WO2021253879A1 - 微波空口控制方法及其装置、计算机可读存储介质 - Google Patents

微波空口控制方法及其装置、计算机可读存储介质 Download PDF

Info

Publication number
WO2021253879A1
WO2021253879A1 PCT/CN2021/079748 CN2021079748W WO2021253879A1 WO 2021253879 A1 WO2021253879 A1 WO 2021253879A1 CN 2021079748 W CN2021079748 W CN 2021079748W WO 2021253879 A1 WO2021253879 A1 WO 2021253879A1
Authority
WO
WIPO (PCT)
Prior art keywords
air interface
energy
saving
microwave
pla
Prior art date
Application number
PCT/CN2021/079748
Other languages
English (en)
French (fr)
Inventor
张继旺
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021253879A1 publication Critical patent/WO2021253879A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication technology, in particular to a microwave air interface control method and device, and a computer-readable storage medium.
  • PLA Physical Link Aggregation
  • the embodiment of the present invention provides a microwave air interface control method and device, and a computer-readable storage medium.
  • an embodiment of the present invention provides a microwave air interface control method, including: acquiring energy-saving policy information, the energy-saving policy information being obtained based on service flow information; and determining the physical link aggregation PLA link according to the energy-saving policy information
  • an embodiment of the present invention also provides a microwave air interface control device, including a memory, a processor, and a program stored on the memory and running on the processor.
  • the processor executes the program as described above.
  • the described microwave air interface control method is also provided.
  • an embodiment of the present invention also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute the microwave air interface control method as described above.
  • FIG. 1 is a schematic diagram of a microwave air interface architecture for executing a microwave air interface control method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a microwave air interface control method provided by an embodiment of the present invention.
  • Fig. 3 is a flowchart of a microwave air interface control method provided by another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the implementation of a microwave air interface control method provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the implementation of a microwave air interface control method provided by another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the implementation of a microwave air interface control method provided by another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the implementation of a microwave air interface control method provided by another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the implementation of a microwave air interface control method provided by another embodiment of the present invention.
  • FIG. 9A is a schematic diagram of the service flow of each air interface in the existing PLA link.
  • FIG. 9B is a schematic diagram of performing service switching on an air interface to be energy-saving in a PLA link according to an embodiment of the present invention.
  • 10A is a schematic diagram of interference signals between air interfaces in the existing PLA link
  • 10B is a schematic diagram of interference cancellation function in a PLA link provided by an embodiment of the present invention.
  • FIG. 11 is a flowchart of steps of a microwave air interface control method provided by an embodiment of the present invention.
  • Fig. 12 is a schematic diagram of a microwave air interface control device provided by an embodiment of the present invention.
  • the embodiment of the present invention provides a microwave air interface control method and device, and a computer-readable storage medium, which obtain energy-saving strategy information based on service flow information, and further determine the PLA link based on the energy-saving strategy information
  • the air interface to be energy-saving can perform energy-saving processing for the ODU power supply corresponding to the air interface to be energy-saving, which can reduce the energy waste of the ODU power supply corresponding to the air interface to be energy-saving, and thus can realize energy-saving transmission over the air interface.
  • FIG. 1 is a schematic diagram of a microwave air interface architecture for executing a microwave air interface control method according to an embodiment of the present invention.
  • the microwave air interface architecture includes a management platform and a microwave network element, and the management platform is connected to the microwave network element.
  • the management platform is provided with energy-saving devices, resource modules and databases, and the microwave network elements are provided with an Ethernet flow monitoring module and a wireless link management energy-saving control module.
  • the energy-saving device can query data through the database, and at the same time query the corresponding resources through the resource module. Based on the queried data and the queried resources, the energy-saving device can obtain the service flow information of the microwave network element hollow interface topology.
  • the service flow information can be but not limited to It is the Ethernet traffic and the air interface capacity of the PLA link.
  • the energy-saving device can also obtain the calendar information configured by the user, the ODU power supply type, and the ODU power consumption information to save energy. After acquiring the above information, the device can use the above information for big data analysis to obtain energy-saving strategy information for microwave network elements and send it to the Ethernet traffic monitoring module.
  • the energy-saving strategy information carries information for microwave network elements.
  • the traffic prediction result enables the Ethernet traffic monitoring module to consider the bandwidth utilization of each air interface in the PLA link on the basis of the energy-saving strategy information, thereby determining the air interface to be energy-saving in the air interface topology, and outputting the corresponding energy-saving notification to the wireless link
  • the energy-saving control module for road management finally, realizes energy-saving control of the air interface to be energy-saving in the air interface topology according to the air interface topology through the wireless link management energy-saving control module.
  • the Ethernet traffic monitoring module can still obtain the energy-saving exit strategy information sent by the energy-saving device, and generate energy-saving strategy instructions, so that the wireless link management energy-saving control module can The energy-saving control of the ODU power supply corresponding to the air interface to be energy-saving is implemented according to the energy-saving exit strategy instruction.
  • the energy-saving device can obtain the corresponding resources in the resource module through a deep convolutional learning network.
  • the deep convolutional learning network can be, but is not limited to, a deep residual network RES, a deep reinforcement network, and the like.
  • the database can be, but is not limited to, a historical database, a real-time database, a dynamic database, a static database, etc.
  • the resource module can be, but is not limited to, a dynamic resource library, a static resource library, etc.
  • Various types of network resources can be stored in the resource module, and the network resources can be acquired by the energy-saving device.
  • the microwave network element can also be equipped with a controller, which can be implemented based on various platforms, such as Field Programmable Gate Array (FPGA) platform, Software Defined Network (SDN) platform, etc., It is used to switch the service flow of the air interface to be energy-saving to other non-energy-saving air interfaces according to the control instructions of the Ethernet traffic monitoring module, thereby ensuring that the service of the air interface to be energy-saving is switched in a lossless or instantaneous manner, and can prevent switching to the energy-saving air interface.
  • FPGA Field Programmable Gate Array
  • SDN Software Defined Network
  • the microwave network element may include a memory and a processor, where the memory and the processor may be connected by a bus or in other ways.
  • the memory can be used to store non-transitory software programs and non-transitory computer-executable programs.
  • the memory may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory may include a memory remotely arranged with respect to the processor, and these remote memories may be connected to the processor through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • microwave air interface architecture and application scenarios described in the embodiments of the present invention are to illustrate the technical solutions of the embodiments of the present invention more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present invention.
  • Those skilled in the art will know that with microwave With the evolution of the air interface architecture and the emergence of new application scenarios, the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • microwave air interface architecture shown in FIG. 1 does not constitute a limitation to the embodiment of the present invention, and may include more or less components than shown in the figure, or a combination of certain components, or different components. Component arrangement.
  • the microwave network element can call its stored microwave air interface control program to execute the microwave air interface control method.
  • microwave air interface control method of the present invention Based on the foregoing microwave air interface architecture, various embodiments of the microwave air interface control method of the present invention are proposed.
  • FIG. 2 is a flowchart of a microwave air interface control method provided by an embodiment of the present invention.
  • the microwave air interface control method can be applied to the microwave air interface architecture shown in Figure 1.
  • the control method includes but is not limited to the following step:
  • Step S100 Obtain energy-saving strategy information, and the energy-saving strategy information is obtained based on service flow information;
  • Step S200 Determine the air interface to be energy-saving in the physical link aggregation PLA link according to the energy-saving policy information
  • step S300 energy-saving processing is performed on the ODU power supply of the outdoor unit corresponding to the air interface to be energy-saving.
  • the energy-saving policy information obtained based on the service flow information fully considers the impact of the service flow of the air interface in the PLA link, that is, the energy-saving policy information is specific to the actual service flow of the air interface of the PLA link. Change settings, and therefore determine the air interface to be energy-saving in the PLA link based on the energy-saving policy information, so that the air interface to be energy-saving can match the actual traffic flow in the PLA link, and then perform energy saving for the ODU power supply corresponding to the air interface to be energy-saving Processing to prevent waste of the ODU power supply corresponding to the air interface to be energy-saving. It can be seen that by implementing the energy-saving control process in the case of microwave air interface transmission as described above, the waste of air interface power that needs energy saving can be reduced, and it is convenient to realize air interface energy-saving transmission.
  • the energy-saving processing may be to turn off the ODU power supply corresponding to the air interface to be energy-saving, that is, at this time, the service transmission of the PLA link is completely saturated.
  • the PLA corresponding to the air interface to be energy-saving is turned off Link members no longer transmit services, and energy-saving effects can be achieved when the service transmission conditions are met.
  • energy-saving processing can be realized, and the instantaneous operation of the air interface to be energy-saving in the PLA link can also be realized, thereby achieving the effect of non-destructive services.
  • the energy-saving processing can be, but is not limited to, making the ODU power supply corresponding to the air interface to be energy-saving enter the standby state, reducing the output power, etc., that is, the service transmission of the PLA link is relatively saturated at this time, and the air interface to be energy-saving is controlled at this time.
  • the power consumption of the ODU power supply is relatively reduced, which can achieve energy-saving effects while meeting service transmission conditions.
  • FIG. 3 is a flowchart of a microwave air interface control method provided by another embodiment of the present invention, where step S300 may include but is not limited to:
  • Step S310 Obtain a delay control instruction
  • Step S320 Perform energy-saving processing on the ODU power supply corresponding to the air interface to be energy-saving according to the delay control instruction.
  • the ODU power supply corresponding to the air interface to be energy-saving is performed energy-saving processing based on the delay control command, which can ensure that while the ODU power supply is energy-saving, the control process corresponding to the delay control command can be used to enable the air interface to be energy-saving.
  • the service achieves millisecond-level interruption or non-interruption energy-saving effects. Therefore, it can still provide users with a good and stable business network during the execution of energy-saving control.
  • the delay control command in order to more reasonably explain the control principle of air interface energy saving, the delay control command, and the control process corresponding to the delay control command, the detailed description will be given in the case of two types of air interface topologies that are widely used in practice.
  • the two types of air interface topologies include PLA link topology without interference cancellation function (i.e. pure PLA link topology) and PLA link topology with interference cancellation function (i.e. interference cancellation PLA link topology).
  • the following are respectively A specific embodiment of the control method in the case of the above-mentioned air interface topology is given for description.
  • FIG. 4 is a schematic diagram of the implementation of a microwave air interface control method provided by an embodiment of the present invention.
  • the microwave air interface control method can be applied to the microwave air interface architecture shown in FIG. 1, and the PLA link topology involved It is a pure PLA link topology, and the specific process for controlling the air interface to enter the energy-saving state is:
  • the air interface to be energy-saving in the PLA link is selected to enter the energy-saving state, and the service traffic carried on the air interface to be energy-saving is switched to the non-energy-saving air interface in the PLA link (which can be controlled by The device performs a lock operation on the air interface to be energy-saving), and then for the local end of the air interface to be energy-saving, after a delay of 10ms, the first timer for 1s is started, and when the first timer expires, the air interface to be energy-saving is turned off
  • the ODU power supply corresponding to the end, and at the same time, according to the PLA link topology, it is necessary to send a neighbor hop message to the opposite end network element, so that the opposite end network element performs corresponding energy saving processing according to the adjacent hop message, that is, the same
  • the service traffic is also switched to the non-energy-saving air interface at the opposite end of the PLA link, and the 1s first timer is started.
  • the ODU power supply corresponding to the opposite network element is turned off. Therefore, the first timer is started by delaying.
  • the timer command can enable both the local and the peer end of the air interface to be energy-saving to enter the energy-saving state synchronously. Therefore, the overall service of the air interface to be energy-saving can achieve millisecond-level interruption or non-interruption of energy-saving effects during the execution of energy-saving control. It can still provide users with a good and stable business network.
  • the selected air interface that has entered energy saving in the PLA link exits the energy saving state, and for this air interface, a 1s third timer is started.
  • the air interface is enabled to receive service traffic again ( This can be achieved by unlocking the controller's lock operation on the air interface to be energy-saving), and at the same time turning on the ODU power supply corresponding to the air interface to be energy-saving.
  • the element performs the above operations so that the opposite end network element also exits the energy-saving state, so that both the local end and the opposite end of the air interface to be energy-saving can exit the energy-saving state.
  • the corresponding air interface can be selected to enter energy saving or exit energy saving according to the service bearable status of the PLA link, that is, it can be based on
  • the service bearer status of the PLA link can be selected to turn on or off the corresponding ODU power supply of the corresponding air interface, and the service traffic of the air interface can be switched or re-received, so that the service resources in the PLA link can reach a lossless balance, that is, it can be good Adapting the user traffic in the network for service transmission, which can greatly avoid the excess service resources in the PLA link, and achieve the purpose of reasonable and effective management and control of the transmission resources of the microwave air interface.
  • the selected air interface can be passed through The coordinated operation of sending neighbor hop information, delaying and starting the corresponding timer enables the two ends of the selected air interface to enter the energy-saving state or exit the energy-saving state synchronously, so that the ODU power supply corresponding to the air interface can be turned off or turned on accordingly to achieve the
  • the air interface corresponds to the intelligent control of the ODU power supply.
  • FIG. 5 is a schematic diagram of an implementation of a microwave air interface control method provided by an embodiment of the present invention.
  • the microwave air interface control method can be applied to the microwave air interface architecture shown in FIG. 1, In order to ensure that the air interface transmission of the PLA link is more stable, each air interface in the pure PLA link topology can be configured as a pair, that is, each air interface is configured as a primary air interface and a backup air interface.
  • the standby air interface can perform actions synchronously.
  • the primary air interface and the standby air interface also have opposite network elements. Therefore, the control method of the embodiment of the present invention can still choose to open or close the corresponding primary air interface according to the actual situation of the PLA link.
  • the air interface and the spare air interface are used. Since the previous embodiment has described in detail the energy-saving control process of the air interface under the PLA link, and the basic idea of this embodiment is the same as that of the previous embodiment, in order to avoid redundancy, this is a reference to this The embodiments are not described in detail, and those skilled in the art can fully understand the microwave air interface control process in other situations based on the content disclosed in this embodiment and the existing content.
  • the neighboring hop information allows the local end and the opposite end of the air interface to be energy-saving to establish a connection, so that the ODU power supply corresponding to the air interface to be energy-saving can be controlled more conveniently and reliably.
  • the message transmission speed is relatively fast, so it can ensure that the two ends of the air interface to be energy-saving can realize the synchronous operation of the hardware, thereby minimizing the influence of external interference signals, making the service interruption or interruption level up to milliseconds.
  • FIG. 6 is a schematic diagram of the implementation of a microwave air interface control method provided by an embodiment of the present invention.
  • the microwave air interface control method can be applied to the microwave air interface architecture shown in Figure 1, and the PLA link topology involved It is an interference-cancelling PLA link topology.
  • the PLA link is configured with Cross-Polarization Interference Cancellation (XPIC) function, that is, one air interface in the PLA link has the other matching Polarized air interface.
  • XPIC Cross-Polarization Interference Cancellation
  • the specific process of controlling the air interface to enter the energy-saving state is to select certain air interfaces in the PLA link to enter the energy-saving state, and to transfer the service traffic carried on these air interfaces Switch to the remaining air ports in the PLA link (this can be achieved by the controller performing a lock operation on these air ports), specifically, the corresponding control is performed according to the number of air ports in the XPIC polarization group that enter the energy saving:
  • both the air interface to be energy-saving and its polarization air interface enter the energy-saving state, based on the polarization function in the XPIC polarization group, the transmission and communication between the two air interfaces can be realized without sending neighbor hop information to the opposite network element.
  • the 1s third timer is started, specifically:
  • the polarization information is sent to the local end of the air interface to prompt the local end of the polarized air interface to send neighbor hop information to it.
  • the opposite network element turns on the ODU at the local end of the air interface after a delay of 20ms to make the local end of the air interface exit the energy-saving state; when the opposite network element of the polarized air interface receives the adjacent hop information, it forwards the adjacent hop information to Corresponding to the opposite end network element of the polarized air interface, so that it can turn on the ODU power, make the opposite end of the air interface exit the energy-saving state, and finally enable the air interface to receive service traffic again (the controller can unlock the air interface to be energy-saving by unlocking the controller Operational realization).
  • the PLA link when configured with the XPIC function, it can transmit related information based on the polarized air interface when exiting the energy-saving state, thereby enabling stable control of the ODU power supply between the local end and the opposite end to be exited from the energy-saving air interface.
  • the corresponding air interface can be selected to enter energy saving or exit according to the service bearer status of the interference canceling PLA link topology.
  • Energy saving that is, the ability to choose to turn on or off the ODU power supply corresponding to the corresponding air interface according to the service bearer status of the interference canceling PLA link topology, so that the service resources in the interference canceling PLA link topology are saturated, that is, it can be good Adapting the user traffic in the network for service transmission, which can greatly avoid the excessive service resources in the link, and achieve the purpose of reasonably and effectively controlling the transmission resources of the microwave air interface.
  • the interference-cancelling PLA link topology is During operation, the air interface of each PLA member will receive interference information from the non-local air interface. In order to eliminate the interference information, this embodiment achieves the technical effect of eliminating interference by sending polarization information and neighboring hop information, so that the interference can be related to interference.
  • the service resources in the elimination PLA link topology reach a lossless balance, and by sending neighbor hop information, the two ends of the selected air interface can also enter the energy-saving state or exit the energy-saving state synchronously, so that the air interface can be closed or opened accordingly.
  • the corresponding ODU power supply realizes the intelligent control of the ODU power supply corresponding to the air interface.
  • control method of this embodiment can reduce the power waste caused by the interference-destructive PLA link topology in service transmission.
  • the interference-destructive PLA link topology is concerned, stable control of the air interface can be achieved.
  • energy-saving transmission over the air interface can be realized.
  • FIG. 7 is a schematic diagram of the implementation of a microwave air interface control method provided by an embodiment of the present invention.
  • the microwave air interface control method can be applied to the microwave air interface architecture shown in FIG. 1,
  • each air interface in the interference-cancelling PLA link topology can be configured as a pair, that is, each air interface is configured as a primary air interface and a backup air interface.
  • the air interface and the standby air interface can perform actions simultaneously.
  • the primary air interface and the standby air interface also have the opposite end network element. Therefore, the control method of the embodiment of the present invention can still choose to open or close the PLA link according to the actual situation of the PLA link.
  • FIG 8 is a schematic diagram of the implementation of a microwave air interface control method provided by an embodiment of the present invention.
  • the PLA link topology involved is an interference cancellation PLA link topology.
  • the microwave air interface control method can be applied to The microwave air interface architecture shown in Figure 1, specifically, the PLA link is not only equipped with XPIC function, but also equipped with multiple-input multiple-output (MIMO) function, that is, one air interface in the PLA link It has another polarized air interface matched with it, and the air interface and its polarized air interface form a polarization group.
  • MIMO multiple-input multiple-output
  • the polarization group can be an XPIC polarization group or a MIMO polarization group
  • the PLA link includes at least two polarization groups, Since the PLA link includes a situation where the polarization group is greater than two groups, compared to the situation where the polarization group is exactly two groups, the air interface control process is similar to avoid redundancy.
  • This embodiment is only based on the fact that the polarization group is exactly two groups To illustrate the situation, those skilled in the art can fully understand the microwave air interface control process in other situations based on the content disclosed in this embodiment and the existing content.
  • control process of the PLA link is to select certain air interfaces in the PLA link to enter the energy-saving state, and switch the service traffic carried on these air interfaces to the remaining air interfaces in the PLA link (which can be passed through The controller performs a lock operation on these air ports to achieve), specifically, the corresponding control is performed according to the number of energy-saving entry of the four air ports in the two polarization groups:
  • the local end of the air interface to be energy-saving sends neighbor hop information to the opposite air interface, and then silently after a delay of 10ms, and starts the 1s second timer, and at the same time sends the first trigger information to its polarized air interface ( XPIC polarization air interface or MIMO polarization air interface), so that the interference function (XPIC interference function or MIMO interference function) between the polarization air interface and the air interface to be energy-saving is cancelled; when the peer end of the air interface to be energy-saving receives neighbor hop information, it will be silent And start the 1s second timer, and send the second trigger information to the opposite end of the polarized air interface, so that the opposite end of the air interface to be energy-saving and the opposite end of the polarized air interface cancel the interference function. Finally, after the second timer expires, then Turn off the ODU power supply corresponding to the local end and the opposite end of the air interface to be energy-saving to achieve energy-saving control effects.
  • FIG. 10A is a schematic diagram of interference signals between air interfaces in the existing PLA link.
  • the interference signals at each air interface in the PLA link are presented in the situation shown in FIG. 10A;
  • FIG. 10B is a schematic diagram of the interference cancellation function in the PLA link provided by an embodiment of the present invention. Since the first trigger information is set to turn off the interference function between the polarized air interface and the air interface to be energy-saving, the second trigger information It is set to close the interference function between the opposite end of the air interface to be energy-saving and the opposite end of the polarized air interface. Therefore, referring to FIG.
  • the interference signal of the energy-saving part of the Central Africa link disappears, thereby reducing the interference impact of the non-energy-saving part of the link on the air interface to be energy-saving, so as to achieve the effect of instantaneous service interruption.
  • Figure 10A and Figure 10B there is interference
  • each PLA member air interface will receive the interference signal from the non-local air interface, so the interference signal can be cancelled by XPIC or MIMO technology, and the original signal can be restored, thereby reducing the non-energy-saving part
  • the link affects the signal of the corresponding air interface.
  • the air interface that has entered energy saving can exit the energy saving state.
  • the 1s third timer is started, specifically:
  • the corresponding air interface is controlled to exit energy-saving, that is, through the message interaction between the air interface and its polarized air interface to realize the exit energy-saving control of the air interface, in short Regardless of whether one, two or three air ports exit the energy-saving state, they are all controlled based on the above process. Therefore, in order to avoid redundancy, this embodiment only uses one of the air ports to exit the energy-saving state for illustration.
  • the microwave air interface control process in other situations can be understood based on the content disclosed in this embodiment and the existing content.
  • the power of the ODU is turned on after a delay of 20ms, and the second trigger information is sent to its polarized air interface (XPIC polarized air interface or MIMO polarized air interface), so that the local end of the polarized air interface can forward neighbors.
  • XPIC polarized air interface or MIMO polarized air interface
  • each air interface in the interference-cancelling PLA link topology can be configured as a pair, that is, each air interface is configured as a master.
  • each air interface is configured as a master.
  • the primary air interface and the standby air interface can perform actions simultaneously.
  • the primary air interface and the standby air interface also have opposite network elements.
  • the control method of the embodiment of the present invention can still be based on the PLA link
  • the actual situation to choose to open or close the corresponding main air interface and backup air interface because the previous embodiment has described in detail the energy-saving control process of the air interface under the PLA link, and the basic idea of this embodiment and the previous embodiment is Consistent, in order to avoid redundancy, this embodiment will not be described in detail here, and those skilled in the art can fully understand the microwave air interface control process in other situations based on the content disclosed in this embodiment and the existing content.
  • the corresponding air interface can be selected to enter energy saving or exit according to the service bearer status of the interference canceling PLA link topology.
  • Energy saving that is, the ability to choose to turn on or off the ODU power supply corresponding to the corresponding air interface according to the service bearer status of the interference canceling PLA link topology, so that the service resources in the interference canceling PLA link topology are saturated, that is, it can be good
  • the user traffic in the network for service transmission which can greatly avoid the excessive service resources in the link, and achieve the purpose of reasonable and effective management and control of the transmission resources of the microwave air interface, especially the interference cancellation with the XPIC or MIMO function
  • the air interface of each PLA member will receive interference information from the non-local air interface.
  • the service resources in the interference-cancelling PLA link topology reach a lossless balance, and by sending neighbor hop information, the two ends of the selected air interface can also enter the energy-saving state or exit the energy-saving state synchronously, so that they can be closed or opened accordingly
  • the ODU power supply corresponding to the air interface realizes the intelligent control of the ODU power supply corresponding to the air interface.
  • control method of this embodiment can reduce the power waste caused by the interference-destructive PLA link topology in service transmission.
  • the interference-destructive PLA link topology is concerned, stable control of the air interface can be achieved.
  • energy-saving transmission over the air interface can be realized.
  • FIG. 9A is a schematic diagram of the service flow of each air interface in the existing PLA link.
  • the service flow in the PLA link flows into the corresponding data selector in a fixed manner, as shown in FIG. 9A;
  • Figure 9B is a schematic diagram of the service switching operation of the air interface to be energy-saving in the PLA link provided by an embodiment of the present invention.
  • the service traffic of other air interfaces can be switched to this air interface, that is, the service load of the air interface can be restored, so as to ensure that the services of the air interface to be energy-saving can be restored in a lossless or instantaneous manner , That is, resume the service of the air interface to be energy-saving, so as to ensure that the user has a stable and reliable network performance, so as to improve the user's network experience.
  • the main function of the delay operation and the first timer setting is to enable the local end and the peer end of the air interface to be energy-saving to enter the energy-saving state synchronously. Therefore, the overall service of the air interface to be energy-saving can achieve millisecond-level interruption or non-interruption of energy-saving effects. In the process of performing energy-saving control, it can still provide users with a good and stable service network.
  • the delay time can also adopt other specific parameters, which can be set according to the structure of the air interface topology.
  • the specific value of the delay time is limited.
  • the operation of delaying 20ms and then the corresponding ODU power supply can also enable the local and opposite ends of the air interface to be energy-saving to exit energy-saving synchronously.
  • the first method is to directly shut down the air interface to be energy-saving without notifying the peer NE.
  • the second method is to notify the peer NE, that is, send neighbor hop information to the peer NE, and perform delay and silent processing for the air interface to be energy-saving, and finally realize that the corresponding ODU power at both ends of the air interface to be energy-saving is turned off .
  • an embodiment of the present invention also provides a microwave air interface control device, which includes a memory 1201, a processor 1202, and a computer program that is stored in the memory 1201 and can run on the processor 1202.
  • the processor and the memory can be connected by a bus or in other ways.
  • microwave air interface control device in this embodiment can be applied to the microwave air interface architecture in the embodiment shown in FIG. 1.
  • the microwave air interface control device in this embodiment can constitute the microwave air interface control device in the embodiment shown in FIG.
  • this embodiment and the embodiment shown in FIG. 1 belong to the same inventive concept. Therefore, this embodiment has the same implementation principles and technical effects as the embodiment shown in FIG. 1 and will not be described in detail here.
  • the non-transitory software programs and instructions required to implement the microwave air interface control method of the foregoing embodiment are stored in the memory.
  • the microwave air interface control method of the foregoing embodiment is executed, for example, the above-described microwave air interface control method in FIG. 2 is executed.
  • the device embodiments described above are merely illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the foregoing device embodiments.
  • an embodiment of the present invention also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are executed by a processor or a controller, for example, by the aforementioned
  • the execution of a processor in the embodiment of the microwave air interface control device can cause the above processor to execute the microwave air interface control method of the above embodiment, for example, execute the method steps S100 to S300 in FIG. 2 described above or the method steps in FIG. 3 S310 to S320.
  • the embodiment of the present invention includes: obtaining energy-saving policy information, which is obtained based on service flow information; determining, according to the energy-saving policy information, the air interface to be energy-saving in the physical link aggregation PLA link; and matching the air interface to the energy-saving
  • the corresponding outdoor unit ODU power supply performs energy-saving processing.
  • the energy-saving strategy information obtained based on the service flow information is obtained, and the air interface to be energy-saving in the PLA link is further determined based on the energy-saving strategy information, so that the air interface corresponding to the air interface to be energy-saving can be determined.
  • the ODU power supply performs energy-saving processing, which can reduce the energy waste of the ODU power supply corresponding to the air interface to be energy-saving, thereby enabling energy-saving transmission over the air interface.
  • computer storage medium includes volatile and non-volatile data implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data).
  • Information such as computer-readable instructions, data structures, program modules, or other data.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other storage technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or Any other medium used to store desired information and that can be accessed by a computer.
  • communication media usually contain computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media. .

Abstract

一种微波空口控制方法及其装置、计算机可读存储介质。其中,所述微波空口控制方法包括:获取节能策略信息,节能策略信息基于业务流量信息而得到(S100);根据节能策略信息确定物理链路聚合PLA链路中的待节能空口(S200);对与待节能空口对应的室外单元ODU电源执行节能处理(S300)。

Description

微波空口控制方法及其装置、计算机可读存储介质 技术领域
本发明涉及通信技术领域,尤其涉及一种微波空口控制方法及其装置、计算机可读存储介质。
背景技术
物理链路聚合(Physical Link Aggregation,PLA)技术是微波传输的一种重要技术,其通过将多个空口添加到一个PLA链路里以实现以太网业务的切片分担,从而保证业务畅通。在实际应用中,基于PLA链路中的所有成员来传输业务以承载用户的使用流量,但是,用户在使用环境下的流量并非一直是满负荷运行的,在这种情况下PLA链路中的部分成员并没有传输业务,因此会造成PLA链路的业务资源过剩,从而会造成资源的浪费。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种微波空口控制方法及其装置、计算机可读存储介质。
第一方面,本发明实施例提供了一种微波空口控制方法,包括:获取节能策略信息,所述节能策略信息基于业务流量信息而得到;根据所述节能策略信息确定物理链路聚合PLA链路中的待节能空口;对与所述待节能空口对应的室外单元ODU电源执行节能处理。
第二方面,本发明实施例还提供了一种微波空口控制装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现如上所述的微波空口控制方法。
第三方面,本发明实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如上所述的微波空口控制方法。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1是本发明一个实施例提供的用于执行微波空口控制方法的微波空口架构的示意图;
图2是本发明一个实施例提供的微波空口控制方法的流程图;
图3是本发明另一个实施例提供的微波空口控制方法的流程图
图4是本发明一个实施例提供的微波空口控制方法的执行示意图;
图5是本发明另一个实施例提供的微波空口控制方法的执行示意图;
图6是本发明另一个实施例提供的微波空口控制方法的执行示意图;
图7是本发明另一个实施例提供的微波空口控制方法的执行示意图;
图8是本发明另一个实施例提供的微波空口控制方法的执行示意图;
图9A是现有的PLA链路中各空口的业务流向示意图;
图9B是本发明一个实施例提供的PLA链路中待节能空口执行业务切换的示意图;
图10A是现有的PLA链路中各空口之间的干扰信号示意图;
图10B是本发明一个实施例提供的PLA链路中抵消干扰功能的示意图;
图11是本发明一个实施例提供的微波空口控制方法的步骤流程图;
图12是本发明一个实施例提供的微波空口控制装置的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本发明实施例提供了一种微波空口控制方法及其装置、计算机可读存储介质,通过获取基于业务流量信息而得到的节能策略信息,并基于该节能策略信息来进一步地确定PLA链路中的待节能空口,从而可针对该待节能空口对应的ODU电源执行节能处理,能够降低该待节能空口对应的ODU电源的能源浪费,从而能够实现空口节能传输。
下面结合附图,对本发明实施例作进一步阐述。
如图1所示,图1是本发明一个实施例提供的用于执行微波空口控制方法的微波空口架构的示意图。在图1的示例中,该微波空口架构包括管理平台和微波网元,管理平台与微波网元连接。
管理平台设置有节能装置、资源模块和数据库,微波网元设置有以太网流量监控模块和无线链路管理节能控制模块。
节能装置可通过数据库查询数据,同时可通过资源模块查询相应资源,基于所查询的数据和所查询的资源,节能装置能够获得微波网元中空口拓扑的业务流量信息,业务流量信息可以但不限于是以太网流量、PLA链路的空口容量,同时,基于所查询的数据和所查询的资源,节能装置还能够获取到用户所配置的日历信息、ODU电源类型以及ODU电源功耗等信息,节能装置在获取到上述信息后,可以将上述信息用于大数据分析,从而获得针对微波网元的节能策略信息并将其发送至以太网流量监控模块,该节能策略信息承载有针对微波网元的流量预测结果,使得以太网流量监控模块能够在该节能策略信息的基础上考虑PLA链路中各空口的带宽利用率,从而确定空口拓扑中的待节能空口,并输出相应的节能通知至无线链路管理节能控制模块,最终,通过无线链路管理节能控制模块根据空口拓扑实现对于空口拓扑中的待节能空口的节能控制。相应地,若要使已经进入节能状态的 空口退出节能,仍可由以太网流量监控模块获取由节能装置所发送的退出节能策略信息,并生成节能策略指令,从而使得无线链路管理节能控制模块能够根据所述退出节能策略指令实现所述待节能空口对应的ODU电源的节能控制。
节能装置可通过深度卷积学习网络来获取资源模块中的相应资源,深度卷积学习网络可以但不限于是深度残差网络RES、深度强化网络等。
数据库可以但不限于是历史数据库、实时数据库、动态数据库以及静态数据库等。
资源模块可以但不限于是动态资源库、静态资源库等,资源模块内可存储各种类型的网络资源,网络资源可由节能装置所获取。
微波网元还可设置一控制器,该控制器可以基于各种平台实现,比如现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA)平台、软件定义网络(Software Defined Network,SDN)平台等,其用于根据以太网流量监控模块的控制指令以将待节能空口的业务流量切换至其余非节能空口,从而保证将待节能空口的业务以无损或瞬断的方式进行切换,可防止切换待节能空口时易造成的业务损失,保证用户具有稳定可靠的网络使用性能。
微波网元可以包括有存储器和处理器,其中,存储器和处理器可以通过总线或者其他方式连接。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器可能包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至该处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本发明实施例描述的微波空口架构以及应用场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域技术人员可知,随着微波空口架构的演变和新应用场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本领域技术人员可以理解的是,图1中示出的微波空口架构并不构成对本发明实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
在图1所示的微波空口架构中,微波网元可以调用其储存的微波空口控制程序,以执行微波空口控制方法。
基于上述微波空口架构,提出本发明的微波空口控制方法的各个实施例。
如图2所示,图2是本发明一个实施例提供的微波空口控制方法的流程图,该微波空口控制方法可应用于如图1所示的微波空口架构,该控制方法包括但不限于以下步骤:
步骤S100,获取节能策略信息,节能策略信息基于业务流量信息而得到;
步骤S200,根据节能策略信息确定物理链路聚合PLA链路中的待节能空口;
步骤S300,对与待节能空口对应的室外单元ODU电源执行节能处理。
在一实施例中,基于业务流量信息而得到的节能策略信息,充分考虑了PLA链路中空 口的业务流量所带来的影响,即该节能策略信息针对PLA链路中空口的业务流量的实际变化进行设定,因此基于该节能策略信息确定PLA链路中的待节能空口,使得该待节能空口能够匹配PLA链路中的业务流量实际情况,进而针对该待节能空口对应的ODU电源执行节能处理,防止该待节能空口对应的ODU电源造成浪费。可见,通过实现如上所述的微波空口传输情况下的节能控制流程,能够降低需要节能的空口电源的浪费,便于实现空口节能传输。
在一实施例中,节能处理可以是关闭与待节能空口对应的ODU电源,即此时PLA链路的业务传输已经完全饱和,通过关闭待节能空口对应的ODU电源,使得待节能空口对应的PLA链路成员不再传输业务,能够在满足业务传输条件的情况下达到节能效果。另外,通过关闭与待节能空口对应的ODU电源而实现节能处理,还能够实现对PLA链路中待节能空口的瞬断操作,从而能够达到业务无损的效果。
在一实施例中,节能处理可以但不限于是使待节能空口对应的ODU电源进入待机状态、输出功率降低等,即此时PLA链路的业务传输相对较为饱和,此时控制待节能空口对应的ODU电源的耗电量相对降低,从而能够在满足业务传输条件的情况下达到节能效果。
如图3所示,在一实施例中,图3是本发明另一个实施例提供的微波空口控制方法的流程图,其中,步骤S300可以包括但不限于:
步骤S310,获取延时控制指令;
步骤S320,根据延时控制指令对与待节能空口对应的ODU电源执行节能处理。
在一实施例中,基于延时控制指令以对待节能空口对应的ODU电源执行节能处理,可保证在对ODU电源进行节能的同时,能够通过延时控制指令所对应的控制流程以使待节能空口的业务取得毫秒级别中断或者无中断的节能效果,因此,在执行节能控制的过程中仍能够为用户提供良好稳定的业务网络。
在一实施例中,为了更合理地说明空口节能的控制原理、延时控制指令以及延时控制指令所对应的控制流程,因此以实际应用较为广泛的两类空口拓扑的情况来进行详细说明,该两类空口拓扑包括不具备干扰相消功能的PLA链路拓扑(即单纯PLA链路拓扑)以及具备干扰相消功能的PLA链路拓扑(即干扰相消式PLA链路拓扑),以下分别给出上述空口拓扑情况下的控制方法的具体实施例进行说明。
如图4所示,图4是本发明一个实施例提供的微波空口控制方法的执行示意图,该微波空口控制方法可应用于如图1所示的微波空口架构,所涉及到的PLA链路拓扑为单纯PLA链路拓扑,其控制空口进入节能状态的具体流程为:
示例性地,如图4所示,选定PLA链路中的待节能空口进入节能状态,并把承载于待节能空口的业务流量切换至所述PLA链路中的非节能空口(可通过控制器对该待节能空口执行锁止操作实现),然后针对于待节能空口本端,使其延时10ms后,启动1s第一定时器,当第一定时器超时后,则关闭待节能空口本端所对应的ODU电源,同时根据PLA链路拓扑判定需要向对端网元发送邻跳消息,使得对端网元根据邻跳消息执行相应的节能处理,即同样地,使得对端网元的业务流量也切换到PLA链路对端的非节能空口,并启动 1s第一定时器,当第一定时器超时后,关闭对端网元所对应的ODU电源,因此,通过延时、启动第一定时器的指令,可以使得待节能空口的本端和对端均能够同步进入节能状态,因此,待节能空口的整体业务能够取得毫秒级别中断或者无中断的节能效果,在执行节能控制的过程中仍能够为用户提供良好稳定的业务网络。
同理,与进入节能所对应地,当待节能空口进入节能状态后,也能够使其退出节能,其具体流程为:
示例性地,选定PLA链路中的已经进入节能的空口退出节能状态,针对于该空口,启动1s第三定时器,当第三定时器超时后,则使得该空口能够重新接收业务流量(可通过解除控制器对该待节能空口的锁止操作实现),同时开启待节能空口所对应的ODU电源,在这种情况下,无需向对端网元发送邻跳信息,即直接对端网元执行上述操作,使得该对端网元也退出节能状态,从而使得待节能空口的本端和对端均能够退出节能状态。
可见,由于本实施例的控制方法应用在如图1所示实施例的微波空口架构下,因此能够根据PLA链路的业务可承载状态来选定相应的空口进入节能或退出节能,即能够根据PLA链路的业务可承载状态来选择开启或关闭相应空口所对应的ODU电源,并且能够将该空口的业务流量进入切换或重新接收,使得PLA链路中的业务资源达到无损平衡,即能够良好适配网络中的用户流量来进行业务传输,这可大大避免PLA链路中的业务资源过剩,达到合理有效地管控微波空口的传输资源的目的,同时,针对所选定空口的两端,通过发送邻跳信息、延时以及启动相应的定时器的配合操作,使得所选定空口两端能够同步进入节能状态或退出节能状态,从而可相应地关闭或打开空口所对应的ODU电源,实现对于空口对应ODU电源的智能控制。
综上所述,通过本实施例的控制方法可以降低PLA链路在业务传输中所造成的电源浪费,就PLA链路整体而言,可以达到稳定控制空口对应ODU电源的目的,从而能够实现空口无损节能传输。在上述实施例的基础上,如图5所示,图5是本发明一个实施例提供的微波空口控制方法的执行示意图,该微波空口控制方法可应用于如图1所示的微波空口架构,为了保证PLA链路的空口传输更加稳定,可使该单纯PLA链路拓扑中的每个空口被配置为一对,即每个空口被配置为一主用空口和一备用空口,主用空口和备用空口能够同步执行动作,同样地,该主用空口和备用空口同样拥有对端网元,因此,本发明实施例的控制方法仍可以根据PLA链路的实际情况来选择开启或关闭相应的主用空口和备用空口,由于上一实施例已经详细描述了该PLA链路下空口的节能控制流程,且本实施例与上一实施例的基本思路是一致的,为免冗余,在此对本实施例不作详细描述,本领域技术人员完全可以根据本实施例所公开的内容结合现有的内容来了解其它情形下的微波空口控制流程。
因此,通过对单纯PLA链路拓扑的空口控制流程进行分析,可以了解到,确定PLA链路中的待节能空口进入节能状态,需要使待节能空口的本端和对端均进入节能状态,在控制流程中,只需激发待节能空口的一端(比如本实施例中待节能空口的本端),则其通过向对端网元发送邻跳信息的方式,能够使得对端网元根据所述邻跳消息执行相应的节能 处理,可见,通过邻跳信息使待节能空口的本端与对端之间建立联系,从而能够更加方便可靠地控制待节能空口对应的ODU电源,这是由于邻跳消息的传输速度相对较快,因此能够保证待节能空口两端实现同步操作硬件,从而最大限度地削弱了外部干扰信号的影响,使得业务实现瞬断或中断级别可至毫秒级别。
如图6所示,图6是本发明一个实施例提供的微波空口控制方法的执行示意图,该微波空口控制方法可应用于如图1所示的微波空口架构,所涉及到的PLA链路拓扑为干扰相消式PLA链路拓扑,具体地,该PLA链路配置有交叉极化干扰抵消(Cross-Polarization Interference Cancellation,XPIC)功能,即PLA链路中的一空口具有与其所匹配的另一极化空口,该空口与其极化空口组成XPIC极化组,其控制空口进入节能状态的具体流程为,选定PLA链路中的某些空口进入节能状态,并把承载于这些空口的业务流量切换至所述PLA链路中的其余空口中(可通过控制器对这些空口执行锁止操作实现),具体地,根据XPIC极化组中的空口进入节能的数量来进行相应控制:
(1)若待节能空口与其极化空口均进入节能状态,则基于XPIC极化组内的极化功能则能够实现该两空口之间的传输通信,无需向对端网元发送邻跳信息,直接关闭待节能空口以及其极化空口的ODU电源;
(2)如图6所示,若待节能空口进入节能状态且极化空口未进入节能状态,则使待节能空口本端延时10ms后静默,启动1s第二定时器,当第二定时器超时后,则关闭待节能空口本端所对应的ODU电源,并发送邻跳信息至对端网元,使得对端网元根据所述邻跳消息执行相应的节能处理,即同样地,当对端网元接收到邻跳信息后,静默并启动1s第二定时器,当第二定时器超时,则关闭对端网元所对应的ODU电源,因此,使得待节能空口的本端和对端均能够进行节能状态。
同理,与进入节能所对应地,当待节能空口或者其极化空口进入节能状态后,也能够使其退出节能,此时启动1s第三定时器,具体地:
(3)若XPIC极化组中的两个极化空口均退出节能状态,此时待节能空口无需向对端网元发送邻跳信息,直接打开待节能空口以及极化空口的ODU电源;
(4)若仅XPIC极化组中的一个空口退出节能状态,针对于该空口本端,将极化信息发送至其极化空口本端,以提示极化空口本端发送邻跳信息到其对端网元,同时延迟20ms后打开该空口本端的ODU电源,使该空口本端退出节能状态;当极化空口的对端网元收到邻跳信息后,则将该邻跳信息转发至对应极化空口的对端网元,以使其打开ODU电源,使该空口对端退出节能状态,并最终使该空口能够重新接收业务流量(可通过解除控制器对该待节能空口的锁止操作实现)。可见,当该PLA链路配置有XPIC功能,则在退出节能状态时能够基于极化空口以传输相关信息,从而能够实现待退出节能空口的本端和对端之间的ODU电源的稳定控制。
可见,由于本实施例的控制方法应用在如图1所示实施例的微波空口架构下,因此能够根据干扰相消式PLA链路拓扑的业务可承载状态来选定相应的空口进入节能或退出节能,即能够根据干扰相消式PLA链路拓扑的业务可承载状态来选择开启或关闭相应空口所 对应的ODU电源,使得干扰相消式PLA链路拓扑中的业务资源达到饱和,即能够良好适配网络中的用户流量来进行业务传输,这可大大避免其链路中的业务资源过剩,达到合理有效地管控微波空口的传输资源的目的,尤其是,干扰相消式PLA链路拓扑在运行时,每个PLA成员的空口都会收到非本空口的干扰信息,为了消除所述干扰信息,本实施例通过发送极化信息以及邻跳信息来取得消除干扰的技术效果,可使干扰相消式PLA链路拓扑中的业务资源达到无损平衡,并且,通过发送邻跳信息,还可使得所选定空口两端能够同步进入节能状态或退出节能状态,从而可相应地关闭或打开空口所对应的ODU电源,实现对于空口对应ODU电源的智能控制。
综上所述,通过本实施例的控制方法可以降低干扰相消式PLA链路拓扑在业务传输中所造成的电源浪费,就干扰相消式PLA链路拓扑整体而言,可以达到稳定控制空口对应ODU电源的目的,从而能够实现空口节能传输。
在上述实施例的基础上,如图7所示,图7是本发明一个实施例提供的微波空口控制方法的执行示意图,该微波空口控制方法可应用于如图1所示的微波空口架构,为了保证PLA链路的空口传输更加稳定,可使该干扰相消式PLA链路拓扑中的每个空口被配置为一对,即每个空口被配置为一主用空口和一备用空口,主用空口和备用空口能够同步执行动作,同样地,该主用空口和备用空口同样拥有对端网元,因此,本发明实施例的控制方法仍可以根据PLA链路的实际情况来选择开启或关闭相应的主用空口和备用空口,由于上一实施例已经详细描述了该PLA链路下空口的节能控制流程,且本实施例与上一实施例的基本思路是一致的,为免冗余,在此对本实施例不作详细描述,本领域技术人员完全可以根据本实施例所公开的内容结合现有的内容来了解其它情形下的微波空口控制流程。
如图8所示,图8是本发明一个实施例提供的微波空口控制方法的执行示意图,所涉及到的PLA链路拓扑为干扰相消式PLA链路拓扑,该微波空口控制方法可应用于如图1所示的微波空口架构,具体地,该PLA链路不仅配置有XPIC功能,还配置有多进多出(Multiple-Input Multiple-Output,MIMO)功能,即PLA链路中的一空口具有与其所匹配的另一极化空口,该空口与其极化空口形成极化组,极化组可以是XPIC极化组或MIMO极化组,且PLA链路中至少包括两组极化组,由于PLA链路包括极化组大于两组的情形相比于极化组正好为两组的情形,其空口控制流程是类似的,以免冗余,本实施例仅基于极化组正好为两组的情形进行说明,本领域技术人员完全可以根据本实施例所公开的内容结合现有的内容来了解其它情形下的微波空口控制流程。
示例性地,该PLA链路的控制流程为,选定PLA链路中的某些空口进入节能状态,并把承载于这些空口的业务流量切换至所述PLA链路中的其余空口(可通过控制器对这些空口执行锁止操作实现),具体地,根据两组极化组中的四个空口进入节能的数量来进行相应控制:
(1)若四个空口均进入节能状态,则无需向对端网元发送邻跳信息,直接关闭四个空口的ODU电源;
(2)若其中一个、两个或三个空口进入节能状态,则相应控制对应的空口进入节能, 即通过该空口与其极化空口的消息交互以实现该空口的节能控制,简而言之,无论一个、两个或三个空口进入节能状态,均是基于上述流程进行控制的,因此,为免冗余,本实施例仅以其中一个空口进入节能状态来进行说明,本领域技术人员完全可以根据本实施例所公开的内容结合现有的内容来了解其它情形下的微波空口控制流程。
示例性地,如图8所示,待节能空口本端发送邻跳信息至对端空口,延时10ms后静默,并启动1s第二定时器,同时发送第一触发信息至其极化空口(XPIC极化空口或MIMO极化空口),使得极化空口与待节能空口之间的干扰功能(XPIC干扰功能或MIMO干扰功能)抵消;当待节能空口对端接收到邻跳信息后,则静默并启动1s第二定时器,同时将第二触发信息发送至极化空口对端,使得待节能空口对端与极化空口对端之间抵消干扰功能,最终,待第二定时器超时后,则关闭待节能空口本端及对端所对应的ODU电源,达到节能控制效果。
其中,如图10A所示,图10A是现有的PLA链路中各空口之间的干扰信号示意图,一般情况下,PLA链路中各空口的干扰信号以图10A所示情况进行呈现;另一方面,图10B是本发明一个实施例提供的PLA链路中抵消干扰功能的示意图,由于第一触发信息被设置成使极化空口与待节能空口之间的干扰功能关闭,第二触发信息被设置成使待节能空口对端与极化空口对端之间的干扰功能关闭,因此,参照图10B,即在关闭待节能空口本端及对端的ODU电源的情况下,通过使PLA链路中非节能部分链路的干扰信号消失,从而减小非节能部分链路对于待节能空口的干扰影响,以达到业务瞬断的效果,实际上,如图10A和图10B所示,在具有干扰相消功能的PLA链路下正常运行时,每个PLA成员空口都会收到非本空口的干扰信号,所以通过XPIC或MIMO技术进行干扰信号抵消,可以进而恢复原始信号,从而减小非节能部分链路对于相应空口的信号影响。
同理,与进入节能所对应地,能够使已经进入节能的空口退出节能状态,此时启动1s第三定时器,具体地:
(3)若四个空口均退出节能状态,则无需向对端网元发送邻跳信息,直接关闭四个空口的ODU电源;
(4)若其中一个、两个或三个空口退出节能状态,则相应控制对应的空口退出节能,即通过该空口与其极化空口的消息交互以实现该空口的退出节能控制,简而言之,无论一个、两个或三个空口退出节能状态,均是基于上述流程进行控制的,因此,为免冗余,本实施例仅以其中一个空口退出节能状态来进行说明,本领域技术人员完全可以根据本实施例所公开的内容结合现有的内容来了解其它情形下的微波空口控制流程。
示例性地,待退出节能空口本端延时20ms后打开ODU电源,同时发送第二触发信息至其极化空口(XPIC极化空口或MIMO极化空口),使得极化空口本端能够转发邻跳信息至极化空口对端;当极化空口对端接收到邻跳信息后,则将该邻跳信息转发至待退出节能空口对端,使得该待退出节能空口对端对应的ODU电源打开,以退出节能状态,最终,当第三定时器超时,使待退出节能空口的本端和对端均能够重新接收业务流量(可通过解除控制器对该待退出节能空口的锁止操作实现)。
在上述实施例的基础上,为了保证PLA链路的空口传输更加稳定,可使该干扰相消式PLA链路拓扑中的每个空口被配置为一对,即每个空口被配置为一主用空口和一备用空口,主用空口和备用空口能够同步执行动作,同样地,该主用空口和备用空口同样拥有对端网元,因此,本发明实施例的控制方法仍可以根据PLA链路的实际情况来选择开启或关闭相应的主用空口和备用空口,由于上一实施例已经详细描述了该PLA链路下空口的节能控制流程,且本实施例与上一实施例的基本思路是一致的,为免冗余,在此对本实施例不作详细描述,本领域技术人员完全可以根据本实施例所公开的内容结合现有的内容来了解其它情形下的微波空口控制流程。
可见,由于本实施例的控制方法应用在如图1所示实施例的微波空口架构下,因此能够根据干扰相消式PLA链路拓扑的业务可承载状态来选定相应的空口进入节能或退出节能,即能够根据干扰相消式PLA链路拓扑的业务可承载状态来选择开启或关闭相应空口所对应的ODU电源,使得干扰相消式PLA链路拓扑中的业务资源达到饱和,即能够良好适配网络中的用户流量来进行业务传输,这可大大避免其链路中的业务资源过剩,达到合理有效地管控微波空口的传输资源的目的,尤其是,具有XPIC或MIMO功能的干扰相消式PLA链路拓扑在运行时,每个PLA成员的空口都会收到非本空口的干扰信息,本实施例通过发送第一触发信息、第二触发信息以及邻跳信息来进行消除干扰,可使干扰相消式PLA链路拓扑中的业务资源达到无损平衡,并且,通过发送邻跳信息,还可使得所选定空口两端能够同步进入节能状态或退出节能状态,从而可相应地关闭或打开空口所对应的ODU电源,实现对于空口对应ODU电源的智能控制。
综上所述,通过本实施例的控制方法可以降低干扰相消式PLA链路拓扑在业务传输中所造成的电源浪费,就干扰相消式PLA链路拓扑整体而言,可以达到稳定控制空口对应ODU电源的目的,从而能够实现空口节能传输。
其中,图9A是现有的PLA链路中各空口的业务流向示意图,在一般情况下,PLA链路中的业务流向是固定流入到相应的数据选择器中的,即如图9A所示;图9B是本发明一个实施例提供的PLA链路中待节能空口的业务切换操作的示意图,实际上,通过对上述各PLA链路下的空口控制进行分析,可以了解到,无论PLA链路的空口拓扑是怎样的,即无论PLA链路的空口拓扑属于单纯PLA链路拓扑还是干扰相消式PLA链路拓扑,如图9B所示,当确定好该PLA链路中的待节能空口后,即能够通过将待节能空口的业务流量切换至其余非节能空口(即实现从图9A至图9B的控制转换),从而保证将待节能空口的业务以无损或瞬断的方式进行切换,即利用其余的非节能空口来分担该待节能空口的业务,从而防止切换待节能空口时易造成的业务损失,保证用户具有稳定可靠的网络使用性能,以提升用户的网络体验。
相对应地,在退出节能控制时,无论PLA链路的空口拓扑是怎样的,即无论PLA链路的空口拓扑属于单纯PLA链路拓扑还是干扰相消式PLA链路拓扑,当确定好该PLA链路中的待退出节能的空口后,能够通过将其它空口的业务流量切换至该空口,即恢复该空口的业务量承载,从而保证将待节能空口的业务以无损或瞬断的方式进行恢复,即恢复该 待节能空口的业务,从而保证用户具有稳定可靠的网络使用性能,以提升用户的网络体验。
并且,一方面,基于单纯PLA链路拓扑考虑,采用了延时10ms,并启动第一定时器,且当第一定时器超时,关闭与所述待节能空口对应的ODU电源的具体操作,其中,延时操作以及第一定时器设置的主要作用在于使得待节能空口的本端和对端均能够同步进入节能状态,因此,待节能空口的整体业务能够取得毫秒级别中断或者无中断的节能效果,在执行节能控制的过程中仍能够为用户提供良好稳定的业务网络,实际上,延时时间还可以采用其它具体参数,具体可根据空口拓扑的结构进行考虑设置,上述实施例并未严格对延时时间的具体值进行限定,同理,在退出节能控制流程中,采用延时20ms的操作后再开启对应的ODU电源,也能够使得待节能空口的本端和对端均能够同步退出节能状态,从而使得待节能空口的整体业务能够取得毫秒级别中断或者无中断的节能效果,在执行退出节能控制的过程中仍能够为用户提供良好稳定的业务网络;另一方面,基于干扰相消式PLA链路拓扑考虑,采用延时10ms后静默,并启动第二定时器,且当第二定时器超时,关闭与所述待节能空口对应的ODU电源的具体操作,针对干扰相消式PLA链路拓扑的节能控制,通过对其ODU电源进行静默,从而防止该链路内相关极化组间继续产生较大的干扰,使得空口节能控制更加稳定,以便于使待节能空口的整体业务容易取得毫秒级别中断或者无中断的节能效果。
为了更合理地说明本发明实施例的一体化工作原理,使得本领域技术人员更清晰地了解本发明实施例的设计思路,请参照图11,以下给出针对待节能空口进入节能状态的具体执行流程进行说明。
如图11所示,首先,获取节能策略信息,然后基于该节能策略信息确定待节能空口并对其执行锁止操作,从而保证PLA链路业务无损,接着,对于待节能空口对应的ODU电源一侧,需要判断其空口拓扑类型,从而根据空口拓扑类型来决定是否需要通知对端网元,相应地,决定两种执行方式,方式一是无需通知对端网元,则可直接关闭待节能空口对应的ODU电源,方式二是需要通知对端网元,即发送邻跳信息至对端网元,并针对待节能空口进行延时及静默处理,最终实现待节能空口两端对应的ODU电源关闭。
另外,参照图12,本发明实施例还提供了一种微波空口控制装置,包括存储器1201、处理器1202及存储在存储器1201上并可在处理器1202上运行的计算机程序。
处理器和存储器可以通过总线或者其他方式连接。
需要说明的是,本实施例中的微波空口控制装置,可以应用于如图1所示实施例中的微波空口架构,本实施例的微波空口控制装置能够构成图1所示实施例中的微波空口架构的一部分,本实施例与图1所示实施例均属于相同的发明构思,因此本实施例与图1所示实施例具有相同的实现原理以及技术效果,此处不再详述。
实现上述实施例的微波空口控制方法所需的非暂态软件程序以及指令存储在存储器中,当被处理器执行时,执行上述实施例的微波空口控制方法,例如,执行以上描述的图2中的方法步骤S100至S300或图3中的方法步骤S310至S320。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者 也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现上述装置实施例的目的。
此外,本发明的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被上述微波空口控制装置实施例中的一个处理器执行,可使得上述处理器执行上述实施例的微波空口控制方法,例如,执行以上描述的图2中的方法步骤S100至S300或图3中的方法步骤S310至S320。
本发明实施例包括:获取节能策略信息,所述节能策略信息基于业务流量信息而得到;根据所述节能策略信息确定物理链路聚合PLA链路中的待节能空口;对与所述待节能空口对应的室外单元ODU电源执行节能处理。根据本发明实施例提供的方案,通过获取基于业务流量信息而得到的节能策略信息,并基于该节能策略信息来进一步地确定PLA链路中的待节能空口,从而可针对该待节能空口对应的ODU电源执行节能处理,能够降低该待节能空口对应的ODU电源的能源浪费,从而能够实现空口节能传输。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本发明的一些实施进行了具体说明,但本发明并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明范围的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本发明权利要求所限定的范围内。

Claims (14)

  1. 一种微波空口控制方法,包括:
    获取节能策略信息,所述节能策略信息基于业务流量信息而得到;
    根据所述节能策略信息确定物理链路聚合PLA链路中的待节能空口;
    对与所述待节能空口对应的室外单元ODU电源执行节能处理。
  2. 根据权利要求1所述的微波空口控制方法,其中,所述对与所述待节能空口对应的室外单元ODU电源执行节能处理,包括:
    获取延时控制指令;
    根据所述延时控制指令对与所述待节能空口对应的ODU电源执行节能处理。
  3. 根据权利要求2所述的微波空口控制方法,其中,所述根据所述延时控制指令对与所述待节能空口对应的ODU电源执行节能处理,包括:
    延时第一时长,并启动第一定时器;
    当第一定时器超时,对与所述待节能空口对应的ODU电源执行节能处理。
  4. 根据权利要求2所述的微波空口控制方法,其中,当所述PLA链路配置有交叉极化干扰抵消XPIC功能,所述根据所述延时控制指令对与所述待节能空口对应的ODU电源执行节能处理,包括:
    延时第一时长后静默与所述待节能空口对应的ODU电源,并启动第二定时器;
    当第二定时器超时,对与所述待节能空口对应的ODU电源执行节能处理。
  5. 根据权利要求4所述的微波空口控制方法,其中,当所述PLA链路还配置有多进多出MIMO功能,所述根据所述延时控制指令对与所述待节能空口对应的ODU电源执行节能处理,还包括:
    向与所述待节能空口配合进行干扰抵消的辅助空口发送第一触发信息,以使所述辅助空口根据所述第一触发信息关闭干扰抵消功能。
  6. 根据权利要求1所述的微波空口控制方法,其中,执行所述对与所述待节能空口对应的室外单元ODU电源执行节能处理之前,还包括:
    把承载于所述待节能空口的业务流量切换至所述PLA链路中的非节能空口。
  7. 根据权利要求1所述的微波空口控制方法,还包括:
    向对端网元发送邻跳消息,使得对端网元根据所述邻跳消息执行相应的节能处理。
  8. 根据权利要求1至7任意一项所述的微波空口控制方法,其中,所述节能处理,包括:
    关闭与所述待节能空口对应的ODU电源。
  9. 根据权利要求1所述的微波空口控制方法,还包括:
    获取退出节能策略指令;
    根据所述退出节能策略指令开启与所述待节能空口对应的ODU电源。
  10. 根据权利要求9所述的微波空口控制方法,其特征在于,还包括:
    启动第三定时器,当所述第三定时器超时,恢复所述待节能空口对业务流量的承载。
  11. 根据权利要求9所述的微波空口控制方法,其中,当所述PLA链路配置有XPIC功能和MIMO功能中的至少一个,所述根据所述退出节能策略指令开启与所述待节能空口对应的ODU电源,包括:
    根据所述退出节能策略指令,延时第二时长后,开启与所述待节能空口对应的ODU电源。
  12. 根据权利要求11所述的微波空口控制方法,还包括:
    向与所述待节能空口配合进行干扰抵消的辅助空口发送第二触发信息,以使所述辅助空口根据所述第二触发信息向对端网元发送邻跳消息而令对端网元执行相应的退出节能状态的操作。
  13. 一种微波空口控制装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,其中,所述处理器执行所述程序时实现如权利要求1至12任意一项所述的控制方法。
  14. 一种计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于执行如权利要求1至12中任意一项所述的控制方法。
PCT/CN2021/079748 2020-06-19 2021-03-09 微波空口控制方法及其装置、计算机可读存储介质 WO2021253879A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010564399.1A CN113825214A (zh) 2020-06-19 2020-06-19 微波空口控制方法及其装置、计算机可读存储介质
CN202010564399.1 2020-06-19

Publications (1)

Publication Number Publication Date
WO2021253879A1 true WO2021253879A1 (zh) 2021-12-23

Family

ID=78924317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079748 WO2021253879A1 (zh) 2020-06-19 2021-03-09 微波空口控制方法及其装置、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN113825214A (zh)
WO (1) WO2021253879A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130324182A1 (en) * 2012-05-31 2013-12-05 Interdigital Patent Holdings, Inc. Device-to-device (d2d) cross link power control
CN105530205A (zh) * 2014-09-28 2016-04-27 中兴通讯股份有限公司 一种微波设备汇聚的装置和方法
US20180092039A1 (en) * 2016-09-29 2018-03-29 Laurent Cariou Multi-band link-aggregation pre-negotiated power save modes
CN108141278A (zh) * 2015-10-29 2018-06-08 华为技术有限公司 一种数据发送、接收方法、装置及系统
CN109246659A (zh) * 2017-06-15 2019-01-18 中兴通讯股份有限公司 一种通信控制方法、装置及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130324182A1 (en) * 2012-05-31 2013-12-05 Interdigital Patent Holdings, Inc. Device-to-device (d2d) cross link power control
CN105530205A (zh) * 2014-09-28 2016-04-27 中兴通讯股份有限公司 一种微波设备汇聚的装置和方法
CN108141278A (zh) * 2015-10-29 2018-06-08 华为技术有限公司 一种数据发送、接收方法、装置及系统
US20180092039A1 (en) * 2016-09-29 2018-03-29 Laurent Cariou Multi-band link-aggregation pre-negotiated power save modes
CN109246659A (zh) * 2017-06-15 2019-01-18 中兴通讯股份有限公司 一种通信控制方法、装置及计算机可读存储介质

Also Published As

Publication number Publication date
CN113825214A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
US7729361B2 (en) Method and system for power-efficient adaptive link aggregation
CN101170459B (zh) 基于双向转发链路进行故障检测与链路恢复的方法
CN100417094C (zh) 具有冗余端口的网络故障恢复方法
US8619605B2 (en) Method and apparatus for maintaining port state tables in a forwarding plane of a network element
US7804794B2 (en) Power-saving network switching device
WO2021088766A1 (zh) 切换方法、切换装置及网络系统
US8385335B2 (en) Method and apparatus for providing fast reroute of a unicast packet within a network element to an available port associated with a multi-link trunk
WO2021088808A1 (zh) 双归设备接入流量的转发方法、设备及存储介质
EP2252016B1 (en) Method and apparatus for locally implementing port selection via synchronized port state databases maintained by the forwarding plane of a network element
WO2014018297A1 (en) System and method using rsvp hello suppression for graceful restart capable neighbors
CN103888994B (zh) 一种具有热灾备能力的多网关处理方法及系统
CN104102540A (zh) 一种运行进程的管理方法及移动终端
Shah et al. A review of forwarding strategies in transport software-defined networks
US20130100827A1 (en) Method for managing mobile radio resources for package receiving enhancement
CN110958048B (zh) 低轨卫星网络故障处理方法、系统以及控制器和介质
WO2021253879A1 (zh) 微波空口控制方法及其装置、计算机可读存储介质
CN100499658C (zh) 一种避免冗余Flood的方法
US8352771B2 (en) Network system
JP5241483B2 (ja) 終端通信装置および省電力モード切り替え方法
CN101827010B (zh) Vpn隧道振荡抑制方法和装置
CN102752200B (zh) 一种网络节能的方法和装置
WO2016077948A1 (zh) 交换机端口控制方法、装置及系统
CN112954722A (zh) 一种5g upf主备链路快速切换系统和方法
US7817559B2 (en) Network node power conservation apparatus, system, and method
Jeyasekar et al. Green SDN: Trends of energy conservation in software defined network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21824927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21824927

Country of ref document: EP

Kind code of ref document: A1