WO2021254222A1 - 一种训练序列的确定方法及相关设备 - Google Patents

一种训练序列的确定方法及相关设备 Download PDF

Info

Publication number
WO2021254222A1
WO2021254222A1 PCT/CN2021/099064 CN2021099064W WO2021254222A1 WO 2021254222 A1 WO2021254222 A1 WO 2021254222A1 CN 2021099064 W CN2021099064 W CN 2021099064W WO 2021254222 A1 WO2021254222 A1 WO 2021254222A1
Authority
WO
WIPO (PCT)
Prior art keywords
onu
training sequence
olt
message
data frame
Prior art date
Application number
PCT/CN2021/099064
Other languages
English (en)
French (fr)
Inventor
吴徐明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21826113.9A priority Critical patent/EP4156706A4/en
Publication of WO2021254222A1 publication Critical patent/WO2021254222A1/zh
Priority to US18/067,394 priority patent/US20230123881A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0045Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0084Quality of service aspects

Definitions

  • This application relates to the field of optical communications, and in particular to a method for determining a training sequence and related equipment.
  • the line rate of Passive Optical Network also needs to be gradually increased.
  • the International Telecommunication Union (International Telecommunication Union, ITU) PON series standards range from GPON to 10G PON, and then to the 50G PON that is currently under discussion and formulation.
  • the line rate has also been increased from 2.5Gbps to 10Gbps and then to 50Gbps accordingly.
  • This application provides a method for determining a training sequence and related equipment.
  • the ONU determines the training sequence according to the instructions of the OLT, and sends the training sequence to the OLT.
  • the OLT determines the working parameters of the equalizer according to the training sequence.
  • the equalizer can compensate for channel damage, effectively eliminate ISI, and improve the performance of the OLT.
  • this application provides a method for determining a training sequence. This method is specifically executed by the ONU. First, the ONU receives the first message sent by the OLT. After that, the ONU determines the target training sequence according to the first message, where the target training sequence is used to determine the working parameters of the equalizer in the OLT. Furthermore, the ONU generates a first data frame including the target training sequence.
  • the ONU determines the target training sequence according to the instructions of the OLT, and generates the first data frame including the target training sequence, so that after the OLT receives the first data frame sent by the ONU, it can train according to the target training sequence.
  • the equalizer can compensate for channel damage and effectively eliminate ISI, which improves the performance of the OLT.
  • the first field in the first message includes the original sequence
  • the ONU determining the target training sequence according to the first message includes: the ONU generates the target training sequence according to the original sequence and preset operation rules, The length of the target sequence is greater than the length of the original sequence.
  • a specific implementation manner for the ONU to determine the target training sequence is provided, which improves the practicability of the solution.
  • the length of the target training sequence determined by the ONU is more in line with the training requirements of the equalizer in the OLT, so that better working parameters can be determined and the performance of the equalizer can be improved.
  • the second field in the first message is used to indicate the number of cycles of the target training sequence based on its pattern.
  • the underlined part indicates the code pattern of the target training sequence (15 bits in total), and every 15 bits is a cycle, then the second field can indicate the number of cycles of these 15 bits . That is, if the number of cycles is 100, then a cumulative 1500bit target training sequence can be provided to meet the training requirements of the equalizer in the OLT.
  • the first field in the first message is used to indicate the type of the training sequence
  • the ONU determining the target training sequence according to the first message includes: Select the target training sequence from the set training sequence list.
  • the type of the training sequence includes one of the attributes of the code pattern of the training sequence, the length of the training sequence, and the number of cycles for sending the training sequence, or a combination of multiple attributes. For example, if the first field indicates the length of the training sequence, the ONU selects a target training sequence matching the length indicated by the first field from the preset training sequence list.
  • the first field indicates the pattern of the training sequence and the number of cycles based on the pattern
  • the ONU selects a target training sequence matching the above-mentioned pattern and number of cycles from a preset training sequence list.
  • another specific implementation manner for the ONU to determine the target training sequence is provided, which improves the scalability of the solution.
  • the first data frame further includes the delimiter of the target training sequence and the service data, wherein the target training sequence, the delimiter of the target training sequence, and the service data are arranged in order from front to back .
  • the first data frame further includes a first uplink physical synchronization block (PSBu), a delimiter of the target training sequence, and service data.
  • PSBu physical synchronization block
  • the first PSBu further includes a preamble and a delimiter of the preamble.
  • the position of the first PSBu in the first data frame may be in front of the target training sequence.
  • the position of the first PSBu in the first data frame may also be located between the delimiter of the target training sequence and the service data.
  • a variety of different uplink data frame structures are provided, which enriches the implementation of this solution.
  • the ONU after the ONU generates the first data frame including the target training sequence, the ONU further sends the first data frame to the OLT, so that the OLT determines the working parameters of its equalizer according to the target training sequence.
  • the ONU sending the first data frame to the OLT specifically includes: the ONU receiving the second message sent by the OLT.
  • the ONU sends the first data frame to the OLT according to the instruction of the second message.
  • the ONU sends the first data frame including the target training sequence to the OLT after receiving the instruction sent by the OLT.
  • a mechanism for the ONU to report the target training sequence is provided, which improves the scalability of the solution.
  • the second message includes a bandwidth mapping table
  • the authorization message structure in the bandwidth mapping table includes a training indication field.
  • the ONU sending the first data frame to the OLT according to the instruction of the second message includes: the ONU sending the first data frame to the OLT according to the instruction of the training instruction field.
  • the OLT adds a training indication field to the bandwidth mapping table for allocating uplink bandwidth, and uses the training indication field to indicate that the ONU needs to send a target training sequence.
  • the OLT reuses the existing bandwidth mapping table and does not need to send an indication message to the ONU separately. This implementation method is more practical.
  • the method further includes: the ONU receives a third message sent by the OLT.
  • the ONU sends a second data frame to the OLT according to the instruction of the third message, and the second data frame includes the second PSBu and service data.
  • the uplink data frame sent by the ONU to the OLT does not need to carry the target training sequence, which saves unnecessary overhead.
  • the third message includes a bandwidth mapping table
  • the authorization message structure in the bandwidth mapping table includes a training indication field.
  • the ONU sending the second data frame to the OLT according to the instruction of the third message includes: the ONU sending the second data frame to the OLT according to the instruction of the training instruction field.
  • the OLT adds a training indication field to the bandwidth mapping table for allocating upstream bandwidth, and uses the training indication field to indicate that the ONU does not need to send a target training sequence.
  • the OLT reuses the existing bandwidth mapping table and does not need to send an indication message to the ONU separately. This implementation method is more practical.
  • the number of target training sequences is multiple, and each target training sequence has a corresponding identifier, and the burst template in the authorization message structure is used to indicate the identifier.
  • the content indicated by the identifier may include the training sequence, the number of cycles for sending the training sequence, the delimiter of the training sequence, and so on.
  • the ONU can send the training sequence most needed by the OLT according to the instructions of the OLT, so that the equalizer can determine better working parameters, thereby better compensating for channel damage.
  • the first message is a Physical Layer Operations, Administration and Maintenance (PLOAM) message.
  • PLOAM Physical Layer Operations, Administration and Maintenance
  • this application provides a method for determining a training sequence.
  • This method is specifically executed by the OLT.
  • the OLT sends the first message to the ONU, so that the ONU determines the target training sequence according to the first message, and generates a first data frame including the target training sequence.
  • the target training sequence is used to determine the working parameters of the equalizer in the OLT.
  • the first field in the first message includes the original sequence
  • the target training sequence is generated by the ONU according to the original sequence and a preset operation rule
  • the length of the target sequence is greater than the length of the original sequence
  • the first field in the first message is used to indicate the training sequence type
  • the target training sequence is selected by the ONU from a preset training sequence list according to the training sequence type indicated by the first field get.
  • the first data frame further includes the delimiter of the target training sequence and service data, or the first data frame further includes the first PSBu, the delimiter of the target training sequence, and service data. data.
  • the method further includes: the OLT receives the first data frame sent by the ONU.
  • the OLT receiving the first data frame sent by the ONU specifically includes: the OLT sends a second message to the ONU, and the second message is used to instruct the ONU to send the first data frame.
  • the OLT receives the first data frame sent by the ONU.
  • the second message includes a bandwidth mapping table
  • the authorization message structure in the bandwidth mapping table includes a training indication field
  • the training indication field is used to instruct the ONU to send the first data frame.
  • the method further includes: the OLT sends a third message to the ONU, the third message is used to instruct the ONU to send a second data frame, and the second data frame includes the second PSBu and service data.
  • the OLT receives the second data frame sent by the ONU.
  • the third message includes a bandwidth mapping table
  • the authorization message structure in the bandwidth mapping table includes a training indication field
  • the training indication field is used to instruct the ONU to send the second data frame.
  • the number of target training sequences is multiple, and each target training sequence has a corresponding identifier, and the burst template in the authorization message structure is used to indicate the identifier.
  • the first message is a PLOAM message.
  • this application provides an ONU, including: a processor, a memory, and an optical transceiver.
  • the processor, the memory, and the optical transceiver are connected to each other through a line, and the processor calls the program code in the memory to execute the method for determining the training sequence shown in any one of the embodiments of the first aspect.
  • the present application provides an OLT, which includes a processor, a memory, and an optical transceiver.
  • the processor, the memory, and the optical transceiver are connected to each other through a line, and the processor calls the program code in the memory to execute the method for determining the training sequence shown in any one of the embodiments of the second aspect.
  • this application provides a passive optical network.
  • the passive optical network includes the ONU shown in the third aspect and the OLT shown in the fourth aspect.
  • the present application provides a computer-readable storage medium that stores a computer program, where the computer program can implement any of the methods executed by the ONU in the first aspect when the computer program is executed by hardware. Part or all of the steps.
  • the present application provides a computer-readable storage medium that stores a computer program, where the computer program can implement any of the methods executed by the OLT in the second aspect when the computer program is executed by hardware. Part or all of the steps.
  • the ONU determines the target training sequence according to the message sent by the OLT. After that, the uplink data frame generated by the ONU includes the target training sequence. Furthermore, the OLT can perform training according to the received target training sequence to determine the working parameters of the equalizer in the OLT.
  • the equalizer can compensate for channel damage and effectively eliminate ISI, which improves the performance of the OLT.
  • Figure 1 is a schematic diagram of the PON system architecture
  • Figure 2 is a schematic diagram of a structure of the OLT receiving end in this application.
  • FIG. 3 is a schematic diagram of a first embodiment of a method for determining a training sequence in this application
  • FIG. 4 is a schematic diagram of a structure of a linear feedback shift register in this application.
  • FIG. 5 is a schematic diagram of the first structure of the first data frame in this application.
  • FIG. 6 is a schematic diagram of the second structure of the first data frame in this application.
  • FIG. 7 is a schematic diagram of the third structure of the first data frame in this application.
  • FIG. 8 is a schematic diagram of a first embodiment of a method for determining a training sequence in this application.
  • FIG. 9 is a schematic diagram of a structure of the bandwidth mapping table in this application.
  • FIG. 10 is a schematic diagram of the structure of the second data frame in this application.
  • Figure 11 is a schematic structural diagram of a possible ONU
  • Figure 12 is a schematic structural diagram of a possible OLT
  • FIG. 13 is a schematic structural diagram of a passive optical network provided by this application.
  • This application provides a method for determining a training sequence and related equipment.
  • the ONU determines the training sequence according to the instructions of the OLT, and sends the training sequence to the OLT.
  • the OLT determines the working parameters of the equalizer according to the training sequence.
  • the equalizer can compensate for channel damage, effectively eliminate ISI, and improve the performance of the OLT.
  • optical access network OAN
  • PON Passive optical network
  • PON is an implementation technology of optical access network.
  • PON is an optical access technology of point-to-multipoint transmission.
  • the system architecture of PON is introduced below.
  • FIG 1 is a schematic diagram of the PON system architecture.
  • the OLT is used to provide a network-side interface for the OAN.
  • the OLT is connected to upper-layer network-side devices (such as switches, routers, etc.), and the lower layer is connected to one or more optical distribution networks (ODN).
  • ODN optical distribution networks
  • the ODN includes a passive optical splitter for optical power distribution, a backbone fiber connected between the passive optical splitter and the OLT, and a branch fiber connected between the passive optical splitter and the ONU.
  • the ODN transmits the downstream data of the OLT to each ONU through the optical splitter, and the ONU selectively receives the downstream data carrying its own identification.
  • the ODN When transmitting data upstream, the ODN combines the optical signals sent by the N channels of ONUs into one optical signal and transmits it to the OLT.
  • the ONU provides a user-side interface for OAN and is connected to ODN at the same time. If the ONU provides the user port function at the same time, for example, the ONU provides an Ethernet user port or a traditional telephone service (plain old telephone service, POTS) user port, it is called an optical network termination (ONT).
  • POTS plain old telephone service
  • Fig. 2 is a schematic diagram of a structure of the receiving end of the OLT in this application.
  • the demultiplexing module 201 is used for demultiplexing the service signal from the channel.
  • the photoelectric conversion module 202 is used to convert the demultiplexed optical signal into an electrical signal, and output it to the analog-to-digital conversion module 203.
  • the analog-to-digital conversion module 203 is used to convert the electrical signal into a digital signal and output it to the clock data recovery module 204.
  • the clock data recovery module 204 is used to recover the clock of the data.
  • the equalizer 205 is used to eliminate inter-code crosstalk.
  • the equalizer in the OLT needs to be configured with different working parameters. Specifically, the OLT determines the working parameters of the equalizer according to the training sequence sent by the ONU. The method for determining the training sequence provided in this application will be described in detail below.
  • Fig. 3 is a schematic diagram of a first embodiment of a method for determining a training sequence in this application.
  • the method for determining the training sequence includes the following steps.
  • the OLT sends a first message to the ONU.
  • the first message may be a physical layer operation management and maintenance (Physical Layer Operations, Administration and Maintenance, PLOAM) message in the GPON standard.
  • PLOAM Physical Layer Operations, Administration and Maintenance
  • the PLOAM message can be sent by broadcast or unicast.
  • the PLOAM message can provide functions such as upstream burst mode configuration, ONU activation, and ONU registration.
  • the ONU determines the target training sequence according to the first message.
  • the target training sequence is different from the service data, and the target training sequence is a sequence used to determine the working parameters of the equalizer in the OLT.
  • the target training sequence may be located in the overhead part of the uplink message sent by the ONU. Specifically, there are many ways for the ONU to determine the target training sequence, which will be introduced separately below.
  • the first field in the first message sent by the OLT includes the original sequence, and the ONU processes the original sequence according to a preset operation rule to obtain a random sequence, that is, the target training sequence.
  • the length of the target training sequence is greater than the length of the original sequence (for example, greater than 256 bits), so that the length of the target training sequence meets the training requirements of the equalizer in the OLT.
  • FIG. 4 is a schematic diagram of a structure of the linear feedback shift register in this application.
  • the linear feedback shift register includes 4 stages of registers. Specifically, first assign an initial value to all registers, and the value of each register is 0 or 1. For example, the initial values of the first-level registers to the fourth-level registers are "1001" in sequence, and it should be understood that "1001" is the original sequence described above.
  • the shift pulse arrives, the value of the last stage register is output, and the register content of the i-th stage is stored in the i+1th stage.
  • the output of the register of each stage is calculated according to a certain linear operation rule A value, and store the value in the first-level register.
  • the output of the linear feedback shift register can form a sequence, that is, the target training sequence.
  • the final output target training sequence will be a cyclic sequence based on a certain pattern.
  • the first message further includes a second field, and the second field is used to indicate the number of cycles of the target training sequence based on a certain pattern.
  • the target training sequence is "10011010111100010011010111000"
  • the underlined part indicates the code pattern of the target training sequence (15 bits in total), and every 15 bits is a cycle, then the second field can indicate the cycle of these 15 bits frequency. That is, if the number of cycles is 100, then a cumulative 1500bit target training sequence can be provided to meet the training requirements of the equalizer in the OLT.
  • the first field in the first message issued by the OLT is used to indicate the type of training sequence. Furthermore, the ONU selects the type matching training sequence from the preset training sequence list as or generates the target training sequence.
  • the type of training sequence can be an enumerated value or a number.
  • any type of training sequence includes the pattern of the training sequence, the length of the training sequence, and the number of cycles of the training sequence based on its pattern, etc.
  • ONU selects the corresponding training sequence from the training sequence list according to the type of the training sequence to generate the target training sequence; if the first field indicates that the type of the training sequence is type 1, in the preset training sequence list, type The training sequence pattern of 1 is "10011010111000", and the number of cycles is 100, then the target training sequence is a 1500-bit cycle sequence "10011010111100010011010111000".
  • the type of the training sequence indicated by the first field can also specifically be the attributes of the training sequence, such as a combination of one or more types of information, such as the pattern of the training sequence, the length of the training sequence, and the number of cycles of the training sequence based on its pattern;
  • the type of the training sequence indicated by the first field is specifically the length of the training sequence, then the ONU selects the training sequence matching the length indicated by the first field from the preset training sequence list as the target training sequence; or
  • the type of the training sequence indicated by the field is specifically the code type of the training sequence and the number of cycles based on the code, then the ONU selects the training sequence matching the above code and number of cycles from the preset training sequence list as or generates the target Training sequence.
  • the preset training sequence list includes 4 types of training sequences, and the first field includes 2 bits. Among them, the first field is "00" to indicate the type 1 of the training sequence, the first field is “01” to indicate the type 2 of the training sequence, and the first field is “10” to indicate the type 3 of the training sequence. The first field is "11" to indicate the type 4 of the training sequence.
  • the ONU generates a first data frame including the target training sequence.
  • FIG. 5 is a schematic diagram of the first structure of the first data frame in this application.
  • the first data frame sequentially includes the target training sequence, the delimiter of the target training sequence, and service data. Among them, the delimiter of the target training sequence is used to indicate the termination bit of the target training sequence.
  • FIG. 6 is a schematic diagram of the second structure of the first data frame in this application.
  • the first data frame may also include an uplink physical synchronization block (PSBu), where the PSBu further includes a preamble and a preamble delimiter, The delimiter of the preamble is used to indicate the stop bit of the preamble.
  • PSBu physical synchronization block
  • the position of the PSBu in the first data frame may be located in front of the target training sequence as shown in FIG. 6.
  • FIG. 7 is a schematic diagram of the third structure of the first data frame in this application.
  • the position of the PSBu in the first data frame may be located between the delimiter of the target training sequence and the service data as shown in FIG. 7.
  • the ONU sends the first data frame to the OLT.
  • the ONU sends the first data frame including the target training sequence to the OLT. Furthermore, the OLT uses the target training sequence to train the equalizer to determine the working parameters of the equalizer. Specifically, when the equalizer is implemented by a filter, the working parameters of the equalizer can be understood as the filter coefficients of the filter.
  • the equalizer combines the training sequence and the recursive algorithm to evaluate the channel characteristics, thereby modifying the filter coefficients to compensate for the channel damage.
  • the process of the equalizer determining the working parameters of the equalizer according to the target training sequence is affected by many factors such as the algorithm of the equalizer, the structure of the equalizer, and the rate of communication change.
  • service data is divided into several segments and sent in different time periods. Whenever the OLT receives service data in a new time period, the equalizer will use the same training sequence to correct the balance.
  • the working parameters of the device are affected by many factors such as the algorithm of the equalizer, the structure of the equalizer, and the rate of communication change.
  • the equalizer When designing the training sequence, it is required that the equalizer can obtain the correct working parameters through this training sequence even under the worst channel conditions. In this way, after the OLT receives the training sequence, the working parameters can be close to the optimal value. Furthermore, when the OLT receives data, the adaptive algorithm of the equalizer can track the constantly changing channel and continuously change its working parameters.
  • the ONU determines the target training sequence according to the message sent by the OLT. After that, the uplink data frame generated by the ONU includes the target training sequence. Furthermore, the OLT can perform training according to the received target training sequence to determine the working parameters of the equalizer in the OLT.
  • the equalizer can compensate for channel damage and effectively eliminate ISI, which improves the performance of the OLT.
  • the upstream data frame sent by the ONU to the OLT does not necessarily carry the training sequence every time.
  • the OLT has determined the working parameters of the equalizer according to the training sequence in the uplink data frame sent by the ONU.
  • the uplink data frame sent by the ONU within a period of time may not carry the training sequence.
  • the OLT indicates whether the ONU needs to send a training sequence.
  • FIG. 8 is a schematic diagram of a first embodiment of a method for determining a training sequence in this application. Based on the steps for the ONU to determine the target training sequence introduced in the embodiment shown in FIG. 3, the embodiment shown in FIG. 8 will further introduce that the ONU determines whether it needs to send a data frame including the target training sequence to the OLT according to the instructions of the OLT.
  • the method for determining the training sequence includes the following steps.
  • the OLT sends a first message to the ONU.
  • the ONU determines the target training sequence according to the first message.
  • steps 801-802 are similar to steps 301-302 in the embodiment shown in FIG. 3, and will not be repeated here.
  • the OLT sends a second message to the ONU.
  • the second message is used to indicate that the ONU needs to send the first data frame including the target training sequence to the OLT.
  • the second message includes a bandwidth map (BWmap).
  • the bandwidth mapping table in this application includes a training indication field, which can indicate that the ONU needs to send the first data frame including the target training sequence to the OLT.
  • the training indication field includes 1 bit. When the bit is 1, the ONU needs to send the first data frame including the target training sequence to the OLT. When the bit is 0, the ONU sends data frames in other formats to the OLT.
  • the specific structure of the bandwidth mapping table will be introduced in detail below.
  • FIG. 9 is a schematic diagram of a structure of the bandwidth mapping table in this application.
  • the bandwidth mapping table may include one or more allocation structures.
  • the authorization message structure includes multiple fields, which are the allocation identifier (Alloc-ID), flags (Flags), start time (StartTime), training indication field, grant size (GrantSize), forced wake-up indication (FWI), burst template (BurstProfile) and Hybrid Error Correction (HEC).
  • the Alloc-ID can indicate the receiver of the bandwidth allocation, such as a specific transport container (T-CONT) in the ONU or an upstream ONU management and control channel (OMCC).
  • Flags can contain multiple flags, each of which is used to indicate different information.
  • Flags includes 2 bits, of which 1 bit is used to indicate physical layer operation, management and maintenance (PLOAMu), and the other 1 bit is used for Indicates dynamic bandwidth report (DBRu).
  • StartTime may indicate the start time of the bandwidth allocation of the upstream burst.
  • GrantSize can indicate the length of the data transmitted in the bandwidth allocation.
  • BurstProfile can indicate the burst template of the relevant upstream burst.
  • the HEC may include an error correction indicator.
  • the position of the training indication field in the authorization message structure shown in FIG. 9 is only an example. In practical applications, the training indication field may also be located in other positions in the authorization message structure, which is not specifically limited here.
  • the training indication field may be a field added to the original authorization message structure, or the idle bits of certain fields in the authorization message structure may also be defined as the training indication field. For example, idle bits in StartTime or GrantSize are used to carry the training indication field.
  • training indication field may also have other naming methods.
  • training domain or “training sequence indicator domain”, etc., which is not specifically limited here.
  • the ONU generates the first data frame according to the instruction of the second message.
  • the mechanism for the ONU to generate the first data frame is different from step 303 in the embodiment shown in FIG. 3.
  • the ONU determines the target training sequence, it can generate the first data frame including the target training sequence.
  • the ONU after receiving the second message sent by the OLT, the ONU needs to generate the first data frame including the target training sequence according to the instruction of the second message.
  • the description of the first data frame is similar to the description of step 303 in the embodiment shown in FIG. 3, and will not be repeated here.
  • the ONU sends the first data frame to the OLT.
  • the OLT sends a third message to the ONU.
  • the OLT has determined the working parameters of the equalizer according to the target training sequence in the first data frame sent by the ONU. Then, in order to save overhead, the target training sequence may not be carried in the uplink data frame sent by the ONU within a period of time.
  • the third message sent by the OLT to the ONU may indicate that the ONU does not need to send the target training sequence to the OLT. It should be understood that the third message is similar in structure to the above-mentioned second message, except that the second message is used to instruct the ONU to send the first data frame, and the third message is used to instruct the ONU to send the second data frame. The other same aspects are here. No longer.
  • the ONU generates a second data frame according to the instruction of the third message.
  • the ONU will generate a second data frame that does not include the target training sequence according to the instruction of the third message.
  • FIG. 10 is a schematic diagram of the structure of the second data frame in this application.
  • the second data frame includes PSBu and service data, where the PSBu further includes a preamble and a delimiter of the preamble.
  • the ONU sends the second data frame to the OLT.
  • the ONU generates multiple training sequences, and each training sequence has a corresponding identifier.
  • the content indicated by the identifier may include the training sequence, the number of cycles for sending the training sequence, the delimiter of the training sequence, and so on.
  • the OLT can indicate the identification of the required training sequence through the BurstProfile in the authorization message structure, and then the ONU can determine the target training sequence according to the identification. For example, BurstProfile has 2 bits, then these 2 bits are "00", "01", "10” and "11” respectively indicating the identification of 4 different training sequences. It should be noted that if the training indication field indicates that the ONU does not need to send the target training sequence to the OLT, BurstProfile can be used to indicate the type of preamble in the second data frame.
  • the bandwidth mapping table sent by the OLT to the ONU includes a training indication field, which can indicate whether the ONU needs to send a training sequence. If the OLT has determined the working parameters of the equalizer according to the training sequence sent by the ONU, then The uplink data frame sent by the ONU to the OLT does not need to carry the target training sequence, which saves unnecessary overhead.
  • FIG. 11 is a schematic diagram of a possible ONU structure.
  • the processor 1101, the memory 1102, and the optical transceiver 1103 are connected to each other through wires.
  • the memory 1102 is used to store program instructions and data.
  • the optical transceiver 1103 is used to perform the signal or data transceiving operations in the steps shown in FIG. 3 and FIG. 8.
  • the processor 1101 is configured to perform other operations in addition to signal or data transceiving in the steps shown in FIG. 3 and FIG. 8.
  • FIG. 12 is a schematic diagram of a possible OLT structure.
  • the processor 1201, the memory 1202, and the optical transceiver 1203 are connected to each other through wires.
  • the memory 1202 is used to store program instructions and data.
  • the optical transceiver 1203 is used to perform the signal or data transceiving operations in the steps shown in FIG. 3 and FIG. 8.
  • the processor 1201 is configured to perform other operations in addition to signal or data transceiving in the steps shown in FIG. 3 and FIG. 8.
  • the processor 1201 may include an analog-to-digital conversion module 203, a clock data recovery module 204, and an equalizer 205 as shown in FIG. 2.
  • the electrical signal received by the processor 1201 is processed by the analog-to-digital conversion module 203 and the clock data recovery module 204 and then output to the equalizer 205, and then processed by the equalizer to eliminate ISI.
  • the processors shown in FIGS. 11 and 12 may adopt a general central processing unit (Central Processing Unit, CPU), a microprocessor, an application specific integrated circuit ASIC, or at least one integrated circuit for Perform related procedures to realize the technical solutions provided in the embodiments of the present application.
  • the above-mentioned memory shown in FIG. 11 and FIG. 12 may store an operating system and other application programs.
  • the program codes used to implement the technical solutions provided in the embodiments of the present application are stored in the memory and executed by the processor.
  • a memory may be included inside the processor.
  • the processor and the memory are two independent structures.
  • FIG. 13 is a schematic structural diagram of a passive optical network provided by this application.
  • Passive optical network includes OLT (1301) and ONU (1302).
  • the OLT (1301) is used to execute part or all of the steps of any one of the methods executed by the OLT in the embodiments shown in Figs. 3 and 8 above.
  • the ONU (1302) is used to execute part or all of the steps of any one of the methods executed by the ONU in the embodiments shown in Figs. 3 and 8 above.
  • the above-mentioned processing unit or processor may be a central processing unit, a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device , Transistor logic devices, hardware components, or any combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Transistor logic devices hardware components, or any combination thereof.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种训练序列的确定方法及相关设备。本申请实施例方法包括:ONU接收OLT发送的第一消息。之后,ONU根据第一消息确定目标训练序列,目标训练序列用于确定OLT中均衡器的工作参数。进而,ONU生成包括目标训练序列的第一数据帧。本申请中,OLT可以根据收到的目标训练序列进行训练以确定OLT中均衡器的工作参数,进而通过均衡器对信道损伤进行补偿,并有效消除ISI,提升了OLT的性能。

Description

一种训练序列的确定方法及相关设备
本申请要求于2020年6月19日提交中国国家知识产权局、申请号为202010567253.2、申请名称为“一种训练序列的确定方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及一种训练序列的确定方法及相关设备。
背景技术
随着接入带宽的提升,无源光网络(Passive Optical Network,PON)的线路速率也需要逐步提升。国际电信联盟(International Telecommunication Union,ITU)的PON系列标准从GPON到10G PON,再到当前正在讨论制定的50G PON。线路速率也相应地从2.5Gbps提升到10Gbps再到50Gbps。
由于PON线路速率的提升,光器件所支持的带宽可能不足以满足高速PON的带宽需求,PON系统中传输的相邻码型之间就会产生相互干扰,从而出现码间串扰(inter symbol interference,ISI)的现象,影响OLT的性能。
发明内容
本申请提供了一种训练序列的确定方法及相关设备。ONU根据OLT的指示确定训练序列,并向OLT发送训练序列。OLT根据训练序列确定均衡器的工作参数,通过均衡器可以对信道损伤进行补偿,并有效消除ISI,提升了OLT的性能。
第一方面,本申请提供了一种训练序列的确定方法。该方法具体由ONU执行。首先,ONU接收OLT发送的第一消息。之后,ONU根据第一消息确定目标训练序列,其中,目标训练序列用于确定OLT中均衡器的工作参数。进而,ONU生成包括目标训练序列的第一数据帧。
在该实施方式中,ONU根据OLT的指示确定目标训练序列,并生成包括目标训练序列的第一数据帧,以使得OLT接收到ONU发送的第一数据帧后,可以根据目标训练序列进行训练以确定OLT中均衡器的工作参数。通过均衡器可以对信道损伤进行补偿,并有效消除ISI,提升了OLT的性能。
可选地,在一些可能的实施方式中,第一消息中的第一字段包括原始序列,ONU根据第一消息确定目标训练序列包括:ONU根据原始序列和预置的运算规则生成目标训练序列,目标序列的长度大于原始序列的长度。在该实施方式中,提供了一种ONU确定目标训练序列的具体实现方式,提高了本方案的实用性。并且,ONU确定的目标训练序列的长度更符合OLT中均衡器的训练要求,从而可以确定更好的工作参数,提升均衡器的性能。
可选地,在一些可能的实施方式中,第一消息中的第二字段用于指示目标训练序列基于其码型的循环次数。例如,目标训练序列“10011010111100010011010111000…”,其中的下 划线部分表示该目标训练序列的码型(共15个bit),每15个bit为一个循环,那么第二字段可以指示这15个bit的循环次数。即如果循环次数为100次,那么可以提供累计1500bit的目标训练序列以满足OLT中均衡器的训练要求。
可选地,在一些可能的实施方式中,第一消息中的第一字段用于指示训练序列类型,ONU根据第一消息确定目标训练序列包括:ONU根据第一字段指示的训练序列类型从预置的训练序列列表中选择目标训练序列。应理解,训练序列的类型包括训练序列的码型、训练序列的长度和发送训练序列的循环次数中的其中一种属性或其中多种属性的组合。例如,第一字段指示训练序列的长度,那么ONU从预置的训练序列列表中选择与第一字段指示的长度匹配的目标训练序列。或者,第一字段指示训练序列的码型和基于该码型的循环次数,那么ONU从预置的训练序列列表中选择与上述码型和循环次数匹配的目标训练序列。在该实施方式中,提供了另一种ONU确定目标训练序列的具体实现方式,提高了本方案的扩展性。
可选地,在一些可能的实施方式中,第一数据帧还包括目标训练序列的定界符和业务数据,其中,目标训练序列、目标训练序列的定界符和业务数据从前到后依次排列。或者,第一数据帧还包括第一上行物理同步块(Upstream physical synchronization block,PSBu)、目标训练序列的定界符和业务数据。其中,第一PSBu中进一步包括前导码和前导码的定界符。另外,第一PSBu在第一数据帧中的位置可以位于目标训练序列的前面。或者,第一PSBu在第一数据帧中的位置也可以位于目标训练序列的定界符与业务数据之间。在该实施方式中,提供了多种不同的上行数据帧的结构,丰富了本方案的实现方式。
可选地,在一些可能的实施方式中,ONU生成了包括目标训练序列的第一数据帧后,进而向OLT发送该第一数据帧,使得OLT根据目标训练序列确定其均衡器的工作参数。
可选地,在一些可能的实施方式中,ONU向OLT发送第一数据帧具体包括:ONU接收OLT发送的第二消息。ONU根据第二消息的指示向OLT发送第一数据帧。在该实施方式中,ONU在收到了OLT发送的指示后再向OLT发送包括目标训练序列的第一数据帧。在该实施方式中,提供了一种ONU上报目标训练序列的机制,提高了本方案的扩展性。
可选地,在一些可能的实施方式中,第二消息包括带宽映射表,带宽映射表中的授权消息结构包括训练指示域。ONU根据第二消息的指示向OLT发送第一数据帧包括:ONU根据训练指示域的指示向OLT发送第一数据帧。在该实施方式中,OLT在用于分配上行带宽的带宽映射表中添加训练指示域,并通过训练指示域来指示ONU需要发送目标训练序列。OLT复用已有的带宽映射表,无需再单独向ONU发送指示消息,这种实现方式实用性更高。
可选地,在一些可能的实施方式中,方法还包括:ONU接收OLT发送的第三消息。ONU根据第三消息的指示向OLT发送第二数据帧,第二数据帧包括第二PSBu和业务数据。在一些可能的实现方式中,若OLT已经根据ONU发送的训练序列确定了均衡器的工作参数,那么ONU向OLT发送的上行数据帧中不需要携带目标训练序列,节省了不必要的开销。
可选地,在一些可能的实施方式中,第三消息包括带宽映射表,带宽映射表中的授权消息结构包括训练指示域。ONU根据第三消息的指示向OLT发送第二数据帧包括:ONU根据训练指示域的指示向OLT发送第二数据帧。在该实施方式中,OLT在用于分配上行带宽的带宽映射表中添加训练指示域,并通过训练指示域来指示ONU不需要发送目标训练序列。OLT复用已有的带宽映射表,无需再单独向ONU发送指示消息,这种实现方式实用性更高。
可选地,在一些可能的实施方式中,目标训练序列的数量为多个,每个目标训练序列具有对应的标识,授权消息结构中的突发模板用于指示标识。其中,该标识所指示的内容可以包括训练序列、发送训练序列的循环次数以及训练序列的定界符等。在该实施方式中,ONU可以按照OLT的指示发送OLT最需要的训练序列,使得均衡器可以确定更好的工作参数,从而更好地对信道损伤进行补偿。
可选地,在一些可能的实施方式中,第一消息为物理层操作管理和维护(Physical Layer Operations,Administration and Maintenance,PLOAM)消息。
第二方面,本申请提供了一种训练序列的确定方法。该方法具体由OLT执行。OLT向ONU发送第一消息,以使得ONU根据第一消息确定目标训练序列,并生成包括目标训练序列的第一数据帧。其中,目标训练序列用于确定OLT中均衡器的工作参数。
可选地,在一些可能的实施方式中,第一消息中的第一字段包括原始序列,目标训练序列由ONU根据原始序列和预置的运算规则生成,目标序列的长度大于原始序列的长度。
可选地,在一些可能的实施方式中,第一消息中的第一字段用于指示训练序列类型,目标训练序列由ONU根据第一字段指示的训练序列类型从预置的训练序列列表中选择得到。
可选地,在一些可能的实施方式中,第一数据帧还包括目标训练序列的定界符和业务数据,或者,第一数据帧还包括第一PSBu、目标训练序列的定界符和业务数据。
可选地,在一些可能的实施方式中,方法还包括:OLT接收ONU发送的第一数据帧。
可选地,在一些可能的实施方式中,OLT接收ONU发送的第一数据帧具体包括:OLT发送第二消息至ONU,第二消息用于指示ONU发送第一数据帧。OLT接收ONU发送的第一数据帧。
可选地,在一些可能的实施方式中,第二消息包括带宽映射表,带宽映射表中的授权消息结构包括训练指示域,训练指示域用于指示ONU发送第一数据帧。
可选地,在一些可能的实施方式中,方法还包括:OLT发送第三消息至ONU,第三消息用于指示ONU发送第二数据帧,第二数据帧包括第二PSBu和业务数据。OLT接收ONU发送的第二数据帧。
可选地,在一些可能的实施方式中,第三消息包括带宽映射表,带宽映射表中的授权消息结构包括训练指示域,训练指示域用于指示ONU发送第二数据帧。
可选地,在一些可能的实施方式中,目标训练序列的数量为多个,每个目标训练序列具有对应的标识,授权消息结构中的突发模板用于指示标识。
可选地,在一些可能的实施方式中,第一消息为PLOAM消息。
第三方面,本申请提供了一种ONU,包括:处理器、存储器以及光收发器。其中,该处理器、该存储器以及该光收发器通过线路互相连接,该处理器调用该存储器中的程序代码用于执行上述第一方面中任一实施方式所示的训练序列的确定方法。
第四方面,本申请提供了一种OLT,包括:处理器、存储器以及光收发器。其中,该处理器、该存储器以及该光收发器通过线路互相连接,该处理器调用该存储器中的程序代码用于执行上述第二方面中任一实施方式所示的训练序列的确定方法。
第五方面,本申请提供了一种无源光网络。该无源光网络包括上述第三方面所示的ONU和上述第四方面所示的OLT。
第六方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机 程序,其中,计算机程序被硬件执行时能够实现上述第一方面中由ONU执行的任意一种方法的部分或全部步骤。
第七方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,其中,计算机程序被硬件执行时能够实现上述第二方面中由OLT执行的任意一种方法的部分或全部步骤。
本申请实施例中,ONU根据OLT发送的消息确定目标训练序列。之后,ONU生成的上行数据帧包括目标训练序列。进而,OLT可以根据收到的目标训练序列进行训练以确定OLT中均衡器的工作参数。通过均衡器可以对信道损伤进行补偿,并有效消除ISI,提升了OLT的性能。
附图说明
图1为PON的系统架构示意图;
图2为本申请中OLT接收端的一种结构示意图;
图3为本申请中训练序列的确定方法的第一个实施例示意图;
图4为本申请中线性反馈移位寄存器的一种结构示意图;
图5为本申请中第一数据帧的第一种结构示意图;
图6为本申请中第一数据帧的第二种结构示意图;
图7为本申请中第一数据帧的第三种结构示意图;
图8为本申请中训练序列的确定方法的第一个实施例示意图;
图9为本申请中带宽映射表的一种结构示意图;
图10为本申请中第二数据帧的结构示意图;
图11为一种可能的ONU的结构示意图;
图12为一种可能的OLT的结构示意图;
图13为本申请提供的一种无源光网络的结构示意图。
具体实施方式
本申请提供了一种训练序列的确定方法及相关设备。ONU根据OLT的指示确定训练序列,并向OLT发送训练序列。OLT根据训练序列确定均衡器的工作参数,通过均衡器可以对信道损伤进行补偿,并有效消除ISI,提升了OLT的性能。
目前的宽带接入技术主要区分为铜线接入技术(例如各种DSL技术)和光接入技术。由光接入技术实现的接入网称为光接入网(optical access network,OAN)。
无源光网络(passive optical network,PON)是光接入网的一种实现技术,PON是一种点对多点传送的光接入技术,下面对PON的系统架构进行介绍。
图1为PON的系统架构示意图。OLT用来为OAN提供网络侧接口,OLT连接上层的网络侧设备(如交换机、路由器等),下层连接一个或者多个光分配网络(optical distribution network,ODN)。
ODN包括用于光功率分配的无源光分光器、连接在无源光分光器和OLT之间的主干光纤, 以及连接在无源光分光器和ONU之间的分支光纤。下行传输数据时,ODN将OLT下行的数据通过分光器传输到各个ONU,ONU选择性接收携带自身标识的下行数据。上行传输数据时,ODN将N路ONU发送的光信号组合成一路光信号传输到OLT。
ONU为OAN提供用户侧接口,同时与ODN相连。如果ONU同时提供用户端口功能,如ONU提供以太网用户端口或者传统电话业务(plain old telephone service,POTS)用户端口,则称为光网络终端(optical network termination,ONT)。
随着PON线路速率的提升,对光器件的带宽也有了更高的要求。由于光器件所支持的带宽不足以满足高速PON的带宽需求,PON系统中传输的相邻码型之间就会产生相互干扰,从而出现ISI的现象,影响OLT的性能。为此,本申请通过在OLT中引入均衡器来消除ISI并补偿带宽。
图2为本申请中OLT接收端的一种结构示意图。解复用模块201用于对来自信道的业务信号进行分波。光电转换模块202用于将分波后的光信号转换为电信号,并输出至模数转换模块203。模数转换模块203用于将电信号转换为数字信号,并输出至时钟数据恢复模块204。时钟数据恢复模块204用于恢复数据的时钟。均衡器205用于消除码间串扰。
需要说明的是,OLT需要接收来自不同ONU的上行信号,不同ONU采用的光器件存在一定的差异,并且不同ONU到OLT的距离也不一样。因此,针对不同的ONU,OLT中的均衡器需要配置不同的工作参数。具体地,OLT根据ONU发送的训练序列来确定均衡器的工作参数,下面对本申请提供的训练序列的确定方法进行详细说明。
图3为本申请中训练序列的确定方法的第一个实施例示意图。在该示例中,训练序列的确定方法包括如下步骤。
301、OLT向ONU发送第一消息。
本实施例中,该第一消息可以是GPON标准中的物理层操作管理和维护(Physical Layer Operations,Administration and Maintenance,PLOAM)消息。其中,PLOAM消息可以是通过广播的方式发送的,也可以是通过单播的方式发送的。PLOAM消息可以提供上行突发模式的配置、ONU激活和ONU注册等功能。
302、ONU根据第一消息确定目标训练序列。
应理解,目标训练序列不同于业务数据,目标训练序列是一种用于确定OLT中均衡器工作参数的序列。目标训练序列可以位于ONU发送的上行消息的开销部分。具体地,ONU确定目标训练序列的实现方式有多种,下面分别进行介绍。
第一种实现方式:
OLT下发的第一消息中的第一字段包括原始序列,ONU按照预置的运算规则对原始序列进行处理得到一个随机序列,即目标训练序列。其中,目标训练序列的长度大于原始序列的长度(例如大于256bit),以使得目标训练序列的长度满足OLT中均衡器的训练要求。
需要说明的是,目标训练序列可以是某种伪随机序列,例如m序列。ONU可以采用线性反馈移位寄存器来生成目标训练序列。图4为本申请中线性反馈移位寄存器的一种结构示意图。该线性反馈移位寄存器包括4级寄存器。具体地,首先给所有寄存器赋予一个初始值,每个寄存器的取值为0或1。例如,第一级寄存器到第四级寄存器的初始值依次为“1001”,应理解,“1001”即为上述的原始序列。当移位脉冲到来时,将最后一级寄存器的值输出,并 将第i级的寄存器内容存储到第i+1级中,此外将每一级的寄存器的输出按照一定的线性运算规则计算出一个值,并将该值存入第一级寄存器中。随着移位脉冲的累加,线性反馈移位寄存器的输出可以组成一个序列,即目标训练序列。并且,由于寄存器的状态是有限的,最终输出的目标训练序列会是一个基于某一码型的循环序列。可选地,第一消息中还包括第二字段,第二字段用于指示目标训练序列基于某一码型的循环次数。例如,目标训练序列为“10011010111100010011010111000…”,其中的下划线部分表示该目标训练序列的码型(共15个bit),每15个bit为一个循环,那么第二字段可以指示这15个bit的循环次数。即如果循环次数为100次,那么可以提供累计1500bit的目标训练序列以满足OLT中均衡器的训练要求。
第二种实现方式:
OLT下发的第一消息中的第一字段用于指示训练序列的类型。进而,ONU从预置的训练序列列表中选择类型匹配训练序列作为或生成目标训练序列。训练序列的类型具体可以是一个枚举值或编号,预置的训练序列列表中,任一类型的训练序列包括训练序列的码型、训练序列的长度和训练序列基于其码型的循环次数等一种或多种信息;ONU根据训练序列的类型从训练序列列表中选取对应的训练序列生成目标训练序列;如第一字段指示训练序列的类型为类型1,预置的训练序列列表中,类型1的训练序列码型为“10011010111000”,循环次数为100,则目标训练序列为1500bit的循环序列“10011010111100010011010111000…”。第一字段所指示的训练序列的类型具体还可以是训练序列的属性,如训练序列的码型、训练序列的长度和训练序列基于其码型的循环次数等一种或多种信息的组合;例如,第一字段所指示的训练序列的类型具体为训练序列的长度,那么ONU从预置的训练序列列表中选择与第一字段指示的长度匹配的训练序列作为目标训练序列;或者,第一字段所指示的训练序列的类型具体为训练序列的码型和基于该码型的循环次数,那么ONU从预置的训练序列列表中选择与上述码型和循环次数匹配的训练序列作为或生成目标训练序列。在一种可能的实现方式中,预置的训练序列列表中包括4种类型的训练序列,第一字段包括2个比特。其中,第一字段为“00”用于指示训练序列的类型1,第一字段为“01”用于指示训练序列的类型2,第一字段为“10”用于指示训练序列的类型3,第一字段为“11”用于指示训练序列的类型4。
303、ONU生成包括目标训练序列的第一数据帧。
本实施例中,第一数据帧的格式可以有多种,下面分别进行介绍。
图5为本申请中第一数据帧的第一种结构示意图。第一数据帧中依次包括目标训练序列、目标训练序列的定界符和业务数据。其中,目标训练序列的定界符用于指示目标训练序列的终止位。
图6为本申请中第一数据帧的第二种结构示意图。在图5所示数据帧格式的基础上,该第一数据帧中还可以包括上行物理同步块(Upstream physical synchronization block,PSBu),其中,PSBu中进一步包括前导码和前导码的定界符,前导码的定界符用于指示前导码的终止位。
可选地,PSBu在第一数据帧中的位置可以如图6所示位于目标训练序列的前面。或者,图7为本申请中第一数据帧的第三种结构示意图。PSBu在第一数据帧中的位置可以如图7所示位于目标训练序列的定界符与业务数据之间。
304、ONU向OLT发送第一数据帧。
ONU将包括目标训练序列的第一数据帧发送至OLT。进而,OLT用目标训练序列对均衡器进行训练以确定均衡器的工作参数。具体地,当均衡器由滤波器来实现时,均衡器的工作参数可以理解为滤波器的滤波系数。均衡器结合训练序列和递归算法来评估信道特性,从而修正滤波器系数以对信道损伤进行补偿。
均衡器根据目标训练序列确定均衡器工作参数的过程受均衡器的算法、均衡器的结构和通信变化率等多种因素的影响。在数字通信系统中,业务数据是被分为若干段并被放在不同的时间段中传送的,每当OLT在新的时间段收到业务数据,均衡器将用同样的训练序列来修正均衡器的工作参数。
在设计训练序列时,要求即使在最差的信道条件下,均衡器也能通过这个训练序列获得正确的工作参数。这样就可以在OLT收到训练序列后,使得工作参数接近于最佳值。进而,在OLT接收数据时,均衡器的自适应算法就可以跟踪不断变化的信道,并不断改变其工作参数。
本申请实施例中,ONU根据OLT发送的消息确定目标训练序列。之后,ONU生成的上行数据帧包括目标训练序列。进而,OLT可以根据收到的目标训练序列进行训练以确定OLT中均衡器的工作参数。通过均衡器可以对信道损伤进行补偿,并有效消除ISI,提升了OLT的性能。
需要说明的是,在实际应用中,ONU向OLT发送的上行数据帧中并不一定每次都携带训练序列。在一些可能的实现方式中,OLT已经根据ONU发送的上行数据帧中的训练序列确定了均衡器的工作参数。那么为了节省开销,在之后一段时间内ONU发送的上行数据帧中也可以不携带训练序列。具体由OLT指示ONU是否需要发送训练序列。下面结合实施例进行进一步介绍。
图8为本申请中训练序列的确定方法的第一个实施例示意图。基于上述图3所示实施例介绍的ONU确定目标训练序列的步骤,图8所示的实施例将进一步介绍ONU根据OLT的指示来确定是否需要向OLT发送包括目标训练序列的数据帧。在该示例中,训练序列的确定方法包括如下步骤。
801、OLT向ONU发送第一消息。
802、ONU根据第一消息确定目标训练序列。
本实施例中,步骤801-802与图3所示实施例中的步骤301-302类似,此处不再赘述。
803、OLT向ONU发送第二消息。
本实施例中,第二消息用于指示ONU需要向OLT发送包括目标训练序列的第一数据帧。具体地,第二消息包括带宽映射表(bandwidth map,BWmap)。本申请中的带宽映射表包括训练指示域,可以指示ONU需要向OLT发送包括目标训练序列的第一数据帧。例如,训练指示域包括1bit,当该bit为1时,ONU需要向OLT发送包括目标训练序列的第一数据帧,当该bit为0时,ONU向OLT发送其他格式的数据帧。下面结合带宽映射表的具体结构进行详细介绍。
图9为本申请中带宽映射表的一种结构示意图。带宽映射表可以包括一个或多个授权消息结构(allocation structure)。授权消息结构包括多个字段,分别是分配标识符(Alloc-ID)、 标记(Flags)、开始时间(StartTime)、训练指示域、授权大小(GrantSize)、强制唤醒指示(FWI)、突发模板(BurstProfile)和混合纠错(HEC)。其中,Alloc-ID可指示带宽分配的接收方,例如ONU内的特定传送容器(T-CONT)或上行ONU管理及控制信道(OMCC)。Flags可包含多个标记,每个标记分别用于指示不同的信息,例如,Flags包括2个bit,其中1个bit用于指示物理层操作管理和维护(PLOAMu),其中另1个bit用于指示动态带宽报告(DBRu)。StartTime可指示上行突发的带宽分配的开始时间。GrantSize可指示在该带宽分配所传输数据的长度。BurstProfile可指示相关上行突发的突发模板。HEC可包括纠错指示符。
应理解,图9所示的训练指示域在授权消息结构中的位置只是一种示例,在实际应用中,该训练指示域也可以位于授权消息结构中的其他位置,具体此处不做限定。另外,训练指示域可以是在原有的授权消息结构中增加的字段,或者,也可以将授权消息结构中某些字段的空闲比特定义为训练指示域。例如,用StartTime或GrantSize中的空闲比特承载该训练指示域。
应理解,在实际应用中,上述“训练指示域”也可以有其他的命名方式。例如,还可以命名为“训练域”或“训练序列指示域”等,具体此处不做限定。
804、ONU根据第二消息的指示生成第一数据帧。
本实施例中,ONU生成第一数据帧的机制与图3所示实施例的步骤303不同。图3所示的实施例中,ONU确定了目标训练序列后,即可生成包括目标训练序列的第一数据帧。而本实施例中,ONU需要收到OLT发送的第二消息后,根据第二消息的指示生成包括目标训练序列的第一数据帧。另外,关于第一数据帧的描述与图3所示实施例中步骤303的描述类似,此处不再赘述。
805、ONU向OLT发送第一数据帧。
806、OLT向ONU发送第三消息。
本实施例中,OLT已经根据ONU发送的第一数据帧中的目标训练序列确定了均衡器的工作参数。那么为了节省开销,在之后一段时间内ONU发送的上行数据帧中也可以不携带目标训练序列。具体地,OLT向ONU发送的第三消息可以指示ONU不需要再向OLT发送目标训练序列。应理解,第三消息与上述的第二消息结构类似,区别只在于第二消息用于指示ONU发送第一数据帧,第三消息用于指示ONU发送第二数据帧,其他相同的方面此处不再赘述。
807、ONU根据第三消息的指示生成第二数据帧。
本实施例中,ONU将根据第三消息的指示生成不包括目标训练序列的第二数据帧。图10为本申请中第二数据帧的结构示意图。第二数据帧包括PSBu和业务数据,其中,PSBu中进一步包括前导码和前导码的定界符。
808、ONU向OLT发送第二数据帧。
可选地,在一些可能的实施方式中,ONU生成了多个训练序列,且每个训练序列都具有对应的标识。该标识所指示的内容可以包括训练序列、发送训练序列的循环次数以及训练序列的定界符等。OLT可以通过授权消息结构中的BurstProfile来指示所需要的训练序列的标识,进而,ONU即可根据标识确定目标训练序列。例如,BurstProfile有2个bit,那么这2个bit是“00”、“01”、“10”和“11”分别指示4个不同的训练序列的标识。需要说明的是,如果训练指示域指示ONU不需要向OLT发送目标训练序列,那么BurstProfile可用于指示上 述第二数据帧中前导码的类型。
本申请实施例中,OLT向ONU发送的带宽映射表中包括训练指示域,训练指示域可以指示ONU是否需要发送训练序列,若OLT已经根据ONU发送的训练序列确定了均衡器的工作参数,那么ONU向OLT发送的上行数据帧中不需要携带目标训练序列,节省了不必要的开销。
上面描述了本申请提供的训练序列的确定方法,下面介绍本申请提供的OLT和ONU。
图11为一种可能的ONU的结构示意图。该ONU包处理器1101、存储器1102和光收发器1103。该处理器1101、存储器1102和光收发器1103通过线路相互连接。其中,存储器1102用于存储程序指令和数据。需要说明的是,光收发器1103用于执行上述图3和图8所示步骤中信号或数据的收发操作。处理器1101用于执行上述图3和图8所示步骤中除了信号或数据收发外的其他操作。
图12为一种可能的OLT的结构示意图。该OLT包处理器1201、存储器1202和光收发器1203。该处理器1201、存储器1202和光收发器1203通过线路相互连接。其中,存储器1202用于存储程序指令和数据。需要说明的是,光收发器1203用于执行上述图3和图8所示步骤中信号或数据的收发操作。处理器1201用于执行上述图3和图8所示步骤中除了信号或数据收发外的其他操作。在一些可能的实现方式中,处理器1201可以包括如图2所示的模数转换模块203、时钟数据恢复模块204和均衡器205。具体地,处理器1201接收到的电信号先后经过模数转换模块203和时钟数据恢复模块204处理后输出到均衡器205,进而由均衡器进行处理以消除ISI。
需要说明的是,上述图11和图12中所示的处理器可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路ASIC,或者至少一个集成电路,用于执行相关程序,以实现本申请实施例所提供的技术方案。上述图11和图12中所示的存储器可以存储操作系统和其他应用程序。在通过软件或者固件来实现本申请实施例提供的技术方案时,用于实现本申请实施例提供的技术方案的程序代码保存在存储器中,并由处理器来执行。在一实施例中,处理器内部可以包括存储器。在另一实施例中,处理器和存储器是两个独立的结构。
图13为本申请提供的一种无源光网络的结构示意图。无源光网络包括OLT(1301)和ONU(1302)。OLT(1301)用于执行上述图3和图8所示实施例中由OLT执行的任意一种方法的部分或全部步骤。ONU(1302)用于执行上述图3和图8所示实施例中由ONU执行的任意一种方法的部分或全部步骤。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,随机接入存储器等。具体地,例如:上述处理单元或处理器可以是中央处理器,通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。上述的这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但 是这种实现不应认为超出本申请的范围。
当使用软件实现时,上述实施例描述的方法步骤可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种训练序列的确定方法,其特征在于,包括:
    光网络单元ONU接收光线路终端OLT发送的第一消息;
    所述ONU根据所述第一消息确定目标训练序列,所述目标训练序列用于确定所述OLT中均衡器的工作参数;
    所述ONU生成第一数据帧,所述第一数据帧包括所述目标训练序列。
  2. 根据权利要求1所述的方法,其特征在于,所述第一消息中的第一字段包括原始序列,所述ONU根据所述第一消息确定目标训练序列包括:
    所述ONU根据所述原始序列和预置的运算规则生成所述目标训练序列,所述目标序列的长度大于所述原始序列的长度。
  3. 根据权利要求1所述的方法,其特征在于,所述第一消息中的第一字段用于指示训练序列类型,所述ONU根据所述第一消息确定目标训练序列包括:
    所述ONU根据所述第一字段指示的训练序列类型从预置的训练序列列表中选择所述目标训练序列。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一数据帧还包括所述目标训练序列的定界符和业务数据,或者,所述第一数据帧还包括第一上行物理同步块PSBu、所述目标训练序列的定界符和业务数据。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述ONU向所述OLT发送所述第一数据帧。
  6. 根据权利要求5所述的方法,其特征在于,所述ONU向所述OLT发送所述第一数据帧具体包括:
    所述ONU接收所述OLT发送的第二消息;
    所述ONU根据所述第二消息的指示向所述OLT发送所述第一数据帧。
  7. 根据权利要求6所述的方法,其特征在于,所述第二消息包括带宽映射表,所述带宽映射表中的授权消息结构包括训练指示域;
    所述ONU根据所述第二消息的指示向所述OLT发送所述第一数据帧包括:
    所述ONU根据所述训练指示域的指示向所述OLT发送所述第一数据帧。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述ONU接收所述OLT发送的第三消息;
    所述ONU根据所述第三消息的指示向所述OLT发送第二数据帧,所述第二数据帧包括第二PSBu和业务数据。
  9. 根据权利要求8所述的方法,其特征在于,所述第三消息包括带宽映射表,所述带宽映射表中的授权消息结构包括训练指示域;
    所述ONU根据所述第三消息的指示向所述OLT发送所述第二数据帧包括:
    所述ONU根据所述训练指示域的指示向所述OLT发送所述第二数据帧。
  10. 根据权利要求7或9所述的方法,其特征在于,所述目标训练序列的数量为多个,每 个所述目标训练序列具有对应的标识,所述授权消息结构中的突发模板用于指示所述标识。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一消息为物理层操作管理和维护PLOAM消息。
  12. 一种训练序列的确定方法,其特征在于,包括:
    光线路终端OLT发送第一消息至光网络单元ONU,以使得所述ONU根据所述第一消息确定目标训练序列,并生成第一数据帧,其中,所述目标训练序列用于确定所述OLT中均衡器的工作参数,所述第一数据帧包括所述目标训练序列。
  13. 根据权利要求12所述的方法,其特征在于,所述第一消息中的第一字段包括原始序列,所述目标训练序列由所述ONU根据所述原始序列和预置的运算规则生成,所述目标序列的长度大于所述原始序列的长度。
  14. 根据权利要求12所述的方法,其特征在于,所述第一消息中的第一字段用于指示训练序列类型,所述目标训练序列由所述ONU根据所述第一字段指示的训练序列类型从预置的训练序列列表中选择得到。
  15. 根据权利要求12至14任一项所述的方法,其特征在于,所述第一数据帧还包括所述目标训练序列的定界符和业务数据,或者,所述第一数据帧还包括第一上行物理同步块PSBu、所述目标训练序列的定界符和业务数据。
  16. 根据权利要求12至15任一项所述的方法,其特征在于,所述方法还包括:
    所述OLT接收所述ONU发送的所述第一数据帧。
  17. 根据权利要求12至15任一项所述的方法,其特征在于,所述OLT接收所述ONU发送的所述第一数据帧具体包括:
    所述OLT发送第二消息至所述ONU,所述第二消息用于指示所述ONU发送所述第一数据帧;
    所述OLT接收所述ONU发送的所述第一数据帧。
  18. 根据权利要求17所述的方法,其特征在于,所述第二消息包括带宽映射表,所述带宽映射表中的授权消息结构包括训练指示域,所述训练指示域用于指示所述ONU发送所述第一数据帧。
  19. 根据权利要求12至18任一项所述的方法,其特征在于,所述方法还包括:
    所述OLT发送第三消息至所述ONU,所述第三消息用于指示所述ONU发送第二数据帧,所述第二数据帧包括第二PSBu和业务数据;
    所述OLT接收所述ONU发送的所述第二数据帧。
  20. 根据权利要求19所述的方法,其特征在于,所述第三消息包括带宽映射表,所述带宽映射表中的授权消息结构包括训练指示域,所述训练指示域用于指示所述ONU发送所述第二数据帧。
  21. 根据权利要求18或20所述的方法,其特征在于,所述目标训练序列的数量为多个,每个所述目标训练序列具有对应的标识,所述授权消息结构中的突发模板用于指示所述标识。
  22. 根据权利要求12至21中任一项所述的方法,其特征在于,所述第一消息为物理层操作管理和维护PLOAM消息。
  23. 一种光网络单元ONU,其特征在于,包括:
    处理器、存储器以及光收发器,所述处理器、所述存储器以及所述光收发器通过线路互相连接,所述处理器调用所述存储器中的程序代码用于执行如权利要求1至11中任一项所述的方法。
  24. 一种光线路终端OLT,其特征在于,包括:
    处理器、存储器以及光收发器,所述处理器、所述存储器以及所述光收发器通过线路互相连接,所述处理器调用所述存储器中的程序代码用于执行如权利要求12至22中任一项所述的方法。
  25. 一种无源光网络,其特征在于,所述无源光网络包括:如权利要求23所述的ONU和如权利要求24所述的OLT。
  26. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在计算机设备上运行时,使得所述计算机设备执行如权利要求1至22中任一项所述的方法。
PCT/CN2021/099064 2020-06-19 2021-06-09 一种训练序列的确定方法及相关设备 WO2021254222A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21826113.9A EP4156706A4 (en) 2020-06-19 2021-06-09 METHOD FOR DETERMINING A TRAINING SEQUENCE AND ASSOCIATED DEVICE
US18/067,394 US20230123881A1 (en) 2020-06-19 2022-12-16 Training Sequence Determining Method and Related Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010567253.2 2020-06-19
CN202010567253.2A CN113825044A (zh) 2020-06-19 2020-06-19 一种训练序列的确定方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/067,394 Continuation US20230123881A1 (en) 2020-06-19 2022-12-16 Training Sequence Determining Method and Related Device

Publications (1)

Publication Number Publication Date
WO2021254222A1 true WO2021254222A1 (zh) 2021-12-23

Family

ID=78911636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099064 WO2021254222A1 (zh) 2020-06-19 2021-06-09 一种训练序列的确定方法及相关设备

Country Status (4)

Country Link
US (1) US20230123881A1 (zh)
EP (1) EP4156706A4 (zh)
CN (1) CN113825044A (zh)
WO (1) WO2021254222A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4293933A1 (en) * 2022-06-13 2023-12-20 Nokia Solutions and Networks Oy Methods, devices and apparatuses for optical communication, and computer readable medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115396032A (zh) * 2021-05-25 2022-11-25 华为技术有限公司 一种信号发送方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105704073A (zh) * 2014-11-28 2016-06-22 联芯科技有限公司 一种干扰消除方法及装置
WO2017214859A1 (zh) * 2016-06-14 2017-12-21 华为技术有限公司 上行数据均衡方法、装置和系统
CN108494488A (zh) * 2018-02-12 2018-09-04 杭州电子科技大学 用于短距离光通信系统的基于dfe的svm均衡方法
CN108667524A (zh) * 2017-03-31 2018-10-16 华为技术有限公司 可见光通信中抗多径效应的均衡方法及相关装置
WO2019165980A1 (zh) * 2018-02-28 2019-09-06 上海诺基亚贝尔股份有限公司 无源光网络中的通信方法、设备和计算机可读介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103634054B (zh) * 2012-08-23 2016-01-20 北京邮电大学 用于高速相干接收系统的线性损伤补偿和偏振解复用方法
CN104009802A (zh) * 2013-02-22 2014-08-27 中兴通讯股份有限公司 一种延长无源光网络系统传输距离的方法和光线路终端
EP3780646A4 (en) * 2018-09-10 2021-07-07 Huawei Technologies Co., Ltd. DATA TRANSFER METHOD, ASSOCIATED DEVICE AND SYSTEM

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105704073A (zh) * 2014-11-28 2016-06-22 联芯科技有限公司 一种干扰消除方法及装置
WO2017214859A1 (zh) * 2016-06-14 2017-12-21 华为技术有限公司 上行数据均衡方法、装置和系统
CN108667524A (zh) * 2017-03-31 2018-10-16 华为技术有限公司 可见光通信中抗多径效应的均衡方法及相关装置
CN108494488A (zh) * 2018-02-12 2018-09-04 杭州电子科技大学 用于短距离光通信系统的基于dfe的svm均衡方法
WO2019165980A1 (zh) * 2018-02-28 2019-09-06 上海诺基亚贝尔股份有限公司 无源光网络中的通信方法、设备和计算机可读介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4156706A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4293933A1 (en) * 2022-06-13 2023-12-20 Nokia Solutions and Networks Oy Methods, devices and apparatuses for optical communication, and computer readable medium

Also Published As

Publication number Publication date
EP4156706A4 (en) 2023-12-06
EP4156706A1 (en) 2023-03-29
CN113825044A (zh) 2021-12-21
US20230123881A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
CN104541518B (zh) 一种构建以太网无源光网络的同轴汇聚层的方法和装置
US8428457B2 (en) Optical passive network system and its operation method
EP2462751B1 (en) Ethernet passive optical network over coaxial (epoc)
US8150260B2 (en) Optical network terminal, method for configuring rate limiting attributes of ports, and method for processing packets
US8625640B2 (en) Transparent clocks in access networks
US20230123881A1 (en) Training Sequence Determining Method and Related Device
KR101239444B1 (ko) 프로토콜 구성 방법
WO2020051753A1 (zh) 数据传输方法、相关装置及系统
US9344239B2 (en) Allocating orthogonal frequency-division multiple access (OFDMA) resources in ethernet passive optical network(PON) over coaxial (EPOC)
CN101621454B (zh) 无源光网络系统、光线路终端和光网络单元
US8571069B2 (en) Method and device for sending uplink burst data in passive optical network system
US9331786B2 (en) Managing downstream non-broadcast transmission in an ethernet passive optical network (EPON) protocol over coax (EPoC) network
CN105122835B (zh) 通信系统中的突发标记物方案
US9866273B2 (en) Apparatus and method for accessing network
CN101453672B (zh) 光网络终端、其端口限速属性配置方法及报文处理方法
WO2014176791A1 (zh) 多载波分复用系统的方法和装置
Begovic et al. 10G EPON vs. XG-PON1 efficiency
WO2009152758A1 (zh) 无源光网络系统中发送上行突发数据的方法及装置
WO2024140929A1 (zh) Pon系统、数据处理方法及相关设备
EP4391458A1 (en) Method for allocating uplink transmission resources, and related device
Reynolds Wireline Access Networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021826113

Country of ref document: EP

Effective date: 20221222

NENP Non-entry into the national phase

Ref country code: DE