WO2021253713A1 - 一种基于六维力加速传感器的支撑装置 - Google Patents

一种基于六维力加速传感器的支撑装置 Download PDF

Info

Publication number
WO2021253713A1
WO2021253713A1 PCT/CN2020/127160 CN2020127160W WO2021253713A1 WO 2021253713 A1 WO2021253713 A1 WO 2021253713A1 CN 2020127160 W CN2020127160 W CN 2020127160W WO 2021253713 A1 WO2021253713 A1 WO 2021253713A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
acceleration sensor
clamping block
preset
dimensional force
Prior art date
Application number
PCT/CN2020/127160
Other languages
English (en)
French (fr)
Inventor
张凯
Original Assignee
山东明源智能装备科技有限公司
山东欣巽联信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东明源智能装备科技有限公司, 山东欣巽联信息科技有限公司 filed Critical 山东明源智能装备科技有限公司
Publication of WO2021253713A1 publication Critical patent/WO2021253713A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups

Definitions

  • the invention relates to the technical field of sensor brackets, in particular to a supporting device based on a six-dimensional force acceleration sensor.
  • a sensor is a detection device that can feel the information to be measured, and can transform the sensed information into electrical signals or other required forms of information output according to a certain rule, so as to satisfy the transmission, processing, storage, and display of information , Recording and control requirements.
  • the characteristics of sensors include: miniaturization, digitization, intelligence, multi-function, systemization, and networking. It is the first link to realize automatic detection and automatic control.
  • the existence and development of sensors give objects the senses of touch, taste and smell, and make objects slowly become alive. It is usually divided into ten categories according to its basic sensing function: heat sensitive elements, photosensitive elements, gas sensitive elements, force sensitive elements, magnetic sensitive elements, humidity sensitive elements, sound sensitive elements, radiation sensitive elements, color sensitive elements and taste sensitive elements. .
  • the existing support device of the conventional structure sensor has a single fixed structure, and when it is installed and replaced, the efficiency is low, and the posture adjustment is not convenient enough, and it cannot meet the needs of modern development.
  • the supporting device in the prior art has a single structure and cannot be used for different types of sensors.
  • the different axis of the same sensor or the same sensor can be clamped, and the use efficiency is low.
  • the present invention provides a support device based on a six-dimensional force acceleration sensor to overcome the inefficient use of the support device in the prior art that cannot be used to clamp different types of sensors or different axial directions of the same sensor. problem.
  • the present invention provides a support device based on a six-dimensional force acceleration sensor, including:
  • a base a rotating cavity is opened in the base, a through groove is separately provided on the upper part of the rotating cavity, a fixed spring is provided on the top wall of the rotating cavity, and a top ball is provided on the bottom of the fixed spring;
  • the clamping block is used to clamp the six-dimensional force acceleration sensor of the corresponding shape.
  • Each of the movable grooves is also provided with a return spring, and each return spring is respectively connected with the corresponding bending rod and the side wall near the outside of the movable groove;
  • a connecting seat with a rotating plate fixedly connected to the bottom of the connecting seat
  • the clamping ring is sleeved on the connecting seat and is used to cooperate with the clamping block to fix the six-dimensional force acceleration sensor on the upper surface of the connecting seat; when the six-dimensional force acceleration sensor is installed, it will be clamped tightly.
  • the block is sleeved on the bottom of the six-dimensional acceleration sensor. After the sleeve is completed, the clamping block is placed on the upper surface of the connecting seat, the bending rod is inserted into the clamping ring, and the clamping ring fixes the bending rod at the designated position To fix the clamping block and the six-dimensional acceleration sensor on the upper surface of the connecting seat;
  • a driver is provided at the bottom of the base to drive the rotating plate to rotate, and a rotation speed detector and a timer are provided in the driver to record the rotation speed and rotation time of the driver respectively; a preset angle matrix ⁇ is provided in the driver ( ⁇ 1, ⁇ 2, ⁇ 3... ⁇ n), where ⁇ 1 is the first preset angle, ⁇ 2 is the second preset angle, ⁇ 3 is the third preset angle, and ⁇ n is the nth preset angle; when the six-dimensional force When the acceleration sensor is installed on the upper surface of the connecting seat, the driver will rotate the connecting seat to a specified angle according to requirements to perform subsequent detection or use of the six-dimensional force acceleration sensor.
  • the driver is also provided with a preset clamping block matrix group C, a preset test rotation speed matrix group ⁇ b, and a preset test time matrix group tb; for the preset clamping block matrix group C, C (C1, C2 , C3...Cn), where C1 is the first preset clamping block matrix suitable for the shape of the first type six-dimensional force acceleration sensor, and C2 is the second preset suitable for the shape of the second type six-dimensional force acceleration sensor Suppose the clamping block matrix, C3 is the third preset clamping block matrix suitable for the shape of the third type six-dimensional force acceleration sensor, and Cn is the nth preset clamping block suitable for the shape of the nth type six-dimensional force acceleration sensor Matrix; for the n-th preset clamping block matrix Cn, Cn(Cnx, Cny, Cnz), where Cnx is the same shape as the left/right side of the n-th type six-dimensional force acceleration sensor, used to combine the n-th type six-
  • Cny is the same shape as the front/back of the n-th six-dimensional acceleration sensor. It is used to connect the front/back of the n-th six-dimensional acceleration sensor.
  • the n-th vertical clamping block fixed on the upper surface of the connecting seat, Cnz is the same shape as the top/bottom of the n-th six-dimensional acceleration sensor, and is used to fix the top/bottom of the n-th six-dimensional acceleration sensor on the connecting seat
  • ⁇ b For the preset test speed matrix group ⁇ b, ⁇ b( ⁇ b1, ⁇ b2, ⁇ b3... ⁇ bn), where ⁇ b1 is the first preset test speed matrix, ⁇ b2 is the second preset test speed matrix, and ⁇ b3 is the third preset Test speed matrix, ⁇ bn is the nth preset test speed matrix; for the nth preset test speed matrix ⁇ bn, ⁇ bn( ⁇ bnx, ⁇ bny, ⁇ bnz), where ⁇ bnx is the nth six-dimensional detection using the nth transverse clamping block Cnx
  • ⁇ bny is the nth vertical speed used when the nth vertical chucking block Cny is used to detect the nth six-dimensional force acceleration sensor
  • ⁇ bnz is the nth vertical chucking block Cnz for detection
  • tb For the preset test time matrix group tb, tb(tb1, tb2, tb3...tbn), where tb1 is the first preset test time matrix, tb2 is the second preset test time matrix, and tb3 is the third preset Test time matrix, tbn is the nth preset test time matrix; for the nth preset test time matrix tbn, tbn(tbnx, tbny, tbnz), where tbnx is the nth six-dimensional detection using the nth transverse clamping block Cnx
  • tbny is the nth vertical test time used when using the nth vertical clamping block Cny to detect the nth six-dimensional force acceleration sensor, and tbnz is the nth vertical clamping block used
  • the driver When using the second type of six-dimensional force acceleration sensor or testing the second type of six-dimensional force acceleration sensor, the driver will establish a second test matrix group T2 (C2, ⁇ b2, tb2, ⁇ 2), and from the C2 matrix as required Select the corresponding clamping block C2i, select the corresponding rotation speed ⁇ b2i from the ⁇ b2 matrix, select the corresponding test time tb2i from the tb2 matrix, and rotate the connecting seat to ⁇ 2 as the initial angle;
  • T2 C2, ⁇ b2, tb2, ⁇ 2
  • the driver When using the third type of six-dimensional force acceleration sensor or testing the third type of six-dimensional force acceleration sensor, the driver will establish a third test matrix group T3 (C3, ⁇ b3, tb3, ⁇ 3), and from the C3 matrix as required Select the corresponding clamping block C3i, select the corresponding rotation speed ⁇ b3i from the ⁇ b3 matrix, select the corresponding test time tb3i from the tb3 matrix, and rotate the connector to ⁇ 3 as the initial angle;
  • T3 C3, ⁇ b3, tb3, ⁇ 3
  • the driver When using the n-th type six-dimensional force acceleration sensor or testing the n-th type six-dimensional force acceleration sensor, the driver will establish the n-th test matrix group Tn (Cn, ⁇ bn, tbn, ⁇ n), and according to the requirements from the Cn matrix Select the corresponding clamping block Cni, select the corresponding speed ⁇ bni from the ⁇ bn matrix, select the corresponding test time tbni from the tbn matrix, and rotate the connector to ⁇ n as the initial angle;
  • the driver When the driver tests or uses the horizontal axis of the n-th six-dimensional force acceleration sensor, the driver establishes the n-th horizontal test matrix group Tnx (Cnx, ⁇ bnx, tbnx), and uses the clamping block corresponding to Cnx to clamp the n-th type six Weili acceleration sensor, and adjust the speed to ⁇ bnx and the rotation time to tbnx to test or use the horizontal axis of the six-dimensional acceleration sensor;
  • the driver When the driver tests or uses the vertical axis of the n-th six-dimensional force acceleration sensor, the driver establishes the n-th vertical test matrix group Tny (Cny, ⁇ bny, tbny), and uses the clamping block corresponding to Cny to clamp the n-th model Six-dimensional force acceleration sensor, and adjust the speed to ⁇ bny and the rotation time to tbny to test or use the vertical axis of the six-dimensional force acceleration sensor;
  • the driver When the driver tests or uses the longitudinal axis of the n-th six-dimensional force acceleration sensor, the driver establishes the n-th longitudinal test matrix group Tnz (Cnz, ⁇ bnz, tbnz), and uses the clamping block corresponding to Cnz to clamp the n-th type six Weili acceleration sensor, and adjust the speed to ⁇ bnz and the rotation time to tbnz to test or use the longitudinal axis of the six-dimensional acceleration sensor.
  • Tnz Cnz, ⁇ bnz, tbnz
  • the driver is also provided with a preset angle rotation speed matrix ⁇ a and a preset angle time matrix ta; for the preset angle rotation speed matrix ⁇ a, ⁇ a ( ⁇ a1, ⁇ a2, ⁇ a3... ⁇ an), where ⁇ a1 is the first A preset angle rotation speed, ⁇ a2 is the second preset angle rotation speed, ⁇ a3 is the third preset angle rotation speed, and ⁇ an is the nth preset angle rotation speed; for the preset angle time matrix ta, ta(ta1, ta2, ta3..
  • ta1 is the first preset angle time
  • ta2 is the second preset angle time
  • ta3 is the third preset angle time
  • tan is the nth preset angle time
  • the driver When the connecting seat needs to adjust the rotation angle to ⁇ 1, the driver establishes the first angle matrix R1 ( ⁇ a1, ta1) and according to the parameters in the R1 matrix, rotates ta1 at the speed of ⁇ a1 for a period of time and then stops to rotate the connecting seat to a specified angle;
  • the driver When the connecting seat needs to adjust the rotation angle to ⁇ 2, the driver establishes a second angle matrix R2 ( ⁇ a2, ta2) and according to the parameters in the R2 matrix, rotates ta2 at the speed of ⁇ a2 for a period of time and then stops to rotate the connecting seat to a specified angle;
  • the driver When the connecting seat needs to adjust the rotation angle to ⁇ 3, the driver establishes a third angle matrix R3 ( ⁇ a3, ta3) and according to the parameters in the R3 matrix, rotates ta3 at a speed of ⁇ a3 for a period of time and then stops to rotate the connecting seat to a specified angle;
  • the driver When the connecting seat needs to adjust the rotation angle to ⁇ n, the driver establishes the nth angle matrix Rn( ⁇ an, tan) and rotates tan at the speed of ⁇ an for a period of time according to the parameters in the Rn matrix, and then stops to rotate the connecting seat to a specified angle.
  • a plurality of L-shaped grooves with an L-shaped cross section are opened in the clamping ring, and a plurality of grooves are also opened on the inner wall of the clamping ring, and each groove is respectively connected with the corresponding L-shaped groove;
  • the bent rod is inserted into the corresponding L-shaped groove to fix the clamping block on the upper surface of the connecting seat.
  • an extrusion spring is provided in the L-shaped groove, and one end of the extrusion spring is fixedly connected with the end of the L-shaped groove; a sliding rod penetrates through the extrusion spring, and the end of the sliding rod located in the L-shaped groove is provided with a convex A push block is provided at one end of the sliding rod located inside the groove; when the clamping block is installed, each of the bent rods enters the corresponding L-shaped groove, and after entering, the return spring generates a pulling force on the bent rod to reset the bent rod , When the bent rod is reset, the L-shaped groove restricts the bent rod to fix the clamping block at the specified position.
  • the bent rod exerts pressure on the convex block and pushes the corresponding push block to the outside of the groove through the sliding rod;
  • the L-shaped groove no longer restricts the bending rod, and the clamping block is taken out to complete the disassembly of the clamping block.
  • each connecting block is provided with a rotating groove
  • each rotating groove is provided with a rotating shaft
  • each bending rod is respectively sleeved on the corresponding rotating shaft.
  • the beneficial effect of the present invention is that the present invention uses a driver to drive the connecting seat to rotate to complete the test and use of the six-dimensional force acceleration sensor, and at the same time, it can complete the alignment by setting the clamping ring and clamping block.
  • the quick disassembly and quick installation of the six-dimensional force acceleration sensor improve the use efficiency of the device.
  • the driver of the present invention is provided with a preset clamping block matrix group C, a preset test speed matrix group ⁇ b, and a preset test time matrix group tb.
  • the corresponding clamping block is selected according to the matrix in the C matrix group.
  • each parameter matrix Cn in the C matrix group also includes three types of clamping blocks Cnx, Cny, and Cnz for the three axial directions of the six-dimensional force acceleration sensor of the same model, and at the same time, the ⁇ bn matrix is provided with There are three speeds of ⁇ bnx, ⁇ bny and ⁇ bnz. There are tbnx, tbny and tbnz in the tbn matrix.
  • the driver is also provided with a preset angle rotation speed matrix ⁇ a and a preset angle time matrix ta, the driver will use the rotation speed of ⁇ an to rotate tan for a period of time to adjust the six-dimensional force acceleration sensor to a preset angle ⁇ n to increase the device
  • the test accuracy or use accuracy of the six-dimensional force acceleration sensor further improves the use efficiency of the device.
  • the base is provided with a rotating cavity, and a through slot is opened in the rotating cavity.
  • a connecting block is provided in the clamping block, and a bending rod is arranged in the connecting block.
  • the clamping ring is provided with a plurality of L-shaped grooves with an L-shaped cross section.
  • the bending rod is inserted into the L-shaped groove, and the L-shaped groove performs the bending of the rod. Restriction to fix the clamping block at the designated position further improves the use efficiency of the device.
  • an extrusion spring is provided in the L-shaped groove, and a sliding rod runs through the extrusion spring, one end of the sliding rod located inside the L-shaped groove is provided with a bump, and one end of the sliding rod located inside the groove is provided with a push block;
  • the L-shaped groove no longer restricts the bending rod.
  • the clamping block For the disassembly of the clamping block, by opening a groove at the L-shaped groove, and setting a bump, a sliding rod and a push block between the L-shaped groove and the groove, it is possible to only push the push block when disassembling the six-dimensional force acceleration sensor That is, the constraint of the L-shaped groove on the bending rod is released, thereby completing the quick disassembly of the clamping block, and further improving the use efficiency of the device.
  • each connecting block is provided with a rotating groove
  • each rotating groove is provided with a rotating shaft
  • each bending rod is respectively sleeved on the corresponding rotating shaft.
  • Fig. 1 is a front sectional view of a supporting device based on a six-dimensional force acceleration sensor according to the present invention
  • Figure 2 is a cross-sectional view of the base of the present invention.
  • Figure 3 is a partial cross-sectional view of the fixing ring of the present invention.
  • Figure 4 is a cross-sectional view of the connecting block of the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installation e.g., it can be a fixed connection or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • FIG. 1 is a front sectional view of a supporting device based on a six-dimensional force acceleration sensor of the present invention.
  • the supporting device based on the six-dimensional force acceleration sensor of the present invention includes a base 1, a clamping block 3, a connecting seat 4 and a clamping ring 5.
  • the connecting seat 4 is arranged above the base 1 for rotating the six-dimensional force acceleration sensor 2.
  • the clamping ring 5 is sleeved on the connecting seat 4.
  • the clamping block 3 is arranged on the upper surface of the connecting seat 4 and cooperates with the clamping ring to clamp the six-dimensional force acceleration sensor 2.
  • the designated clamping block 3 is selected to clamp the corresponding type of six-dimensional force acceleration sensor 2, and the clamping block 3 clamping the six-dimensional force acceleration sensor 2 is placed on the upper surface of the connecting seat 4.
  • the clamping block 3 cooperates with the clamping ring 5 to fix the six-dimensional force acceleration sensor 2 at a designated position.
  • the base 1 controls the rotation of the connecting seat 4 to complete the test or use of the six-dimensional force acceleration sensor 2.
  • the clamping block 3 of the present invention is provided with a plurality of movable grooves 6, a connecting block 7 is provided on the top of each movable groove 6, and a bending rod 8 is provided under each connecting block 7.
  • Each of the movable grooves 6 is also provided with a return spring 17 respectively, and each return spring 17 is respectively connected with the corresponding bending rod 8 and the side wall of the movable groove 6 close to the outside.
  • FIG 2 is a cross-sectional view of the base of the present invention.
  • the base 1 of the present invention is provided with a rotating cavity 18, and a through slot 19 is provided on the upper part of the rotating cavity 18, and the top of the rotating cavity 18
  • the wall is provided with a fixed spring 21, and a top ball 22 is provided at the bottom of the fixed spring 21.
  • a rotating plate 20 is fixedly connected to the bottom of the connecting seat 4 of the present invention.
  • the rotating plate 20 is located on the bottom surface of the rotating cavity 18.
  • Each top ball 22 exerts pressure on the rotating plate to restrict the rotating plate 20 in a vertical direction.
  • FIG. 3 is a partial cross-sectional view of the fixing ring 5 of the present invention.
  • the clamping ring 5 of the present invention is sleeved on the connecting seat 4 to cooperate with the clamping block 3 to fix the six-dimensional force acceleration sensor 2 on the upper surface of the connecting seat 4.
  • the clamping block 3 is sleeved on the bottom of the six-dimensional acceleration sensor 2.
  • the clamping block 3 is placed on the upper surface of the connecting seat 4, and the bending rod 8 is inserted into the clamping ring 5, and the clamping ring 5 fixes the bending rod 8 at a designated position to fix the clamping block 3 and the six-dimensional acceleration sensor 2 on the upper surface of the connecting seat 4 together.
  • a plurality of L-shaped grooves 9 with an L-shaped cross section are opened in the clamping ring 5, and a plurality of grooves 10 are also opened on the inner wall of the clamping ring 5, and each groove 10 is respectively connected to a corresponding L The groove 9 is connected.
  • the bent rod 8 is inserted into the corresponding L-shaped groove 9 to fix the clamping block 3 on the upper surface of the connecting seat 4.
  • an extrusion spring 14 is provided in the L-shaped groove, and one end of the extrusion spring 14 is fixedly connected to the end of the L-shaped groove 9;
  • One end of the groove 9 is provided with a bump 12, and the end of the sliding rod 11 located inside the groove 10 is provided with a push block 13; when the clamping block 3 is installed, each of the bent rods 8 enters the corresponding L-shaped groove 9, and ,
  • the return spring 17 generates a pulling force on the bending rod 8 to reset the bending rod 8.
  • the L-shaped groove 9 restricts the bending rod 8 to fix the clamping block 3 at the designated position, and the bending rod 8 Apply pressure to the convex block 12 and push the corresponding push block 13 to the outside of the groove 10 through the slide bar 11; when disassembling the clamping block 3, press each push block 13 respectively, and the push block 13 drives the convex block 12 to squeeze the corresponding At this time, the bending rod 8 is no longer restricted by the L-shaped groove 9 and the clamping block 3 is taken out to complete the disassembly of the clamping block 3.
  • FIG. 4 is a cross-sectional view of the connecting block 7 of the present invention.
  • the bottom surface of each connecting block 7 is provided with a rotating groove 15, and each rotating groove 15 is provided with a rotating shaft 16 respectively.
  • the rods 8 are respectively sleeved on the corresponding rotating shafts 16.
  • each bending rod 8 will slide on the corresponding rotating shaft 16, and the return spring 17 will bend when the bending rod 8 stops receiving force.
  • the lever 8 moves to the initial position.
  • the bottom of the base 1 of the present invention is provided with a driver (not shown in the figure) to drive the rotating plate 20 to rotate, and a rotational speed detector and a timer are provided in the driver , Used to separately record the drive's rotation speed and rotation time; a preset angle matrix ⁇ ( ⁇ 1, ⁇ 2, ⁇ 3... ⁇ n) is set in the drive, where ⁇ 1 is the first preset angle, and ⁇ 2 is the second preset Angle, ⁇ 3 is the third preset angle, and ⁇ n is the nth preset angle; when the six-dimensional force acceleration sensor 2 is installed on the upper surface of the connection base, the driver will rotate the connection base to a specified angle according to the use or test requirements In order to carry out the follow-up detection or use of the six-dimensional force acceleration sensor.
  • a preset angle matrix ⁇ ( ⁇ 1, ⁇ 2, ⁇ 3... ⁇ n) is set in the drive, where ⁇ 1 is the first preset angle, and ⁇ 2 is the second preset Angle, ⁇ 3 is the third
  • the drive is also provided with a preset clamping block matrix group C, a preset test rotation speed matrix group ⁇ b, and a preset test time matrix group tb; for the preset clamping block matrix group C, C(C1, C2, C3...Cn), where C1 is the first preset clamping block matrix suitable for the shape of the first type six-dimensional force acceleration sensor, and C2 is the second one suitable for the shape of the second type six-dimensional force acceleration sensor
  • the preset clamping block matrix, C3 is the third preset clamping block matrix suitable for the shape of the third type six-dimensional force acceleration sensor, Cn is the nth preset clamping block suitable for the shape of the nth type six-dimensional force acceleration sensor Block matrix; for the n-th preset clamping block matrix Cn, Cn(Cnx, Cny, Cnz), where Cnx is the same shape as the left/right side of the n-th type six-dimensional force acceleration sensor, used to change the n-th type six-dimensional The left/
  • Cny is the same shape as the front/back of the n-th six-dimensional force acceleration sensor.
  • the n-th vertical clamping block fixed on the upper surface of the connecting seat at the back, Cnz is the same shape as the top/bottom of the n-th type six-dimensional acceleration sensor, used to fix the top/bottom of the n-th type six-dimensional acceleration sensor to the connection
  • the n-th longitudinal clamping block on the upper surface of the seat is the same shape as the front/back of the n-th six-dimensional force acceleration sensor.
  • the n-th vertical clamping block fixed on the upper surface of the connecting seat at the back, Cnz is the same shape as the top/bottom of the n-th type six-dimensional acceleration sensor, used to fix the top/bottom of the n-th type six-dimensional acceleration sensor to the connection.
  • the n-th longitudinal clamping block on the upper surface of the seat is the same shape as the front/back of the n-th six-dimensional force acceleration sensor.
  • ⁇ b For the preset test speed matrix group ⁇ b, ⁇ b( ⁇ b1, ⁇ b2, ⁇ b3... ⁇ bn), where ⁇ b1 is the first preset test speed matrix, ⁇ b2 is the second preset test speed matrix, and ⁇ b3 is the third preset Test speed matrix, ⁇ bn is the nth preset test speed matrix; for the nth preset test speed matrix ⁇ bn, ⁇ bn( ⁇ bnx, ⁇ bny, ⁇ bnz), where ⁇ bnx is the nth six-dimensional detection using the nth transverse clamping block Cnx
  • ⁇ bny is the nth vertical speed used when the nth vertical chucking block Cny is used to detect the nth six-dimensional force acceleration sensor
  • ⁇ bnz is the nth vertical chucking block Cnz for detection
  • tb For the preset test time matrix group tb, tb(tb1, tb2, tb3...tbn), where tb1 is the first preset test time matrix, tb2 is the second preset test time matrix, and tb3 is the third preset Test time matrix, tbn is the nth preset test time matrix; for the nth preset test time matrix tbn, tbn(tbnx, tbny, tbnz), where tbnx is the nth six-dimensional detection using the nth transverse clamping block Cnx
  • tbny is the nth vertical test time used when using the nth vertical clamping block Cny to detect the nth six-dimensional force acceleration sensor, and tbnz is the nth vertical clamping block used Cnz detects the nth longitudinal test time used when detecting the nth six-dimensional force acceleration sensor.
  • the driver When using the second type of six-dimensional force acceleration sensor or testing the second type of six-dimensional force acceleration sensor, the driver will establish a second test matrix group T2 (C2, ⁇ b2, tb2, ⁇ 2), and from the C2 matrix as required Select the corresponding clamping block C2i, select the corresponding rotation speed ⁇ b2i from the ⁇ b2 matrix, select the corresponding test time tb2i from the tb2 matrix, and rotate the connecting seat to ⁇ 2 as the initial angle;
  • T2 C2, ⁇ b2, tb2, ⁇ 2
  • the driver When using the third type of six-dimensional force acceleration sensor or testing the third type of six-dimensional force acceleration sensor, the driver will establish a third test matrix group T3 (C3, ⁇ b3, tb3, ⁇ 3), and from the C3 matrix as required Select the corresponding clamping block C3i, select the corresponding rotation speed ⁇ b3i from the ⁇ b3 matrix, select the corresponding test time tb3i from the tb3 matrix, and rotate the connector to ⁇ 3 as the initial angle;
  • T3 C3, ⁇ b3, tb3, ⁇ 3
  • the driver When using the n-th type six-dimensional force acceleration sensor or testing the n-th type six-dimensional force acceleration sensor, the driver will establish the n-th test matrix group Tn (Cn, ⁇ bn, tbn, ⁇ n), and according to the requirements from the Cn matrix Select the corresponding clamping block Cni, select the corresponding rotation speed ⁇ bni from the ⁇ bn matrix, select the corresponding test time tbni from the tbn matrix, and rotate the connector to ⁇ n as the initial angle.
  • the driver When the driver tests or uses the horizontal axis of the n-th six-dimensional force acceleration sensor, the driver establishes the n-th horizontal test matrix group Tnx (Cnx, ⁇ bnx, tbnx), and uses the clamping block corresponding to Cnx to clamp the n-th type six Adjust the rotation speed to ⁇ bnx and tbnx to the left or right side of the Weili acceleration sensor to test or use the horizontal axis of the six-dimensional acceleration sensor;
  • the driver When the driver tests or uses the vertical axis of the n-th six-dimensional force acceleration sensor, the driver establishes the n-th vertical test matrix group Tny (Cny, ⁇ bny, tbny), and uses the clamping block corresponding to Cny to clamp the n-th model In front of or behind the six-dimensional acceleration sensor, adjust the speed to ⁇ bny and the rotation time to tbny to test or use the vertical axis of the six-dimensional acceleration sensor;
  • the driver When the driver tests or uses the longitudinal axis of the n-th six-dimensional force acceleration sensor, the driver establishes the n-th longitudinal test matrix group Tnz (Cnz, ⁇ bnz, tbnz), and uses the clamping block corresponding to Cnz to clamp the n-th type six Above or below the Weili acceleration sensor, and adjust the rotation speed to ⁇ bnz and the rotation time to tbnz to test or use the longitudinal axis of the six-dimensional acceleration sensor.
  • Tnz Cnz, ⁇ bnz, tbnz
  • the driver is also provided with a preset angle rotation speed matrix ⁇ a and a preset angle time matrix ta; for the preset angle rotation speed matrix ⁇ a, ⁇ a( ⁇ a1, ⁇ a2, ⁇ a3... ⁇ an), where ⁇ a1 is The first preset angle speed, ⁇ a2 is the second preset angle speed, ⁇ a3 is the third preset angle speed, ⁇ an is the nth preset angle speed; for the preset angle time matrix ta, ta(ta1, ta2, ta3.
  • ta1 is the first preset angle time
  • ta2 is the second preset angle time
  • ta3 is the third preset angle time
  • tan is the nth preset angle time
  • the driver When the connecting seat needs to adjust the rotation angle to ⁇ 1, the driver establishes the first angle matrix R1 ( ⁇ a1, ta1) and according to the parameters in the R1 matrix, rotates ta1 at the speed of ⁇ a1 for a period of time and then stops to rotate the connecting seat to a specified angle;
  • the driver When the connecting seat needs to adjust the rotation angle to ⁇ 2, the driver establishes a second angle matrix R2 ( ⁇ a2, ta2) and according to the parameters in the R2 matrix, rotates ta2 at the speed of ⁇ a2 for a period of time and then stops to rotate the connecting seat to a specified angle;
  • the driver When the connecting seat needs to adjust the rotation angle to ⁇ 3, the driver establishes a third angle matrix R3 ( ⁇ a3, ta3) and according to the parameters in the R3 matrix, rotates ta3 at a speed of ⁇ a3 for a period of time and then stops to rotate the connecting seat to a specified angle;
  • the driver When the connecting seat needs to adjust the rotation angle to ⁇ n, the driver establishes the nth angle matrix Rn( ⁇ an, tan) and rotates tan at the speed of ⁇ an for a period of time according to the parameters in the Rn matrix, and then stops to rotate the connecting seat to a specified angle.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种基于六维力加速传感器(2)的支撑装置,包括:基座(1)、卡紧块(3)、连接座(4)、卡紧环(5)、驱动器。该装置通过使用驱动器带动连接座(4)旋转以完成对传感器(2)的测试和使用,同时,通过设置卡紧环(5)和卡紧块(3)能够完成对传感器(2)的快速拆卸和快速安装,提高了该装置的使用效率。该装置中的驱动器内分别设有预设卡紧块矩阵组C、预设测试转速矩阵组ωb和预设测试时间矩阵组tb,根据预设卡紧块矩阵组C中的矩阵选取对应的卡紧块(3)以完成对不同种类传感器(2)的固定,同时,通过从预设测试转速矩阵组ωb和预设测试时间矩阵组tb选取对应的转速和转动时间,即可完成对不同种类传感器(2)的测试和使用,提高了该装置的使用效率。

Description

一种基于六维力加速传感器的支撑装置 技术领域
本发明涉及传感器支架技术领域,尤其涉及一种基于六维力加速传感器的支撑装置。
背景技术
传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。
现有的常规结构传感器的支撑装置存在结构固定单一,在进行安装更换的时候,效率低下,姿态调整也不够便利,无法满足现代的发展需要。同时,由于不同型号的传感器在形状上存在不同,且对于同一型号的传感器,其在三个轴向方向上的形状也各不相同,而现有技术中的支撑装置结构单一,无法对不同型号的传感器或相同传感器的不同轴向完成夹取,使用效率低。
发明内容
为此,本发明提供一种基于六维力加速传感器的支撑装置,用以克服现有技术中的支撑装置无法对不同型号的传感器或相同传感器的不同轴向完成夹取导致的使用效率低的问题。
为实现上述目的,本发明提供一种基于六维力加速传感器的支撑装置,包括:
基座,在基座内开设有转动腔,在转动腔上部分开设有通槽,在转动腔顶壁设有固定弹簧,在固定弹簧底部设有顶珠;
卡紧块,用以卡紧对应形状的六维力加速传感器,在卡紧块内设有多个活动槽,在各活动槽顶部均设有连接块,各连接块下方均设有弯杆,各所述活动槽内还分别设有复位弹簧,各复位弹簧分别与对应的弯杆和活动槽中靠近外侧的侧壁相连;
连接座,在连接座底部固定连接有转动板;
卡紧环,其套设在所述连接座上,用以与所述卡紧块配合将六维力加速传感器固定在所述连接座上表面;在安装六维力加速传感器时,将卡紧块套设在六维力加速传感器底部,套设完成后,将卡紧块放置在所述连接座上表面,所述弯杆插入至卡紧环内部,卡紧环将弯杆固定在指定位置以将卡紧块与六维力加速传感器一同固定在连接座上表面;
在基座底部设有驱动器,用以驱动所述转动板旋转,在驱动器内设有转速检测器和计时器,用以分别记录驱动器的转速和转动时间;在驱动器内设有预设角度矩阵θ(θ1,θ2,θ3...θn),其中,θ1为第一预设角度,θ2为第二预设角度,θ3为第三预设角度,θn为第n预设角度;当六维力加速传感器安装至连接座上表面时,驱动器会根据需求将所述连接座旋转至指定角度以对六维力加速传感器进行后续的检测或使用。
进一步地,所述驱动器中还设有预设卡紧块矩阵组C、预设测试转速矩阵组ωb和预设测试时间矩阵组tb;对于预设卡紧块矩阵组C,C(C1,C2,C3...Cn),其中,C1为适用于第一型号六维力加速传感器形状的第一预设卡紧块矩阵,C2为适用于第二型号六维力加速传感器形状的第二预设卡紧块矩阵,C3为适用于第三型号六维力加速传感器形状的第三预设卡紧块矩阵,Cn为适用于第n型号六维力加速传感器形状的第n预设卡紧块矩阵;对于第n预设卡紧块矩阵Cn,Cn(Cnx,Cny,Cnz),其中,Cnx为与第n型号六维力加速传感器左面/右面形状相同,用于将第n型号六维力加速传感器左面/右面固定在连接座上表面的第n横向卡紧块,Cny为与第n型号六维力加速传感器前面/后面形状相同,用于将第n型号六维力加速传感器前面/后面固定在连接座上表面的第n竖向卡紧块,Cnz为与第n型号六维力加速传感器上面/下面形状相同,用于将第n型号六维力加速传感器上面/下面固定在连接座上表面的第n纵向卡紧块;
对于预设测试转速矩阵组ωb,ωb(ωb1,ωb2,ωb3...ωbn),其中,ωb1为第一预设测试转速矩阵,ωb2为第二预设测试转速矩阵,ωb3为第三预设测试转速矩阵,ωbn为第n预设测试转速矩阵;对于第n预设测试转速矩阵ωbn,ωbn(ωbnx,ωbny,ωbnz),其中,ωbnx为使用第n横向卡紧块Cnx检测第n六维力加速传感器时使用的第n横向转速,ωbny为使用第n竖向卡紧块Cny检测第n六维力加速传感器时使用的第n竖向转速,ωbnz为使用第n纵向卡紧块Cnz检测第n六维力加速传感器时使用的第n纵向转速;
对于预设测试时间矩阵组tb,tb(tb1,tb2,tb3...tbn),其中,tb1为第一预设测试时间矩阵,tb2为第二预设测试时间矩阵,tb3为第三预设测试时间矩阵,tbn为第n预设测试时间矩阵;对于第n预设测试时间矩阵tbn,tbn(tbnx,tbny,tbnz),其中,tbnx为使用第n横向卡紧块Cnx检测第n六维力加速传感器时使用的第n横向测试时间,tbny为使用第n竖向卡紧块Cny检测第n六维力加速传感器时使用的第n竖向测试时间,tbnz为使用第n纵向卡紧块Cnz检测第n六维力加速传感器时使用的第n纵向测试时间;
在使用第一型号六维力加速传感器或对第一型号六维力加速传感器进行测试时,驱动器会建立第一测试矩阵组T1(C1,ωb1,tb1,θ1),并根据需求从C1矩阵中选取对应的卡紧块C1i,i=x,y,z,从ωb1矩阵中选取对应的转速ωb1i,从tb1矩阵中选取对应的测试时间tb1i,将连接座旋转至θ1以作为初始角度;
在使用第二型号六维力加速传感器或对第二型号六维力加速传感器进行测试时,驱动器会建立第二测试矩阵组T2(C2,ωb2,tb2,θ2),并根据需求从C2矩阵中选取对应的卡紧块C2i,从ωb2矩阵中选取对应的转速ωb2i,从tb2矩阵中选取对应的测试时间tb2i,将连接座旋转至θ2以作为初始角度;
在使用第三型号六维力加速传感器或对第三型号六维力加速传感器进行测试时,驱动器会建立第三测试矩阵组T3(C3,ωb3,tb3,θ3),并根据需求从C3矩阵中选取对应的卡紧块C3i,从ωb3矩阵中选取对应的转速ωb3i,从tb3矩阵中选取对应的测试时间tb3i,将连接座旋转至θ3以作为初始角度;
在使用第n型号六维力加速传感器或对第n型号六维力加速传感器进行测试时,驱动器会建立第n测试矩阵组Tn(Cn,ωbn,tbn,θn),并根据需求从Cn矩阵中选取对应的卡紧块Cni,从ωbn矩阵中选取对应的转速ωbni,从tbn矩阵中选取对应的测试时间tbni,将连接座旋转至θn以作为初始角度;
进一步地,当驱动器建立Tn矩阵组并将连接座旋转至θn后:
当驱动器对第n六维力加速传感器的横轴进行测试或使用时,驱动器建立第n横向测试矩阵组Tnx(Cnx,ωbnx,tbnx),使用与Cnx对应的卡紧块卡紧第n型号六维力加速传感器,并将转速调节为ωbnx,转动时间调节为tbnx以对六维力加速传感器的横轴进行测试或使用;
当驱动器对第n六维力加速传感器的竖轴进行测试或使用时,驱动器建立第n竖向测试矩阵组Tny(Cny,ωbny,tbny),使用与Cny对应的卡紧块卡紧 第n型号六维力加速传感器,并将转速调节为ωbny,转动时间调节为tbny以对六维力加速传感器的竖轴进行测试或使用;
当驱动器对第n六维力加速传感器的纵轴进行测试或使用时,驱动器建立第n纵向测试矩阵组Tnz(Cnz,ωbnz,tbnz),使用与Cnz对应的卡紧块卡紧第n型号六维力加速传感器,并将转速调节为ωbnz,转动时间调节为tbnz以对六维力加速传感器的纵轴进行测试或使用。
进一步地,所述驱动器中还设有预设角度转速矩阵ωa和预设角度时间矩阵ta;对于预设角度转速矩阵ωa,ωa(ωa1,ωa2,ωa3...ωan),其中,ωa1为第一预设角度转速,ωa2为第二预设角度转速,ωa3为第三预设角度转速,ωan为第n预设角度转速;对于预设角度时间矩阵ta,ta(ta1,ta2,ta3...tan),其中,ta1为第一预设角度时间,ta2为第二预设角度时间,ta3为第三预设角度时间,tan为第n预设角度时间;在将所述六维力加速传感器安装至指定位置时,驱动器会根据需求将连接座旋转至指定角度:
当连接座需要将旋转角度调节为θ1时,驱动器建立第一角度矩阵R1(ωa1,ta1)并根据R1矩阵中的参数,以ωa1的转速旋转ta1时长后停止以将连接座旋转至指定角度;
当连接座需要将旋转角度调节为θ2时,驱动器建立第二角度矩阵R2(ωa2,ta2)并根据R2矩阵中的参数,以ωa2的转速旋转ta2时长后停止以将连接座旋转至指定角度;
当连接座需要将旋转角度调节为θ3时,驱动器建立第三角度矩阵R3(ωa3,ta3)并根据R3矩阵中的参数,以ωa3的转速旋转ta3时长后停止以将连接座旋转至指定角度;
当连接座需要将旋转角度调节为θn时,驱动器建立第n角度矩阵Rn(ωan,tan)并根据Rn矩阵中的参数,以ωan的转速旋转tan时长后停止以将连接座旋转至指定角度。
进一步地,在所述卡紧环内开设有多个截面呈L形的L形槽,在卡紧环内壁还开设有多个凹槽,各凹槽分别与对应的L形槽连通;在安装六维力加速传感器时,所述弯杆插入对应的L形槽以将卡紧块固定在连接座上表面。
进一步地,在L形槽内设有挤压弹簧,挤压弹簧一端与L形槽端部固定连接;所述挤压弹簧内贯穿有滑杆,滑杆位于L形槽内部的一端设有凸块,滑杆位于凹槽内部的一端设有推块;在安装卡紧块时,各所述弯杆进入对应L形槽, 进入后,所述复位弹簧对弯杆产生拉力以将弯杆复位,弯杆复位时,L形槽对弯杆进行约束以将卡紧块固定在指定位置,同时弯杆对凸块施加压力并通过滑杆将对应的推块推动至凹槽外部;在拆卸卡紧块时,分别按压各推块,推块带动凸块挤压对应的弯杆,此时L形槽不再对弯杆进行约束,将卡紧块取出以完成对卡紧块的拆卸。
进一步地,各所述连接块底面均开设有转动槽,在各转动槽内分别设有转轴,各所述弯杆分别套设在对应的转轴上,在安装和拆卸卡紧块时,各弯杆会在对应的转轴上滑动,所述复位弹簧在弯杆停止受力时将弯杆移动至初始位置。
与现有技术相比,本发明的有益效果在于,本发明通过使用驱动器带动连接座旋转以完成对六维力加速传感器的测试和使用,同时,通过设置卡紧环和卡紧块能够完成对六维力加速传感器的快速拆卸和快速安装,提高了所述装置的使用效率。同时,本发明所述驱动器内分别设有预设卡紧块矩阵组C、预设测试转速矩阵组ωb和预设测试时间矩阵组tb,通过根据C矩阵组中的矩阵选取对应的卡紧块以完成对不同种类六维力加速传感器的固定,同时,通过从ωb矩阵组和tb矩阵组选取对应的转速和转动时间,即可完成对不同种类六维力加速传感器的测试和使用,提高了所述装置的使用效率。
进一步地,所述C矩阵组中的各参数矩阵Cn中还包括针对同一型号六维力加速传感器三个轴向的Cnx、Cny和Cnz三个种类的卡紧块,同时,ωbn矩阵中设有ωbnx、ωbny和ωbnz三个转速,tbn矩阵中设有tbnx、tbny和tbnz,通过选取对应轴向的卡紧块、转速和转动时间能够高效完成对六维力加速传感器三个轴向的测试或检测,在增加对六维力加速传感器检测的适用范围的同时,进一步提高了所述装置的使用效率。
进一步地,所述驱动器中还设有预设角度转速矩阵ωa和预设角度时间矩阵ta,驱动器会使用ωan转速转动tan时长以将六维力加速传感器调节至预设角度θn以增加所述装置对六维力加速传感器的测试精度或使用精度,进一步提高了所述装置的使用效率。
进一步地,所述基座内设有转动腔,并在转动腔内开设有通槽,通过在转动腔顶壁设置固定弹簧并在固定弹簧底端设置顶珠,能够使顶珠将转动板约束在指定位置并使连接座在驱动器的驱动下稳定旋转,进一步提高了所述装置的使用效率。
进一步地,在卡紧块内设有连接块,在连接块内设有弯杆,通过使用弯杆 与所述卡紧环配合,能够快速的将卡紧块卡紧的六维力加速传感器固定在指定位置,进一步提高了所述装置的使用效率。
进一步地,所述卡紧环内开设有多个截面呈L形的L形槽,在安装所述六维力加速传感器时,所述弯杆插入至L形槽,L形槽对弯杆进行约束以将卡紧块固定在指定位置,进一步提高了所述装置的使用效率。
进一步地,在L形槽内设有挤压弹簧,挤压弹簧内贯穿有滑杆,滑杆位于L形槽内部的一端设有凸块,滑杆位于凹槽内部的一端设有推块;在安装卡紧块时,各所述弯杆进入对应L形槽,所述复位弹簧对弯杆产生拉力以将弯杆复位,弯杆对凸块施加压力并通过滑杆将对应的推块推动至凹槽外部;在拆卸卡紧块时,分别按压各推块,推块带动凸块挤压对应的弯杆,此时L形槽不再对弯杆进行约束,将卡紧块取出以完成对卡紧块的拆卸,通过在L形槽处开设凹槽,并在L形槽和凹槽之间设置凸块、滑杆和推块,能够在拆卸六维力加速传感器时仅推动推块即可解除L形槽对弯杆的约束,从而完成对卡紧块的快速拆卸,进一步提高了所述装置的使用效率。
进一步地,各所述连接块底面均开设有转动槽,在各转动槽内分别设有转轴,各所述弯杆分别套设在对应的转轴上,在安装和拆卸卡紧块时,各弯杆会在对应的转轴上滑动,所述复位弹簧在弯杆停止受力时将弯杆移动至初始位置。通过将弯杆套设在转轴上,能够使弯杆更加灵活的进行移动,同时,通过使用复位弹簧对弯杆的约束,能够在保证弯杆灵活性的同时,增加弯杆的稳定性,进一步提高了所述装置的使用效率。
附图说明
图1为本发明一种基于六维力加速传感器的支撑装置的主视剖面图;
图2为本发明所述基座的剖面图;
图3为本发明所述固定环的部分剖面图;
图4为本发明所述连接块的剖面图。
具体实施方式
为了使本发明的目的和优点更加清楚明白,下面结合实施例对本发明作进一步描述;应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非在限制本发明的保护 范围。
需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
请参阅图1所示,其为本发明一种基于六维力加速传感器的支撑装置的主视剖面图。
本发明所述基于六维力加速传感器的支撑装置,包括基座1、卡紧块3、连接座4和卡紧环5。其中,所述连接座4设置在所述基座1上方,用以旋转六维力加速传感器2。所述卡紧环5套设在连接座4上。所述卡紧块3设置在所述连接座4上表面并与所述卡紧环配合,用以夹紧六维力加速传感器2。在使用所述装置时,选用指定的卡紧块3夹紧对应型号的六维力加速传感器2,将夹紧六维力加速传感器2的卡紧块3放置在所述连接座4上表面,卡紧块3与卡紧环5配合以将六维力加速传感器2固定在指定位置,固定完成后,基座1控制连接座4旋转以完成对六维力加速传感器2的测试或使用。
请继续参阅图1所示,本发明所述卡紧块3内设有多个活动槽6,在各活动槽6顶部均设有连接块7,各连接块7下方均设有弯杆8,各所述活动槽6内还分别设有复位弹簧17,各复位弹簧17分别与对应的弯杆8和活动槽6中靠近外侧的侧壁相连。
请参阅图2所示,其为本发明所述基座的剖面图,本发明所述基座1内开设有转动腔18,在转动腔18上部分开设有通槽19,在转动腔18顶壁设有固定弹簧21,在固定弹簧21底部设有顶珠22。
具体而言,本发明所述连接座4底部固定连接有转动板20,转动板20位于所述转动腔18底面,各顶珠22对转动板施加压力以对转动板20进行垂直方向上的约束。
请参阅图3所示,其为本发明所述固定环5的部分剖面图,
本发明所述卡紧环5套设在所述连接座4上,用以与所述卡紧块3配合将六维力加速传感器2固定在所述连接座4上表面。在安装六维力加速传感器2时,将卡紧块3套设在六维力加速传感器2底部,套设完成后,将卡紧块3放置在所述连接座4上表面,所述弯杆8插入至卡紧环5内部,卡紧环5将弯杆8固定在指定位置以将卡紧块3与六维力加速传感器2一同固定在连接座4上表面。
具体而言,在所述卡紧环5内开设有多个截面呈L形的L形槽9,在卡紧环5内壁还开设有多个凹槽10,各凹槽10分别与对应的L形槽9连通.在安装六维力加速传感器2时,所述弯杆8插入对应的L形槽9以将卡紧块3固定在连接座4上表面。
具体而言,在L形槽内设有挤压弹簧14,挤压弹簧14一端与L形槽9端部固定连接;所述挤压弹簧14内贯穿有滑杆11,滑杆11位于L形槽9内部的一端设有凸块12,滑杆11位于凹槽10内部的一端设有推块13;在安装卡紧块3时,各所述弯杆8进入对应L形槽9,进入后,所述复位弹簧17对弯杆8产生拉力以将弯杆8复位,弯杆8复位时,L形槽9对弯杆8进行约束以将卡紧块3固定在指定位置,同时弯杆8对凸块12施加压力并通过滑杆11将对应的推块13推动至凹槽10外部;在拆卸卡紧块3时,分别按压各推块13,推块13带动凸块12挤压对应的弯杆8,此时L形槽9不再对弯杆8进行约束,将卡紧块3取出以完成对卡紧块3的拆卸。
请参阅图4所示,其为本发明所述连接块7的剖面图,各所述连接块7底面均开设有转动槽15,在各转动槽15内分别设有转轴16,各所述弯杆8分别套设在对应的转轴16上,在安装和拆卸卡紧块3时,各弯杆8会在对应的转轴上16滑动,所述复位弹簧17在弯杆8停止受力时将弯杆8移动至初始位置。
请参阅图1-图3所示,本发明所述基座1底部设有驱动器(图中未画出),用以驱动所述转动板20旋转,在驱动器内设有转速检测器和计时器,用以分别记录驱动器的转速和转动时间;在驱动器内设有预设角度矩阵θ(θ1,θ2,θ3...θn),其中,θ1为第一预设角度,θ2为第二预设角度,θ3为第三预设角度,θn为第n预设角度;当六维力加速传感器2安装至连接座上表面时,驱动器会根据使用需求或测试需求将所述连接座旋转至指定角度以对六维力加速传感器进行后续的检测或使用。
具体而言,所述驱动器中还设有预设卡紧块矩阵组C、预设测试转速矩阵组 ωb和预设测试时间矩阵组tb;对于预设卡紧块矩阵组C,C(C1,C2,C3...Cn),其中,C1为适用于第一型号六维力加速传感器形状的第一预设卡紧块矩阵,C2为适用于第二型号六维力加速传感器形状的第二预设卡紧块矩阵,C3为适用于第三型号六维力加速传感器形状的第三预设卡紧块矩阵,Cn为适用于第n型号六维力加速传感器形状的第n预设卡紧块矩阵;对于第n预设卡紧块矩阵Cn,Cn(Cnx,Cny,Cnz),其中,Cnx为与第n型号六维力加速传感器左面/右面形状相同,用于将第n型号六维力加速传感器左面/右面固定在连接座上表面的第n横向卡紧块,Cny为与第n型号六维力加速传感器前面/后面形状相同,用于将第n型号六维力加速传感器前面/后面固定在连接座上表面的第n竖向卡紧块,Cnz为与第n型号六维力加速传感器上面/下面形状相同,用于将第n型号六维力加速传感器上面/下面固定在连接座上表面的第n纵向卡紧块。
对于预设测试转速矩阵组ωb,ωb(ωb1,ωb2,ωb3...ωbn),其中,ωb1为第一预设测试转速矩阵,ωb2为第二预设测试转速矩阵,ωb3为第三预设测试转速矩阵,ωbn为第n预设测试转速矩阵;对于第n预设测试转速矩阵ωbn,ωbn(ωbnx,ωbny,ωbnz),其中,ωbnx为使用第n横向卡紧块Cnx检测第n六维力加速传感器时使用的第n横向转速,ωbny为使用第n竖向卡紧块Cny检测第n六维力加速传感器时使用的第n竖向转速,ωbnz为使用第n纵向卡紧块Cnz检测第n六维力加速传感器时使用的第n纵向转速。
对于预设测试时间矩阵组tb,tb(tb1,tb2,tb3...tbn),其中,tb1为第一预设测试时间矩阵,tb2为第二预设测试时间矩阵,tb3为第三预设测试时间矩阵,tbn为第n预设测试时间矩阵;对于第n预设测试时间矩阵tbn,tbn(tbnx,tbny,tbnz),其中,tbnx为使用第n横向卡紧块Cnx检测第n六维力加速传感器时使用的第n横向测试时间,tbny为使用第n竖向卡紧块Cny检测第n六维力加速传感器时使用的第n竖向测试时间,tbnz为使用第n纵向卡紧块Cnz检测第n六维力加速传感器时使用的第n纵向测试时间。
在使用第一型号六维力加速传感器或对第一型号六维力加速传感器进行测试时,驱动器会建立第一测试矩阵组T1(C1,ωb1,tb1,θ1),并根据需求从C1矩阵中选取对应的卡紧块C1i,i=x,y,z,从ωb1矩阵中选取对应的转速ωb1i,从tb1矩阵中选取对应的测试时间tb1i,将连接座旋转至θ1以作为初始角度;
在使用第二型号六维力加速传感器或对第二型号六维力加速传感器进行测 试时,驱动器会建立第二测试矩阵组T2(C2,ωb2,tb2,θ2),并根据需求从C2矩阵中选取对应的卡紧块C2i,从ωb2矩阵中选取对应的转速ωb2i,从tb2矩阵中选取对应的测试时间tb2i,将连接座旋转至θ2以作为初始角度;
在使用第三型号六维力加速传感器或对第三型号六维力加速传感器进行测试时,驱动器会建立第三测试矩阵组T3(C3,ωb3,tb3,θ3),并根据需求从C3矩阵中选取对应的卡紧块C3i,从ωb3矩阵中选取对应的转速ωb3i,从tb3矩阵中选取对应的测试时间tb3i,将连接座旋转至θ3以作为初始角度;
在使用第n型号六维力加速传感器或对第n型号六维力加速传感器进行测试时,驱动器会建立第n测试矩阵组Tn(Cn,ωbn,tbn,θn),并根据需求从Cn矩阵中选取对应的卡紧块Cni,从ωbn矩阵中选取对应的转速ωbni,从tbn矩阵中选取对应的测试时间tbni,将连接座旋转至θn以作为初始角度。
具体而言,当驱动器建立Tn矩阵组并将连接座旋转至θn后:
当驱动器对第n六维力加速传感器的横轴进行测试或使用时,驱动器建立第n横向测试矩阵组Tnx(Cnx,ωbnx,tbnx),使用与Cnx对应的卡紧块卡紧第n型号六维力加速传感器的左面或右面,并将转速调节为ωbnx,转动时间调节为tbnx以对六维力加速传感器的横轴进行测试或使用;
当驱动器对第n六维力加速传感器的竖轴进行测试或使用时,驱动器建立第n竖向测试矩阵组Tny(Cny,ωbny,tbny),使用与Cny对应的卡紧块卡紧第n型号六维力加速传感器前面或后面,并将转速调节为ωbny,转动时间调节为tbny以对六维力加速传感器的竖轴进行测试或使用;
当驱动器对第n六维力加速传感器的纵轴进行测试或使用时,驱动器建立第n纵向测试矩阵组Tnz(Cnz,ωbnz,tbnz),使用与Cnz对应的卡紧块卡紧第n型号六维力加速传感器的上面或下面,并将转速调节为ωbnz,转动时间调节为tbnz以对六维力加速传感器的纵轴进行测试或使用。
具体而言,所述驱动器中还设有预设角度转速矩阵ωa和预设角度时间矩阵ta;对于预设角度转速矩阵ωa,ωa(ωa1,ωa2,ωa3...ωan),其中,ωa1为第一预设角度转速,ωa2为第二预设角度转速,ωa3为第三预设角度转速,ωan为第n预设角度转速;对于预设角度时间矩阵ta,ta(ta1,ta2,ta3...tan),其中,ta1为第一预设角度时间,ta2为第二预设角度时间,ta3为第三预设角度时间,tan为第n预设角度时间;在将所述六维力加速传感器安装至指定位置时,驱动器会根据需求将连接座旋转至指定角度:
当连接座需要将旋转角度调节为θ1时,驱动器建立第一角度矩阵R1(ωa1,ta1)并根据R1矩阵中的参数,以ωa1的转速旋转ta1时长后停止以将连接座旋转至指定角度;
当连接座需要将旋转角度调节为θ2时,驱动器建立第二角度矩阵R2(ωa2,ta2)并根据R2矩阵中的参数,以ωa2的转速旋转ta2时长后停止以将连接座旋转至指定角度;
当连接座需要将旋转角度调节为θ3时,驱动器建立第三角度矩阵R3(ωa3,ta3)并根据R3矩阵中的参数,以ωa3的转速旋转ta3时长后停止以将连接座旋转至指定角度;
当连接座需要将旋转角度调节为θn时,驱动器建立第n角度矩阵Rn(ωan,tan)并根据Rn矩阵中的参数,以ωan的转速旋转tan时长后停止以将连接座旋转至指定角度。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征做出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。
以上所述仅为本发明的优选实施例,并不用于限制本发明;对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种基于六维力加速传感器的支撑装置,其特征在于,包括:
    基座,在基座内开设有转动腔,在转动腔上部分开设有通槽,在转动腔顶壁设有固定弹簧,在固定弹簧底部设有顶珠;
    卡紧块,用以卡紧对应形状的六维力加速传感器,在卡紧块内设有多个活动槽,在各活动槽顶部均设有连接块,各连接块下方均设有弯杆,各所述活动槽内还分别设有复位弹簧,各复位弹簧分别与对应的弯杆和活动槽中靠近外侧的侧壁相连;
    连接座,在连接座底部固定连接有转动板;
    卡紧环,其套设在所述连接座上,用以与所述卡紧块配合将六维力加速传感器固定在所述连接座上表面;在安装六维力加速传感器时,将卡紧块套设在六维力加速传感器底部,套设完成后,将卡紧块放置在所述连接座上表面,所述弯杆插入至卡紧环内部,卡紧环将弯杆固定在指定位置以将卡紧块与六维力加速传感器一同固定在连接座上表面;
    在基座底部设有驱动器,用以驱动所述转动板旋转,在驱动器内设有转速检测器和计时器,用以分别记录驱动器的转速和转动时间;在驱动器内设有预设角度矩阵θ(θ1,θ2,θ3...θn),其中,θ1为第一预设角度,θ2为第二预设角度,θ3为第三预设角度,θn为第n预设角度;当六维力加速传感器安装至连接座上表面时,驱动器会根据需求将所述连接座旋转至指定角度以对六维力加速传感器进行后续的检测或使用。
  2. 根据权利要求1所述的基于六维力加速传感器的支撑装置,其特征在于,所述驱动器中还设有预设卡紧块矩阵组C、预设测试转速矩阵组ωb和预设测试时间矩阵组tb;对于预设卡紧块矩阵组C,C(C1,C2,C3...Cn),其中,C1为适用于第一型号六维力加速传感器形状的第一预设卡紧块矩阵,C2为适用于第二型号六维力加速传感器形状的第二预设卡紧块矩阵,C3为适用于第三型号六维力加速传感器形状的第三预设卡紧块矩阵,Cn为适用于第n型号六维力加速传感器形状的第n预设卡紧块矩阵;对于第n预设卡紧块矩阵Cn,Cn(Cnx,Cny,Cnz),其中,Cnx为与第n型号六维力加速传感器左面/右面形状相同,用于将第n型号六维力加速传感器左面/右面固定在连接座上表面的第n横向卡紧块,Cny为与第n型号六维力加速传感器前面/后面形状相同,用于将第n型号六维力加速传感器前面/后面固定在连接座上表面的第n竖向卡紧块,Cnz为与第n型号六维力加速传感器上面/下面形状相同,用于将第n型号六维力加速传感器 上面/下面固定在连接座上表面的第n纵向卡紧块;
    对于预设测试转速矩阵组ωb,ωb(ωb1,ωb2,ωb3...ωbn),其中,ωb1为第一预设测试转速矩阵,ωb2为第二预设测试转速矩阵,ωb3为第三预设测试转速矩阵,ωbn为第n预设测试转速矩阵;对于第n预设测试转速矩阵ωbn,ωbn(ωbnx,ωbny,ωbnz),其中,ωbnx为使用第n横向卡紧块Cnx检测第n六维力加速传感器时使用的第n横向转速,ωbny为使用第n竖向卡紧块Cny检测第n六维力加速传感器时使用的第n竖向转速,ωbnz为使用第n纵向卡紧块Cnz检测第n六维力加速传感器时使用的第n纵向转速;
    对于预设测试时间矩阵组tb,tb(tb1,tb2,tb3...tbn),其中,tb1为第一预设测试时间矩阵,tb2为第二预设测试时间矩阵,tb3为第三预设测试时间矩阵,tbn为第n预设测试时间矩阵;对于第n预设测试时间矩阵tbn,tbn(tbnx,tbny,tbnz),其中,tbnx为使用第n横向卡紧块Cnx检测第n六维力加速传感器时使用的第n横向测试时间,tbny为使用第n竖向卡紧块Cny检测第n六维力加速传感器时使用的第n竖向测试时间,tbnz为使用第n纵向卡紧块Cnz检测第n六维力加速传感器时使用的第n纵向测试时间;
    在使用第一型号六维力加速传感器或对第一型号六维力加速传感器进行测试时,驱动器会建立第一测试矩阵组T1(C1,ωb1,tb1,θ1),并根据需求从C1矩阵中选取对应的卡紧块C1i,i=x,y,z,从ωb1矩阵中选取对应的转速ωb1i,从tb1矩阵中选取对应的测试时间tb1i,将连接座旋转至θ1以作为初始角度;
    在使用第二型号六维力加速传感器或对第二型号六维力加速传感器进行测试时,驱动器会建立第二测试矩阵组T2(C2,ωb2,tb2,θ2),并根据需求从C2矩阵中选取对应的卡紧块C2i,从ωb2矩阵中选取对应的转速ωb2i,从tb2矩阵中选取对应的测试时间tb2i,将连接座旋转至θ2以作为初始角度;
    在使用第三型号六维力加速传感器或对第三型号六维力加速传感器进行测试时,驱动器会建立第三测试矩阵组T3(C3,ωb3,tb3,θ3),并根据需求从C3矩阵中选取对应的卡紧块C3i,从ωb3矩阵中选取对应的转速ωb3i,从tb3矩阵中选取对应的测试时间tb3i,将连接座旋转至θ3以作为初始角度;
    在使用第n型号六维力加速传感器或对第n型号六维力加速传感器进行测试时,驱动器会建立第n测试矩阵组Tn(Cn,ωbn,tbn,θn),并根据需求从Cn矩阵中选取对应的卡紧块Cni,从ωbn矩阵中选取对应的转速ωbni,从tbn 矩阵中选取对应的测试时间tbni,将连接座旋转至θn以作为初始角度。
  3. 根据权利要求2所述的基于六维力加速传感器的支撑装置,其特征在于,当驱动器建立Tn矩阵组并将连接座旋转至θn后:
    当驱动器对第n六维力加速传感器的横轴进行测试或使用时,驱动器建立第n横向测试矩阵组Tnx(Cnx,ωbnx,tbnx),使用与Cnx对应的卡紧块卡紧第n型号六维力加速传感器,并将转速调节为ωbnx,转动时间调节为tbnx以对六维力加速传感器的横轴进行测试或使用;
    当驱动器对第n六维力加速传感器的竖轴进行测试或使用时,驱动器建立第n竖向测试矩阵组Tny(Cny,ωbny,tbny),使用与Cny对应的卡紧块卡紧第n型号六维力加速传感器,并将转速调节为ωbny,转动时间调节为tbny以对六维力加速传感器的竖轴进行测试或使用;
    当驱动器对第n六维力加速传感器的纵轴进行测试或使用时,驱动器建立第n纵向测试矩阵组Tnz(Cnz,ωbnz,tbnz),使用与Cnz对应的卡紧块卡紧第n型号六维力加速传感器,并将转速调节为ωbnz,转动时间调节为tbnz以对六维力加速传感器的纵轴进行测试或使用。
  4. 根据权利要求3所述的基于六维力加速传感器的支撑装置,其特征在于,所述驱动器中还设有预设角度转速矩阵ωa和预设角度时间矩阵ta;对于预设角度转速矩阵ωa,ωa(ωa1,ωa2,ωa3...ωan),其中,ωa1为第一预设角度转速,ωa2为第二预设角度转速,ωa3为第三预设角度转速,ωan为第n预设角度转速;对于预设角度时间矩阵ta,ta(ta1,ta2,ta3...tan),其中,ta1为第一预设角度时间,ta2为第二预设角度时间,ta3为第三预设角度时间,tan为第n预设角度时间;在将所述六维力加速传感器安装至指定位置时,驱动器会根据需求将连接座旋转至指定角度:
    当连接座需要将旋转角度调节为θ1时,驱动器建立第一角度矩阵R1(ωa1,ta1)并根据R1矩阵中的参数,以ωa1的转速旋转ta1时长后停止以将连接座旋转至指定角度;
    当连接座需要将旋转角度调节为θ2时,驱动器建立第二角度矩阵R2(ωa2,ta2)并根据R2矩阵中的参数,以ωa2的转速旋转ta2时长后停止以将连接座旋转至指定角度;
    当连接座需要将旋转角度调节为θ3时,驱动器建立第三角度矩阵R3(ωa3,ta3)并根据R3矩阵中的参数,以ωa3的转速旋转ta3时长后停止以将连 接座旋转至指定角度;
    当连接座需要将旋转角度调节为θn时,驱动器建立第n角度矩阵Rn(ωan,tan)并根据Rn矩阵中的参数,以ωan的转速旋转tan时长后停止以将连接座旋转至指定角度。
  5. 根据权利要求1所述的基于六维力加速传感器的支撑装置,其特征在于,在所述卡紧环内开设有多个截面呈L形的L形槽,在卡紧环内壁还开设有多个凹槽,各凹槽分别与对应的L形槽连通;在安装六维力加速传感器时,所述弯杆插入对应的L形槽以将卡紧块固定在连接座上表面。
  6. 根据权利要求5所述的基于六维力加速传感器的支撑装置,其特征在于,在L形槽内设有挤压弹簧,挤压弹簧一端与L形槽端部固定连接;所述挤压弹簧内贯穿有滑杆,滑杆位于L形槽内部的一端设有凸块,滑杆位于凹槽内部的一端设有推块;在安装卡紧块时,各所述弯杆进入对应L形槽,进入后,所述复位弹簧对弯杆产生拉力以将弯杆复位,弯杆复位时,L形槽对弯杆进行约束以将卡紧块固定在指定位置,同时弯杆对凸块施加压力并通过滑杆将对应的推块推动至凹槽外部;在拆卸卡紧块时,分别按压各推块,推块带动凸块挤压对应的弯杆,此时L形槽不再对弯杆进行约束,将卡紧块取出以完成对卡紧块的拆卸。
  7. 根据权利要求1所述的基于六维力加速传感器的支撑装置,其特征在于,各所述连接块底面均开设有转动槽,在各转动槽内分别设有转轴,各所述弯杆分别套设在对应的转轴上,在安装和拆卸卡紧块时,各弯杆会在对应的转轴上滑动,所述复位弹簧在弯杆停止受力时将弯杆移动至初始位置。
PCT/CN2020/127160 2020-06-19 2020-11-06 一种基于六维力加速传感器的支撑装置 WO2021253713A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010562542.3 2020-06-19
CN202010562542.3A CN111458536B (zh) 2020-06-19 2020-06-19 一种基于六维力加速传感器的支撑装置

Publications (1)

Publication Number Publication Date
WO2021253713A1 true WO2021253713A1 (zh) 2021-12-23

Family

ID=71685555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127160 WO2021253713A1 (zh) 2020-06-19 2020-11-06 一种基于六维力加速传感器的支撑装置

Country Status (2)

Country Link
CN (1) CN111458536B (zh)
WO (1) WO2021253713A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111458536B (zh) * 2020-06-19 2020-10-30 山东欣巽联信息科技有限公司 一种基于六维力加速传感器的支撑装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352775A (ja) * 2004-06-10 2005-12-22 Hitachi Metals Ltd 被試験体の保持具およびそれを備えた試験装置
CN101907639A (zh) * 2010-07-23 2010-12-08 燕山大学 六维加速度传感器标定平台
KR20120078874A (ko) * 2011-01-03 2012-07-11 한국표준과학연구원 가속도 센서 오차 측정 장치
CN103123361A (zh) * 2012-11-22 2013-05-29 常州天大龙成节能环保科技有限公司 Mems角速度和加速度传感器自动标定方法及其系统
CN206353032U (zh) * 2017-01-10 2017-07-25 中山博力高电子有限公司 一种倾角传感器检测装置
CN207992260U (zh) * 2018-03-28 2018-10-19 利维智能(深圳)有限公司 一种安装方便的加速度传感器
CN109521225A (zh) * 2018-12-20 2019-03-26 核动力运行研究所 一种三轴向加速度传感器安装支座及其使用方法
CN209296765U (zh) * 2019-01-07 2019-08-23 深圳耐特恩科技有限公司 一种便于安装的加速度传感器
CN111458536A (zh) * 2020-06-19 2020-07-28 山东沃华远达环境科技股份有限公司 一种基于六维力加速传感器的支撑装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102168998B (zh) * 2010-11-27 2012-09-26 合肥市百胜科技发展股份有限公司 传感器支架
CN105974155B (zh) * 2016-06-08 2019-02-26 中国工程物理研究院总体工程研究所 加速度传感器低频校准台及其使用方法
CN206990629U (zh) * 2017-07-31 2018-02-09 重庆优摩特科技有限公司 加速度计测试平台
CN209698922U (zh) * 2019-04-12 2019-11-29 武汉科技大学 一种用于圆形结构的振动加速度传感器固定夹
CN210036771U (zh) * 2019-05-08 2020-02-07 苏州智科源测控科技有限公司 一种传感器安装固定装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352775A (ja) * 2004-06-10 2005-12-22 Hitachi Metals Ltd 被試験体の保持具およびそれを備えた試験装置
CN101907639A (zh) * 2010-07-23 2010-12-08 燕山大学 六维加速度传感器标定平台
KR20120078874A (ko) * 2011-01-03 2012-07-11 한국표준과학연구원 가속도 센서 오차 측정 장치
CN103123361A (zh) * 2012-11-22 2013-05-29 常州天大龙成节能环保科技有限公司 Mems角速度和加速度传感器自动标定方法及其系统
CN206353032U (zh) * 2017-01-10 2017-07-25 中山博力高电子有限公司 一种倾角传感器检测装置
CN207992260U (zh) * 2018-03-28 2018-10-19 利维智能(深圳)有限公司 一种安装方便的加速度传感器
CN109521225A (zh) * 2018-12-20 2019-03-26 核动力运行研究所 一种三轴向加速度传感器安装支座及其使用方法
CN209296765U (zh) * 2019-01-07 2019-08-23 深圳耐特恩科技有限公司 一种便于安装的加速度传感器
CN111458536A (zh) * 2020-06-19 2020-07-28 山东沃华远达环境科技股份有限公司 一种基于六维力加速传感器的支撑装置

Also Published As

Publication number Publication date
CN111458536B (zh) 2020-10-30
CN111458536A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
WO2021253713A1 (zh) 一种基于六维力加速传感器的支撑装置
TWI572205B (zh) 根據由包含參考標記的相機所捕捉之影像的相機校準
KR880000363B1 (ko) 플로피 디스크 기록 재생 장치
CN101680784A (zh) 可调节传感器
JPH06313828A (ja) レンズマウント装置
CN104176475B (zh) 定位机构
US7990627B2 (en) Lens device
CN219177417U (zh) 一种用于涂布检测的多相机支架
CN217385325U (zh) 一种管道内部检测装置
CN216526479U (zh) 一种短焦镜头系统
CN209044978U (zh) 机械式精确微动斜面力学系列实验仪
CN213714211U (zh) 一种管件的丝牙检测装置
US8146435B1 (en) Differential pressure gauge
CN201600367U (zh) 通用免疫层析卡判读记录仪
CN207923684U (zh) 一种圆形锻造件的外观检测设备
CN210670545U (zh) 一种条形阵列传声器组件
KR102182818B1 (ko) 디스플레이 장치
CN208505982U (zh) 一种中大径管道相控阵超声检测环扣式扫查器
TWI617786B (zh) 管件量測裝置及其量測方法
CN106687843A (zh) 透镜装置
CN116608370A (zh) 一种传感器更换机构
CN111879407A (zh) 一种具有高分辨率热电堆红外传感器
CN111972701A (zh) 一种烟支外观物测一体化综合测试台
CN219475907U (zh) 一种红外光、可见光的双通道成像物镜
CN213022875U (zh) 一种用于拉曼检测的探头装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940710

Country of ref document: EP

Kind code of ref document: A1