WO2021254351A1 - 用于管理供电的方法和装置、供电设备以及计算机可读介质 - Google Patents

用于管理供电的方法和装置、供电设备以及计算机可读介质 Download PDF

Info

Publication number
WO2021254351A1
WO2021254351A1 PCT/CN2021/100194 CN2021100194W WO2021254351A1 WO 2021254351 A1 WO2021254351 A1 WO 2021254351A1 CN 2021100194 W CN2021100194 W CN 2021100194W WO 2021254351 A1 WO2021254351 A1 WO 2021254351A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
port
receiving device
data port
Prior art date
Application number
PCT/CN2021/100194
Other languages
English (en)
French (fr)
Inventor
卢清
要长鑫
付世勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021254351A1 publication Critical patent/WO2021254351A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power

Definitions

  • the present disclosure generally relates to power supply technology, and in particular to a method and apparatus for managing power supply, power supply equipment, and computer-readable media.
  • Power over Ethernet (PoE) technology is a technology that supplies power to powered devices through twisted-pair Ethernet cables. Power over Ethernet technology can ensure the normal operation of the existing communication network while ensuring the safety of the structured wiring of the Ethernet. Other advantages of Power over Ethernet technology include: simplicity and space saving, the power receiving equipment can be moved at will, and the cost is minimized.
  • a complete Ethernet power supply system can include two parts: Power Sourcing Equipment (PSE) and Powered Device (PD).
  • the power supply device is a device that provides power to the Ethernet client and is also the manager of the entire Ethernet power supply process.
  • An example of a power supply device is a switch that supports the power supply over Ethernet capability, referred to as a power supply over Ethernet switch.
  • Powered equipment is the load that receives power from the power supply equipment, that is, the client equipment of the Ethernet power supply system, such as Internet (IP) phones, Internet video surveillance equipment, access control equipment, building management equipment, cloud terminal equipment, and wireless LAN equipment , Various entertainment equipment, etc.
  • IP Internet
  • the power supply device that supports Power over Ethernet allows the power supply to be coupled with the data signal to be transmitted to the opposite power receiving device through the twisted pair cable.
  • the traditional power-over-Ethernet device may not be able to supply power to the powered device well, thereby affecting the performance and user experience of the power-over-Ethernet system.
  • the present disclosure relates to a technical solution for managing power supply, and specifically provides a method and device for managing power supply, power supply equipment, and computer-readable media.
  • a method for managing power supply includes: the power supply device receives power supply information of the power receiving device from the power receiving device via a data port, and the data port is paired with the power supply port and is a physical port separated from each other.
  • the method further includes: the power supply device supplies power to the power receiving device based on the power supply information via the power supply port.
  • the data port of the power supply device is connected to the power receiving device through the optical fiber in the photoelectric composite cable, and the power supply port of the power supply device is connected to the power receiving device through the power supply line in the photoelectric composite cable.
  • the method further includes: the power supply device stores configuration information, and the configuration information indicates the pairing relationship between the power supply port and the data port. In this way, the power supply device can conveniently and efficiently manage the pairing relationship between the power supply port and the data port.
  • the method further includes: in response to the power receiving device being connected to the power supply port, the power supply device searches for a data port paired with the power supply port in the configuration information. In this way, the power supply device can timely determine the data port corresponding to the power supply port to which the power receiving device is connected, so as to obtain the power supply information of the power receiving device from the data port.
  • the configuration information is user editable. In this way, the pairing relationship between the power supply port and the data port of the power supply device can be determined by the user according to the specific application environment and scenario, so that the use flexibility of the power supply device can be improved.
  • the power supply information includes at least one of the following: an indication for adjusting the power supply of the power supply port, and the power supply priority of the powered device. Therefore, the power supply device can adjust the power supply of the power supply port according to the request of the power receiving device, and can also provide the power supply guarantee to the power receiving device according to the power supply priority of the power receiving device, so as to better meet the needs of the power receiving device. Electricity demand.
  • the method further includes: the power supply device sends the capability information of the power supply port to the power receiving device via the data port.
  • the powered device can request appropriate power supply from the power supply device according to the power supply capability of the power supply port, which is beneficial for the power supply device and the powered device to efficiently negotiate a reasonable power supply power.
  • the method further includes: the power supply device detecting that the power receiving device is connected to the power supply port. Therefore, the power supply device can discover in time that the power receiving device has been connected to the power supply port, and then provide power to the power receiving device accordingly and perform power supply management on the power receiving device via the paired data port.
  • a power supply device in a second aspect of the present disclosure, includes: a power supply port, a data port, a processor and a memory.
  • the data port is paired with the power supply port and is a separate physical port.
  • the memory stores computer program instructions.
  • the memory and the computer program instructions are configured to, together with the processor, cause the power supply device to receive power supply information of the power receiving device from the power receiving device via the data port.
  • the memory and the computer program instructions are also configured to, together with the processor, cause the power supply device to supply power to the power receiving device via the power supply port and based on the power supply information.
  • the power supply device of the present disclosure can improve the performance of supplying power to the power receiving device when the data port is separated from the power supply port.
  • the data port of the power supply device is connected to the power receiving device through the optical fiber in the photoelectric composite cable, and the power supply port of the power supply device is connected to the power receiving device through the power supply line in the photoelectric composite cable.
  • the memory is also used to store configuration information, which indicates the pairing relationship between the power supply port and the data port. In this way, the power supply device can conveniently and efficiently manage the pairing relationship between the power supply port and the data port.
  • the memory and the computer program instructions are also configured to, together with the processor, cause the power supply device to respond to the power receiving device being connected to the power supply port, and search for a data port paired with the power supply port in the configuration information. In this way, the power supply device can timely determine the data port corresponding to the power supply port to which the power receiving device is connected, so as to obtain the power supply information of the power receiving device from the data port.
  • the configuration information is user editable. In this way, the pairing relationship between the power supply port and the data port of the power supply device can be determined by the user according to the specific application environment and scenario, so that the use flexibility of the power supply device can be improved.
  • the power supply information includes at least one of the following: an indication for adjusting the power supply of the power supply port, and the power supply priority of the powered device. Therefore, the power supply device can adjust the power supply of the power supply port according to the request of the power receiving device, and can also provide the power supply guarantee to the power receiving device according to the power supply priority of the power receiving device, so as to better meet the needs of the power receiving device. Electricity demand.
  • the memory and the computer program instructions are also configured to, together with the processor, cause the power supply device to send the power supply port capability information to the power receiving device via the data port.
  • the powered device can request appropriate power supply from the power supply device according to the power supply capability of the power supply port, which is beneficial for the power supply device and the powered device to efficiently negotiate a reasonable power supply power.
  • the power supply device further includes a detection circuit for detecting that the power receiving device is connected to the power supply port. Therefore, the power supply device can discover in time that the power receiving device has been connected to the power supply port, and then provide power to the power receiving device accordingly and perform power supply management on the power receiving device via the paired data port.
  • an apparatus for managing power supply includes: a component for receiving power supply information of the power receiving device from the power receiving device via a data port, the data port is paired with the power supply port and is a physical port separated from each other.
  • the device also includes a component for supplying power to the powered device based on the power supply information via the power supply port.
  • the data port of the power supply device is connected to the power receiving device through the optical fiber in the photoelectric composite cable, and the power supply port of the power supply device is connected to the power receiving device through the power supply line in the photoelectric composite cable.
  • the device further includes: a component for storing configuration information, and the configuration information indicates the pairing relationship between the power supply port and the data port. In this way, the power supply device can conveniently and efficiently manage the pairing relationship between the power supply port and the data port.
  • the apparatus further includes: in response to the power receiving device being connected to the power supply port, a component for searching the data port paired with the power supply port in the configuration information.
  • the power supply device can timely determine the data port corresponding to the power supply port to which the power receiving device is connected, so as to obtain the power supply information of the power receiving device from the data port.
  • the configuration information is user editable. In this way, the pairing relationship between the power supply port and the data port of the power supply device can be determined by the user according to the specific application environment and scenario, so that the use flexibility of the power supply device can be improved.
  • the power supply information includes at least one of the following: an indication for adjusting the power supply of the power supply port, and the power supply priority of the powered device. Therefore, the power supply device can adjust the power supply of the power supply port according to the request of the power receiving device, and can also provide the power supply guarantee to the power receiving device according to the power supply priority of the power receiving device, so as to better meet the needs of the power receiving device. Electricity demand.
  • the apparatus further includes: a component for sending capability information of the power supply port to the powered device via the data port.
  • the powered device can request appropriate power supply from the power supply device according to the power supply capability of the power supply port, which is beneficial for the power supply device and the powered device to efficiently negotiate a reasonable power supply power.
  • the device further includes: a component for detecting that the powered device is connected to the power supply port. Therefore, the power supply device can discover in time that the power receiving device has been connected to the power supply port, and then provide power to the power receiving device accordingly and perform power supply management on the power receiving device via the paired data port.
  • a computer-readable medium stores instructions that, when executed, cause the machine to perform the method according to the first aspect.
  • the computer-readable medium stores instructions that, when executed, cause the machine to perform the method according to the first aspect.
  • FIG. 1 shows a schematic diagram of an example system environment including a power supply device and a power receiving device according to an embodiment of the present disclosure.
  • Figure 2 shows a schematic diagram of an example optoelectronic composite cable according to an embodiment of the present disclosure.
  • Fig. 3 shows a schematic diagram of another example optoelectronic composite cable according to an embodiment of the present disclosure.
  • FIG. 4 shows example configuration information indicating a pairing relationship between a power supply port and a data port according to an embodiment of the present disclosure.
  • FIG. 5 shows a flowchart of an example method for managing power supply according to an embodiment of the present disclosure.
  • FIG. 6A shows a schematic diagram of an example communication process in which a power supply device and a power receiving device negotiate power supply power according to an embodiment of the present disclosure.
  • FIG. 6B shows a schematic diagram of another example communication process for a power supply device and a power receiving device to negotiate power supply power according to an embodiment of the present disclosure.
  • FIG. 7 shows a schematic diagram of an example communication process in which a power supply device and a power receiving device negotiate a power supply priority according to an embodiment of the present disclosure.
  • FIG. 8 shows a flowchart of an example operation process of the power supply device when the pairing relationship between the power supply port and the data port is configurable according to an embodiment of the present disclosure.
  • Figure 9 shows a block diagram of a power supply device with an example port arrangement according to an embodiment of the present disclosure.
  • FIG. 10 shows a block diagram of a power supply device with another example port arrangement according to an embodiment of the present disclosure.
  • FIG. 11 shows a block diagram of an example apparatus for managing power supply according to an embodiment of the present disclosure.
  • Figure 12 shows a schematic diagram of an example computer readable medium according to an embodiment of the present disclosure.
  • the term “including” and similar terms should be understood as open-ended inclusion, that is, “including but not limited to”.
  • the term “based on” should be understood as “based at least in part on.”
  • the term “one embodiment” or “the embodiment” should be understood as “at least one embodiment.”
  • the terms “first”, “second”, etc. can refer to different or the same objects, and are only used to distinguish the referred objects, and do not imply the specific spatial order, temporal order, or importance of the referred objects. Sexual order, etc. The following may also include other explicit and implicit definitions.
  • determining encompasses a variety of actions. For example, “determining” may include computing, calculating, processing, exporting, investigating, searching (for example, searching in a table, database, or another data structure), ascertaining, and so on. In addition, “determining” may include receiving (for example, receiving information), accessing (for example, accessing data in a memory), and the like. In addition, “determining” may include analyzing, selecting, selecting, establishing, and so on.
  • circuit refers to one or more of the following: (a) only hardware circuit implementation (such as only analog and/or digital circuit implementation); and (b) a combination of hardware circuit and software, Such as (if applicable): (i) the combination of analog and/or digital hardware circuits and software/firmware, and (ii) any part of the hardware processor and software (including working together to make devices such as power supply equipment or other electronic equipment) Digital signal processors, software, and memory that perform various functions); and (c) hardware circuits and/or processors, such as microprocessors or parts of microprocessors, which require software (for example, firmware) for operation, but There can be no software when no software is needed for operation.
  • circuit used herein also covers only a hardware circuit or a processor (or multiple processors), or a part of a hardware circuit or a processor, or an implementation of software or firmware accompanying it.
  • circuit also covers baseband integrated circuits or processor integrated circuits, power supply equipment, power receiving equipment, or similar integrated circuits in other equipment.
  • the traditional power-over-Ethernet device may not be able to supply power to the powered device well, thereby affecting the performance and user experience of the power-over-Ethernet system.
  • the traditional power-over-Ethernet device supplies power to and communicates with the powered device via the same physical port.
  • the physical port serves not only as the power supply port of the power supply device, but also as the data port of the power supply device.
  • the power supply equipment can go through the process of detection, voltage classification, power-on and start from identifying the power-receiving device to powering the power-receiving device.
  • the power-supplying device After the power-on of the power-receiving device is completed, the power-supplying device will enter the power supply management state for the power-receiving device.
  • the power supply device and the power receiving device can also support the Link Layer Discovery Protocol (LLDP), and can supply power through the Media Dependent Interface (MDI) Power negotiation.
  • LLDP Link Layer Discovery Protocol
  • MDI Media Dependent Interface
  • the data port and the power supply port may be separate physical ports.
  • some power-over-Ethernet switches physically separate the data port and the power supply port into two ports to connect to the powered device through optical fibers and copper cables respectively.
  • Such power-over-Ethernet switches can also be called photoelectric composite switches.
  • the traditional power supply equipment can only complete the detection, classification and power-on of the power receiving equipment through current analysis on the power supply line.
  • the power supply device After the powered device is powered on, the power supply device will allocate a fixed power supply (for example, the rated power after classification) to the powered device and cannot be adjusted. This may lead to other power receiving devices connected to the power supply device.
  • the power supply device has no remaining power and cannot be powered on.
  • the power supply device when the data port is separated from the power supply port, according to the traditional Power over Ethernet protocol, the power supply device will not be able to obtain the power supply information of the power receiving device from the power receiving device, let alone discovering the relationship between the protocol and the power receiving device through the link layer. Negotiation of power supply power, and registration of power supply priority, etc. Therefore, the power supply equipment cannot perform effective power supply management on the power receiving equipment. Similar problems and deficiencies also exist in other power supply equipment besides Ethernet power supply equipment.
  • the embodiments of the present disclosure provide a technical solution for managing power supply.
  • the physically separated power supply port and the data port of the power supply device can be paired, so that the power receiving device connected to the power supply port can provide power to the power supply device via the data port paired with the power supply port Power supply information of the device. Based on the power supply information of the powered device received on the data port, the power supply device can correspondingly supply power to the powered device via the power supply port. In this way, the power supply device can achieve reasonable and efficient power supply for the power receiving device, so that the power supply performance of the power supply device can be improved.
  • FIG. 1 shows a schematic diagram of an example system environment 100 including a power supply device 110 and power receiving devices 120 and 130 according to an embodiment of the present disclosure.
  • the power supply device 110 may be any device that can provide power to a powered device.
  • the power supply device 110 may be a power supply device that complies with the Power over Ethernet protocol, which can supply power to the Ethernet client device (ie, the Ethernet power receiving device), and it can also be the power supply for the entire power over Ethernet process. Manager.
  • the power supply device 110 may be a switch that complies with the Power over Ethernet protocol, such as a photoelectric composite switch.
  • the power supply device 110 may also be a power supply device that follows other power supply protocols currently known or developed in the future, or may also be a non-standard power supply device. As shown in FIG. 1, the power supply device 110 may have multiple data ports 112-1 to 112-N (herein may be collectively referred to as data ports 112) and multiple power supply ports 114-1 to 114-N (herein may be collectively referred to as data ports 112). Power supply port 114), where N is a natural number.
  • the term "port” generally refers to an entrance or exit provided on a device or device for communicating with or communicating with the outside, and it can usually be connected to other devices or devices via cables or connectors. In this sense, "port” in this document can have the same technical meaning as “interface” and can be used interchangeably.
  • the data port 112 of the power supply device 110 may be any form of port used to transmit data
  • the power supply port 114 may be any form of port used to provide power.
  • the data port 112 may include an optical signal-based optical fiber port, for example, an FC-type optical fiber port, an SC-type optical fiber port, an ST-type optical fiber port, an LC-type optical fiber port, and so on.
  • the data port 112 may also be a data port based on electrical signals or other forms of signals.
  • the power port 114 may include a standard 8-bit modular interface, such as an interface for receiving an RJ45 connector, and so on.
  • the power supply port 114 may also be a port that conforms to other power supply standards currently known or developed in the future, or may also be a non-standard port.
  • the data port 112 and the power supply port 114 of the power supply device 110 may be separate physical ports from each other.
  • the data port 112-1 in the data port 112 and the power supply port 114-1 in the power supply port 114 may be separate physical ports. That is, the data port 112-1 and the power supply port 114-1 may be provided by two physical ports, instead of being provided by the same physical port.
  • the power supply device 110 may also include one or more physical ports (not shown) that have both a data port function and a power supply port function. In other words, each of such one or more physical ports can be used as both a data port and a power supply port. Therefore, such data ports and power supply ports share physical ports, that is, they are provided by the same physical port.
  • the data port 112-1 of the power supply device 110 may be connected to the data port 122 of the power receiving device 120 through a cable 140, and the power supply port 114-1 may be connected to the data port 122 of the power receiving device 120 through a cable 145.
  • the power receiving port 124 can be used for data transmission and power transmission between the power supply device 110 and the power receiving device 120 at the same time.
  • the data port 112-2 of the power supply device 110 may be connected to the data port 132 of the power receiving device 130 through a cable 150, and the power supply port 114-2 may be connected to the power receiving port 134 of the power receiving device 130 through a cable 155. .
  • the powered devices 120 and 130 may be any devices capable of receiving power from a power supply device.
  • the powered devices 120 and 130 may be powered devices that comply with the Power over Ethernet protocol, that is, devices used to receive power in a power over Ethernet system, which are loads that receive power, also called Ethernet The client equipment of the network power supply system.
  • Ethernet powered devices include, but are not limited to: network cameras, wireless access point devices, Internet phone devices, Internet video surveillance devices, access control devices, building management devices, cloud terminal devices, wireless LAN devices, small homes (SOHO) ) Switches, smart lighting equipment, mobile phone chargers, entertainment equipment, etc.
  • the powered devices 120 and 130 may also be powered devices that follow other power supply protocols currently known or developed in the future, or may also be non-standard powered devices.
  • the data port 122 and the power receiving port 124 of the power receiving device 120 may be separate physical ports, and the data port 132 and the power receiving port 134 of the power receiving device 130 may also be separate physical ports. port.
  • the cables 140 and 150 may be any cables suitable for data transmission, and the cables 145 and 155 may be any cables suitable for power transmission.
  • the cables 140 and 150 may be optical fiber cables for transmitting optical signals, and the cables 145 and 155 may be metal cables for transmitting power.
  • the powered device 120 may be connected to the data port 112-1 through an optical fiber in an optoelectronic composite cable (OCC), and connected to the power supply port 114 through a power supply line in the optoelectronic composite cable. 1.
  • OCC optoelectronic composite cable
  • an optoelectronic composite cable is a composite cable that uses optical fiber for data transmission, can support high data rates (for example, up to 100 gigabits per second (Gbps)), and uses power cables (For example, copper cables) for power transmission, which can support long-distance (for example, 200 meters or more) power transmission. Therefore, by using a photoelectric composite cable to connect the power supply device and the power receiving device, high-speed data transmission and long-distance power transmission can be realized between the power supply device and the power receiving device at the same time.
  • the power supply line in the photoelectric composite cable may be in the form of a twisted pair or other cable form that can be used to transmit power.
  • power supply equipment that supports Power over Ethernet can support a power supply capacity of up to 100 meters and 90 watts, while supporting 10Gbps data transmission.
  • the wireless LAN device as a powered device supports a new generation of communication technology, its demand for access speed has increased from 10Gbps to 25Gbps, which has led to a connection between the LAN switch supporting the power-over-Ethernet technology and the access point device.
  • the wiring distance is severely limited.
  • the use of photoelectric composite cables can well solve the inherent contradiction between the twisted pair data transmission distance and the transmission rate. It should be noted that the photoelectric composite cable in the embodiments of the present disclosure should be understood in a broad sense.
  • the photoelectric composite cable can be a separate body of the optical fiber and the cable, that is, it includes a separate cable and a separate optical fiber.
  • the photoelectric composite cable may also be a cable unit formed by combining optical fibers and cables. The two examples of the optoelectronic composite cable in the embodiment of the present disclosure are described below with reference to FIGS. 2 and 3 respectively.
  • FIG. 2 shows a schematic diagram of an example optoelectronic composite cable 200 according to an embodiment of the present disclosure.
  • the photoelectric composite cable 200 includes a separate optical fiber 215 and a power supply line 245.
  • the optical fiber 215 may include optical fiber lines 210 and 220, which may be respectively used for the propagation of optical signals in two different directions.
  • the optical fiber 215 may also include only one optical fiber line for optical signal propagation in two different directions, for example, by means of frequency division multiplexing.
  • the power supply line 245 may be a two-core power supply line, which may include a negative power supply line 240 and a positive power supply line 250, and may be surrounded and protected by a sheath 270. In other embodiments, the power supply line 245 may also have any other suitable power supply line structure. It will be understood that the optical fiber 215 may also be protected by a sheath, but it is not shown in FIG. 2 for brevity. In some embodiments, referring to FIGS.
  • the powered device 120 may be connected to the data port 112-1 of the power supply device 110 via the optical fiber 215 and the optical fiber connector 230, and via the power supply line 245 and the power supply connector (also called The power supply connector) 260 is connected to the power supply port 114-1 of the power supply device 110.
  • the optical fiber connector 230 may be an optical fiber LC type connector
  • the power supply connector 260 may be an RJ45 type connector.
  • the optical fiber connector 230 may also be any other type of optical fiber connector
  • the power supply connector 260 may also be any other type of power supply connector.
  • FIG. 3 shows a schematic diagram of another example optoelectronic composite cable 300 according to an embodiment of the present disclosure.
  • the photoelectric composite cable 300 includes an optical fiber 315 and a power supply line 345 that are wrapped together by a sheath 370.
  • the optical fiber 315 of the optoelectronic composite cable 300 may also include two optical fiber lines 310 and 320, which may be respectively used for optical signal propagation in two different directions.
  • the optical fiber 315 may include only one optical fiber line for optical signal propagation in two different directions, for example, by means of frequency division multiplexing.
  • the power supply line 345 of the photoelectric composite cable 300 may also be a two-core power supply line, which may include a negative line 340 and a positive line 350.
  • the power supply line 345 may also have any other suitable power supply line structure.
  • the powered device 120 may be connected to the data port 112-1 of the power supply device 110 via the optical fiber 315 and the optical fiber connector 330, and connected to the data port 112-1 of the power supply device 110 via the power supply line 345 and the power connector 360 The power supply port 114-1 of the power supply device 110.
  • the optical fiber connector 330 may be an optical fiber LC type connector, and the power supply connector 360 may be an RJ45 type connector.
  • the optical fiber connector 330 may also be any other type of optical fiber connector, and the power supply connector 360 may also be any other type of power supply connector.
  • each data port 112 is connected to each The power supply ports 114
  • the power supply ports 114 may have a pairing relationship, so as to be connected to one or more power receiving devices.
  • the "pairing" between the power supply port and the data port means that the power supply port and the data port can cooperate to be connected to the same powered device. For example, information or data related to a certain power supply port (for example, power supply parameters) can be transmitted through a data port paired with the power supply port.
  • power supply parameters for example, power supply parameters
  • the powered device can send power supply information about the powered device to the power supply device 110 via the data port, or from the power supply device 110 Receive data or information about the power supply port.
  • the powered device 120 can exchange information about the power supply port 114-1 (or the power supply device 110) with the power supply device 110 via the data port 112-1. Power supply information of the power receiving device 120).
  • the powered device can communicate with the power supply device 110 via the data port, or via the power supply The port receives preliminary power supply from the power supply device 110.
  • the power receiving device cannot exchange power supply information about the power supply port (or the power receiving device) with the power supply device 110 via the data port. Because even if the power supply device 110 receives such power supply information, since the data port and the power supply port are not paired, the power supply device 110 cannot determine which power supply port the power supply information is about. For example, in the example of FIG.
  • the powered device 120 can communicate with the power supply device 110 via the data port 112-1, but cannot communicate via the data port 112-1.
  • the power supply device 110 cannot determine which power supply port the power supply information of the power receiving device 120 received via the data port 112-1 is used for, nor can it determine which power supply port's power supply information is provided to the power receiving device via the data port 112-1.
  • Equipment 120 In some embodiments, the power supply device 110 may use configuration information to manage the pairing relationship between the power supply port 114 and the data port 112. Such an embodiment is described below with reference to FIG. 4.
  • FIG. 4 shows example configuration information 400 indicating the pairing relationship between the power supply port 114 and the data port 112 according to an embodiment of the present disclosure.
  • the configuration information (also referred to as a configuration file) 400 may take the form of a table, and may include a power supply port column 410 and a data port column 420.
  • the power supply port and the data port numbered in the same row are the paired power supply port and data port.
  • the power supply port 114-1 is paired with the data port 112-1
  • the power supply port 114-2 is paired with the data port 112-2
  • the power supply port 114-3 is paired with the data port 112-N.
  • the power supply device 110 can easily determine the pairing relationship between the power supply port 114 and the data port 112 by querying the entries in the configuration information 400, search for a data port paired with a certain power supply port, or search for a data port paired with a certain power supply port. Data port paired with power supply port, etc. Therefore, by using the configuration information 400, the power supply device 110 can conveniently and efficiently manage the pairing relationship between the power supply port 114 and the data port 112.
  • configuration information 400 having the table format depicted in FIG. 4 is only exemplary, and is not intended to limit the scope of the present disclosure in any way.
  • the configuration information 400 may have any other appropriate form, as long as it can be used to record the pairing relationship between the power port 114 and the data port 112.
  • the organization of the configuration information 400 in the order of the numbers of the power supply ports from small to large is only exemplary.
  • the configuration information 400 may also be organized according to the number of the data port, or organized according to other order of the number of the power supply port or the number of the data port, and so on.
  • the configuration information 400 may be stored inside the power supply device 110, for example, in the memory of the power supply device 110, so that the power supply device 110 can access the configuration information 400 faster.
  • the configuration information 400 may also be stored in an external storage device accessible by the power supply device 110, so that the storage burden of the power supply device 110 can be reduced, and the cost of the power supply device 110 can be reduced.
  • the configuration information 400 is user editable.
  • the user of the power supply device 110 can pair a certain power supply port of the power supply device 110 with a certain data port by editing the content of the configuration information 400 according to the specific application environment and scene of the power supply device 110.
  • the user of the power supply device 110 can edit the configuration in the user interface of the power supply device 110 The content of the information 400, thereby manually setting the pairing relationship between the data port 112-1 and the power supply port 114-1. In this way, the user of the power supply device 110 can arbitrarily pair the data port 112 and the power supply port 114, which greatly improves the use flexibility of the power supply device 110.
  • the configuration information 400 may also be set to be uneditable by the user. In other words, there is a default fixed configuration relationship between the data port 112 and the power supply port 114 of the power supply device 110. In this case, in an alternative embodiment, the power supply device 110 may not use the configuration information 400 to manage the pairing relationship between the data port 112 and the power supply port 114 because their pairing relationship is fixed.
  • the fixedly paired data port and the power supply port may be easily identifiable.
  • the data port fixedly paired with the power supply port may be a data port located above the power supply port. Specifically, in the example of FIG.
  • the data port 112-1 may have a fixed pairing relationship with the power supply port 114-1
  • the data port 112-2 may have a fixed pairing relationship with the power supply port 114-2
  • data The port 112-N-1 may have a fixed pairing relationship with the power supply port 114-N-1
  • the data port 112-N may have a fixed pairing relationship with the power supply port 114-N.
  • fixed pairing when the user uses a cable to connect the powered device to the power supply port and the data port of the power supply device 110, the user may need to connect according to the fixed pairing relationship between the power supply port 114 and the data port 112. For example, assuming that the data port 112-1 and the power supply port 114-1 in FIG. 1 have a fixed pairing relationship, they may need to be connected to the same power receiving device, for example, the power receiving device 120.
  • FIGS. 1 to 4 only schematically show devices, units, modules, components, or information related to embodiments of the present disclosure in the example system environment 100.
  • the example system environment 100 may also include other devices, units, modules, components, or information for other functions.
  • the specific numbers of devices, units, modules, components, or information shown in FIGS. 1 to 4 are only illustrative, and are not intended to limit the scope of the present disclosure in any way.
  • the example system environment 100 may include any suitable number of power supply devices, powered devices, power supply ports of the power supply device, data ports of the power supply device, or cables, and so on.
  • the embodiments of the present disclosure are not limited to the specific devices, units, modules, components, or information depicted in FIGS. 1 to 4, but are generally applicable to any technical environment in which a power supply device provides power to a power receiving device.
  • a method for managing power supply according to an embodiment of the present disclosure will be described with reference to FIG. 5.
  • FIG. 5 shows a flowchart of an example method 500 for managing power supply according to an embodiment of the present disclosure.
  • the example method 500 may be implemented by the power supply device 110 in the example system environment 100, for example, may be implemented by the processor or processing unit of the power supply device 110.
  • the example method 500 may also be implemented by a power supply device independent of the example system environment 100.
  • the example method 500 will be discussed below with reference to FIG.
  • the power supply device 110 may receive the power supply information 160 of the powered device 120 from the powered device 120 via the data port 112-1.
  • the data port 112-1 and the power supply port 114-1 to which the powered device 120 is connected are paired. That is, the power supply device 110 may determine that the data port 112-1 and the power supply port 114-1 are used in conjunction and connected to the same power receiving device. Therefore, the power supply device 110 can use the data port 112-1 to exchange information with the power receiving device 120 to manage the power supply of the power supply port 114-1.
  • the power supply device 110 may receive the power supply information 160 of the power receiving device 120 via the data port 112-1, so as to manage the power supply to the power receiving device 120, that is, to manage the power supply on the power supply port 114-1.
  • the power supply device 110 can be received from the powered device 120, and the power supply of the power supply port 114-1 can be managed according to the power supply information 160, without querying whether there is a pairing relationship between the data port 112-1 and the power supply port 114-1.
  • the power supply device 110 may require Find in the configuration information 400 whether there is a pairing relationship between the data port 112-1 and the power supply port 114-1. If such a pairing relationship exists, the power supply device 110 may use the power supply information 160 to manage the power supply of the power supply port 114-1. Such an example will be described in detail later with reference to FIG. 8.
  • the power supply information 160 may include an indication for adjusting the power supply of the power supply port 114-1.
  • the powered device 120 may request the power supply device 110 in the power supply information 160 to adjust the power supply of the power supply port 114-1.
  • the power supply of the power supply port 114-1 refers to the available power allocated to the power supply port 114-1 by the power supply device 110, that is, the maximum available power allocated to the power receiving device 120.
  • the powered device 120 may not draw the available maximum power, the power supply device 110 still needs to "reserve" the available maximum power for the power supply port 114-1, and cannot be allocated to other power supply ports.
  • the power receiving device 120 can consume power on demand within 30 watts of power. If the power used by the powered device 120 exceeds 30 watts, the power supply device 110 may stop power supply to the powered device 120. However, in some cases, the powered device 120 may indeed need to consume higher power than the current power supply of the power supply port 114-1. Therefore, the power receiving device 120 may include a request for increasing the power supply power of the power supply port 114-1 in the power supply information 160.
  • the power supply device 110 may increase the power supply power of the power supply port 114-1, so as to meet the higher power demand of the power receiving device 120. Conversely, if the power supply device 110 has no remaining power supply that can be allocated to the power supply port 114-1, the power supply device 110 may not adjust the power supply of the power supply port 114-1.
  • the powered device 120 may find that the power that needs to be consumed will continue to be lower than the current power supply of the power supply port 114-1.
  • the powered device 120 may be expected to be in a low power consumption state (for example, sleep mode) for a period of time without the power supply device 110 to allocate a larger power supply to the power supply port 114-1.
  • the powered device 120 may include in the power supply information 160 a request to reduce the power supply of the power supply port 114-1.
  • the power supply device 110 may reduce the power supply of the power supply port 114-1, thereby increasing the remaining available power of the power supply device 110 and reducing the power supply device 110 total power consumption.
  • the power supply device 110 may allocate the recovered power supply to other power supply ports for supplying power to other power receiving devices. This is conducive to the flexible and reasonable deployment of the power supply of the power supply device 110.
  • the power supply information 160 may include the power supply priority of the power receiving device 120, so that the power supply device 110 may supply power to the power receiving device 120 according to the power supply priority of the power receiving device 120.
  • the power supply device 110 may provide corresponding power supply guarantee to the power receiving device 120 according to the power supply priority of the power receiving device 120.
  • the power supply device 110 can give priority to ensuring the power supply of the power receiving device 120 when the available power supply is insufficient. Power is supplied, and the power supply to the power receiving device 130 is stopped when necessary.
  • the preferential power supply of the power supply device 110 to the power receiving device 120 relative to the power receiving device 130 is achieved by setting the power supply priority of the power supply ports 114-1 and 114-2. That is, the power supply device 110 may refer to the device power supply priority provided by the power receiving device 120 in the power supply information 160 to set the port power supply priority of the power supply port 114-1 in all the power supply ports 114. For example, in order to set the power supply priority of the power receiving device 120 to be higher than that of the power receiving device 130, the power supply device 110 may set the power supply priority of the power supply port 114-1 to be higher than the power supply priority of the power supply port 114-2.
  • the power supply information 160 may also include other information related to the power supply of the powered device 120.
  • the power supply information 160 may include any other power supply parameters desired by the powered device 120, such as power supply voltage.
  • the power supply information 160 may include a power supply mode desired by the powered device 120, such as providing low-power power supply in a specific time period, and high-power power supply in another specific time period, and so on.
  • the power receiving device 120 can provide any information related to the power supply of the power receiving device 120 to the power supply device 110 via the data port 112-1.
  • the power supply device 110 may communicate and negotiate with the powered device 120 on the power supply of the powered device 120 via the data port 112-1 and reach an agreement.
  • the power supply device 110 receiving the power supply information 160 of the powered device 120 at block 510 may be part of the communication negotiation process.
  • such an embodiment will be described in detail with reference to FIGS. 6A, 6B, and 7.
  • the power supply device 110 may supply power to the powered device 120 via the power supply port 114-1. For example, if the power supply information 160 indicates that the powered device 120 requests to reduce the power supply power of the power supply port 114-1, the power supply device 110 may correspondingly reduce the power supply power of the power supply port 114-1, thereby recovering the available power supply and increasing the remaining power supply. Available power supply. For another example, if the power supply information 160 indicates that the powered device 120 requests to increase the power supply of the power supply port 114-1, the power supply device 110 may decide whether to increase the power supply of the power supply port 114-1 according to the situation.
  • the power supply device 110 may not increase the power supply power of the power supply port 114-1. If there is additional power supply available, the power supply device 110 can increase the power supply of the power supply port 114-1.
  • the power supply information 160 includes the power supply priority of the power receiving device 120
  • the power supply device 110 may provide the power supply guarantee to the power receiving device 120 according to the power supply priority of the power receiving device 120.
  • the power supply information 160 may also indicate any other information related to the power supply of the powered device 120. In these embodiments, the power supply device 110 can use the information in the power supply information 160 to better supply power to the powered device 120 via the power supply port 114-1, so as to improve the power supply provided by the power supply device 110 to the powered device 120.
  • the power supply device 110 can receive the data via the data port 112-1.
  • the electrical device 120 receives the power supply information 160 of the powered device 120, and provides the powered device 120 with power supply specific to the powered device 120 on the paired power supply port 114-1 according to the power supply information 160 to meet the personality of the powered device 120 Demand for electricity.
  • the power supply device 110 of the embodiment of the present disclosure can solve the problem of the traditional power supply device in the scenario where the data port is separated from the power supply port, thereby having a separate data port 112-1 and a power supply port.
  • the power supply device 110 of 114-1 can provide high-performance power supply to the power receiving device 120.
  • the power supply device 110 may communicate with the powered device 120 regarding the power supply of the powered device 120 via the data port 112-1.
  • negotiation and finally reached an agreement, so as to solve the traditional power supply equipment due to the separation of the data port and the power supply port caused by the failure to negotiate power supply with the power supply problem.
  • the power supply device 110 receiving the power supply information 160 of the powered device 120 at block 510 may be part of the communication negotiation process.
  • such communication negotiation may be implemented based on Link Layer Discovery Protocol (LLDP).
  • LLDP Link Layer Discovery Protocol
  • various information sent between the power supply device 110 and the power receiving device 120 may be included in a customized "Type/Length/Value" (TLV) field in the LLDP message to implement the power supply device
  • TLV Type/Length/Value
  • the link layer discovery protocol and TLV fields mentioned here are only exemplary, and are not intended to limit the scope of the present disclosure in any way.
  • the embodiments of the present disclosure can be equally applicable to any other currently existing or future developed communication protocols or fields.
  • an example of the communication negotiation process between the power supply device 110 and the power receiving device 120 will be described in detail with reference to FIGS. 6A, 6B, and 7.
  • FIG. 6A shows a schematic diagram of an example communication process 600 in which the power supply device 110 and the power receiving device 120 negotiate power supply power according to an embodiment of the present disclosure. It should be noted that, for the purpose of discussion, an example communication process 600 will be described below with reference to the power supply device 110 and the power receiving device 120 of FIG. 1. However, it should be understood that the example communication process 600 can also be equally performed between the power supply device according to an embodiment of the present disclosure and any other suitable power receiving device.
  • the powered device 120 may send 610 to the power supply device 110 via the data port 112-1.
  • the power supply device 110 may receive 620 the instruction 605 for adjusting the power supply power of the power supply port 114-1 from the power receiving device 120 via the data port 112-1.
  • the powered device 120 may be in a low power consumption state for a long time, and the powered device 120 may negotiate the power supply power of the power supply port 114-1 with the power supply device 110 based on the link layer discovery protocol LLDP.
  • the power receiving device 120 sends a request to reduce the power supply of the power supply port 114-1 to the power supply device 110 via the data port 112-1. Conversely, if the powered device 120 needs to consume higher power than the power supplied by the power supply port 114-1, the powered device 120 may request the power supply device 110 in the instruction 605 to allocate more power to the power supply port 114-1 . In some embodiments, the powered device 120 may periodically send the power supply currently required by the powered device 120 to the power supply device 110. In such an embodiment, if the power supply required by the power receiving device 120 changes, it can be considered that the power receiving device 120 has sent an instruction 605 for adjusting the power supply of the power supply port 114-1. In other embodiments, instead of periodically sending the indication 605, the powered device 120 may also send the indication 605 to the power supply device 110 when the required power supply changes.
  • the power supply device 110 may send 630 the power supply 615 of the power supply port 114-1 to the powered device 120 via the data port 112-1, that is, power supply The power supply 615 allocated or reserved by the device 110 for the data port 112-1. Accordingly, the powered device 120 can receive 640 the power supply 615 of the power supply port 114-1 from the power supply device 110 via the data port 112-1. For example, if the indication 605 is a request to reduce the power supply power of the power supply port 114-1, the power supply device 110 may send 630 the reduced power supply power 615 of the power supply port 114-1 to the power receiving device 120.
  • the remaining available power supply of the power supply device 110 can be increased, which is conducive to the flexible and reasonable deployment of the power supply of the power supply device 110.
  • the indication 605 is a request to increase the power supply of the power supply port 114-1
  • the power supply device 110 determines that the power supply of the power supply port 114-1 can be increased, such as the power supply device 110 still has unallocated power supply, or receives power If the device 120 has a high power supply priority, the power supply device 110 may send 630 the increased power supply power 615 of the power supply port 114-1 to the power receiving device 120. In this way, the power supply device 110 can meet the power demand of the power receiving device 120, thereby improving the power supply performance to the power receiving device 120.
  • the power supply device 110 may send 630 the unchanged power supply of the power supply port 114-1 to the powered device 120 615, so as to inform the powered device 120 that the request to increase the power supply power is rejected in an implicit manner.
  • the power supply device 110 may also send an explicit notification to the powered device 120 via the data port 112-1 to indicate that the request to increase the power supply of the power supply port 114-1 is rejected.
  • the powered device 120 can notify the power supply device 110 of the expected power supply of the power supply port 114-1 via the data port 112-1, and the power supply device 110 can also notify the powered device 120 via the data port 112-1
  • the adjusted (or unadjusted) power supply of the power supply port 114-1 so as to complete the negotiation of the power supply of the power supply port 114-1 between the power supply device 110 and the power receiving device 120 in a timely and efficient manner.
  • the power supply device 110 can adjust the power supply of the power supply port 114-1 in time according to the power demand of the power receiving device 120 within the possible range, so as to meet the individual needs of the power receiving device 120, and to improve the power consumption of the power receiving device 120. Power supply performance.
  • the power supply provided by the power supply device 110 to the power receiving device 120 can be dynamically adjusted, it is possible to avoid the power failure of the power receiving device caused by the traditional power supply device due to insufficient power supply.
  • FIG. 6B shows a schematic diagram of another example communication process 650 for the power supply device 110 and the power receiving device 120 to negotiate power supply power according to an embodiment of the present disclosure.
  • an example communication process 650 will be described below with reference to the power supply device 110 and the power receiving device 120 of FIG. 1.
  • the example communication process 650 can also be equally performed between the power supply device according to an embodiment of the present disclosure and any other suitable power receiving device.
  • the power supply device 110 may send 660 to the powered device 120 via the data port 112-1.
  • the powered device 120 may receive 670 an indication 625 of the power supply capability information of the power supply port 114-1 from the power supply device 110 via the data port 112-1.
  • the power supply capability of the power supply port may refer to the maximum power supply of the power supply port, and the power supply negotiated by the power supply device 110 and the power receiving device 120 will be equal to or lower than the maximum power supply.
  • the power supply capacity of the power supply port 114-1 may be 40 watts, and the power supply allocated by the power supply device 110 to the power supply port 114-1 may be 30 watts, which is lower than the maximum power supply of 40 watts.
  • the power supply device 110 may need to reduce the maximum power supply of the power supply port 114-1. Conversely, if the power supply device 110 finds that there is still unallocated power supply, the power supply device 110 can also increase the maximum power supply of the power supply port 114-1.
  • the power supply device 110 may send a 660 indication 625 to the power receiving device 120.
  • the power supply device 110 may periodically send an indication 625 of the power supply capability information of the power supply port 114-1 to the power receiving device 120, regardless of whether the maximum power supply of the power supply port 114-1 changes.
  • the power supply device 110 may also send the indication 625 to the power receiving device 120 when the maximum power supply of the power supply port 114-1 changes.
  • the powered device 120 may send 680 an instruction 605 for adjusting the power supply power of the power supply port 114-1 to the power supply device 110 via the data port 112-1. Accordingly, the power supply device 110 may receive 690 an indication 605 from the power receiving device 120 via the data port 112-1. For example, regardless of whether the indication 625 is to reduce, increase or maintain the maximum power supply of the power supply port 114-1, the powered device 120 may send to the power supply device 110 via the data port 112-1 as appropriate to adjust the power supply of the power supply port 114-1.
  • the power indication 605 is to apply to the power supply device 110 for power supply power equal to or lower than the maximum power supply power of the power supply port 114-1.
  • the power receiving device 120 can request appropriate power supply from the power supply device 110 according to the power supply capability of the power supply port 114-1, which is beneficial for the power supply device 110 and the power receiving device 120 to efficiently negotiate a reasonable power supply. It should be noted that if the power receiving device 120 determines that the power supply power of the power supply port 114-1 does not need to be adjusted, the power receiving device 120 may send a 680 indication 605 to the power supply device 110 to indicate the same power supply as previously used, so as to hide It informs the power supply device 110 that there is no need to adjust the power supply power of the power supply port 114-1. In other embodiments, the powered device 120 may also send an explicit notification to the power supply device 110 via the data port 112-1 to indicate that the power supply of the power supply port 114-1 does not need to be adjusted.
  • the power supply device 110 may notify the power receiving device 120 of the power supply capability of the power supply port 114-1, that is, the maximum power supply via the data port 112-1. In this way, the powered device 120 can request appropriate power supply from the power supply device 110 according to the power supply capability of the power supply port 114-1, which is beneficial for the power supply device 110 and the powered device 120 to efficiently negotiate a reasonable power supply, thereby increasing power supply.
  • the power supply performance of the device 110 for the power receiving device 120 is beneficial for the power supply device 110 and the powered device 120 to efficiently negotiate a reasonable power supply, thereby increasing power supply.
  • FIG. 7 shows a schematic diagram of an example communication process 700 in which the power supply device 110 and the power receiving device 120 negotiate a power supply priority according to an embodiment of the present disclosure. It should be noted that, for the purpose of discussion, an example communication process 700 will be described below with reference to the power supply device 110 and the power receiving device 120 of FIG. 1. However, it should be understood that the example communication process 700 can also be equally performed between the power supply device according to an embodiment of the present disclosure and any other suitable power receiving device.
  • the powered device 120 may send 710 to the power supply device 110 via the data port 112-1.
  • the power supply priority 705 of the power receiving device 120 may be a device priority of the powered device 120, and may be set according to the importance of different powered devices. For example, if the powered device 120 is an Internet phone device, the powered device 120 may be set with a higher power supply priority 705.
  • the powered device 120 may be set with a lower power supply priority 705.
  • the different types of powered devices 120 described herein having higher or lower power supply priorities are only exemplary, and are not intended to limit the scope of the present disclosure in any way.
  • the entertainment device may also have a higher power supply priority than the Internet phone device.
  • the powered device 120 may periodically send 710 the power supply priority 705 of the powered device 120 to the power supply device 110, so that the power supply device 110 can evaluate in real time that the powered device 120 is connected to the power supply device 110. The importance of the power receiving device, so that the actual power supply priority of the power receiving device 120 can be flexibly adjusted, that is, the port power supply priority of the power supply port 114-1.
  • the power supply device 110 may set the port power supply priority of each power supply port 114 based on the power supply priority of the power receiving device connected to each power supply port 114, that is, each The actual power supply priority of the powered device at the power supply device 110. For example, referring to FIG. 1, it is assumed that the power receiving device 120 connected to the power supply port 114-1 of the power supply device 110 is an Internet phone device, and its power supply priority may be "Critical”. In addition, assuming that the power receiving device 130 connected to the power supply port 114-2 of the power supply device 110 is a network camera, its power supply priority may be "High".
  • the powered device (not shown) connected to the power supply port 114-3 of the power supply device 110 is an entertainment device
  • its power supply priority may be "Low”.
  • the power supply device 110 can accordingly set the power supply priority of the power supply port 114-1 to "very high”, set the power supply priority of the power supply port 114-2 to "high”, and set the power supply port 114
  • the power supply priority of -3 is set to "low”.
  • the power supply device 110 when the power supply device 110 sets the port power supply priority of the power supply port 114, it does not need to be completely consistent with the device power supply priority of the power receiving device itself. In some embodiments, when setting the power supply priority of each power supply port 114, the power supply device 110 may also consider other factors such as a specific system environment and application scenario. For example, if the aforementioned entertainment device connected to the power supply port 114-3 is participating in the competition, the power supply device 110 may set the power supply priority of the power supply ports 114-1 and 114-3 to "very high", and set the power supply port 114- The power supply priority of 2 is set to "High".
  • the power supply device 110 may set the power supply priority of the power supply port 114-3 to "extremely high”, set the power supply priority of the power supply port 114-1 to “high”, and set the power supply of the power supply port 114-2 to “high”. The priority is set to "low”, and so on. It will be understood that in this specific scenario, other setting methods of the power supply priority of each power supply port 114 are also possible, as long as the power supply port 114-3 has a relatively high power supply priority.
  • each power supply port 114 of the power supply device 110 may have three power supply priority levels: "extremely high”, “high”, and “low”, and the power receiving device may have a more refined power supply priority classification system. , Such as the five-level power supply priority indicated by the numbers 1, 2, 3, 4, and 5.
  • the power receiving device may have three power supply priority levels: "extremely high”, “high”, and “low”, and each power supply port 114 of the power supply device 110 may be set with a more refined power supply priority division system, such as , The five-level power supply priority represented by the numbers 1, 2, 3, 4, and 5.
  • both the powered device and each power supply terminal 114 may have any number of priority levels of power supply priority.
  • the power supply device 110 may send 730 the power supply of the power supply port 114-1 to the powered device 120 via the data port 112-1. Priority 715.
  • the powered device 120 may receive 740 the power supply priority 715 of the power supply port 114-1 from the power supply device 110 via the data port 112-1. In this way, the powered device 120 can learn the power supply priority 715 of the power supply port 114-1, that is, the actual power supply priority of the powered device 120 at the power supply device 110. Therefore, the powered device 120 can plan the operation of the powered device 120 according to the actual power supply priority.
  • the powered device 120 may consider that its power supply has a high guarantee, so that it can perform operations of higher importance. Conversely, if the power receiving device 120 is notified that it has a lower actual power supply priority at the power supply device 110, the power receiving device 120 may consider that its power supply is not guaranteed, and thus may abandon operations of high importance.
  • the power supply device 110 can obtain the device power supply priority of the powered device 120 via the data port 112-1, thereby determining the port power supply priority for the power supply port 114-1 of the powered device 120. Therefore, the power supply device 110 can provide corresponding power supply guarantee to the power receiving device 120 according to the power supply priority of the power receiving device 120, so as to better manage the power supply of the power receiving device 120 and meet the power demand of the power receiving device 120. For example, if the powered device 120 has a high power supply priority, when the power supply device 110 encounters a sudden drop in input power, the power supply device 110 can ensure the normal power supply of the powered device 120.
  • the power supply device 110 may need to find in the configuration information 400 whether there is a pairing relationship between the data port 112-1 and the power supply port 114-1. If there is such a pairing relationship, the power supply device 110 may use the power supply information 160 of the power receiving device 120 to manage the power supply of the power supply port 114-1.
  • the power supply device 110 may use the power supply information 160 of the power receiving device 120 to manage the power supply of the power supply port 114-1.
  • FIG. 8 shows a flowchart of an example operation process 800 of the power supply device 110 when the pairing relationship between the power supply port 114-1 and the data port 112-1 is configurable according to an embodiment of the present disclosure.
  • the example operation process 800 can be considered as a specific example of the example method 500 described above in some cases.
  • the example operation process 800 may be implemented by the power supply device 110 in the example system environment 100, for example, may be implemented by the processor or processing unit of the power supply device 110.
  • the example operation process 800 may also be implemented by a power supply device independent of the example system environment 100.
  • an example operation process 800 will be discussed with reference to FIG.
  • example operation process 800 taking the power supply device 110 performing an example operation process 800 to supply power to the power receiving device 120 as an example.
  • the example operation process 800 can also be equivalently executed by the power supply device 110 of the present disclosure to supply power to any other powered device connected to its power supply port.
  • the power supply device 110 may detect on each power supply port 114 whether a powered device is connected to the power supply port. For example, when the powered device 120 is connected to the power supply port 114-1, the power supply device 110 may detect that the powered device 120 has been connected to the power supply port 114-1. Therefore, the power supply device 110 can discover in time that the powered device 120 has been connected to the power supply port 114-1, and accordingly provide power to the powered device 120 and may subsequently supply power to the powered device 120 via the paired data port 112-1 manage.
  • the detection process may be similar to the detection process (also referred to as the physical detection process) of the power supply device on the powered device specified in the Power over Ethernet protocol, such as the basic detection process in the IEEE 802.3 protocol.
  • the power supply device 110 may determine whether the power receiving device exists by detecting the resistance and capacitance value between the pair of power output lines.
  • the output voltage in the detection phase may be 2.8V-10V, and the voltage polarity may be consistent with the 52V output. Only when the power receiving device is detected, the power supply device 110 will proceed to the next operation.
  • the characteristic of the powered device is that the DC impedance is between 19K-26.5K ⁇ and the capacitance value does not exceed 150nF. If the characteristic resistance and capacitance detected by the power supply device 110 does not meet the value defined by the above standard, that is, the peer device can be regarded as a non-standard power receiving device, the power supply device 110 may not supply power. If the characteristic resistance and capacitance detected by the power supply device 110 meets the value defined by the above standard, the power supply device 110 may enter the second stage of classification.
  • the power supply device 110 may also classify the power receiving device 120 to determine which power level the power receiving device 120 belongs to, and to The power level obtained by the classification (for example, the rated power of the power receiving device 120) initially supplies power to the power receiving device 120.
  • the power supply device 110 may determine the power consumption of the power receiving device 120.
  • the power supply device 110 may determine the power level of the power receiving device 120 by detecting the output current of the power supply.
  • the port output voltage of the grading stage may be 15.5V-20.5V, and the voltage polarity may be consistent with the 52V voltage output.
  • the power receiving device 120 can absorb a constant current (graded characteristic signal) from the line to indicate to the power supply device 110 the maximum power it needs.
  • the power supply device 110 can measure this current to determine which power level the powered device 120 belongs to.
  • the current of the power supply device 110 used during the classification may be limited to 100 mA to avoid damage to the power receiving device 120, and the connection time may not exceed 75 ms to control the power consumption of the power receiving device 120.
  • the power supply device 110 detects that the power receiving device 120 on the power supply port 114-1 is a legal power receiving device, and the power supply device 110 has completed the classification of the power receiving device 120, the power supply device 110 It is possible to start to supply power to the power receiving device 120, and output a voltage of, for example, 48V.
  • the detection process (or grading process, preliminary power supply process, etc.) of the powered device can also follow existing or other similar protocols developed in the future, or directly use mechanical or electrical physical detection Means to achieve.
  • the classification and preliminary power supply of the power receiving device 120 by the power supply device 110 is not necessary for block 810 but optional.
  • the power supply device 110 may directly enter the block 820 after detecting the power receiving device 120. .
  • the power supply device 110 may query the paired data port to which the power supply port of the powered device is connected. For example, after the powered device 120 is connected to the power supply port 114-1, the power supply device 110 may search for a data port paired with the power supply port 114-1 to which the powered device 120 is connected in the configuration information 400 described above. In this way, the power supply device 110 can timely determine the data port corresponding to the power supply port to which the power receiving device is connected, so as to obtain the power supply information of the power receiving device from the data port.
  • the user can configure the pairing between the power supply port 114 and the data port 112 at the dashed box 825 relation.
  • the dashed box 825 is used here to represent the operation performed by the user, and does not belong to the operation performed by the power supply device 110.
  • the user can access the management interface of the power supply device 110, and set the pairing relationship between the power supply port 114 and the data port 112 by modifying the content of the configuration information 400.
  • the user may set up the pairing relationship at any time.
  • the user may have set the data port 112-1 to be paired with the power supply port 114-1 before the power receiving device 120 is connected to the power supply port 114-1.
  • the user may set the data port 112-1 to be paired with the power supply port 114-1. Therefore, in order to find the data port paired with the power supply port 114-1 in time, the power supply device 110 may periodically query the aforementioned configuration information 400 to determine the data port paired with the power supply port 114-1. Alternatively, the power supply device 110 may also periodically poll each data port 112 to determine whether there is a paired power supply port for the data port. If there is a paired power supply port for the data port, the power supply device 110 may send information related to the paired power supply port on the data port in a subsequent operation.
  • the power supply device 110 may determine whether there is a paired data port for the power supply port to which the powered device is connected. For example, for the power supply port 114-1 to which the power receiving device 120 is connected, the power supply device 110 may determine whether there is a paired data port for the power supply port 114-1. For example, after the user sets the data port 112-1 to be paired with the power supply port 114-1, the power supply device 110 can query in the configuration information 400 that the power supply port 114-1 has a paired data port 112-1. Otherwise, if the user has not set a paired data port for the power supply port 114-1, the power supply device 110 can determine that there is no paired data port for the power supply port 114-1 by querying the configuration information 400.
  • the power supply device 110 may conduct power supply negotiation with the powered device via the paired data port. For example, if the power supply device 110 determines that there is a paired data port 112-1 on the power supply port 114-1, the power supply device 110 may negotiate power supply with the power receiving device 120 via the data port 112-1.
  • the specific power supply negotiation process may be similar to the communication negotiation process of power supply and power supply priority described above with reference to FIG. 6A, FIG. 6B, and FIG. 7. More generally, the power supply device 110 and the power receiving device 120 may also negotiate any other power supply parameters of the power supply port 114-1 via the data port 112-1.
  • the power supply device 110 may include various power supply parameters of the power supply port 114-1 in the TLV field in the link layer discovery protocol message, and send them to the power receiving device 120 via the data port 112-1.
  • the powered device 120 may also include its expected power supply parameters in the TLV field in the link layer discovery protocol message, and send it to the power supply device 110 via the data port 112-1.
  • the power supply device 110 and the power receiving device 120 may periodically send link layer discovery protocol messages to each other via the data port 112-1.
  • the power supply device 110 may supply power to the power receiving device 120 via the power supply port 114-1 according to the negotiated power supply parameters. For example, if the power supply device 110 and the power receiving device 120 complete the negotiation on power supply power, the power supply device 110 may supply power to the power receiving device 120 according to the power supply power of the power supply port 114-1 that has been negotiated. For another example, if the power supply device 110 and the power receiving device 120 complete the negotiation on the power supply priority, the power supply device 110 may supply power to the power receiving device 120 according to the power supply priority of the power supply port 114-1 that has been negotiated. More generally, if the power supply device 110 and the powered device 120 complete the negotiation on other power supply parameters, the power supply device 110 can supply power to the powered device 120 according to any other negotiated power supply parameters of the power supply port 114-1.
  • the power supply device 110 may use the power supply port 114-1 according to the default power supply parameters of the power receiving device 120. Power is supplied to the power receiving device 120. For example, the power supply device 110 may supply power to the power receiving device 120 according to the default power supply of the power supply port 114-1 (or the power receiving device 120). For another example, the power supply device 110 may supply power to the power receiving device 120 according to the default power supply priority of the power supply port 114-1. More generally, the power supply device 110 can supply power to the power receiving device 120 according to any other default power supply parameters of the power supply port 114-1.
  • the power supply device 110 may maintain The power receiving device 120 is supplied with power at the default power supply.
  • the power supply device 110 can timely determine whether the power supply port connected to the power receiving device is Is paired to the data port. If there is a paired data port, the power supply device 110 can negotiate power supply with the powered device on the data port, so as to provide targeted power supply to the powered device to improve the power supply performance and operation performance of the powered device. If there is no paired data port, the power supply device 110 may also provide preliminary power supply to the power receiving device, so that the power receiving device can operate normally. Therefore, using the example operation procedure 800, the power supply performance of the power supply device 110 may be improved.
  • FIG. 9 shows a block diagram of a power supply device 110 with an example port arrangement 900 according to an embodiment of the present disclosure.
  • the power supply device 110 may further include a processor 115 and a memory 117.
  • the memory 117 may store instructions 118, such as computer program instructions 118, and the memory 117 and the computer program instructions 118 may be configured to, together with the processor 115, cause the power supply device 110 to execute the embodiments according to the present disclosure.
  • various example methods or example processes may include the example method 500 for managing power supply depicted in FIG. 5, the example communication processes 600, 650, and 700 depicted in FIGS. 6A, 6B, and 7, and the example communication processes 600, 650, and 700 depicted in FIG. The example operation procedure 800, and so on.
  • the data ports 112 are arranged in a row, and the power supply ports 114 are arranged in a row below the data port 112 row.
  • the data port is suitable for pairing with a closer power supply port to facilitate the use of, for example, the integrated photoelectric composite cable 300 depicted in FIG. 3.
  • the depiction of the data port 112 row in FIG. 9 as being located above the power supply port 114 row is only exemplary, and is not intended to limit the scope of the present disclosure in any way.
  • the data port 112 row may also be located below the power supply port 114 row.
  • the processor 115 may be of any type suitable for the local technical environment, and as a non-limiting example may include one or more of the following: general purpose computer, special purpose computer, microprocessor, digital signal processor (DSP ) And processors based on multi-core processor architecture.
  • the power supply device 110 may have multiple processors, such as an application specific integrated circuit chip that follows a clock synchronized with the main processor in time.
  • the memory 117 may include one or more non-volatile memories and one or more volatile memories.
  • non-volatile memory include, but are not limited to, read only memory (ROM), electrically erasable programmable read only memory (EPROM), flash memory, hard disk, compact disk (CD), digital versatile disk (DVD), and Other magnetic storage devices and/or optical storage devices.
  • volatile memory include, but are not limited to, random memory access (RAM) or other volatile memory that cannot be sustained during a power failure.
  • the computer program instructions 118 may include computer-executable instructions, which may be executable by the associated processor 115.
  • the computer program instructions 118 may be stored in the ROM of the memory 117.
  • the processor 115 can perform various appropriate actions and processing by loading the computer program instructions 118 into the RAM of the memory 117.
  • the memory 117 and the computer program instructions 118 may be configured to, together with the processor 115, cause the power supply device 110 to receive the power supply information of the power receiving device 120 from the power receiving device 120 via the data port 112-1.
  • the memory 117 and the computer program instructions 118 may also be configured to, together with the processor 115, cause the power supply device 110 to supply power to the power receiving device 120 via the power supply port 114-1 and based on the power supply information. Therefore, compared to the conventional power supply device, the power supply device of the embodiments of the present disclosure can improve the power supply performance of the power receiving device when the data port is separated from the power supply port.
  • the data port 112-1 of the power supply device 110 may be connected to the power receiving device 120 through the optical fibers 210 and 220 or 310 and 320 in the photoelectric composite cable 200 or 300, and the power supply port 114- of the power supply device 110 1 Connect to the power receiving device 120 through the power supply lines 240 and 250 or 340 and 350 in the photoelectric composite cable 200 or 300. In this way, high-speed data transmission can be realized between the power supply device and the power receiving device, and long-distance power transmission can be realized at the same time.
  • the memory 117 is also used to store configuration information.
  • the configuration information may indicate the pairing relationship between the power port 114-1 and the data port 112-1.
  • the power supply device 110 may store the configuration information in the memory 117. In this way, the power supply device can conveniently and efficiently manage the pairing relationship between the power supply port and the data port.
  • the memory 117 and the computer program instructions 118 can also be configured to, together with the processor 115, cause the power supply device 110 to respond to the power receiving device 120 being connected to the power supply port 114-1, and to search for and search in the configuration information 800
  • the data port 112-1 is paired with the power supply port 114-1. In this way, the power supply device can timely determine the data port corresponding to the power supply port to which the power receiving device is connected, so as to obtain the power supply information of the power receiving device from the data port.
  • the configuration information 800 is user editable. In this way, the pairing relationship between the power supply port and the data port of the power supply device can be determined by the user according to the specific application environment and scenario, so that the flexibility of the use of the power supply device can be improved.
  • the power supply information 160 may include at least one of the following: an indication for adjusting the power supply of the power supply port, and the power supply priority of the powered device. Therefore, the power supply device can adjust the power supply of the power supply port according to the request of the power receiving device, and can also provide the power supply guarantee to the power receiving device according to the power supply priority of the power receiving device, so as to better meet the needs of the power receiving device. Electricity demand.
  • the memory 117 and the computer program instructions 118 may also be configured to, together with the processor 115, cause the power supply device 110 to send the power supply port 114-1 capability information to the power receiving device 120 via the data port 112-1.
  • the powered device can request appropriate power supply from the power supply device according to the power supply capability of the power supply port, which is beneficial for the power supply device and the powered device to efficiently negotiate a reasonable power supply power.
  • the power supply device 110 further includes a detection circuit 119.
  • the detection circuit 119 can be used to detect whether the powered device is connected to the power supply port.
  • the detection circuit 119 may include a detection circuit based on physical detection means such as mechanical detection or electrical detection, such as a detection chip in a power supply device that complies with the Power over Ethernet protocol, and so on. Therefore, the power supply device can discover in time that the power receiving device is connected to the power supply port, and then provide power to the power receiving device accordingly and may perform power supply management on the power receiving device via the paired data port. It should be understood that although FIG.
  • the detection circuit 119 may also be a part of the processor 115.
  • the function of detecting whether the powered device is connected to the power supply port may also be implemented by the detection circuit 119 and the processor 115 in cooperation.
  • FIG. 10 shows a block diagram of a power supply device 110 having another example port arrangement 1000 according to an embodiment of the present disclosure.
  • the power supply device 110 depicted in FIG. 10 is similar to FIG. 9, except for the arrangement of the data port 112 and the power supply port 114.
  • the data port 112 is centrally arranged on one side of the power supply device 110
  • the power supply port 114 is centrally arranged on the other side of the power supply device 110.
  • the data port is suitable for pairing with any power supply port without considering the physical distance between the two. Therefore, it is more suitable for using, for example, the optical fiber 215 and the power supply line 245 depicted in FIG. 2 are separated from the photoelectric composite cable 200 .
  • the data port 112 is located on the left side of the power supply device 110 and the power supply port 114 is located on the right side of the power supply device 110 is only exemplary, and is not intended to limit the scope of the present disclosure in any way.
  • the power supply port 114 may be located on the left side of the power supply device 110 and the data port 112 may be located on the right side of the power supply device 110, or the power supply port 114 and the data port 112 may be located on any other suitable parts of the power supply device 110.
  • the data port 112 and the power supply port 114 of the power supply device 110 may have any suitable arrangement, and are not limited to the line arrangement depicted in FIG. 9 and FIG. 10 The area arrangement described in.
  • the arrangement of the data port 112 and the power supply port 114 can make full use of the space on the power supply device 110, and at the same time can facilitate connection to different power receiving devices.
  • FIG. 11 shows a block diagram of an example apparatus 1100 for managing power supply according to an embodiment of the present disclosure.
  • the example apparatus 1100 may be implemented at the power supply device 110 in the example system environment 100, for example, may be implemented by a processor or a processing unit of the power supply device 110.
  • the example apparatus 1100 may be implemented as a power supply device 110.
  • the example apparatus 1100 may also be implemented by a power supply device independent of the example system environment 100.
  • the example apparatus 1100 may execute the example method 500 and may include components for executing the corresponding steps of the example method 500.
  • the components can be implemented in any suitable form.
  • the components may be implemented in circuits or software modules.
  • the component may include at least one processor and at least one memory.
  • At least one memory may store computer program codes. The at least one memory and the computer program code are configured to, together with the at least one processor, cause the example apparatus 1100 to execute the corresponding steps of the example method 500 or other example procedures in this disclosure.
  • the example device 1100 may include a component 1110 for receiving and a component 1120 for powering.
  • the component 1110 may be used to receive power supply information of the power receiving device from the power receiving device via a data port.
  • the data port is paired with the power supply port and is a physical port separated from each other.
  • the component 1120 can be used to supply power to the powered device based on the power supply information via the power supply port.
  • the data port of the power supply device may be connected to the power receiving device through the optical fiber in the photoelectric composite cable, and the power supply port of the power supply device is connected to the power receiving device through the power supply line in the photoelectric composite cable. In this way, high-speed data transmission can be realized between the power supply device and the power receiving device, and long-distance power transmission can be realized at the same time.
  • the example device 1100 may further include: a component for storing configuration information, the configuration information indicating the pairing relationship between the power supply port and the data port. In this way, the power supply device can conveniently and efficiently manage the pairing relationship between the power supply port and the data port.
  • the example apparatus 1100 may further include: in response to the power receiving device being connected to the power supply port, a component for searching the data port paired with the power supply port in the configuration information. In this way, the power supply device can timely determine the data port corresponding to the power supply port to which the power receiving device is connected, so as to obtain the power supply information of the power receiving device from the data port.
  • the configuration information may be user editable. In this way, the pairing relationship between the power supply port and the data port of the power supply device can be determined by the user according to the specific application environment and scenario, so that the use flexibility of the power supply device can be improved.
  • the power supply information may include at least one of the following: an indication for adjusting the power supply of the power supply port, and the power supply priority of the powered device. Therefore, the power supply device can adjust the power supply of the power supply port according to the request of the power receiving device, and can also provide the power supply guarantee to the power receiving device according to the power supply priority of the power receiving device, so as to better meet the needs of the power receiving device. Electricity demand.
  • the example apparatus 1100 may further include: a component for sending capability information of the power supply port to the powered device via the data port.
  • the powered device can request appropriate power supply from the power supply device according to the power supply capability of the power supply port, which is beneficial for the power supply device and the powered device to efficiently negotiate a reasonable power supply power.
  • the example apparatus 1100 may further include: a component for detecting that the powered device is connected to the power supply port. Therefore, the power supply device can discover in time that the power receiving device has been connected to the power supply port, and then provide power to the power receiving device accordingly and perform power supply management on the power receiving device via the paired data port.
  • FIG. 12 shows a schematic diagram of an example computer readable medium 1200 according to an embodiment of the present disclosure.
  • the computer-readable medium 1200 may take the form of a CD or a DVD, or any other suitable form, with instructions 118 stored thereon.
  • embodiments of the present disclosure can be implemented by instructions 118 to make the power supply device 110 execute any example method or example of the present disclosure as discussed above with reference to FIGS. 5 to 8 process.
  • the embodiments of the present disclosure can also be implemented by hardware or a combination of software and hardware.
  • the computer-readable medium 1200 tangibly containing the instructions 118 may be included in the power supply device 110 (eg, the memory 117), or in other storage devices that the power supply device 110 can access.
  • the power supply device 110 can read the instructions 118 from the computer-readable medium 1200 into the RAM of the memory 117 for execution.
  • the computer-readable medium 1200 may include various tangible non-volatile storage devices, such as ROM, EPROM, flash memory, hard disk, CD, DVD, etc.
  • the various exemplary embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof. Certain aspects can be implemented in hardware, while other aspects can be implemented in firmware or software that can be executed by a controller, microprocessor, or other computing device. For example, in some embodiments, various examples (for example, a method, an apparatus, or a device) of the present disclosure may be partially or completely implemented on a computer-readable medium.
  • the present disclosure also provides at least one computer program product stored on a non-transitory computer-readable storage medium.
  • the computer program product includes computer-executable instructions, such as a program module included in a device executed on a physical or virtual processor of the target, to execute the example methods or examples described above with respect to FIGS. 5 to 8 Processes 500, 600, 650, 700, and 800.
  • program modules may include routines, programs, libraries, objects, classes, components, data structures, etc., which perform specific tasks or implement specific abstract data structures.
  • the functions of the program modules can be combined or divided among the described program modules.
  • the computer-executable instructions for the program modules can be executed in local or distributed devices. In distributed equipment, program modules can be located in both local and remote storage media.
  • the program code used to implement the method of the present disclosure can be written in one or more programming languages. These computer program codes can be provided to the processors of general-purpose computers, special-purpose computers, or other programmable data processing devices, so that when the program codes are executed by the computer or other programmable data processing devices, they will cause changes in the flowcharts and/or block diagrams. The functions/operations specified in are implemented.
  • the program code can be executed entirely on a computer, partly on a computer, as a stand-alone software package, partly on a computer and partly on a remote computer, or entirely on a remote computer or server.
  • the computer program code or related data may be carried by any suitable carrier to enable the device, device, or processor to perform the various processes and operations described above.
  • Examples of carriers include signals, computer-readable media, and so on.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any suitable combination thereof. More detailed examples of machine-readable storage media include electrical connections with one or more wires, portable computer disks, hard disks, random memory access (RAM), read-only memory (ROM), erasable programmable read-only Memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Sources (AREA)

Abstract

提供了一种用于管理供电的方法、装置、供电设备和计算机可读介质。在用于管理供电的方法中,供电设备经由数据端口从受电设备接收受电设备的供电信息,数据端口与供电端口配对并且是彼此分离的物理端口。然后,供电设备经由供电端口并基于受电设备的供电信息向受电设备供电。这样可以改进具有物理分离的数据端口和供电端口的供电设备的供电性能。

Description

用于管理供电的方法和装置、供电设备以及计算机可读介质
本申请要求于2020年6月17日提交的申请号为202010556475.4、发明名称为“用于管理供电的方法和装置、供电设备以及计算机可读介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开总体上涉及供电技术,并且具体地涉及一种用于管理供电的方法和装置、供电设备以及计算机可读介质。
背景技术
以太网供电(Power over Ethernet,PoE)技术是一种通过以太网的双绞线为受电设备供电的技术。以太网供电技术能够在确保以太网的结构化布线安全的同时,保证现有通信网络的正常操作。以太网供电技术的其他优点还包括:简单和节省空间,受电设备可随意移动,并且最大限度地降低成本。完整的以太网供电系统可以包括供电设备(Power Sourcing Equipment,PSE)和受电设备(Powered Device,PD)两部分。供电设备是为以太网客户端提供供电的设备,同时也是整个以太网供电过程的管理者。供电设备的一种示例是支持以太网供电能力的交换机,简称以太网供电交换机。受电设备是从供电设备接受供电的负载,也即以太网供电系统的客户端设备,诸如互联网(IP)电话、互联网视频监控设备、门禁设备、建筑物管理设备、云终端设备、无线局域网设备,各种娱乐设备,等等。支持以太网供电的供电设备允许供电电力与数据信号耦合,以通过双绞线缆传输给对端的受电设备。
然而,在一些场景中,传统的以太网供电设备可能无法良好地向受电设备供电,从而影响以太网供电系统的性能和用户体验。
发明内容
本公开涉及一种用于管理供电的技术方案,并且具体提供了一种用于管理供电的方法和装置、供电设备以及计算机可读介质。
在本公开的第一方面,提供了一种用于管理供电的方法。该方法包括:供电设备经由数据端口从受电设备接收受电设备的供电信息,数据端口与供电端口配对并且是彼此分离的物理端口。该方法还包括:供电设备经由供电端口并基于供电信息向受电设备供电。通过该方法,在数据端口与供电端口分离的情况下,供电设备向受电设备供电的性能可以被改进。
在一些实现方式中,供电设备的数据端口通过光电复合线缆中的光纤连接到受电设备,并且供电设备的供电端口通过光电复合线缆中的供电线连接到受电设备。以此方式,供电设备与受电设备之间可以实现高速率的数据传输,同时实现远距离的电力传输。
在一些实现方式中,该方法还包括:供电设备存储配置信息,配置信息指示供电端口与数据端口之间的配对关系。如此,供电设备可以便利地且高效地管理供电端口与数据端口之间的配对关系。
在一些实现方式中,该方法还包括:响应于受电设备连接到供电端口,供电设备在配置信息中查找与供电端口配对的数据端口。以此方式,供电设备可以及时地确定与连接有受电设备的供电端口相对应的数据端口,以便从该数据端口获得受电设备的供电信息。
在一些实现方式中,配置信息是用户可编辑的。如此,供电设备的供电端口与数据端口之间的配对关系可以由用户根据具体的应用环境和场景来决定,从而可以提高供电设备的使用灵活性。
在一些实现方式中,供电信息包括以下至少一项:用于调整供电端口的供电功率的指示,以及受电设备的供电优先级。因此,供电设备可以根据受电设备的请求来调整供电端口的供电功率,还可以根据受电设备的供电优先级来向受电设备提供相应的供电保障,从而更好地满足受电设备的用电需求。
在一些实现方式中,该方法还包括:供电设备经由数据端口向受电设备发送供电端口的能力信息。如此,受电设备可以根据供电端口的供电能力来向供电设备请求适当的供电功率,从而有利于供电设备和受电设备高效地协商出合理的供电功率。
在一些实现方式中,该方法还包括:供电设备检测受电设备连接到供电端口。因此,供电设备可以及时地发现受电设备已连接到供电端口,进而相应地向受电设备提供供电并且经由配对的数据端口对受电设备进行供电管理。
在本公开的第二方面,提供了一种供电设备。该供电设备包括:供电端口、数据端口、处理器和存储器。数据端口与供电端口配对并且是彼此分离的物理端口。存储器存储有计算机程序指令。存储器和计算机程序指令被配置为,与处理器一起,使供电设备经由数据端口从受电设备接收受电设备的供电信息。存储器和计算机程序指令还被配置为,与处理器一起,使供电设备经由供电端口并基于供电信息向受电设备供电。相比于传统的供电设备,本公开的供电设备在数据端口与供电端口分离的情况下向受电设备供电的性能可以被改进。
在一些实现方式中,供电设备的数据端口通过光电复合线缆中的光纤连接到受电设备,并且供电设备的供电端口通过光电复合线缆中的供电线连接到受电设备。以此方式,供电设备与受电设备之间可以实现高速率的数据传输,同时实现远距离的电力传输。
在一些实现方式中,存储器还用于存储配置信息,该配置信息指示供电端口与数据端口之间的配对关系。如此,供电设备可以便利地且高效地管理供电端口与数据端口之间的配对关系。
在一些实现方式中,存储器和计算机程序指令还被配置为,与处理器一起,使供电设备响应于受电设备连接到供电端口,在配置信息中查找与供电端口配对的数据端口。以此方式,供电设备可以及时地确定与连接有受电设备的供电端口相对应的数据端口,以便从该数据端口获得受电设备的供电信息。
在一些实现方式中,配置信息是用户可编辑的。如此,供电设备的供电端口与数据端口之间的配对关系可以由用户根据具体的应用环境和场景来决定,从而可以提高供电设备的使用灵活性。
在一些实现方式中,供电信息包括以下至少一项:用于调整供电端口的供电功率的指示,以及受电设备的供电优先级。因此,供电设备可以根据受电设备的请求来调整供电端口的供电功率,还可以根据受电设备的供电优先级来向受电设备提供相应的供电保障,从而更好地满足受电设备的用电需求。
在一些实现方式中,存储器和计算机程序指令还被配置为,与处理器一起,使供电设备经由数据端口向受电设备发送供电端口的能力信息。如此,受电设备可以根据供电端口的供电能力来向供电设备请求适当的供电功率,从而有利于供电设备和受电设备高效地协商出合理的供电功率。
在一些实现方式中,该供电设备还包括:检测电路,用于检测受电设备连接到供电端口。因此,供电设备可以及时地发现受电设备已连接到供电端口,进而相应地向受电设备提供供电并且经由配对的数据端口对受电设备进行供电管理。
在本公开的第三方面,提供了一种用于管理供电的装置。该装置包括:用于经由数据端口从受电设备接收受电设备的供电信息的部件,数据端口与供电端口配对并且是彼此分离的物理端口。该装置还包括用于经由供电端口并基于供电信息向受电设备供电的部件。通过该装置,在数据端口与供电端口分离的情况下,供电设备向受电设备供电的性能可以被改进。
在一些实现方式中,供电设备的数据端口通过光电复合线缆中的光纤连接到受电设备,并且供电设备的供电端口通过光电复合线缆中的供电线连接到受电设备。以此方式,供电设备与受电设备之间可以实现高速率的数据传输,同时实现远距离的电力传输。
在一些实现方式中,该装置还包括:用于存储配置信息的部件,配置信息指示供电端口与数据端口之间的配对关系。如此,供电设备可以便利地且高效地管理供电端口与数据端口之间的配对关系。
在一些实现方式中,该装置还包括:用于响应于受电设备连接到供电端口,在配置信息中查找与供电端口配对的数据端口的部件。以此方式,供电设备可以及时地确定与连接有受电设备的供电端口相对应的数据端口,以便从该数据端口获得受电设备的供电信息。
在一些实现方式中,配置信息是用户可编辑的。如此,供电设备的供电端口与数据端口之间的配对关系可以由用户根据具体的应用环境和场景来决定,从而可以提高供电设备的使用灵活性。
在一些实现方式中,供电信息包括以下至少一项:用于调整供电端口的供电功率的指示,以及受电设备的供电优先级。因此,供电设备可以根据受电设备的请求来调整供电端口的供电功率,还可以根据受电设备的供电优先级来向受电设备提供相应的供电保障,从而更好地满足受电设备的用电需求。
在一些实现方式中,该装置还包括:用于经由数据端口向受电设备发送供电端口的能力信息的部件。如此,受电设备可以根据供电端口的供电能力来向供电设备请求适当的供电功率,从而有利于供电设备和受电设备高效地协商出合理的供电功率。
在一些实现方式中,该装置还包括:用于检测受电设备连接到供电端口的部件。因此,供电设备可以及时地发现受电设备已连接到供电端口,进而相应地向受电设备提供供电并且经由配对的数据端口对受电设备进行供电管理。
在本公开的第四方面,提供了一种计算机可读介质。该计算机可读介质存储有指令,指令在被执行时使机器执行根据第一方面的方法。通过该计算机可读介质,在数据端口与供电端口分离的情况下,供电设备向受电设备供电的性能可以被改进。
应当理解,发明内容部分中所描述的内容并非旨在限定本公开的关键或重要特征,亦非用于限制本公开的范围。本公开的其他特征通过以下的描述将变得容易理解。
附图说明
通过参考附图阅读下文的详细描述,本公开的实施例的上述以及其他目的、特征和优点将变得容易理解。在附图中,以示例性而非限制性的方式示出了本公开的若干实施例。
图1示出了根据本公开的实施例的包括供电设备和受电设备的示例系统环境的示意图。
图2示出了根据本公开的实施例的示例光电复合线缆的示意图。
图3示出了根据本公开的实施例的另一示例光电复合线缆的示意图。
图4示出了根据本公开的实施例的指示供电端口与数据端口之间的配对关系的示例配置信息。
图5示出了根据本公开的实施例的用于管理供电的示例方法的流程图。
图6A示出了根据本公开的实施例的供电设备与受电设备协商供电功率的示例通信过程的示意图。
图6B示出了根据本公开的实施例的供电设备与受电设备协商供电功率的另一示例通信过程的示意图。
图7示出了根据本公开的实施例的供电设备与受电设备协商供电优先级的示例通信过程的示意图。
图8示出了根据本公开的实施例的在供电端口与数据端口之间的配对关系为可配置时供电设备的示例操作过程的流程图。
图9示出了根据本公开的实施例的具有示例端口布置的供电设备的框图。
图10示出了根据本公开的实施例的具有另一示例端口布置的供电设备的框图。
图11示出了根据本公开的实施例的用于管理供电的示例装置的框图。
图12示出了根据本公开的实施例的示例计算机可读介质的示意图。
贯穿所有附图,相同或者相似的参考标号被用来表示相同或者相似的组件。
具体实施方式
如本文所使用的,术语“包括”及其类似用语应当理解为开放性包含,即“包括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实施例”或“该实施例”应当理解为“至少一个实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象,并且仅用于区分所指代的对象,而不暗示所指代的对象的特定空间顺序、时间顺序、重要性顺序,等等。下文还可能包括其他明确的和隐含的定义。
如本文所使用的,术语“确定”涵盖各种各样的动作。例如,“确定”可以包括运算、计算、处理、导出、调查、查找(例如,在表格、数据库或另一数据结构中查找)、查明等。此外,“确定”可以包括接收(例如,接收信息)、访问(例如,访问存储器中的数据)等。此外,“确定”可以包括解析、选择、选取、建立等。
本文使用的术语“电路”是指以下的一项或多项:(a)仅硬件电路实现方式(诸如仅模拟和/或数字电路的实现方式);以及(b)硬件电路和软件的组合,诸如(如果适用):(i)模拟和/或数字硬件电路与软件/固件的组合,以及(ii)硬件处理器的任意部分与软件(包括一起工作以使诸如供电设备或其他电子设备等装置执行各种功能的数字信号处理器、软件和存储器);以及(c)硬件电路和/或处理器,诸如微处理器或者微处理器的一部分,其要求软件(例如固件)用于操作,但是在不需要软件用于操作时可以没有软件。
电路的定义适用于此术语在本申请中(包括任意权利要求中)的所有使用场景。作为另一示例,在此使用的术语“电路”也覆盖仅硬件电路或处理器(或多个处理器)、或者硬件电路或处理器的一部分、或者其随附软件或固件的实现方式。例如,如果适用于特定权利要求元素,术语“电路”还覆盖基带集成电路或处理器集成电路、供电设备、受电设备或其他设备中的类似集成电路。
如上文提到的,在一些场景中,传统的以太网供电设备可能无法良好地向受电设备供电, 从而影响以太网供电系统的性能和用户体验。具体而言,传统的以太网供电设备经由同一物理端口向受电设备供电并且与受电设备通信。换言之,该物理端口既充当供电设备的供电端口,又作为供电设备的数据端口。依据以太网供电技术的标准,供电设备从识别受电设备到给受电设备供电,依次可以经过探测、电压分级、上电启动等过程。在受电设备的上电完成之后,供电设备将进入对受电设备的供电功率管理状态。为了实现动态的供电功率调整与管理,供电设备与受电设备之间还可以支持链路层发现协议(Link Layer Discovery Protocol,LLDP),并且可以通过媒体独立接口(Media Dependent Interface,MDI)进行供电功率协商。
然而,在一些以太网供电设备中,数据端口与供电端口可能是分离的物理端口。例如,一些以太网供电交换机在物理上将数据端口和供电端口分离成两个端口,以分别通过光纤和铜缆连接到受电设备,这样的以太网供电交换机也可以称为光电复合交换机。这种以太网供电交换机与受电设备对接时,将经由数据端口与受电设备进行数据传输,并且经由供电端口向受电设备进行供电传输。在这种情况下,传统的供电设备仅能通过供电线路上的电流解析来完成对受电设备的探测、分级和上电。在受电设备上电之后,供电设备将会分配固定的供电功率(例如,分级后的额定功率)给受电设备使用而无法调整,这可能会导致后续连接到供电设备的其他受电设备因供电设备无剩余功率而不能上电。此外,在数据端口与供电端口分离的情况下,按照传统的以太网供电协议,供电设备将无法从受电设备获得受电设备的供电信息,更无法通过链路层发现协议与受电设备之间进行供电功率协商,以及供电优先级的登记,等等。因此,供电设备也就不能对受电设备进行有效的供电管理。类似的问题和缺陷也存在于除以太网供电设备之外的其他供电设备中。
鉴于传统方案中存在的上述问题以及其他潜在的问题,本公开的实施例提供了一种用于管理供电的技术方案。在本公开的实施例中,供电设备的物理上分离的供电端口与数据端口可以被配对,从而连接到供电端口的受电设备可以经由与供电端口配对的数据端口,来向供电设备提供受电设备的供电信息。基于在数据端口上接收的受电设备的供电信息,供电设备可以相应地经由供电端口向受电设备供电。以此方式,供电设备可以针对受电设备而实现合理且高效的供电,从而供电设备的供电性能得以提高。下文将参考附图来详细描述本公开的若干实施例。
图1示出了根据本公开的实施例的包括供电设备110以及受电设备120和130的示例系统环境100的示意图。如本文中使用的,供电设备110可以是能够向受电设备提供电力的任何设备。在一些实施例中,供电设备110可以是遵循以太网供电协议的供电设备,其可以向以太网客户端设备(也即,以太网受电设备)供电,同时也可以是整个以太网供电过程的管理者。例如,供电设备110可以是遵循以太网供电协议的交换机,诸如光电复合交换机等。在其他实施例中,供电设备110也可以是遵循目前已知或将来开发的其他供电协议的供电设备,或者还可以是非标准的供电设备。如图1所示,供电设备110可以具有多个数据端口112-1至112-N(本文中可以统称为数据端口112)和多个供电端口114-1至114-N(本文中可以统称为供电端口114),其中N为自然数。
如本文中使用的,术语“端口”一般性地指代装置或设备上设置的用于与外界连通或通信的出入口,其通常可以经由线缆或连接器连接至其他装置或设备。在这个意义上,本文中的“端口”可以与“接口”具有相同的技术含义并且可以互换地使用。例如,供电设备110的数据端口112可以是用于传输数据的任何形式的端口,并且供电端口114可以是用于提供供电的任何形式的端口。在一些实施例中,数据端口112可以包括基于光信号的光纤端口, 例如,FC型光纤端口、SC型光纤端口、ST型光纤端口、LC型光纤端口,等等。在其他实施例中,数据端口112也可以是基于电信号或其他形式信号的数据端口。在一些实施例中,供电端口114可以包括标准8位模块化接口,诸如用于接纳RJ45连接器的接口,等等。在其他实施例中,供电端口114也可以是符合于目前已知或将来开发的其他电源标准的端口,或者还可以是非标准的端口。
如所示出的,供电设备110的数据端口112和供电端口114可以是彼此分离的物理端口。例如,不失一般性,数据端口112中的数据端口112-1与供电端口114中的供电端口114-1可以是彼此分离的物理端口。也即,数据端口112-1和供电端口114-1可以分别由两个物理端口来提供,而不是由同一物理端口来提供。在一些实施例中,除了物理上分离的数据端口112和供电端口114之外,供电设备110也可能包括兼有数据端口功能和供电端口功能的一个或多个物理端口(未示出)。换言之,这样的一个或多个物理端口中的每个物理端口既可以作为数据端口又可以作为供电端口。因此,这样的数据端口和供电端口是共用物理端口的,也即由同一物理端口来提供。
在图1的示例中,供电设备110的数据端口112-1可以通过线缆140连接到受电设备120的数据端口122,并且供电端口114-1可以通过线缆145连接到受电设备120的受电端口124,从而供电设备110与受电设备120之间可以同时进行数据传输和电力传输。类似地,供电设备110的数据端口112-2可以通过线缆150连接到受电设备130的数据端口132,并且供电端口114-2可以通过线缆155连接到受电设备130的受电端口134。如本文中使用的,受电设备120和130可以是能够从供电设备接收电力的任何设备。在一些实施例中,受电设备120和130可以是遵循以太网供电协议的受电设备,也即在以太网供电系统中用来受电的设备,其是接受供电的负载,也称为以太网供电系统的客户端设备。以太网受电设备的示例包括但不限于:网络摄像机、无线接入点设备、互联网电话设备、互联网视频监控设备、门禁设备、建筑物管理设备、云终端设备、无线局域网设备、小型家庭(SOHO)交换机、智能照明设备、移动电话充电器、娱乐设备,等等。在其他实施例中,受电设备120和130也可以是遵循目前已知或者将来开发的其他供电协议的受电设备,或者还可以是非标准的受电设备。此外,与供电设备110类似,受电设备120的数据端口122和受电端口124可以是彼此分离的物理端口,并且受电设备130的数据端口132和受电端口134也可以是彼此分离的物理端口。
一般地,线缆140和150可以是适合于数据传输的任何线缆,并且线缆145和155可以是适合于电力传输的任何线缆。在一些实施例中,线缆140和150可以是用于传输光信号的光纤线缆,而线缆145和155可以是用于传输电力的金属线缆。在其他实施例中,受电设备120可以通过光电复合线缆(optoelectronic composite cable,OCC)中的光纤连接到数据端口112-1,并且通过光电复合线缆中的供电线连接到供电端口114-1。如本文中使用的,光电复合线缆是一种复合型的线缆,其使用光纤进行数据传输,可以支持高数据速率(例如,高达100千兆位每秒(Gbps)),并且使用电力电缆(例如,铜缆)进行供电传输,可以支持远距离(例如,200米以上)的电力传输。因此,通过使用光电复合线缆来连接供电设备与受电设备,供电设备与受电设备之间可以同时实现高速率的数据传输和远距离的电力传输。在一些实施例中,光电复合线缆中的供电线可以采用双绞线的形式、或者其他可用于传输电力的电缆形式。
在以太网供电标准中,支持以太网供电的供电设备最长可以支持100米与90瓦的供电能力,同时支持10Gbps的数据传输。然而,随着作为受电设备的无线局域网设备支持新一代的 通信技术,其对接入速率需求已经由10Gbps增加至25Gbps,由此导致支持以太网供电技术的局域网交换机与接入点设备之间的布线距离严重受限。在这种情况下,光电复合线缆的使用可以很好地解决双绞线数据传输距离与传输速率之间的固有矛盾。需要注意的是,本公开的实施例中的光电复合线缆应当广义地理解。例如,光电复合线缆可以是光纤和电缆的分离体,也即包括单独的电缆和单独的光纤。又例如,光电复合线缆也可以是将光纤和电缆组合在一起形成的线缆整体。下文参考图2和图3来分别描述本公开的实施例中的光电复合线缆的这两种示例。
图2示出了根据本公开的实施例的示例光电复合线缆200的示意图。如图2所示,光电复合线缆200包括分离的光纤215和供电线245。在光电复合线缆200中,光纤215可以包括光纤线路210和220,它们可以分别用于两个不同方向上的光信号的传播。在其他实施例中,光纤215也可以包括仅一条光纤线路用于两个不同方向上的光信号传播,例如,通过频分复用的方式。如所示出的,供电线245可以是两芯供电线,其可以包括负供电线240和正供电线250,并且可以由护套270来包围保护。在其他实施例中,供电线245也可以具有任何其他适合的供电线结构。将明白,光纤215也可以通过护套来保护,但是图2中为了简洁未示出。在一些实施例中,参考图1和图2,受电设备120可以经由光纤215和光纤连接器230连接到供电设备110的数据端口112-1,并且经由供电线245和供电连接器(也称为电源连接器)260连接到供电设备110的供电端口114-1。仅作为示例,光纤连接器230可以是光纤LC型连接器,而供电连接器260可以是RJ45型连接器。当然,在其他实施例中,光纤连接器230也可以是任何其他类型的光纤连接器,并且供电连接器260也可以是任何其他类型的供电连接器。
图3示出了根据本公开的实施例的另一示例光电复合线缆300的示意图。如图3所示,光电复合线缆300包括由护套370包裹在一起的光纤315和供电线345。与光电复合线缆200相类似,光电复合线缆300的光纤315也可以包括两条光纤线路310和320,它们可以分别用于两个不同方向上的光信号传播。在其他实施例中,光纤315可以包括仅一条光纤线路用于两个不同方向上的光信号传播,例如,通过频分复用的方式。此外,与光电复合线缆200相类似,光电复合线缆300的供电线345也可以是两芯供电线,其可以包括负极线340和正极线350。在其他实施例中,供电线345也可以具有任何其他适合的供电线结构。在一些实施例中,参考图1和图3,受电设备120可以经由光纤315和光纤连接器330连接到供电设备110的数据端口112-1,并且经由供电线345和电源连接器360连接到供电设备110的供电端口114-1。仅作为示例,光纤连接器330可以是光纤LC型连接器,而供电连接器360可以是RJ45型连接器。当然,在其他实施例中,光纤连接器330也可以是任何其他类型的光纤连接器,并且供电连接器360也可以是任何其他类型的供电连接器。
返回参考图1,在一些实施例中,由于供电设备110具有多个数据端口112和多个供电端口114,所以为了向一个或多个受电设备供电并且与之通信,各个数据端口112与各个供电端口114之间可以具有配对关系,以便配合连接到一个或多个受电设备。如本文中使用的,供电端口与数据端口之间的“配对”是指供电端口和数据端口可以配合操作以便连接到同一受电设备。例如,与某个供电端口相关的信息或数据(例如,供电参数)可以通过与该供电端口配对的数据端口来传输。在图1的示例中,假设数据端口112-1和供电端口114-1是配对的,那么与供电端口114-1相关的信息或数据(例如,供电参数)可以通过数据端口112-1来传输。因此,如果某个受电设备连接到供电设备110的已配对的供电端口和数据端口,则 该受电设备可以经由数据端口向供电设备110发送关于受电设备的供电信息,或从供电设备110接收关于供电端口的数据或信息。例如,在图1的示例中,假设数据端口112-1和供电端口114-1是配对的,则受电设备120可以经由数据端口112-1与供电设备110交换关于供电端口114-1(或受电设备120)的供电信息。
相反地,在一些实施例中,如果某个受电设备连接到供电设备110的未配对的供电端口和数据端口,则该受电设备可以经由数据端口与供电设备110进行通信,也可以经由供电端口从供电设备110接受初步供电。但是,该受电设备无法经由数据端口来与供电设备110交换关于供电端口(或受电设备)的供电信息。因为即使供电设备110接收到这样的供电信息,由于数据端口与供电端口未配对,供电设备110也无法确定该供电信息是关于哪个供电端口的。例如,在图1的示例中,假设数据端口112-1和供电端口114-1未配对,则受电设备120可以经由数据端口112-1与供电设备110通信,但是无法经由数据端口112-1与供电设备110交换关于供电端口114-1(或受电设备120)的供电信息。具体地,供电设备110无法确定将经由数据端口112-1接收的受电设备120的供电信息用于哪个供电端口,也不能确定将哪个供电端口的供电信息经由数据端口112-1提供给受电设备120。在一些实施例中,供电设备110可以使用配置信息来管理供电端口114与数据端口112之间的配对关系。下文参考图4来描述这样的实施例。
图4示出了根据本公开的实施例的指示供电端口114与数据端口112之间的配对关系的示例配置信息400。如图4所示,配置信息(也称为配置文件)400可以采用表格的形式,并且可以包括供电端口列410和数据端口列420。在配置信息400中,编号位于同一行中的供电端口和数据端口即为配对的供电端口和数据端口。例如,在图4的示例中,供电端口114-1与数据端口112-1配对,供电端口114-2与数据端口112-2配对,供电端口114-3与数据端口112-N配对,供电端口114-4没有与数据端口配对,……,供电端口114-N-1与数据端口112-8配对,并且供电端口114-N与数据端口112-5配对,等等。借助于配置信息400,供电设备110可以方便地通过查询配置信息400中的条目,来确定供电端口114和数据端口112的配对关系,查找与某个供电端口配对的数据端口,或者查找与某个数据端口配对的供电端口,等等。因此,通过使用配置信息400,供电设备110可以便利地且高效地管理供电端口114与数据端口112之间的配对关系。
应当理解,配置信息400具有图4中描绘的表格形式仅是示例性的,无意以任何方式限制本公开的范围。在其他实施例中,配置信息400可以具有任何适当的其他形式,只要可以用于记录供电端口114与数据端口112之间的配对关系即可。另外,配置信息400中按照供电端口的编号从小到大的顺序来组织也仅是示例性的。在其他实施例中,配置信息400也可以按照数据端口的编号来组织,或者按照供电端口编号或数据端口编号的其他顺序来组织,等等。在一些实施例中,配置信息400可以存储在供电设备110内部,例如存储在供电设备110的存储器中,这样供电设备110对配置信息400的访问速度可以加快。备选地,配置信息400也可以存储在供电设备110可访问的外部存储设备中,如此可以减小供电设备110的存储负担,降低供电设备110的成本。
在一些实施例中,配置信息400是用户可编辑的。换言之,供电设备110的用户可以按照供电设备110的具体应用环境和场景,通过编辑配置信息400的内容,来将供电设备110的某个供电端口与某个数据端口配对。以图1中的受电设备120为例,在受电设备120连接到数据端口112-1和供电端口114-1之前或之后,供电设备110的用户可以在供电设备110的 用户界面中编辑配置信息400的内容,从而手动地设置数据端口112-1与供电端口114-1之间的配对关系。这样,供电设备110的用户可以将数据端口112和供电端口114任意配对,极大提升了供电设备110的使用灵活性。
在其他实施例中,配置信息400也可以被设置成用户不可编辑的。也就是说,供电设备110的数据端口112和供电端口114之间存在默认的固定的配置关系。在这种情况下,在备选的实施例中,供电设备110也可以不通过配置信息400来管理数据端口112和供电端口114之间的配对关系,因为它们的配对关系是固定的。在一些实施例中,固定配对的数据端口和供电端口可以是容易辨认的,例如,在图1的示例中,与供电端口固定配对的数据端口可以是位于供电端口上方的数据端口。具体地,在图1的示例中,数据端口112-1可以与供电端口114-1具有固定的配对关系,数据端口112-2可以与供电端口114-2具有固定的配对关系,……,数据端口112-N-1可以与供电端口114-N-1具有固定的配对关系,并且数据端口112-N可以与供电端口114-N具有固定的配对关系。在固定配对的情况下,用户在使用线缆将受电设备连接到供电设备110的供电端口和数据端口时,可能需要按照供电端口114和数据端口112之间的固定配对关系来连接。例如,假设图1中的数据端口112-1与供电端口114-1具有固定的配对关系,则它们可能需要被连接至同一受电设备,例如,受电设备120。
应当理解,图1至图4仅示意性地示出了示例系统环境100中的与本公开的实施例相关的设备、单元、模块、组件或信息。在实践中,示例系统环境100还可以包括用于其他功能的其他设备、单元、模块、组件或信息。此外,图1至图4中示出的设备、单元、模块、组件或信息的特定数目仅是示意性的,无意以任何方式限制本公开的范围。在其他实施例中,示例系统环境100可以包括任何适当数目的供电设备、受电设备、供电设备的供电端口、供电设备的数据端口、或线缆,等等。因此,本公开的实施例不限于图1至图4所描绘的具体设备、单元、模块、组件或信息,而是一般性地适用于供电设备向受电设备提供供电的任何技术环境。下文参考图5来描述本公开的实施例的用于管理供电的方法。
图5示出了根据本公开的实施例的用于管理供电的示例方法500的流程图。在一些实施例中,示例方法500可以由示例系统环境100中的供电设备110来实现,例如可以由供电设备110的处理器或处理单元来实现。在其他实施例中,示例方法500也可以由独立于示例系统环境100的供电设备来实现。为了便于说明且不失一般性,下文将参考图1以供电设备110执行示例方法500以管理向受电设备120的供电作为示例来论述示例方法500。
在框510处,供电设备110可以经由数据端口112-1从受电设备120接收受电设备120的供电信息160。如上文中描述的,受电设备120所连接到的数据端口112-1和供电端口114-1之间是配对的。也就是说,供电设备110可以确定数据端口112-1和供电端口114-1是配合使用的并且连接至同一受电设备。因此,供电设备110可以使用数据端口112-1与受电设备120交换信息,来管理供电端口114-1的供电。例如,供电设备110可以经由数据端口112-1来接收受电设备120的供电信息160,以便于管理对受电设备120的供电,也即管理在供电端口114-1上的供电。
需要说明的是,如果数据端口112-1与供电端口114-1之间存在固定的配对关系,则在受电设备120连接到数据端口112-1和供电端口114-1之后,供电设备110就可以从受电设备120接收供电信息160,并根据供电信息160来管理供电端口114-1的供电,而无需查询数据端口112-1与供电端口114-1之间是否存在配对关系。然而,如果供电设备110的数据端口112与供电端口114之间的配对关系是可配置的,则在受电设备120连接到数据端口112-1和 供电端口114-1之后,供电设备110可能需要在配置信息400中查找数据端口112-1与供电端口114-1之间是否存在配对关系。如果存在这样的配对关系,则供电设备110可以使用供电信息160来管理供电端口114-1的供电。后文将参考图8来详细描述这样的示例。
在一些实施例中,供电信息160可以包括用于调整供电端口114-1的供电功率的指示。也就是说,受电设备120可以在供电信息160中请求供电设备110调整供电端口114-1的供电功率。一般而言,供电端口114-1的供电功率是指供电设备110分配给供电端口114-1的可用功率,也即分配给受电设备120的可用最大功率。尽管受电受电设备120可能并未汲取该可用的最大功率,但是供电设备110仍然需要将该可用最大功率“预留”给供电端口114-1,而不能分配给其他的供电端口。
例如,假设供电设备110向供电端口114-1分配(或预留)30瓦的供电功率,则受电设备120可以在30瓦功率内按需消耗功率。如果受电设备120使用的功率超出了30瓦,则供电设备110可以停止对受电设备120的供电。然而,在一些情况下,受电设备120可能确实需要消耗比供电端口114-1的当前供电功率更高的功率。因此,受电设备120可以在供电信息160中包括提高供电端口114-1的供电功率的请求。在供电设备110处,如果供电设备110具有尚未分配的可用供电功率,则供电设备110可以提高供电端口114-1的供电功率,以便满足受电设备120更高的用电需求。相反地,如果供电设备110没有剩余的供电功率可以分配给供电端口114-1,则供电设备110也可以不调整供电端口114-1的供电功率。
在另一些情况下,受电设备120可能发现需要消耗的功率将持续低于供电端口114-1的当前供电功率。例如,受电设备120可能预期将在一段时间内处于低功耗状态(例如,休眠模式)中,而无需供电设备110向供电端口114-1分配较大的供电功率。在这样的情况下,受电设备120可以在供电信息160中包括降低供电端口114-1的供电功率的请求。在接收到受电设备120发出的降低供电端口114-1的供电功率的请求之后,供电设备110可以降低供电端口114-1的供电功率,从而提高供电设备110的剩余可用供电功率并降低供电设备110的总功耗。备选地或另外地,供电设备110可以将回收的供电功率分配给其他的供电端口以用于向其他受电设备供电。这有利于供电设备110的供电功率的灵活合理的调配。
在一些实施例中,供电信息160可以包括受电设备120的供电优先级,从而供电设备110可以根据受电设备120的供电优先级来向受电设备120供电。例如,供电设备110可以依据受电设备120的供电优先级向受电设备120提供相应的供电保障。具体地,在图1的示例中,如果受电设备120相对于受电设备130具有更高的供电优先级,则在可用供电功率不足的情况下,供电设备110可以优先保证受电设备120的供电,而在必要时停止对受电设备130的供电。需要说明的是,供电设备110对受电设备120相对于受电设备130的优先供电是通过设置供电端口114-1和114-2的供电优先级来实现的。也就是说,供电设备110可以参考受电设备120在供电信息160中提供的设备供电优先级,来设置供电端口114-1在所有供电端口114中的端口供电优先级。例如,为了将受电设备120的供电优先级设置为高于受电设备130,供电设备110可以将供电端口114-1的供电优先级设置为高于供电端口114-2的供电优先级。
在其他实施例中,供电信息160还可以包括与受电设备120的供电有关的其他信息。例如,供电信息160可以包括受电设备120期望的任何其他的供电参数,诸如,供电电压等。又例如,供电信息160可以包括受电设备120期望的供电方式,诸如,在特定时间段内提供低功率供电,在另一特定时间段内提供高功率供电,等等。总之,受电设备120可以经由数据端口112-1向供电设备110提供与受电设备120的供电有关的任何信息。在一些实施例中, 为了更好地向受电设备120供电,供电设备110可以经由数据端口112-1就受电设备120的供电与受电设备120进行通信协商并且达成一致。例如,供电设备110在框510处接收受电设备120的供电信息160可以是该通信协商过程的一部分。后文将参考图6A、图6B和图7来具体描述这样的实施例。
在框520处,基于受电设备120的供电信息160,供电设备110可以经由供电端口114-1向受电设备120供电。例如,如果供电信息160表明受电设备120请求降低供电端口114-1的供电功率,则供电设备110可以相应地减小供电端口114-1的供电功率,从而回收可用的供电功率并提高剩余的可用供电功率。又例如,如果供电信息160表明受电设备120请求提高供电端口114-1的供电功率,则供电设备110可以视情况来决定是否提高供电端口114-1的供电功率。具体地,如果供电设备110不具有剩余的可用供电功率,或者即使供电设备110有剩余的可用供电功率,但是存在比受电设备120的供电优先级更高的受电设备也请求提高供电功率,则供电设备110可以不提高供电端口114-1的供电功率。如果有可用的额外供电功率,则供电设备110可以提高供电端口114-1的供电功率。再例如,如果供电信息160中包括受电设备120的供电优先级,则供电设备110可以根据受电设备120的供电优先级的高低来向受电设备120提供相应的供电保障。在其他实施例中,供电信息160还可能指示与受电设备120的供电有关的任何其他信息。在这些的实施例中,供电设备110可以利用供电信息160中的这些信息来更好地经由供电端口114-1向受电设备120供电,从而改进供电设备110向受电设备120提供的供电。
借助于示例方法500,在数据端口112-1与供电端口114-1分离的情况下,通过将数据端口112-1与供电端口114-1配对,供电设备110可以经由数据端口112-1从受电设备120接收受电设备120的供电信息160,并且在配对的供电端口114-1上根据供电信息160向受电设备120提供特定于受电设备120的供电,以满足受电设备120的个性化的用电需求。以此方式,通过使用示例方法500,本公开的实施例的供电设备110可以解决传统供电设备在数据端口与供电端口分离的场景中存在的问题,从而具有分离的数据端口112-1和供电端口114-1的供电设备110可以向受电设备120提供高性能的供电。
如上文在描述示例方法500的框510时提到的,为了更好地向受电设备120供电,供电设备110可以经由数据端口112-1就受电设备120的供电与受电设备120进行通信协商,并且最终达成一致,从而可以解决传统供电设备因为数据端口和供电端口分离造成的无法与受电设备进行供电协商的问题。例如,供电设备110在框510处接收受电设备120的供电信息160可以是该通信协商过程的一部分。在一些实施例中,这样的通信协商可以基于链路层发现协议(LLDP)来实现。例如,供电设备110与受电设备120之间发送的各种信息可以包括在LLDP报文内自定义的“类型/长度/值”(Type/Length/Value,TLV)字段中,以实现供电设备110与受电设备120之间的供电功率协商、供电功率的动态分配、供电优先级协商,等等。应当明白,这里提到的链路层发现协议和TLV字段仅是示例性的,无意以任何方式限制本公开的范围。本公开的实施例可以等同地适用于任何其他的当前已有的或未来开发的通信协议或字段。下文将参考图6A、图6B和图7来具体描述供电设备110与受电设备120之间的通信协商过程的示例。
图6A示出了根据本公开的实施例的供电设备110与受电设备120协商供电功率的示例通信过程600的示意图。需要说明的是,为了论述的目的,下文将参考图1的供电设备110与受电设备120来描述示例通信过程600。然而,应当明白,示例通信过程600也可以等同 地在根据本公开的实施例的供电设备与任何其他适合的受电设备之间执行。
如图6A所示,在受电设备120连接到供电设备110的已配对的供电端口114-1和数据端口112-1之后,受电设备120可以经由数据端口112-1向供电设备110发送610用于调整供电端口114-1的供电功率的指示605。相对应地,供电设备110可以经由数据端口112-1从受电设备120接收620用于调整供电端口114-1的供电功率的指示605。例如,受电设备120可能将在较长时间内处于低功耗状态,则受电设备120可以基于链路层发现协议LLDP与供电设备110协商供电端口114-1的供电功率。例如,受电设备120经由数据端口112-1向供电设备110发送降低供电端口114-1的供电功率的请求。相反地,如果受电设备120需要消耗比供电端口114-1的供电功率更高的功率,则受电设备120可以在指示605中请求供电设备110向供电端口114-1分配更多的供电功率。在一些实施例中,受电设备120可以周期性地向供电设备110发送受电设备120当前所需要的供电功率。在这样的实施例中,如果受电设备120所需要的供电功率发生变化,则可以认为受电设备120发送了用于调整供电端口114-1的供电功率的指示605。在其他实施例中,替代周期性地发送指示605,受电设备120也可以在所需要的供电功率发生变化时向供电设备110发送指示605。
在从受电设备120接收620到指示605之后,取决于不同的场景,供电设备110可以经由数据端口112-1向受电设备120发送630供电端口114-1的供电功率615,也即,供电设备110分配或预留给数据端口112-1的供电功率615。相应地,受电设备120可以经由数据端口112-1从供电设备110接收640供电端口114-1的供电功率615。例如,如果指示605是请求降低供电端口114-1的供电功率,则供电设备110可以向受电设备120发送630供电端口114-1的降低后的供电功率615。以此方式,供电设备110的剩余的可用供电功率可以被提高,这有利于供电设备110的供电功率的灵活合理的调配。又例如,如果指示605是请求提高供电端口114-1的供电功率,并且供电设备110确定供电端口114-1的供电功率可以被提高,诸如供电设备110还具有未分配的供电功率,或者受电设备120具有高供电优先级,则供电设备110可以向受电设备120发送630供电端口114-1的提高后的供电功率615。以此方式,供电设备110可以满足受电设备120的用电需求,从而提高向受电设备120的供电性能。
再例如,如果指示605是请求提高供电端口114-1的供电功率,并且供电设备110确定供电端口114-1的供电功率无法被提高,诸如供电设备110不具有未分配的供电功率,或者受电设备120具有低供电优先级而另一高供电优先级的受电设备正在请求分配更高的供电功率,则供电设备110可以向受电设备120发送630供电端口114-1的未改变的供电功率615,从而以隐式的方式通知受电设备120提高供电功率的请求被拒绝。在其他实施例中,供电设备110也可以经由数据端口112-1向受电设备120发送显式通知,以指示提高供电端口114-1的供电功率的请求被拒绝。
通过通信过程600,受电设备120可以经由数据端口112-1将期望的供电端口114-1的供电功率告知供电设备110,而供电设备110也可以经由数据端口112-1向受电设备120通知调整后的(或未经调整的)供电端口114-1的供电功率,从而及时且高效地完成供电设备110与受电设备120之间关于供电端口114-1的供电功率的协商。由此,供电设备110可以在可能的范围内根据受电设备120的用电需求来及时调整供电端口114-1的供电功率,以满足受电设备120的个性化需求,提高针对受电设备120的供电性能。此外,由于供电设备110向受电设备120提供的供电功率可以实现动态化调整,所以可以避免传统的供电设备由于供电功率不足引起的受电设备掉电。
图6B示出了根据本公开的实施例的供电设备110与受电设备120协商供电功率的另一示例通信过程650的示意图。需要说明的是,为了论述的目的,下文将参考图1的供电设备110与受电设备120来描述示例通信过程650。然而,应当明白,示例通信过程650也可以等同地在根据本公开的实施例的供电设备与任何其他适合的受电设备之间执行。
如图6B所示,在受电设备120连接到供电设备110的已配对的供电端口114-1和数据端口112-1之后,供电设备110可以经由数据端口112-1向受电设备120发送660供电端口114-1的供电能力信息(本文中也简称为能力信息)的指示625。相对应地,受电设备120可以经由数据端口112-1从供电设备110接收670供电端口114-1的供电能力信息的指示625。在一些实施例中,供电端口的供电能力可以是指供电端口的最大供电功率,而供电设备110与受电设备120协商的供电功率将等于或低于该最大供电功率。仅作为示例而非限制,供电端口114-1的供电能力可能是40瓦,而供电设备110向供电端口114-1分配的供电功率可能是30瓦,低于最大供电功率40瓦。在一些情况下,例如由于其他更高优先级的受电设备连接到供电设备110,供电设备110可能需要降低供电端口114-1的最大供电功率。相反地,如果供电设备110发现还具有剩余未分配的供电功率,供电设备110也可以提高供电端口114-1的最大供电功率。因此,如果供电设备110确定供电端口114-1的最大供电功率将被调整,则供电设备110可以向受电设备120发送660指示625。在一些实施例中,供电设备110可以周期性地向受电设备120发送供电端口114-1的供电能力信息的指示625,而不论供电端口114-1的最大供电功率是否发生变化。在其他实施例中,替代周期性地发送指示625,供电设备110也可以在供电端口114-1的最大供电功率发生变化时向受电设备120发送指示625。
在从供电设备110接收到指示625之后,取决于不同的场景,受电设备120可以经由数据端口112-1向供电设备110发送680用于调整供电端口114-1的供电功率的指示605。相应地,供电设备110可以经由数据端口112-1从受电设备120接收690指示605。例如,不论指示625是降低、提高还是保持供电端口114-1的最大供电功率,受电设备120可以视情况而经由数据端口112-1向供电设备110发送用于调整供电端口114-1的供电功率的指示605,以向供电设备110申请等于或低于供电端口114-1的最大供电功率的供电功率。以此方式,受电设备120可以根据供电端口114-1的供电能力来向供电设备110请求适当的供电功率,从而有利于供电设备110和受电设备120高效地协商出合理的供电功率。需要说明的是,如果受电设备120确定供电端口114-1的供电功率无需调整,则受电设备120可以向供电设备110发送680指示605以指示与此前使用的相同的供电功率,从而以隐式的方式通知供电设备110无需调整供电端口114-1的供电功率。在其他实施例中,受电设备120也可以经由数据端口112-1向供电设备110发送显式通知以指示供电端口114-1的供电功率无需调整。
通过通信过程650,供电设备110可以经由数据端口112-1向受电设备120通知供电端口114-1的供电能力,也即最大供电功率。如此,受电设备120可以根据供电端口114-1的供电能力来向供电设备110请求适当的供电功率,从而有利于供电设备110和受电设备120高效地协商出合理的供电功率,进而提高供电设备110针对受电设备120的供电性能。
图7示出了根据本公开的实施例的供电设备110与受电设备120协商供电优先级的示例通信过程700的示意图。需要说明的是,为了论述的目的,下文将参考图1的供电设备110与受电设备120来描述示例通信过程700。然而,应当明白,示例通信过程700也可以等同地在根据本公开的实施例的供电设备与任何其他适合的受电设备之间执行。
如图7所示,在受电设备120连接到供电设备110的已配对的供电端口114-1和数据端 口112-1之后,受电设备120可以经由数据端口112-1向供电设备110发送710受电设备120的供电优先级705。相对应地,供电设备110可以经由数据端口112-1从受电设备120接收720受电设备120的供电优先级705。在一些实施例中,供电优先级705可以是受电设备120自带的设备优先级,并且可以根据不同受电设备的重要性高低来设置。例如,如果受电设备120是互联网电话设备,则受电设备120可以被设置有较高的供电优先级705。又例如,如果受电设备120是娱乐设备,则受电设备120可以被设置有较低的供电优先级705。将理解,这里描述的不同类型的受电设备120具有或高或低的供电优先级仅是示例性的,无意以任何方式限制本公开的范围。在其他实施例中,取决于具体的系统环境和应用场景,娱乐设备也可能带有高于互联网电话设备的供电优先级。在一些实施例中,受电设备120可以周期性地向供电设备110发送710受电设备120的供电优先级705,以便供电设备110可以实时地评估受电设备120在连接到供电设备110的所有受电设备中的重要性,从而可以灵活地调整受电设备120的实际供电优先级,也即供电端口114-1的端口供电优先级。
在接收到受电设备120的供电优先级705之后,供电设备110可以基于各个供电端口114上所连接的受电设备的供电优先级,来设置各个供电端口114的端口供电优先级,也即各个受电设备在供电设备110处的实际供电优先级。例如,参考图1,假设连接到供电设备110的供电端口114-1的受电设备120是互联网电话设备,其供电优先级可以为“极高(Critical)”。另外,假设连接到供电设备110的供电端口114-2的受电设备130是网络摄像机,其供电优先级可以为“高(High)”。此外,假设连接到供电设备110的供电端口114-3的受电设备(未示出)是娱乐设备,其供电优先级可以为“低(Low)”。在这种情况下,供电设备110可以相应地将供电端口114-1的供电优先级设置为“极高”,将供电端口114-2的供电优先级设置为“高”,而将供电端口114-3的供电优先级设置为“低”。
需要说明的是,供电设备110在设置供电端口114的端口供电优先级时,并非需要与受电设备本身的设备供电优先级完全一致。在一些实施例中,在设置各个供电端口114的供电优先级时,供电设备110还可以考虑到特定的系统环境和应用场景等其他因素。例如,如果连接至供电端口114-3的上述娱乐设备正在参与竞技,则供电设备110可以将供电端口114-1和114-3的供电优先级设置为“极高”,而将供电端口114-2的供电优先级设置为“高”。备选地,供电设备110可以将供电端口114-3的供电优先级设置为“极高”,将供电端口114-1的供电优先级设置为“高”,而将供电端口114-2的供电优先级设置为“低”,等等。将明白,在这种特定场景下,各个供电端口114的供电优先级的其他设置方式也是可能的,只要使得供电端口114-3的具有相对高的供电优先级即可。
应当注意,这里列出的各个受电设备120和130等以及各个供电端口114的设备供电优先级体系和端口供电优先级体系仅是示意性的,无意以任何方式限制本公开的范围。在其他实施例中,供电设备110的各个供电端口114可以具有“极高”、“高”和“低”三种供电优先级,而受电设备可以带有更为精细的供电优先级划分体系,诸如,由数字1、2、3、4和5表示的五级供电优先级。又例如,受电设备可以具有“极高”、“高”和“低”三种供电优先级,而供电设备110的各个供电端口114可以被设置有更为精细的供电优先级划分体系,诸如,由数字1、2、3、4和5表示的五级供电优先级。再例如,受电设备和各个供电端114两者均可以具有任何数目的优先级级别的供电优先级。
在设置受电设备120的实际供电优先级,也即,供电端口114-1的供电优先级之后,供电设备110可以经由数据端口112-1向受电设备120发送730供电端口114-1的供电优先级 715。相对应地,受电设备120可以经由数据端口112-1从供电设备110接收740供电端口114-1的供电优先级715。如此,受电设备120可以获知供电端口114-1的供电优先级715,也即,受电设备120在供电设备110处的实际供电优先级。因此,受电设备120可以根据该实际供电优先级来规划受电设备120的操作。例如,如果受电设备120被通知其在供电设备110处具有较高的实际供电优先级,则受电设备120可以认为其供电具有高保障,从而可以执行重要性更高的操作。相反地,如果受电设备120被通知其在供电设备110处具有较低的实际供电优先级,则受电设备120可以认为其供电不具有保障,从而可以放弃重要性高的操作。
通过通信过程700,供电设备110可以经由数据端口112-1来获得受电设备120的设备供电优先级,从而为受电设备120的供电端口114-1确定端口供电优先级。因此,供电设备110可以根据受电设备120的供电优先级来向受电设备120提供相应的供电保障,从而更好地管理受电设备120的供电并且满足受电设备120的用电需求。例如,如果受电设备120具有高供电优先级,当供电设备110遇到输入功率突降时,供电设备110可以保证受电设备120的正常供电。
如上文在描述示例方法500的框510时提到的,如果供电设备110的数据端口112与供电端口114之间的配对关系是可配置的,则在受电设备120连接到数据端口112-1和供电端口114-1之后,供电设备110可能需要在配置信息400中查找数据端口112-1与供电端口114-1之间是否存在配对关系。如果存在这样的配对关系,则供电设备110可以使用受电设备120的供电信息160来管理供电端口114-1的供电。下文将参考图8来描述这样的实施例。
图8示出了根据本公开的实施例的在供电端口114-1与数据端口112-1之间的配对关系为可配置时供电设备110的示例操作过程800的流程图。需要指出的是,示例操作过程800可以认为是上文描述的示例方法500在一些情况下的具体示例。在一些实施例中,示例操作过程800可以由示例系统环境100中的供电设备110来实现,例如可以由供电设备110的处理器或处理单元来实现。在其他实施例中,示例操作过程800也可以由独立于示例系统环境100的供电设备来实现。为了便于说明且不失一般性,将参考图1以供电设备110执行示例操作过程800向受电设备120供电作为示例来论述示例操作过程800。然而,应当理解,示例操作过程800也可以等同地由本公开的供电设备110执行以向连接到其供电端口的任何其他受电设备供电。
在框810处,供电设备110可以在各个供电端口114上检测是否有受电设备连接到供电端口。例如,当受电设备120连接到供电端口114-1时,供电设备110可以检测到受电设备120已连接至供电端口114-1。因此,供电设备110可以及时地发现受电设备120已连接到供电端口114-1,进而相应地向受电设备120提供供电并且可能随后经由配对的数据端口112-1对受电设备120进行供电管理。在一些实施例中,该检测过程可以类似于以太网供电协议中规定的供电设备对受电设备的检测过程(也称为物理探测过程),诸如,IEEE 802.3协议中的基本探测流程。例如,供电设备110可以通过检测电源输出线对之间的阻容值来判断受电设备是否存在。在一些实施例中,检测阶段输出电压可以为2.8V-10V,电压极性可以与52V输出一致。只有检测到受电设备,供电设备110才会进行下一步的操作。在一些实施例中,受电设备存在的特征为直流阻抗在19K-26.5KΩ之间,且容值不超过150nF。如果供电设备110检测到的特征阻容不符合以上标准定义的值,即可以认为对端设备为非标准的受电设备,则供电设备110可以不进行供电。如果供电设备110检测到的特征阻容符合以上标准定义的值,则供电设备110可以进入第二阶段分级阶段。
另外,在框810处,在检测到连接到供电端口114-1的受电设备120之后,供电设备110还可以对受电设备120进行分级,以确定受电设备120属于哪个功率级别,并且以分级得到的功率级别(例如,受电设备120的额定功率)向受电设备120初步供电。例如,在对受电设备120的分级过程中,供电设备110可以确定受电设备120的功耗。具体地,供电设备110可以通过检测电源输出电流来确定受电设备120的功率等级。在一些实施例中,分级阶段的端口输出电压可以为15.5V-20.5V,电压极性可以与52V电压输出一致。在一些实施例中,受电设备120可以从线上吸收一个恒定电流(分级特征信号),向供电设备110表明自己所需的最大功率。供电设备110可以测量这个电流,以确定受电设备120属于哪个功率级别。在一些实施例中,分级期间使用的供电设备110的电流可以限制到100mA,以避免损坏受电设备120,而且连接时间可以不超过75ms,以对受电设备120功耗加以控制。在初步供电阶段中,当供电设备110检测到供电端口114-1上的受电设备120属于合法的受电设备时,并且供电设备110已完成对此受电设备120的分类,则供电设备110可以开始对受电设备120进行供电,输出例如48V的电压。
应当理解,这里所列举的各种参数的具体数值仅为示例性的,无意以任何方式限制本公开的范围。在其他实施例中,上文描述的所有相关参数均可以具有任何其他适当的取值。此外,在其他实施例中,对受电设备的检测过程(或者分级过程、初步供电过程等)也可以遵循目前已有的或将来开发的其他类似的协议,或者直接利用机械或电学等物理检测手段来实现。此外,还应当明白,供电设备110对受电设备120的分级和初步供电对于框810并不是必需的而是可选的,供电设备110可以在检测到受电设备120之后,直接进入到框820。
在框820处,供电设备110可以查询连接有受电设备的供电端口的配对的数据端口。例如,在受电设备120连接到供电端口114-1之后,供电设备110可以在上文描述的配置信息400中查找与受电设备120所连接到的供电端口114-1配对的数据端口。以此方式,供电设备110可以及时地确定与连接有受电设备的供电端口相对应的数据端口,以便从该数据端口获得受电设备的供电信息。在一些实施例中,由于供电端口114与数据端口112之间的配对关系的配置信息400是用户可编辑的,因此在虚线框825处,用户可以配置供电端口114与数据端口112之间的配对关系。需要说明的是,这里使用虚线框825来表示由用户执行的操作,而不属于供电设备110执行的操作。例如,用户可以访问供电设备110的管理界面,通过修改配置信息400的内容来设置供电端口114与数据端口112之间的配对关系。通常,用户可能在任何时间设置该配对关系。例如,在受电设备120连接到供电端口114-1之前,用户可能已经设置好与供电端口114-1配对是数据端口112-1。又例如,在受电设备120已经连接到供电端口114-1一段时间之后,用户可能才设置与供电端口114-1配对的是数据端口112-1。因此,为了及时地查找到与供电端口114-1配对的数据端口,供电设备110可以周期性地查询上述配置信息400,以确定与供电端口114-1配对的数据端口。备选地,供电设备110也可以针对各个数据端口112进行定期轮询,以确定数据端口是否存在配对的供电端口。如果数据端口存在配对的供电端口,则供电设备110可以在后续的操作中在数据端口上发送与配对的供电端口有关的信息。
在框830处,供电设备110可以判断连接有受电设备的供电端口是否存在配对的数据端口。例如,对于连接有受电设备120的供电端口114-1而言,供电设备110可以确定供电端口114-1是否存在配对的数据端口。例如,在用户将数据端口112-1设置为与供电端口114-1配对之后,供电设备110即可以在配置信息400中查询到供电端口114-1存在配对的数据端 口112-1。否则,如果用户尚未设置供电端口114-1的配对数据端口,则供电设备110可以通过查询配置信息400而确定供电端口114-1不存在配对的数据端口。
在框840处,如果供电设备110确定连接有受电设备的供电端口存在配对的数据端口,则供电设备110可以经由该配对的数据端口来与该受电设备进行供电协商。例如,如果供电设备110确定供电端口114-1存在配对的数据端口112-1,则供电设备110可以经由数据端口112-1来与受电设备120进行供电协商。具体的供电协商过程可以类似于上文参考图6A、图6B和图7描述的供电功率和供电优先级的通信协商过程。更一般地,供电设备110和受电设备120也可以经由数据端口112-1来协商关于供电端口114-1的任何其他方面的供电参数。例如,供电设备110可以将供电端口114-1的各种供电参数包含在链路层发现协议报文中的TLV字段中,并且经由数据端口112-1发送给受电设备120。同样地,受电设备120也可以将其期望的供电参数包含在链路层发现协议报文中的TLV字段中,并且经由数据端口112-1发送给供电设备110。在一些实施例中,供电设备110和受电设备120可以经由数据端口112-1周期性地互相发送链路层发现协议报文。
在框850处,在完成经由数据端口112-1的供电协商之后,供电设备110可以按照协商后的供电参数经由供电端口114-1向受电设备120供电。例如,如果供电设备110和受电设备120就供电功率完成协商,则供电设备110可以按照经协商的供电端口114-1的供电功率向受电设备120供电。又例如,如果供电设备110和受电设备120就供电优先级完成协商,则供电设备110可以按照经协商的供电端口114-1的供电优先级向受电设备120供电。更一般地,如果供电设备110和受电设备120就其他供电参数完成协商,则供电设备110可以按照供电端口114-1的任何其他经协商的供电参数向受电设备120供电。
另一方面,如果供电设备110在框830处确定供电端口114-1不存在配对的数据端口,则在框860处,供电设备110可以按照受电设备120的默认供电参数经由供电端口114-1向受电设备120供电。例如,供电设备110可以按照供电端口114-1(或受电设备120)的默认供电功率向受电设备120供电。又例如,供电设备110可以按照供电端口114-1的默认供电优先级向受电设备120供电。更一般地,供电设备110可以按照供电端口114-1的任何其他默认供电参数向受电设备120供电。需要说明的是,如果供电设备110在框820处已经对受电设备120按照默认的供电功率(例如,受电设备120的额定功率)进行初步供电,则在框860处,供电设备110可以保持以该默认的供电功率向受电设备120供电。
通过示例操作过程800,在供电端口114与数据端口112之间的配对关系为配置的情况下,通过例如查询配置信息400的方式,供电设备110可以及时地确定连接有受电设备的供电端口是否被配对至数据端口。如果存在配对的数据端口,则供电设备110可以在该数据端口上与受电设备进行供电协商,从而向受电设备提供具有针对性的供电,以提高受电设备的供电性能和操作性能。如果不存在配对的数据端口,则供电设备110也可以向受电设备提供初步供电,使得受电设备可以正常运转。因此,使用示例操作过程800,供电设备110的供电性能可以被改进。
图9示出了根据本公开的实施例的具有示例端口布置900的供电设备110的框图。如图9所示,除了数据端口112和供电端口114以外,供电设备110还可以包括处理器115和存储器117。在一些实施例中,存储器117可以存储有指令118,例如计算机程序指令118,并且存储器117和计算机程序指令118可以被配置为,与处理器115一起,使供电设备110执行根据本公开的实施例的各种示例方法或示例过程。例如,各种示例方法或示例过程可以包括 图5中描绘的用于管理供电的示例方法500,图6A、图6B和图7中描绘的示例通信过程600、650和700,以及图8中描绘的示例操作过程800,等等。
在图9的示例端口布置900中,数据端口112成行地被布置,而供电端口114在数据端口112行的下方成行地被布置。通过这样的排布方式,数据端口适合于与较近的供电端口配对,以方便使用例如图3中描绘的一体式光电复合线缆300。将理解,图9中将数据端口112行描绘为位于供电端口114行的上方仅为示例性的,无意以任何方式限制本公开的范围。在其他实施例中,数据端口112行也可以位于供电端口114行的下方。
在一些实施例中,处理器115可以具有适合于本地技术环境的任何类型,并且作为非限制性示例可以包括以下一个或多个:通用计算机、专用计算机、微处理器、数字信号处理器(DSP)和基于多核处理器架构的处理器。此外,供电设备110可以具有多个处理器,诸如在时间上跟随与主处理器同步的时钟进行从动的专用集成电路芯片。
在一些实施例中,存储器117可以包括一个或多个非易失性存储器和一个或多个易失性存储器。非易失性存储器的示例包括但不限于只读存储器(ROM)、电可擦除可编程只读存储器(EPROM)、闪存、硬盘、压缩盘(CD)、数字多功能盘(DVD)、以及其他磁存储设备和/或光学存储设备。易失性存储器的示例包括但不限于随机存储存取器(RAM)或者在掉电期间无法持续的其他易失性存储器。
在一些实施例中,计算机程序指令118可以包括计算机可执行指令,这些指令可以由相关联的处理器115可执行。计算机程序指令118可以被存储在存储器117的ROM中。处理器115可以通过将计算机程序指令118加载到存储器117的RAM中,来执行各种适当的动作和处理。
在一些实施例中,存储器117和计算机程序指令118可以被配置为,与处理器115一起,使供电设备110经由数据端口112-1从受电设备120接收受电设备120的供电信息。此外,存储器117和计算机程序指令118还可以被配置为,与处理器115一起,使供电设备110经由供电端口114-1并基于供电信息向受电设备120供电。因此,相比于传统的供电设备,本公开的实施例的供电设备在数据端口与供电端口分离的情况下向受电设备供电的性能可以被改进。
在一些实施例中,供电设备110的数据端口112-1可以通过光电复合线缆200或300中的光纤210和220或者310和320连接到受电设备120,并且供电设备110的供电端口114-1通过光电复合线缆200或300中的供电线240和250或者340和350连接到受电设备120。以此方式,供电设备与受电设备之间可以实现高速率的数据传输,同时实现远距离的电力传输。
在一些实施例中,存储器117还用于存储配置信息。该配置信息可以指示供电端口114-1与数据端口112-1之间的配对关系。例如,供电设备110可以将该配置信息存储在存储器117中。如此,供电设备可以便利地且高效地管理供电端口与数据端口之间的配对关系。
在一些实施例中,存储器117和计算机程序指令118还可以被配置为,与处理器115一起,使供电设备110响应于受电设备120连接到供电端口114-1,在配置信息800中查找与供电端口114-1配对的数据端口112-1。以此方式,供电设备可以及时地确定与连接有受电设备的供电端口相对应的数据端口,以便从该数据端口获得受电设备的供电信息。
在一些实施例中,配置信息800是用户可编辑的。如此,供电设备的供电端口与数据端口之间的配对关系可以由用户根据具体的应用环境和场景来决定,从而可以提高供电设备的 使用灵活性。
在一些实施例中,供电信息160可以包括以下至少一项:用于调整供电端口的供电功率的指示,以及受电设备的供电优先级。因此,供电设备可以根据受电设备的请求来调整供电端口的供电功率,还可以根据受电设备的供电优先级来向受电设备提供相应的供电保障,从而更好地满足受电设备的用电需求。
在一些实施例中,存储器117和计算机程序指令118还可以被配置为,与处理器115一起,使供电设备110经由数据端口112-1向受电设备120发送供电端口114-1的能力信息。如此,受电设备可以根据供电端口的供电能力来向供电设备请求适当的供电功率,从而有利于供电设备和受电设备高效地协商出合理的供电功率。
在一些实施例中,供电设备110还包括检测电路119。检测电路119可以用于检测受电设备是否连接到供电端口。例如,检测电路119可以包括基于机械检测或电学检测等物理检测手段的检测电路,诸如符合于以太网供电协议中的供电设备中的检测芯片,等等。因此,供电设备可以及时地发现受电设备已连接到供电端口,进而相应地向受电设备提供供电并且可能经由配对的数据端口对受电设备进行供电管理。应当理解,尽管图9将检测电路119示出为设置在处理器115的外部,但是在其他实施例中,检测电路119也可以是处理器115的一部分。此外,在一些实施例中,检测受电设备是否连接到供电端口的功能也可以由检测电路119和处理器115一起配合实现。
图10示出了根据本公开的实施例的具有另一示例端口布置1000的供电设备110的框图。如所示出的,图10中描绘的供电设备110与图9是类似的,不同之处在于数据端口112和供电端口114的排布方式。在图10的示例端口布置1000中,数据端口112集中地布置在供电设备110的一侧,而供电端口114集中地布置在供电设备110的另一侧。通过这样的排布方式,数据端口适合与任何供电端口配对而无需考虑两者之间的物理距离,因此更适合于使用例如图2中描绘的光纤215和供电线245分离的光电复合线缆200。将理解,在图10中,数据端口112位于供电设备110的左侧而供电端口114位于供电设备110的右侧仅为示例性的,无意以任何方式限制本公开的范围。在其他实施例中,供电端口114可以位于供电设备110的左侧而数据端口112可以位于供电设备110的右侧,或者供电端口114和数据端口112可以位于供电设备110上的任何其他适当部分。
此外,还需要说明的是,根据本公开的实施例的供电设备110的数据端口112和供电端口114可以具有任何合适的排布方式,而不限于图9中描绘的成行排布方式和图10中描绘的成区域排布方式。例如,数据端口112和供电端口114的排布方式可以充分利用供电设备110上的空间,并且同时可以有利于连接到不同的受电设备。
图11示出了根据本公开的实施例的用于管理供电的示例装置1100的框图。在一些实施例中,示例装置1100可以在示例系统环境100中的供电设备110处实现,例如可以由供电设备110的处理器或处理单元来实现。在一些实施例中,示例装置1100可以实现为供电设备110。在其他实施例中,示例装置1100也可以由独立于示例系统环境100的供电设备来实现。
在一些实施例中,示例装置1100可以执行示例方法500,并且可以包括用于执行示例方法500的相应步骤的部件。如本文中使用的,部件可以按任何适合的形式来实施。例如,部件可以被实施在电路中或软件模块中。又例如,部件可以包括至少一个处理器和至少一个存储器。至少一个存储器可以存储有计算机程序代码。至少一个存储器和计算机程序代码被配置为,与至少一个处理器一起,使示例装置1100执行示例方法500或本公开中的其他示例过 程的相应步骤。
在一些实施例中,示例装置1100可以包括用于接收的部件1110和用于供电的部件1120。具体地,部件1110可以用于经由数据端口从受电设备接收受电设备的供电信息,数据端口与供电端口配对并且是彼此分离的物理端口。部件1120可以用于经由供电端口并基于供电信息向受电设备供电。通过示例装置1100,供电设备在数据端口与供电端口分离的情况下向受电设备供电的性能可以被改进。
在一些实施例中,供电设备的数据端口可以通过光电复合线缆中的光纤连接到受电设备,并且供电设备的供电端口通过光电复合线缆中的供电线连接到受电设备。以此方式,供电设备与受电设备之间可以实现高速率的数据传输,同时实现远距离的电力传输。
在一些实施例中,示例装置1100还可以包括:用于存储配置信息的部件,配置信息指示供电端口与数据端口之间的配对关系。如此,供电设备可以便利地且高效地管理供电端口与数据端口之间的配对关系。
在一些实施例中,示例装置1100还可以包括:用于响应于受电设备连接到供电端口,在配置信息中查找与供电端口配对的数据端口的部件。以此方式,供电设备可以及时地确定与连接有受电设备的供电端口相对应的数据端口,以便从该数据端口获得受电设备的供电信息。
在一些实施例中,配置信息可以是用户可编辑的。如此,供电设备的供电端口与数据端口之间的配对关系可以由用户根据具体的应用环境和场景来决定,从而可以提高供电设备的使用灵活性。
在一些实施例中,供电信息可以包括以下至少一项:用于调整供电端口的供电功率的指示,以及受电设备的供电优先级。因此,供电设备可以根据受电设备的请求来调整供电端口的供电功率,还可以根据受电设备的供电优先级来向受电设备提供相应的供电保障,从而更好地满足受电设备的用电需求。
在一些实施例中,示例装置1100还可以包括:用于经由数据端口向受电设备发送供电端口的能力信息的部件。如此,受电设备可以根据供电端口的供电能力来向供电设备请求适当的供电功率,从而有利于供电设备和受电设备高效地协商出合理的供电功率。
在一些实施例中,示例装置1100还可以包括:用于检测受电设备连接到供电端口的部件。因此,供电设备可以及时地发现受电设备已连接到供电端口,进而相应地向受电设备提供供电并且经由配对的数据端口对受电设备进行供电管理。
图12示出了根据本公开的实施例的示例计算机可读介质1200的示意图。如图12所示,计算机可读介质1200可以采用CD或DVD形式或任何其他适当的形式,具有存储于其上的指令118。如上文在描述图9和10时提到的,本公开的实施例可通过指令118来实现,以使供电设备110执行如前文参考图5至图8所论述的本公开的任何示例方法或示例过程。当然,本公开的实施例也可以由硬件或软件与硬件的组合来实现。在一些实施例中,有形地包含指令118的计算机可读介质1200可以被包括在供电设备110(例如,存储器117)中,或者被包括在供电设备110可访问的其他存储设备中。供电设备110可以将指令118从计算机可读介质1200读取到存储器117的RAM中以用于执行。计算机可读介质1200可以包括各种有形非易失性存储设备,诸如ROM、EPROM、闪存、硬盘、CD、DVD等。
一般而言,本公开的各种示例实施例可以在硬件或专用电路、软件、逻辑,或其任何组合中实施。某些方面可以在硬件中实施,而其他方面可以在可以由控制器、微处理器或其他计算设备执行的固件或软件中实施。例如,在一些实施例中,本公开的各种示例(例如方法、 装置或设备)可以部分或者全部被实现在计算机可读介质上。当本公开的实施例的各方面被图示或描述为框图、流程图或使用某些其他图形表示时,将理解此处描述的方框、装置、系统、技术或方法可以作为非限制性的示例在硬件、软件、固件、专用电路或逻辑、通用硬件或控制器或其他计算设备,或其某些组合中实施。
本公开还提供了存储在非瞬态计算机可读存储介质上的至少一种计算机程序产品。计算机程序产品包括计算机可执行指令,计算机可执行指令诸如包括在目标的物理或者虚拟处理器上的器件中执行的程序模块中,用以执行上文关于图5至图8描述的示例方法或示例过程500、600、650、700和800。一般而言,程序模块可以包括例程、程序、库、对象、类、组件、数据结构等,其执行特定的任务或者实现特定的抽象数据结构。在各实施例中,程序模块的功能可以在所描述的程序模块之间合并或者分割。用于程序模块的计算机可执行指令可以在本地或者分布式设备内执行。在分布式设备中,程序模块可以位于本地和远程存储介质二者中。
用于实现本公开的方法的程序代码可以用一种或多种编程语言编写。这些计算机程序代码可以提供给通用计算机、专用计算机或其他可编程的数据处理装置的处理器,使得程序代码在被计算机或其他可编程的数据处理装置执行的时候,引起在流程图和/或框图中规定的功能/操作被实施。程序代码可以完全在计算机上、部分在计算机上、作为独立的软件包、部分在计算机上且部分在远程计算机上或完全在远程计算机或服务器上执行。
在本公开的上下文中,计算机程序代码或相关数据可以由任何适当的载体来承载,以使设备、装置或处理器能够执行上文描述的各种过程和操作。载体的示例包括信号、计算机可读介质,等等。
计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读介质可以包括但不限于电子的、磁的、光学的、电磁的、红外的或半导体系统、装置或设备,或其任意合适的组合。机器可读存储介质的更详细示例包括带有一根或多根导线的电气连接、便携式计算机磁盘、硬盘、随机存储存取器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或闪存)、光纤、便携式压缩盘只读存储器(CD-ROM)、光存储设备、磁存储设备,或其任意合适的组合。
另外,尽管操作以特定顺序被描绘,但这并不应该理解为要求此类操作以示出的特定顺序或以相继顺序完成,或者执行所有图示的操作以获取期望结果。在某些情况下,多任务或并行处理会是有益的。同样地,尽管上述论述包含了某些特定的实施细节,但这并不应解释为限制任何发明或权利要求的范围,而应解释为对可以针对特定发明的特定实施例的描述。本说明书中在分离的实施例的上下文中描述的某些特征也可以整合实施在单个实施例中。反之,在单个实施例的上下文中描述的各种特征也可以分离地在多个实施例或在任意合适的子组合中实施。
尽管已经以特定于结构特征和/或方法动作的语言描述了主题,但是应当理解,所附权利要求中限定的主题并不限于上文描述的特定特征或动作。相反,上文描述的特定特征和动作是作为实现权利要求的示例形式而被公开的。

Claims (12)

  1. 一种用于管理供电的方法,包括:
    供电设备经由数据端口从受电设备接收所述受电设备的供电信息,所述数据端口与供电端口配对并且是彼此分离的物理端口;以及
    所述供电设备经由所述供电端口并基于所述供电信息向所述受电设备供电。
  2. 根据权利要求1所述的方法,其中所述供电设备的所述数据端口通过光电复合线缆中的光纤连接到所述受电设备,并且所述供电设备的所述供电端口通过所述光电复合线缆中的供电线连接到所述受电设备。
  3. 根据权利要求1或2所述的方法,还包括:
    所述供电设备存储配置信息,所述配置信息指示所述供电端口与所述数据端口之间的配对关系。
  4. 根据权利要求3所述的方法,还包括:
    响应于所述受电设备连接到所述供电端口,所述供电设备在所述配置信息中查找与所述供电端口配对的所述数据端口。
  5. 根据权利要求3或4所述的方法,其中所述配置信息是用户可编辑的。
  6. 根据权利要求1至5任一项所述的方法,其中所述供电信息包括以下至少一项:
    用于调整所述供电端口的供电功率的指示,以及
    所述受电设备的供电优先级。
  7. 根据权利要求1至6任一项所述的方法,还包括:
    所述供电设备经由所述数据端口向所述受电设备发送所述供电端口的能力信息。
  8. 一种供电设备,包括:
    供电端口;
    数据端口,所述数据端口与所述供电端口配对并且是彼此分离的物理端口;
    处理器;以及
    存储器,存储有计算机程序指令,所述存储器和所述计算机程序指令被配置为,与所述处理器一起,使所述供电设备:
    经由所述数据端口从受电设备接收所述受电设备的供电信息;以及
    经由所述供电端口并基于所述供电信息向所述受电设备供电。
  9. 根据权利要求8所述的供电设备,其中所述存储器还用于存储配置信息,所述配置信息指示所述供电端口与所述数据端口之间的配对关系。
  10. 根据权利要求8或9所述的供电设备,还包括:
    检测电路,用于检测所述受电设备连接到所述供电端口。
  11. 一种用于管理供电的装置,用于:
    经由数据端口从受电设备接收所述受电设备的供电信息的部件,所述数据端口与供电端口配对并且是彼此分离的物理端口;以及
    经由所述供电端口并基于所述供电信息向所述受电设备供电的部件。
  12. 一种计算机可读介质,存储有指令,所述指令在被执行时使机器执行根据权利要求1-7中任一项所述的方法。
PCT/CN2021/100194 2020-06-17 2021-06-15 用于管理供电的方法和装置、供电设备以及计算机可读介质 WO2021254351A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010556475.4 2020-06-17
CN202010556475.4A CN113810202B (zh) 2020-06-17 2020-06-17 用于管理供电的方法和装置、供电设备以及计算机可读介质

Publications (1)

Publication Number Publication Date
WO2021254351A1 true WO2021254351A1 (zh) 2021-12-23

Family

ID=78892780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100194 WO2021254351A1 (zh) 2020-06-17 2021-06-15 用于管理供电的方法和装置、供电设备以及计算机可读介质

Country Status (2)

Country Link
CN (1) CN113810202B (zh)
WO (1) WO2021254351A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115378048A (zh) * 2022-08-24 2022-11-22 珠海录看数字技术有限公司 一种分布式poe供电自适应调度系统
EP4156608A4 (en) * 2020-06-30 2023-10-18 Huawei Technologies Co., Ltd. POWER TRADING METHOD FOR ETHERNET POWER SUPPLY, POWER SUPPLY EQUIPMENT, SYSTEM AND STORAGE MEDIUM

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070110360A1 (en) * 2005-11-15 2007-05-17 Linear Technology Corporation Dynamic power allocation in system for providing power over communication link
CN101369899A (zh) * 2007-08-15 2009-02-18 美国博通公司 以太网供电方法和系统
CN104618123A (zh) * 2015-01-21 2015-05-13 杭州华三通信技术有限公司 一种供电方法以及装置
CN109660365A (zh) * 2019-02-26 2019-04-19 新华三技术有限公司 一种供电控制方法及装置
US20190297710A1 (en) * 2018-03-21 2019-09-26 Iota Engineering, Llc Power over ethernet exit signage

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7844365B2 (en) * 2000-05-12 2010-11-30 Rosemount Inc. Field-mounted process device
WO2005107397A2 (en) * 2004-05-03 2005-11-17 Panduit Corp. Powered patch panel
US7549067B2 (en) * 2004-12-21 2009-06-16 Alcatel Lucent Power prioritization in power source equipment
US8099616B2 (en) * 2006-06-12 2012-01-17 Cisco Technology Inc. Power over ethernet port enabling and disabling responsive to access control system
CN108111316B (zh) * 2016-11-25 2020-02-11 新华三技术有限公司 一种pse
CN108933671B (zh) * 2017-05-26 2021-06-01 华为技术有限公司 供电管理方法、设备和系统
CN111262339B (zh) * 2018-11-30 2022-05-17 华为技术有限公司 供电方法、供电设备及存储介质
CN110266546B (zh) * 2019-06-29 2022-04-22 苏州浪潮智能科技有限公司 一种配置交换机端口的方法、设备及可读介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070110360A1 (en) * 2005-11-15 2007-05-17 Linear Technology Corporation Dynamic power allocation in system for providing power over communication link
CN101369899A (zh) * 2007-08-15 2009-02-18 美国博通公司 以太网供电方法和系统
CN104618123A (zh) * 2015-01-21 2015-05-13 杭州华三通信技术有限公司 一种供电方法以及装置
US20190297710A1 (en) * 2018-03-21 2019-09-26 Iota Engineering, Llc Power over ethernet exit signage
CN109660365A (zh) * 2019-02-26 2019-04-19 新华三技术有限公司 一种供电控制方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4156608A4 (en) * 2020-06-30 2023-10-18 Huawei Technologies Co., Ltd. POWER TRADING METHOD FOR ETHERNET POWER SUPPLY, POWER SUPPLY EQUIPMENT, SYSTEM AND STORAGE MEDIUM
CN115378048A (zh) * 2022-08-24 2022-11-22 珠海录看数字技术有限公司 一种分布式poe供电自适应调度系统

Also Published As

Publication number Publication date
CN113810202B (zh) 2022-12-13
CN113810202A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
WO2021254351A1 (zh) 用于管理供电的方法和装置、供电设备以及计算机可读介质
US7966504B2 (en) System and method for power management in a computing device for power over ethernet
EP1958375B1 (en) Dynamic power allocation in system for providing power over communication link
US20110016333A1 (en) Power Transfer Between Devices
US11398741B2 (en) Charging device and a charging method thereof
US11743059B2 (en) Power over ethernet (PoE) power supplying method and apparatus
CN103944739A (zh) 智能poe电源供电系统及其高效poe电源管理方法
KR20120112410A (ko) 시스템 레벨 통신을 위한 설정 가능 커넥터
US9690343B2 (en) Power distribution system
US11422600B2 (en) Adaptive multimode USB-C power transmission and conversion
US10887116B2 (en) Ethernet power distribution
WO2021114875A1 (zh) 移动电源及为外设设备供电的方法
WO2021027882A1 (zh) 一种充电管理系统、方法、装置和存储介质
CN111147365A (zh) 一种模块化物联网网关设备
US11237583B2 (en) Method, device, and computer program product
WO2013189069A1 (zh) 负荷分担方法及装置、单板
US10203737B2 (en) Power distribution between multiple powering devices and powered device(s)
CN107360005B (zh) 一种受电端设备及受电方法
CN112332542B (zh) 基于lora通讯的有源电能质量滤波补偿器系统通讯方法
CN206117687U (zh) 基于G.x协议的供电通信系统
CN208924274U (zh) 管理型交换机
CN112202570B (zh) 一种交换机设备及兼容供电方法
EP4156608A1 (en) Power negotiation method for power over ethernet, power sourcing equipment, system, and storage medium
TWI680683B (zh) 具有無線傳輸之網路管理裝置
CN212649636U (zh) 一种光电转换系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826617

Country of ref document: EP

Kind code of ref document: A1