WO2021253209A1 - Timing associated with radio frequency sensing signals - Google Patents

Timing associated with radio frequency sensing signals Download PDF

Info

Publication number
WO2021253209A1
WO2021253209A1 PCT/CN2020/096270 CN2020096270W WO2021253209A1 WO 2021253209 A1 WO2021253209 A1 WO 2021253209A1 CN 2020096270 W CN2020096270 W CN 2020096270W WO 2021253209 A1 WO2021253209 A1 WO 2021253209A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing signal
transmission
downlink control
control communication
time
Prior art date
Application number
PCT/CN2020/096270
Other languages
French (fr)
Inventor
Jing Dai
Yu Zhang
Chao Wei
Min Huang
Qiaoyu Li
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/096270 priority Critical patent/WO2021253209A1/en
Publication of WO2021253209A1 publication Critical patent/WO2021253209A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9316Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles combined with communication equipment with other vehicles or with base stations

Definitions

  • aspects of this disclosure relate generally to environment sensing and the like, and particularly to timing (e.g., cancellation timing and/or transmission timing) associated with radio frequency (RF) sensing signals.
  • timing e.g., cancellation timing and/or transmission timing
  • RF radio frequency
  • Wireless communication systems have developed through various generations, including a first-generation analog wireless phone service (1G) , a second-generation (2G) digital wireless phone service (including interim 2.5G and 2.75G networks) , a third-generation (3G) high speed data, Internet-capable wireless service and a fourth-generation (4G) service (e.g., Long Term Evolution (LTE) or WiMax) .
  • 1G first-generation analog wireless phone service
  • 2G second-generation
  • 3G third-generation
  • 4G fourth-generation
  • LTE Long Term Evolution
  • WiMax Worldwide Interoperability for Microwave Access
  • Examples of known cellular systems include the cellular analog advanced mobile phone system (AMPS) , and digital cellular systems based on code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , the Global System for Mobile communication (GSM) , etc.
  • AMPS cellular analog advanced mobile phone system
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • GSM Global System for Mobile communication
  • a fifth generation (5G) wireless standard referred to as New Radio (NR)
  • NR New Radio
  • the 5G standard according to the Next Generation Mobile Networks Alliance, is designed to provide data rates of several tens of megabits per second to each of tens of thousands of users, with 1 gigabit per second to tens of workers on an office floor.
  • Several hundreds of thousands of simultaneous connections should be supported in order to support large sensor deployments. Consequently, the spectral efficiency of 5G mobile communications should be significantly enhanced compared to the current 4G standard.
  • signaling efficiencies should be enhanced and latency should be substantially reduced compared to current standards.
  • 5G enables the utilization of mmW RF signals for wireless communication between network nodes, such as base stations, user equipments (UEs) , vehicles, factory automation machinery, and the like.
  • mmW RF signals can be used for other purposes as well.
  • mmW RF signals can be used in vehicle sensing by mmWave Radar and also mmWave communication through 5G NR (e.g., UE sensing) , handheld short range sensing by UEs like smart phone, smart watch, or in-car-based control (e.g., UE sensing) , building analytics (e.g., residential security or building management, e.g., gNB sensing) , digital health (e.g., device-free eldercare by motion sensing, e.g., higher sensing granularity can be supported by e.g.
  • Terahertz radio e.g., CPE/AP sensing
  • sensing for communication e.g., network management related to beam adaptation, protocol adaptation etc., depending on environments condition obtained through sensing, e.g., gNB/AP sensing
  • sensing for communication e.g., network management related to beam adaptation, protocol adaptation etc., depending on environments condition obtained through sensing, e.g., gNB/AP sensing
  • An aspect is directed to a method of operating a user equipment (UE) , comprising receiving a downlink control communication that specifies transmission for an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal, determining a transmission time for the specified transmission based on a time offset from the downlink control communication, and transmitting the AP or SP RF sensing signal at the determined transmission time in accordance with the downlink control communication.
  • AP aperiodic
  • RF radio frequency
  • SP semi-persistent
  • Another aspect is directed to a method of operating a base station, comprising determining a transmission time at which to trigger transmission by a user equipment of an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal, and transmitting, to a user equipment (UE) , a downlink control communication that specifies transmission for the AP RF sensing signal or a first instance of the SP RF sensing signal at the determined transmission time based on a time offset from the downlink control communication.
  • AP aperiodic
  • RF radio frequency
  • SP semi-persistent
  • Another aspect is directed to a method of operating a user equipment (UE) , comprising receiving a downlink control communication that specifies cancellation for at least part of a scheduled radio frequency (RF) sensing signal, determining a cancellation time for the specified cancellation based on a time offset from the downlink control communication, and canceling some or all of the scheduled RF sensing signal from transmission at the determined cancellation time in accordance with the downlink control communication.
  • UE user equipment
  • Another aspect is directed to a method of operating a base station, comprising determining a cancellation time at which to cancel transmission by a user equipment of some or all of a scheduled radio frequency (RF) sensing signal, and transmitting, to a user equipment (UE) , a downlink control communication that specifies cancellation for at least part of some or all of the some or all of the scheduled RF sensing signal from transmission at the determined cancellation time based on a time offset from the downlink control communication.
  • RF radio frequency
  • a user equipment comprising means for receiving a downlink control communication that specifies transmission for an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal, means for determining a transmission time for the specified transmission based on a time offset from the downlink control communication, and means for transmitting the AP or SP RF sensing signal at the determined transmission time in accordance with the downlink control communication.
  • AP aperiodic
  • RF radio frequency
  • SP semi-persistent
  • a base station comprising means for determining a transmission time at which to trigger transmission by a user equipment of an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal, and means for transmitting, to a user equipment (UE) , a downlink control communication that specifies transmission for the AP RF sensing signal or a first instance of the SP RF sensing signal at the determined transmission time based on a time offset from the downlink control communication.
  • AP aperiodic
  • RF radio frequency
  • SP semi-persistent
  • a user equipment comprising means for receiving a downlink control communication that specifies cancellation for at least part of a scheduled radio frequency (RF) sensing signal, means for determining a cancellation time for the specified cancellation based on a time offset from the downlink control communication, and means for canceling some or all of the scheduled RF sensing signal from transmission at the determined cancellation time in accordance with the downlink control communication.
  • UE user equipment
  • a base station comprising means for determining a cancellation time at which to cancel transmission by a user equipment of some or all of a scheduled radio frequency (RF) sensing signal, and means for transmitting, to a user equipment (UE) , a downlink control communication that specifies cancellation for at least part of some or all of the some or all of the scheduled RF sensing signal from transmission at the determined cancellation time based on a time offset from the downlink control communication.
  • RF radio frequency
  • a user equipment comprising a memory, and at least one processor coupled to the memory, the memory and the at least one processor configured to receive a downlink control communication that specifies transmission for an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal, determine a transmission time for the specified transmission based on a time offset from the downlink control communication, and transmit the AP or SP RF sensing signal at the determined transmission time in accordance with the downlink control communication.
  • AP aperiodic
  • RF radio frequency
  • SP semi-persistent
  • a base station comprising a memory, and at least one processor coupled to the memory, the memory and the at least one processor configured to determine a transmission time at which to trigger transmission by a user equipment of an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal, and transmit, to a user equipment (UE) , a downlink control communication that specifies transmission for the AP RF sensing signal or a first instance of the SP RF sensing signal at the determined transmission time based on a time offset from the downlink control communication.
  • AP aperiodic
  • RF radio frequency
  • SP semi-persistent
  • a user equipment comprising a memory, and at least one processor coupled to the memory, the memory and the at least one processor configured to receive a downlink control communication that specifies cancellation for at least part of a scheduled radio frequency (RF) sensing signal, determine a cancellation time for the specified cancellation based on a time offset from the downlink control communication, and cancel some or all of the scheduled RF sensing signal from transmission at the determined cancellation time in accordance with the downlink control communication.
  • RF radio frequency
  • a base station comprising a memory, and at least one processor coupled to the memory, the memory and the at least one processor configured to determine a cancellation time at which to cancel transmission by a user equipment of some or all of a scheduled radio frequency (RF) sensing signal, and transmit, to a user equipment (UE) , a downlink control communication that specifies cancellation for at least part of some or all of the some or all of the scheduled RF sensing signal from transmission at the determined cancellation time based on a time offset from the downlink control communication.
  • RF radio frequency
  • Another aspect is directed to a non-transitory computer-readable medium storing computer-executable instructions, the computer-executable instructions comprising at least one instruction instructing a user equipment (UE) to receive a downlink control communication that specifies transmission for an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal, at least one instruction instructing the UE to determine a transmission time for the specified transmission based on a time offset from the downlink control communication, and at least one instruction instructing the UE to transmit the AP or SP RF sensing signal at the determined transmission time in accordance with the downlink control communication.
  • AP aperiodic
  • RF radio frequency
  • SP semi-persistent
  • Another aspect is directed to a non-transitory computer-readable medium storing computer-executable instructions, the computer-executable instructions comprising at least one instruction instructing a base station to determine a transmission time at which to trigger transmission by a user equipment of an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal, and at least one instruction instructing the base station to transmit, to a user equipment (UE) , a downlink control communication that specifies transmission for the AP RF sensing signal or a first instance of the SP RF sensing signal at the determined transmission time based on a time offset from the downlink control communication.
  • AP aperiodic
  • RF radio frequency
  • SP semi-persistent
  • Another aspect is directed to a non-transitory computer-readable medium storing computer-executable instructions, the computer-executable instructions comprising at least one instruction instructing a user equipment (UE) to receive a downlink control communication that specifies cancellation for at least part of a scheduled radio frequency (RF) sensing signal, at least one instruction instructing the UE to determine a cancellation time for the specified cancellation based on a time offset from the downlink control communication, and at least one instruction instructing the UE to cancel some or all of the scheduled RF sensing signal from transmission at the determined cancellation time in accordance with the downlink control communication.
  • UE user equipment
  • RF radio frequency
  • Another aspect is directed to a non-transitory computer-readable medium storing computer-executable instructions, the computer-executable instructions comprising at least one instruction instructing a base station to determine a cancellation time at which to cancel transmission by a user equipment of some or all of a scheduled radio frequency (RF) sensing signal, and at least one instruction instructing a base station to transmit, to a user equipment (UE) , a downlink control communication that specifies cancellation for at least part of some or all of the some or all of the scheduled RF sensing signal from transmission at the determined cancellation time based on a time offset from the downlink control communication.
  • RF radio frequency
  • FIG. 1 illustrates an exemplary wireless communications system, according to various aspects of the disclosure.
  • FIG. 2A illustrates the general process of transmitting and collecting mmW RF signal data, according to aspects of the disclosure.
  • FIG. 2B is a graph illustrating an exemplary waveform of transmitted and received frequency modulated continuous wave (FMCW) RF signals, according to aspects of the disclosure.
  • FMCW frequency modulated continuous wave
  • FIG. 3A illustrates an exemplary electronic device configured as an environment sensing device, according to aspects of the disclosure
  • FIG. 3B is a block diagram conceptually illustrating a design of a base station, a UE and a core network component configured according to some embodiments of the present disclosure.
  • FIG. 4 is a diagram of various frequency bands above 24 GHz that may be used for wireless mobile communications.
  • FIG. 5 is a diagram illustrating an example of a radio frame structure, according to aspects of the disclosure.
  • FIG. 6 illustrates a comparison between a simple chirp waveform and a mmW OFDM waveform, according to aspects of the disclosure.
  • FIG. 7 is a diagram of an exemplary scenario in which a UE of a user is within communication range of an access point, according to aspects of the disclosure.
  • FIG. 8 is a diagram of various uplink and downlink environment sensing scenarios using 5G mmW RF signals, according to aspects of the disclosure.
  • FIG. 9 is a diagram of a vehicle-to-vehicle (V2V) /vehicle-to-everything (V2X) environment sensing scenario using 5G mmW RF signals, according to aspects of the disclosure.
  • V2V vehicle-to-vehicle
  • V2X vehicle-to-everything
  • FIGS. 10-11 illustrate RF signal-based object detection scenarios in accordance with embodiments of the disclosure.
  • FIG. 12 illustrates an exemplary process of wireless communication, according to aspects of the disclosure.
  • FIG. 13 illustrates an exemplary process of wireless communication, according to aspects of the disclosure.
  • FIG. 14A illustrates an RF sensing burst triggered based on the processes of FIGS. 12-13 in accordance with an embodiment of the disclosure.
  • FIG. 14B illustrates an RF sensing burst triggered based on the processes of FIGS. 12-13 in accordance with another embodiment of the disclosure.
  • FIG. 15 illustrates an exemplary process of wireless communication, according to aspects of the disclosure.
  • FIG. 16 illustrates an exemplary process of wireless communication, according to aspects of the disclosure.
  • FIG. 17 illustrates an RF sensing burst sequence based on the processes of FIGS. 15-16 in accordance with an embodiment of the disclosure.
  • FIG. 18 illustrates an RF sensing burst sequence based on the processes of FIGS. 15-16 in accordance with an embodiment of the disclosure.
  • the UE may transmit a first set of RF signals for communication in accordance with a first power control scheme, and a second set of RF signals at least for object detection (e.g., in some designs, for both object detection and communication) in accordance with a second power control scheme.
  • RF radio frequency
  • sequences of actions to be performed by, for example, elements of a computing device. It will be recognized that various actions described herein can be performed by specific circuits (e.g., application specific integrated circuits (ASICs) ) , by program instructions being executed by one or more processors, or by a combination of both. Additionally, the sequence (s) of actions described herein can be considered to be embodied entirely within any form of non-transitory computer-readable storage medium having stored therein a corresponding set of computer instructions that, upon execution, would cause or instruct an associated processor of a device to perform the functionality described herein.
  • ASICs application specific integrated circuits
  • a UE may be any wireless communication device (e.g., a mobile phone, router, tablet computer, laptop computer, tracking device, wearable device (e.g., smartwatch, glasses, augmented reality (AR) /virtual reality (VR) headset, etc. ) , vehicle (e.g., automobile, motorcycle, bicycle, etc. ) , Internet of Things (IoT) device, etc. ) used by a user to communicate over a wireless communications network.
  • wireless communication device e.g., a mobile phone, router, tablet computer, laptop computer, tracking device, wearable device (e.g., smartwatch, glasses, augmented reality (AR) /virtual reality (VR) headset, etc. )
  • vehicle e.g., automobile, motorcycle, bicycle, etc.
  • IoT Internet of Things
  • a UE may be mobile or may (e.g., at certain times) be stationary, and may communicate with a radio access network (RAN) .
  • RAN radio access network
  • the term “UE” may be referred to interchangeably as an “access terminal” or “AT, ” a “client device, ” a “wireless device, ” a “subscriber device, ” a “subscriber terminal, ” a “subscriber station, ” a “user terminal” or UT, a “mobile device, ” a “mobile terminal, ” a “mobile station, ” or variations thereof.
  • UEs can communicate with a core network via a RAN, and through the core network the UEs can be connected with external networks such as the Internet and with other UEs.
  • external networks such as the Internet and with other UEs.
  • WLAN wireless local area network
  • the UEs can communicate with a core network via a RAN, and through the core network the UEs can be connected with external networks such as the Internet and with other UEs.
  • other mechanisms of connecting to the core network and/or the Internet are also possible for the UEs, such as over wired access networks, wireless local area network (WLAN) networks (e.g., based on Institute of Electrical and Electronics Engineers (IEEE) 802.11, etc. ) and so on.
  • IEEE Institute of Electrical and Electronics Engineers
  • a base station may operate according to one of several RATs in communication with UEs depending on the network in which it is deployed, and may be alternatively referred to as an access point (AP) , a network node, a NodeB, an evolved NodeB (eNB) , a next generation eNB (ng-eNB) , a New Radio (NR) Node B (also referred to as a gNB or gNodeB) , etc.
  • AP access point
  • eNB evolved NodeB
  • ng-eNB next generation eNB
  • NR New Radio
  • a base station may be used primarily to support wireless access by UEs, including supporting data, voice, and/or signaling connections for the supported UEs.
  • a base station may provide purely edge node signaling functions while in other systems it may provide additional control and/or network management functions.
  • a communication link through which UEs can send RF signals to a base station is called an uplink (UL) channel (e.g., a reverse traffic channel, a reverse control channel, an access channel, etc. ) .
  • a communication link through which the base station can send RF signals to UEs is called a downlink (DL) or forward link channel (e.g., a paging channel, a control channel, a broadcast channel, a forward traffic channel, etc. ) .
  • DL downlink
  • forward link channel e.g., a paging channel, a control channel, a broadcast channel, a forward traffic channel, etc.
  • TCH traffic channel
  • base station may refer to a single physical transmission-reception point (TRP) or to multiple physical TRPs that may or may not be co-located.
  • TRP transmission-reception point
  • the physical TRP may be an antenna of the base station corresponding to a cell (or several cell sectors) of the base station.
  • base station refers to multiple co-located physical TRPs
  • the physical TRPs may be an array of antennas (e.g., as in a multiple-input multiple-output (MIMO) system or where the base station employs beamforming) of the base station.
  • MIMO multiple-input multiple-output
  • the physical TRPs may be a distributed antenna system (DAS) (a network of spatially separated antennas connected to a common source via a transport medium) or a remote radio head (RRH) (a remote base station connected to a serving base station) .
  • DAS distributed antenna system
  • RRH remote radio head
  • the non-co-located physical TRPs may be the serving base station receiving the measurement report from the UE and a neighbor base station whose reference RF signals (or simply “reference signals” ) the UE is measuring. Because a TRP is the point from which a base station transmits and receives wireless signals, as used herein, references to transmission from or reception at a base station are to be understood as referring to a particular TRP of the base station.
  • a base station may not support wireless access by UEs (e.g., may not support data, voice, and/or signaling connections for UEs) , but may instead transmit reference signals to UEs to be measured by the UEs, and/or may receive and measure signals transmitted by the UEs.
  • a base station may be referred to as a positioning beacon (e.g., when transmitting signals to UEs) and/or as a location measurement unit (e.g., when receiving and measuring signals from UEs) .
  • An “RF signal” comprises an electromagnetic wave of a given frequency that transports information through the space between a transmitter and a receiver.
  • a transmitter may transmit a single “RF signal” or multiple “RF signals” to a receiver.
  • the receiver may receive multiple “RF signals” corresponding to each transmitted RF signal due to the propagation characteristics of RF signals through multipath channels.
  • the same transmitted RF signal on different paths between the transmitter and receiver may be referred to as a “multipath” RF signal.
  • an RF signal may also be referred to as a “wireless signal, ” a “radar signal, ” a “radio wave, ” a “waveform, ” or the like, or simply a “signal” where it is clear from the context that the term “signal” refers to a wireless signal or an RF signal.
  • FIG. 1 illustrates an exemplary wireless communications system 100.
  • the wireless communications system 100 (which may also be referred to as a wireless wide area network (WWAN) ) may include various base stations 102 and various UEs 104.
  • the base stations 102 may include macro cell base stations (high power cellular base stations) and/or small cell base stations (low power cellular base stations) .
  • the macro cell base station may include eNBs and/or ng-eNBs where the wireless communications system 100 corresponds to an LTE network, or gNBs where the wireless communications system 100 corresponds to a NR network, or a combination of both, and the small cell base stations may include femtocells, picocells, microcells, etc.
  • the base stations 102 may collectively form a RAN and interface with a core network 170 (e.g., an evolved packet core (EPC) or a 5G core (5GC) ) through backhaul links 122, and through the core network 170 to one or more location servers 172 (which may be part of core network 170 or may be external to core network 170) .
  • a core network 170 e.g., an evolved packet core (EPC) or a 5G core (5GC)
  • EPC evolved packet core
  • 5GC 5G core
  • the base stations 102 may perform functions that relate to one or more of transferring user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, RAN sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • the base stations 102 may communicate with each other directly or indirectly (e.g., through the EPC /5GC) over backhaul links 134, which may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. In an aspect, one or more cells may be supported by a base station 102 in each coverage area 110.
  • a “cell” is a logical communication entity used for communication with a base station (e.g., over some frequency resource, referred to as a carrier frequency, component carrier, carrier, band, or the like) , and may be associated with an identifier (e.g., a physical cell identifier (PCI) , a virtual cell identifier (VCI) , a cell global identifier (CGI) ) for distinguishing cells operating via the same or a different carrier frequency.
  • PCI physical cell identifier
  • VCI virtual cell identifier
  • CGI cell global identifier
  • different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of UEs.
  • MTC machine-type communication
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a cell may refer to either or both of the logical communication entity and the base station that supports it, depending on the context.
  • TRP is typically the physical transmission point of a cell
  • the terms “cell” and “TRP” may be used interchangeably.
  • the term “cell” may also refer to a geographic coverage area of a base station (e.g., a sector) , insofar as a carrier frequency can be detected and used for communication within some portion of geographic coverage areas 110.
  • While neighboring macro cell base station 102 geographic coverage areas 110 may partially overlap (e.g., in a handover region) , some of the geographic coverage areas 110 may be substantially overlapped by a larger geographic coverage area 110.
  • a small cell base station 102' may have a coverage area 110' that substantially overlaps with the coverage area 110 of one or more macro cell base stations 102.
  • a network that includes both small cell and macro cell base stations may be known as a heterogeneous network.
  • a heterogeneous network may also include home eNBs (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • HeNBs home eNBs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use MIMO antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links 120 may be through one or more carrier frequencies. Allocation of carriers may be asymmetric with respect to downlink and uplink (e.g., more or less carriers may be allocated for downlink than for uplink) .
  • the wireless communications system 100 may further include a wireless local area network (WLAN) access point (AP) 150 in communication with WLAN stations (STAs) 152 via communication links 154 in an unlicensed frequency spectrum (e.g., 5 GHz) .
  • WLAN STAs 152 and/or the WLAN AP 150 may perform a clear channel assessment (CCA) or listen before talk (LBT) procedure prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • LBT listen before talk
  • the small cell base station 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell base station 102' may employ LTE or NR technology and use the same 5 GHz unlicensed frequency spectrum as used by the WLAN AP 150. The small cell base station 102', employing LTE /5G in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • NR in unlicensed spectrum may be referred to as NR-U.
  • LTE in an unlicensed spectrum may be referred to as LTE-U, licensed assisted access (LAA) , or MulteFire.
  • the wireless communications system 100 may further include a millimeter wave (mmW) base station 180 that may operate in mmW frequencies in communication with a UE 182.
  • mmW millimeter wave
  • the electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) .
  • the frequencies between FR1 and FR2 are often referred to as mid-band frequencies.
  • FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) , which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
  • a UE e.g., cell phone, smart watch, etc.
  • a cell phone /smart watch capable of supporting a cellular communication (e.g., 5G NR) already has antennas and RF-chains for these sub-6 GHz bands.
  • UEs can extend their cellular RF modules to RF signals for sensing without incurring the additional cost of hardware dedicated to RF signals for sensing.
  • the mmW base station 180 and the UE 182 may therefore utilize beamforming (transmit and/or receive) over a mmW communication link 184 to compensate for the extremely high path loss and short range.
  • one or more base stations 102 may also transmit using mmW or near mmW and beamforming. Accordingly, it will be appreciated that the foregoing illustrations are merely examples and should not be construed to limit the various aspects disclosed herein.
  • Transmit beamforming is a technique for focusing an RF signal in a specific direction.
  • a network node e.g., a base station
  • transmit beamforming the network node determines where a given target device (e.g., a UE) is located (relative to the transmitting network node) and projects a stronger downlink RF signal in that specific direction, thereby providing a faster (in terms of data rate) and stronger RF signal for the receiving device (s) .
  • a network node can control the phase and relative amplitude of the RF signal at each of the one or more transmitters that are broadcasting the RF signal.
  • a network node may use an array of antennas (referred to as a “phased array” or an “antenna array” ) that creates a beam of RF waves that can be “steered” to point in different directions, without actually moving the antennas.
  • the RF current from the transmitter is fed to the individual antennas with the correct phase relationship so that the radio waves from the separate antennas add together to increase the radiation in a desired direction, while canceling to suppress radiation in undesired directions.
  • Transmit beams may be quasi-collocated, meaning that they appear to the receiver (e.g., a UE) as having the same parameters, regardless of whether or not the transmitting antennas of the network node themselves are physically collocated.
  • the receiver e.g., a UE
  • QCL relation of a given type means that certain parameters about a second reference RF signal on a second beam can be derived from information about a source reference RF signal on a source beam.
  • the receiver can use the source reference RF signal to estimate the Doppler shift, Doppler spread, average delay, and delay spread of a second reference RF signal transmitted on the same channel.
  • the receiver can use the source reference RF signal to estimate the Doppler shift and Doppler spread of a second reference RF signal transmitted on the same channel. If the source reference RF signal is QCL Type C, the receiver can use the source reference RF signal to estimate the Doppler shift and average delay of a second reference RF signal transmitted on the same channel. If the source reference RF signal is QCL Type D, the receiver can use the source reference RF signal to estimate the spatial receive parameter of a second reference RF signal transmitted on the same channel.
  • the receiver uses a receive beam to amplify RF signals detected on a given channel. For example, the receiver can increase the gain setting and/or adjust the phase setting of an array of antennas in a particular direction to amplify (e.g., to increase the gain level of) the RF signals received from that direction.
  • a receiver is said to beamform in a certain direction, it means the beam gain in that direction is high relative to the beam gain along other directions, or the beam gain in that direction is the highest compared to the beam gain in that direction of all other receive beams available to the receiver.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • SINR signal-to-interference-plus-noise ratio
  • Receive beams may be spatially related.
  • a spatial relation means that parameters for a transmit beam for a second reference signal can be derived from information about a receive beam for a first reference signal.
  • a UE may use a particular receive beam to receive one or more reference downlink reference signals (e.g., positioning reference signals (PRS) , tracking reference signals (TRS) , phase tracking reference signal (PTRS) , cell-specific reference signals (CRS) , channel state information reference signals (CSI-RS) , primary synchronization signals (PSS) , secondary synchronization signals (SSS) , synchronization signal blocks (SSBs) , etc. ) from a base station.
  • PRS positioning reference signals
  • TRS tracking reference signals
  • PTRS phase tracking reference signal
  • CRS cell-specific reference signals
  • CSI-RS channel state information reference signals
  • PSS primary synchronization signals
  • SSS secondary synchronization signals
  • SSBs synchronization signal blocks
  • the UE can then form a transmit beam for sending one or more uplink reference signals (e.g., uplink positioning reference signals (UL-PRS) , sounding reference signal (SRS) , demodulation reference signals (DMRS) , PTRS, etc. ) to that base station based on the parameters of the receive beam.
  • uplink reference signals e.g., uplink positioning reference signals (UL-PRS) , sounding reference signal (SRS) , demodulation reference signals (DMRS) , PTRS, etc.
  • a “downlink” beam may be either a transmit beam or a receive beam, depending on the entity forming it. For example, if a base station is forming the downlink beam to transmit a reference signal to a UE, the downlink beam is a transmit beam. If the UE is forming the downlink beam, however, it is a receive beam to receive the downlink reference signal.
  • an “uplink” beam may be either a transmit beam or a receive beam, depending on the entity forming it. For example, if a base station is forming the uplink beam, it is an uplink receive beam, and if a UE is forming the uplink beam, it is an uplink transmit beam.
  • 5G supports multi-carrier operation, such as carrier aggregation.
  • carrier aggregation one of the carrier frequencies is referred to as the “primary carrier” or “anchor carrier” or “primary serving cell” or “PCell, ” and the remaining carrier frequencies are referred to as “secondary carriers” or “secondary serving cells” or “SCells. ”
  • the anchor carrier is the carrier operating on the primary frequency (e.g., FR1) utilized by a UE 104/182 and the cell in which the UE 104/182 either performs the initial radio resource control (RRC) connection establishment procedure or initiates the RRC connection re-establishment procedure.
  • RRC radio resource control
  • the primary carrier carries all common and UE-specific control channels, and may be a carrier in a licensed frequency (however, this is not always the case) .
  • a secondary carrier is a carrier operating on a second frequency (e.g., FR2) that may be configured once the RRC connection is established between the UE 104 and the anchor carrier and that may be used to provide additional radio resources.
  • the secondary carrier may be a carrier in an unlicensed frequency.
  • the secondary carrier may contain only necessary signaling information and signals, for example, those that are UE-specific may not be present in the secondary carrier, since both primary uplink and downlink carriers are typically UE-specific. This means that different UEs 104/182 in a cell may have different downlink primary carriers.
  • the network is able to change the primary carrier of any UE 104/182 at any time. This is done, for example, to balance the load on different carriers. Because a “serving cell” (whether a PCell or an SCell) corresponds to a carrier frequency /component carrier over which some base station is communicating, the term “cell, ” “serving cell, ” “component carrier, ” “carrier frequency, ” and the like can be used interchangeably.
  • one of the frequencies utilized by the macro cell base stations 102 may be an anchor carrier (or “PCell” ) and other frequencies utilized by the macro cell base stations 102 and/or the mmW base station 180 may be secondary carriers ( “SCells” ) .
  • the simultaneous transmission and/or reception of multiple carriers enables the UE 104/182 to significantly increase its data transmission and/or reception rates. For example, two 20 MHz aggregated carriers in a multi-carrier system would theoretically lead to a two-fold increase in data rate (i.e., 40 MHz) , compared to that attained by a single 20 MHz carrier.
  • the wireless communications system 100 may further include a UE 164 that may communicate with a macro cell base station 102 over a communication link 120 and/or the mmW base station 180 over a mmW communication link 184.
  • the macro cell base station 102 may support a PCell and one or more SCells for the UE 164 and the mmW base station 180 may support one or more SCells for the UE 164.
  • the UE 164 may include a sensing component 166 that may enable the UE 164 to perform the UE environment sensing operations described herein.
  • the base stations 102 may include a sensing component 166 that may enable the base stations 102 to perform the base station environment sensing operations described herein. Note that although only UE 164 and one base station 102 in FIG. 1 are illustrated as including a sensing component 166, any of the UEs and base stations in FIG. 1 may include a sensing component 166.
  • the wireless communications system 100 may further include one or more UEs, such as UE 190, that connects indirectly to one or more communication networks via one or more device-to-device (D2D) peer-to-peer (P2P) links.
  • D2D device-to-device
  • P2P peer-to-peer
  • UE 190 has a D2D P2P link 192 with one of the UEs 104 connected to one of the base stations 102 (e.g., through which UE 190 may indirectly obtain cellular connectivity) and a D2D P2P link 194 with WLAN STA 152 connected to the WLAN AP 150 (through which UE 190 may indirectly obtain WLAN-based Internet connectivity) .
  • the D2D P2P links 192 and 194 may be supported with any well-known D2D RAT, such as LTE Direct (LTE-D) , WiFi Direct (WiFi-D) , and so on.
  • 5G uses RF signals at mmW frequencies for wireless communication between network nodes, such as base stations, UEs, vehicles, factory automation machinery, and the like.
  • mmW RF signals can be used for other purposes as well.
  • mmW RF signals can be used in vehicle sensing by mmWave Radar and also mmWave communication through 5G NR (e.g., UE sensing) , handheld short range sensing by UEs like smart phone, smart watch, or in-car-based control (e.g., UE sensing) , building analytics (e.g., residential security or building management, e.g., gNB sensing) , digital health (e.g., device-free eldercare by motion sensing, e.g., higher sensing granularity can be supported by e.g.
  • Terahertz radio e.g., CPE/AP sensing
  • sensing for communication e.g., network management related to beam adaptation, protocol adaptation etc., depending on environments condition obtained through sensing, e.g., gNB/AP sensing
  • sensing for communication e.g., network management related to beam adaptation, protocol adaptation etc., depending on environments condition obtained through sensing, e.g., gNB/AP sensing
  • RF signals at mmW frequencies can provide high bandwidth and a large aperture to extract accurate range, Doppler, and angle information for environment sensing.
  • Using mmW RF signals for environment sensing can provide such features in a compact form factor, such as a small sensing component that can conveniently fit into a handheld device.
  • a sensing component e.g., a chip
  • DSP digital signal processor
  • SoC system-on-chip
  • a host device such as a UE, a base station, an IoT device, a factory automation machine, or the like.
  • a sensing component may be, or may be incorporated into, a modem for wireless communication, such as a 5G modem, a 60 GHz WLAN modem, or the like.
  • a device containing a sensing component may be referred to as a host device, an environment sensing device, a sensing device, and the like.
  • FIG. 2A illustrates the general process of transmitting and collecting mmW RF signal data, according to aspects of the disclosure.
  • a sensing component 200 (which may correspond to sensing component 100 in FIG. 1) transmits mmW RF signals with a predefined waveform, such as a frequency modulated continuous wave (FMCW) .
  • FMCW frequency modulated continuous wave
  • an RF signal with a known stable frequency continuous wave i.e., an RF signal with constant amplitude and frequency
  • a modulating signal i.e., an RF signal with constant amplitude and frequency
  • the mmW RF signals may be transmitted in a beam (e.g., using beamforming) and may reflect off of nearby objects, such as a human face or hand, within the beam. A portion of the transmitted RF signals is reflected back towards the sensing component 200. At stage 220, the sensing component 200 receives/detects the RF return data (i.e., the reflections of the transmitted mmW RF signals) .
  • the sensing component 200 performs a fast Fourier transform (FFT) on the raw RF return data.
  • FFT converts an RF signal from its original domain (here, time) to a representation in the frequency domain, and vice versa. Frequency differences between the received RF signal and the transmitted RF signal increase with delay (i.e., the time between transmission and reception) , and hence, with distance (range) .
  • the sensing component 200 correlates reflected RF signals with transmitted RF signals to obtain range, Doppler, and angle information associated with the target object.
  • the range is the distance to the object
  • the Doppler is the speed of the object
  • the angle is the horizontal and/or vertical distance between the detected object and a reference RF ray emitted by the sensing component 200, such as the initial RF ray of a beam sweep.
  • the sensing component 200 can determine information about the detected object’s characteristics and behaviors, including the size, shape, orientation, material, distance, and velocity of the object.
  • the sensing component 200 classifies the detected object and/or motion of the detected object based on the determined characteristics. For example, the sensing component 200 can use machine learning to classify the detected object as a hand and the motion of the detected object as a twisting motion.
  • the sensing component 200 can cause the host device to perform an action, such as turning a virtual dial on the screen of the host device as in the example of FIG. 2.
  • FIG. 2B is a graph 260 illustrating an exemplary waveform of a transmitted and received FMCW RF signals, according to aspects of the disclosure.
  • FIG. 2B illustrates an example of a sawtooth modulation, which is a common FMCW waveform where range is desired. Range information is mixed with the Doppler velocity using this technique. Modulation can be turned off on alternate scans to identify velocity using unmodulated carrier frequency shift. This allows range and velocity to be determined with one radar set.
  • the received RF waveform (the lower diagonal lines) is simply a delayed replica of the transmitted RF waveform (the upper diagonal lines) .
  • the frequency at which the waveforms are transmitted is used to down-convert the received RF waveform to baseband (a signal that has a near-zero frequency range) , and the amount of frequency shift between the transmitted RF waveform and the reflected (received) RF waveform increases with the time delay between them.
  • the time delay is thus a measure of range to the target object. For example, a small frequency spread is produced by reflections from a nearby object, whereas a larger frequency spread is produced by reflections from a further object, thereby resulting in a longer time delay between the transmitted and received RF waveforms.
  • FIG. 3A illustrates an exemplary electronic device 300A configured as an environment sensing device, according to aspects of the disclosure, which may incorporate a sensing component as described herein.
  • FIG. 3A is meant only to provide a generalized illustration of various components, any or all of which may be utilized as appropriate.
  • FIG. 3A therefore, broadly illustrates how individual system elements may be implemented in a relatively separated or relatively more integrated manner.
  • components illustrated by FIG. 3A can be localized to a single device and/or distributed among various networked devices, which may be disposed at different physical or geographical locations.
  • the electronic device 300A may be, or be incorporated into, any of a variety of devices, including a WLAN AP (e.g., WLAN AP 150 in FIG.
  • a WLAN AP e.g., WLAN AP 150 in FIG.
  • a cellular base station e.g., base station 102, small cell base station 102’, mmW base station 180 in FIG. 1
  • a UE such as a “smart” speaker (e.g., an Amazon Echo, Google Home, Apple HomePod, etc. ) or other IoT device, a mobile phone, tablet computer, a personal computer (PC) , a laptop computer, a security device (e.g., camera, floodlight, etc. ) , a factory automation machine, and/or the like.
  • the electronic device 300A is shown comprising hardware elements that can be electrically (communicatively) coupled via a bus 305A (or may otherwise be in communication, as appropriate) .
  • the hardware elements may include a processing system 310A, which can include without limitation one or more general-purpose processors, one or more special-purpose processors (such as a DSP, ASIC, field programmable gate array (FPGA) , and/or the like) , one or more processing cores, and/or other processing structures, which can be configured to perform the functionality described herein.
  • the electronic device 300A also can include one or more input devices 315A, which can include without limitation a touchscreen, a mouse, a keyboard, a camera, a microphone, and/or the like; and one or more output devices 320A, which can include without limitation a display device (e.g., a touchscreen, one or more light-emitting diodes (LEDs) , a printer, and/or the like.
  • input devices 315A can include without limitation a touchscreen, a mouse, a keyboard, a camera, a microphone, and/or the like
  • output devices 320A which can include without limitation a display device (e.g., a touchscreen, one or more light-emitting diodes (LEDs) , a printer, and/or the like.
  • LEDs light-emitting diodes
  • the electronic device 300A may further include (and/or be in communication with) one or more non-transitory storage devices 325A, which can comprise, without limitation, local and/or network accessible storage, and/or can include, without limitation, a disk drive, a drive array, an optical storage device, a solid-state storage device, such as a random access memory (RAM) , and/or a read-only memory (ROM) , which can be programmable, flash-updateable, and/or the like.
  • RAM random access memory
  • ROM read-only memory
  • Such storage devices may be configured to implement any appropriate data stores, including without limitation, various file systems, database structures, and/or the like.
  • the electronic device 300A may also include a wireless communications device 330A that can include support for one or more wireless communication technologies (e.g., 5G, IEEE 802.11ad) .
  • the wireless communications device 330A may comprise a modem, a transceiver, a transmit/receive processor, and/or the like, corresponding to or including a sensing component 333A, such as the sensing component 100 in FIG. 1 or the sensing component 200 in FIG. 2A.
  • the wireless communications device 330A may include one or more input and/or output communication interfaces to permit data and signaling to be exchanged with a wireless network (e.g., a 5G network) or other wireless devices within the wireless network.
  • a wireless network e.g., a 5G network
  • the sensing component 333A may include or be coupled to a transmitter antenna array 334A and a receiver antenna array 336A, and the circuitry connected with the antenna elements 334A and 336A may be used for both the environment sensing techniques described herein and wireless data communication.
  • the wireless communications device 330A may comprise a 5G modem capable of both the environment sensing techniques described herein and wireless data communication.
  • the wireless communications device 330A may comprise an integrated communications device (e.g., embodied as a transmitter circuit and a receiver circuit of a single communication device) in some implementations, and in others, may comprise a separate transmitter device and a separate receiver device, or may be embodied in other ways in other implementations.
  • a transmitter may include a plurality of antennas, such as transmitter antenna array 334A, that permits the electronic device 300A to perform transmit “beamforming, ” as described further herein.
  • a receiver may include a plurality of antennas, such as receiver antenna array 336A, that permits the electronic device 300A to perform receive beamforming, as described herein.
  • the electronic device 300A may further comprise a working memory 335A, which can include a RAM and/or or ROM device.
  • Software elements shown as being located within the working memory 335A, can include an operating system 340A, device drivers, executable libraries, and/or other code, such as application (s) 345A, which may comprise computer programs provided by various aspects, and/or may be designed to implement methods, and/or configure systems, provided by other aspects, as described herein.
  • one or more procedures described with respect to the method (s) discussed below may be implemented as code and/or instructions that are stored (e.g., temporarily) in working memory 335A and are executable by a computer (and/or a processing unit within a computer, such as processing system 310A) ; in an aspect, then, such code and/or instructions can be used to configure and/or adapt a general purpose computer (or other device) to perform one or more operations in accordance with the described methods.
  • a set of these instructions and/or code might be stored on a non-transitory computer-readable storage medium, such as the storage device (s) 325A described above.
  • the storage medium might be incorporated within a computer system, such as electronic device 300A.
  • the storage medium might be separate from a computer system (e.g., a removable medium, such as an optical disc) , and/or provided in an installation package, such that the storage medium can be used to program, configure, and/or adapt a general purpose computer with the instructions/code stored thereon.
  • These instructions might take the form of executable code, which is executable by the electronic device 300A and/or might take the form of source and/or installable code, which, upon compilation and/or installation on the electronic device 300A (e.g., using any of a variety of generally available compilers, installation programs, compression/decompression utilities, etc. ) , then takes the form of executable code.
  • FIG. 3B shows a block diagram of a design of a base station 102, a UE 104, and a core network component 170.
  • Base station 102 may be a macro base station, a small cell base station, or a base station of some other type. As shown in FIG. 3B, base station 102 may be equipped with antennas 334a through 334t, and UE 104 may be equipped with antennas 352a through 352r for facilitating wireless communications. In some designs, the base station 102 and/or UE 104 may correspond to example implementations of the electronic device 300A of FIG. 3A.
  • a transmit processor 320 may receive data from a data source 312 and control information from a controller/processor 340.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , physical downlink control channel (PDCCH) , enhanced physical downlink control channel (EPDCCH) , MTC physical downlink control channel (MPDCCH) , etc.
  • the data may be for the physical downlink shared channel (PDSCH) , etc.
  • the transmit processor 320 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the transmit processor 320 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) and secondary synchronization signal (SSS) , and cell-specific reference signal.
  • Transmit (TX) multiple-input multiple-output (MIMO) processor 330 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 332a through 332t. Each modulator 332 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • TX multiple-input multiple-output
  • MIMO multiple-input multiple-output
  • Each modulator 332 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator 332 may additionally or alternatively process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 332a through 332t may be transmitted via the antennas 334a through 334t, respectively.
  • Base station 102 may include communication unit 346 and communicate to a core network component 170 via communication unit 346.
  • Core network component 170 may include communication unit 394, controller/processor 390, and memory 392.
  • the antennas 352a through 352r may receive the downlink signals from the base station 102 and may provide received signals to the demodulators (DEMODs) 354a through 354r, respectively.
  • Each demodulator 354 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator 354 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • MIMO detector 356 may obtain received symbols from demodulators 354a through 354r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • Receive processor 358 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 104 to a data sink 360, and provide decoded control information to a controller/processor 380.
  • a transmit processor 364 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 362 and control information (e.g., for the physical uplink control channel (PUCCH) ) from the controller/processor 380. Transmit processor 364 may also generate reference symbols for a reference signal. The symbols from the transmit processor 364 may be precoded by TX MIMO processor 366 if applicable, further processed by the modulators 354a through 354r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 102.
  • data e.g., for the physical uplink shared channel (PUSCH)
  • control information e.g., for the physical uplink control channel (PUCCH)
  • PUCCH physical uplink control channel
  • the uplink signals from UE 104 may be received by antennas 334, processed by demodulators 332, detected by MIMO detector 336 if applicable, and further processed by receive processor 338 to obtain decoded data and control information sent by UE 104.
  • Processor 338 may provide the decoded data to data sink 339 and the decoded control information to controller/processor 340.
  • Controllers/processors 340 and 380 may direct the operation at base station 102 and UE 104, respectively. Controller/processor 340 and/or other processors and modules at base station 102 and/or controller/processor 380 and/or other processors and modules at UE 104 may perform or direct the execution of various processes for the techniques described herein.
  • Memories 342 and 382 may store data and program codes for base station 102 and UE 104, respectively.
  • Scheduler 344 may schedule UEs for data transmission on the downlink and/or uplink.
  • FIG. 4 is a diagram 400 of various frequency bands above 24 GHz that may be used for wireless mobile communications.
  • the frequency bands from 27,500 MHz to 31,000 MHz and 37,000 MHz to 42,500 MHz.
  • FIG. 5 is a diagram 500 illustrating an example of a radio frame structure, according to aspects of the disclosure.
  • Other wireless communications technologies may have different frame structures and/or different channels.
  • 5G NR utilizes orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) or OFDM on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (resource block) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal FFT size may be equal to 128, 256, 512, 1024, or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz) , respectively.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8, or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10, or 20 MHz, respectively.
  • LTE supports a single numerology (subcarrier spacing, symbol length, etc. ) .
  • 5G NR may support multiple numerologies ( ⁇ ) , for example, subcarrier spacing (SCS) of 15 kHz, 30 kHz, 60 kHz, 120 kHz, and 240 kHz or greater may be available.
  • SCS subcarrier spacing
  • Table 1 provided below lists some various parameters for different NR numerologies. As shown in Table 2, the slot length becomes shorter as the SCS becomes wider. For example, for 240 kHz SCS in 28 GHz, there are only 250 microseconds ( ⁇ s) per slot, and the short slot reduces latency.
  • FIG. 5 illustrates a frame structure for a numerology of 240 kHz.
  • time is represented horizontally (e.g., on the X axis) with time increasing from left to right.
  • a radio frame e.g., 10 ms
  • each subframe is divided into 16 time slots of 0.0625 ms each.
  • Each slot is divided into 14 symbols of 4.17 ⁇ s each.
  • One slot in the time domain and 12 contiguous subcarriers in the frequency domain is referred to as a resource block (RB) .
  • RBs are further divided into multiple resource elements (REs) .
  • An RE corresponds to one symbol length in the time domain and one subcarrier in the frequency domain.
  • Beamforming at mmW frequencies would be beneficial in a number of scenarios, including industrial IoT, AR/VR, autonomous driving, gaming, and the like. Each of these scenarios needs large data throughput, accurate beam alignment, fine granularity localization, and ultra-low latency.
  • beam alignment for mobility i.e., UEs in motion
  • UEs in motion largely reduces the spectral efficiency and involves additional latency.
  • Environmental sensing using 5G mmW RF signals can address these issues.
  • FIG. 6 illustrates a comparison between a simple chirp waveform and a more complex mmW OFDM waveform, according to aspects of the disclosure. Specifically, FIG. 6 illustrates a diagram 610 of an exemplary chirp waveform and a diagram 650 of an exemplary mmW OFDM waveform.
  • FIG. 7 is a diagram 700 of an exemplary scenario in which a UE 720 of a user is within communication range of an AP 710 (or other type of base station) , according to aspects of the disclosure.
  • the AP 710 and the UE 720 may communicate over a wireless communication link configured in accordance with, for example, 5G NR or IEEE 802.11ad.
  • the AP 710 can use environment sensing to detect the user’s presence, motion, and actions for, for example, improved communication link establishment (e.g., what direction to form a transmit beam for the communication link) .
  • the UE 720 can use environment sensing to provide awareness of interactions with the user and/or the AP 710 (e.g., proximity) and/or to determine other personal information.
  • Benefits of using mmW RF signal-based environment sensing include non-vision-based low-power always-on context awareness, meaning the environment sensing device can sense objects and/or actions in any lighting conditions, and even when the object is blocked from view of the environment sensing device. Another benefit is touchless interaction, enabling a user to interact with an environment sensing device without touching a user interface (e.g., touchscreen, keyboard, etc. ) of the sensing device.
  • Applications of environment sensing include imaging the environment, such as creating a three-dimensional (3D) map of the environment for VR use cases, high resolution localization for, for example, industrial IoT use cases, assisting communication by, for example, providing more accurate beam tracking, and machine learning for, for example, providing an effective interface between the human user and the machine.
  • FIG. 8 is a diagram 800 of various uplink and downlink environment sensing scenarios using 5G mmW RF signals, according to aspects of the disclosure.
  • a Wi-Fi AP operating in accordance with 5G can configure downlink mmW RF signals for environment sensing and use them to perform imaging of the local environment to localize the users playing a VR game.
  • the Wi-Fi AP can communicate with the UEs of the gamers for data transmission.
  • a UE can transmit an uplink 5G mmW RF signal to communicate with the Wi-Fi AP, and at the same time, use the RF signal for facial or motion (e.g., hand motion) interaction with the user.
  • facial or motion e.g., hand motion
  • FIG. 9 is a diagram 900 of a vehicle-to-vehicle (V2V) /vehicle-to-everything (V2X) environment sensing scenario using 5G mmW RF signals, according to aspects of the disclosure.
  • V2V vehicle-to-vehicle
  • V2X vehicle-to-everything
  • multiple vehicles referred to as “vehicle UEs” or “V-UEs, ” and a pedestrian UE (P-UE) may communicate with each other over sidelink communication links, which are a type of peer-to-peer (P2P) /device-to-device (D2D) communication link that operates in accordance with the 5G communications standard.
  • P2P peer-to-peer
  • D2D device-to-device
  • a V-UE and/or P-UE transmits 5G mmW RF signals to provide information to nearby UEs, and in addition, to measure the range to, and possibly relative location of, adjacent objects (e.g., other V-UEs, roadside access points, P-UEs, etc. ) .
  • 5G mmW RF signals to provide information to nearby UEs, and in addition, to measure the range to, and possibly relative location of, adjacent objects (e.g., other V-UEs, roadside access points, P-UEs, etc. ) .
  • RF signals for sensing can be characterized as consumer-level radar with advanced detection capabilities. RF signals for sensing may facilitate a touchless or device-free detection a target object (e.g., a target object that either does not have a communication device or such a communication device is not available) .
  • 5G communications at mmW frequencies can be combined with environment sensing, thereby providing improved communication (e.g., by decreasing the amount of time needed for beam alignment) and additional dimensionality for radar applications.
  • the environment sensing device In order to use 5G mmW RF signals being used for communication for environment sensing (or object detection) , the environment sensing device needs to determine how to combine the sensing waveform (i.e., the 5G mmW RF signals being used for environment sensing) with the NR OFDM waveform (i.e., the mmW RF signals being used to communicate in accordance with the 5G standard) . The environment sensing device also needs to determine how to transmit the sensing waveform. Parameters affecting these determinations include the power control for the sensing waveform, the bandwidth configuration for the sensing waveform, the time duration configuration for the sensing waveform, and/or the antenna configuration for the sensing waveform.
  • FIGS. 10-11 illustrate RF signal-based object detection scenarios 1000-1100 in accordance with embodiments of the disclosure.
  • TX/RX device 1005 is configured to both transmit RF sensing signals 1010 for object detection and to receive and measure a reflection of those RF sensing signals 1015 which bounce off of a device-free target object 1020.
  • TX device 1105 is configured to transmit RF sensing signals 1110 for object detection, and a separate RX device 1115 is configured to receive and measure a reflection of those RF sensing signals 1120 which bounce off of a device-free target object 1115.
  • TX device 1105 is further configured to transmit RF signals 1130 for communication to RX device 1115.
  • the RF signals 1110 and 1130 may be the same (e.g., signals designed for both RF sensing for object detection as well as for communication, e.g., over different lobes or sidelobes of the same transmit beam from TX device 1105) .
  • the TX/RX device 1000 and/or the TX device 1100 may correspond to a UE or a base station (e.g., gNB) .
  • transmission power for communications typically has a fixed max power (with an instantaneous power based on pathloss) and the same fixed maximum power may be used for RF sensing signals as well.
  • the same power control scheme is typically utilized to control both RF signals for communication as well as RF signals for sensing (or object detection) .
  • UL or DL RF signals for sensing may utilize different power control schemes in association with RF signals for communication and RF signals for at least object detection (e.g., to achieve a wider target object detection range so as to detect more objects, to tailor a target object detection range so as to reduce interference/overhead, or for more accurate object detection, and so on.
  • uplink RF signals for sensing may be scheduled or triggered by a gNB periodically (P) , semi-persistently (SP) or aperiodically (AP) under control of a serving gNB.
  • P periodically
  • SP semi-persistently
  • AP aperiodically
  • symbols /resources can be used for sensing under control of the serving gNB with various collision handling rules on the priorities of communication signals/channels and sensing (e.g., when communication signals/channels overlap in time with a sensing occasion, rules may be implemented to determine which signal (s) or channel (s) should be dropped, etc. ) .
  • communication signals/channels e.g., PUSCH, SRS, PUCCH
  • sensing signal transmissions may be AP or SP triggered, which would associate a corresponding processing time to prepare and transmit a dynamic triggered (AP) or activated (SP) signal/channel, or a corresponding processing time to dynamic cancel the transmission.
  • AP dynamic triggered
  • SP activated
  • Embodiments of the disclosure are directed to a downlink control communication (e.g., PDCCH, MAC CE, etc. ) that specifies transmission of an AP RF sensing signal or a first instance of an SP RF sensing signal.
  • a downlink control communication e.g., PDCCH, MAC CE, etc.
  • various technical advantages can be achieved, such as controlling the timing of RF sensing transmissions more precisely, reducing RF sensing signaling overhead, and so on.
  • FIG. 12 illustrates an exemplary process 1200 of wireless communication, according to aspects of the disclosure.
  • the process 1200 may be performed by a UE, such as any of the UEs described above (e.g., UE 104, 300, etc. ) .
  • the UE receives a downlink control communication that specifies transmission for an AP RF sensing signal or a first instance of an SP RF sensing signal.
  • the downlink control communication corresponds to a PDDCH or a medium access control (MAC) command element (CE) of a PDSCH.
  • MAC medium access control
  • the UE determines a transmission time for the specified transmission based on a time offset from the downlink control communication.
  • the time offset may be denoted as T s, trigger .
  • T s, trigger may be relative to a PDCCH (e.g., the end of the PDCCH) of a DCI communication.
  • T s, trigger may be relative to a MAC CE (e.g., the end of the MAC CE) of a PDSCH.
  • T s, trigger may correspond to the time between the end of the PDCCH or MAC CE and a startpoint of a particular AP/SP RF signal burst.
  • T s, trigger may be defined as a number of symbols or slots (e.g., specific to an associated numerology or SCS) .
  • T s, trigger may be based on an expected processing time for the UE to prepare and transmit the RF sensing signal burst.
  • the expected processing time that may be factored into the time offset may be determined based upon UE capability and/or UE assistance information.
  • T s, trigger may pre-defined or pre-configured, such that an express reference to the time offset can be implicit from the downlink control communication (or referenced via an index) .
  • the UE e.g., antenna (s) 352a. . . 252r, modulators 354a...254r, Tx MIMO processor 366, transmit processor 364, etc.
  • transmits the AP or SP RF sensing signal at the determined transmission time in accordance with the downlink control communication.
  • the AP or SP RF sensing signal may be configured strictly for sensing (or object detection) .
  • the AP or SP RF sensing signal may be a hybrid signal that is configured for both sensing and communication.
  • FIG. 13 illustrates an exemplary process 1300 of wireless communication, according to aspects of the disclosure.
  • the process 1300 may be performed by a BS, such as any of the BSs described above (e.g., BS 102, 300, etc. ) .
  • the BS determines a transmission time at which to trigger transmission by a user equipment of an AP RF sensing signal or a first instance of a SP RF sensing signal.
  • the transmission time can be determined based in part upon a time offset from a downlink control communication.
  • the time offset may be denoted as T s, trigger .
  • T s, trigger may be relative to a PDCCH (e.g., the end of the PDCCH) of a DCI communication.
  • T s, trigger may be relative to a MAC CE (e.g., the end of the MAC CE) of a PDSCH.
  • T s, trigger may correspond to the time between the end of the PDCCH or MAC CE and a startpoint of a particular AP/SP RF signal burst.
  • T s, trigger may be defined as a number of symbols or slots (e.g., specific to an associated numerology or SCS) .
  • T s, trigger may be based on an expected processing time for the UE to prepare and transmit the RF sensing signal burst.
  • the expected processing time that may be factored into the time offset may be determined based upon UE capability and/or UE assistance information.
  • T s, trigger may pre-defined or pre-configured, such that an express reference to the time offset can be implicit from the downlink control communication (or referenced via an index) .
  • the BS e.g., antenna (s) 334a... 234r, modulators 332a...232r, Tx MIMO processor 330, transmit processor 320, controller/processor 340, etc.
  • transmits to a UE, a downlink control communication that specifies transmission for the AP RF sensing signal or a first instance of the SP RF sensing signal at the determined transmission time based on a time offset from the downlink control communication.
  • the downlink control communication corresponds to a PDDCH or a MAC CE of a PDSCH.
  • RF retuning gaps may be defined before and after an RF wireless signal burst (e.g., because the RF sensing signal may use a higher bandwidth relative to the active DL/UL BWP) .
  • a first RF returning gap before the transmission of the AP or SP RF sensing signal and/or a second RF returning gap following the transmission of the AP or SP RF sensing signal are based on one or more criteria.
  • the RF-retuning gap before sensing can be different between UL-to-sensing and DL-to-sensing
  • the RF-retuning gap after sensing can be different between sensing-to-UL and sensing-to-DL
  • the RF-retuning gap can be different depending on whether carrier aggregation (CA) is configured and/or how many component carriers (CCs) are aggregated.
  • CA carrier aggregation
  • CCs component carriers
  • the one or more criteria comprise whether an uplink or downlink communication precedes the transmission of the AP or SP RF sensing signal, or whether an uplink or downlink communication follows the transmission of the AP or SP RF sensing signal, or whether carrier aggregation (CA) of one or more component carriers (CCs) is configured and/or a number of aggregated CCs, or UE capability and/or UE assistance information, or any combination thereof.
  • CA carrier aggregation
  • the one first and/or second RF retuning gaps e.g., DL-to-sensing, UL-to-sensing, sensing-to-DL, sensing-to-UL, with/without CA, etc.
  • T s trigger may be represented as a number of symbols/slot which may increase with SCS (e.g., the timeline for 30kHz SCS would be no smaller than that for 15kHz SCS) .
  • an AP or SP RF sensing signal triggered in accordance with FIGS. 12-13 may cancel another transmission.
  • T s, trigger may be associated with T t, cancel (e.g., the timeline for the cancellation of the transmission) .
  • FIG. 14A illustrates an RF sensing burst 1400A triggered based on the processes 1200-1300 of FIGS. 12-13 in accordance with an embodiment of the disclosure.
  • a PDCCH 1402A corresponds to the downlink control communication that specifies transmission for an AP RF sensing signal or a first instance of an SP RF sensing signal.
  • the AP or SP RF sensing signal is transmitted at 1404A. While not shown expressly in FIG. 14A, a transmission that was scheduled in conflict with the transmission of the AP or SP RF sensing signal may be cancelled to accommodate the transmission of the AP or SP RF sensing signal at 1404A.
  • FIG. 14B illustrates an RF sensing burst 1400B triggered based on the processes 1200-1300 of FIGS. 12-13 in accordance with another embodiment of the disclosure.
  • a MAC CE 1402B corresponds to the downlink control communication that specifies transmission for an AP RF sensing signal or a first instance of an SP RF sensing signal.
  • the AP or SP RF sensing signal is transmitted at 1404B. While not shown expressly in FIG. 14B, a transmission that was scheduled in conflict with the transmission of the AP or SP RF sensing signal may be cancelled to accommodate the transmission of the AP or SP RF sensing signal at 1404B.
  • FIG. 15 illustrates an exemplary process 1500 of wireless communication, according to aspects of the disclosure.
  • the process 1500 may be performed by a UE, such as any of the UEs described above (e.g., UE 104, 300, etc. ) .
  • the UE receives a downlink control communication that specifies cancellation for at least part of a scheduled RF sensing signal.
  • the scheduled RF sensing signal may correspond to an AP, SP or P RF sensing signal.
  • the cancellation instruction may be limited to one particular RF sensing signal burst associated with the scheduled RF sensing signal (e.g., such that some or all of one particular RF sensing signal burst instance is cancelled rather than an entire series of RF sensing signal bursts) .
  • the downlink control communication corresponds to a PDDCH or a MAC CE of a PDSCH.
  • the UE determines a cancellation time for the specified cancellation based on a time offset from the downlink control communication.
  • the time offset may be denoted as T s, cancel .
  • T s, cancel may be relative to a PDCCH (e.g., the end of the PDCCH) of a DCI communication.
  • T s, cancel may be relative to a MAC CE (e.g., the end of the MAC CE) of a PDSCH.
  • T s, cancel may correspond to the time between the end of the PDCCH or MAC CE and a cancellation startpoint of the scheduled RF sensing signal.
  • T s, cancel may be defined as a number of symbols or slots (e.g., specific to an associated numerology or SCS) . In some designs, T s, cancel may be based on an expected processing time for the UE to prepare for cancellation of a scheduled RF sensing signal burst. In some designs, the expected processing time that may be factored into the time offset may be determined based upon UE capability and/or UE assistance information. In other designs, T s, cancel may pre-defined or pre-configured, such that an express reference to the time offset can be implicit from the downlink control communication (or referenced via an index) .
  • the UE e.g., controller/processor 380, antenna (s) 352a. .. 252r, modulators 354a...254r, Tx MIMO processor 366, transmit processor 364, etc. ) cancels some or all of the scheduled RF sensing signal from transmission at the determined cancellation time in accordance with the downlink control communication.
  • a partial RF sensing signal burst may be transmitted before the cancellation startpoint (e.g., one or more pulses of the RF sensing signal burst may be transmitted before being cutoff) .
  • the cancelling of 1530 may cancel all of the scheduled RF sensing signal from transmission.
  • FIG. 16 illustrates an exemplary process 1600 of wireless communication, according to aspects of the disclosure.
  • the process 1600 may be performed by a BS, such as any of the BSs described above (e.g., BS 102, 300, etc. ) .
  • the BS determines a cancellation time at which to cancel transmission by a user equipment of some or all of a scheduled RF sensing signal.
  • the cancellation time can be determined based in part upon a time offset from a downlink control communication.
  • the time offset may be denoted as T s, cancel .
  • T s, cancel may be relative to a PDCCH (e.g., the end of the PDCCH) of a DCI communication.
  • T s, cancel may be relative to a MAC CE (e.g., the end of the MAC CE) of a PDSCH.
  • T s, cancel may correspond to the time between the end of the PDCCH or MAC CE and a cancellation startpoint of the scheduled RF sensing signal.
  • T s, cancel may be defined as a number of symbols or slots (e.g., specific to an associated numerology or SCS) .
  • T s, cancel may be based on an expected processing time for the UE to prepare for cancellation of a scheduled RF sensing signal burst.
  • the expected processing time that may be factored into the time offset may be determined based upon UE capability and/or UE assistance information.
  • T s, cancel may pre-defined or pre-configured, such that an express reference to the time offset can be implicit from the downlink control communication (or referenced via an index) .
  • the BS e.g., antenna (s) 334a...234r, modulators 332a...232r, Tx MIMO processor 330, transmit processor 320, controller/processor 340, etc.
  • transmits to a UE, a downlink control communication that specifies cancellation for at least part of some or all of the some or all of the scheduled RF sensing signal from transmission at the determined cancellation time based on a time offset from the downlink control communication.
  • the downlink control communication corresponds to a PDDCH or a MAC CE of a PDSCH.
  • RF retuning gaps may be defined before and after a non-canceled part of a RF wireless signal burst (e.g., because the RF sensing signal may use a higher bandwidth relative to the active DL/UL BWP) .
  • a first RF returning gap before the transmission of a non-canceled part of the scheduled RF sensing signal and/or a second RF returning gap following the transmission of the non-canceled part of the scheduled RF sensing signal can be based on one or more criteria (e.g., as described above with respect to FIGS. 12-13 and omitted here for the sake of brevity) .
  • T s, cancel may be represented as a number of symbols/slot which may increase with SCS (e.g., the timeline for 30kHz SCS would be no smaller than that for 15kHz SCS) .
  • cancellation or partial cancellation of an RF sensing signal can be triggered in accordance with FIGS. 15-16 to facilitate another transmission (e.g., a higher-priority transmission) .
  • T s, cancel may be associated with T t, trigger (e.g., the timeline for triggering the transmission) .
  • T t, trigger may comprise N2 symbols for PUSCH preparation, or Z symbols for aperiodic CSI on PUSCH.
  • T s, trigger can be configured as equal to or larger than T s, cancel (e.g., preparing for transmission of an RF sensing signal may take more time than preparation for cancellation of a scheduled transmission of an RF sensing signal in some designs) .
  • FIG. 17 illustrates an RF sensing burst sequence 1700 based on the processes 1500-1600 of FIGS. 15-16 in accordance with an embodiment of the disclosure.
  • a UE transmits a series of P/SP RF sensing bursts at 1702 and 1704.
  • Each RF sensing burst comprises a plurality of RF sensing pulses, shown as 1704a ...1704n with respect to RF sensing burst 1704 by way of example.
  • the burst duration may be configured as 250 ⁇ s (e.g., 2 slots for SCS 120 kHz) with a periodicity of 10 ms and an offset of 2 ms (e.g., from a time reference, such as a PDCCH of a DCI) .
  • a time reference such as a PDCCH of a DCI
  • there may be discrete symbols for RF sensing signal transmission e.g., FMCW RF signals or RF pulses, with pulses 1704a-1704n being depicted in FIG. 17 by way of example
  • the pulse duration may be 727 ns and the pulse periodicity may be 10 ⁇ s.
  • P/SP RF sensing burst 1704 the UE receives PDCCH 1706 which corresponds to the downlink control communication that specifies partial cancellation for a scheduled RF sensing signal; in this case, P/SP RF sensing burst 1708.
  • P/SP RF sensing burst 1708 begins to transmit, but after T s, cancel , a remaining part of P/SP RF sensing burst 1708 is cutoff. As depicted in FIG.
  • RF sensing signal burst pulses 1708a and 1708b are transmitted, while the remaining RF sensing signal burst pulses 1708c ...1708n are canceled (e.g., T s, cancel maps to a timepoint between RF sensing signal burst pulses 1708b and 1708c after the PDCCH 1706) .
  • FIG. 18 illustrates an RF sensing burst sequence 1800 based on the processes 1500-1600 of FIGS. 15-16 in accordance with another embodiment of the disclosure.
  • the RF sensing burst sequence 1800 is similar to the RF sensing burst sequence 1700 of FIG. 17 except that the downlink control communication that specifies partial cancellation for the scheduled RF sensing signal is MAC CE 1806 rather than PDCCH 1706.1802 through 1808n otherwise correspond to 1702 through 1708n, respectively, of FIG. 17, and as such will not be described further for the sake of brevity.
  • alternative aspects may vary. That is, alternative aspects may utilize additional or alternative frequencies (e.g., other the 60 GHz and/or 28 GHz frequency bands) , antenna elements (e.g., having different size/shape of antenna element arrays) , scanning periods (including both static and dynamic scanning periods) , electronic devices (e.g., WLAN APs, cellular base stations, smart speakers, IoT devices, mobile phones, tablets, personal computer (PC) , etc. ) , and/or other features.
  • frequencies e.g., other the 60 GHz and/or 28 GHz frequency bands
  • antenna elements e.g., having different size/shape of antenna element arrays
  • scanning periods including both static and dynamic scanning periods
  • electronic devices e.g., WLAN APs, cellular base stations, smart speakers, IoT devices, mobile phones, tablets, personal computer (PC) , etc.
  • PC personal computer
  • any reference to an element herein using a designation such as “first, ” “second, ” and so forth does not generally limit the quantity or order of those elements. Rather, these designations may be used herein as a convenient method of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements may be employed there or that the first element must precede the second element in some manner. Also, unless stated otherwise a set of elements may comprise one or more elements.
  • terminology of the form “at least one of A, B, or C” or “one or more of A, B, or C” or “at least one of the group consisting of A, B, and C” used in the description or the claims means “A or B or C or any combination of these elements. ”
  • this terminology may include A, or B, or C, or A and B, or A and C, or A and B and C, or 2A, or 2B, or 2C, and so on.
  • an apparatus or any component of an apparatus may be configured to (or made operable to or adapted to) provide functionality as taught herein. This may be achieved, for example: by manufacturing (e.g., fabricating) the apparatus or component so that it will provide the functionality; by programming the apparatus or component so that it will provide the functionality; or through the use of some other suitable implementation technique.
  • an integrated circuit may be fabricated to provide the requisite functionality.
  • an integrated circuit may be fabricated to support the requisite functionality and then configured (e.g., via programming) to provide the requisite functionality.
  • a processor circuit may execute code to provide the requisite functionality.
  • a software module may reside in random access memory (RAM) , flash memory, read-only memory (ROM) , erasable programmable ROM (EPROM) , electrically erasable programmable ROM (EEPROM) , registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor (e.g., cache memory) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In an aspect, a UE receives, from a BS, a downlink control communication that specifies transmission for an AP RF sensing signal or a first instance of an SP RF sensing signal. The UE determines a transmission time for the specified transmission based on a time offset from the downlink control communication, and transmits the AP or SP RF sensing signal at the determined transmission time in accordance with the downlink control communication. In another aspect, a UE receives, from the BS, a downlink control communication that specifies cancellation for at least part of a scheduled radio RF sensing signal. The UE determines a cancellation time for the specified cancellation based on a time offset from the downlink control communication, and cancels some or all of the scheduled RF sensing signal from transmission at the determined cancellation time in accordance with the downlink control communication.

Description

TIMING ASSOCIATED WITH RADIO FREQUENCY SENSING SIGNALS
BACKGROUND OF THE DISCLOSURE
1. Field of the Disclosure
Aspects of this disclosure relate generally to environment sensing and the like, and particularly to timing (e.g., cancellation timing and/or transmission timing) associated with radio frequency (RF) sensing signals.
2. Description of the Related Art
Wireless communication systems have developed through various generations, including a first-generation analog wireless phone service (1G) , a second-generation (2G) digital wireless phone service (including interim 2.5G and 2.75G networks) , a third-generation (3G) high speed data, Internet-capable wireless service and a fourth-generation (4G) service (e.g., Long Term Evolution (LTE) or WiMax) . There are presently many different types of wireless communication systems in use, including cellular and personal communications service (PCS) systems. Examples of known cellular systems include the cellular analog advanced mobile phone system (AMPS) , and digital cellular systems based on code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , the Global System for Mobile communication (GSM) , etc.
A fifth generation (5G) wireless standard, referred to as New Radio (NR) , calls for higher data transfer speeds, greater numbers of connections, and better coverage, among other improvements. The 5G standard, according to the Next Generation Mobile Networks Alliance, is designed to provide data rates of several tens of megabits per second to each of tens of thousands of users, with 1 gigabit per second to tens of workers on an office floor. Several hundreds of thousands of simultaneous connections should be supported in order to support large sensor deployments. Consequently, the spectral efficiency of 5G mobile communications should be significantly enhanced compared to the current 4G standard. Furthermore, signaling efficiencies should be enhanced and latency should be substantially reduced compared to current standards.
5G enables the utilization of mmW RF signals for wireless communication between network nodes, such as base stations, user equipments (UEs) , vehicles, factory automation machinery, and the like. However, mmW RF signals can be used for other  purposes as well. For example, mmW RF signals can be used in vehicle sensing by mmWave Radar and also mmWave communication through 5G NR (e.g., UE sensing) , handheld short range sensing by UEs like smart phone, smart watch, or in-car-based control (e.g., UE sensing) , building analytics (e.g., residential security or building management, e.g., gNB sensing) , digital health (e.g., device-free eldercare by motion sensing, e.g., higher sensing granularity can be supported by e.g. Terahertz radio, e.g., CPE/AP sensing) , sensing for communication (e.g., network management related to beam adaptation, protocol adaptation etc., depending on environments condition obtained through sensing, e.g., gNB/AP sensing) , and the like.
SUMMARY
The following presents a simplified summary relating to one or more aspects disclosed herein. As such, the following summary should not be considered an extensive overview relating to all contemplated aspects, nor should the following summary be regarded to identify key or critical elements relating to all contemplated aspects or to delineate the scope associated with any particular aspect. Accordingly, the following summary has the sole purpose to present certain concepts relating to one or more aspects relating to the mechanisms disclosed herein in a simplified form to precede the detailed description presented below.
An aspect is directed to a method of operating a user equipment (UE) , comprising receiving a downlink control communication that specifies transmission for an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal, determining a transmission time for the specified transmission based on a time offset from the downlink control communication, and transmitting the AP or SP RF sensing signal at the determined transmission time in accordance with the downlink control communication.
Another aspect is directed to a method of operating a base station, comprising determining a transmission time at which to trigger transmission by a user equipment of an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal, and transmitting, to a user equipment (UE) , a downlink control communication that specifies transmission for the AP RF sensing signal or a first instance of the SP RF sensing signal at the determined transmission time based on a time offset from the downlink control communication.
Another aspect is directed to a method of operating a user equipment (UE) , comprising receiving a downlink control communication that specifies cancellation for at least part of a scheduled radio frequency (RF) sensing signal, determining a cancellation time for the specified cancellation based on a time offset from the downlink control communication, and canceling some or all of the scheduled RF sensing signal from transmission at the determined cancellation time in accordance with the downlink control communication.
Another aspect is directed to a method of operating a base station, comprising determining a cancellation time at which to cancel transmission by a user equipment of some or all of a scheduled radio frequency (RF) sensing signal, and transmitting, to a user equipment (UE) , a downlink control communication that specifies cancellation for at least part of some or all of the some or all of the scheduled RF sensing signal from transmission at the determined cancellation time based on a time offset from the downlink control communication.
Another aspect is directed to a user equipment (UE) , comprising means for receiving a downlink control communication that specifies transmission for an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal, means for determining a transmission time for the specified transmission based on a time offset from the downlink control communication, and means for transmitting the AP or SP RF sensing signal at the determined transmission time in accordance with the downlink control communication.
Another aspect is directed to a base station, comprising means for determining a transmission time at which to trigger transmission by a user equipment of an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal, and means for transmitting, to a user equipment (UE) , a downlink control communication that specifies transmission for the AP RF sensing signal or a first instance of the SP RF sensing signal at the determined transmission time based on a time offset from the downlink control communication.
Another aspect is directed to a user equipment (UE) , comprising means for receiving a downlink control communication that specifies cancellation for at least part of a scheduled radio frequency (RF) sensing signal, means for determining a cancellation time for the specified cancellation based on a time offset from the downlink control communication, and means for canceling some or all of the scheduled RF sensing signal  from transmission at the determined cancellation time in accordance with the downlink control communication.
Another aspect is directed to a base station, comprising means for determining a cancellation time at which to cancel transmission by a user equipment of some or all of a scheduled radio frequency (RF) sensing signal, and means for transmitting, to a user equipment (UE) , a downlink control communication that specifies cancellation for at least part of some or all of the some or all of the scheduled RF sensing signal from transmission at the determined cancellation time based on a time offset from the downlink control communication.
Another aspect is directed to a user equipment (UE) , comprising a memory, and at least one processor coupled to the memory, the memory and the at least one processor configured to receive a downlink control communication that specifies transmission for an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal, determine a transmission time for the specified transmission based on a time offset from the downlink control communication, and transmit the AP or SP RF sensing signal at the determined transmission time in accordance with the downlink control communication.
Another aspect is directed to a base station, comprising a memory, and at least one processor coupled to the memory, the memory and the at least one processor configured to determine a transmission time at which to trigger transmission by a user equipment of an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal, and transmit, to a user equipment (UE) , a downlink control communication that specifies transmission for the AP RF sensing signal or a first instance of the SP RF sensing signal at the determined transmission time based on a time offset from the downlink control communication.
Another aspect is directed to a user equipment (UE) , comprising a memory, and at least one processor coupled to the memory, the memory and the at least one processor configured to receive a downlink control communication that specifies cancellation for at least part of a scheduled radio frequency (RF) sensing signal, determine a cancellation time for the specified cancellation based on a time offset from the downlink control communication, and cancel some or all of the scheduled RF sensing signal from transmission at the determined cancellation time in accordance with the downlink control communication.
Another aspect is directed to a base station, comprising a memory, and at least one processor coupled to the memory, the memory and the at least one processor configured to determine a cancellation time at which to cancel transmission by a user equipment of some or all of a scheduled radio frequency (RF) sensing signal, and transmit, to a user equipment (UE) , a downlink control communication that specifies cancellation for at least part of some or all of the some or all of the scheduled RF sensing signal from transmission at the determined cancellation time based on a time offset from the downlink control communication.
Another aspect is directed to a non-transitory computer-readable medium storing computer-executable instructions, the computer-executable instructions comprising at least one instruction instructing a user equipment (UE) to receive a downlink control communication that specifies transmission for an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal, at least one instruction instructing the UE to determine a transmission time for the specified transmission based on a time offset from the downlink control communication, and at least one instruction instructing the UE to transmit the AP or SP RF sensing signal at the determined transmission time in accordance with the downlink control communication.
Another aspect is directed to a non-transitory computer-readable medium storing computer-executable instructions, the computer-executable instructions comprising at least one instruction instructing a base station to determine a transmission time at which to trigger transmission by a user equipment of an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal, and at least one instruction instructing the base station to transmit, to a user equipment (UE) , a downlink control communication that specifies transmission for the AP RF sensing signal or a first instance of the SP RF sensing signal at the determined transmission time based on a time offset from the downlink control communication.
Another aspect is directed to a non-transitory computer-readable medium storing computer-executable instructions, the computer-executable instructions comprising at least one instruction instructing a user equipment (UE) to receive a downlink control communication that specifies cancellation for at least part of a scheduled radio frequency (RF) sensing signal, at least one instruction instructing the UE to determine a cancellation time for the specified cancellation based on a time offset from the downlink control communication, and at least one instruction instructing the UE to cancel some or  all of the scheduled RF sensing signal from transmission at the determined cancellation time in accordance with the downlink control communication.
Another aspect is directed to a non-transitory computer-readable medium storing computer-executable instructions, the computer-executable instructions comprising at least one instruction instructing a base station to determine a cancellation time at which to cancel transmission by a user equipment of some or all of a scheduled radio frequency (RF) sensing signal, and at least one instruction instructing a base station to transmit, to a user equipment (UE) , a downlink control communication that specifies cancellation for at least part of some or all of the some or all of the scheduled RF sensing signal from transmission at the determined cancellation time based on a time offset from the downlink control communication.
Other objects and advantages associated with the aspects disclosed herein will be apparent to those skilled in the art based on the accompanying drawings and detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings are presented to aid in the description of various aspects of the disclosure and are provided solely for illustration of the aspects and not limitation thereof.
FIG. 1 illustrates an exemplary wireless communications system, according to various aspects of the disclosure.
FIG. 2A illustrates the general process of transmitting and collecting mmW RF signal data, according to aspects of the disclosure.
FIG. 2B is a graph illustrating an exemplary waveform of transmitted and received frequency modulated continuous wave (FMCW) RF signals, according to aspects of the disclosure.
FIG. 3A illustrates an exemplary electronic device configured as an environment sensing device, according to aspects of the disclosure
FIG. 3B is a block diagram conceptually illustrating a design of a base station, a UE and a core network component configured according to some embodiments of the present disclosure.
FIG. 4 is a diagram of various frequency bands above 24 GHz that may be used for wireless mobile communications.
FIG. 5 is a diagram illustrating an example of a radio frame structure, according to aspects of the disclosure.
FIG. 6 illustrates a comparison between a simple chirp waveform and a mmW OFDM waveform, according to aspects of the disclosure.
FIG. 7 is a diagram of an exemplary scenario in which a UE of a user is within communication range of an access point, according to aspects of the disclosure.
FIG. 8 is a diagram of various uplink and downlink environment sensing scenarios using 5G mmW RF signals, according to aspects of the disclosure.
FIG. 9 is a diagram of a vehicle-to-vehicle (V2V) /vehicle-to-everything (V2X) environment sensing scenario using 5G mmW RF signals, according to aspects of the disclosure.
FIGS. 10-11 illustrate RF signal-based object detection scenarios in accordance with embodiments of the disclosure.
FIG. 12 illustrates an exemplary process of wireless communication, according to aspects of the disclosure.
FIG. 13 illustrates an exemplary process of wireless communication, according to aspects of the disclosure.
FIG. 14A illustrates an RF sensing burst triggered based on the processes of FIGS. 12-13 in accordance with an embodiment of the disclosure.
FIG. 14B illustrates an RF sensing burst triggered based on the processes of FIGS. 12-13 in accordance with another embodiment of the disclosure.
FIG. 15 illustrates an exemplary process of wireless communication, according to aspects of the disclosure.
FIG. 16 illustrates an exemplary process of wireless communication, according to aspects of the disclosure.
FIG. 17 illustrates an RF sensing burst sequence based on the processes of FIGS. 15-16 in accordance with an embodiment of the disclosure.
FIG. 18 illustrates an RF sensing burst sequence based on the processes of FIGS. 15-16 in accordance with an embodiment of the disclosure.
DETAILED DESCRIPTION
Disclosed are techniques for object detection based on radio frequency (RF) signals from a user equipment. In an aspect, the UE may transmit a first set of RF signals for  communication in accordance with a first power control scheme, and a second set of RF signals at least for object detection (e.g., in some designs, for both object detection and communication) in accordance with a second power control scheme.
Aspects of the disclosure are provided in the following description and related drawings directed to various examples provided for illustration purposes. Alternate aspects may be devised without departing from the scope of the disclosure. Additionally, well-known elements of the disclosure will not be described in detail or will be omitted so as not to obscure the relevant details of the disclosure.
The words “exemplary” and/or “example” are used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” and/or “example” is not necessarily to be construed as preferred or advantageous over other aspects. Likewise, the term “aspects of the disclosure” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation.
Those of skill in the art will appreciate that the information and signals described below may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description below may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof, depending in part on the particular application, in part on the desired design, in part on the corresponding technology, etc.
Further, many aspects are described in terms of sequences of actions to be performed by, for example, elements of a computing device. It will be recognized that various actions described herein can be performed by specific circuits (e.g., application specific integrated circuits (ASICs) ) , by program instructions being executed by one or more processors, or by a combination of both. Additionally, the sequence (s) of actions described herein can be considered to be embodied entirely within any form of non-transitory computer-readable storage medium having stored therein a corresponding set of computer instructions that, upon execution, would cause or instruct an associated processor of a device to perform the functionality described herein. Thus, the various aspects of the disclosure may be embodied in a number of different forms, all of which have been contemplated to be within the scope of the claimed subject matter. In addition, for each of the aspects described herein, the corresponding form of any such  aspects may be described herein as, for example, “logic configured to” perform the described action.
As used herein, the terms “user equipment” (UE) and “base station” are not intended to be specific or otherwise limited to any particular radio access technology (RAT) , unless otherwise noted. In general, a UE may be any wireless communication device (e.g., a mobile phone, router, tablet computer, laptop computer, tracking device, wearable device (e.g., smartwatch, glasses, augmented reality (AR) /virtual reality (VR) headset, etc. ) , vehicle (e.g., automobile, motorcycle, bicycle, etc. ) , Internet of Things (IoT) device, etc. ) used by a user to communicate over a wireless communications network. A UE may be mobile or may (e.g., at certain times) be stationary, and may communicate with a radio access network (RAN) . As used herein, the term “UE” may be referred to interchangeably as an “access terminal” or “AT, ” a “client device, ” a “wireless device, ” a “subscriber device, ” a “subscriber terminal, ” a “subscriber station, ” a “user terminal” or UT, a “mobile device, ” a “mobile terminal, ” a “mobile station, ” or variations thereof. Generally, UEs can communicate with a core network via a RAN, and through the core network the UEs can be connected with external networks such as the Internet and with other UEs. Of course, other mechanisms of connecting to the core network and/or the Internet are also possible for the UEs, such as over wired access networks, wireless local area network (WLAN) networks (e.g., based on Institute of Electrical and Electronics Engineers (IEEE) 802.11, etc. ) and so on.
A base station may operate according to one of several RATs in communication with UEs depending on the network in which it is deployed, and may be alternatively referred to as an access point (AP) , a network node, a NodeB, an evolved NodeB (eNB) , a next generation eNB (ng-eNB) , a New Radio (NR) Node B (also referred to as a gNB or gNodeB) , etc. A base station may be used primarily to support wireless access by UEs, including supporting data, voice, and/or signaling connections for the supported UEs. In some systems a base station may provide purely edge node signaling functions while in other systems it may provide additional control and/or network management functions. A communication link through which UEs can send RF signals to a base station is called an uplink (UL) channel (e.g., a reverse traffic channel, a reverse control channel, an access channel, etc. ) . A communication link through which the base station can send RF signals to UEs is called a downlink (DL) or forward link channel (e.g., a paging channel, a control channel, a broadcast channel, a forward traffic channel, etc. ) .  As used herein the term traffic channel (TCH) can refer to either an uplink /reverse or downlink /forward traffic channel.
The term “base station” may refer to a single physical transmission-reception point (TRP) or to multiple physical TRPs that may or may not be co-located. For example, where the term “base station” refers to a single physical TRP, the physical TRP may be an antenna of the base station corresponding to a cell (or several cell sectors) of the base station. Where the term “base station” refers to multiple co-located physical TRPs, the physical TRPs may be an array of antennas (e.g., as in a multiple-input multiple-output (MIMO) system or where the base station employs beamforming) of the base station. Where the term “base station” refers to multiple non-co-located physical TRPs, the physical TRPs may be a distributed antenna system (DAS) (a network of spatially separated antennas connected to a common source via a transport medium) or a remote radio head (RRH) (a remote base station connected to a serving base station) . Alternatively, the non-co-located physical TRPs may be the serving base station receiving the measurement report from the UE and a neighbor base station whose reference RF signals (or simply “reference signals” ) the UE is measuring. Because a TRP is the point from which a base station transmits and receives wireless signals, as used herein, references to transmission from or reception at a base station are to be understood as referring to a particular TRP of the base station.
In some implementations that support positioning of UEs, a base station may not support wireless access by UEs (e.g., may not support data, voice, and/or signaling connections for UEs) , but may instead transmit reference signals to UEs to be measured by the UEs, and/or may receive and measure signals transmitted by the UEs. Such a base station may be referred to as a positioning beacon (e.g., when transmitting signals to UEs) and/or as a location measurement unit (e.g., when receiving and measuring signals from UEs) .
An “RF signal” comprises an electromagnetic wave of a given frequency that transports information through the space between a transmitter and a receiver. As used herein, a transmitter may transmit a single “RF signal” or multiple “RF signals” to a receiver. However, the receiver may receive multiple “RF signals” corresponding to each transmitted RF signal due to the propagation characteristics of RF signals through multipath channels. The same transmitted RF signal on different paths between the transmitter and receiver may be referred to as a “multipath” RF signal. As used herein,  an RF signal may also be referred to as a “wireless signal, ” a “radar signal, ” a “radio wave, ” a “waveform, ” or the like, or simply a “signal” where it is clear from the context that the term “signal” refers to a wireless signal or an RF signal.
According to various aspects, FIG. 1 illustrates an exemplary wireless communications system 100. The wireless communications system 100 (which may also be referred to as a wireless wide area network (WWAN) ) may include various base stations 102 and various UEs 104. The base stations 102 may include macro cell base stations (high power cellular base stations) and/or small cell base stations (low power cellular base stations) . In an aspect, the macro cell base station may include eNBs and/or ng-eNBs where the wireless communications system 100 corresponds to an LTE network, or gNBs where the wireless communications system 100 corresponds to a NR network, or a combination of both, and the small cell base stations may include femtocells, picocells, microcells, etc.
The base stations 102 may collectively form a RAN and interface with a core network 170 (e.g., an evolved packet core (EPC) or a 5G core (5GC) ) through backhaul links 122, and through the core network 170 to one or more location servers 172 (which may be part of core network 170 or may be external to core network 170) . In addition to other functions, the base stations 102 may perform functions that relate to one or more of transferring user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, RAN sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate with each other directly or indirectly (e.g., through the EPC /5GC) over backhaul links 134, which may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. In an aspect, one or more cells may be supported by a base station 102 in each coverage area 110. A “cell” is a logical communication entity used for communication with a base station (e.g., over some frequency resource, referred to as a carrier frequency, component carrier, carrier, band, or the like) , and may be associated with an  identifier (e.g., a physical cell identifier (PCI) , a virtual cell identifier (VCI) , a cell global identifier (CGI) ) for distinguishing cells operating via the same or a different carrier frequency. In some cases, different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of UEs. Because a cell is supported by a specific base station, the term “cell” may refer to either or both of the logical communication entity and the base station that supports it, depending on the context. In addition, because a TRP is typically the physical transmission point of a cell, the terms “cell” and “TRP” may be used interchangeably. In some cases, the term “cell” may also refer to a geographic coverage area of a base station (e.g., a sector) , insofar as a carrier frequency can be detected and used for communication within some portion of geographic coverage areas 110.
While neighboring macro cell base station 102 geographic coverage areas 110 may partially overlap (e.g., in a handover region) , some of the geographic coverage areas 110 may be substantially overlapped by a larger geographic coverage area 110. For example, a small cell base station 102' may have a coverage area 110' that substantially overlaps with the coverage area 110 of one or more macro cell base stations 102. A network that includes both small cell and macro cell base stations may be known as a heterogeneous network. A heterogeneous network may also include home eNBs (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
The communication links 120 between the base stations 102 and the UEs 104 may include uplink (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use MIMO antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links 120 may be through one or more carrier frequencies. Allocation of carriers may be asymmetric with respect to downlink and uplink (e.g., more or less carriers may be allocated for downlink than for uplink) .
The wireless communications system 100 may further include a wireless local area network (WLAN) access point (AP) 150 in communication with WLAN stations (STAs) 152 via communication links 154 in an unlicensed frequency spectrum (e.g., 5 GHz) . When communicating in an unlicensed frequency spectrum, the WLAN STAs  152 and/or the WLAN AP 150 may perform a clear channel assessment (CCA) or listen before talk (LBT) procedure prior to communicating in order to determine whether the channel is available.
The small cell base station 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell base station 102' may employ LTE or NR technology and use the same 5 GHz unlicensed frequency spectrum as used by the WLAN AP 150. The small cell base station 102', employing LTE /5G in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network. NR in unlicensed spectrum may be referred to as NR-U. LTE in an unlicensed spectrum may be referred to as LTE-U, licensed assisted access (LAA) , or MulteFire.
The wireless communications system 100 may further include a millimeter wave (mmW) base station 180 that may operate in mmW frequencies in communication with a UE 182. The electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) , which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
With the above aspects in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band. In some aspects, a UE (e.g., cell phone, smart watch, etc. ) a cell phone /smart watch capable of supporting a cellular communication (e.g., 5G NR) already has antennas and RF-chains for these sub-6 GHz bands. Hence, such UEs can  extend their cellular RF modules to RF signals for sensing without incurring the additional cost of hardware dedicated to RF signals for sensing.
Communications using the mmW radio frequency band have high path loss and a relatively short range. The mmW base station 180 and the UE 182 may therefore utilize beamforming (transmit and/or receive) over a mmW communication link 184 to compensate for the extremely high path loss and short range. Further, it will be appreciated that in alternative configurations, one or more base stations 102 may also transmit using mmW or near mmW and beamforming. Accordingly, it will be appreciated that the foregoing illustrations are merely examples and should not be construed to limit the various aspects disclosed herein.
Transmit beamforming is a technique for focusing an RF signal in a specific direction. Traditionally, when a network node (e.g., a base station) broadcasts an RF signal, it broadcasts the signal in all directions (omni-directionally) . With transmit beamforming, the network node determines where a given target device (e.g., a UE) is located (relative to the transmitting network node) and projects a stronger downlink RF signal in that specific direction, thereby providing a faster (in terms of data rate) and stronger RF signal for the receiving device (s) . To change the directionality of the RF signal when transmitting, a network node can control the phase and relative amplitude of the RF signal at each of the one or more transmitters that are broadcasting the RF signal. For example, a network node may use an array of antennas (referred to as a “phased array” or an “antenna array” ) that creates a beam of RF waves that can be “steered” to point in different directions, without actually moving the antennas. Specifically, the RF current from the transmitter is fed to the individual antennas with the correct phase relationship so that the radio waves from the separate antennas add together to increase the radiation in a desired direction, while canceling to suppress radiation in undesired directions.
Transmit beams may be quasi-collocated, meaning that they appear to the receiver (e.g., a UE) as having the same parameters, regardless of whether or not the transmitting antennas of the network node themselves are physically collocated. In NR, there are four types of quasi-collocation (QCL) relations. Specifically, a QCL relation of a given type means that certain parameters about a second reference RF signal on a second beam can be derived from information about a source reference RF signal on a source beam. Thus, if the source reference RF signal is QCL Type A, the receiver can use the source reference RF signal to estimate the Doppler shift, Doppler spread, average delay,  and delay spread of a second reference RF signal transmitted on the same channel. If the source reference RF signal is QCL Type B, the receiver can use the source reference RF signal to estimate the Doppler shift and Doppler spread of a second reference RF signal transmitted on the same channel. If the source reference RF signal is QCL Type C, the receiver can use the source reference RF signal to estimate the Doppler shift and average delay of a second reference RF signal transmitted on the same channel. If the source reference RF signal is QCL Type D, the receiver can use the source reference RF signal to estimate the spatial receive parameter of a second reference RF signal transmitted on the same channel.
In receive beamforming, the receiver uses a receive beam to amplify RF signals detected on a given channel. For example, the receiver can increase the gain setting and/or adjust the phase setting of an array of antennas in a particular direction to amplify (e.g., to increase the gain level of) the RF signals received from that direction. Thus, when a receiver is said to beamform in a certain direction, it means the beam gain in that direction is high relative to the beam gain along other directions, or the beam gain in that direction is the highest compared to the beam gain in that direction of all other receive beams available to the receiver. This results in a stronger received signal strength (e.g., reference signal received power (RSRP) , reference signal received quality (RSRQ) , signal-to-interference-plus-noise ratio (SINR) , etc. ) of the RF signals received from that direction.
Receive beams may be spatially related. A spatial relation means that parameters for a transmit beam for a second reference signal can be derived from information about a receive beam for a first reference signal. For example, a UE may use a particular receive beam to receive one or more reference downlink reference signals (e.g., positioning reference signals (PRS) , tracking reference signals (TRS) , phase tracking reference signal (PTRS) , cell-specific reference signals (CRS) , channel state information reference signals (CSI-RS) , primary synchronization signals (PSS) , secondary synchronization signals (SSS) , synchronization signal blocks (SSBs) , etc. ) from a base station. The UE can then form a transmit beam for sending one or more uplink reference signals (e.g., uplink positioning reference signals (UL-PRS) , sounding reference signal (SRS) , demodulation reference signals (DMRS) , PTRS, etc. ) to that base station based on the parameters of the receive beam.
Note that a “downlink” beam may be either a transmit beam or a receive beam, depending on the entity forming it. For example, if a base station is forming the downlink beam to transmit a reference signal to a UE, the downlink beam is a transmit beam. If the UE is forming the downlink beam, however, it is a receive beam to receive the downlink reference signal. Similarly, an “uplink” beam may be either a transmit beam or a receive beam, depending on the entity forming it. For example, if a base station is forming the uplink beam, it is an uplink receive beam, and if a UE is forming the uplink beam, it is an uplink transmit beam.
5G supports multi-carrier operation, such as carrier aggregation. In a multi-carrier system, one of the carrier frequencies is referred to as the “primary carrier” or “anchor carrier” or “primary serving cell” or “PCell, ” and the remaining carrier frequencies are referred to as “secondary carriers” or “secondary serving cells” or “SCells. ” In carrier aggregation, the anchor carrier is the carrier operating on the primary frequency (e.g., FR1) utilized by a UE 104/182 and the cell in which the UE 104/182 either performs the initial radio resource control (RRC) connection establishment procedure or initiates the RRC connection re-establishment procedure. The primary carrier carries all common and UE-specific control channels, and may be a carrier in a licensed frequency (however, this is not always the case) . A secondary carrier is a carrier operating on a second frequency (e.g., FR2) that may be configured once the RRC connection is established between the UE 104 and the anchor carrier and that may be used to provide additional radio resources. In some cases, the secondary carrier may be a carrier in an unlicensed frequency. The secondary carrier may contain only necessary signaling information and signals, for example, those that are UE-specific may not be present in the secondary carrier, since both primary uplink and downlink carriers are typically UE-specific. This means that different UEs 104/182 in a cell may have different downlink primary carriers. The same is true for the uplink primary carriers. The network is able to change the primary carrier of any UE 104/182 at any time. This is done, for example, to balance the load on different carriers. Because a “serving cell” (whether a PCell or an SCell) corresponds to a carrier frequency /component carrier over which some base station is communicating, the term “cell, ” “serving cell, ” “component carrier, ” “carrier frequency, ” and the like can be used interchangeably.
For example, still referring to FIG. 1, one of the frequencies utilized by the macro cell base stations 102 may be an anchor carrier (or “PCell” ) and other frequencies utilized  by the macro cell base stations 102 and/or the mmW base station 180 may be secondary carriers ( “SCells” ) . The simultaneous transmission and/or reception of multiple carriers enables the UE 104/182 to significantly increase its data transmission and/or reception rates. For example, two 20 MHz aggregated carriers in a multi-carrier system would theoretically lead to a two-fold increase in data rate (i.e., 40 MHz) , compared to that attained by a single 20 MHz carrier.
The wireless communications system 100 may further include a UE 164 that may communicate with a macro cell base station 102 over a communication link 120 and/or the mmW base station 180 over a mmW communication link 184. For example, the macro cell base station 102 may support a PCell and one or more SCells for the UE 164 and the mmW base station 180 may support one or more SCells for the UE 164. In an aspect, the UE 164 may include a sensing component 166 that may enable the UE 164 to perform the UE environment sensing operations described herein. Similarly, the base stations 102 may include a sensing component 166 that may enable the base stations 102 to perform the base station environment sensing operations described herein. Note that although only UE 164 and one base station 102 in FIG. 1 are illustrated as including a sensing component 166, any of the UEs and base stations in FIG. 1 may include a sensing component 166.
The wireless communications system 100 may further include one or more UEs, such as UE 190, that connects indirectly to one or more communication networks via one or more device-to-device (D2D) peer-to-peer (P2P) links. In the example of FIG. 1, UE 190 has a D2D P2P link 192 with one of the UEs 104 connected to one of the base stations 102 (e.g., through which UE 190 may indirectly obtain cellular connectivity) and a D2D P2P link 194 with WLAN STA 152 connected to the WLAN AP 150 (through which UE 190 may indirectly obtain WLAN-based Internet connectivity) . In an example, the D2D P2P links 192 and 194 may be supported with any well-known D2D RAT, such as LTE Direct (LTE-D) , WiFi Direct (WiFi-D) , 
Figure PCTCN2020096270-appb-000001
and so on.
5G uses RF signals at mmW frequencies for wireless communication between network nodes, such as base stations, UEs, vehicles, factory automation machinery, and the like. However, mmW RF signals can be used for other purposes as well. For example, mmW RF signals can be used in vehicle sensing by mmWave Radar and also mmWave communication through 5G NR (e.g., UE sensing) , handheld short range sensing by UEs like smart phone, smart watch, or in-car-based control (e.g., UE sensing) , building  analytics (e.g., residential security or building management, e.g., gNB sensing) , digital health (e.g., device-free eldercare by motion sensing, e.g., higher sensing granularity can be supported by e.g. Terahertz radio, e.g., CPE/AP sensing) , sensing for communication (e.g., network management related to beam adaptation, protocol adaptation etc., depending on environments condition obtained through sensing, e.g., gNB/AP sensing) , and the like.
RF signals at mmW frequencies can provide high bandwidth and a large aperture to extract accurate range, Doppler, and angle information for environment sensing. Using mmW RF signals for environment sensing can provide such features in a compact form factor, such as a small sensing component that can conveniently fit into a handheld device. Such a sensing component (e.g., a chip) may be a digital signal processor (DSP) , a system-on-chip (SoC) , or other processing component that can be integrated into another device (a host device) , such as a UE, a base station, an IoT device, a factory automation machine, or the like. In an aspect, a sensing component may be, or may be incorporated into, a modem for wireless communication, such as a 5G modem, a 60 GHz WLAN modem, or the like. A device containing a sensing component may be referred to as a host device, an environment sensing device, a sensing device, and the like.
FIG. 2A illustrates the general process of transmitting and collecting mmW RF signal data, according to aspects of the disclosure. In the example of FIG. 2A, at stage 210, a sensing component 200 (which may correspond to sensing component 100 in FIG. 1) transmits mmW RF signals with a predefined waveform, such as a frequency modulated continuous wave (FMCW) . In FMCW techniques, an RF signal with a known stable frequency continuous wave (i.e., an RF signal with constant amplitude and frequency) varies up and down in frequency over a fixed period of time according to a modulating signal. The mmW RF signals may be transmitted in a beam (e.g., using beamforming) and may reflect off of nearby objects, such as a human face or hand, within the beam. A portion of the transmitted RF signals is reflected back towards the sensing component 200. At stage 220, the sensing component 200 receives/detects the RF return data (i.e., the reflections of the transmitted mmW RF signals) .
At stage 230, the sensing component 200 performs a fast Fourier transform (FFT) on the raw RF return data. An FFT converts an RF signal from its original domain (here, time) to a representation in the frequency domain, and vice versa. Frequency differences  between the received RF signal and the transmitted RF signal increase with delay (i.e., the time between transmission and reception) , and hence, with distance (range) . The sensing component 200 correlates reflected RF signals with transmitted RF signals to obtain range, Doppler, and angle information associated with the target object. The range is the distance to the object, the Doppler is the speed of the object, and the angle is the horizontal and/or vertical distance between the detected object and a reference RF ray emitted by the sensing component 200, such as the initial RF ray of a beam sweep.
From the determined properties of the reflected RF signals, the sensing component 200 can determine information about the detected object’s characteristics and behaviors, including the size, shape, orientation, material, distance, and velocity of the object. At stage 240, the sensing component 200 classifies the detected object and/or motion of the detected object based on the determined characteristics. For example, the sensing component 200 can use machine learning to classify the detected object as a hand and the motion of the detected object as a twisting motion. At stage 250, based on the classification at stage 240, the sensing component 200 can cause the host device to perform an action, such as turning a virtual dial on the screen of the host device as in the example of FIG. 2.
FIG. 2B is a graph 260 illustrating an exemplary waveform of a transmitted and received FMCW RF signals, according to aspects of the disclosure. FIG. 2B illustrates an example of a sawtooth modulation, which is a common FMCW waveform where range is desired. Range information is mixed with the Doppler velocity using this technique. Modulation can be turned off on alternate scans to identify velocity using unmodulated carrier frequency shift. This allows range and velocity to be determined with one radar set.
As shown in FIG. 2B, the received RF waveform (the lower diagonal lines) is simply a delayed replica of the transmitted RF waveform (the upper diagonal lines) . The frequency at which the waveforms are transmitted is used to down-convert the received RF waveform to baseband (a signal that has a near-zero frequency range) , and the amount of frequency shift between the transmitted RF waveform and the reflected (received) RF waveform increases with the time delay between them. The time delay is thus a measure of range to the target object. For example, a small frequency spread is produced by reflections from a nearby object, whereas a larger frequency spread is  produced by reflections from a further object, thereby resulting in a longer time delay between the transmitted and received RF waveforms.
FIG. 3A illustrates an exemplary electronic device 300A configured as an environment sensing device, according to aspects of the disclosure, which may incorporate a sensing component as described herein. It should be noted that FIG. 3A is meant only to provide a generalized illustration of various components, any or all of which may be utilized as appropriate. FIG. 3A, therefore, broadly illustrates how individual system elements may be implemented in a relatively separated or relatively more integrated manner. In addition, it can be noted that components illustrated by FIG. 3A can be localized to a single device and/or distributed among various networked devices, which may be disposed at different physical or geographical locations. The electronic device 300A may be, or be incorporated into, any of a variety of devices, including a WLAN AP (e.g., WLAN AP 150 in FIG. 1) , a cellular base station (e.g., base station 102, small cell base station 102’, mmW base station 180 in FIG. 1) , or a UE, such as a “smart” speaker (e.g., an Amazon Echo, Google Home, Apple HomePod, etc. ) or other IoT device, a mobile phone, tablet computer, a personal computer (PC) , a laptop computer, a security device (e.g., camera, floodlight, etc. ) , a factory automation machine, and/or the like.
The electronic device 300A is shown comprising hardware elements that can be electrically (communicatively) coupled via a bus 305A (or may otherwise be in communication, as appropriate) . The hardware elements may include a processing system 310A, which can include without limitation one or more general-purpose processors, one or more special-purpose processors (such as a DSP, ASIC, field programmable gate array (FPGA) , and/or the like) , one or more processing cores, and/or other processing structures, which can be configured to perform the functionality described herein. The electronic device 300A also can include one or more input devices 315A, which can include without limitation a touchscreen, a mouse, a keyboard, a camera, a microphone, and/or the like; and one or more output devices 320A, which can include without limitation a display device (e.g., a touchscreen, one or more light-emitting diodes (LEDs) , a printer, and/or the like.
The electronic device 300A may further include (and/or be in communication with) one or more non-transitory storage devices 325A, which can comprise, without limitation, local and/or network accessible storage, and/or can include, without limitation, a disk  drive, a drive array, an optical storage device, a solid-state storage device, such as a random access memory (RAM) , and/or a read-only memory (ROM) , which can be programmable, flash-updateable, and/or the like. Such storage devices may be configured to implement any appropriate data stores, including without limitation, various file systems, database structures, and/or the like.
The electronic device 300A may also include a wireless communications device 330A that can include support for one or more wireless communication technologies (e.g., 5G, IEEE 802.11ad) . The wireless communications device 330A may comprise a modem, a transceiver, a transmit/receive processor, and/or the like, corresponding to or including a sensing component 333A, such as the sensing component 100 in FIG. 1 or the sensing component 200 in FIG. 2A. The wireless communications device 330A may include one or more input and/or output communication interfaces to permit data and signaling to be exchanged with a wireless network (e.g., a 5G network) or other wireless devices within the wireless network. In an aspect, the sensing component 333A may include or be coupled to a transmitter antenna array 334A and a receiver antenna array 336A, and the circuitry connected with the  antenna elements  334A and 336A may be used for both the environment sensing techniques described herein and wireless data communication. For example, in some aspects, the wireless communications device 330A may comprise a 5G modem capable of both the environment sensing techniques described herein and wireless data communication.
The wireless communications device 330A may comprise an integrated communications device (e.g., embodied as a transmitter circuit and a receiver circuit of a single communication device) in some implementations, and in others, may comprise a separate transmitter device and a separate receiver device, or may be embodied in other ways in other implementations. In an aspect, a transmitter may include a plurality of antennas, such as transmitter antenna array 334A, that permits the electronic device 300A to perform transmit “beamforming, ” as described further herein. Similarly, a receiver may include a plurality of antennas, such as receiver antenna array 336A, that permits the electronic device 300A to perform receive beamforming, as described herein.
The electronic device 300A may further comprise a working memory 335A, which can include a RAM and/or or ROM device. Software elements, shown as being located within the working memory 335A, can include an operating system 340A, device  drivers, executable libraries, and/or other code, such as application (s) 345A, which may comprise computer programs provided by various aspects, and/or may be designed to implement methods, and/or configure systems, provided by other aspects, as described herein. Merely by way of example, one or more procedures described with respect to the method (s) discussed below may be implemented as code and/or instructions that are stored (e.g., temporarily) in working memory 335A and are executable by a computer (and/or a processing unit within a computer, such as processing system 310A) ; in an aspect, then, such code and/or instructions can be used to configure and/or adapt a general purpose computer (or other device) to perform one or more operations in accordance with the described methods.
A set of these instructions and/or code might be stored on a non-transitory computer-readable storage medium, such as the storage device (s) 325A described above. In some cases, the storage medium might be incorporated within a computer system, such as electronic device 300A. In other aspects, the storage medium might be separate from a computer system (e.g., a removable medium, such as an optical disc) , and/or provided in an installation package, such that the storage medium can be used to program, configure, and/or adapt a general purpose computer with the instructions/code stored thereon. These instructions might take the form of executable code, which is executable by the electronic device 300A and/or might take the form of source and/or installable code, which, upon compilation and/or installation on the electronic device 300A (e.g., using any of a variety of generally available compilers, installation programs, compression/decompression utilities, etc. ) , then takes the form of executable code.
FIG. 3B shows a block diagram of a design of a base station 102, a UE 104, and a core network component 170. Base station 102 may be a macro base station, a small cell base station, or a base station of some other type. As shown in FIG. 3B, base station 102 may be equipped with antennas 334a through 334t, and UE 104 may be equipped with antennas 352a through 352r for facilitating wireless communications. In some designs, the base station 102 and/or UE 104 may correspond to example implementations of the electronic device 300A of FIG. 3A.
At the base station 102, a transmit processor 320 may receive data from a data source 312 and control information from a controller/processor 340. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ (automatic repeat request) indicator channel  (PHICH) , physical downlink control channel (PDCCH) , enhanced physical downlink control channel (EPDCCH) , MTC physical downlink control channel (MPDCCH) , etc. The data may be for the physical downlink shared channel (PDSCH) , etc. The transmit processor 320 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The transmit processor 320 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) and secondary synchronization signal (SSS) , and cell-specific reference signal. Transmit (TX) multiple-input multiple-output (MIMO) processor 330 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 332a through 332t. Each modulator 332 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator 332 may additionally or alternatively process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 332a through 332t may be transmitted via the antennas 334a through 334t, respectively. Base station 102 may include communication unit 346 and communicate to a core network component 170 via communication unit 346. Core network component 170 may include communication unit 394, controller/processor 390, and memory 392.
At the UE 104, the antennas 352a through 352r may receive the downlink signals from the base station 102 and may provide received signals to the demodulators (DEMODs) 354a through 354r, respectively. Each demodulator 354 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator 354 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. MIMO detector 356 may obtain received symbols from demodulators 354a through 354r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. Receive processor 358 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 104 to a data sink 360, and provide decoded control information to a controller/processor 380.
On the uplink, at the UE 104, a transmit processor 364 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 362 and control information (e.g., for the physical uplink control channel (PUCCH) ) from the  controller/processor 380. Transmit processor 364 may also generate reference symbols for a reference signal. The symbols from the transmit processor 364 may be precoded by TX MIMO processor 366 if applicable, further processed by the modulators 354a through 354r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 102. At base station 102, the uplink signals from UE 104 may be received by antennas 334, processed by demodulators 332, detected by MIMO detector 336 if applicable, and further processed by receive processor 338 to obtain decoded data and control information sent by UE 104. Processor 338 may provide the decoded data to data sink 339 and the decoded control information to controller/processor 340.
Controllers/ processors  340 and 380 may direct the operation at base station 102 and UE 104, respectively. Controller/processor 340 and/or other processors and modules at base station 102 and/or controller/processor 380 and/or other processors and modules at UE 104 may perform or direct the execution of various processes for the techniques described herein.  Memories  342 and 382 may store data and program codes for base station 102 and UE 104, respectively. Scheduler 344 may schedule UEs for data transmission on the downlink and/or uplink.
Spectrum in the 30 GHz to 300 GHz frequency bands has been used in 5G NR and 802.11ad networks (e.g., 60 GHz communication networks) for wireless data communication. Larger bandwidth (e.g., greater than or equal to 2 GHz) can enable data rates of multigigabits per second. FIG. 4 is a diagram 400 of various frequency bands above 24 GHz that may be used for wireless mobile communications. Of particular interest for NR 5G operation are the frequency bands from 27,500 MHz to 31,000 MHz and 37,000 MHz to 42,500 MHz.
Various frame structures may be used to support downlink and uplink transmissions between network nodes (e.g., base stations and UEs) . FIG. 5 is a diagram 500 illustrating an example of a radio frame structure, according to aspects of the disclosure. Other wireless communications technologies may have different frame structures and/or different channels.
5G NR utilizes orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) or OFDM on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency  domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (resource block) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal FFT size may be equal to 128, 256, 512, 1024, or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz) , respectively. The system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8, or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10, or 20 MHz, respectively.
LTE supports a single numerology (subcarrier spacing, symbol length, etc. ) . In contrast, 5G NR may support multiple numerologies (μ) , for example, subcarrier spacing (SCS) of 15 kHz, 30 kHz, 60 kHz, 120 kHz, and 240 kHz or greater may be available. Table 1 provided below lists some various parameters for different NR numerologies. As shown in Table 2, the slot length becomes shorter as the SCS becomes wider. For example, for 240 kHz SCS in 28 GHz, there are only 250 microseconds (μs) per slot, and the short slot reduces latency.
Figure PCTCN2020096270-appb-000002
Table 1
FIG. 5 illustrates a frame structure for a numerology of 240 kHz. In FIG. 5, time is represented horizontally (e.g., on the X axis) with time increasing from left to right. In the time domain, a radio frame (e.g., 10 ms) is divided into 10 equally sized subframes of 1 millisecond (ms) each, and each subframe is divided into 16 time slots of 0.0625 ms each. Each slot is divided into 14 symbols of 4.17 μs each. One slot in the time domain and 12 contiguous subcarriers in the frequency domain is referred to as a resource block (RB) . RBs are further divided into multiple resource elements (REs) .  An RE corresponds to one symbol length in the time domain and one subcarrier in the frequency domain.
Beamforming at mmW frequencies would be beneficial in a number of scenarios, including industrial IoT, AR/VR, autonomous driving, gaming, and the like. Each of these scenarios needs large data throughput, accurate beam alignment, fine granularity localization, and ultra-low latency. However, there are various issues that can arise. For example, beam alignment for mobility (i.e., UEs in motion) largely reduces the spectral efficiency and involves additional latency. As another example, for positioning purposes, there is still a gap between current capabilities and the desire to meet the centimeter-level granularity desired for industrial applications. Environmental sensing using 5G mmW RF signals can address these issues.
For environment sensing in 5G mmW frequency bands, a wideband signal using multiple-input multiple-output (MIMO) would be desirable. MIMO is a technique for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. A simple chirp waveform could be used if the only purpose of the transmitted RF signal were for environmental sensing. However, due to the short wavelength, a more complex OFDM waveform in a 5G mmW frequency band can be used for both communication (e.g., over a 5G network) and environment sensing. FIG. 6 illustrates a comparison between a simple chirp waveform and a more complex mmW OFDM waveform, according to aspects of the disclosure. Specifically, FIG. 6 illustrates a diagram 610 of an exemplary chirp waveform and a diagram 650 of an exemplary mmW OFDM waveform.
When using an OFDM waveform for environment sensing, both the downlink and uplink waveform can be used for sensing operations. FIG. 7 is a diagram 700 of an exemplary scenario in which a UE 720 of a user is within communication range of an AP 710 (or other type of base station) , according to aspects of the disclosure. The AP 710 and the UE 720 may communicate over a wireless communication link configured in accordance with, for example, 5G NR or IEEE 802.11ad. In addition, in the downlink, the AP 710 can use environment sensing to detect the user’s presence, motion, and actions for, for example, improved communication link establishment (e.g., what direction to form a transmit beam for the communication link) . In the uplink, the UE 720 can use environment sensing to provide awareness of interactions with the user and/or the AP 710 (e.g., proximity) and/or to determine other personal information.
Benefits of using mmW RF signal-based environment sensing include non-vision-based low-power always-on context awareness, meaning the environment sensing device can sense objects and/or actions in any lighting conditions, and even when the object is blocked from view of the environment sensing device. Another benefit is touchless interaction, enabling a user to interact with an environment sensing device without touching a user interface (e.g., touchscreen, keyboard, etc. ) of the sensing device. Applications of environment sensing include imaging the environment, such as creating a three-dimensional (3D) map of the environment for VR use cases, high resolution localization for, for example, industrial IoT use cases, assisting communication by, for example, providing more accurate beam tracking, and machine learning for, for example, providing an effective interface between the human user and the machine.
FIG. 8 is a diagram 800 of various uplink and downlink environment sensing scenarios using 5G mmW RF signals, according to aspects of the disclosure. As an exemplary downlink-based sensing scenario, a Wi-Fi AP operating in accordance with 5G can configure downlink mmW RF signals for environment sensing and use them to perform imaging of the local environment to localize the users playing a VR game. At the same time, and potentially using the same downlink 5G mmW RF signals, the Wi-Fi AP can communicate with the UEs of the gamers for data transmission. As an exemplary uplink-based sensing scenario, a UE can transmit an uplink 5G mmW RF signal to communicate with the Wi-Fi AP, and at the same time, use the RF signal for facial or motion (e.g., hand motion) interaction with the user.
FIG. 9 is a diagram 900 of a vehicle-to-vehicle (V2V) /vehicle-to-everything (V2X) environment sensing scenario using 5G mmW RF signals, according to aspects of the disclosure. In the example of FIG. 9, multiple vehicles, referred to as “vehicle UEs” or “V-UEs, ” and a pedestrian UE (P-UE) may communicate with each other over sidelink communication links, which are a type of peer-to-peer (P2P) /device-to-device (D2D) communication link that operates in accordance with the 5G communications standard. In a sidelink sensing scenario, a V-UE and/or P-UE transmits 5G mmW RF signals to provide information to nearby UEs, and in addition, to measure the range to, and possibly relative location of, adjacent objects (e.g., other V-UEs, roadside access points, P-UEs, etc. ) .
As described above, RF signals for sensing (e.g., 5G mmW RF signals) can be characterized as consumer-level radar with advanced detection capabilities. RF signals for sensing may facilitate a touchless or device-free detection a target object (e.g., a target object that either does not have a communication device or such a communication device is not available) . In some designs, 5G communications at mmW frequencies can be combined with environment sensing, thereby providing improved communication (e.g., by decreasing the amount of time needed for beam alignment) and additional dimensionality for radar applications. In order to use 5G mmW RF signals being used for communication for environment sensing (or object detection) , the environment sensing device needs to determine how to combine the sensing waveform (i.e., the 5G mmW RF signals being used for environment sensing) with the NR OFDM waveform (i.e., the mmW RF signals being used to communicate in accordance with the 5G standard) . The environment sensing device also needs to determine how to transmit the sensing waveform. Parameters affecting these determinations include the power control for the sensing waveform, the bandwidth configuration for the sensing waveform, the time duration configuration for the sensing waveform, and/or the antenna configuration for the sensing waveform.
FIGS. 10-11 illustrate RF signal-based object detection scenarios 1000-1100 in accordance with embodiments of the disclosure. In FIG. 10, TX/RX device 1005 is configured to both transmit RF sensing signals 1010 for object detection and to receive and measure a reflection of those RF sensing signals 1015 which bounce off of a device-free target object 1020. In FIG. 11, TX device 1105 is configured to transmit RF sensing signals 1110 for object detection, and a separate RX device 1115 is configured to receive and measure a reflection of those RF sensing signals 1120 which bounce off of a device-free target object 1115. TX device 1105 is further configured to transmit RF signals 1130 for communication to RX device 1115. In some designs, the RF signals 1110 and 1130 may be the same (e.g., signals designed for both RF sensing for object detection as well as for communication, e.g., over different lobes or sidelobes of the same transmit beam from TX device 1105) .
Referring to FIGS. 10-11, in an example, the TX/RX device 1000 and/or the TX device 1100 may correspond to a UE or a base station (e.g., gNB) . In an example where the TX/RX device 1000 and/or the TX device 1100 corresponds to a gNB, transmission power for communications typically has a fixed max power (with an instantaneous  power based on pathloss) and the same fixed maximum power may be used for RF sensing signals as well. In an example where the TX/RX device 1000 and/or the TX device 1100 corresponds to a UE, the same power control scheme is typically utilized to control both RF signals for communication as well as RF signals for sensing (or object detection) . In other designs, UL or DL RF signals for sensing (or object detection) may utilize different power control schemes in association with RF signals for communication and RF signals for at least object detection (e.g., to achieve a wider target object detection range so as to detect more objects, to tailor a target object detection range so as to reduce interference/overhead, or for more accurate object detection, and so on.
In some designs, uplink RF signals for sensing may be scheduled or triggered by a gNB periodically (P) , semi-persistently (SP) or aperiodically (AP) under control of a serving gNB.
For wireless sensing in a cellular system (e.g. NR) , symbols /resources can be used for sensing under control of the serving gNB with various collision handling rules on the priorities of communication signals/channels and sensing (e.g., when communication signals/channels overlap in time with a sensing occasion, rules may be implemented to determine which signal (s) or channel (s) should be dropped, etc. ) . However, communication signals/channels (e.g., PUSCH, SRS, PUCCH) or sensing signal transmissions may be AP or SP triggered, which would associate a corresponding processing time to prepare and transmit a dynamic triggered (AP) or activated (SP) signal/channel, or a corresponding processing time to dynamic cancel the transmission. In current systems, the respective timelines of AP/SP sensing triggering and/or canceling are not defined.
Embodiments of the disclosure are directed to a downlink control communication (e.g., PDCCH, MAC CE, etc. ) that specifies transmission of an AP RF sensing signal or a first instance of an SP RF sensing signal. Other embodiments of the disclosure are directed to a downlink control communication (e.g., PDCCH, MAC CE, etc. ) that specifies cancellation of some or all of an RF sensing signal transmission that is already scheduled. In either of these embodiments, various technical advantages can be achieved, such as controlling the timing of RF sensing transmissions more precisely, reducing RF sensing signaling overhead, and so on.
FIG. 12 illustrates an exemplary process 1200 of wireless communication, according to aspects of the disclosure. In an aspect, the process 1200 may be performed by a UE, such as any of the UEs described above (e.g., UE 104, 300, etc. ) .
At 1210, the UE (e.g., antenna (s) 352a...252r, demodulators 354a…254r, Rx MIMO processor 356, receive processor 358, etc. ) receives a downlink control communication that specifies transmission for an AP RF sensing signal or a first instance of an SP RF sensing signal. In some designs, the downlink control communication corresponds to a PDDCH or a medium access control (MAC) command element (CE) of a PDSCH.
At 1220, the UE (e.g., controller/processor 380, etc. ) determines a transmission time for the specified transmission based on a time offset from the downlink control communication. In an example, the time offset may be denoted as T s, trigger. In an example, T s, trigger may be relative to a PDCCH (e.g., the end of the PDCCH) of a DCI communication. In another example, T s, trigger may be relative to a MAC CE (e.g., the end of the MAC CE) of a PDSCH. For example, T s, trigger may correspond to the time between the end of the PDCCH or MAC CE and a startpoint of a particular AP/SP RF signal burst. In some designs, T s, trigger may be defined as a number of symbols or slots (e.g., specific to an associated numerology or SCS) . In some designs, T s, trigger may be based on an expected processing time for the UE to prepare and transmit the RF sensing signal burst. In some designs, the expected processing time that may be factored into the time offset may be determined based upon UE capability and/or UE assistance information. In other designs, T s, trigger may pre-defined or pre-configured, such that an express reference to the time offset can be implicit from the downlink control communication (or referenced via an index) .
At 1230, the UE (e.g., antenna (s) 352a. . . 252r, modulators 354a…254r, Tx MIMO processor 366, transmit processor 364, etc. ) transmits the AP or SP RF sensing signal at the determined transmission time in accordance with the downlink control communication. In some designs, the AP or SP RF sensing signal may be configured strictly for sensing (or object detection) . In other designs, the AP or SP RF sensing signal may be a hybrid signal that is configured for both sensing and communication.
FIG. 13 illustrates an exemplary process 1300 of wireless communication, according to aspects of the disclosure. In an aspect, the process 1300 may be performed by a BS, such as any of the BSs described above (e.g., BS 102, 300, etc. ) .
At 1310, the BS (e.g., controller/processor 340, etc. ) determines a transmission time at which to trigger transmission by a user equipment of an AP RF sensing signal or a first instance of a SP RF sensing signal. In an example, the transmission time can be determined based in part upon a time offset from a downlink control communication. In an example, the time offset may be denoted as T s, trigger. In an example, T s, trigger may be relative to a PDCCH (e.g., the end of the PDCCH) of a DCI communication. In another example, T s, trigger may be relative to a MAC CE (e.g., the end of the MAC CE) of a PDSCH. For example, T s, trigger may correspond to the time between the end of the PDCCH or MAC CE and a startpoint of a particular AP/SP RF signal burst. In some designs, T s, trigger may be defined as a number of symbols or slots (e.g., specific to an associated numerology or SCS) . In some designs, T s, trigger may be based on an expected processing time for the UE to prepare and transmit the RF sensing signal burst. In some designs, the expected processing time that may be factored into the time offset may be determined based upon UE capability and/or UE assistance information. In other designs, T s, trigger may pre-defined or pre-configured, such that an express reference to the time offset can be implicit from the downlink control communication (or referenced via an index) .
At 1320, the BS (e.g., antenna (s) 334a... 234r, modulators 332a…232r, Tx MIMO processor 330, transmit processor 320, controller/processor 340, etc. ) transmits, to a UE, a downlink control communication that specifies transmission for the AP RF sensing signal or a first instance of the SP RF sensing signal at the determined transmission time based on a time offset from the downlink control communication. In some designs, the downlink control communication corresponds to a PDDCH or a MAC CE of a PDSCH.
Referring to FIGS. 12-13, in some designs, RF retuning gaps may be defined before and after an RF wireless signal burst (e.g., because the RF sensing signal may use a higher bandwidth relative to the active DL/UL BWP) . In some designs, a first RF returning gap before the transmission of the AP or SP RF sensing signal and/or a second RF returning gap following the transmission of the AP or SP RF sensing signal are based on one or more criteria. For example, the RF-retuning gap before sensing can be different between UL-to-sensing and DL-to-sensing, the RF-retuning gap after sensing can be different between sensing-to-UL and sensing-to-DL, the RF-retuning gap can be different depending on whether carrier aggregation (CA) is configured and/or how many  component carriers (CCs) are aggregated. Accordingly, the one or more criteria comprise whether an uplink or downlink communication precedes the transmission of the AP or SP RF sensing signal, or whether an uplink or downlink communication follows the transmission of the AP or SP RF sensing signal, or whether carrier aggregation (CA) of one or more component carriers (CCs) is configured and/or a number of aggregated CCs, or UE capability and/or UE assistance information, or any combination thereof. In some designs, the one first and/or second RF retuning gaps (e.g., DL-to-sensing, UL-to-sensing, sensing-to-DL, sensing-to-UL, with/without CA, etc. ) can be associated with UE capabilities, and/or UE assistance information to gNB.
Referring to FIGS. 12-13, in some designs as noted above, T s, trigger may be represented as a number of symbols/slot which may increase with SCS (e.g., the timeline for 30kHz SCS would be no smaller than that for 15kHz SCS) . In some designs, an AP or SP RF sensing signal triggered in accordance with FIGS. 12-13 may cancel another transmission. In this case, T s, trigger may be associated with T t, cancel (e.g., the timeline for the cancellation of the transmission) .
FIG. 14A illustrates an RF sensing burst 1400A triggered based on the processes 1200-1300 of FIGS. 12-13 in accordance with an embodiment of the disclosure. In FIG. 14A, a PDCCH 1402A corresponds to the downlink control communication that specifies transmission for an AP RF sensing signal or a first instance of an SP RF sensing signal. After T s, trigger, the AP or SP RF sensing signal is transmitted at 1404A. While not shown expressly in FIG. 14A, a transmission that was scheduled in conflict with the transmission of the AP or SP RF sensing signal may be cancelled to accommodate the transmission of the AP or SP RF sensing signal at 1404A.
FIG. 14B illustrates an RF sensing burst 1400B triggered based on the processes 1200-1300 of FIGS. 12-13 in accordance with another embodiment of the disclosure. In FIG. 14B, a MAC CE 1402B corresponds to the downlink control communication that specifies transmission for an AP RF sensing signal or a first instance of an SP RF sensing signal. After T s, trigger, the AP or SP RF sensing signal is transmitted at 1404B. While not shown expressly in FIG. 14B, a transmission that was scheduled in conflict with the transmission of the AP or SP RF sensing signal may be cancelled to accommodate the transmission of the AP or SP RF sensing signal at 1404B.
FIG. 15 illustrates an exemplary process 1500 of wireless communication, according to aspects of the disclosure. In an aspect, the process 1500 may be performed by a UE, such as any of the UEs described above (e.g., UE 104, 300, etc. ) .
At 1510, the UE (e.g., antenna (s) 352a. . . 252r, demodulators 354a…254r, Rx MIMO processor 356, receive processor 358, etc. ) receives a downlink control communication that specifies cancellation for at least part of a scheduled RF sensing signal. In an example, the scheduled RF sensing signal may correspond to an AP, SP or P RF sensing signal. In some designs, if the scheduled RF sensing signal corresponds to an SP or P RF sensing signal, then the cancellation instruction may be limited to one particular RF sensing signal burst associated with the scheduled RF sensing signal (e.g., such that some or all of one particular RF sensing signal burst instance is cancelled rather than an entire series of RF sensing signal bursts) . In some designs, the downlink control communication corresponds to a PDDCH or a MAC CE of a PDSCH.
At 1520, the UE (e.g., controller/processor 380, etc. ) determines a cancellation time for the specified cancellation based on a time offset from the downlink control communication. In an example, the time offset may be denoted as T s, cancel. In an example, T s, cancel may be relative to a PDCCH (e.g., the end of the PDCCH) of a DCI communication. In another example, T s, cancel may be relative to a MAC CE (e.g., the end of the MAC CE) of a PDSCH. For example, T s, cancel may correspond to the time between the end of the PDCCH or MAC CE and a cancellation startpoint of the scheduled RF sensing signal. In some designs, T s, cancel may be defined as a number of symbols or slots (e.g., specific to an associated numerology or SCS) . In some designs, T s, cancel may be based on an expected processing time for the UE to prepare for cancellation of a scheduled RF sensing signal burst. In some designs, the expected processing time that may be factored into the time offset may be determined based upon UE capability and/or UE assistance information. In other designs, T s, cancel may pre-defined or pre-configured, such that an express reference to the time offset can be implicit from the downlink control communication (or referenced via an index) .
At 1530, the UE (e.g., controller/processor 380, antenna (s) 352a. .. 252r, modulators 354a…254r, Tx MIMO processor 366, transmit processor 364, etc. ) cancels some or all of the scheduled RF sensing signal from transmission at the determined cancellation time in accordance with the downlink control communication. In case of partial cancellation, in an example, a partial RF sensing signal burst may be transmitted  before the cancellation startpoint (e.g., one or more pulses of the RF sensing signal burst may be transmitted before being cutoff) . In other designs, the cancelling of 1530 may cancel all of the scheduled RF sensing signal from transmission.
FIG. 16 illustrates an exemplary process 1600 of wireless communication, according to aspects of the disclosure. In an aspect, the process 1600 may be performed by a BS, such as any of the BSs described above (e.g., BS 102, 300, etc. ) .
At 1610, the BS (e.g., controller/processor 340, etc. ) determines a cancellation time at which to cancel transmission by a user equipment of some or all of a scheduled RF sensing signal. In an example, the cancellation time can be determined based in part upon a time offset from a downlink control communication. In an example, the time offset may be denoted as T s, cancel. In an example, T s, cancel may be relative to a PDCCH (e.g., the end of the PDCCH) of a DCI communication. In another example, T s, cancel may be relative to a MAC CE (e.g., the end of the MAC CE) of a PDSCH. For example, T s, cancel may correspond to the time between the end of the PDCCH or MAC CE and a cancellation startpoint of the scheduled RF sensing signal. In some designs, T s, cancel may be defined as a number of symbols or slots (e.g., specific to an associated numerology or SCS) . In some designs, T s, cancel may be based on an expected processing time for the UE to prepare for cancellation of a scheduled RF sensing signal burst. In some designs, the expected processing time that may be factored into the time offset may be determined based upon UE capability and/or UE assistance information. In other designs, T s, cancel may pre-defined or pre-configured, such that an express reference to the time offset can be implicit from the downlink control communication (or referenced via an index) .
At 1620, the BS (e.g., antenna (s) 334a...234r, modulators 332a…232r, Tx MIMO processor 330, transmit processor 320, controller/processor 340, etc. ) transmits, to a UE, a downlink control communication that specifies cancellation for at least part of some or all of the some or all of the scheduled RF sensing signal from transmission at the determined cancellation time based on a time offset from the downlink control communication. In some designs, the downlink control communication corresponds to a PDDCH or a MAC CE of a PDSCH.
Referring to FIGS. 15-16, in some designs, RF retuning gaps may be defined before and after a non-canceled part of a RF wireless signal burst (e.g., because the RF sensing signal may use a higher bandwidth relative to the active DL/UL BWP) . In some  designs, a first RF returning gap before the transmission of a non-canceled part of the scheduled RF sensing signal and/or a second RF returning gap following the transmission of the non-canceled part of the scheduled RF sensing signal can be based on one or more criteria (e.g., as described above with respect to FIGS. 12-13 and omitted here for the sake of brevity) .
Referring to FIGS. 15-16, in some designs as noted above, T s, cancel may be represented as a number of symbols/slot which may increase with SCS (e.g., the timeline for 30kHz SCS would be no smaller than that for 15kHz SCS) . In some designs, cancellation or partial cancellation of an RF sensing signal can be triggered in accordance with FIGS. 15-16 to facilitate another transmission (e.g., a higher-priority transmission) . In this case, T s, cancel may be associated with T t, trigger (e.g., the timeline for triggering the transmission) . In an example, T t, trigger may comprise N2 symbols for PUSCH preparation, or Z symbols for aperiodic CSI on PUSCH. In some designs, T s, trigger can be configured as equal to or larger than T s, cancel (e.g., preparing for transmission of an RF sensing signal may take more time than preparation for cancellation of a scheduled transmission of an RF sensing signal in some designs) .
FIG. 17 illustrates an RF sensing burst sequence 1700 based on the processes 1500-1600 of FIGS. 15-16 in accordance with an embodiment of the disclosure. In FIG. 17, a UE transmits a series of P/SP RF sensing bursts at 1702 and 1704. Each RF sensing burst comprises a plurality of RF sensing pulses, shown as 1704a …1704n with respect to RF sensing burst 1704 by way of example. In some designs, the burst duration may be configured as 250 μs (e.g., 2 slots for SCS 120 kHz) with a periodicity of 10 ms and an offset of 2 ms (e.g., from a time reference, such as a PDCCH of a DCI) . Within an RF sensing burst, there may be discrete symbols for RF sensing signal transmission (e.g., FMCW RF signals or RF pulses, with pulses 1704a-1704n being depicted in FIG. 17 by way of example) . In some designs, the pulse duration may be 727 ns and the pulse periodicity may be 10 μs.
Referring to FIG. 17, after the P/SP RF sensing burst 1704, the UE receives PDCCH 1706 which corresponds to the downlink control communication that specifies partial cancellation for a scheduled RF sensing signal; in this case, P/SP RF sensing burst 1708. P/SP RF sensing burst 1708 begins to transmit, but after T s, cancel, a remaining part of P/SP RF sensing burst 1708 is cutoff. As depicted in FIG. 17, RF sensing  signal burst pulses  1708a and 1708b are transmitted, while the remaining RF sensing signal  burst pulses 1708c …1708n are canceled (e.g., T s, cancel maps to a timepoint between RF sensing  signal burst pulses  1708b and 1708c after the PDCCH 1706) .
FIG. 18 illustrates an RF sensing burst sequence 1800 based on the processes 1500-1600 of FIGS. 15-16 in accordance with another embodiment of the disclosure. The RF sensing burst sequence 1800 is similar to the RF sensing burst sequence 1700 of FIG. 17 except that the downlink control communication that specifies partial cancellation for the scheduled RF sensing signal is MAC CE 1806 rather than PDCCH 1706.1802 through 1808n otherwise correspond to 1702 through 1708n, respectively, of FIG. 17, and as such will not be described further for the sake of brevity.
It can be noted that, although particular frequencies, integrated circuits (ICs) , hardware, and other features are described in the aspects herein, alternative aspects may vary. That is, alternative aspects may utilize additional or alternative frequencies (e.g., other the 60 GHz and/or 28 GHz frequency bands) , antenna elements (e.g., having different size/shape of antenna element arrays) , scanning periods (including both static and dynamic scanning periods) , electronic devices (e.g., WLAN APs, cellular base stations, smart speakers, IoT devices, mobile phones, tablets, personal computer (PC) , etc. ) , and/or other features. A person of ordinary skill in the art will appreciate such variations.
It should be understood that any reference to an element herein using a designation such as “first, ” “second, ” and so forth does not generally limit the quantity or order of those elements. Rather, these designations may be used herein as a convenient method of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements may be employed there or that the first element must precede the second element in some manner. Also, unless stated otherwise a set of elements may comprise one or more elements. In addition, terminology of the form “at least one of A, B, or C” or “one or more of A, B, or C” or “at least one of the group consisting of A, B, and C” used in the description or the claims means “A or B or C or any combination of these elements. ” For example, this terminology may include A, or B, or C, or A and B, or A and C, or A and B and C, or 2A, or 2B, or 2C, and so on.
In view of the descriptions and explanations above, those of skill in the art will appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the aspects disclosed herein may be implemented as  electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
Accordingly, it will be appreciated, for example, that an apparatus or any component of an apparatus may be configured to (or made operable to or adapted to) provide functionality as taught herein. This may be achieved, for example: by manufacturing (e.g., fabricating) the apparatus or component so that it will provide the functionality; by programming the apparatus or component so that it will provide the functionality; or through the use of some other suitable implementation technique. As one example, an integrated circuit may be fabricated to provide the requisite functionality. As another example, an integrated circuit may be fabricated to support the requisite functionality and then configured (e.g., via programming) to provide the requisite functionality. As yet another example, a processor circuit may execute code to provide the requisite functionality.
Moreover, the methods, sequences, and/or algorithms described in connection with the aspects disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in random access memory (RAM) , flash memory, read-only memory (ROM) , erasable programmable ROM (EPROM) , electrically erasable programmable ROM (EEPROM) , registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor (e.g., cache memory) .
While the foregoing disclosure shows various illustrative aspects, it should be noted that various changes and modifications may be made to the illustrated examples without departing from the scope defined by the appended claims. The present disclosure is not intended to be limited to the specifically illustrated examples alone. For example, unless  otherwise noted, the functions, steps, and/or actions of the method claims in accordance with the aspects of the disclosure described herein need not be performed in any particular order. Furthermore, although certain aspects may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated.

Claims (38)

  1. A method of operating a user equipment (UE) , comprising:
    receiving a downlink control communication that specifies transmission for an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal;
    determining a transmission time for the specified transmission based on a time offset from the downlink control communication; and
    transmitting the AP or SP RF sensing signal at the determined transmission time in accordance with the downlink control communication.
  2. The method of claim 1,
    wherein the time offset is relative to a physical downlink control channel (PDCCH) of a downlink control information (DCI) communication, or
    wherein the time offset is relative to a medium access control (MAC) command element (CE) .
  3. The method of claim 1, wherein the time offset is defined as a number of symbols or slots.
  4. The method of claim 3, wherein the number of symbols or slots in the time offset is specific to an associated numerology.
  5. The method of claim 1, wherein a first RF returning gap before the transmission of the AP or SP RF sensing signal and/or a second RF returning gap following the transmission of the AP or SP RF sensing signal are based on one or more criteria.
  6. The method of claim 5, wherein the one or more criteria comprise:
    whether an uplink or downlink communication precedes the transmission of the AP or SP RF sensing signal, or
    whether an uplink or downlink communication follows the transmission of the AP or SP RF sensing signal, or
    whether carrier aggregation (CA) of one or more component carriers (CCs) is configured and/or a number of aggregated CCs, or
    UE capability and/or UE assistance information, or
    any combination thereof.
  7. The method of claim 1, wherein the time offset is based on UE capability and/or UE assistance information.
  8. A method of operating a base station, comprising:
    determining a transmission time at which to trigger transmission by a user equipment of an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal; and
    transmitting, to a user equipment (UE) , a downlink control communication that specifies transmission for the AP RF sensing signal or a first instance of the SP RF sensing signal at the determined transmission time based on a time offset from the downlink control communication.
  9. The method of claim 8,
    wherein the offset is relative to a physical downlink control channel (PDCCH) of a downlink control information (DCI) communication, or
    wherein the offset is relative to a medium access control (MAC) command element (CE) .
  10. The method of claim 8, wherein the time offset is defined as a number of symbols or slots.
  11. The method of claim 10, wherein the number of symbols or slots in the time offset is specific to an associated numerology.
  12. The method of claim 8, wherein a first RF returning gap before the transmission of the AP or SP RF sensing signal and/or a second RF returning gap following the transmission of the AP or SP RF sensing signal are based on one or more criteria.
  13. The method of claim 12, wherein the one or more criteria comprise:
    whether an uplink or downlink communication precedes the transmission of the AP or SP RF sensing signal, or
    whether an uplink or downlink communication follows the transmission of the AP or SP RF sensing signal, or
    whether carrier aggregation (CA) of one or more component carriers (CCs) is configured and/or a number of aggregated CCs, or
    UE capability and/or UE assistance information, or
    any combination thereof.
  14. The method of claim 8, wherein the time offset is based on UE capability and/or UE assistance information.
  15. A method of operating a user equipment (UE) , comprising:
    receiving a downlink control communication that specifies cancellation for at least part of a scheduled radio frequency (RF) sensing signal;
    determining a cancellation time for the specified cancellation based on a time offset from the downlink control communication; and
    canceling some or all of the scheduled RF sensing signal from transmission at the determined cancellation time in accordance with the downlink control communication.
  16. The method of claim 15,
    wherein the time offset is relative to a physical downlink control channel (PDCCH) of a downlink control information (DCI) communication, or
    wherein the time offset is relative to a medium access control (MAC) command element (CE) .
  17. The method of claim 15, wherein the time offset is defined as a number of symbols or slots.
  18. The method of claim 17, wherein the number of symbols or slots in the time offset is specific to an associated numerology.
  19. The method of claim 15, wherein the time offset is based on UE capability and/or UE assistance information.
  20. The method of claim 15,
    wherein the canceling cancels all of the scheduled RF sensing signal from transmission, or
    wherein the cancelling cancels less than all of the scheduled RF sensing signal from transmission.
  21. A method of operating a base station, comprising:
    determining a cancellation time at which to cancel transmission by a user equipment of some or all of a scheduled radio frequency (RF) sensing signal; and
    transmitting, to a user equipment (UE) , a downlink control communication that specifies cancellation for at least part of some or all of the some or all of the scheduled RF sensing signal from transmission at the determined cancellation time based on a time offset from the downlink control communication.
  22. The method of claim 21,
    wherein the time offset is relative to a physical downlink control channel (PDCCH) of a downlink control information (DCI) communication, or
    wherein the time offset is relative to a medium access control (MAC) command element (CE) .
  23. The method of claim 21, wherein the time offset is defined as a number of symbols or slots.
  24. The method of claim 23, wherein the number of symbols or slots in the time offset is specific to an associated numerology.
  25. The method of claim 21, wherein the time offset is based on UE capability and/or UE assistance information.
  26. The method of claim 21,
    wherein the downlink control communication is configured to cancel all of the scheduled RF sensing signal from transmission, or
    wherein the downlink control communication is configured to cancel less than all of the scheduled RF sensing signal from transmission.
  27. A user equipment (UE) , comprising:
    means for receiving a downlink control communication that specifies transmission for an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal;
    means for determining a transmission time for the specified transmission based on a time offset from the downlink control communication; and
    means for transmitting the AP or SP RF sensing signal at the determined transmission time in accordance with the downlink control communication.
  28. A base station, comprising:
    means for determining a transmission time at which to trigger transmission by a user equipment of an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal; and
    means for transmitting, to a user equipment (UE) , a downlink control communication that specifies transmission for the AP RF sensing signal or a first instance of the SP RF sensing signal at the determined transmission time based on a time offset from the downlink control communication.
  29. A user equipment (UE) , comprising:
    means for receiving a downlink control communication that specifies cancellation for at least part of a scheduled radio frequency (RF) sensing signal;
    means for determining a cancellation time for the specified cancellation based on a time offset from the downlink control communication; and
    means for canceling some or all of the scheduled RF sensing signal from transmission at the determined cancellation time in accordance with the downlink control communication.
  30. A base station, comprising:
    means for determining a cancellation time at which to cancel transmission by a user equipment of some or all of a scheduled radio frequency (RF) sensing signal; and
    means for transmitting, to a user equipment (UE) , a downlink control communication that specifies cancellation for at least part of some or all of the some or all of the scheduled RF sensing signal from transmission at the determined cancellation time based on a time offset from the downlink control communication.
  31. A user equipment (UE) , comprising:
    a memory; and
    at least one processor coupled to the memory, the memory and the at least one processor configured to:
    receive a downlink control communication that specifies transmission for an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal;
    determine a transmission time for the specified transmission based on a time offset from the downlink control communication; and
    transmit the AP or SP RF sensing signal at the determined transmission time in accordance with the downlink control communication.
  32. A base station, comprising:
    a memory; and
    at least one processor coupled to the memory, the memory and the at least one processor configured to:
    determine a transmission time at which to trigger transmission by a user equipment of an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal; and
    transmit, to a user equipment (UE) , a downlink control communication that specifies transmission for the AP RF sensing signal or a first instance of the SP RF sensing signal at the determined transmission time based on a time offset from the downlink control communication.
  33. A user equipment (UE) , comprising:
    a memory; and
    at least one processor coupled to the memory, the memory and the at least one processor configured to:
    receive a downlink control communication that specifies cancellation for at least part of a scheduled radio frequency (RF) sensing signal;
    determine a cancellation time for the specified cancellation based on a time offset from the downlink control communication; and
    cancel some or all of the scheduled RF sensing signal from transmission at the determined cancellation time in accordance with the downlink control communication.
  34. A base station, comprising:
    a memory; and
    at least one processor coupled to the memory, the memory and the at least one processor configured to:
    determine a cancellation time at which to cancel transmission by a user equipment of some or all of a scheduled radio frequency (RF) sensing signal; and
    transmit, to a user equipment (UE) , a downlink control communication that specifies cancellation for at least part of some or all of the some or all of the scheduled RF sensing signal from transmission at the determined cancellation time based on a time offset from the downlink control communication.
  35. A non-transitory computer-readable medium storing computer-executable instructions, the computer-executable instructions comprising:
    at least one instruction instructing a user equipment (UE) to receive a downlink control communication that specifies transmission for an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal;
    at least one instruction instructing the UE to determine a transmission time for the specified transmission based on a time offset from the downlink control communication; and
    at least one instruction instructing the UE to transmit the AP or SP RF sensing signal at the determined transmission time in accordance with the downlink control communication.
  36. A non-transitory computer-readable medium storing computer-executable instructions, the computer-executable instructions comprising:
    at least one instruction instructing a base station to determine a transmission time at which to trigger transmission by a user equipment of an aperiodic (AP) radio frequency (RF) sensing signal or a first instance of a semi-persistent (SP) RF sensing signal; and
    at least one instruction instructing the base station to transmit, to a user equipment (UE) , a downlink control communication that specifies transmission for the AP RF sensing signal or a first instance of the SP RF sensing signal at the determined transmission time based on a time offset from the downlink control communication.
  37. A non-transitory computer-readable medium storing computer-executable instructions, the computer-executable instructions comprising:
    at least one instruction instructing a user equipment (UE) to receive a downlink control communication that specifies cancellation for at least part of a scheduled radio frequency (RF) sensing signal;
    at least one instruction instructing the UE to determine a cancellation time for the specified cancellation based on a time offset from the downlink control communication; and
    at least one instruction instructing the UE to cancel some or all of the scheduled RF sensing signal from transmission at the determined cancellation time in accordance with the downlink control communication.
  38. A non-transitory computer-readable medium storing computer-executable instructions, the computer-executable instructions comprising:
    at least one instruction instructing a base station to determine a cancellation time at which to cancel transmission by a user equipment of some or all of a scheduled radio frequency (RF) sensing signal; and
    at least one instruction instructing a base station to transmit, to a user equipment (UE) , a downlink control communication that specifies cancellation for at least part of some or all of the some or all of the scheduled RF sensing signal from transmission at the determined cancellation time based on a time offset from the downlink control communication.
PCT/CN2020/096270 2020-06-16 2020-06-16 Timing associated with radio frequency sensing signals WO2021253209A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096270 WO2021253209A1 (en) 2020-06-16 2020-06-16 Timing associated with radio frequency sensing signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096270 WO2021253209A1 (en) 2020-06-16 2020-06-16 Timing associated with radio frequency sensing signals

Publications (1)

Publication Number Publication Date
WO2021253209A1 true WO2021253209A1 (en) 2021-12-23

Family

ID=79269012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096270 WO2021253209A1 (en) 2020-06-16 2020-06-16 Timing associated with radio frequency sensing signals

Country Status (1)

Country Link
WO (1) WO2021253209A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3506687A1 (en) * 2016-09-30 2019-07-03 Huawei Technologies Co., Ltd. Uplink power control method and device
US10442444B1 (en) * 2018-08-06 2019-10-15 Denso International America, Inc. Vehicle behavior and driver assistance modules for a mobile network device implementing pseudo-vehicle behavior signal generation based on mobile sensor signals
CN110786045A (en) * 2017-06-16 2020-02-11 韩国电子通信研究院 Bandwidth setting method for supporting wideband carrier in communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3506687A1 (en) * 2016-09-30 2019-07-03 Huawei Technologies Co., Ltd. Uplink power control method and device
CN110786045A (en) * 2017-06-16 2020-02-11 韩国电子通信研究院 Bandwidth setting method for supporting wideband carrier in communication system
US10442444B1 (en) * 2018-08-06 2019-10-15 Denso International America, Inc. Vehicle behavior and driver assistance modules for a mobile network device implementing pseudo-vehicle behavior signal generation based on mobile sensor signals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Resource structure for D2DSS and PD2DSCH", 3GPP DRAFT; R1-143847 RESOURCE STRUCTURE FOR D2DSS AND PD2DSCH, vol. RAN WG1, 27 September 2014 (2014-09-27), Ljubljana, Slovenia, pages 1 - 6, XP050869526 *
ZTE: "UE-to-UE measurement as an enabler for CLI mitigation schemes", 3GPP DRAFT; R1-1712281, 25 August 2017 (2017-08-25), Prague Czech Republic, pages 1 - 8, XP051315097 *

Similar Documents

Publication Publication Date Title
US11202272B2 (en) Beam-specific timing advance groups
CN111095818B (en) Beam refinement techniques in millimeter wave systems
CN109565322B (en) RACH conveyance of DL synchronization beam information for various DL-UL correspondence states
JP2022518167A (en) Bandwidth partial operation and downlink or uplink positioning reference signal scheme
WO2022036541A1 (en) Network coordination for management of sensing interference
US20190037480A1 (en) Techniques for extended cell discovery
WO2021238887A1 (en) Environment sensing using radio frequencies
JP2020524943A (en) Clustered control information and data multiplexing
CN115280829A (en) Method and apparatus for beam management reporting
US11800376B2 (en) Wireless communications-based sensing for location detection across carriers
CN116158133A (en) Timing advance in full duplex communications
WO2021237393A1 (en) Environment sensing using radio frequencies configured for wireless communication
US11848879B2 (en) Signaling consideration for new radio positioning with disjoint bandwidth segments
US20210392478A1 (en) Use-case-specific wireless communications-based radar reference signals
US20220123819A1 (en) Beam selection for random access messaging
WO2022046303A9 (en) Layer 1 signal to interference plus noise ratio (l1-sinr) measurements with network configured measurement gaps
US20230362898A1 (en) Sensing resource configuration and coexistence handling in cellular systems
WO2021253209A1 (en) Timing associated with radio frequency sensing signals
WO2021231154A1 (en) Methods and apparatus for using interlaced physical resource blocks for positioning measurements
US20210389444A1 (en) Power control scheme for radio frequency object detection
WO2021237392A1 (en) Environment sensing using radio frequencies
WO2023231042A1 (en) Sensing resource detection with interference self-awareness
US20230421215A1 (en) Joint multiple-input multiple-output (mimo) communications and mimo sensing
US20240056248A1 (en) Reference signals for joint communication and sensing
WO2024020850A1 (en) Scheduling and/or processing multiplexed sensing and communication signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940905

Country of ref document: EP

Kind code of ref document: A1