WO2021255922A1 - Station installation design device and station installation design method - Google Patents

Station installation design device and station installation design method Download PDF

Info

Publication number
WO2021255922A1
WO2021255922A1 PCT/JP2020/024153 JP2020024153W WO2021255922A1 WO 2021255922 A1 WO2021255922 A1 WO 2021255922A1 JP 2020024153 W JP2020024153 W JP 2020024153W WO 2021255922 A1 WO2021255922 A1 WO 2021255922A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
throughput
calculation unit
radio
transmission
Prior art date
Application number
PCT/JP2020/024153
Other languages
French (fr)
Japanese (ja)
Inventor
秀紀 俊長
秀幸 坪井
和人 後藤
直樹 北
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022531222A priority Critical patent/JP7410439B2/en
Priority to PCT/JP2020/024153 priority patent/WO2021255922A1/en
Publication of WO2021255922A1 publication Critical patent/WO2021255922A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to a technique for a station design device and a station design method.
  • multi-hop technology For best-effort Internet access services such as ADSL (Asymmetric Digital Subscriber Line) and VDSL (Very high bitrate Digital Subscriber Line), consideration is being given to wirelessization using multi-hop technology.
  • multi-hop technology is also being used to build a living infrastructure in areas where the living infrastructure is undeveloped or in the event of a disaster.
  • it is required to design a station based on information such as topography and buildings.
  • a propagation loss model is selected using three-dimensional map information such as topographical information and building information, and a station design is performed to determine whether or not communication is possible for a candidate installation destination.
  • the radio transmission quality is calculated based on the topographical information to calculate the number of hops, and the station is designed with reliability (robustness) according to the number of hops as a parameter in consideration of disaster resistance. ing.
  • Non-Patent Document 1 In a wireless system in which the modulation method and the coding rate change adaptively (see, for example, Non-Patent Document 1), the transmission rate changes depending on the surrounding environment. Difficult to evaluate.
  • the adaptive modulation technology modulates the data with 16QAM (quadrature amplitude modulation) to maintain a high transmission rate, and when the transmission quality deteriorates, the modulation method is QPSK (QPSK). Quadrature Phase Shift Keying) has been changed to improve the error rate.
  • QPSK Quadrature Phase Shift Keying
  • an object of the present invention is to provide a technique capable of correctly evaluating the throughput and performing an optimum station setting design even when the adaptive modulation technique is used for communication between each radio station.
  • One aspect of the present invention is a station design device for a multi-hop wireless network that wirelessly connects radio stations using adaptive modulation, and the transmission quality of the transmission path between the radio stations from the position and topographical information of each radio station.
  • the transmission quality calculation unit that calculates the transmission quality
  • the transmission rate calculation unit that derives the transmission rate determined from the transmission quality based on the adaptive modulation method between each radio station, and the amount of interference due to the allocation of frequency resources between each radio station.
  • the throughput for each terminal radio station is derived from the interference amount calculation unit to be calculated, the hop number calculation unit to calculate the number of hops of the route, and the transmission rate, the throughput deterioration rate per hop, and the interference amount due to the allocation of frequency resources.
  • It is a station placement design device including a throughput calculation unit and a station placement priority setting unit for designating a station placement priority according to the throughput.
  • One aspect of the present invention is a method for designing a station of a multi-hop wireless network that wirelessly connects radio stations using adaptive modulation, and the transmission quality of the transmission path between the radio stations from the position and topographical information of each radio station.
  • the throughput can be correctly evaluated even when the adaptive modulation technology is used for communication between each radio station, and the optimum station design can be performed.
  • FIG. 100 It is a figure which shows the system configuration example of the communication system 100 of this invention. It is a block diagram which shows the outline of the station design apparatus 100. It is a flowchart which shows the process in the station design apparatus 100 which concerns on 1st Embodiment of this invention. It is a flowchart which shows the process in the station design apparatus 100 which concerns on 1st Embodiment of this invention. It is a flowchart which shows the process in the station design apparatus 100 which concerns on 1st Embodiment of this invention.
  • FIG. 1 is a diagram showing a system configuration example of the communication system 100 of the present invention.
  • FIG. 1 is a block diagram showing a configuration example of a multi-hop communication system to which the station design device according to the embodiment of the present invention can be applied.
  • the multi-hop communication system includes aggregated radio stations 11a and 11b connected to the Internet 10, relay radio stations 12a to 12h connected to or mutually wirelessly connected to the aggregated radio stations 11a and 11b, and terminal radios. It is composed of stations 13a to 13h.
  • Each radio station (aggregated radio stations 11a, 11b, relay radio stations 12a to 12h, terminal radio stations 13a to 13h) performs data communication wirelessly.
  • As a wireless method for communicating between radio stations for example, IEEE802.11j using the 4.9 GHz band, IEEE802.11ad using the 60 GHz band, or IEEE802.11a / b / b using the 2.4 GHz band or the 5 GHz band. Examples thereof include g / n / ac / ax.
  • the modulation method, the coding rate, and the like are adaptively changed according to the transmission quality.
  • the centralized radio stations 11a and 11b will be installed at bases that have good visibility and can connect to the Internet, such as the rooftop of a station building.
  • the installation positions of the terminal radio stations 13a to 13h are assumed to be the wall surface of the house where the wiring is drawn into the user's house.
  • Each radio station (aggregated radio stations 11a, 11b, relay radio stations 12a to 12h, terminal radio stations 13a to 13h) is connected by multi-hop to form a network.
  • each radio station (aggregated radio stations 11a, 11b, relay radio stations 12a to 12h, terminal radio stations 13a to 13h) may be arranged in any manner.
  • FIG. 2 is a block diagram showing an outline of the station design device 100.
  • the station setting design device 100 compares the throughputs from the terminal radio stations 13a to 13h to the aggregated radio stations 11a and 11b, and performs the optimum station setting.
  • the route from the terminal radio station 13a to the centralized radio station 11a via the relay radio station 12a (hereinafter referred to as the route A1) and the terminal. It is conceivable that the route (hereinafter referred to as route A2) is connected from the radio station 13a to the aggregated radio station 11a via the relay radio station 12e and the relay radio station 12a. It is assumed that the throughputs of the route A1 and the route A2 are compared.
  • the relay radio station intervening between the terminal radio station 13a and the aggregate radio station 11a is only one relay radio station 12a.
  • the relay radio stations intervening between the terminal radio station 13a and the aggregate radio station 11a are the two relay radio stations 12e and 12a. Therefore, regarding the number of hops, it is considered that the route A1 has a smaller number than the route A2, and the throughput is correspondingly larger.
  • the path A2 is set to a modulation method having a high transmission rate among all the radio stations.
  • the distance between the terminal radio station 13a and the relay radio station 12a is large. Therefore, it is considered that a modulation method having a low transmission rate is set between the terminal radio station 13a and the relay radio station 12a. Therefore, regarding the transmission rate by the modulation method, it is considered that the path A2 has a higher throughput than the path A1.
  • the station station design device 100 has a throughput based on a transmission rate that changes adaptively according to the transmission quality, the number of hops from the terminal radio stations 13a to 13h to the aggregate radio stations 11a and 11b, and the amount of interference due to frequency resource allocation. Is calculated and the station setting is made. As a result, the throughput can be evaluated correctly even when the adaptive modulation method is used as the radio method of each radio station.
  • the station design device 100 is configured by using an information processing device such as a personal computer, a mobile terminal, a tablet terminal, or a server device.
  • the station design device 100 includes a control unit 101, a storage unit 102, an input unit 103, and a display unit 104.
  • the control unit 101 is configured by using a processor such as a CPU (Central Processing Unit) and a memory.
  • the control unit 101 executes a program by the processor to execute a transmission quality calculation unit 201, a transmission rate calculation unit 202, an interference amount calculation unit 203, a hop number calculation unit 204, a throughput calculation unit 205, and a station priority setting unit 206.
  • Functions as. All or part of each function of the control unit 101 may be realized by using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • the above program may be recorded on a computer-readable recording medium.
  • Computer-readable recording media include, for example, flexible disks, magneto-optical disks, ROMs, CD-ROMs, portable media such as semiconductor storage devices (for example, SSD: Solid State Drive), hard disks and semiconductor storage built into computer systems. It is a storage device such as a device.
  • the above program may be transmitted over a telecommunication line.
  • the storage unit 102 is configured by using a storage device such as a magnetic hard disk device or a semiconductor storage device.
  • the storage unit 102 functions as a map information storage unit 210 and a radio equipment storage unit 211.
  • the map information storage unit 210 stores three-dimensional map information around the network to be designed.
  • the radio equipment storage unit 211 includes the number and installation positions of each radio station (aggregated radio stations 11a and 11b, relay radio stations 12a to 12h, terminal radio stations 13a to 13h), usable frequency channels, usable radio systems, and the like.
  • various information such as damping parameters when there is an obstacle, damping parameters when interference occurs, and damping parameters for each hop are stored.
  • the input unit 103 is an interface for inputting data to the station design device 100 from the outside.
  • the input unit 103 receives, for example, input of position installation information of each radio station from the outside.
  • the input unit 103 may be configured by using, for example, a communication interface, and may receive such information via a network.
  • the input unit 103 may be configured by using a device that reads data from an external storage device.
  • the transmission quality calculation unit 201 calculates the transmission quality of the transmission line between each radio station from the position of each radio station and the topographical information stored in the map information storage unit 210. That is, the transmission quality calculation unit 201 refers to the position of each radio station and the three-dimensional map information stored in the map information storage unit 210, and determines the distance between the radio stations and obstacles between the radio stations. judge. Then, the transmission quality calculation unit 201 obtains the attenuation amount from the distance between the radio stations and obstacles, and obtains the transmission quality between the radio stations.
  • the transmission rate calculation unit 202 calculates the transmission rate from the transmission quality calculated by the transmission quality calculation unit 201. That is, in the adaptive modulation method, the transmission rate changes according to the transmission quality.
  • the transmission rate calculation unit 202 determines the transmission rate from the transmission quality based on the adaptive modulation method.
  • the interference amount calculation unit 203 calculates the amount of interference due to the allocation of frequency resources between each radio station. That is, if adjacent radio stations use channels of the same frequency, they will be interfered with and the throughput will decrease. The interference amount calculation unit 203 calculates the amount of interference due to the allocation of frequency resources between adjacent radio stations with reference to the three-dimensional topographical information stored in the map information storage unit 210.
  • the hop number calculation unit 204 calculates the number of hops from the terminal radio stations 13a to 13h to the aggregate radio stations 11a and 11b.
  • the throughput calculation unit 205 is based on the transmission rate calculated by the transmission rate calculation unit 202, the interference amount calculated by the interference amount calculation unit 203, and the number of hops calculated by the hop number calculation unit 204.
  • the throughput from 13a to 13h to the aggregated radio stations 11a and 11b is calculated.
  • the station placement priority setting unit 206 specifies the station placement priority according to the throughput obtained by the throughput calculation unit 205.
  • 3 to 5 are flowcharts showing the processing in the station design device 100 according to the first embodiment of the present invention.
  • FIG. 3 is a flowchart of a radio station setting process.
  • Step S101 The operator sets the positions of the aggregated radio stations 11a and 11b to be observed in the input unit 103, and proceeds to the process in step S102.
  • Step S102 The operator sets the positions of the terminal radio stations 13a to 13h to be observed in the input unit 103, and ends the setting process.
  • FIG. 4 is a flowchart of the throughput creation process.
  • Step S201 The control unit 101 creates a combination of multi-hop routes between the aggregated radio stations 11a and 11b to be observed and the terminal radio stations 13a to 13h, and proceeds to the process in step S202.
  • Step S202 The control unit 101 determines whether or not the evaluation of the combination of all the multi-hop routes is completed. If the control unit 101 has not completed the evaluation of the combination of all the multi-hop routes (step S202: No), the process proceeds to step S203, and the evaluation of the combination of all the multi-hop routes is completed. If (step S202: Yes), the process proceeds to step S204.
  • Step S203 The control unit 101 derives the throughput by the combination of the multi-hops to be evaluated, and returns the processing to step S202.
  • step S202 the evaluation of the throughput for each combination of multi-hop routes is advanced.
  • step S202 it is determined in step S202 that the evaluation is completed, and the process moves to step S204.
  • Step S204 The control unit 101 creates a throughput list for all terminal radio stations 13a to 13h, and proceeds to the process in step S205.
  • Step S205 The control unit 101 sorts the throughput list according to the priority and outputs it as a priority list in the station design.
  • FIG. 5 is a flowchart showing the throughput derivation process in step S203 in FIG. (Step S301)
  • the control unit 101 determines whether or not the evaluation of all routes has been completed, and if the evaluation of all routes has not been completed (step S301: No), the process proceeds to step S302 and the evaluation of all routes is completed. If the evaluation is completed (step S301: Yes), the process proceeds to step S307.
  • Step S302 The control unit 101 selects an evaluation path and advances the process to step S303.
  • Step S303 The control unit 101 reads the three-dimensional map information from the storage unit 102, and proceeds to the process in step S304.
  • the control unit 101 refers to the position of the radio station of the evaluation path and the three-dimensional map information, selects the radio propagation model of the evaluation path, and proceeds to the process in step S305.
  • the evaluation route includes a route to the relay radio stations 12a to 12h and a route to the terminal radio stations 13a to 13h. It is assumed that the routes of the relay radio stations 12a to 12h are installed in a state where there is a line of sight, while the routes of the terminal radio stations 13a to 13h installed in each house are assumed to have no line of sight. Even when wireless systems of the same frequency band are used, the wireless propagation model to be applied differs depending on these installation forms.
  • Step S305 The control unit 101 derives the attenuation amount of the evaluation path using the radio propagation model selected in step S304, and advances the process to step S306.
  • Step S306 The control unit 101 determines the transmission speed from the attenuation calculated in step S305, and returns the process to step S301. That is, in the adaptive modulation method, the modulation method is adaptively set according to the transmission quality, and the data rate of the path changes. From this, the control unit 101 determines the modulation method set in the observation path based on the attenuation amount of the observation path obtained in step S305, and calculates the data rate of the observation path based on this.
  • step S301 the transmission speed for each evaluation path is determined.
  • step S301 it is determined in step S301 that the evaluation of all the routes is completed, and the process proceeds to step S307.
  • Step S307 The control unit 101 creates a combination list of transmission speeds for all terminal radio stations 13a to 13h, and proceeds to step S308.
  • Step S308 The control unit 101 derives the rate of decrease in throughput from the number of hops from the terminal radio stations 13a to 13h to the aggregated radio stations 11a and 11b. That is, the throughput decreases according to the number of multi-hops.
  • the control unit 101 creates a database of the throughput reduction rate according to the transmission speed and the number of hops in advance and stores it in the storage unit 102, and based on the data of this database, the throughput reduction rate for all terminal radio stations 13a to 13h. Is derived.
  • Step S309 The control unit 101 determines whether or not the evaluation of the combination of all radio channels is completed, and if the evaluation of the combination of all radio channels is not completed (step S309: No), The process proceeds to step S310, and when the evaluation of the combination of all radio channels is completed (step S309: Yes), the process proceeds to step S315.
  • Step S310 The control unit 101 allocates wireless channels to all routes according to the combination of evaluation targets, and proceeds to step S311.
  • a plurality of frequency bands for example, 2.4 GHz, 4.9 GHz, 5 GHz, and 60 GHz bands
  • a combination of radio channel allocation is created from these frequency bands and the channels of each frequency band.
  • Step S311 The control unit 101 reads the three-dimensional map information from the storage unit 102, and proceeds to the process in step S312.
  • Step S312 The control unit 101 refers to the position of each radio station and the three-dimensional map information, selects the radio propagation model of the combination of radio channels to be evaluated, and proceeds to the process in step S313. At this time, the control unit 101 selects the radio propagation model from the three-dimensional map information read from the storage unit 102 in consideration of conditions such as whether or not there is a line-of-sight between the radio stations.
  • Step S313 The control unit 101 derives the amount of interference in the radio channel of the combination to be evaluated, and proceeds to the process in step S314. That is, when adjacent radio stations use the same channel, interference occurs and throughput decreases. The control unit 101 derives the interference amount in consideration of this.
  • Step S314 The control unit 101 calculates the amount of throughput reduction due to the amount of interference, and returns the process to step S309. For example, the control unit 101 determines that there is interference when the amount of interference between paths using the same channel is equal to or greater than a threshold value. Then, the control unit 101 creates a database of the throughput reduction rate when there is interference in advance and stores it in the storage unit 102, and based on the data of this database, the throughput reduction rate for all terminal radio stations 13a to 13h is calculated. Derived.
  • step S309 the rate of decrease in throughput for each channel combination is derived.
  • Step S315) The control unit 101 creates a combined list of throughputs of all terminal radio stations from the transmission speed, the throughput deterioration rate per hop, and the throughput deterioration rate due to the interference of the radio channels. Then, the process of this subroutine (step S203 in FIG. 4) is terminated, and the process returns to the main process of FIG.
  • the throughput can be evaluated correctly and the optimum station placement design can be performed.
  • control unit 101 may set the station priority so that all the terminal radio stations have a throughput equal to or higher than a threshold value set in advance.
  • the station setting priority may be set so that the value obtained by adding the throughputs of all the terminal radio stations is the maximum.
  • the station placement priority may be set by combining a plurality of station placement design methods described above.
  • the present invention is applicable to network design support technology.
  • 11a, 11b ... Aggregated radio station, 12a-12h ... Relay radio station, 13a-13h ... Terminal radio station, 101 Control unit, 102 ... Storage unit, 103 ... Input unit, 104 ... Display unit, 202 ... Transmission rate calculation unit, 203 ... Interference amount calculation unit, 204 ... Hop number calculation unit, 205 ... Throughput calculation unit, 206 ... Station priority setting unit

Abstract

One embodiment of the present invention pertains to a station installation design device for a multihop wireless network which establishes wireless connection between wireless stations using adaptive modulation, the station installation design device comprising: a transmission quality calculation unit for calculating the transmission quality of a transmission path between the respective wireless stations from the locations of the respective wireless stations and topographical information; a transmission rate calculation unit for deriving a transmission rate, which is determined on the basis of a method of adaptive modulation between the respective wireless stations, from the transmission quality; an interference amount arithmetic operation unit for performing an arithmetic operation for an amount of interference caused by allocation of frequency resources between the respective wireless stations; a hop count calculation unit for calculating the number of hops of a path; a throughput calculation unit for deriving a throughput of each terminal wireless station from the transmission rate, a throughput deterioration rate per hop, and the amount of interference caused by the allocation of frequency resources; and a station installation priority order setting unit for specifying the order of station installation priority according to the throughput.

Description

置局設計装置及び置局設計方法Station station design device and station station design method
 本発明は、置局設計装置及び置局設計方法の技術に関する。 The present invention relates to a technique for a station design device and a station design method.
 ADSL(Asymmetric Digital Subscriber Line)やVDSL(Very high bitrate Digital Subscriber Line)等のベストエフォート型のインターネットアクセスサービスに対し、マルチホップ技術を活用した無線化の検討が行われている。また、生活基盤が未整備のエリアや災害時等の生活基盤の構築に、同様にマルチホップ技術の活用が行われている。マルチホップ無線技術を広域エリアで構築する場合には、地形や建物等の情報に基づき置局設計することが求められる。例えば、特許文献1では地形情報や建物情報等の三次元地図情報を用いて伝搬損失モデルを選択し、設置先候補の通信可否を判定する置局設計を行っている。或いは、例えば、特許文献2では地形情報に基づき無線伝送品質を計算してホップ数を算出し、被災害耐性を考慮してホップ数に応じた信頼性(ロバストネス)をパラメータとして置局設計を行っている。 For best-effort Internet access services such as ADSL (Asymmetric Digital Subscriber Line) and VDSL (Very high bitrate Digital Subscriber Line), consideration is being given to wirelessization using multi-hop technology. In addition, multi-hop technology is also being used to build a living infrastructure in areas where the living infrastructure is undeveloped or in the event of a disaster. When constructing multi-hop wireless technology in a wide area, it is required to design a station based on information such as topography and buildings. For example, in Patent Document 1, a propagation loss model is selected using three-dimensional map information such as topographical information and building information, and a station design is performed to determine whether or not communication is possible for a candidate installation destination. Alternatively, for example, in Patent Document 2, the radio transmission quality is calculated based on the topographical information to calculate the number of hops, and the station is designed with reliability (robustness) according to the number of hops as a parameter in consideration of disaster resistance. ing.
特開2016-184898号公報Japanese Unexamined Patent Publication No. 2016-1848998 特開2017-69818号公報Japanese Unexamined Patent Publication No. 2017-69818
  ADSLやVDSL等の既存のインターネットサービスを、マルチホップ技術を用いて無線化する場合に、既存のインターネットサービスと比較してどの程度のスループットが維持できるかを評価していくことが望まれる。ところが、適応的に変調方式や符号化率が変化する無線システム(例えば非特許文献1参照)では、周囲の環境により伝送レートが変化することになるため、従来の置局設計技術では、スループットを評価することが難しい。 It is desirable to evaluate how much throughput can be maintained compared to existing Internet services when existing Internet services such as ADSL and VDSL are made wireless using multi-hop technology. However, in a wireless system in which the modulation method and the coding rate change adaptively (see, for example, Non-Patent Document 1), the transmission rate changes depending on the surrounding environment. Difficult to evaluate.
 適応変調技術は、例えば無線局間の伝送品質が良好な場合には、16QAM(quadrature amplitude modulation)でデータを変調して高い伝送レートを保ち、伝送品質が悪化した場合は、変調方式をQPSK(Quadrature Phase Shift Keying)に変更して、エラーレートは改善するようにしている。このような適応変調方式を用いた無線システムにてマルチホップ通信システムを構築する場合、無線局間の伝送品質に応じて伝送レートが変化するため、スループットを評価することが難しくなる。 For example, when the transmission quality between radio stations is good, the adaptive modulation technology modulates the data with 16QAM (quadrature amplitude modulation) to maintain a high transmission rate, and when the transmission quality deteriorates, the modulation method is QPSK (QPSK). Quadrature Phase Shift Keying) has been changed to improve the error rate. When constructing a multi-hop communication system in a wireless system using such an adaptive modulation method, it becomes difficult to evaluate the throughput because the transmission rate changes according to the transmission quality between the wireless stations.
 上記事情に鑑み、本発明は、各無線局間の通信に適応変調技術を用いた場合にもスループットを正しく評価でき、最適な置局設計を行うことができる技術の提供を目的としている。 In view of the above circumstances, an object of the present invention is to provide a technique capable of correctly evaluating the throughput and performing an optimum station setting design even when the adaptive modulation technique is used for communication between each radio station.
 本発明の一態様は、適応変調を用いる無線局間を無線接続するマルチホップ無線ネットワークの置局設計装置であって、各無線局の位置及び地形情報から各無線局間の伝送路の伝送品質を計算する伝送品質算出部と、前記伝送品質から各無線局間の適応変調方式に基づき決定される伝送レートを導出する伝送レート算出部と、各無線局間の周波数リソースの割当てによる干渉量を演算する干渉量演算部と、経路のホップ数を計算するホップ数計算部と、前記伝送レート、ホップあたりのスループット劣化割合、及び周波数リソースの割当てによる干渉量から端末無線局毎のスループットを導出するスループット算出部と、前記スループットに応じて置局優先順位を指定する置局優先順位設定部と、を備える置局設計装置である。 One aspect of the present invention is a station design device for a multi-hop wireless network that wirelessly connects radio stations using adaptive modulation, and the transmission quality of the transmission path between the radio stations from the position and topographical information of each radio station. The transmission quality calculation unit that calculates the transmission quality, the transmission rate calculation unit that derives the transmission rate determined from the transmission quality based on the adaptive modulation method between each radio station, and the amount of interference due to the allocation of frequency resources between each radio station. The throughput for each terminal radio station is derived from the interference amount calculation unit to be calculated, the hop number calculation unit to calculate the number of hops of the route, and the transmission rate, the throughput deterioration rate per hop, and the interference amount due to the allocation of frequency resources. It is a station placement design device including a throughput calculation unit and a station placement priority setting unit for designating a station placement priority according to the throughput.
 本発明の一態様は、適応変調を用いる無線局間を無線接続するマルチホップ無線ネットワークの置局設計方法であって、各無線局の位置及び地形情報から各無線局間の伝送路の伝送品質を計算するステップと、前記伝送品質から各無線局間の適応変調方式に基づき決定される伝送レートを導出するステップと、各無線局間の周波数リソースの割当てによる干渉量を演算するステップと、経路のホップ数を計算するステップと、前記伝送レート、ホップあたりのスループット劣化割合及び周波数リソースの割当てによる干渉量から端末無線局毎のスループットを導出するステップと、前記スループットに応じて置局優先順位を指定するステップとを有する置局設計方法である。 One aspect of the present invention is a method for designing a station of a multi-hop wireless network that wirelessly connects radio stations using adaptive modulation, and the transmission quality of the transmission path between the radio stations from the position and topographical information of each radio station. A step of deriving a transmission rate determined based on an adaptive modulation method between each radio station from the transmission quality, a step of calculating the amount of interference due to allocation of frequency resources between each radio station, and a route. The step of calculating the number of hops, the step of deriving the throughput for each terminal radio station from the transmission rate, the throughput deterioration rate per hop, and the amount of interference due to the allocation of frequency resources, and the station placement priority according to the throughput. It is a station design method having a designated step.
 本発明により、各無線局間の通信に適応変調技術を用いた場合にもスループットを正しく評価でき、最適な置局設計を行うことが可能となる。 According to the present invention, the throughput can be correctly evaluated even when the adaptive modulation technology is used for communication between each radio station, and the optimum station design can be performed.
本発明の通信システム100のシステム構成例を示す図である。It is a figure which shows the system configuration example of the communication system 100 of this invention. 置局設計装置100の概要を示すブロック図である。It is a block diagram which shows the outline of the station design apparatus 100. 本発明の第1の実施形態に係る置局設計装置100での処理を示すフローチャートである。It is a flowchart which shows the process in the station design apparatus 100 which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る置局設計装置100での処理を示すフローチャートである。It is a flowchart which shows the process in the station design apparatus 100 which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る置局設計装置100での処理を示すフローチャートである。It is a flowchart which shows the process in the station design apparatus 100 which concerns on 1st Embodiment of this invention.
 本発明の実施形態について、図面を参照して詳細に説明する。
 図1は、本発明の通信システム100のシステム構成例を示す図である。図1は、本発明の実施形態に係る置局設計装置が適用できるマルチホップ通信システムの構成例を示すブロック図である。
Embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a system configuration example of the communication system 100 of the present invention. FIG. 1 is a block diagram showing a configuration example of a multi-hop communication system to which the station design device according to the embodiment of the present invention can be applied.
 図1に示すように、マルチホップ通信システムは、インターネット10に接続する集約無線局11a、11bと、集約無線局11a、11bに接続或いは相互に無線接続する中継無線局12a~12hと、端末無線局13a~13hとから構成される。各無線局(集約無線局11a、11b、中継無線局12a~12h、端末無線局13a~13h)は、無線によりデータ通信を行う。各無線局間で通信を行う際の無線方式としては、例えば4.9GHz帯を用いるIEEE802.11j、60GHz帯を用いるIEEE802.11ad、或いは2.4GHz帯や5GHz帯を用いるIEEE802.11a/b/g/n/ac/ax等が挙げられる。これらの無線方式では、伝送品質に応じて適応的に変調方式や符号化率等が変更される。 As shown in FIG. 1, the multi-hop communication system includes aggregated radio stations 11a and 11b connected to the Internet 10, relay radio stations 12a to 12h connected to or mutually wirelessly connected to the aggregated radio stations 11a and 11b, and terminal radios. It is composed of stations 13a to 13h. Each radio station (aggregated radio stations 11a, 11b, relay radio stations 12a to 12h, terminal radio stations 13a to 13h) performs data communication wirelessly. As a wireless method for communicating between radio stations, for example, IEEE802.11j using the 4.9 GHz band, IEEE802.11ad using the 60 GHz band, or IEEE802.11a / b / b using the 2.4 GHz band or the 5 GHz band. Examples thereof include g / n / ac / ax. In these wireless methods, the modulation method, the coding rate, and the like are adaptively changed according to the transmission quality.
 集約無線局11a、11bは、例えば局舎の屋上等、見通しが良好で、インターネットに接続することが可能な拠点に設置されることが想定される。端末無線局13a~13hの設置位置は、ユーザ宅の宅内に配線を引き込む家屋壁面等が想定される。各無線局(集約無線局11a、11b、中継無線局12a~12h、端末無線局13a~13h)は、マルチホップ接続してネットワークが構成される。 It is assumed that the centralized radio stations 11a and 11b will be installed at bases that have good visibility and can connect to the Internet, such as the rooftop of a station building. The installation positions of the terminal radio stations 13a to 13h are assumed to be the wall surface of the house where the wiring is drawn into the user's house. Each radio station (aggregated radio stations 11a, 11b, relay radio stations 12a to 12h, terminal radio stations 13a to 13h) is connected by multi-hop to form a network.
 なお、この例では、2つの集約無線局11a、11bと、8つの中継無線局12a~12hと、8つの端末無線局13a~13hとが図示されているが、無線局の数は、これに限定されるものではない。また、各無線局(集約無線局11a、11b、中継無線局12a~12h、端末無線局13a~13h)は、どのように配置しても良い。 In this example, two aggregated radio stations 11a and 11b, eight relay radio stations 12a to 12h, and eight terminal radio stations 13a to 13h are shown, but the number of radio stations is limited to this. Not limited. Further, each radio station (aggregated radio stations 11a, 11b, relay radio stations 12a to 12h, terminal radio stations 13a to 13h) may be arranged in any manner.
 図2は、置局設計装置100の概要を示すブロック図である。置局設計装置100は、上述のようなマルチホップ通信システムを構築する場合に、端末無線局13a~13hから集約無線局11a、11bまでのスループットを比較して、最適な置局設定を行う。 FIG. 2 is a block diagram showing an outline of the station design device 100. When constructing the multi-hop communication system as described above, the station setting design device 100 compares the throughputs from the terminal radio stations 13a to 13h to the aggregated radio stations 11a and 11b, and performs the optimum station setting.
 例えば、端末無線局13aがインターネットに接続する場合の経路としては、端末無線局13aから、中継無線局12aを介して、集約無線局11aに接続する経路(以下、経路A1とする)と、端末無線局13aから、中継無線局12eと中継無線局12aとを介して、集約無線局11aに接続する経路(以下、経路A2とする)とが考えられる。この経路A1と経路A2とで、スループットを比較するとする。 For example, when the terminal radio station 13a connects to the Internet, the route from the terminal radio station 13a to the centralized radio station 11a via the relay radio station 12a (hereinafter referred to as the route A1) and the terminal. It is conceivable that the route (hereinafter referred to as route A2) is connected from the radio station 13a to the aggregated radio station 11a via the relay radio station 12e and the relay radio station 12a. It is assumed that the throughputs of the route A1 and the route A2 are compared.
 経路A1では、端末無線局13aと集約無線局11aとの間に介在する中継無線局は、1つの中継無線局12aだけである。これに対して、経路A2では、端末無線局13aと集約無線局11aとの間に介在する中継無線局は、2つの中継無線局12e及び12aである。したがって、ホップ数に関しては、経路A1の方が経路A2より少なく、その分、スループットが大きいと考えられる。 In the route A1, the relay radio station intervening between the terminal radio station 13a and the aggregate radio station 11a is only one relay radio station 12a. On the other hand, in the route A2, the relay radio stations intervening between the terminal radio station 13a and the aggregate radio station 11a are the two relay radio stations 12e and 12a. Therefore, regarding the number of hops, it is considered that the route A1 has a smaller number than the route A2, and the throughput is correspondingly larger.
 しかしながら、経路A2では、それぞれの無線局の間の距離は全て近距離である。このため、経路A2では、各無線局の間では、全て伝送レートの高い変調方式に設定されると考えられる。これに対して、経路A1では、端末無線局13aと中継無線局12aとの間の距離は離れている。このため、端末無線局13aと中継無線局12aとの間では、伝送レートの低い変調方式に設定されると考えられる。したがって、変調方式による伝送レートに関しては、経路A2の方が経路A1よりスループットが大きいと考えられる。 However, in route A2, the distances between the respective radio stations are all short distances. Therefore, it is considered that the path A2 is set to a modulation method having a high transmission rate among all the radio stations. On the other hand, in the route A1, the distance between the terminal radio station 13a and the relay radio station 12a is large. Therefore, it is considered that a modulation method having a low transmission rate is set between the terminal radio station 13a and the relay radio station 12a. Therefore, regarding the transmission rate by the modulation method, it is considered that the path A2 has a higher throughput than the path A1.
 このように、スループットの比較は、ホップ数だけでなく、変調方式による伝送レートの違いを考慮する必要がある。その他、隣接する無線局が同一の周波数チャネルを使用していると、その干渉により、スループットの低下が生じる。この置局設計装置100は、伝送品質に応じて適応的に変化する伝送レートと、端末無線局13a~13hから集約無線局11a、11bまでのホップ数と、周波数リソース割当てによる干渉量とからスループットを算出して、置局設定を行っている。これにより、各無線局の無線方式として、適応変調方式が用いられている場合にも、スループットを正しく評価できる。 In this way, when comparing throughput, it is necessary to consider not only the number of hops but also the difference in transmission rate depending on the modulation method. In addition, if adjacent radio stations use the same frequency channel, the interference causes a decrease in throughput. The station station design device 100 has a throughput based on a transmission rate that changes adaptively according to the transmission quality, the number of hops from the terminal radio stations 13a to 13h to the aggregate radio stations 11a and 11b, and the amount of interference due to frequency resource allocation. Is calculated and the station setting is made. As a result, the throughput can be evaluated correctly even when the adaptive modulation method is used as the radio method of each radio station.
 次に、置局設計装置100について説明する。置局設計装置100は、パーソナルコンピューターや携帯端末やタブレット端末やサーバー装置等の情報処理装置を用いて構成される。置局設計装置100は、制御部101、記憶部102、入力部103及び表示部104を備える。 Next, the station design device 100 will be described. The station design device 100 is configured by using an information processing device such as a personal computer, a mobile terminal, a tablet terminal, or a server device. The station design device 100 includes a control unit 101, a storage unit 102, an input unit 103, and a display unit 104.
 制御部101は、CPU(Central Processing Unit)等のプロセッサーとメモリーとを用いて構成される。制御部101は、プロセッサーがプログラムを実行することによって、伝送品質算出部201、伝送レート算出部202、干渉量演算部203、ホップ数計算部204、スループット算出部205及び置局優先順位設定部206として機能する。なお、制御部101の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されても良い。上記のプログラムは、コンピューター読み取り可能な記録媒体に記録されても良い。コンピューター読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM、半導体記憶装置(例えばSSD:Solid State Drive)等の可搬媒体、コンピューターシステムに内蔵されるハードディスクや半導体記憶装置等の記憶装置である。上記のプログラムは、電気通信回線を介して送信されてもよい。 The control unit 101 is configured by using a processor such as a CPU (Central Processing Unit) and a memory. The control unit 101 executes a program by the processor to execute a transmission quality calculation unit 201, a transmission rate calculation unit 202, an interference amount calculation unit 203, a hop number calculation unit 204, a throughput calculation unit 205, and a station priority setting unit 206. Functions as. All or part of each function of the control unit 101 may be realized by using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array). The above program may be recorded on a computer-readable recording medium. Computer-readable recording media include, for example, flexible disks, magneto-optical disks, ROMs, CD-ROMs, portable media such as semiconductor storage devices (for example, SSD: Solid State Drive), hard disks and semiconductor storage built into computer systems. It is a storage device such as a device. The above program may be transmitted over a telecommunication line.
 記憶部102は、磁気ハードディスク装置や半導体記憶装置等の記憶装置を用いて構成される。記憶部102は、地図情報記憶部210及び無線設備記憶部211として機能する。地図情報記憶部210は、設計対象のネットワーク周辺の3次元地図情報を記憶している。無線設備記憶部211は、各無線局(集約無線局11a、11b、中継無線局12a~12h、端末無線局13a~13h)の個数や設置位置、使用可能な周波数チャネル、使用可能な無線方式等の他、障害物がある場合の減衰パラメータ、干渉が生じた場合の減衰パラメータ、ホップ毎の減衰パラメータ等、種々の情報を記憶する。 The storage unit 102 is configured by using a storage device such as a magnetic hard disk device or a semiconductor storage device. The storage unit 102 functions as a map information storage unit 210 and a radio equipment storage unit 211. The map information storage unit 210 stores three-dimensional map information around the network to be designed. The radio equipment storage unit 211 includes the number and installation positions of each radio station (aggregated radio stations 11a and 11b, relay radio stations 12a to 12h, terminal radio stations 13a to 13h), usable frequency channels, usable radio systems, and the like. In addition, various information such as damping parameters when there is an obstacle, damping parameters when interference occurs, and damping parameters for each hop are stored.
 入力部103は、外部から置局設計装置100にデータを入力するインターフェースである。入力部103は、例えば外部から各無線局の位置設置情報の入力を受け付ける。入力部103は、例えば通信インターフェースを用いて構成され、ネットワークを介してこれらの情報を受け付けてもよい。入力部103は、外部記憶装置からデータを読み出す装置を用いて構成されてもよい。 The input unit 103 is an interface for inputting data to the station design device 100 from the outside. The input unit 103 receives, for example, input of position installation information of each radio station from the outside. The input unit 103 may be configured by using, for example, a communication interface, and may receive such information via a network. The input unit 103 may be configured by using a device that reads data from an external storage device.
 伝送品質算出部201は、各無線局の位置と、地図情報記憶部210に記憶されている地形情報から、各無線局間の伝送路の伝送品質を計算する。すなわち、伝送品質算出部201は、各無線局の位置と、地図情報記憶部210に記憶されている三次元地図情報とを参照し、各無線局間の距離や各無線局間の障害物を判定する。そして、伝送品質算出部201は、各無線局間の距離や障害物から減衰量を求め、各無線局間の伝送品質を求める。 The transmission quality calculation unit 201 calculates the transmission quality of the transmission line between each radio station from the position of each radio station and the topographical information stored in the map information storage unit 210. That is, the transmission quality calculation unit 201 refers to the position of each radio station and the three-dimensional map information stored in the map information storage unit 210, and determines the distance between the radio stations and obstacles between the radio stations. judge. Then, the transmission quality calculation unit 201 obtains the attenuation amount from the distance between the radio stations and obstacles, and obtains the transmission quality between the radio stations.
 伝送レート算出部202は、伝送品質算出部201で算出された伝送品質から、伝送レートを算出する。すなわち、適応変調方式では、伝送品質に応じて伝送レートが変化する。伝送レート算出部202は、適応変調方式に基づき、伝送品質から伝送レートを決定する。 The transmission rate calculation unit 202 calculates the transmission rate from the transmission quality calculated by the transmission quality calculation unit 201. That is, in the adaptive modulation method, the transmission rate changes according to the transmission quality. The transmission rate calculation unit 202 determines the transmission rate from the transmission quality based on the adaptive modulation method.
 干渉量演算部203は、各無線局間の周波数リソースの割当てによる干渉量を演算する。すなわち、隣接する無線局で同一の周波数のチャネルが使用されていると、その干渉を受けて、スループットが低下する。干渉量演算部203は、地図情報記憶部210に記憶されている三次元地形情報を参照して、このような隣接無線局間の周波数リソースの割当てによる干渉量を演算する。 The interference amount calculation unit 203 calculates the amount of interference due to the allocation of frequency resources between each radio station. That is, if adjacent radio stations use channels of the same frequency, they will be interfered with and the throughput will decrease. The interference amount calculation unit 203 calculates the amount of interference due to the allocation of frequency resources between adjacent radio stations with reference to the three-dimensional topographical information stored in the map information storage unit 210.
 ホップ数計算部204は、端末無線局13a~13hから集約無線局11a、11bまでのホップ数を計算する。 The hop number calculation unit 204 calculates the number of hops from the terminal radio stations 13a to 13h to the aggregate radio stations 11a and 11b.
 スループット算出部205は、伝送レート算出部202で算出された伝送レートと、干渉量演算部203で算出された干渉量と、ホップ数計算部204で計算されたホップ数とから、各端末無線局13a~13hから集約無線局11a、11bまでのスループットを算出する。 The throughput calculation unit 205 is based on the transmission rate calculated by the transmission rate calculation unit 202, the interference amount calculated by the interference amount calculation unit 203, and the number of hops calculated by the hop number calculation unit 204. The throughput from 13a to 13h to the aggregated radio stations 11a and 11b is calculated.
 置局優先順位設定部206は、スループット算出部205で求められたスループットに応じて、置局優先順位を指定する。 The station placement priority setting unit 206 specifies the station placement priority according to the throughput obtained by the throughput calculation unit 205.
 図3~図5は、本発明の第1の実施形態に係る置局設計装置100での処理を示すフローチャートである。 3 to 5 are flowcharts showing the processing in the station design device 100 according to the first embodiment of the present invention.
 置局設計を行う際には、先ず、各無線局の設定が行われる。図3は、無線局の設定処理のフローチャートである。 When designing a station, first, each radio station is set. FIG. 3 is a flowchart of a radio station setting process.
 (ステップS101)操作者は、入力部103に観測対象となる集約無線局11a、11bの位置を設定して、処理をステップS102に進める。
 (ステップS102)操作者は、入力部103に観測対象となる端末無線局13a~13hの位置を設定して、設定処理を終了する。
(Step S101) The operator sets the positions of the aggregated radio stations 11a and 11b to be observed in the input unit 103, and proceeds to the process in step S102.
(Step S102) The operator sets the positions of the terminal radio stations 13a to 13h to be observed in the input unit 103, and ends the setting process.
 観測対象の無線局の設定が完了すると、スループットリスト作成の処理が行われる。図4は、スループットの作成処理のフローチャートである。 When the setting of the radio station to be observed is completed, the throughput list creation process is performed. FIG. 4 is a flowchart of the throughput creation process.
 (ステップS201)制御部101は、観測対象となる集約無線局11a、11bと端末無線局13a~13hとの間のマルチホップ経路の組合わせを作成して、処理をステップS202に進める。 (Step S201) The control unit 101 creates a combination of multi-hop routes between the aggregated radio stations 11a and 11b to be observed and the terminal radio stations 13a to 13h, and proceeds to the process in step S202.
 (ステップS202)制御部101は、全てのマルチホップ経路の組合わせの評価が完了したか否かを判定する。制御部101は、全てのマルチホップ経路の組合わせの評価が完了していなければ(ステップS202:No)、処理をステップS203に進め、 全てのマルチホップ経路の組合わせの評価が完了していれば(ステップS202:Yes)、処理をステップS204に進める。 (Step S202) The control unit 101 determines whether or not the evaluation of the combination of all the multi-hop routes is completed. If the control unit 101 has not completed the evaluation of the combination of all the multi-hop routes (step S202: No), the process proceeds to step S203, and the evaluation of the combination of all the multi-hop routes is completed. If (step S202: Yes), the process proceeds to step S204.
 (ステップS203)制御部101は、評価対象となるマルチホップの組合わせで、スループットを導出して、処理をステップS202に戻す。 (Step S203) The control unit 101 derives the throughput by the combination of the multi-hops to be evaluated, and returns the processing to step S202.
 ステップS202からステップS203を繰り返すことで、マルチホップ経路の組合わせ毎のスループットの評価が進められていく。全てのマルチホップ経路の組合わせの評価が完了すると、ステップS202で、評価が完了したと判定され、ステップS204に処理が移る。 By repeating steps S202 to S203, the evaluation of the throughput for each combination of multi-hop routes is advanced. When the evaluation of the combination of all the multi-hop routes is completed, it is determined in step S202 that the evaluation is completed, and the process moves to step S204.
 (ステップS204)制御部101は、全端末無線局13a~13hについてのスループットリストを作成して、処理をステップS205に進める。 (Step S204) The control unit 101 creates a throughput list for all terminal radio stations 13a to 13h, and proceeds to the process in step S205.
 (ステップS205)制御部101は、優先順位に沿ってスループットリストをソートし、置局設計における優先順位リストとして出力する。 (Step S205) The control unit 101 sorts the throughput list according to the priority and outputs it as a priority list in the station design.
 図5は、図4におけるステップS203のスループット導出の処理を示すフローチャートである。
 (ステップS301)制御部101は、全経路の評価を完了したか否かを判定し、全経路の評価が完了していなければ(ステップS301:No)、処理をステップS302に進め、全経路の評価が完了していれば(ステップS301:Yes)、処理をステップS307に進める。
FIG. 5 is a flowchart showing the throughput derivation process in step S203 in FIG.
(Step S301) The control unit 101 determines whether or not the evaluation of all routes has been completed, and if the evaluation of all routes has not been completed (step S301: No), the process proceeds to step S302 and the evaluation of all routes is completed. If the evaluation is completed (step S301: Yes), the process proceeds to step S307.
 (ステップS302)制御部101は、評価経路を選択して、処理をステップS303に進める。
 (ステップS303)制御部101は、記憶部102から三次元地図情報を読み込み、処理をステップS304に進める。
(Step S302) The control unit 101 selects an evaluation path and advances the process to step S303.
(Step S303) The control unit 101 reads the three-dimensional map information from the storage unit 102, and proceeds to the process in step S304.
 (ステップS304)制御部101は、評価経路の無線局の位置と三次元地図情報とを参照して、評価経路の無線伝搬モデルを選択して、処理をステップS305に進める。評価経路には、中継無線局12a~12hへの経路や、端末無線局13a~13hへの経路がある。中継無線局12a~12hの経路は見通しがある状態で設置することが想定され、一方で各戸に設置する端末無線局13a~13hの経路は見通しがないことが想定される。同じ周波数帯の無線方式を利用する場合でも、これらの設置形態に応じて適用する無線伝搬モデルは異なる。 (Step S304) The control unit 101 refers to the position of the radio station of the evaluation path and the three-dimensional map information, selects the radio propagation model of the evaluation path, and proceeds to the process in step S305. The evaluation route includes a route to the relay radio stations 12a to 12h and a route to the terminal radio stations 13a to 13h. It is assumed that the routes of the relay radio stations 12a to 12h are installed in a state where there is a line of sight, while the routes of the terminal radio stations 13a to 13h installed in each house are assumed to have no line of sight. Even when wireless systems of the same frequency band are used, the wireless propagation model to be applied differs depending on these installation forms.
 (ステップS305)制御部101は、ステップS304で選択した無線伝搬モデルを用いて、評価経路の減衰量を導出し、処理をステップS306に進める。
 (ステップS306)制御部101は、ステップS305で算出された減衰量から、伝送速度を決定し、処理をステップS301に戻す。すなわち、適応変調方式では、伝送品質に応じて変調方式が適応的に設定され、その経路のデータレートが変化する。このことから、制御部101は、ステップS305で求められた観測経路の減衰量を基に、観測経路で設定される変調方式を決定し、これに基づいて、観測経路のデータレートを算出する。
(Step S305) The control unit 101 derives the attenuation amount of the evaluation path using the radio propagation model selected in step S304, and advances the process to step S306.
(Step S306) The control unit 101 determines the transmission speed from the attenuation calculated in step S305, and returns the process to step S301. That is, in the adaptive modulation method, the modulation method is adaptively set according to the transmission quality, and the data rate of the path changes. From this, the control unit 101 determines the modulation method set in the observation path based on the attenuation amount of the observation path obtained in step S305, and calculates the data rate of the observation path based on this.
 ステップS301からステップS306を繰り返すことにより、評価経路毎の伝送速度が決定される。全ての評価経路の伝送速度が決定されると、ステップS301で、全経路の評価が完了したと判定されることになり、ステップS307に処理が移る。 By repeating steps S301 to S306, the transmission speed for each evaluation path is determined. When the transmission speeds of all the evaluation routes are determined, it is determined in step S301 that the evaluation of all the routes is completed, and the process proceeds to step S307.
 (ステップS307)制御部101は、全端末無線局13a~13hについての伝送速度の組合わせリストを作成して、処理をステップS308に進める。
 (ステップS308)制御部101は、端末無線局13a~13hから集約無線局11a、11bまでのホップ数から、スループットの低下割合を導出する。すなわち、スループットはマルチホップ数に応じて低下する。制御部101は、あらかじめ伝送速度とホップ数に応じたスループットの低下割合をデータベース化して記憶部102に記憶しておき、このデータベースのデータに基づき、全端末無線局13a~13hについてのスループット低下割合を導出する。
(Step S307) The control unit 101 creates a combination list of transmission speeds for all terminal radio stations 13a to 13h, and proceeds to step S308.
(Step S308) The control unit 101 derives the rate of decrease in throughput from the number of hops from the terminal radio stations 13a to 13h to the aggregated radio stations 11a and 11b. That is, the throughput decreases according to the number of multi-hops. The control unit 101 creates a database of the throughput reduction rate according to the transmission speed and the number of hops in advance and stores it in the storage unit 102, and based on the data of this database, the throughput reduction rate for all terminal radio stations 13a to 13h. Is derived.
 (ステップS309)制御部101は、全ての無線チャネルの組合わせの評価が完了したか否かを判定し、全ての無線チャネルの組合わせの評価が完了していなければ(ステップS309:No)、処理をステップS310に進め、全ての無線チャネルの組合わせの評価が完了していたら(ステップS309:Yes)、処理をステップS315に進める。 (Step S309) The control unit 101 determines whether or not the evaluation of the combination of all radio channels is completed, and if the evaluation of the combination of all radio channels is not completed (step S309: No), The process proceeds to step S310, and when the evaluation of the combination of all radio channels is completed (step S309: Yes), the process proceeds to step S315.
 (ステップS310)制御部101は、評価対象の組合わせで全経路に無線チャネルを割当てて、処理をステップS311に進める。複数の周波数帯域、例えば2.4GHz、4.9GHz、5GHz、60GHz帯を用いる場合は、これらの周波数帯域と各周波数帯域のチャネルから、無線チャネルの割当ての組合わせを作成する。 (Step S310) The control unit 101 allocates wireless channels to all routes according to the combination of evaluation targets, and proceeds to step S311. When using a plurality of frequency bands, for example, 2.4 GHz, 4.9 GHz, 5 GHz, and 60 GHz bands, a combination of radio channel allocation is created from these frequency bands and the channels of each frequency band.
 (ステップS311)制御部101は、記憶部102から三次元地図情報を読み込み、処理をステップS312に進める。 (Step S311) The control unit 101 reads the three-dimensional map information from the storage unit 102, and proceeds to the process in step S312.
 (ステップS312)制御部101は、各無線局の位置と、三次元地図情報とを参照して、評価対象の組合わせの無線チャネルの無線伝搬モデルを選択して、処理をステップS313に進める。このとき、制御部101は、記憶部102から読み出した三次元地図情報から、互いの無線局間に見通しがあるかどうか等の条件を考慮して、無線伝搬モデルを選択する。 (Step S312) The control unit 101 refers to the position of each radio station and the three-dimensional map information, selects the radio propagation model of the combination of radio channels to be evaluated, and proceeds to the process in step S313. At this time, the control unit 101 selects the radio propagation model from the three-dimensional map information read from the storage unit 102 in consideration of conditions such as whether or not there is a line-of-sight between the radio stations.
 (ステップS313)制御部101は、評価対象の組合わせの無線チャネルでの干渉量を導出し、処理をステップS314に進める。すなわち、隣接無線局が同一チャネルを利用する場合、干渉が発生して、スループットの低下が発生する。制御部101は、このことを考慮して、干渉量を導出する。 (Step S313) The control unit 101 derives the amount of interference in the radio channel of the combination to be evaluated, and proceeds to the process in step S314. That is, when adjacent radio stations use the same channel, interference occurs and throughput decreases. The control unit 101 derives the interference amount in consideration of this.
 (ステップS314)制御部101は、干渉量によるスループット低下量を算出して、処理をステップS309に戻す。例えば、制御部101は、同一チャネルを用いる経路間の干渉量が閾値以上の場合には干渉ありと判定する。そして、制御部101は、あらかじめ干渉がある場合のスループットの低下割合をデータベース化して記憶部102に記憶しておき、このデータベースのデータに基づき、全端末無線局13a~13hについてのスループット低下割合を導出する。 (Step S314) The control unit 101 calculates the amount of throughput reduction due to the amount of interference, and returns the process to step S309. For example, the control unit 101 determines that there is interference when the amount of interference between paths using the same channel is equal to or greater than a threshold value. Then, the control unit 101 creates a database of the throughput reduction rate when there is interference in advance and stores it in the storage unit 102, and based on the data of this database, the throughput reduction rate for all terminal radio stations 13a to 13h is calculated. Derived.
 ステップS309からステップS314を繰り返すことにより、チャネルの組合わせ毎のスループットの低下割合が導出される。全てのチャネルの組合わせでのスループットの低下割合が導出されると、ステップS309で、全てのチャネルの組合わせでのスループットの低下割合が導出されたと判定されることになり、ステップS315に処理が移る。 By repeating steps S309 to S314, the rate of decrease in throughput for each channel combination is derived. When the reduction rate of the throughput in the combination of all channels is derived, it is determined in step S309 that the reduction rate of the throughput in the combination of all channels is derived, and the process is performed in step S315. Move.
 (ステップS315)制御部101は、伝送速度、ホップあたりのスループット劣化割合、及び無線チャネルの干渉に伴うスループットの劣化割合から、全端末無線局のスループットの組合わせリストを作成する。そして、このサブルーチン(図4のステップS203)の処理を終了して、図4のメイン処理に復帰する。 (Step S315) The control unit 101 creates a combined list of throughputs of all terminal radio stations from the transmission speed, the throughput deterioration rate per hop, and the throughput deterioration rate due to the interference of the radio channels. Then, the process of this subroutine (step S203 in FIG. 4) is terminated, and the process returns to the main process of FIG.
 以上説明したように、本実施形態では、適応変調方式を用いてマルチホップネットワークを構築した場合でも、スループットを正しく評価でき、最適な置局設計を行うことができる。 As described above, in the present embodiment, even when a multi-hop network is constructed by using the adaptive modulation method, the throughput can be evaluated correctly and the optimum station placement design can be performed.
 なお、制御部101は、スループットの優先順位リストとして出力する際には、全ての端末無線局があらかじめ設定により定められた閾値以上のスループットになるよう置局優先順位を設定しても良い。 When outputting as a throughput priority list, the control unit 101 may set the station priority so that all the terminal radio stations have a throughput equal to or higher than a threshold value set in advance.
 また、端末無線局全てのスループットを足し合わせた値が最大となるよう置局優先順位を設定しても良い。また、上述した複数の置局設計方法を組合わせて置局優先順位を設定しても良い。 Further, the station setting priority may be set so that the value obtained by adding the throughputs of all the terminal radio stations is the maximum. Further, the station placement priority may be set by combining a plurality of station placement design methods described above.
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and the design and the like within a range not deviating from the gist of the present invention are also included.
 本発明は、ネットワークの設計支援技術に適用可能である。 The present invention is applicable to network design support technology.
11a,11b…集約無線局、12a~12h…中継無線局、13a~13h…端末無線局、101 制御部、102…記憶部、103…入力部、104…表示部、202…伝送レート算出部、203…干渉量演算部、204…ホップ数計算部、205…スループット算出部、206…置局優先順位設定部 11a, 11b ... Aggregated radio station, 12a-12h ... Relay radio station, 13a-13h ... Terminal radio station, 101 Control unit, 102 ... Storage unit, 103 ... Input unit, 104 ... Display unit, 202 ... Transmission rate calculation unit, 203 ... Interference amount calculation unit, 204 ... Hop number calculation unit, 205 ... Throughput calculation unit, 206 ... Station priority setting unit

Claims (5)

  1.  適応変調を用いる無線局間を無線接続するマルチホップ無線ネットワークの置局設計装置であって、
     各無線局の位置及び地形情報から各無線局間の伝送路の伝送品質を計算する伝送品質算出部と、
     前記伝送品質から各無線局間の適応変調方式に基づき決定される伝送レートを導出する伝送レート算出部と、
     各無線局間の周波数リソースの割当てによる干渉量を演算する干渉量演算部と、
     経路のホップ数を計算するホップ数計算部と、
     前記伝送レート、ホップあたりのスループット劣化割合、及び周波数リソースの割当てによる干渉量から端末無線局毎のスループットを導出するスループット算出部と、
     前記スループットに応じて置局優先順位を指定する置局優先順位設定部と、を備える置局設計装置。
    It is a station design device for a multi-hop wireless network that wirelessly connects wireless stations that use adaptive modulation.
    A transmission quality calculation unit that calculates the transmission quality of the transmission line between each radio station from the position and topography information of each radio station,
    A transmission rate calculation unit that derives a transmission rate determined from the transmission quality based on an adaptive modulation method between each radio station, and a transmission rate calculation unit.
    An interference amount calculation unit that calculates the amount of interference due to the allocation of frequency resources between each radio station,
    The hop number calculation unit that calculates the number of hops on the route,
    A throughput calculation unit that derives the throughput for each terminal radio station from the transmission rate, the throughput deterioration rate per hop, and the amount of interference due to the allocation of frequency resources.
    A station placement design device including a station placement priority setting unit for designating a station placement priority according to the throughput.
  2.  全ての端末無線局があらかじめ設定により定められた閾値以上のスループットになるよう置局優先順位を設定する請求項1に記載の置局設計装置。 The station placement design device according to claim 1, wherein the station placement priority is set so that all terminal radio stations have a throughput equal to or higher than a threshold value set in advance.
  3.  前記端末無線局全てのスループットを足し合わせた値が最大となるよう置局優先順位を設定する請求項1に記載の置局設計装置。 The station placement design device according to claim 1, wherein the station placement priority is set so that the sum of the throughputs of all the terminal radio stations is maximized.
  4.  前記置局設計方法を組合わせて置局優先順位を設定する請求項2又は3に記載の置局設計装置。 The station placement design device according to claim 2 or 3, wherein the station placement priority is set by combining the station placement design methods.
  5.  適応変調を用いる無線局間を無線接続するマルチホップ無線ネットワークの置局設計方法であって、
     各無線局の位置及び地形情報から各無線局間の伝送路の伝送品質を計算するステップと、
     前記伝送品質から各無線局間の適応変調方式に基づき決定される伝送レートを導出するステップと、
     各無線局間の周波数リソースの割当てによる干渉量を演算するステップと、
     経路のホップ数を計算するステップと、
     前記伝送レート、ホップあたりのスループット劣化割合及び周波数リソースの割当てによる干渉量から端末無線局毎のスループットを導出するステップと、
     前記スループットに応じて置局優先順位を指定するステップと
     を有する置局設計方法。
    It is a station design method for a multi-hop wireless network that wirelessly connects wireless stations using adaptive modulation.
    Steps to calculate the transmission quality of the transmission line between each radio station from the position and topography information of each radio station,
    The step of deriving the transmission rate determined based on the adaptive modulation method between each radio station from the transmission quality, and
    Steps to calculate the amount of interference due to the allocation of frequency resources between each radio station,
    Steps to calculate the number of hops on the route,
    The step of deriving the throughput for each terminal radio station from the transmission rate, the throughput deterioration rate per hop, and the amount of interference due to the allocation of frequency resources, and
    A stationing design method having a step of designating a stationing priority according to the throughput.
PCT/JP2020/024153 2020-06-19 2020-06-19 Station installation design device and station installation design method WO2021255922A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022531222A JP7410439B2 (en) 2020-06-19 2020-06-19 Station location design device and station location design method
PCT/JP2020/024153 WO2021255922A1 (en) 2020-06-19 2020-06-19 Station installation design device and station installation design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/024153 WO2021255922A1 (en) 2020-06-19 2020-06-19 Station installation design device and station installation design method

Publications (1)

Publication Number Publication Date
WO2021255922A1 true WO2021255922A1 (en) 2021-12-23

Family

ID=79267711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024153 WO2021255922A1 (en) 2020-06-19 2020-06-19 Station installation design device and station installation design method

Country Status (2)

Country Link
JP (1) JP7410439B2 (en)
WO (1) WO2021255922A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218913A (en) * 2008-03-11 2009-09-24 Mitsubishi Electric Corp Network condition determination apparatus, and network condition determination program
JP2014138268A (en) * 2013-01-16 2014-07-28 Toshiba Corp Terminal movement destination determination device, simulation device, mobile terminal device, terminal movement destination determination method and program
WO2016152078A1 (en) * 2015-03-20 2016-09-29 日本電気株式会社 Site position priority determination device and method
JP2018107504A (en) * 2016-12-22 2018-07-05 株式会社日立製作所 Communication system, communication management method, and network management device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218913A (en) * 2008-03-11 2009-09-24 Mitsubishi Electric Corp Network condition determination apparatus, and network condition determination program
JP2014138268A (en) * 2013-01-16 2014-07-28 Toshiba Corp Terminal movement destination determination device, simulation device, mobile terminal device, terminal movement destination determination method and program
WO2016152078A1 (en) * 2015-03-20 2016-09-29 日本電気株式会社 Site position priority determination device and method
JP2018107504A (en) * 2016-12-22 2018-07-05 株式会社日立製作所 Communication system, communication management method, and network management device

Also Published As

Publication number Publication date
JP7410439B2 (en) 2024-01-10
JPWO2021255922A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
US7672686B2 (en) Method for adjusting a transmitting power in a wireless communications network
US7315533B2 (en) Radio plan generator
US8861390B2 (en) Estimated transmission overhead (ETO) metrics for variable data rate communication links
Lu et al. Relay station placement strategy in IEEE 802.16 j WiMAX networks
JP5351241B2 (en) Apparatus and method for allocating resources to nodes in a communication system using repetitive resource weight update
Meyer auf de Heide et al. Energy, congestion and dilation in radio networks
JP2005535235A (en) Link quality monitoring in mobile ad hoc networks
CN104737462A (en) Dynamic multi-cell clustering for downlink COMP in a wireless communication network
JP2003018091A (en) Radio data communication system, radio data communication method and program thereof
Sharma et al. Channel selection under interference temperature model in multi-hop cognitive mesh networks
JP5429761B1 (en) Radio channel assignment method, communication system, and centralized control station apparatus
JP2003124876A (en) Method and program for setting transmission power of tree-type multi-top wireless network
JP6292296B2 (en) Frequency allocation apparatus, frequency allocation method, and radio communication system
Zhou et al. Partially overlapping channel assignment for WLANs using SINR interference model
WO2021255922A1 (en) Station installation design device and station installation design method
Son et al. Resource allocation based on clustering for D2D communications in underlaying cellular networks
WO2012127820A1 (en) Communication delay time derivation method, communication terminal and communication delay time derivation program
GB2552960A (en) Wireless communications networks
Passos et al. Robust Advanced Metering Infrastructures and Networks for Smart Grid
Quach et al. Overlap regions and grey model-based approach for interference avoidance in cognitive radio networks
Uy et al. Predicting the tide with genetic programming and semantic-based crossovers
Chen et al. QF-Geo: Capacity Aware Geographic Routing using Bounded Regions of Wireless Meshes
KR101409253B1 (en) Method for potential routing, method for potential scheduling and mesh node
Ahmed et al. Energy efficient mobile relay selection for two-hop wireless networks
JP2010041285A (en) Multiband radio communication system and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531222

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940972

Country of ref document: EP

Kind code of ref document: A1