separated by the spectroscopic unit and incident on the photoelectric conversion unit 25.
  • the control unit 36 Based on the spectral characteristics indicated by the signal output from the photoelectric conversion unit 25, the control unit 36 obtains the tristimulus value by numerical calculation.
  • variable magnification objective lens 21 can change the diameter (measurement diameter) of the area to be measured AR on the display surface 12 of the display.
  • the brightness (luminance) and chromaticity of displays of various sizes can be measured by the same colorimeter.
  • the F number on the image side can be kept constant even if the measurement diameter is changed. This makes it possible to accurately measure the brightness on the low brightness side of the display.
  • variable magnification objective lens 21 is a variable magnification objective lens that forms an intermediate image at a position conjugate with the image plane, and is changed from the first lens group, which is a variable magnification group, in order from the object side. It has a second lens group that is a magnification group and a third lens group that does not substantially change magnification, and at the time of magnification change, two adjacent lenses among the first lens group, the second lens group, and the third lens group. The spacing between the two lens groups changes, an intermediate image is formed between the first lens group and the second lens group, the third lens group has an aperture aperture, and the conjugate image of the aperture aperture is the first magnification.
  • the aperture aperture is arranged so that it is closer to the object than the group.
  • an afocal system is formed by the first lens group and the second lens group, which are variable magnification groups, and an intermediate image is formed between the respective groups, so that the conjugate image of the aperture is displayed on the object side.
  • the optical system should be easy to bring to.
  • the “afocal system” refers to an optical system configured such that the combined focal length of the two variable magnification groups is twice or more the focal length of the entire optical system.
  • the image-side F-number can be made constant at all zoom positions by using the third variable magnification group that does not change the magnification and the aperture stop that has a fixed position and aperture diameter. Therefore, it is possible to reduce the deviation of the spectral response to the color matching function when the optical characteristics are measured at each measurement diameter. This enables highly accurate measurement of luminance and chromaticity. Further, even when the measurement diameter is small, optical characteristics such as luminance can be measured without narrowing the dynamic range.
  • the aperture diaphragm may be arranged in front of the third lens group (on the object side of the third lens group on the object side side of the lens).
  • the conjugate image of the aperture stop is on the object side of the first lens group, the uneven brightness of the object to be measured is not reflected on the image plane (light receiving surface of the light receiving sensor).
  • the object surface and the image surface are in a conjugate relationship as in the imaging optical system, the luminance unevenness of the object to be measured is reflected on the image surface as it is, so that the measurement accuracy is lowered.
  • the aperture diaphragm and the object surface may have a conjugated relationship.
  • variable magnification objective lens has two variable magnification groups. This makes it possible to expand the range of scaling.
  • the combined focal length of the first lens group and the second lens group on the d line is f12
  • the focal length of the entire optical system of the variable magnification objective lens 21 is FL
  • FL / f12. Then, it is preferable that ⁇ 0.5 ⁇ ⁇ 0.5.
  • the “afocal system” is an optical system configured such that the combined focal length f12 of the two variable magnification groups is twice or more the focal length FL of the entire optical system. Point to.
  • the above conditions are conditions for the two variable magnification groups (first lens group and second lens group) to form an afocal system in the present embodiment.
  • the first lens group and the second lens group form an afocal system
  • the light rays incident on the third lens group become close to parallel light. This makes it possible to easily correct aberrations on the image plane of the third lens group.
  • the first lens group has an eleventh lens group having a negative power and a twelfth lens group having a positive power in order from the object side.
  • the first lens group as a whole can have positive power. This makes it possible to form an afocal system that forms an intermediate image between the first lens group and the second lens group.
  • the second lens group has a 21st lens group having a positive power and a 22nd lens group having a negative power in order from the object side.
  • the second lens group as a whole can have positive power. This makes it possible to form an afocal system that forms an intermediate image between the first lens group and the second lens group.
  • the first lens It is preferable that the magnification ⁇ 1 of the group is 1 ⁇ 1 ⁇ 2.5 and the magnification ⁇ 2 of the second lens group is 0.2 ⁇ 2 ⁇ 0.8.
  • the afocal system is composed of the first lens group and the second lens group, which are variable magnification groups.
  • the first lens group and the second lens group are variable magnification groups.
  • the magnification of the first lens group is 1.5 ⁇ ⁇ ⁇ 2
  • the magnification of the second lens group is 0.5 ⁇ ⁇ ⁇ 0.7.
  • the magnification of the first lens group is 2 ⁇ 1
  • the distance from the first lens group to the intermediate image becomes short, so that it becomes more difficult to correct the aberration in the second lens group.
  • the variable range of the focal length of the first lens group is narrowed, so that the range of scaling of the entire optical system is narrowed.
  • the magnification of the second lens group is ⁇ 2 ⁇ 0.5
  • the distance from the second lens group to the intermediate image becomes short, so that it becomes difficult to correct the aberration in the first lens group.
  • the magnification ⁇ 1 of the first lens group is 1.5 ⁇ ⁇ 1 ⁇ 2 and the magnification ⁇ 2 of the second lens group is 0.5 ⁇ ⁇ 2 ⁇ 0.7, the front group of the first lens group at the wide-angle end. Since the distance from the lens to the object side can be secured, the angle of incidence on each variable magnification group becomes small. Therefore, aberration correction becomes easy. Further, the range of scaling of the entire optical system can be expanded.
  • magnification ratio ⁇ ⁇ 1 * ⁇ 2 by the magnification ⁇ 1 of the first lens group and the magnification ⁇ 2 of the second lens group, 0.5 ⁇ ⁇ ⁇ 1.5. It is preferable to have.
  • each lens group has a scaling ratio
  • the range of scaling of the measured diameter can be expanded while simplifying the configuration or mechanism for zooming.
  • of the F number Fno on the image side at each zoom position of the variable magnification objective lens satisfies 1 ⁇
  • the difference is preferably 3.5 or less.
  • the incident angle of the main light beam on the image plane side is 5 degrees or less.
  • the angle of incidence on the image plane can be made constant at any angle of view, so that it is possible to suppress a decrease in the amount of light guided to the image side due to a change in the angle of view. can.
  • the aperture system of the aperture stop is variable. With this configuration, the measured diameter can be further reduced. In the present embodiment, the measurement diameter can be reduced to ⁇ 1 mm. This makes it possible to measure the brightness and chromaticity of a light emitter used in a small size display such as a micro OLED or a micro LED.
  • the photometric colorimeter includes any of the above variable magnification objective lenses. This makes it possible to realize a photometric colorimeter capable of making the measurement diameter variable while reducing the fluctuation of the F number on the image side.
  • FIGS. 2 to 4 are lens configuration diagrams showing the configurations of the variable magnification objective lenses 21 according to the first to third embodiments.
  • the first to third embodiments are referred to as "EX1", “EX2”, and "EX3", respectively.
  • AX indicates the optical axis
  • STO indicates the aperture stop
  • I11 indicates the position of the intermediate image
  • IM indicates the image plane or image plane of the light receiving sensor.
  • AR represents the position of the measured area.
  • each of Z1 to Z4 means a zoom position.
  • (Z1), (Z2), and (Z3) show cross-sectional views of the lens at the telephoto end, the intermediate focal length state, and the wide-angle end, respectively.
  • (Z4) shows a cross-sectional view of the lens at the same zoom position as (Z3) and when the diameter of the aperture diaphragm is reduced.
  • the measured diameters in (Z1) to (Z4) are 10 mm, 5 mm, 2.5 mm, and 1 mm, respectively.
  • the variable magnification objective lens 21 is an objective lens that forms an intermediate image at a position conjugate with the image plane IMG.
  • the variable magnification objective lens 21 has, in order from the object side, a first lens group G1 which is a variable magnification group, a second lens group G2 which is a variable magnification group, and a third lens group G3 which does not substantially change the magnification. ..
  • the distance between two adjacent lens groups among the first lens group G1, the second lens group G2, and the third lens group G3 changes.
  • the third lens group G3 is fixed, and the first lens group G1 and the second lens group G2 move along the optical axis AX.
  • the first lens group G1 has an eleventh lens group G11 having a negative power and a twelfth lens group G12 having a positive power in order from the object side.
  • the eleventh lens group G11 is composed of one negative lens L1.
  • the twelfth lens group G12 is composed of two positive lenses L2 and L3. As a result, the first lens group G1 has positive power as a whole.
  • the second lens group G2 is composed of a 21st lens group G21 having a positive power and a 22nd lens group G22 having a negative power in order from the object side.
  • the 21st lens group G21 is composed of one positive lens L4.
  • the 22nd lens group G22 is composed of one negative lens L5. As a result, the second lens group G2 has positive power as a whole.
  • the third lens group G3 has an aperture stop STO, a positive lens L6, and a positive lens L7 in order from the object side.
  • An afocal system is formed by the first lens group G1 and the second lens group G2, and an intermediate image is formed at the image formation position I11 between the first lens group G1 and the second lens group G2.
  • the conjugate image of the aperture stop STO is on the object side of the first lens group G1.
  • the third lens group G3 does not change magnification, and the position of the aperture stop STO is fixed.
  • the aperture diameter of the aperture stop STO is fixed at the zoom positions Z1 to Z3.
  • the variable magnification objective lens 21 can reduce the measured diameter from the state shown in (Z3) by reducing the aperture diameter of the aperture stop STO (see (Z4)).
  • Example 1 The configuration of Example 1 will be described more specifically with reference to construction data and the like. The definitions described below are similarly applied to Examples 2 and 3.
  • the surface number (OBJ: object surface, STO: aperture stop, IMG: image surface), radius of curvature r, shaft top surface spacing d, lens material d line (wavelength 587).
  • the surface with * attached to the surface number i is an aspherical surface, and the shape of the aspherical surface is as follows, with the apex of the surface as the origin, the X axis in the optical axis direction, and the height in the direction perpendicular to the optical axis as h. It is represented by "number 1" of.
  • the basic wavelength used for the lenses of each embodiment is 587.56 nm (d line), and the unit of the surface shape such as the radius of curvature is mm. Further, it is assumed that a power of 10 (for example, 2.5 ⁇ 10-002) is expressed by using E (for example, 2.5E-002).
  • Table 1 shows the lens data of the variable magnification objective lens according to the first embodiment.
  • Table 2 below shows the interplanar spacing of the lens surfaces of the variable magnification objective lens according to Example 1.
  • Z1 to Z4 correspond to Z1 to Z4 shown in FIG. 2
  • a1 to a5 correspond to a1 to a5 shown in Table 1, respectively.
  • Tables 3 and 4 show the aspherical coefficients of the lens surface of the variable magnification objective lens according to the first embodiment as aspherical data. In the aspherical data, the coefficient of the term not shown is 0.
  • Table 5 shows the characteristics of the variable magnification objective lens according to the first embodiment.
  • FL means the focal length of the entire variable magnification objective lens system
  • Fno means the image side F number
  • BF means the back focus
  • TL means the total length of the system
  • Ymax means the radius of the light beam dividing member.
  • f12 means the combined focal length of the first lens group G1 and the second lens group G2 on the d line
  • is defined by FL / f12.
  • the unit of FL, BF, TL, Ymax, and f12 is mm. From Table 5, it is understood that the image-side F number is constant between the positions Z1, Z2, and Z3.
  • Table 6 shows the lens data of the single lens constituting the variable magnification objective lens of the first embodiment.
  • the lens numbers 1 to 7 correspond to the reference numerals L1 to L7 shown in FIG. 2, respectively.
  • the variable magnification objective lens 21 is an objective lens that forms an intermediate image at a position conjugate with the image plane IMG.
  • the variable magnification objective lens 21 has, in order from the object side, a first lens group G1 which is a variable magnification group, a second lens group G2 which is a variable magnification group, and a third lens group G3 which does not substantially change the magnification. ..
  • the distance between two adjacent lens groups among the first lens group G1, the second lens group G2, and the third lens group G3 changes.
  • the third lens group G3 is fixed, and the first lens group G1 and the second lens group G2 move along the optical axis AX.
  • the first lens group G1 has an eleventh lens group G11 having a negative power and a twelfth lens group G12 having a positive power in order from the object side.
  • the eleventh lens group G11 is composed of one negative lens L1.
  • the twelfth lens group G12 is composed of two positive lenses L2 and L3. As a result, the first lens group G1 has positive power as a whole.
  • the second lens group G2 is composed of a 21st lens group G21 having a positive power and a 22nd lens group G22 having a negative power in order from the object side.
  • the 21st lens group G21 is composed of one positive lens L4.
  • the 22nd lens group G22 is composed of one negative lens L5. As a result, the second lens group G2 has positive power as a whole.
  • the third lens group G3 has an aperture stop STO, a positive lens L6, and a positive lens L7 in order from the object side.
  • An afocal system is formed by the first lens group G1 and the second lens group G2, and an intermediate image is formed at the image formation position I11 between the first lens group G1 and the second lens group G2.
  • the conjugate image of the aperture stop STO is on the object side of the first lens group G1.
  • the third lens group G3 does not change magnification, and the position of the aperture stop STO is fixed.
  • the aperture diameter of the aperture stop STO is fixed at the zoom positions Z1 to Z3.
  • the variable magnification objective lens 21 can reduce the measured diameter from the state shown in (Z3) by reducing the aperture diameter of the aperture stop STO (see (Z4)).
  • Table 7 shows the lens data of the variable magnification objective lens according to the second embodiment.
  • Table 8 below shows the interplanar spacing of the lens surfaces of the variable magnification objective lens according to Example 2.
  • Z1 to Z4 correspond to Z1 to Z4 shown in FIG. 3
  • a1 to a6 correspond to a1 to a6 shown in Table 7, respectively.
  • Tables 9 and 10 show the aspherical coefficients of the lens surface of the variable magnification objective lens according to the second embodiment as aspherical data. In the aspherical data, the coefficient of the term not shown is 0.
  • Table 11 shows the characteristics of the variable magnification objective lens according to the second embodiment. From Table 11, it is understood that the image-side F number is constant between the positions Z1, Z2, and Z3.
  • Table 12 shows the lens data of the single lens constituting the variable magnification objective lens according to the second embodiment.
  • the lens numbers 1 to 7 correspond to the reference numerals L1 to L7 shown in FIG. 3, respectively.
  • the variable magnification objective lens 21 is an objective lens that forms an intermediate image at a position conjugate with the image plane IMG.
  • the variable magnification objective lens 21 has, in order from the object side, a first lens group G1 which is a variable magnification group, a second lens group G2 which is a variable magnification group, and a third lens group G3 which does not substantially change the magnification. ..
  • the distance between two adjacent lens groups among the first lens group G1, the second lens group G2, and the third lens group G3 changes.
  • the third lens group G3 is fixed, and the first lens group G1 and the second lens group G2 move along the optical axis AX.
  • the first lens group G1 has an eleventh lens group G11 having a negative power and a twelfth lens group G12 having a positive power in order from the object side.
  • the eleventh lens group G11 is composed of one negative lens L1.
  • the twelfth lens group G12 is composed of two positive lenses L2 and L3. As a result, the first lens group G1 has positive power as a whole.
  • the second lens group G2 is composed of a 21st lens group G21 having a positive power and a 22nd lens group G22 having a negative power in order from the object side.
  • the 21st lens group G21 is composed of one positive lens L4.
  • the 22nd lens group G22 is composed of one negative lens L5. As a result, the second lens group G2 has positive power as a whole.
  • the third lens group G3 has an aperture stop STO, a positive lens L6, and a positive lens L7 in order from the object side.
  • An afocal system is formed by the first lens group G1 and the second lens group G2, and an intermediate image is formed at the image formation position I11 between the first lens group G1 and the second lens group G2.
  • the conjugate image of the aperture stop STO is on the object side of the first lens group G1.
  • the third lens group G3 does not change magnification, and the position of the aperture stop STO is fixed.
  • the aperture diameter of the aperture stop STO is fixed at the zoom positions Z1 to Z3.
  • the variable magnification objective lens 21 can reduce the measured diameter from the state shown in (Z3) by reducing the aperture diameter of the aperture stop STO (see (Z4)).
  • Table 13 shows the lens data of the variable magnification objective lens according to the third embodiment.
  • Table 14 below shows the interplanar spacing of the lens surfaces of the variable magnification objective lens according to Example 3.
  • Z1 to Z4 correspond to Z1 to Z4 shown in FIG. 4
  • a1 to a6 correspond to a1 to a6 shown in Table 13, respectively.
  • Tables 15 and 16 show the aspherical coefficients of the lens surface of Example 3 as aspherical data. In the aspherical data, the coefficient of the term not shown is 0.
  • Table 17 shows the characteristics of the variable magnification objective lens of Example 3. From Table 17, it is understood that the image-side F number is constant between the positions Z1, Z2, and Z3.
  • Table 18 shows the lens data of the single lens constituting the variable magnification objective lens according to the third embodiment.
  • the lens numbers 1 to 7 correspond to the reference numerals L1 to L7 shown in FIG. 4, respectively.
  • Table 19 shows the values corresponding to the conditional expressions of each embodiment.
  • ⁇ max of each embodiment means the value of ⁇ having the maximum absolute value among the values of ⁇ in positions Z1 to Z4 (see Tables 5, 11 and 17).
  • ⁇ max is the value of ⁇ at position Z2
  • ⁇ max is the value of ⁇ at position Z1.

Abstract

The present invention provides a variable magnification objective lens that can make a measurement diameter variable while reducing variation in f-number on the image side, and a photometric colorimeter provided therewith. A variable magnification objective lens (21) forms an intermediate image at a position conjugate to an image surface, and comprises, in order from the object side, a first lens group (G1) that is a variable magnification group, a second lens group (G2) that is a variable magnification group, and a third lens group (G3) the magnification of which does not substantially vary. When the magnification is varied, the distance between two adjacent lens groups among the first lens group (G1), the second lens group (G2) and the third lens group (G3) changes. The intermediate image is formed between the first lens group (G1) and the second lens group (G2). The third lens group (G1) has an aperture stop (STO), and the aperture stop (STO) is disposed such that a conjugate image of the aperture stop (STO) is located closer to the object side than the first lens group (G1).

Description

変倍対物レンズおよびそれを備える測光測色計Variable magnification objective lens and photometric colorimeter equipped with it
 本発明は、変倍対物レンズおよびそれを備える測光測色計に関する。 The present invention relates to a variable magnification objective lens and a photometric colorimeter including the same.
 ディスプレイ製品の品質管理において、輝度計、色彩輝度計、分光測色計などが使用されている。これらの装置は、ディスプレイの光学特性を測定する装置であり、ディスプレイの輝度および色度を管理あるいは調整するために使用される。そのような光学特性測定装置の1つとして、国際公開第2015/182571号(特許文献1)に開示された光学特性測定装置がある。 Luminance meters, color luminance meters, spectrophotometers, etc. are used in quality control of display products. These devices are devices that measure the optical properties of a display and are used to control or adjust the brightness and chromaticity of the display. As one of such optical characteristic measuring devices, there is an optical characteristic measuring device disclosed in International Publication No. 2015/182571 (Patent Document 1).
 ディスプレイには、たとえば、マイクロOLED(Organic Light Emitting Diode)、マイクロLED(Light Emitting Diode)、スマートフォンディスプレイ、テレビ受像機(たとえば4Kテレビ、8Kテレビなど)などがある。ディスプレイの種類に応じて、そのサイズは様々である。測定対象となるディスプレイのサイズが小さければ測色計の輝度・色度の測定範囲を小さくする必要があり、逆もまたしかりである。このため、どのようなディスプレイにおいても輝度および色度が測定でき、かつ測定径(測定エリアの直径)を可変にできる対物レンズを備えた測色計が求められている。 Display includes, for example, micro OLED (Organic Light Emitting Diode), micro LED (Light Emitting Diode), smartphone display, TV receiver (for example, 4K TV, 8K TV, etc.). Depending on the type of display, its size will vary. If the size of the display to be measured is small, it is necessary to reduce the measurement range of the brightness and chromaticity of the colorimeter, and vice versa. Therefore, there is a demand for a colorimeter provided with an objective lens capable of measuring brightness and chromaticity in any display and having a variable measurement diameter (measurement area diameter).
 特許文献1は、発光体の輝度および色度を測定するための光学特性測定装置を開示する。この測定装置は、第1光学系と第2光学系とを有する。第1光学系は、被測定物の被測定領域内の、ある決められた測定範囲を分光測定する。第2光学系は、第1光学系による測定と同時に、被測定物を3刺激値で2次元測定することができる。第2光学系は、変倍群を1つのみ持ち、それにより像側の測定径を可変にすることができる。特に第2光学系では、集光された測定光がCIE等色関数に近似した分光応答度をもつフィルタを通り、センサーまで導光される。3刺激値に基づいて被測定物の輝度および色度が算出される。 Patent Document 1 discloses an optical characteristic measuring device for measuring the luminance and chromaticity of a light emitter. This measuring device has a first optical system and a second optical system. The first optical system spectroscopically measures a certain fixed measurement range within the measured area of the object to be measured. The second optical system can measure the object to be measured two-dimensionally with three stimulus values at the same time as the measurement by the first optical system. The second optical system has only one variable magnification group, whereby the measurement diameter on the image side can be made variable. In particular, in the second optical system, the focused measurement light is guided to the sensor through a filter having a spectral response degree close to the CIE color matching function. The brightness and chromaticity of the object to be measured are calculated based on the three stimulus values.
国際公開第2015/182571号International Publication No. 2015/182571
 近年では、マイクロOLEDあるいはマイクロLEDなどといったディスプレイに用いられる、小さいサイズを有する発光体の輝度および色度の測定に対するニーズが高まってきている。また、ディスプレイの輝度の幅(ダイナミックレンジ)が広がってきているので、ディスプレイのγ調整において、低輝度側の輝度の測定も重要視されている。 In recent years, there has been an increasing need for measuring the brightness and chromaticity of light emitters having a small size used in displays such as micro OLEDs and micro LEDs. Further, since the range of brightness (dynamic range) of the display is widening, the measurement of the brightness on the low brightness side is also regarded as important in the γ adjustment of the display.
 たとえばズーム機能を有さない対物レンズを用いてディスプレイの輝度を測定する場合、そのレンズの繰り出し量を変化させることによって測定径を変えることができる。しかし、この方法では、測定径の変化に伴って像側のFナンバーが変動する。したがって測定径の変化に伴い、測定装置のセンサーに取り込まれる光量が減少することが起こる。 For example, when measuring the brightness of a display using an objective lens that does not have a zoom function, the measurement diameter can be changed by changing the amount of extension of the lens. However, in this method, the F number on the image side fluctuates as the measured diameter changes. Therefore, as the measurement diameter changes, the amount of light taken into the sensor of the measuring device may decrease.
 ディスプレイの輝度が低い場合、測定装置のセンサーが測定に十分な光量の光を受光できなければ、低輝度側での輝度の測定の精度が低下する。たとえば輝度の測定におけるSN比が低下する。したがって測定器のダイナミックレンジが狭くなる。測定器のダイナミックレンジが狭いために、ディスプレイ製品のダイナミックレンジを本来の性能よりも狭く測定することが想定される。また、1つの変倍系のみによって測定径を大きく変化させることは難しい。 When the brightness of the display is low, if the sensor of the measuring device cannot receive a sufficient amount of light for measurement, the accuracy of measuring the brightness on the low brightness side will decrease. For example, the signal-to-noise ratio in the measurement of luminance decreases. Therefore, the dynamic range of the measuring instrument is narrowed. Since the dynamic range of the measuring instrument is narrow, it is assumed that the dynamic range of the display product is measured narrower than the original performance. Moreover, it is difficult to greatly change the measured diameter by using only one variable magnification system.
 特許文献1に開示された光学系は、1つの変倍群を有する。この光学系では、測定径が可変である。しかし測定径の変化にともなって測定角度が変化する。測定角度が変化することによって、フィルタに入射する光の入射角度が変化する。測定装置では、分光感度が等色関数に近いほど測定値が真値(等色関数で算出された値)に近づくため、フィルタの分光感度が等色関数に近いことが重要である。このようなフィルタとして、一般的には、干渉膜フィルタが使用される。干渉膜フィルタに入射する光の入射角が変化すると、干渉膜中での光路差が変化する。これによってフィルタの透過率特性に波長シフトが生じるため、光学特性測定装置のもつ分光応答度が等色関数から外れる。このため、被測定物の輝度、色度の測定の精度が低下するという課題が生じうる。 The optical system disclosed in Patent Document 1 has one variable magnification group. In this optical system, the measurement diameter is variable. However, the measurement angle changes as the measurement diameter changes. As the measurement angle changes, the incident angle of the light incident on the filter changes. In the measuring device, the closer the spectral sensitivity is to the color matching function, the closer the measured value is to the true value (value calculated by the matching color function), so it is important that the spectral sensitivity of the filter is closer to the matching color function. As such a filter, an interference film filter is generally used. When the incident angle of the light incident on the interference film filter changes, the optical path difference in the interference film changes. This causes a wavelength shift in the transmittance characteristics of the filter, so that the spectral response of the optical characteristic measuring device deviates from the color matching function. Therefore, there may be a problem that the accuracy of measuring the brightness and chromaticity of the object to be measured is lowered.
 したがって、対物レンズによって測定径を可変にする場合は、像側のFナンバーの変動ができるだけ小さいことが重要となる。 Therefore, when the measurement diameter is made variable by the objective lens, it is important that the fluctuation of the F number on the image side is as small as possible.
 本発明はこのような課題に鑑みてなされたものであって、像側のFナンバーの変動を小さくしながら測定径を可変とすることができる変倍対物レンズ、およびそれを備える測光測色計を提供することである。 The present invention has been made in view of such a problem, and is a variable magnification objective lens capable of making the measurement diameter variable while reducing the fluctuation of the F number on the image side, and a photometric colorimeter including the same. Is to provide.
 本発明のある局面に係る変倍対物レンズは、像面と共役な位置に中間像を形成する変倍対物レンズであって、物体側から順に、変倍群である第1レンズ群と、変倍群である第2レンズ群と、実質的に変倍しない第3レンズ群とを有し、変倍時に、第1レンズ群、第2レンズ群、および第3レンズ群のうちの隣り合う2つのレンズ群の間隔が変化し、中間像は第1レンズ群と第2レンズ群との間に形成され、第3レンズ群は、開口絞りを有し、開口絞りの共役像が第1レンズ群よりも物体側にあるように開口絞りが配置される。 The variable magnification objective lens according to a certain aspect of the present invention is a variable magnification objective lens that forms an intermediate image at a position conjugate with the image plane, and is changed from the first lens group, which is a variable magnification group, in order from the object side. It has a second lens group that is a magnification group and a third lens group that does not substantially change magnification, and at the time of magnification change, two adjacent lenses among the first lens group, the second lens group, and the third lens group. The distance between the two lens groups changes, an intermediate image is formed between the first lens group and the second lens group, the third lens group has an aperture aperture, and the conjugate image of the aperture aperture is the first lens group. The opening aperture is arranged so that it is closer to the object than the lens.
 本発明のある局面に係る測光測色計は、上記の変倍対物レンズを備える。 The photometric colorimeter according to a certain aspect of the present invention includes the above-mentioned variable magnification objective lens.
 本発明によれば、像側のFナンバーの変動を小さくしながら測定径を可変とすることができる変倍対物レンズおよびそれを備える測光測色計を提供することができる。 According to the present invention, it is possible to provide a variable magnification objective lens capable of making the measurement diameter variable while reducing the fluctuation of the F number on the image side, and a photometric colorimeter provided with the variable magnification objective lens.
本発明の実施形態に係る変倍対物レンズを搭載する測光測色計の例を示したブロック図である。It is a block diagram which showed the example of the photometric colorimeter which mounts the variable magnification objective lens which concerns on embodiment of this invention. 第1の実施例に係る変倍対物レンズの構成を示すレンズ構成図である。It is a lens block diagram which shows the structure of the variable magnification objective lens which concerns on 1st Example. 第2の実施例に係る変倍対物レンズの構成を示すレンズ構成図である。It is a lens block diagram which shows the structure of the variable magnification objective lens which concerns on 2nd Embodiment. 第3の実施例に係る変倍対物レンズの構成を示すレンズ構成図である。It is a lens block diagram which shows the structure of the variable magnification objective lens which concerns on 3rd Example.
 以下に、図面を参照しつつ、本発明の一実施形態について説明する。図1は、本発明の実施形態に係る変倍対物レンズを搭載する測光測色計の例を示したブロック図である。本実施の形態に係る測光測色計10は、たとえば、ディスプレイの製造ラインの検査工程で用いられ、ディスプレイの表示面12の明るさ(輝度)と色度とを測定する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an example of a photometric colorimeter equipped with a variable magnification objective lens according to an embodiment of the present invention. The photometric colorimeter 10 according to the present embodiment is used, for example, in an inspection process of a display manufacturing line, and measures the brightness (luminance) and chromaticity of the display surface 12 of the display.
 たとえば、本実施の形態に係る測光測色計10(以下、単に「測色計10」とも呼ぶ)は、三刺激値型色彩計として実現される。図1に示すように、測色計10は、測定プローブ部14と、測定器本体部16とからなる。測定プローブ部14および測定器本体部16は、一体に構成されている。 For example, the photometric colorimeter 10 (hereinafter, also simply referred to as “colorimeter 10”) according to the present embodiment is realized as a tristimulus value type colorimeter. As shown in FIG. 1, the colorimeter 10 includes a measuring probe unit 14 and a measuring instrument main body unit 16. The measuring probe unit 14 and the measuring instrument main body unit 16 are integrally configured.
 測定プローブ部14は、被測定物であるディスプレイの表示面12から所定の距離(一例として、3cm)だけ離して対向配置される。測定プローブ部14は、ディスプレイの表示面12からの光を電気信号(アナログ信号)に光電変換して、その電気信号を測定器本体部16に送信する。 The measurement probe unit 14 is arranged so as to face each other at a predetermined distance (for example, 3 cm) from the display surface 12 of the display, which is the object to be measured. The measuring probe unit 14 photoelectrically converts the light from the display surface 12 of the display into an electric signal (analog signal), and transmits the electric signal to the measuring instrument main body unit 16.
 測定プローブ部14は、測定光学系27および受光系28から構成されている。測定光学系27は、本実施の形態に係る変倍対物レンズ21と、光束分割部材24とを有する。変倍対物レンズ21は、被測定物からの光を入射させる入射部として設けられている。なお、図1では、測色計10が変倍対物レンズ21を有することを示すため、変倍対物レンズ21を単レンズとして示してある。本実施の形態に係る変倍対物レンズ21の詳細な構成については後に詳細に説明する。 The measurement probe unit 14 is composed of a measurement optical system 27 and a light receiving system 28. The measurement optical system 27 includes a variable magnification objective lens 21 according to the present embodiment and a luminous flux dividing member 24. The variable magnification objective lens 21 is provided as an incident portion for incident light from the object to be measured. In FIG. 1, the variable magnification objective lens 21 is shown as a single lens in order to show that the colorimeter 10 has the variable magnification objective lens 21. The detailed configuration of the variable magnification objective lens 21 according to the present embodiment will be described in detail later.
 光束分割部材24は、変倍対物レンズ21により入射された光を導光する導光部として設けられている。光束分割部材24は、変倍対物レンズ21を透過した光束を3つの光束に分割する。 The luminous flux dividing member 24 is provided as a light guide unit that guides the light incidented by the variable magnification objective lens 21. The luminous flux dividing member 24 divides the luminous flux transmitted through the variable magnification objective lens 21 into three luminous fluxes.
 受光系28は、フィルタ部23、光電変換部25および増幅部26を有する。光束分割部材24によって分割された光束は、フィルタ部23を通り、光電変換部25に入射する。光電変換部25は、入射した光を電気信号に変換するための受光センサ(図示せず)を有する。フィルタ部23は、光電変換部25の受光センサーにCIE規定の標準観測者の分光感度を持たせるための分光感度補正フィルタ(図示せず)を有する。分光感度補正フィルタは、等色関数に近い分光感度を有するフィルタである。分光感度補正フィルタとしては干渉膜フィルタを用いることができる。増幅部26は、光電変換部25の受光センサーから出力される電気信号(電圧)を所定のレベルに増幅する。 The light receiving system 28 has a filter unit 23, a photoelectric conversion unit 25, and an amplification unit 26. The luminous flux divided by the luminous flux dividing member 24 passes through the filter unit 23 and is incident on the photoelectric conversion unit 25. The photoelectric conversion unit 25 has a light receiving sensor (not shown) for converting incident light into an electric signal. The filter unit 23 has a spectral sensitivity correction filter (not shown) for allowing the light receiving sensor of the photoelectric conversion unit 25 to have the spectral sensitivity of a standard observer defined by CIE. The spectral sensitivity correction filter is a filter having a spectral sensitivity close to that of a color matching function. An interference film filter can be used as the spectral sensitivity correction filter. The amplification unit 26 amplifies the electric signal (voltage) output from the light receiving sensor of the photoelectric conversion unit 25 to a predetermined level.
 測定器本体部16は、測定プローブ部14から入力された電気信号(アナログ信号)をデジタル信号に変換して、所定の演算処理を行なう。測定器本体部16は、その演算処理により、三刺激値(X,Y,Z)、CIE(国際照明委員会)で制定されているxyY(色度座標、輝度)、TΔuvY(相関色温度、黒体軌跡からの色差、輝度)などを算出し、その演算結果を表示部34に表示する。 The measuring instrument main body 16 converts an electric signal (analog signal) input from the measuring probe 14 into a digital signal, and performs predetermined arithmetic processing. The measuring instrument main body 16 has tristimulus values (X, Y, Z), xyY (chromaticity coordinates, luminance), and TΔuvY (correlated color temperature,) established by the CIE (International Commission on Illumination) by its arithmetic processing. The color difference from the blackbody locus, the brightness) and the like are calculated, and the calculation result is displayed on the display unit 34.
 測定器本体部16は、A/D変換部31と、データメモリ32と、表示部34と、操作部35と、制御部36と、電源部37とを有する。A/D変換部31は、測定プローブ部14から入力される受光信号をデジタルの信号(以下、測定データという)に変換する。データメモリ32は、A/D変換部31から出力される測定データを記憶する。制御部36は、測定プローブ部14の動作および測定器本体部16内の各部の動作を集中的に制御することによって測定動作を制御する。制御部36は、データメモリ32に格納された測定データを用いて、三刺激値(X,Y,Z)、CIEで制定されているxyY、TΔuvYなどを演算する。 The measuring instrument main body 16 has an A / D conversion unit 31, a data memory 32, a display unit 34, an operation unit 35, a control unit 36, and a power supply unit 37. The A / D conversion unit 31 converts the received light signal input from the measurement probe unit 14 into a digital signal (hereinafter referred to as measurement data). The data memory 32 stores the measurement data output from the A / D conversion unit 31. The control unit 36 controls the measurement operation by centrally controlling the operation of the measurement probe unit 14 and the operation of each unit in the measuring instrument main body 16. The control unit 36 calculates the tristimulus values (X, Y, Z), xyY, TΔuvY, etc. defined by the CIE, using the measurement data stored in the data memory 32.
 表示部34は、制御部36における演算結果を表示する。操作部35には、測定に関する各種情報(測定の指示、表示モードの設定、測定レンジ等)が入力される。電源部37は、外部のACアダプター(不図示)から供給される電力の電圧を変圧して制御部36を介して各構成要素に電力を供給する。 The display unit 34 displays the calculation result of the control unit 36. Various information related to measurement (measurement instruction, display mode setting, measurement range, etc.) is input to the operation unit 35. The power supply unit 37 transforms the voltage of the electric power supplied from the external AC adapter (not shown) and supplies electric power to each component via the control unit 36.
 なお、三刺激値型色彩計の例について説明したが、本実施の形態に係る測光測色計10は、分光測色計であってもよい。分光測色計の場合、図1に示すフィルタ部23は、分光部に置き換えられる。ディスプレイの表示面12から出る光は分光部によって分光されて光電変換部25に入射する。光電変換部25から出力される信号によって示される分光特性に基づいて、制御部36は、数値計算により三刺激値を求める。 Although the example of the tristimulus value type colorimeter has been described, the photometric colorimeter 10 according to the present embodiment may be a spectrophotometer. In the case of a spectrophotometer, the filter unit 23 shown in FIG. 1 is replaced with a spectroscopic unit. The light emitted from the display surface 12 of the display is separated by the spectroscopic unit and incident on the photoelectric conversion unit 25. Based on the spectral characteristics indicated by the signal output from the photoelectric conversion unit 25, the control unit 36 obtains the tristimulus value by numerical calculation.
 本実施の形態においては、変倍対物レンズ21により、ディスプレイの表示面12における被測定領域ARの直径(測定径)を変化させることができる。これにより、同一の測色計10により、さまざまなサイズのディスプレイの明るさ(輝度)と色度を測定することができる。さらに、本実施の形態においては、測定径を変化させても、像側のFナンバーを一定に保つことができる。これにより、ディスプレイの低輝度側での輝度を精度良く測定することができる。 In the present embodiment, the variable magnification objective lens 21 can change the diameter (measurement diameter) of the area to be measured AR on the display surface 12 of the display. As a result, the brightness (luminance) and chromaticity of displays of various sizes can be measured by the same colorimeter. Further, in the present embodiment, the F number on the image side can be kept constant even if the measurement diameter is changed. This makes it possible to accurately measure the brightness on the low brightness side of the display.
 本実施の形態において、変倍対物レンズ21は、像面と共役な位置に中間像を形成する変倍対物レンズであって、物体側から順に、変倍群である第1レンズ群と、変倍群である第2レンズ群と、実質的に変倍しない第3レンズ群とを有し、変倍時に、第1レンズ群、第2レンズ群、および第3レンズ群のうちの隣り合う2つのレンズ群の間隔が変化し、中間像は第1レンズ群と第2レンズ群との間に形成され、第3レンズ群は、開口絞りを有し、開口絞りの共役像が第1変倍群よりも物体側にあるように開口絞りが配置される。 In the present embodiment, the variable magnification objective lens 21 is a variable magnification objective lens that forms an intermediate image at a position conjugate with the image plane, and is changed from the first lens group, which is a variable magnification group, in order from the object side. It has a second lens group that is a magnification group and a third lens group that does not substantially change magnification, and at the time of magnification change, two adjacent lenses among the first lens group, the second lens group, and the third lens group. The spacing between the two lens groups changes, an intermediate image is formed between the first lens group and the second lens group, the third lens group has an aperture aperture, and the conjugate image of the aperture aperture is the first magnification. The aperture aperture is arranged so that it is closer to the object than the group.
 上記構成によれば、変倍群である第1レンズ群と第2レンズ群とによりアフォーカル系を構成し、それぞれの群の間に中間像を形成することによって、絞りの共役像を物体側に持っていきやすい光学系とする。なお、本実施の形態において「アフォーカル系」とは、全体の光学系の焦点距離に対して2つの変倍群の合成焦点距離が2倍以上あるように構成された光学系を指す。 According to the above configuration, an afocal system is formed by the first lens group and the second lens group, which are variable magnification groups, and an intermediate image is formed between the respective groups, so that the conjugate image of the aperture is displayed on the object side. The optical system should be easy to bring to. In the present embodiment, the “afocal system” refers to an optical system configured such that the combined focal length of the two variable magnification groups is twice or more the focal length of the entire optical system.
 変倍しない第3変倍群と、位置および開口径が固定された開口絞りとによって、像側Fナンバーを、ズームポジションすべてで一定にできる。したがって、各測定径で光学特性を測定したときに等色関数に対する分光応答度のずれを小さくすることができる。これにより、精度の高い輝度・色度測定が可能になる。また、測定径が小さい場合でも、ダイナミックレンジを狭めることなく、輝度などの光学特性を測定することができる。開口絞りは、第3レンズ群の前(第3レンズ群のうち最も物体側のレンズよりも物体側)に配置されてもよい。 The image-side F-number can be made constant at all zoom positions by using the third variable magnification group that does not change the magnification and the aperture stop that has a fixed position and aperture diameter. Therefore, it is possible to reduce the deviation of the spectral response to the color matching function when the optical characteristics are measured at each measurement diameter. This enables highly accurate measurement of luminance and chromaticity. Further, even when the measurement diameter is small, optical characteristics such as luminance can be measured without narrowing the dynamic range. The aperture diaphragm may be arranged in front of the third lens group (on the object side of the third lens group on the object side side of the lens).
 さらに、開口絞りの共役像が第1レンズ群よりも物体側にあることによって、被測定物の輝度ムラが像面(受光センサの受光面)には反映されない。これにより、被測定物のムラの影響を受けることのない光学系を構成することができる。結像光学系のように、物体面と像面とが共役の関係にある場合、被測定物の輝度ムラがそのまま像面にも反映されるため、測定精度が低下する。一方、本実施の形態によれば、このような問題を防ぐことができる。さらに、開口絞りと物体面とが共役の関係でもよい。 Furthermore, since the conjugate image of the aperture stop is on the object side of the first lens group, the uneven brightness of the object to be measured is not reflected on the image plane (light receiving surface of the light receiving sensor). This makes it possible to construct an optical system that is not affected by unevenness of the object to be measured. When the object surface and the image surface are in a conjugate relationship as in the imaging optical system, the luminance unevenness of the object to be measured is reflected on the image surface as it is, so that the measurement accuracy is lowered. On the other hand, according to the present embodiment, such a problem can be prevented. Further, the aperture diaphragm and the object surface may have a conjugated relationship.
 さらに本実施の形態によれば、変倍対物レンズが2つの変倍群を有する。これによって変倍の範囲を広げることができる。 Further, according to the present embodiment, the variable magnification objective lens has two variable magnification groups. This makes it possible to expand the range of scaling.
 本実施の形態において、d線における第1レンズ群と第2レンズ群との合成焦点距離をf12とし、変倍対物レンズ21の全体の光学系の焦点距離をFLとし、η=FL/f12とすると、-0.5<η<0.5であることが好ましい。 In the present embodiment, the combined focal length of the first lens group and the second lens group on the d line is f12, the focal length of the entire optical system of the variable magnification objective lens 21 is FL, and η = FL / f12. Then, it is preferable that −0.5 <η <0.5.
 上述の通り、本実施の形態において「アフォーカル系」とは、全体の光学系の焦点距離FLに対して2つの変倍群の合成焦点距離f12が2倍以上あるように構成された光学系を指す。上記条件は、本実施の形態において、2つの変倍群(第1レンズ群および第2レンズ群)がアフォーカル系を構成するための条件である。第1レンズ群および第2レンズ群がアフォーカル系を構成することによって、第3レンズ群に入射する光線が平行光に近くなる。これにより第3レンズ群の像面への収差の補正を簡単にすることができる。 As described above, in the present embodiment, the “afocal system” is an optical system configured such that the combined focal length f12 of the two variable magnification groups is twice or more the focal length FL of the entire optical system. Point to. The above conditions are conditions for the two variable magnification groups (first lens group and second lens group) to form an afocal system in the present embodiment. When the first lens group and the second lens group form an afocal system, the light rays incident on the third lens group become close to parallel light. This makes it possible to easily correct aberrations on the image plane of the third lens group.
 本実施の形態において、第1レンズ群は、物体側から順に、負のパワーを有する第11レンズ群と、正のパワーを有する第12レンズ群とを有することが好ましい。 In the present embodiment, it is preferable that the first lens group has an eleventh lens group having a negative power and a twelfth lens group having a positive power in order from the object side.
 上記のように構成することによって、第1レンズ群全体として正のパワーをもたせることができる。これにより、第1レンズ群と第2レンズ群との間に中間像を形成するアフォーカル系を構成することができる。 By configuring as described above, the first lens group as a whole can have positive power. This makes it possible to form an afocal system that forms an intermediate image between the first lens group and the second lens group.
 本実施の形態において、第2レンズ群は、物体側から順に、正のパワーを有する第21レンズ群と、負のパワーを有する第22レンズ群とを有することが好ましい。 In the present embodiment, it is preferable that the second lens group has a 21st lens group having a positive power and a 22nd lens group having a negative power in order from the object side.
 上記のように構成することによって、第2レンズ群全体として正のパワーをもたせることができる。これにより、第1レンズ群と第2レンズ群との間に中間像を形成するアフォーカル系を構成することができる。 By configuring as described above, the second lens group as a whole can have positive power. This makes it possible to form an afocal system that forms an intermediate image between the first lens group and the second lens group.
 本実施の形態において、第1レンズ群の望遠端の焦点距離ft1と、第1レンズ群の広角端の焦点距離fw1とにより、第1レンズ群の倍率β1を、β1=ft1/fw1と定義し、第2レンズ群の望遠端の焦点距離ft2と、第2レンズ群の広角端の焦点距離fw2とにより、第2レンズ群の倍率β2を、β2=ft2/fw2と定義するとき、第1レンズ群の倍率β1が、1<β1<2.5であり、第2レンズ群の倍率β2が、0.2<β2<0.8であることが好ましい。 In the present embodiment, the magnification β1 of the first lens group is defined as β1 = ft1 / fw1 by the focal length ft1 at the telephoto end of the first lens group and the focal length fw1 at the wide-angle end of the first lens group. When the magnification β2 of the second lens group is defined as β2 = ft2 / fw2 by the focal length ft2 at the telephoto end of the second lens group and the focal length fw2 at the wide-angle end of the second lens group, the first lens It is preferable that the magnification β1 of the group is 1 <β1 <2.5 and the magnification β2 of the second lens group is 0.2 <β2 <0.8.
 上記構成によれば、開口絞りから出た光を測定面側で平行光にするため、変倍群である第1レンズ群と第2レンズ群とによってアフォーカル系が構成される。第1レンズ群と第2レンズ群との間に中間像を形成することにより、変倍群である第1レンズ群および第2レンズ群の各々の変倍率を小さくすることができる。 According to the above configuration, in order to make the light emitted from the aperture stop parallel on the measurement surface side, the afocal system is composed of the first lens group and the second lens group, which are variable magnification groups. By forming an intermediate image between the first lens group and the second lens group, it is possible to reduce the magnification of each of the first lens group and the second lens group, which are the variable magnification groups.
 望ましくは、第1レンズ群の倍率が1.5≦β≦2であり、第2レンズ群の倍率が0.5≦β≦0.7である。 Desirably, the magnification of the first lens group is 1.5 ≦ β ≦ 2, and the magnification of the second lens group is 0.5 ≦ β ≦ 0.7.
 第1レンズ群の倍率が2<β1であると第1レンズ群から中間像までの距離が短くなるため、第2レンズ群での収差補正がより難しくなる。一方、1<β1<1.5の場合、第1レンズ群の焦点距離の可変範囲が狭くなるために、全体の光学系の変倍の範囲が狭くなる。同様に、第2レンズ群の倍率がβ2<0.5の場合、第2レンズ群から中間像までの距離が短くなるので、第1レンズ群での収差補正が困難になる。一方、0.8<β2である場合、β2が1に近づくほど等倍になるため、第1レンズ群の場合と同様に、第2レンズ群の焦点距離の可変範囲が狭くなる。これにより全体の光学系の変倍の範囲が狭くなる。第1レンズ群の倍率β1が1.5≦β1≦2であり、かつ第2レンズ群の倍率β2が0.5≦β2≦0.7である場合、広角端において第1レンズ群の前群から物体側までの間隔を確保できるため、各変倍群への入射角度が小さくなる。したがって収差補正が容易になる。さらに、光学系全体としての変倍の範囲を広げることができる。 When the magnification of the first lens group is 2 <β1, the distance from the first lens group to the intermediate image becomes short, so that it becomes more difficult to correct the aberration in the second lens group. On the other hand, when 1 <β1 <1.5, the variable range of the focal length of the first lens group is narrowed, so that the range of scaling of the entire optical system is narrowed. Similarly, when the magnification of the second lens group is β2 <0.5, the distance from the second lens group to the intermediate image becomes short, so that it becomes difficult to correct the aberration in the first lens group. On the other hand, when 0.8 <β2, the magnification becomes equal as β2 approaches 1, so that the variable range of the focal length of the second lens group becomes narrower as in the case of the first lens group. This narrows the scaling range of the entire optical system. When the magnification β1 of the first lens group is 1.5 ≦ β1 ≦ 2 and the magnification β2 of the second lens group is 0.5 ≦ β2 ≦ 0.7, the front group of the first lens group at the wide-angle end. Since the distance from the lens to the object side can be secured, the angle of incidence on each variable magnification group becomes small. Therefore, aberration correction becomes easy. Further, the range of scaling of the entire optical system can be expanded.
 本実施の形態において、第1レンズ群の倍率β1と、第2レンズ群の倍率β2とにより、変倍比γをγ=β1*β2と定義するとき、0.5≦γ≦1.5であることが好ましい。 In the present embodiment, when the magnification ratio γ is defined as γ = β1 * β2 by the magnification β1 of the first lens group and the magnification β2 of the second lens group, 0.5 ≦ γ ≦ 1.5. It is preferable to have.
 上記のように構成することによって、各レンズ群が変倍比を有するので、ズームのための構成あるいは機構を簡単としながら、測定径の変倍の範囲を広げることができる。 By configuring as described above, since each lens group has a scaling ratio, the range of scaling of the measured diameter can be expanded while simplifying the configuration or mechanism for zooming.
 望ましくは、1≦γ≦1.2である。1≦γ≦1.2を満足すると、各変倍群の焦点距離の変倍が等しくなる、または、ほぼ等しくなるので、収差補正が容易になる。 Desirably, 1 ≦ γ ≦ 1.2. When 1 ≦ γ ≦ 1.2 is satisfied, the scaling of the focal lengths of each scaling group becomes equal or almost equal, so that aberration correction becomes easy.
 本実施の形態において、変倍対物レンズの各ズームポジションにおける像側のFナンバーFnoの絶対値|Fno|が、1<|Fno|<6を満たし、各ズームポジションの間でのFナンバーFnoの差は3.5以下であることが好ましい。 In the present embodiment, the absolute value | Fno | of the F number Fno on the image side at each zoom position of the variable magnification objective lens satisfies 1 << | Fno | <6, and the F number Fno between the zoom positions is satisfied. The difference is preferably 3.5 or less.
 上記のように構成することによって、測定径を小さくすることによる像面への光量の減少を抑えることができる。したがって測定径が変化しても測定するダイナミックレンジを一定にすることができる。 By configuring as described above, it is possible to suppress a decrease in the amount of light on the image plane due to a small measurement diameter. Therefore, the dynamic range to be measured can be kept constant even if the measurement diameter changes.
 本実施の形態において、像面側の主光線の入射角が5度以下であることが好ましい。
 上記のように構成することによって、どの画角においても像面への入射角度を一定にすることができるので、画角の変化によって像側に導かれる光の光量が減少することを抑えることができる。
In the present embodiment, it is preferable that the incident angle of the main light beam on the image plane side is 5 degrees or less.
By configuring as described above, the angle of incidence on the image plane can be made constant at any angle of view, so that it is possible to suppress a decrease in the amount of light guided to the image side due to a change in the angle of view. can.
 本実施の形態において、開口絞りの開口系が可変である。このように構成する事で、測定径をより縮小することができる。本実施の形態では、測定径をφ1mmに縮小することも可能である。これにより、たとえばマイクロOLEDあるいはマイクロLEDなどといった、小さいサイズのディスプレイに用いられる発光体の輝度および色度の測定に対応することができる。 In the present embodiment, the aperture system of the aperture stop is variable. With this configuration, the measured diameter can be further reduced. In the present embodiment, the measurement diameter can be reduced to φ1 mm. This makes it possible to measure the brightness and chromaticity of a light emitter used in a small size display such as a micro OLED or a micro LED.
 本実施の形態において、測光測色計は、上記のいずれかの変倍対物レンズを含む。これにより、像側のFナンバーの変動を小さくしながら測定径を可変とすることができる測光測色計を実現できる。 In the present embodiment, the photometric colorimeter includes any of the above variable magnification objective lenses. This makes it possible to realize a photometric colorimeter capable of making the measurement diameter variable while reducing the fluctuation of the F number on the image side.
 以下、本発明に係る変倍対物レンズの具体的な実施例について図2~図4および表を参照しながら説明する。図2~図4は、第1~第3の実施例に係る変倍対物レンズ21の構成をそれぞれ示すレンズ構成図である。図2~図4において、それぞれ第1~第3の実施例を「EX1」、「EX2」、「EX3」と表記する。 Hereinafter, specific examples of the variable magnification objective lens according to the present invention will be described with reference to FIGS. 2 to 4 and a table. 2 to 4 are lens configuration diagrams showing the configurations of the variable magnification objective lenses 21 according to the first to third embodiments. In FIGS. 2 to 4, the first to third embodiments are referred to as "EX1", "EX2", and "EX3", respectively.
 図2~図4において、「AX」は光軸を示し、「STO」は開口絞りを示し、「I11」は中間像の位置を示し、「IM」は受光センサーの撮像面または像面を示し、「AR」は、被測定領域の位置を表わす。 In FIGS. 2 to 4, "AX" indicates the optical axis, "STO" indicates the aperture stop, "I11" indicates the position of the intermediate image, and "IM" indicates the image plane or image plane of the light receiving sensor. , "AR" represents the position of the measured area.
 また、以下の説明において、Z1~Z4の各々はズームポジションを意味する。図2~図4の各々において、(Z1)、(Z2)、(Z3)は、それぞれ、望遠端、中間焦点距離状態および広角端でのレンズ断面図を示す。(Z4)は、(Z3)と同じズームポジション、かつ、開口絞りの径を縮小したときのレンズ断面図を示す。(Z1)~(Z4)における測定径は、それぞれ10mm、5mm、2.5mm、1mmである。 Further, in the following description, each of Z1 to Z4 means a zoom position. In each of FIGS. 2 to 4, (Z1), (Z2), and (Z3) show cross-sectional views of the lens at the telephoto end, the intermediate focal length state, and the wide-angle end, respectively. (Z4) shows a cross-sectional view of the lens at the same zoom position as (Z3) and when the diameter of the aperture diaphragm is reduced. The measured diameters in (Z1) to (Z4) are 10 mm, 5 mm, 2.5 mm, and 1 mm, respectively.
 〔実施例1〕
 図2に示すように、変倍対物レンズ21は、像面IMGと共役な位置に中間像を形成する対物レンズである。変倍対物レンズ21は、物体側から順に、変倍群である第1レンズ群G1と、変倍群である第2レンズ群G2と、実質的に変倍しない第3レンズ群G3とを有する。変倍時に、第1レンズ群G1、第2レンズ群G2、および第3レンズ群G3のうちの隣り合う2つのレンズ群の間隔が変化する。具体的には、第3レンズ群G3が固定され、第1レンズ群G1および第2レンズ群G2が光軸AXに沿って移動する。
[Example 1]
As shown in FIG. 2, the variable magnification objective lens 21 is an objective lens that forms an intermediate image at a position conjugate with the image plane IMG. The variable magnification objective lens 21 has, in order from the object side, a first lens group G1 which is a variable magnification group, a second lens group G2 which is a variable magnification group, and a third lens group G3 which does not substantially change the magnification. .. At the time of scaling, the distance between two adjacent lens groups among the first lens group G1, the second lens group G2, and the third lens group G3 changes. Specifically, the third lens group G3 is fixed, and the first lens group G1 and the second lens group G2 move along the optical axis AX.
 第1レンズ群G1は、物体側から順に、負のパワーを有する第11レンズ群G11と、正のパワーを有する第12レンズ群G12とを有する。第11レンズ群G11は、1枚の負レンズL1により構成される。第12レンズ群G12は、2枚の正レンズL2,L3により構成される。これにより、第1レンズ群G1は、全体として正のパワーを有する。 The first lens group G1 has an eleventh lens group G11 having a negative power and a twelfth lens group G12 having a positive power in order from the object side. The eleventh lens group G11 is composed of one negative lens L1. The twelfth lens group G12 is composed of two positive lenses L2 and L3. As a result, the first lens group G1 has positive power as a whole.
 第2レンズ群G2は、物体側から順に、正のパワーを有する第21レンズ群G21と、負のパワーを有する第22レンズ群G22とにより構成される。第21レンズ群G21は、1枚の正レンズL4により構成される。第22レンズ群G22は、1枚の負レンズL5により構成される。これにより、第2レンズ群G2は、全体として正のパワーを有する。 The second lens group G2 is composed of a 21st lens group G21 having a positive power and a 22nd lens group G22 having a negative power in order from the object side. The 21st lens group G21 is composed of one positive lens L4. The 22nd lens group G22 is composed of one negative lens L5. As a result, the second lens group G2 has positive power as a whole.
 第3レンズ群G3は、物体側から順に、開口絞りSTOと、正レンズL6と、正レンズL7とを有する。 The third lens group G3 has an aperture stop STO, a positive lens L6, and a positive lens L7 in order from the object side.
 第1レンズ群G1と第2レンズ群G2とによりアフォーカル系が構成され、中間像が第1レンズ群G1と第2レンズ群G2との間の結像位置I11に形成される。開口絞りSTOの共役像は第1レンズ群G1よりも物体側にある。第3レンズ群G3が変倍せず、かつ、開口絞りSTOの位置が固定される。さらに、ズームポジションZ1~Z3において開口絞りSTOの開口径が固定されている。これにより、像側のFナンバーは、ズームポジションZ1~Z3において変化しない。変倍対物レンズ21は、(Z3)に示す状態から、開口絞りSTOの開口径を縮小することによって測定径を縮小することができる((Z4)を参照)。 An afocal system is formed by the first lens group G1 and the second lens group G2, and an intermediate image is formed at the image formation position I11 between the first lens group G1 and the second lens group G2. The conjugate image of the aperture stop STO is on the object side of the first lens group G1. The third lens group G3 does not change magnification, and the position of the aperture stop STO is fixed. Further, the aperture diameter of the aperture stop STO is fixed at the zoom positions Z1 to Z3. As a result, the F number on the image side does not change at the zoom positions Z1 to Z3. The variable magnification objective lens 21 can reduce the measured diameter from the state shown in (Z3) by reducing the aperture diameter of the aperture stop STO (see (Z4)).
 実施例1の構成を、コンストラクションデータ等を挙げてさらに具体的に説明する。なお、以下に述べる定義は実施例2、3においても同様に適用される。 The configuration of Example 1 will be described more specifically with reference to construction data and the like. The definitions described below are similarly applied to Examples 2 and 3.
 コンストラクションデータでは、面データとして、左側の欄から順に、面番号(OBJ:物面、STO:開口絞り,IMG:像面)、曲率半径r、軸上面間隔d、レンズ材料のd線(波長587.56nm)に関する屈折率nd、レンズ材料のd線に関するアッベ数νd、および、有効径eff.dia.を示す。面番号iに*が付された面は非球面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。 In the construction data, as surface data, in order from the left column, the surface number (OBJ: object surface, STO: aperture stop, IMG: image surface), radius of curvature r, shaft top surface spacing d, lens material d line (wavelength 587). The refractive index nd with respect to .56 nm), the Abbe number νd with respect to the d-line of the lens material, and the effective diameter eff. dia. Is shown. The surface with * attached to the surface number i is an aspherical surface, and the shape of the aspherical surface is as follows, with the apex of the surface as the origin, the X axis in the optical axis direction, and the height in the direction perpendicular to the optical axis as h. It is represented by "number 1" of.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
ただし、
Ai:i次の非球面係数
R:曲率半径
K:円錐定数
である。
However,
Ai: i-order aspherical coefficient R: radius of curvature K: conical constant.
 各実施例のレンズが前提とする使用基本波長は587.56nm(d線)であり、曲率半径等の面形状の単位はmmである。また、10のべき乗数(たとえば2.5×10-002)を、E(たとえば2.5E-002)を用いて表すものとする。実施例1に係る変倍対物レンズのレンズデータを表1に示す。 The basic wavelength used for the lenses of each embodiment is 587.56 nm (d line), and the unit of the surface shape such as the radius of curvature is mm. Further, it is assumed that a power of 10 (for example, 2.5 × 10-002) is expressed by using E (for example, 2.5E-002). Table 1 shows the lens data of the variable magnification objective lens according to the first embodiment.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1に係る変倍対物レンズのレンズ面の面間隔を以下の表2に示す。表2において、Z1~Z4は、図2に示すZ1~Z4にそれぞれ対応し、a1~a5は、表1に示すa1~a5にそれぞれ対応する。 Table 2 below shows the interplanar spacing of the lens surfaces of the variable magnification objective lens according to Example 1. In Table 2, Z1 to Z4 correspond to Z1 to Z4 shown in FIG. 2, and a1 to a5 correspond to a1 to a5 shown in Table 1, respectively.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3および表4に、実施例1に係る変倍対物レンズのレンズ面の非球面係数を非球面データとして示す。なお、非球面データにおいて表記の無い項の係数は0である。 Tables 3 and 4 show the aspherical coefficients of the lens surface of the variable magnification objective lens according to the first embodiment as aspherical data. In the aspherical data, the coefficient of the term not shown is 0.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に、実施例1に係る変倍対物レンズの特性を示す。FLは変倍対物レンズ全系の焦点距離を意味し、Fnoは像側Fナンバーを意味し、BFはバックフォーカスを意味し、TLは系全長を意味し、Ymaxは光束分割部材の半径を意味し、f12は、d線における第1レンズ群G1と第2レンズ群G2との合成焦点距離を意味し、ηはFL/f12により定義される。FL,BF,TL,Ymax,f12の単位はmmである。表5から、ポジションZ1,Z2,Z3の間で像側Fナンバーが一定であることが理解される。 Table 5 shows the characteristics of the variable magnification objective lens according to the first embodiment. FL means the focal length of the entire variable magnification objective lens system, Fno means the image side F number, BF means the back focus, TL means the total length of the system, and Ymax means the radius of the light beam dividing member. However, f12 means the combined focal length of the first lens group G1 and the second lens group G2 on the d line, and η is defined by FL / f12. The unit of FL, BF, TL, Ymax, and f12 is mm. From Table 5, it is understood that the image-side F number is constant between the positions Z1, Z2, and Z3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に、実施例1の変倍対物レンズを構成する単レンズのレンズデータを示す。レンズ番号1~7は、図2に示す符号L1~L7にそれぞれ対応する。 Table 6 shows the lens data of the single lens constituting the variable magnification objective lens of the first embodiment. The lens numbers 1 to 7 correspond to the reference numerals L1 to L7 shown in FIG. 2, respectively.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 〔実施例2〕
 図3に示すように、変倍対物レンズ21は、像面IMGと共役な位置に中間像を形成する対物レンズである。変倍対物レンズ21は、物体側から順に、変倍群である第1レンズ群G1と、変倍群である第2レンズ群G2と、実質的に変倍しない第3レンズ群G3とを有する。変倍時に、第1レンズ群G1、第2レンズ群G2、および第3レンズ群G3のうちの隣り合う2つのレンズ群の間隔が変化する。具体的には、第3レンズ群G3が固定され、第1レンズ群G1および第2レンズ群G2が光軸AXに沿って移動する。
[Example 2]
As shown in FIG. 3, the variable magnification objective lens 21 is an objective lens that forms an intermediate image at a position conjugate with the image plane IMG. The variable magnification objective lens 21 has, in order from the object side, a first lens group G1 which is a variable magnification group, a second lens group G2 which is a variable magnification group, and a third lens group G3 which does not substantially change the magnification. .. At the time of scaling, the distance between two adjacent lens groups among the first lens group G1, the second lens group G2, and the third lens group G3 changes. Specifically, the third lens group G3 is fixed, and the first lens group G1 and the second lens group G2 move along the optical axis AX.
 第1レンズ群G1は、物体側から順に、負のパワーを有する第11レンズ群G11と、正のパワーを有する第12レンズ群G12とを有する。第11レンズ群G11は、1枚の負レンズL1により構成される。第12レンズ群G12は、2枚の正レンズL2,L3により構成される。これにより、第1レンズ群G1は、全体として正のパワーを有する。 The first lens group G1 has an eleventh lens group G11 having a negative power and a twelfth lens group G12 having a positive power in order from the object side. The eleventh lens group G11 is composed of one negative lens L1. The twelfth lens group G12 is composed of two positive lenses L2 and L3. As a result, the first lens group G1 has positive power as a whole.
 第2レンズ群G2は、物体側から順に、正のパワーを有する第21レンズ群G21と、負のパワーを有する第22レンズ群G22とにより構成される。第21レンズ群G21は、1枚の正レンズL4により構成される。第22レンズ群G22は、1枚の負レンズL5により構成される。これにより、第2レンズ群G2は、全体として正のパワーを有する。 The second lens group G2 is composed of a 21st lens group G21 having a positive power and a 22nd lens group G22 having a negative power in order from the object side. The 21st lens group G21 is composed of one positive lens L4. The 22nd lens group G22 is composed of one negative lens L5. As a result, the second lens group G2 has positive power as a whole.
 第3レンズ群G3は、物体側から順に、開口絞りSTOと、正レンズL6と、正レンズL7とを有する。 The third lens group G3 has an aperture stop STO, a positive lens L6, and a positive lens L7 in order from the object side.
 第1レンズ群G1と第2レンズ群G2とによりアフォーカル系が構成され、中間像が第1レンズ群G1と第2レンズ群G2との間の結像位置I11に形成される。開口絞りSTOの共役像は第1レンズ群G1よりも物体側にある。第3レンズ群G3が変倍せず、かつ、開口絞りSTOの位置が固定される。さらに、ズームポジションZ1~Z3において開口絞りSTOの開口径が固定されている。これにより、像側のFナンバーは、ズームポジションZ1~Z3において変化しない。変倍対物レンズ21は、(Z3)に示す状態から、開口絞りSTOの開口径を縮小することによって測定径を縮小することができる((Z4)を参照)。 An afocal system is formed by the first lens group G1 and the second lens group G2, and an intermediate image is formed at the image formation position I11 between the first lens group G1 and the second lens group G2. The conjugate image of the aperture stop STO is on the object side of the first lens group G1. The third lens group G3 does not change magnification, and the position of the aperture stop STO is fixed. Further, the aperture diameter of the aperture stop STO is fixed at the zoom positions Z1 to Z3. As a result, the F number on the image side does not change at the zoom positions Z1 to Z3. The variable magnification objective lens 21 can reduce the measured diameter from the state shown in (Z3) by reducing the aperture diameter of the aperture stop STO (see (Z4)).
 実施例2に係る変倍対物レンズのレンズデータを表7に示す。 Table 7 shows the lens data of the variable magnification objective lens according to the second embodiment.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例2に係る変倍対物レンズのレンズ面の面間隔を以下の表8に示す。表8において、Z1~Z4は、図3に示すZ1~Z4にそれぞれ対応し、a1~a6は、表7に示すa1~a6にそれぞれ対応する。 Table 8 below shows the interplanar spacing of the lens surfaces of the variable magnification objective lens according to Example 2. In Table 8, Z1 to Z4 correspond to Z1 to Z4 shown in FIG. 3, and a1 to a6 correspond to a1 to a6 shown in Table 7, respectively.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9および表10に、実施例2に係る変倍対物レンズのレンズ面の非球面係数を非球面データとして示す。なお、非球面データにおいて表記の無い項の係数は0である。 Tables 9 and 10 show the aspherical coefficients of the lens surface of the variable magnification objective lens according to the second embodiment as aspherical data. In the aspherical data, the coefficient of the term not shown is 0.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表11に、実施例2に係る変倍対物レンズの特性を示す。表11から、ポジションZ1,Z2,Z3の間で像側Fナンバーが一定であることが理解される。 Table 11 shows the characteristics of the variable magnification objective lens according to the second embodiment. From Table 11, it is understood that the image-side F number is constant between the positions Z1, Z2, and Z3.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表12に、実施例2に係る変倍対物レンズを構成する単レンズのレンズデータを示す。レンズ番号1~7は、図3に示す符号L1~L7にそれぞれ対応する。 Table 12 shows the lens data of the single lens constituting the variable magnification objective lens according to the second embodiment. The lens numbers 1 to 7 correspond to the reference numerals L1 to L7 shown in FIG. 3, respectively.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 〔実施例3〕
 図4に示すように、変倍対物レンズ21は、像面IMGと共役な位置に中間像を形成する対物レンズである。変倍対物レンズ21は、物体側から順に、変倍群である第1レンズ群G1と、変倍群である第2レンズ群G2と、実質的に変倍しない第3レンズ群G3とを有する。変倍時に、第1レンズ群G1、第2レンズ群G2、および第3レンズ群G3のうちの隣り合う2つのレンズ群の間隔が変化する。具体的には、第3レンズ群G3が固定され、第1レンズ群G1および第2レンズ群G2が光軸AXに沿って移動する。
[Example 3]
As shown in FIG. 4, the variable magnification objective lens 21 is an objective lens that forms an intermediate image at a position conjugate with the image plane IMG. The variable magnification objective lens 21 has, in order from the object side, a first lens group G1 which is a variable magnification group, a second lens group G2 which is a variable magnification group, and a third lens group G3 which does not substantially change the magnification. .. At the time of scaling, the distance between two adjacent lens groups among the first lens group G1, the second lens group G2, and the third lens group G3 changes. Specifically, the third lens group G3 is fixed, and the first lens group G1 and the second lens group G2 move along the optical axis AX.
 第1レンズ群G1は、物体側から順に、負のパワーを有する第11レンズ群G11と、正のパワーを有する第12レンズ群G12とを有する。第11レンズ群G11は、1枚の負レンズL1により構成される。第12レンズ群G12は、2枚の正レンズL2,L3により構成される。これにより、第1レンズ群G1は、全体として正のパワーを有する。 The first lens group G1 has an eleventh lens group G11 having a negative power and a twelfth lens group G12 having a positive power in order from the object side. The eleventh lens group G11 is composed of one negative lens L1. The twelfth lens group G12 is composed of two positive lenses L2 and L3. As a result, the first lens group G1 has positive power as a whole.
 第2レンズ群G2は、物体側から順に、正のパワーを有する第21レンズ群G21と、負のパワーを有する第22レンズ群G22とにより構成される。第21レンズ群G21は、1枚の正レンズL4により構成される。第22レンズ群G22は、1枚の負レンズL5により構成される。これにより、第2レンズ群G2は、全体として正のパワーを有する。 The second lens group G2 is composed of a 21st lens group G21 having a positive power and a 22nd lens group G22 having a negative power in order from the object side. The 21st lens group G21 is composed of one positive lens L4. The 22nd lens group G22 is composed of one negative lens L5. As a result, the second lens group G2 has positive power as a whole.
 第3レンズ群G3は、物体側から順に、開口絞りSTOと、正レンズL6と、正レンズL7とを有する。 The third lens group G3 has an aperture stop STO, a positive lens L6, and a positive lens L7 in order from the object side.
 第1レンズ群G1と第2レンズ群G2とによりアフォーカル系が構成され、中間像が第1レンズ群G1と第2レンズ群G2との間の結像位置I11に形成される。開口絞りSTOの共役像は第1レンズ群G1よりも物体側にある。第3レンズ群G3が変倍せず、かつ、開口絞りSTOの位置が固定される。さらに、ズームポジションZ1~Z3において開口絞りSTOの開口径が固定されている。これにより、像側のFナンバーは、ズームポジションZ1~Z3において変化しない。変倍対物レンズ21は、(Z3)に示す状態から、開口絞りSTOの開口径を縮小することによって測定径を縮小することができる((Z4)を参照)。 An afocal system is formed by the first lens group G1 and the second lens group G2, and an intermediate image is formed at the image formation position I11 between the first lens group G1 and the second lens group G2. The conjugate image of the aperture stop STO is on the object side of the first lens group G1. The third lens group G3 does not change magnification, and the position of the aperture stop STO is fixed. Further, the aperture diameter of the aperture stop STO is fixed at the zoom positions Z1 to Z3. As a result, the F number on the image side does not change at the zoom positions Z1 to Z3. The variable magnification objective lens 21 can reduce the measured diameter from the state shown in (Z3) by reducing the aperture diameter of the aperture stop STO (see (Z4)).
 実施例3に係る変倍対物レンズのレンズデータを表13に示す。 Table 13 shows the lens data of the variable magnification objective lens according to the third embodiment.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 実施例3に係る変倍対物レンズのレンズ面の面間隔を以下の表14に示す。表14において、Z1~Z4は、図4に示すZ1~Z4にそれぞれ対応し、a1~a6は、表13に示すa1~a6にそれぞれ対応する。 Table 14 below shows the interplanar spacing of the lens surfaces of the variable magnification objective lens according to Example 3. In Table 14, Z1 to Z4 correspond to Z1 to Z4 shown in FIG. 4, and a1 to a6 correspond to a1 to a6 shown in Table 13, respectively.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表15および表16に、実施例3のレンズ面の非球面係数を非球面データとして示す。なお、非球面データにおいて表記の無い項の係数は0である。 Tables 15 and 16 show the aspherical coefficients of the lens surface of Example 3 as aspherical data. In the aspherical data, the coefficient of the term not shown is 0.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表17に、実施例3の変倍対物レンズの特性を示す。表17から、ポジションZ1,Z2,Z3の間で像側Fナンバーが一定であることが理解される。 Table 17 shows the characteristics of the variable magnification objective lens of Example 3. From Table 17, it is understood that the image-side F number is constant between the positions Z1, Z2, and Z3.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表18に、実施例3に係る変倍対物レンズを構成する単レンズのレンズデータを示す。レンズ番号1~7は、図4に示す符号L1~L7にそれぞれ対応する。 Table 18 shows the lens data of the single lens constituting the variable magnification objective lens according to the third embodiment. The lens numbers 1 to 7 correspond to the reference numerals L1 to L7 shown in FIG. 4, respectively.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 続いて、表19に、各実施例の条件式対応値を示す。表19において、各実施例のηmaxは、ポジションZ1~Z4でのηの値のうち、その絶対値が最大となるηの値を意味する(表5、表11、表17を参照)。実施例1では、ηmaxは、ポジションZ2におけるηの値であり、実施例2,3では、ηmaxは、ポジションZ1におけるηの値である。 Subsequently, Table 19 shows the values corresponding to the conditional expressions of each embodiment. In Table 19, η max of each embodiment means the value of η having the maximum absolute value among the values of η in positions Z1 to Z4 (see Tables 5, 11 and 17). In Example 1, η max is the value of η at position Z2, and in Examples 2 and 3, η max is the value of η at position Z1.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 本発明の実施の形態および実施例について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Although the embodiments and examples of the present invention have been described, the embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is indicated by the scope of claims and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 10 測光測色計、12 表示面、14 測定プローブ部、16 測定器本体部、21 変倍対物レンズ、23 フィルタ部、24 光束分割部材、25 光電変換部、26 増幅部、27 測定光学系、28 受光系、31 A/D変換部、32 データメモリ、34 表示部、35 操作部、36 制御部、37 電源部、AR 被測定領域、AX 光軸、G1 第1レンズ群、G2 第2レンズ群、G3 第3レンズ群、G11 第11レンズ群、G12 第12レンズ群、G21 第21レンズ群、G22 第22レンズ群、I11 中間像の結像位置、L1,L5 負レンズ、L2,L3,L4,L6,L7 正レンズ、Z1~Z4 ズームポジション。 10 photometric colorimeter, 12 display surface, 14 measurement probe unit, 16 measuring instrument main unit, 21 variable magnification objective lens, 23 filter unit, 24 light beam dividing member, 25 photoelectric conversion unit, 26 amplification unit, 27 measurement optical system, 28 light receiving system, 31 A / D conversion unit, 32 data memory, 34 display unit, 35 operation unit, 36 control unit, 37 power supply unit, AR measured area, AX optical axis, G1 first lens group, G2 second lens Group, G3 3rd lens group, G11 11th lens group, G12 12th lens group, G21 21st lens group, G22 22nd lens group, I11 intermediate image imaging position, L1, L5 negative lens, L2, L3 L4, L6, L7 positive lens, Z1 to Z4 zoom position.

Claims (10)

  1.  像面と共役な位置に中間像を形成する変倍対物レンズであって、
     物体側から順に、
     変倍群である第1レンズ群と、
     変倍群である第2レンズ群と、
     実質的に変倍しない第3レンズ群とを有し、
     変倍時に、前記第1レンズ群、前記第2レンズ群、および前記第3レンズ群のうちの隣り合う2つのレンズ群の間隔が変化し、
     前記中間像は前記第1レンズ群と前記第2レンズ群との間に形成され、
     前記第3レンズ群は、開口絞りを有し、
     前記開口絞りの共役像が前記第1レンズ群よりも物体側にあるように前記開口絞りが配置される、変倍対物レンズ。
    A variable magnification objective lens that forms an intermediate image at a position conjugate with the image plane.
    From the object side,
    The first lens group, which is a variable magnification group, and
    The second lens group, which is a variable magnification group, and
    It has a third lens group that does not substantially change magnification,
    At the time of scaling, the distance between the first lens group, the second lens group, and two adjacent lens groups in the third lens group changes.
    The intermediate image is formed between the first lens group and the second lens group, and is formed.
    The third lens group has an aperture diaphragm.
    A variable magnification objective lens in which the aperture diaphragm is arranged so that the conjugate image of the aperture diaphragm is on the object side of the first lens group.
  2.  d線における前記第1レンズ群と前記第2レンズ群との合成焦点距離をf12とし、
     前記変倍対物レンズの全体の光学系の焦点距離をFLとし、
     η=FL/f12とすると、
     -0.5<η<0.5である、請求項1に記載の変倍対物レンズ。
    The combined focal length of the first lens group and the second lens group on the d line is set to f12.
    The focal length of the entire optical system of the variable magnification objective lens is set to FL.
    If η = FL / f12,
    The variable magnification objective lens according to claim 1, wherein −0.5 <η <0.5.
  3.  前記第1レンズ群は、
     物体側から順に、
     負のパワーを有する第11レンズ群と、
     正のパワーを有する第12レンズ群とを有する、
     請求項1または請求項2に記載の変倍対物レンズ。
    The first lens group is
    From the object side,
    The 11th lens group with negative power and
    With a twelfth lens group with positive power,
    The variable magnification objective lens according to claim 1 or 2.
  4.  前記第2レンズ群は、
     物体側から順に、
     正のパワーを有する第21レンズ群と、
     負のパワーを有する第22レンズ群とを有する、
     請求項1から請求項3のいずれか1項に記載の変倍対物レンズ。
    The second lens group is
    From the object side,
    The 21st lens group with positive power and
    With a 22nd lens group with negative power,
    The variable magnification objective lens according to any one of claims 1 to 3.
  5.  前記第1レンズ群の望遠端の焦点距離ft1と、前記第1レンズ群の広角端の焦点距離fw1とにより、前記第1レンズ群の倍率β1を、β1=ft1/fw1と定義し、
     前記第2レンズ群の望遠端の焦点距離ft2と、前記第2レンズ群の広角端の焦点距離fw2とにより、前記第2レンズ群の倍率β2を、β2=ft2/fw2と定義するとき、
     前記第1レンズ群の前記倍率β1が、1<β1<2.5であり、
     前記第2レンズ群の前記倍率β2が、0.2<β2<0.8である、請求項1から請求項4のいずれか1項に記載の変倍対物レンズ。
    With the focal length ft1 at the telephoto end of the first lens group and the focal length fw1 at the wide-angle end of the first lens group, the magnification β1 of the first lens group is defined as β1 = ft1 / fw1.
    When the magnification β2 of the second lens group is defined as β2 = ft2 / fw2 by the focal length ft2 at the telephoto end of the second lens group and the focal length fw2 at the wide-angle end of the second lens group.
    The magnification β1 of the first lens group is 1 <β1 <2.5.
    The variable magnification objective lens according to any one of claims 1 to 4, wherein the magnification β2 of the second lens group is 0.2 <β2 <0.8.
  6.  前記第1レンズ群の前記倍率β1と、
     前記第2レンズ群の前記倍率β2とにより、変倍比γをγ=β1*β2と定義するとき、
     0.5≦γ≦1.5である、請求項5に記載の変倍対物レンズ。
    With the magnification β1 of the first lens group,
    When the variable magnification ratio γ is defined as γ = β1 * β2 by the magnification β2 of the second lens group,
    The variable magnification objective lens according to claim 5, wherein 0.5 ≦ γ ≦ 1.5.
  7.  前記変倍対物レンズの各ズームポジションにおける像側のFナンバーFnoの絶対値|Fno|は、1<|Fno|<6を満たし、
     前記各ズームポジションの間での前記FナンバーFnoの差は3.5以下である、請求項1から請求項6のいずれか1項に記載の変倍対物レンズ。
    The absolute value | Fno | of the F number Fno on the image side at each zoom position of the variable magnification objective lens satisfies 1 << | Fno | <6.
    The variable magnification objective lens according to any one of claims 1 to 6, wherein the difference of the F number Fno between the zoom positions is 3.5 or less.
  8.  像面への主光線の入射角が5度以下である、請求項1から請求項7のいずれか1項に記載の変倍対物レンズ。 The variable magnification objective lens according to any one of claims 1 to 7, wherein the incident angle of the main light ray on the image plane is 5 degrees or less.
  9.  前記開口絞りの開口系が可変である、請求項1から請求項8のいずれか1項に記載の変倍対物レンズ。 The variable magnification objective lens according to any one of claims 1 to 8, wherein the aperture system of the aperture diaphragm is variable.
  10.  請求項1から請求項9のいずれか1項に記載の変倍対物レンズを備える、測光測色計。 A photometric colorimeter provided with the variable magnification objective lens according to any one of claims 1 to 9.
PCT/JP2021/013654 2020-06-19 2021-03-30 Variable magnification objective lens and photometric colorimeter provided therewith WO2021256049A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022532316A JPWO2021256049A1 (en) 2020-06-19 2021-03-30
CN202180042744.8A CN115917392A (en) 2020-06-19 2021-03-30 Variable-power objective lens and photometry colorimeter provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020106186 2020-06-19
JP2020-106186 2020-06-19

Publications (1)

Publication Number Publication Date
WO2021256049A1 true WO2021256049A1 (en) 2021-12-23

Family

ID=79267826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013654 WO2021256049A1 (en) 2020-06-19 2021-03-30 Variable magnification objective lens and photometric colorimeter provided therewith

Country Status (3)

Country Link
JP (1) JPWO2021256049A1 (en)
CN (1) CN115917392A (en)
WO (1) WO2021256049A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122110A (en) * 1998-10-14 2000-04-28 Canon Inc Relay optical system and camera system provided therewith
JP2004070092A (en) * 2002-08-08 2004-03-04 Olympus Corp Zoom photography optical system
JP2008511020A (en) * 2004-08-20 2008-04-10 パナビジョン・インターナショナル・リミテッド・パートナーシップ Wide-range, wide-angle rotatable compound zoom
JP2008536175A (en) * 2005-04-08 2008-09-04 パナビジョン・インターナショナル・リミテッド・パートナーシップ Wide range and wide angle compound zoom with simplified zoom structure
JP2018036380A (en) * 2016-08-30 2018-03-08 富士フイルム株式会社 Zoom lens, projection type display device, and imaging device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122110A (en) * 1998-10-14 2000-04-28 Canon Inc Relay optical system and camera system provided therewith
JP2004070092A (en) * 2002-08-08 2004-03-04 Olympus Corp Zoom photography optical system
JP2008511020A (en) * 2004-08-20 2008-04-10 パナビジョン・インターナショナル・リミテッド・パートナーシップ Wide-range, wide-angle rotatable compound zoom
JP2008536175A (en) * 2005-04-08 2008-09-04 パナビジョン・インターナショナル・リミテッド・パートナーシップ Wide range and wide angle compound zoom with simplified zoom structure
JP2018036380A (en) * 2016-08-30 2018-03-08 富士フイルム株式会社 Zoom lens, projection type display device, and imaging device

Also Published As

Publication number Publication date
JPWO2021256049A1 (en) 2021-12-23
CN115917392A (en) 2023-04-04

Similar Documents

Publication Publication Date Title
US20180329200A1 (en) Eyepiece optical system, optical apparatus and method for manufacturing eyepiece optical system
US7567288B2 (en) Image pickup device and image pickup optical system
US9052495B2 (en) Zoom lens and optical apparatus including the same
US9678412B2 (en) Projection lens system having magnification changing function and projector
JP4944436B2 (en) Zoom lens and imaging apparatus having the same
US8654449B2 (en) Zoom lens and image projection apparatus including the same
US9482852B2 (en) Zoom lens and image pickup apparatus having the same
US8873154B2 (en) Tele-side converter lens and image pickup apparatus including the same
TW201812381A (en) Optical imaging lens
US11054630B2 (en) Camera lens system for an endoscope, method for producing a camera lens system and an endoscope
US9459434B2 (en) Zoom lens and imaging apparatus
KR20200089235A (en) Photographic objective having at least six lenses
US8194329B2 (en) Variable magnification optical system and imaging apparatus
CN107430260A (en) Strabismus objective lens optical system and the strabismus endoscope for possessing the strabismus objective lens optical system
US11199699B2 (en) Camera lens assembly
US20130170021A1 (en) Microscope optical system and microscope system
CN109188710A (en) Large-aperture long-focus apochromatism transmission-type parallel light tube optical system
JP2012002901A (en) Zoom lens and imaging device
JP5491292B2 (en) Zoom lens and imaging device
WO2021256049A1 (en) Variable magnification objective lens and photometric colorimeter provided therewith
US5867326A (en) Zoom lens
CN209417404U (en) A kind of non-focusing all-sky airglow imager of wide spectrum
US7154683B1 (en) Five-element optical device
US11438493B2 (en) Optical apparatus and imaging system having the same
JP2002287019A (en) Chromatic aberration of magnification variable optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532316

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826965

Country of ref document: EP

Kind code of ref document: A1