WO2021254316A1 - 显示模组及其制作方法、显示装置 - Google Patents

显示模组及其制作方法、显示装置 Download PDF

Info

Publication number
WO2021254316A1
WO2021254316A1 PCT/CN2021/100055 CN2021100055W WO2021254316A1 WO 2021254316 A1 WO2021254316 A1 WO 2021254316A1 CN 2021100055 W CN2021100055 W CN 2021100055W WO 2021254316 A1 WO2021254316 A1 WO 2021254316A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
light guide
liquid crystal
unit
Prior art date
Application number
PCT/CN2021/100055
Other languages
English (en)
French (fr)
Inventor
赵德江
王路
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/770,262 priority Critical patent/US11906838B2/en
Publication of WO2021254316A1 publication Critical patent/WO2021254316A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133377Cells with plural compartments or having plurality of liquid crystal microcells partitioned by walls, e.g. one microcell per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • This application relates to the field of display technology, in particular to a display module, a manufacturing method thereof, and a display device.
  • QD display products With the continuous advancement of QD (quantum dot) materials, QD display products have been widely used. At present, QD display products adopt two technologies, one is electroluminescence QD technology, and the other is photoluminescence QD technology.
  • the commonly used photoluminescence technology is to excite QD materials by blue light. Because the shorter the wavelength, the greater the energy of the blue light. Therefore, using shorter wavelength blue light to excite QD can get better excitation light utilization, but shorter wavelength blue light It easily penetrates the display module, enters human eyes, and harms human eyes.
  • a display module including:
  • a light guide plate the light guide plate includes adjacent light-incident surfaces and light-exit surfaces;
  • a blue light source arranged at the light incident surface of the light guide plate
  • a display panel arranged on one side of the light-emitting surface of the light guide plate
  • the display panel includes a plurality of display units and light-shielding walls separating adjacent display units; each of the display units includes a quantum dot unit and a liquid crystal unit arranged side by side, and the liquid crystal unit and the quantum dot The transparent barrier wall between the cells, and the first light-shielding pattern arranged on the side of the liquid crystal unit away from the light guide plate; the orthographic projection of the liquid crystal unit on the light guide plate falls into the first light-shielding pattern In the orthographic projection on the light guide plate, the orthographic projection of the quantum dot unit on the light guide plate and the gap between the adjacent first shading patterns on the light guide plate overlap.
  • the display panel further includes:
  • the light propagation direction changing structure arranged on the side of the liquid crystal cell facing the light guide plate can deflect incident vertical light.
  • the display panel further includes:
  • a passivation layer located between the light propagation direction changing structure and the liquid crystal cell
  • the driving electrode located between the passivation layer and the liquid crystal cell is used to drive the deflection of the liquid crystal in the liquid crystal cell;
  • the refractive index of the light propagation direction changing structure is greater than the refractive index of the passivation layer, the refractive index of the passivation layer is greater than the refractive index of the driving electrode, and the refractive index of the driving electrode is greater than the refraction of the liquid crystal Rate.
  • the light propagation direction changing structure includes a plurality of wedge-shaped structures arranged in parallel, and the height of the wedge-shaped structures is 1.5 ⁇ m to 3 ⁇ m.
  • the light-emitting surface of the light guide plate is provided with a plurality of second light-shielding patterns arranged at intervals, and the orthographic projection of the quantum dot unit on the light guide plate falls into the second light-shielding pattern on the light guide plate.
  • the orthographic projection of the light guide plate the orthographic projection of the liquid crystal unit on the light guide plate and the gap between the adjacent second light-shielding patterns overlap the orthographic projection of the light guide plate.
  • the orthographic projection of the transparent retaining wall on the light guide plate falls within the orthographic projection of the second shading pattern on the light guide plate.
  • the orthographic projection of the transparent retaining wall on the light guide plate falls within the orthographic projection of the first shading pattern on the light guide plate.
  • the thickness of the first shading pattern is 1.5 ⁇ m-2 ⁇ m.
  • the wavelength of the light emitted by the blue light source is less than 410 nm.
  • the weight percentage of the scattering particles in the quantum dot unit is 1% to 5%.
  • the quantum dot unit and the liquid crystal unit arranged side by side in each display unit and the transparent barrier wall are surrounded by the light-shielding barrier wall.
  • the first light-shielding pattern covers a side of the liquid crystal unit away from the light guide plate and a side of the transparent barrier wall away from the light guide plate.
  • the embodiment of the present application provides a display device including the above-mentioned display module.
  • the display device further includes a processor.
  • the processor is configured to adjust the deflection angle of the liquid crystal to adjust the luminous intensity of the quantum dot unit by controlling the voltage applied to the liquid crystal cell via the driving electrode.
  • the embodiment of the present application provides a method for manufacturing a display module, including:
  • a light guide plate is provided, the light guide plate includes adjacent light-incident surfaces and light-exit surfaces;
  • a display panel is formed on one side of the light-emitting surface of the light guide plate, the display panel includes a plurality of display units, adjacent display units are separated by a light-shielding wall, each display unit includes a quantum dot unit and a liquid crystal unit arranged side by side, The liquid crystal unit and the quantum dot unit are separated by a transparent barrier wall, the liquid crystal unit is provided with a first light shielding pattern on the side away from the light guide plate, and the orthographic projection of the liquid crystal unit on the light guide plate falls Into the orthographic projection of the first shading pattern on the light guide plate.
  • FIG. 1 is a schematic diagram of a display module according to an embodiment of the application
  • FIG. 2 is a schematic diagram of the light path when the liquid crystal is not deflected according to the embodiment of the application;
  • FIG. 3 is a schematic diagram of the light path when the liquid crystal is deflected according to the embodiment of the application;
  • Figure 4 is a schematic diagram of the principle of liquid crystal changing the optical path
  • Fig. 5 is a schematic plan view of the display unit.
  • the embodiments of the present application provide a display module, a manufacturing method thereof, and a display device, which can increase the utilization rate of excitation light and reduce the damage of blue light to eyes.
  • An embodiment of the present application provides a display module, as shown in FIG. 1, including:
  • the light guide plate 1 the light guide plate includes adjacent light-incident surfaces and light-exit surfaces;
  • a blue light source 17 arranged at the light incident surface of the light guide plate
  • the excitation light emitted by the blue light source enters from the side of the light guide plate and exits through the light exit surface of the light guide plate. Compared with the excitation light that is incident perpendicularly (perpendicular to the light exit surface), the excitation light is incident laterally (parallel to the light exit surface).
  • the light path of the excitation light is longer, and there is enough light path, which can improve the utilization rate of the excitation light; after the excitation light exits the light-emitting surface of the light guide plate, enters the liquid crystal cell of the display panel, the deflection of the liquid crystal can make the excitation light Enter the quantum dot unit to excite the quantum dot unit to emit light; a first light-shielding pattern is provided on the side of the liquid crystal unit away from the light guide plate, which can absorb the excitation light that does not enter the quantum dot unit and prevent the excitation light from escaping from the liquid crystal unit to damage human eyes; In addition, there are light-shielding barriers between adjacent display units, which can absorb the light passing through the quantum dot unit laterally and prevent crosstalk caused by light leakage.
  • the quantum dot unit may include a plurality of quantum dot units of different colors, and the quantum dot units of different colors emit light of different colors under the excitation of blue light, which can be mixed into white light.
  • the quantum dot unit of this embodiment may include a red quantum dot unit 121, a green quantum dot unit 122 and a blue quantum dot unit 123.
  • one display unit is equivalent to one pixel.
  • the area of the first shading pattern 15 may be larger than the area of the corresponding liquid crystal cell 14 and extends to the area of the transparent barrier wall 13, mainly to prevent excitation light from exiting through the liquid crystal cell 14.
  • the first shading pattern 15 may be a black photoresist.
  • the material or gray reflective material, the thickness is about 1.5 ⁇ m-2 ⁇ m.
  • Figure 5 is a schematic top view of the display unit
  • Figure 1 is a schematic cross-sectional view of Figure 5 in the AA' direction.
  • the light-shielding wall 11 surrounds three sides of the liquid crystal unit 14. The side without the light-shielding wall 11 is used to allow the light emitted by the liquid crystal unit 14 to enter the quantum dot unit.
  • the thickness of the light-shielding wall 11 is equal to the cell thickness of the display panel, which can be 2 ⁇ m ⁇ 3 ⁇ m, black photoresist material or gray reflective material can be used; transparent retaining wall 13 can be made of transparent resin, commonly used materials are AGC5023 (acrylic), the thickness of transparent retaining wall 13 is equal to the box thickness of the display panel, which can be 2 ⁇ m ⁇ 3 ⁇ m.
  • the quantum dot unit can be made of PR-type QD material, the thickness of the material is about 2 ⁇ m to 3 ⁇ m, which can be obtained through glue exposure or printing. Compared with the quantum dot unit in the related art, the content of scattering particles in the quantum dot unit of this embodiment can be reduced.
  • the optical path of the excitation light of the quantum dot unit in the related art is equivalent to the thickness of the quantum dot unit, while the excitation light of the quantum dot unit of this embodiment is incident from the side, the optical path of the excitation light is equivalent to the width of the quantum dot unit Or the length is greater than the thickness of the quantum dot unit, so that the optical path of the excitation light is greatly improved; in addition, the excitation light source can use a stronger light source with sufficient excitation ability, so it can reduce the scattering of particles content. If the content of scattering particles is large, it will cause the side leakage of blue light and block the spread of light.
  • the weight percentage of the scattering particles in the quantum dot unit can be reduced to 1% to 5%.
  • the transparent barrier wall 13 and the light-shielding barrier wall 11 define the pixel area where the liquid crystal cell 14 is located, and liquid crystal can be dripped into the pixel area to form the liquid crystal cell 14.
  • the display module includes a light guide plate 1 and a blue light source 17 arranged on the light entrance surface of the light guide plate 1.
  • the excitation light emitted by the blue light source 17 enters the light guide plate and enters the display panel through the light exit surface of the light guide plate.
  • the blue light source 17 can be a blue LED, and the wavelength of the light emitted by the blue light source 17 can be less than 410 nm, for example, 395 nm.
  • the quantum dot unit has a relatively high absorption rate of blue light; of course, the light emitted by the blue light source 17 can also be other Wave band, such as the 460nm band.
  • the light-emitting surface of the light guide plate 1 is provided with a plurality of second light-shielding patterns 3 arranged at intervals, and the orthographic projection of the quantum dot unit on the light guide plate falls into the second light-shielding pattern 3 on the light guide plate.
  • the gap between the orthographic projection of the liquid crystal unit 14 on the light guide plate and the orthographic projection of the adjacent second light-shielding pattern 3 on the light guide plate overlaps, specifically, quantum dots
  • the orthographic projection of the unit on the light guide plate coincides with the orthographic projection of the second shading pattern 3 on the light guide plate.
  • the orthographic projection of the liquid crystal unit 14 on the light guide plate and the adjacent second shading pattern 3 The orthographic projections of the gap on the light guide plate coincide. In this way, the light emitted from the light guide plate 1 will only enter the liquid crystal unit 14 and will not enter the quantum dot unit.
  • a thin film transistor structure is provided on a base substrate 2.
  • the thin film transistor includes a gate 7, a gate insulating layer 4, an active layer 18, a source 8, and a drain 9.
  • the thin film transistor is on the light guide plate 1.
  • the orthographic projection falls within the orthographic projection of the second light-shielding pattern 3 on the light guide plate, which can also prevent the light emitted by the light guide plate 1 from irradiating the thin film transistor structure, which affects the performance of the thin film transistor.
  • the display panel further includes:
  • the light propagation direction changing structure 5 arranged on the side of the liquid crystal cell 14 facing the light guide plate 1 can deflect incident vertical light, and the light propagation direction changing structure 5 can deflect the light emitted from the light guide plate 1, and more
  • the ground is reflected by the liquid crystal cell and acts on the quantum dot cell to improve the utilization rate of excitation light and display brightness.
  • the light propagation direction changing structure 5 may only be arranged corresponding to the liquid crystal cell 14, and the light propagation direction changing structure 5 may be made of a transparent medium layer, which has a better refractive index.
  • the light propagation direction changing structure 5 may include a plurality of wedge-shaped structures arranged in parallel, and the height of the wedge-shaped structures is 1.5 ⁇ m to 3 ⁇ m.
  • the light propagation direction changing structure 5 is not limited to adopting a wedge-shaped structure, and can also be adjusted on the basis of the wedge-shaped structure; wherein the oblique angle of the wedge-shaped structure needs to be adjusted according to the refractive index of the wedge-shaped structure to deflect incident vertical light.
  • the display panel further includes:
  • a passivation layer 6 located between the light propagation direction changing structure 5 and the liquid crystal cell 14;
  • the driving electrode 10 located between the passivation layer 6 and the liquid crystal cell 14 is used to drive the deflection of the liquid crystal in the liquid crystal cell;
  • the refractive index of the light propagation direction changing structure 5 is greater than the refractive index of the passivation layer 6, the refractive index of the passivation layer 6 is greater than the refractive index of the drive electrode 10, and the refractive index of the drive electrode 10 is greater than The refractive index of the liquid crystal can effectively deflect the incident vertical light.
  • the liquid crystal cell 14 also includes an alignment layer 19. Since the thickness of the liquid crystal layer is relatively small, between 2um and 3um, a single-layer alignment layer 19 can be provided to simplify the structure of the liquid crystal cell.
  • the alignment layer 19 can be made of poly Imide.
  • FIG. 2 is a schematic diagram of the optical path when the liquid crystal is not deflected according to the embodiment of the application
  • FIG. 3 is a schematic diagram of the optical path when the liquid crystal is deflected according to the embodiment of the application
  • FIG. 4 is a schematic diagram of the principle of the liquid crystal changing the optical path.
  • the liquid crystal has two extreme states, as shown in Figure 4, one can be called the ground state and the other is the fully deflected state. In the ground state, the liquid crystal has a refraction effect on light, and the deflection angle of the light through the liquid crystal is small.
  • the light emitted by the light guide plate 1 enters the display panel and is absorbed by the first shading pattern 15; when in the excited state, the light is The liquid crystal surface is totally reflected, the light path changes, and the light after changing the light path can excite the quantum dot unit.
  • the light emitted by the light guide plate 1 enters the display panel and then the light path changes, enters the quantum dot unit, and turns to incomplete light. It will be absorbed by the first shading pattern 15 and the shading wall 11, and no side leakage will occur.
  • the embodiment of the present application provides a display device including the above-mentioned display module.
  • the display device includes but is not limited to: radio frequency unit, network module, audio output unit, input unit, sensor, display unit, user input unit, interface unit, memory, processor, power supply and other components.
  • the structure of the above display device does not constitute a limitation on the display device, and the display device may include more or less of the above components, or combine some components, or arrange different components.
  • the display device includes, but is not limited to, a display, a mobile phone, a tablet computer, a television, a wearable electronic device, a navigation display device, and the like.
  • the display device may be any product or component with a display function, such as a TV, a monitor, a digital photo frame, a mobile phone, a tablet computer, etc., wherein the display device also includes a flexible circuit board, a printed circuit board, and a backplane.
  • a display function such as a TV, a monitor, a digital photo frame, a mobile phone, a tablet computer, etc.
  • the display device also includes a flexible circuit board, a printed circuit board, and a backplane.
  • the embodiment of the present application provides a method for manufacturing a display module, including:
  • a light guide plate is provided, the light guide plate includes adjacent light-incident surfaces and light-exit surfaces;
  • a display panel is formed on one side of the light-emitting surface of the light guide plate, the display panel includes a plurality of display units, adjacent display units are separated by a light-shielding wall, each display unit includes a quantum dot unit and a liquid crystal unit arranged side by side, The liquid crystal unit and the quantum dot unit are separated by a transparent barrier wall, the liquid crystal unit is provided with a first light shielding pattern on the side away from the light guide plate, and the orthographic projection of the liquid crystal unit on the light guide plate falls Into the orthographic projection of the first shading pattern on the light guide plate.
  • the excitation light emitted by the blue light source enters from the side of the light guide plate and exits through the light exit surface of the light guide plate. Compared with the excitation light that is incident perpendicularly (perpendicular to the light exit surface), the excitation light is incident laterally (parallel to the light exit surface).
  • the light path of the excitation light is longer, and there is enough light path, which can improve the utilization rate of the excitation light; after the excitation light exits the light-emitting surface of the light guide plate, enters the liquid crystal cell of the display panel, the deflection of the liquid crystal can make the excitation light Enter the quantum dot unit to excite the quantum dot unit to emit light; a first light-shielding pattern is provided on the side of the liquid crystal unit away from the light guide plate, which can absorb the excitation light that does not enter the quantum dot unit and prevent the excitation light from escaping from the liquid crystal unit to damage human eyes; In addition, there are light-shielding barriers between adjacent display units, which can absorb the light passing through the quantum dot unit laterally and prevent crosstalk caused by light leakage.
  • the lower substrate When fabricating the display module, the lower substrate can be fabricated first, and the thin film transistor structure is formed on the base substrate 2.
  • the thin film transistor structure includes the gate 7, the gate insulating layer 4, the source 8, the drain 9 and the active layer 18. Then, a passivation layer 6 including a via hole is formed, and a driving electrode 10 is formed on the passivation layer 6, and the driving electrode 10 is connected to the drain 9 through the via hole of the passivation layer 6. Then, an alignment layer 19 is formed on the driving electrode 10.
  • the passivation layer and the driving electrode should be made of light-transmitting materials. It is worth noting that after the gate insulating layer 4 is formed, the light propagation direction changing structure 5 needs to be fabricated, and then the passivation layer 6 is fabricated.
  • the upper substrate can be fabricated, and the first light-shielding pattern 15, the light-shielding wall 11 and the transparent wall 13 are formed on the base substrate 16.
  • the light-shielding wall 11 and the transparent wall 13 define the area where the quantum dot unit is located and the area where the liquid crystal unit is located.
  • the light-shielding barrier wall 11 and the transparent barrier wall 13 can limit the flow of quantum dots and liquid crystals on the one hand, and can also play a role in supporting the thickness of the cell on the other hand.
  • the light-shielding retaining wall 11 and the transparent retaining wall 13 can be made by printing.
  • the upper substrate and the lower substrate are boxed together, and the light guide plate with the second light-shielding pattern 3 is attached to the lower substrate to complete the manufacture of the display module.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示模组及其制作方法、显示装置。显示模组,包括:导光板(1),导光板(1)包括相邻的入光面和出光面;设置在导光板(1)入光面处的蓝光光源(17);设置在导光板(1)出光面一侧的显示面板,显示面板包括多个显示单元,相邻显示单元之间间隔有遮光挡墙(11),每一显示单元包括并排设置的量子点单元(121,122,123)和液晶单元(14),液晶单元(14)和量子点单元(121,122,123)之间间隔有透明挡墙(13),液晶单元(14)远离导光板(1)的一侧设置有第一遮光图形(15),液晶单元(14)在导光板(1)上的正投影落入第一遮光图形(15)在导光板(1)上的正投影内,量子点单元(121,122,123)在导光板(1)上的正投影与相邻第一遮光图形(15)之间的间隙在导光板(1)上的正投影存在交叠。

Description

显示模组及其制作方法、显示装置
相关申请的交叉引用
本申请主张在2020年6月17日在中国提交的中国专利申请号No.202010552854.6的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及显示技术领域,特别是指一种显示模组及其制作方法、显示装置。
背景技术
随着QD(量子点)材料的不断进步,QD显示产品得到广泛的应用。目前QD显示产品采用两种技术,一种是电致发光QD技术,一种是光致发光QD技术。常用的光致发光技术是通过蓝光激发QD材料,由于波长越短,蓝光的能量越大,因此使用更短波长的蓝光激发QD可以得到更好的激发光的利用率,但更短波长的蓝光容易穿透显示模组,入射到人的眼睛,伤害人的眼睛。
发明内容
一方面,提供一种显示模组,包括:
导光板,所述导光板包括相邻的入光面和出光面;
设置在所述导光板入光面处的蓝光光源;
设置在所述导光板出光面一侧的显示面板;
其中,所述显示面板包括多个显示单元以及将相邻显示单元间隔的遮光挡墙;每一所述显示单元包括并排设置的量子点单元和液晶单元、将所述液晶单元和所述量子点单元间隔的透明挡墙、以及设置在所述液晶单元远离所述导光板的一侧的第一遮光图形;所述液晶单元在所述导光板上的正投影落入所述第一遮光图形在所述导光板上的正投影内,所述量子点单元在所述导光板上的正投影与相邻第一遮光图形之间的间隙在所述导光板上的正投影存 在交叠。
一些实施例中,所述显示面板还包括:
设置在所述液晶单元朝向所述导光板一侧的光传播方向改变结构,能够使入射的垂直光偏转。
一些实施例中,所述显示面板还包括:
位于所述光传播方向改变结构和所述液晶单元之间的钝化层;
位于所述钝化层和所述液晶单元之间的驱动电极,用于驱动所述液晶单元中的液晶偏转;
所述光传播方向改变结构的折射率大于所述钝化层的折射率,所述钝化层的折射率大于所述驱动电极的折射率,所述驱动电极的折射率大于所述液晶的折射率。
一些实施例中,所述光传播方向改变结构包括多个平行排布的楔形结构,所述楔形结构的高度为1.5um到3μm。
一些实施例中,所述导光板的出光面设置有多个间隔排布的第二遮光图形,所述量子点单元在所述导光板上的正投影落入所述第二遮光图形在所述导光板上的正投影内,所述液晶单元在所述导光板上的正投影与相邻第二遮光图形之间的间隙在所述导光板上的正投影存在交叠。
一些实施例中,所述透明挡墙在所述导光板上的正投影落入所述第二遮光图形在所述导光板上的正投影内。
一些实施例中,所述透明挡墙在所述导光板上的正投影落入所述第一遮光图形在所述导光板上的正投影内。
一些实施例中,所述第一遮光图形的厚度为1.5μm~2μm。
一些实施例中,所述蓝光光源发出的光线的波长小于410nm。
一些实施例中,所述量子点单元内,散射粒子的重量百分比为1%~5%。
一些实施例中,每一所述显示单元中并排设置的量子点单元和液晶单元以及所述透明挡墙被所述遮光挡墙所环绕。
一些实施例中,在每一显示单元中,所述第一遮光图形覆盖所述液晶单元远离所述导光板的一侧、以及所述透明挡墙远离所述导光板的一侧。
本申请的实施例提供了一种显示装置,包括如上所述的显示模组。
一些实施例中,显示装置还包括处理器。其中,所述处理器用于通过控制经由所述驱动电极施加在所述液晶单元上的电压,调节液晶偏转的角度以调整所述量子点单元的发光强度。
本申请的实施例提供了一种显示模组的制作方法,包括:
提供一导光板,所述导光板包括相邻的入光面和出光面;
在所述导光板的入光面形成蓝光光源;
在所述导光板的出光面一侧形成显示面板,所述显示面板包括多个显示单元,相邻显示单元通过遮光挡墙间隔开,每一显示单元包括并排设置的量子点单元和液晶单元,所述液晶单元和所述量子点单元通过透明挡墙间隔开,所述液晶单元远离所述导光板的一侧设置有第一遮光图形,所述液晶单元在所述导光板上的正投影落入所述第一遮光图形在所述导光板上的正投影内。
附图说明
图1为本申请实施例显示模组的示意图;
图2为本申请实施例液晶未发生偏转时的光路示意图;
图3为本申请实施例液晶发生偏转时的光路示意图;
图4为液晶改变光路的原理示意图;
图5为显示单元的平面示意图。
附图标记
1 导光板
2、16 衬底基板
3 第二遮光图形
4 栅绝缘层
5 光传播方向改变结构
6 钝化层
7 栅极
8 源极
9 漏极
10 驱动电极
11 遮光挡墙
121 红色量子点单元
122 绿色量子点单元
123 蓝色量子点单元
13 透明挡墙
14 液晶单元
15 第一遮光图形
17 蓝光光源
18 有源层
19 取向层
具体实施方式
为使本申请的实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本申请的实施例提供一种显示模组及其制作方法、显示装置,能够提高激发光的利用率,并且降低蓝光对眼睛的伤害。
本申请的实施例提供一种显示模组,如图1所示,包括:
导光板1,所述导光板包括相邻的入光面和出光面;
设置在所述导光板入光面处的蓝光光源17;
设置在所述导光板1出光面一侧的显示面板,所述显示面板包括多个显示单元,相邻显示单元之间间隔有遮光挡墙11,每一所述显示单元包括并排设置的量子点单元和液晶单元14,所述液晶单元14和所述量子点单元之间间隔有透明挡墙13,所述液晶单元14远离所述导光板1的一侧设置有第一遮光图形15,所述液晶单元14在所述导光板1上的正投影落入所述第一遮光图形15在所述导光板1上的正投影内,所述量子点单元在所述导光板1上的正投影与相邻第一遮光图形15之间的间隙在所述导光板1上的正投影存在交叠。
本实施例中,蓝光光源发出的激发光从导光板的侧面入射,经导光板的出光面出射,相比垂直入射(垂直于出光面)的激发光,侧向(平行于出光 面)入射的激发光的光程更长,有足够的光程,可以提高激发光的利用率;在激发光经导光板的出光面出射后,进入显示面板的液晶单元后,通过液晶的偏转可以使得激发光进入量子点单元,激发量子点单元发光;在液晶单元远离导光板的一侧设置有第一遮光图形,可以吸收未进入量子点单元的激发光,防止激发光从液晶单元出射伤害到人眼;另外,在相邻显示单元之间间隔有遮光挡墙,能够吸收侧向穿过量子点单元的光,防止漏光引起的串扰发生。
其中,量子点单元可以包括多个不同颜色的量子点单元,不同颜色的量子点单元在蓝光的激发下发出不同颜色的光,能够混合成白光。如图1所示,本实施例的量子点单元可以包括红色量子点单元121、绿色量子点单元122和蓝色量子点单元123。
本实施例中,一个显示单元相当于一个像素。其中,第一遮光图形15的面积可以大于对应的液晶单元14的面积,扩展到透明挡墙13区域,主要是为了防止激发光穿过液晶单元14出射,第一遮光图形15可以采用黑色光阻材料或者是灰色的反射类材料,厚度约1.5μm~2μm。
图5为显示单元的俯视示意图,图1为图5在AA’方向上的截面示意图,可以看出,显示单元的四周包围有遮光挡墙11,显示单元包括量子点单元和液晶单元14,量子点单元和液晶单元14之间间隔有透明挡墙13。遮光挡墙11包围液晶单元14的三面,未设置遮光挡墙11的一面用于让液晶单元14出射的光进入量子点单元,遮光挡墙11的厚度等于显示面板的盒厚,可以为2μm~3μm,可以采用黑色光阻材料或者是灰色的反射类材料;透明挡墙13可以采用透明树脂,常用的材料有AGC5023(丙烯酸类),透明挡墙13的厚度等于显示面板的盒厚,可以为2μm~3μm。
量子点单元可以采用PR型QD材料,材料的厚度在2μm~3μm左右,可以通过涂胶曝光的方式获得,也可以通过打印方式获得。与相关技术中的量子点单元相比,本实施例的量子点单元中的散射粒子的含量可以降低。因为,相关技术中量子点单元的激发光的光程相当于量子点单元的厚度,而本实施例的量子点单元的激发光从侧向入射,激发光的光程相当于量子点单元的宽度或长度,要大于量子点单元的厚度,这样使得激发光的光程有了很大 的提高;另外,激发光光源可以采用更强的光源,具有足够的激发能力,因此,可以降低散射粒子的含量。如果散射粒子的含量大,会导致蓝光的侧漏,并阻挡光的传播,还会提高量子点单元制备的难度,因为大量散射粒子的存在使得使用打印方式制作量子点单元变得很困难,容易造成喷头堵塞。本实施例中,量子点单元内,散射粒子的重量百分比可以降低为1%~5%。
如图1所示,透明挡墙13和遮光挡墙11限定出液晶单元14所在像素区域,可以在像素区域内滴入液晶形成液晶单元14。
如图1所示,显示模组包括导光板1、设置在导光板1入光面的蓝光光源17,蓝光光源17发出的激发光进入导光板,经导光板的出光面入射显示面板。蓝光光源17可以采用蓝光LED,蓝光光源17发出的光线的波长可以小于410nm,比如可以为395nm,此时量子点单元对蓝光的吸收率比较高;当然,蓝光光源17发出的光线还可以为其他波段,比如460nm的波段。
如果导光板1出射的光线直接进入量子点单元,可能会有部分光穿过量子点单元入射到人眼,出现漏光,对人眼造成伤害,为了避免这一情况,如图1所示,在导光板1的出光面设置有多个间隔排布的第二遮光图形3,所述量子点单元在所述导光板上的正投影落入所述第二遮光图形3在所述导光板上的正投影内,所述液晶单元14在所述导光板上的正投影与相邻第二遮光图形3之间的间隙在所述导光板上的正投影存在交叠,具体地,可以是量子点单元在所述导光板上的正投影与第二遮光图形3在所述导光板上的正投影重合,液晶单元14在所述导光板上的正投影与相邻第二遮光图形3之间的间隙在所述导光板上的正投影重合。这样导光板1出射的光线仅会进入液晶单元14,而不会进入量子点单元。
如图1所示,在衬底基板2上设置有薄膜晶体管结构,薄膜晶体管包括栅极7、栅绝缘层4、有源层18、源极8、漏极9,薄膜晶体管在导光板1上的正投影落入第二遮光图形3在所述导光板上的正投影内,这样还能够避免导光板1出射的光线照射到薄膜晶体管结构上,影响薄膜晶体管的性能。
如果导光板1出射的光线直接进入液晶层,当液晶偏转的角度不够大,平行于导光板1方向的光就会减少,作用到量子点单元上的有效光就会减少,相应的显示亮度就会降低,为了提高激发光的利用率,如图1所示,所述显 示面板还包括:
设置在所述液晶单元14朝向所述导光板1一侧的光传播方向改变结构5,能够使入射的垂直光偏转,通过光传播方向改变结构5可以使得导光板1出射的光线偏转,更多地被液晶单元反射,作用到量子点单元,提高激发光的利用率和显示亮度。
如图1所示,光传播方向改变结构5可以仅对应液晶单元14设置,光传播方向改变结构5可以采用透明的介质层制作,具有较好的折射率。一些实施例中,所述光传播方向改变结构5可以包括多个平行排布的楔形结构,所述楔形结构的高度为1.5um到3μm。光传播方向改变结构5并不局限于采用楔形结构,还可以在楔形结构的基础上进行调整;其中,楔形结构的斜角角度需要根据楔形结构的折射率进行调整,使得入射的垂直光偏转。
如图1所示,所述显示面板还包括:
位于所述光传播方向改变结构5和所述液晶单元14之间的钝化层6;
位于所述钝化层6和所述液晶单元14之间的驱动电极10,用于驱动所述液晶单元中的液晶偏转;
所述光传播方向改变结构5的折射率大于所述钝化层6的折射率,所述钝化层6的折射率大于所述驱动电极10的折射率,所述驱动电极10的折射率大于所述液晶的折射率,这样可以有效地使得入射的垂直光偏转。
液晶单元14除包括液晶之外,还包括取向层19,由于液晶层的厚度比较小,在2um~3um,因此可以设置单层的取向层19,简化液晶单元的结构,取向层19可以采用聚酰亚胺。
图2为本申请实施例液晶未发生偏转时的光路示意图,图3为本申请实施例液晶发生偏转时的光路示意图,图4为液晶改变光路的原理示意图。液晶存在两个极端的状态,如图4中所示,一个可以称为是基态,一个是完全偏转状态。在基态下,液晶对光是折射作用,光通过液晶偏转角度小,如图2所示,导光板1出射的光进入显示面板后被第一遮光图形15吸收;当处于激发态时,光在液晶表面发生全反射,光路的改变,改变光路后的光可以激发量子点单元,如图3所示,导光板1出射的光进入显示面板后光路改变,进入量子点单元,转向不完全的光会被第一遮光图形15和遮光挡墙11吸收, 不会发生侧漏。
如图4所示,当加电电压不足时,液晶偏转的角度不够,平行方向的光就会减少,激发量子点单元的有效光就会减少,相应的显示亮度就会低;增加电压,偏转角度变大,发生全发射,激发量子点单元的有效光会变多。因此,通过控制施加在液晶单元14上的电压,可以调节像素点亮的亮度。
本申请的实施例提供了一种显示装置,包括如上所述的显示模组。
该显示装置包括但不限于:射频单元、网络模块、音频输出单元、输入单元、传感器、显示单元、用户输入单元、接口单元、存储器、处理器、以及电源等部件。本领域技术人员可以理解,上述显示装置的结构并不构成对显示装置的限定,显示装置可以包括上述更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本申请实施例中,显示装置包括但不限于显示器、手机、平板电脑、电视机、可穿戴电子设备、导航显示设备等。
所述显示装置可以为:电视、显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件,其中,所述显示装置还包括柔性电路板、印刷电路板和背板。
本申请的实施例提供了一种显示模组的制作方法,包括:
提供一导光板,所述导光板包括相邻的入光面和出光面;
在所述导光板的入光面形成蓝光光源;
在所述导光板的出光面一侧形成显示面板,所述显示面板包括多个显示单元,相邻显示单元通过遮光挡墙间隔开,每一显示单元包括并排设置的量子点单元和液晶单元,所述液晶单元和所述量子点单元通过透明挡墙间隔开,所述液晶单元远离所述导光板的一侧设置有第一遮光图形,所述液晶单元在所述导光板上的正投影落入所述第一遮光图形在所述导光板上的正投影内。
本实施例中,蓝光光源发出的激发光从导光板的侧面入射,经导光板的出光面出射,相比垂直入射(垂直于出光面)的激发光,侧向(平行于出光面)入射的激发光的光程更长,有足够的光程,可以提高激发光的利用率;在激发光经导光板的出光面出射后,进入显示面板的液晶单元后,通过液晶的偏转可以使得激发光进入量子点单元,激发量子点单元发光;在液晶单元远离导光板的一侧设置有第一遮光图形,可以吸收未进入量子点单元的激发 光,防止激发光从液晶单元出射伤害到人眼;另外,在相邻显示单元之间间隔有遮光挡墙,能够吸收侧向穿过量子点单元的光,防止漏光引起的串扰发生。
在制作显示模组时,可以先制作下基板,在衬底基板2上形成薄膜晶体管结构,薄膜晶体管结构包括栅极7、栅绝缘层4、源极8、漏极9和有源层18,然后形成包括有过孔的钝化层6,在钝化层6上形成驱动电极10,驱动电极10通过钝化层6的过孔与漏极9连接。之后在驱动电极10上形成取向层19。为了不影响光线的入射,钝化层和驱动电极应采用透光材料。值得注意的是,在形成栅绝缘层4后,还需要制作光传播方向改变结构5,再制作钝化层6。
之后可以制作上基板,在衬底基板16上形成第一遮光图形15、遮光挡墙11和透明挡墙13,遮光挡墙11和透明挡墙13限定出量子点单元所在区域和液晶单元所在区域,遮光挡墙11和透明挡墙13一方面可以限定量子点和液晶的流动,另一方面还可以起到支撑盒厚的作用。遮光挡墙11和透明挡墙13可以采用打印方式制作。
在遮光挡墙11和透明挡墙13限定出的量子点单元所在区域打印量子点材料,固化后形成量子点单元;在遮光挡墙11和透明挡墙13限定出的液晶单元所在区域打印液晶材料,形成液晶单元。
之后进行上基板和下基板对盒,再将制作有第二遮光图形3的导光板贴附在下基板上,即可完成显示模组的制作。
需要说明,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于实施例而言,由于其基本相似于产品实施例,所以描述得比较简单,相关之处参见产品实施例的部分说明即可。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其 他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种显示模组,包括:
    导光板,所述导光板包括相邻的入光面和出光面;
    设置在所述导光板入光面处的蓝光光源;
    设置在所述导光板出光面一侧的显示面板;
    其中,所述显示面板包括多个显示单元以及将相邻显示单元间隔的遮光挡墙;每一所述显示单元包括并排设置的量子点单元和液晶单元、将所述液晶单元和所述量子点单元间隔的透明挡墙、以及设置在所述液晶单元远离所述导光板的一侧的第一遮光图形;所述液晶单元在所述导光板上的正投影落入所述第一遮光图形在所述导光板上的正投影内,所述量子点单元在所述导光板上的正投影与相邻第一遮光图形之间的间隙在所述导光板上的正投影存在交叠。
  2. 根据权利要求1所述的显示模组,其中,所述显示面板还包括:
    设置在所述液晶单元朝向所述导光板一侧的光传播方向改变结构,能够使入射的垂直光偏转。
  3. 根据权利要求2所述的显示模组,其中,所述显示面板还包括:
    位于所述光传播方向改变结构和所述液晶单元之间的钝化层;
    位于所述钝化层和所述液晶单元之间的驱动电极,用于驱动所述液晶单元中的液晶偏转;
    所述光传播方向改变结构的折射率大于所述钝化层的折射率,所述钝化层的折射率大于所述驱动电极的折射率,所述驱动电极的折射率大于所述液晶的折射率。
  4. 根据权利要求2所述的显示模组,其中,所述光传播方向改变结构包括多个平行排布的楔形结构,所述楔形结构的高度为1.5um到3μm。
  5. 根据权利要求1所述的显示模组,其中,
    所述导光板的出光面设置有多个间隔排布的第二遮光图形,所述量子点单元在所述导光板上的正投影落入所述第二遮光图形在所述导光板上的正投影内,所述液晶单元在所述导光板上的正投影与相邻第二遮光图形之间的间 隙在所述导光板上的正投影存在交叠。
  6. 根据权利要求5所述的显示模组,其中,所述透明挡墙在所述导光板上的正投影落入所述第二遮光图形在所述导光板上的正投影内。
  7. 根据权利要求6所述的显示模组,其中,所述透明挡墙在所述导光板上的正投影落入所述第一遮光图形在所述导光板上的正投影内。
  8. 根据权利要求1所述的显示模组,其中,所述第一遮光图形的厚度为1.5μm~2μm。
  9. 根据权利要求1所述的显示模组,其中,所述蓝光光源发出的光线的波长小于410nm。
  10. 根据权利要求1所述的显示模组,其中,所述量子点单元内,散射粒子的重量百分比为1%~5%。
  11. 根据权利要求1所述的显示模组,其中,每一所述显示单元中并排设置的量子点单元和液晶单元以及所述透明挡墙被所述遮光挡墙所环绕。
  12. 根据权利要求11所述的显示模组,其中,在每一显示单元中,所述第一遮光图形覆盖所述液晶单元远离所述导光板的一侧、以及所述透明挡墙远离所述导光板的一侧。
  13. 一种显示装置,包括的显示模组;
    所述显示模组包括:
    导光板,所述导光板包括相邻的入光面和出光面;
    设置在所述导光板入光面处的蓝光光源;
    设置在所述导光板出光面一侧的显示面板;
    其中,所述显示面板包括多个显示单元以及将相邻显示单元间隔的遮光挡墙;每一所述显示单元包括并排设置的量子点单元和液晶单元、将所述液晶单元和所述量子点单元间隔的透明挡墙、以及设置在所述液晶单元远离所述导光板的一侧的第一遮光图形;所述液晶单元在所述导光板上的正投影落入所述第一遮光图形在所述导光板上的正投影内,所述量子点单元在所述导光板上的正投影与相邻第一遮光图形之间的间隙在所述导光板上的正投影存在交叠。
  14. 根据权利要求13所述的显示装置,其中,所述显示面板还包括:
    设置在所述液晶单元朝向所述导光板一侧的光传播方向改变结构,能够使入射的垂直光偏转。
  15. 根据权利要求14所述的显示装置,其中,所述显示面板还包括:
    位于所述光传播方向改变结构和所述液晶单元之间的钝化层;
    位于所述钝化层和所述液晶单元之间的驱动电极,用于驱动所述液晶单元中的液晶偏转;
    所述光传播方向改变结构的折射率大于所述钝化层的折射率,所述钝化层的折射率大于所述驱动电极的折射率,所述驱动电极的折射率大于所述液晶的折射率。
  16. 根据权利要求15所述的显示装置,还包括处理器;
    其中,所述处理器用于通过控制经由所述驱动电极施加在所述液晶单元上的电压,调节液晶偏转的角度以调整所述量子点单元的发光强度。
  17. 一种显示模组的制作方法,包括:
    提供一导光板,所述导光板包括相邻的入光面和出光面;
    在所述导光板的入光面形成蓝光光源;
    在所述导光板的出光面一侧形成显示面板,所述显示面板包括多个显示单元,相邻显示单元通过遮光挡墙间隔开,每一显示单元包括并排设置的量子点单元和液晶单元,所述液晶单元和所述量子点单元通过透明挡墙间隔开,所述液晶单元远离所述导光板的一侧设置有第一遮光图形,所述液晶单元在所述导光板上的正投影落入所述第一遮光图形在所述导光板上的正投影内。
PCT/CN2021/100055 2020-06-17 2021-06-15 显示模组及其制作方法、显示装置 WO2021254316A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/770,262 US11906838B2 (en) 2020-06-17 2021-06-15 Display module, method of manufacturing the same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010552854.6 2020-06-17
CN202010552854.6A CN111580307B (zh) 2020-06-17 2020-06-17 显示模组及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2021254316A1 true WO2021254316A1 (zh) 2021-12-23

Family

ID=72127487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100055 WO2021254316A1 (zh) 2020-06-17 2021-06-15 显示模组及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US11906838B2 (zh)
CN (1) CN111580307B (zh)
WO (1) WO2021254316A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111580307B (zh) 2020-06-17 2022-09-09 京东方科技集团股份有限公司 显示模组及其制作方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768433A (zh) * 2012-08-01 2012-11-07 友达光电股份有限公司 一种液晶显示设备
CN106405918A (zh) * 2015-07-31 2017-02-15 三星电子株式会社 显示面板及具有该显示面板的显示装置
CN107065063A (zh) * 2017-06-15 2017-08-18 青岛海信电器股份有限公司 一种液晶显示装置
US20190361293A1 (en) * 2017-02-16 2019-11-28 Korea University Research And Business Foundation, Sejong Campus Display device
CN111048693A (zh) * 2019-12-06 2020-04-21 深圳市华星光电半导体显示技术有限公司 一种量子点彩膜基板及其制作方法
CN111580307A (zh) * 2020-06-17 2020-08-25 京东方科技集团股份有限公司 显示模组及其制作方法、显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654665B (zh) * 2011-12-14 2014-02-26 京东方科技集团股份有限公司 液晶透镜型调光装置及显示器
CN103323970B (zh) * 2013-06-20 2015-07-08 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置
US9651825B2 (en) * 2014-09-23 2017-05-16 Au Optronics Corporation Liquid crystal lens display device with light shield structure
KR20170128729A (ko) * 2016-05-13 2017-11-23 삼성디스플레이 주식회사 표시 장치
CN106773218B (zh) * 2017-01-22 2018-07-20 京东方科技集团股份有限公司 显示装置
CN106773379B (zh) * 2017-02-06 2020-02-07 京东方科技集团股份有限公司 显示面板、显示装置及其控制方法
CN107945760B (zh) * 2018-01-02 2020-08-14 京东方科技集团股份有限公司 液晶显示面板及其驱动方法、显示装置
CN108415190B (zh) * 2018-03-12 2021-12-10 京东方科技集团股份有限公司 显示面板及其灰阶调控方法和显示装置
US10558100B2 (en) * 2018-03-28 2020-02-11 a.u. Vista Inc. Liquid crystal display devices and methods for manufacturing such devices
CN110888270B (zh) * 2018-09-10 2021-04-30 京东方科技集团股份有限公司 一种显示面板和显示装置
KR20210095274A (ko) * 2020-01-22 2021-08-02 삼성디스플레이 주식회사 백라이트 유닛 및 이를 포함하는 표시 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768433A (zh) * 2012-08-01 2012-11-07 友达光电股份有限公司 一种液晶显示设备
CN106405918A (zh) * 2015-07-31 2017-02-15 三星电子株式会社 显示面板及具有该显示面板的显示装置
US20190361293A1 (en) * 2017-02-16 2019-11-28 Korea University Research And Business Foundation, Sejong Campus Display device
CN107065063A (zh) * 2017-06-15 2017-08-18 青岛海信电器股份有限公司 一种液晶显示装置
CN111048693A (zh) * 2019-12-06 2020-04-21 深圳市华星光电半导体显示技术有限公司 一种量子点彩膜基板及其制作方法
CN111580307A (zh) * 2020-06-17 2020-08-25 京东方科技集团股份有限公司 显示模组及其制作方法、显示装置

Also Published As

Publication number Publication date
CN111580307A (zh) 2020-08-25
US20220390795A1 (en) 2022-12-08
CN111580307B (zh) 2022-09-09
US11906838B2 (en) 2024-02-20

Similar Documents

Publication Publication Date Title
KR101286095B1 (ko) 액정표시장치용 일체형 멀티집광시트
US11320690B2 (en) Color filter substrate and method of manufacturing the same, liquid crystal display panel, and liquid crystal display apparatus
KR102395088B1 (ko) 백라이트 유닛 및 이를 포함하는 액정 표시 장치
TWI591405B (zh) 光致發光顯示裝置及其製造方法
TWI698678B (zh) 顯示裝置
WO2020220513A1 (zh) 显示面板及显示装置
WO2022198707A1 (zh) 显示面板及显示装置
WO2022068025A1 (zh) 背光模组、液晶显示屏幕及液晶显示屏幕的使用方法
CN111061098B (zh) 显示装置
KR101792104B1 (ko) 도광판 및 이를 구비한 액정표시소자
WO2023246492A1 (zh) 显示面板、显示装置和车载显示系统
KR102090457B1 (ko) 액정표시장치
WO2021254316A1 (zh) 显示模组及其制作方法、显示装置
WO2019184810A1 (zh) 液晶显示面板、液晶显示装置及其灰阶控制方法
JP2006259569A (ja) 半透過型液晶表示パネルおよび半透過型液晶表示パネルの製造方法
KR20110073725A (ko) 액정표시장치
KR20210095274A (ko) 백라이트 유닛 및 이를 포함하는 표시 장치
US20240012283A1 (en) Reflective display panel
KR101854697B1 (ko) 백라이트 유닛 및 이를 포함하는 액정표시장치모듈
KR101513157B1 (ko) 백라이트 및 이를 구비한 액정표시소자
KR20140141304A (ko) 라운드 다각패턴을 가진 도광판 및 이를 구비한 액정표시소자
KR102113631B1 (ko) 액정표시장치 및 그 제조방법
KR101654373B1 (ko) 백라이트 유닛 및 그를 이용한 디스플레이 장치
JP2006184350A (ja) 表示モジュール
TWI829352B (zh) 背光模組及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826468

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21826468

Country of ref document: EP

Kind code of ref document: A1