WO2021253154A1 - Dynamic ul-dmrs configuration based on flexible slot - Google Patents

Dynamic ul-dmrs configuration based on flexible slot Download PDF

Info

Publication number
WO2021253154A1
WO2021253154A1 PCT/CN2020/096075 CN2020096075W WO2021253154A1 WO 2021253154 A1 WO2021253154 A1 WO 2021253154A1 CN 2020096075 W CN2020096075 W CN 2020096075W WO 2021253154 A1 WO2021253154 A1 WO 2021253154A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
uplink
transmit
uplink slots
pusch
Prior art date
Application number
PCT/CN2020/096075
Other languages
French (fr)
Inventor
Zhuoqi XU
Yuankun ZHU
Pan JIANG
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/096075 priority Critical patent/WO2021253154A1/en
Publication of WO2021253154A1 publication Critical patent/WO2021253154A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • aspects of the present disclosure relate to wireless communications, and more particularly, to dynamically configuring demodulation reference signals (DMRS) in physical uplink shared channel (PUSCH) transmissions.
  • DMRS demodulation reference signals
  • PUSCH physical uplink shared channel
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) .
  • available system resources e.g., bandwidth, transmit power, etc.
  • multiple-access systems examples include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • a wireless multiple-access communication system may include a number of base stations (BSs) , which are each capable of simultaneously supporting communication for multiple communication devices, otherwise known as user equipments (UEs) .
  • BSs base stations
  • UEs user equipments
  • a set of one or more base stations may define an eNodeB (eNB) .
  • eNB eNodeB
  • a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc.
  • DUs distributed units
  • EUs edge units
  • ENs edge nodes
  • RHs radio heads
  • SSRHs smart radio heads
  • TRPs transmission reception points
  • CUs central units
  • CNs central nodes
  • ANCs access node controllers
  • a set of one or more DUs, in communication with a CU may define an access node (e.g., which may be referred to as a BS, 5G NB, next generation NodeB (gNB or gNodeB) , transmission reception point (TRP) , etc. ) .
  • BS central nodes
  • 5G NB next generation NodeB
  • TRP transmission reception point
  • a BS or DU may communicate with a set of UEs on downlink channels (e.g., for transmissions from a BS or DU to a UE) and uplink channels (e.g., for transmissions from a UE to BS or DU) .
  • downlink channels e.g., for transmissions from a BS or DU to a UE
  • uplink channels e.g., for transmissions from a UE to BS or DU
  • NR e.g., new radio or 5G
  • LTE long term evolution
  • NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) .
  • OFDMA orthogonal frequency division multiple access
  • CP cyclic prefix
  • DL downlink
  • UL uplink
  • NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • MIMO multiple-input multiple-output
  • the method generally includes configuring a user equipment (UE) to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots, configuring the UE to transmit a second number of DMRS for PUSCH transmissions in a flexible slot comprising a configurable number of uplink symbols, wherein the second number of DMRS is less than the first number of DMRS, detecting at least one first condition related to the PUSCH transmissions in the flexible slot, and dynamically reconfiguring the UE to transmit the second number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one first condition.
  • DMRS demodulation reference signals
  • PUSCH physical uplink shared channel
  • Certain aspects of this disclosure provide a method for wireless communications by a user equipment (UE) .
  • the method generally includes receiving, from a network entity, signaling configuring the UE to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots, transmitting PUSCHs in the one or more uplink slots in accordance with the configuration, receiving, from the network entity, signaling dynamically reconfiguring the UE to transmit a second number of DMRS for PUSCH transmissions in the one or more uplink slots, and transmitting PUSCHs in the one or more uplink slots in accordance with the dynamic reconfiguration.
  • DMRS demodulation reference signals
  • PUSCH physical uplink shared channel
  • the network entity generally includes means for configuring a user equipment (UE) to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots, means for configuring the UE to transmit a second number of DMRS for PUSCH transmissions in a flexible slot comprising a configurable number of uplink symbols, wherein the second number of DMRS is less than the first number of DMRS, means for detecting at least one first condition related to the PUSCH transmissions in the flexible slot, and means for dynamically reconfiguring the UE to transmit the second number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one first condition.
  • DMRS demodulation reference signals
  • PUSCH physical uplink shared channel
  • the UE generally includes means for receiving, from a network entity, signaling configuring the UE to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots, means for transmitting PUSCHs in the one or more uplink slots in accordance with the configuration, means for receiving, from the network entity, signaling dynamically reconfiguring the UE to transmit a second number of DMRS for PUSCH transmissions in the one or more uplink slots, and means for transmitting PUSCHs in the one or more uplink slots in accordance with the dynamic reconfiguration.
  • DMRS demodulation reference signals
  • PUSCH physical uplink shared channel
  • the network entity generally includes at least one antenna and a processing system configured to: configure a user equipment (UE) , via the at least one antenna, to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots; configure, via the at least one antenna, the UE to transmit a second number of DMRS for PUSCH transmissions in a flexible slot comprising a configurable number of uplink symbols, wherein the second number of DMRS is less than the first number of DMRS; detect, via the at least one antenna, at least one first condition related to the PUSCH transmissions in the flexible slot; and dynamically reconfigure, via the at least one antenna, the UE to transmit the second number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one first condition.
  • DMRS demodulation reference signals
  • PUSCH physical uplink shared channel
  • the UE generally includes a receiver configured to receive, from a network entity, signaling configuring the UE to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots and a transmitter configured to transmit PUSCHs in the one or more uplink slots in accordance with the configuration, wherein: the receiver is further configured to receive, from the network entity, signaling dynamically reconfiguring the UE to transmit a second number of DMRS for PUSCH transmissions in the one or more uplink slots; and the transmitter is further configured to transmit PUSCHs in the one or more uplink slots in accordance with the dynamic reconfiguration.
  • DMRS demodulation reference signals
  • PUSCH physical uplink shared channel
  • the apparatus generally includes a processing system configured to: configure a user equipment (UE) to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots; configure the UE to transmit a second number of DMRS for PUSCH transmissions in a flexible slot comprising a configurable number of uplink symbols, wherein the second number of DMRS is less than the first number of DMRS; detect at least one first condition related to the PUSCH transmissions in the flexible slot; and dynamically reconfigure the UE to transmit the second number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one first condition.
  • DMRS demodulation reference signals
  • PUSCH physical uplink shared channel
  • the apparatus generally includes a processing system having an interface configured to: obtain, from a network entity, signaling configuring the UE to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots; output PUSCHs, for transmission, in the one or more uplink slots in accordance with the configuration; obtain, from the network entity, signaling dynamically reconfiguring the UE to transmit a second number of DMRS for PUSCH transmissions in the one or more uplink slots; and output PUSCHs, for transmission, in the one or more uplink slots in accordance with the dynamic reconfiguration.
  • DMRS demodulation reference signals
  • PUSCH physical uplink shared channel
  • the computer-readable medium generally includes instructions executable to configure a user equipment (UE) to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots, configure the UE to transmit a second number of DMRS for PUSCH transmissions in a flexible slot comprising a configurable number of uplink symbols, wherein the second number of DMRS is less than the first number of DMRS, detect at least one first condition related to the PUSCH transmissions in the flexible slot, and dynamically reconfigure the UE to transmit the second number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one first condition.
  • DMRS demodulation reference signals
  • PUSCH physical uplink shared channel
  • the computer-readable medium generally includes instructions executable to: receive, from a network entity, signaling configuring the UE to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots; transmit PUSCHs in the one or more uplink slots in accordance with the configuration; receive, from the network entity, signaling dynamically reconfiguring the UE to transmit a second number of DMRS for PUSCH transmissions in the one or more uplink slots; and transmit PUSCHs in the one or more uplink slots in accordance with the dynamic reconfiguration.
  • DMRS demodulation reference signals
  • PUSCH physical uplink shared channel
  • aspects of the present disclosure provide means for, apparatus, processors, and computer-readable mediums for performing the methods described herein.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
  • FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
  • FIG. 2 is a block diagram illustrating an example logical architecture of a distributed radio access network (RAN) , in accordance with certain aspects of the present disclosure.
  • RAN radio access network
  • FIG. 3 is a diagram illustrating an example physical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
  • FIG. 4 is a block diagram conceptually illustrating a design of an example base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
  • BS base station
  • UE user equipment
  • FIG. 5 illustrates an example PUSCH DMRS configuration.
  • FIG. 6 illustrates example flexible slot.
  • FIG. 7 illustrates example operations for wireless communications by a network entity, in accordance with certain aspects of the present disclosure.
  • FIG. 8 illustrates example operations for wireless communications by a UE, in accordance with certain aspects of the present disclosure.
  • FIG. 9 is a flow diagram illustrating dynamic PUSCH DMRS configuration, in accordance with certain aspects of the present disclosure.
  • aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for dynamically configuring demodulation reference signals (A-DMRS) for physical uplink shared channel (PUSCH) transmissions in uplink slots.
  • A-DMRS demodulation reference signals
  • the configuration may be based on monitoring metrics (e.g., MCS and/or BLER) for PUSCH transmissions in a flexible slot.
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • An OFDMA network may implement a radio technology such as NR (e.g.
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDMA
  • UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
  • New Radio is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) .
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
  • New radio (NR) access may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mmW millimeter wave
  • mMTC massive machine type communications MTC
  • URLLC ultra-reliable low-latency communications
  • These services may include latency and reliability requirements.
  • These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements.
  • TTI transmission time intervals
  • QoS quality of service
  • these services may co-exist in the same subframe.
  • FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed.
  • a base station 110 may be configured to perform operations 700 of FIG. 7 to dynamically configure DMRS for PUSCH transmissions from a UE 120.
  • a UE 120a may be configured to perform operations described below with reference to FIG. 8 to transmit PUSCH with DMRS dynamically configured by a BS 110 (performing operations 700 of FIG. 7) .
  • the wireless communication network 100 may include a number of base stations (BSs) 110a-z (each also individually referred to herein as BS 110 or collectively as BSs 110) and other network entities.
  • BSs base stations
  • a roadside service unit (RSU) may be considered a type of BS, and a BS 110 may be referred to as an RSU.
  • RSU roadside service unit
  • a BS 110 may provide communication coverage for a particular geographic area, sometimes referred to as a “cell” , which may be stationary or may move according to the location of a mobile BS 110.
  • the BSs 110 may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces (e.g., a direct physical connection, a wireless connection, a virtual network, or the like) using any suitable transport network.
  • the BSs 110a, 110b and 110c may be macro BSs for the macro cells 102a, 102b and 102c, respectively.
  • the BS 110x may be a pico BS for a pico cell 102x.
  • the BSs 110y and 110z may be femto BSs for the femto cells 102y and 102z, respectively.
  • a BS may support one or multiple cells.
  • the BSs 110 communicate with user equipment (UEs) 120a-y (each also individually referred to herein as UE 120 or collectively as UEs 120) in the wireless communication network 100.
  • UEs 120a-y each also individually referred to herein as UE 120 or collectively as UEs 120
  • the UEs 120 e.g., 120x, 120y, etc.
  • the UEs 120 may be dispersed throughout the wireless communication network 100, and each UE 120 may be stationary or mobile.
  • Wireless communication network 100 may also include relay stations (e.g., relay station 110r) , also referred to as relays or the like, that receive a transmission of data and/or other information from an upstream station (e.g., a BS 110a or a UE 120r) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
  • relay stations e.g., relay station 110r
  • relays or the like that receive a transmission of data and/or other information from an upstream station (e.g., a BS 110a or a UE 120r) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
  • a network controller 130 may couple to a set of BSs 110 and provide coordination and control for these BSs 110.
  • the network controller 130 may communicate with the BSs 110 via a backhaul.
  • the BSs 110 may also communicate with one another (e.g., directly or indirectly) via wireless or wireline backhaul.
  • the UEs 120 may be dispersed throughout the wireless communication network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc.
  • CPE Customer Premises Equipment
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC machine-type communication
  • eMTC evolved MTC
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • a network e.g., a wide area network such as Internet or a cellular network
  • Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband IoT
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” (RB) ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast Fourier Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz) , respectively.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8, or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD. Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
  • a scheduling entity (e.g., a BS) allocates resources for communication among some or all devices and equipment within its service area or cell.
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity.
  • a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network.
  • P2P peer-to-peer
  • UEs may communicate directly with one another in addition to communicating with a scheduling entity.
  • a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink.
  • a finely dashed line with double arrows indicates interfering transmissions between a UE and a BS.
  • FIG. 2 illustrates an example logical architecture of a distributed Radio Access Network (RAN) 200, which may be implemented in the wireless communication network 100 illustrated in FIG. 1.
  • a 5G access node 206 may include an access node controller (ANC) 202.
  • ANC 202 may be a central unit (CU) of the distributed RAN 200.
  • the backhaul interface to the Next Generation Core Network (NG-CN) 204 may terminate at ANC 202.
  • the backhaul interface to neighboring next generation access Nodes (NG-ANs) 210 may terminate at ANC 202.
  • ANC 202 may include one or more TRPs 208 (e.g., cells, BSs, gNBs, etc. ) .
  • TRPs 208 e.g., cells, BSs, gNBs, etc.
  • the TRPs 208 may be a distributed unit (DU) .
  • TRPs 208 may be connected to a single ANC (e.g., ANC 202) or more than one ANC (not illustrated) .
  • a single ANC e.g., ANC 202
  • ANC e.g., ANC 202
  • RaaS radio as a service
  • TRPs 208 may be connected to more than one ANC.
  • TRPs 208 may each include one or more antenna ports.
  • TRPs 208 may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.
  • the logical architecture of distributed RAN 200 may support fronthauling solutions across different deployment types.
  • the logical architecture may be based on transmit network capabilities (e.g., bandwidth, latency, and/or jitter) .
  • next generation access node (NG-AN) 210 may support dual connectivity with NR and may share a common fronthaul for LTE and NR.
  • NG-AN next generation access node
  • the logical architecture of distributed RAN 200 may enable cooperation between and among TRPs 208, for example, within a TRP and/or across TRPs via ANC 202.
  • An inter-TRP interface may not be used.
  • Logical functions may be dynamically distributed in the logical architecture of distributed RAN 200.
  • the Radio Resource Control (RRC) layer, Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, Medium Access Control (MAC) layer, and a Physical (PHY) layers may be adaptably placed at the DU (e.g., TRP 208) or CU (e.g., ANC 202) .
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical
  • FIG. 3 illustrates an example physical architecture of a distributed RAN 300, according to aspects of the present disclosure.
  • a centralized core network unit (C-CU) 302 may host core network functions.
  • C-CU 302 may be centrally deployed.
  • C-CU 302 functionality may be offloaded (e.g., to advanced wireless services (AWS) ) , in an effort to handle peak capacity.
  • AWS advanced wireless services
  • a centralized RAN unit (C-RU) 304 may host one or more ANC functions.
  • the C-RU 304 may host core network functions locally.
  • the C-RU 304 may have distributed deployment.
  • the C-RU 304 may be close to the network edge.
  • a DU 306 may host one or more TRPs (Edge Node (EN) , an Edge Unit (EU) , a Radio Head (RH) , a Smart Radio Head (SRH) , or the like) .
  • the DU may be located at edges of the network with radio frequency (RF) functionality.
  • RF radio frequency
  • FIG. 4 illustrates example components of BS 110a and UE 120a (as depicted in FIG. 1) , which may be used to implement aspects of the present disclosure.
  • antennas 452, processors 466, 458, 464, and/or controller/processor 480 of the UE 120a may be used to perform the various techniques and methods described herein with reference to FIG. 8.
  • antennas 434, processors 420, 438, 430, and/or controller/processor 440 of the BS 110a may be used to perform the various techniques and methods described herein with reference to FIG. 7.
  • a transmit processor 420 may receive data from a data source 412 and control information from a controller/processor 440.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc.
  • the data may be for the physical downlink shared channel (PDSCH) , etc.
  • the processor 420 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the processor 420 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 430 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 432a through 432t. Each modulator 432 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 432a through 432t may be transmitted via the antennas 434a through 434t, respectively.
  • the antennas 452a through 452r may receive the downlink signals from the base station 110a and may provide received signals to the demodulators (DEMODs) in transceivers 454a through 454r, respectively.
  • Each demodulator 454 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 456 may obtain received symbols from all the demodulators 454a through 454r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 458 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120a to a data sink 460, and provide decoded control information to a controller/processor 480.
  • a transmit processor 464 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 462 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 480.
  • the transmit processor 464 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) .
  • the symbols from the transmit processor 464 may be precoded by a TX MIMO processor 466 if applicable, further processed by the demodulators in transceivers 454a through 454r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110a.
  • the uplink signals from the UE 120a may be received by the antennas 434, processed by the modulators 432, detected by a MIMO detector 436 if applicable, and further processed by a receive processor 438 to obtain decoded data and control information sent by the UE 120a.
  • the receive processor 438 may provide the decoded data to a data sink 439 and the decoded control information to the controller/processor 440.
  • the controllers/processors 440 and 480 may direct the operation at the BS 110a and the UE 120a, respectively.
  • the processor 440 and/or other processors and modules at the BS 110a may perform or direct the execution of processes for the techniques described herein.
  • the controller/processor 480 and controller/processor 440 other components of the UE 120a and BS 110a may be used performing the operations described herein.
  • the memories 442 and 482 may store data and program codes for BS 110a and UE 120a, respectively.
  • a scheduler 444 may schedule UEs for data transmission on the downlink, sidelink, and/or uplink.
  • two or more subordinate entities may communicate with each other using sidelink signals.
  • Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications.
  • a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS) , even though the scheduling entity may be utilized for scheduling and/or control purposes.
  • the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks (WLANs) , which typically use an unlicensed spectrum) .
  • WLANs wireless local area networks
  • aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for dynamically configuring demodulation reference signals (A-DMRS) for physical uplink shared channel (PUSCH) transmissions in uplink slots.
  • A-DMRS demodulation reference signals
  • the configuration may be based on monitoring metrics (e.g., MCS and/or BLER) for PUSCH transmissions in a flexible slot.
  • a UE may receive, from a network entity, signaling that dynamically configures/re-configures the UE to transmit additional DMRS for a PUSCH transmission in uplink slots.
  • FIG. 5 illustrates a DMRS configuration for a dedicated PUSCH (on a dedicated uplink slot) for a UE in RRC_CONNECTED state.
  • the parameter dmrs-AdditionalPosition indicates a number of additional DMRS.
  • the additional DMRS is configured, this means that UL DMRS occupies two symbols in one uplink slot. With 14 symbols in a slot, if one UL DMRS symbol is enough for successful PUSCH decoding (e.g., when the UE is static in good coverage) , this will improve about 7%system capacity (relative to when the additional DMRS is configured) .
  • a flexible slot may have a number of downlink symbols and a number of uplink symbols.
  • the network typically configures the flexible slot with less UL symbols.
  • the UL schedule in a flexible slot is typically limited to one UL DMRS symbol. Aspects of the present disclosure take advantage of this observation by monitoring PUSCH sent in the flexible slot as an indication of when PUSCH with one UL DMRS (without additional DMRS configured) is sufficient.
  • RRC radio resource control
  • DCI downlink control information
  • CE medium access control control element
  • aspects of the present disclosure may be able to counter changes in channel conditions that warrant additional resources for channel estimation by configuring additional DMRS and dynamically reconfiguring the UE for no additional DMRS when not needed.
  • FIGs. 7 and 8 illustrate example operations that a network entity (e.g., a gNB) and UE, respectively, may perform for dynamic DMRS configuration for PUSCH transmissions in uplink slots.
  • a network entity e.g., a gNB
  • UE may perform for dynamic DMRS configuration for PUSCH transmissions in uplink slots.
  • FIG. 7 illustrates example operations 700 for wireless communications by a network entity, in accordance with certain aspects of the present disclosure.
  • operations 700 may be performed by a wireless network entity (which could be a base station 110 of FIGS. 1 or 4) .
  • Operations 700 begin, at 702, by configuring a user equipment (UE) to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots.
  • UE user equipment
  • DMRS demodulation reference signals
  • the network entity configures the UE to transmit a second number of DMRS for PUSCH transmissions in a flexible slot comprising a configurable number of uplink symbols, wherein the second number of DMRS is less than the first number of DMRS.
  • the flexible slot may be configured with one UL DMRS symbol.
  • the network may first schedule PUSCH transmission in the flexible slot for UL.
  • the network entity may then monitor PUSCH transmission in the flexible slot to see if one DMRS may be used for all UL slots.
  • the network entity detects at least one first condition related to the PUSCH transmissions in the flexible slot.
  • the network entity dynamically reconfigures the UE to transmit the second number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one first condition.
  • the network entity may dynamically configure (or reconfigure) the DMRS on all uplink slots (e.g., to also use one DMRS) .
  • MCS modulation and coding scheme
  • BLER block error rate
  • FIG. 8 illustrates example operations 800 for wireless communications by a UE that may be considered complementary to operations 700 of FIG. 7.
  • operations 800 may be performed by a UE 120 (e.g., of FIG. 1 or FIG. 4) to transmit a PUSCH with DMRS dynamically (re-) configured by a gNB (performing operations 700 of FIG. 7) .
  • Operations 800 begin, at 802, by receiving, from a network entity, signaling configuring the UE to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots.
  • DMRS demodulation reference signals
  • PUSCH physical uplink shared channel
  • the UE transmits PUSCHs in the one or more uplink slots in accordance with the configuration.
  • the UE receives, from the network entity, signaling dynamically reconfiguring the UE to transmit a second number of DMRS for PUSCH transmissions in the one or more uplink slots.
  • the UE transmits PUSCHs in the one or more uplink slots in accordance with the dynamic reconfiguration.
  • Operations 700 of FIG. 7 and operations 800 of FIG. 8 for dynamically reconfiguring DMRS based on the UE state may be understood with reference to the flow diagram shown in FIG. 9.
  • the example assumes the network first configures (reconfigures) DMRS with pos1 for dedicated PUSCH. As described above with reference to FIG. 5, this means an additional DMRS is configured. The network then monitors PUSCH transmission on the flexible slot (one UL DMRS symbol) to determine if the UE can go without the additional DMRS.
  • the network may monitor PUSCH transmissions on the flexible slot for a monitoring period (T_mon) to see if an Average MCS index for that period meets a threshold (e.g., is not less than 20) . If this MCS condition is not met, the network maintains the current DMRS configuration.
  • T_mon monitoring period
  • a threshold e.g., is not less than 20
  • the NW may further check an uplink block error rate (UL BLER) against a threshold (e.g., is less than 10%) . If this BLER condition is also met, the network reconfigure DMRS for dedicated PUSCH with pos0 (no additional DMRS) .
  • UL BLER uplink block error rate
  • the network may monitor PUSCH transmission on all uplink slots for a monitoring period (T_back) to see if the Average MCS index is maintained after reconfiguration or if it has dropped below a threshold. If the MCS index falls below the threshold (e.g., if the MCS is less than 20) , the network entity reconfigures the PUSCH DMRS with pos1 (enabling additional DMRS) . Otherwise, if the MCS index does not fall below the threshold, the previous DMRS configuration may be maintained.
  • T_back monitoring period
  • one or both of the monitoring periods may be expressed in seconds.
  • the monitoring periods may have default values (e.g., 5s) .
  • the monitoring periods may be configured.
  • the other monitoring parameters e.g., the MCS and/or BLER thresholds
  • aspects of the present disclosure provide a new way to dynamically decrease the DMRS symbol (s) when certain conditions are met to enhance system capability.
  • the network may also re-enable an additional DMRS when needed for decoding.
  • the methods disclosed herein comprise one or more steps or actions for achieving the methods.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • ASIC application specific integrated circuit
  • FIG. 7 and 8 may be performed by various processors shown in FIG. 4 for UE 120a and/or BS 110a.
  • Means for receiving may include a receiver such as one or more antennas and/or receive processors illustrated in FIG. 4.
  • Means for transmitting may include a transmitter such as one or more antennas and/or transmit processors illustrated in FIG. 4.
  • Means for configuring, means for detecting and means for dynamically configuring may include a processing system, which may include one or more processors, such as processors 466, 458, 464, and/or controller/processor 480 of the UE 120a and/or processors 420, 430, 438, and/or controller/processor 440 of the BS 110a shown in FIG. 4.
  • a device may have an interface to output a frame for transmission (a means for outputting) .
  • a processor may output a frame, via a bus interface, to a radio frequency (RF) front end for transmission.
  • RF radio frequency
  • a device may have an interface to obtain a frame received from another device (a means for obtaining) .
  • a processor may obtain (or receive) a frame, via a bus interface, from an RF front end for reception.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • an example hardware configuration may comprise a processing system in a wireless node.
  • the processing system may be implemented with a bus architecture.
  • the bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints.
  • the bus may link together various circuits including a processor, machine-readable media, and a bus interface.
  • the bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.
  • the network adapter may be used to implement the signal processing functions of the PHY layer.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • the bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further.
  • the processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
  • the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium.
  • Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • the processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media.
  • a computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface.
  • the machine-readable media, or any portion thereof may be integrated into the processor, such as the case may be with cache and/or general register files.
  • machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • registers magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • the machine-readable media may be embodied in a computer-program product.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • the computer-readable media may comprise a number of software modules.
  • the software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions.
  • the software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices.
  • a software module may be loaded into RAM from a hard drive when a triggering event occurs.
  • the processor may load some of the instructions into cache to increase access speed.
  • One or more cache lines may then be loaded into a general register file for execution by the processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) .
  • computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
  • certain aspects may comprise a computer program product for performing the operations presented herein.
  • a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
  • instructions for performing the operations described herein and illustrated in FIG. 7-8 may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
  • instructions for performing the operations described herein and illustrated in FIG. 7-8 may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
  • FIG. 7-8 instructions for performing the operations described herein and illustrated in FIG. 7-8.
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Abstract

Aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for dynamically configuring demodulation reference signals (A-DMRS) for physical uplink shared channel (PUSCH) transmissions in uplink slots. The configuration may be based on monitoring metrics (e.g., MCS and/or BLER) for PUSCH transmissions in a flexible slot.

Description

DYNAMIC UL-DMRS CONFIGURATION BASED ON FLEXIBLE SLOT
Field of the Disclosure
Aspects of the present disclosure relate to wireless communications, and more particularly, to dynamically configuring demodulation reference signals (DMRS) in physical uplink shared channel (PUSCH) transmissions.
Description of Related Art
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) . Examples of such multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
In some examples, a wireless multiple-access communication system may include a number of base stations (BSs) , which are each capable of simultaneously supporting communication for multiple communication devices, otherwise known as user equipments (UEs) . In an LTE or LTE-A network, a set of one or more base stations may define an eNodeB (eNB) . In other examples (e.g., in a next generation, a new radio (NR) , or 5G network) , a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc. ) in communication with a number of central units (CUs) (e.g., central nodes (CNs) , access node controllers (ANCs) , etc. ) , where a set of one or more DUs, in communication with a CU, may define an access node (e.g., which may be referred to as a BS, 5G NB, next generation NodeB (gNB or gNodeB) , transmission reception point (TRP) , etc. ) . A BS or DU may communicate with a set of UEs on downlink channels (e.g., for transmissions from a BS or DU to a UE) and uplink channels (e.g., for transmissions from a UE to BS or DU) .
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. NR (e.g., new radio or 5G) is an example of an emerging telecommunication standard. NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP. NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) . To these ends, NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
Sidelink communications are communications from one UE to another UE. As the demand for mobile broadband access continues to increase, there exists a need for further improvements in NR and LTE technology, including improvements to sidelink communications. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The systems, methods, and devices of the disclosure each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure as expressed by the claims that follow, some features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the features of this disclosure provide advantages that include improved device-to-device communications in a wireless network.
Certain aspects of this disclosure provide a method for wireless communications by a network entity. The method generally includes configuring a user equipment (UE) to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots, configuring the UE to transmit a second number of DMRS for PUSCH transmissions in a flexible slot comprising a configurable number of uplink symbols, wherein the second number of DMRS is less than the first number of DMRS, detecting at least one first condition related to the PUSCH transmissions in the flexible slot, and dynamically  reconfiguring the UE to transmit the second number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one first condition.
Certain aspects of this disclosure provide a method for wireless communications by a user equipment (UE) . The method generally includes receiving, from a network entity, signaling configuring the UE to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots, transmitting PUSCHs in the one or more uplink slots in accordance with the configuration, receiving, from the network entity, signaling dynamically reconfiguring the UE to transmit a second number of DMRS for PUSCH transmissions in the one or more uplink slots, and transmitting PUSCHs in the one or more uplink slots in accordance with the dynamic reconfiguration.
Certain aspects of this disclosure provide a network entity. The network entity generally includes means for configuring a user equipment (UE) to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots, means for configuring the UE to transmit a second number of DMRS for PUSCH transmissions in a flexible slot comprising a configurable number of uplink symbols, wherein the second number of DMRS is less than the first number of DMRS, means for detecting at least one first condition related to the PUSCH transmissions in the flexible slot, and means for dynamically reconfiguring the UE to transmit the second number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one first condition.
Certain aspects of this disclosure provide a user equipment (UE) . The UE generally includes means for receiving, from a network entity, signaling configuring the UE to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots, means for transmitting PUSCHs in the one or more uplink slots in accordance with the configuration, means for receiving, from the network entity, signaling dynamically reconfiguring the UE to transmit a second number of DMRS for PUSCH transmissions in the one or more uplink slots, and means for transmitting PUSCHs in the one or more uplink slots in accordance with the dynamic reconfiguration.
Certain aspects of this disclosure provide a network entity. The network entity generally includes at least one antenna and a processing system configured to: configure  a user equipment (UE) , via the at least one antenna, to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots; configure, via the at least one antenna, the UE to transmit a second number of DMRS for PUSCH transmissions in a flexible slot comprising a configurable number of uplink symbols, wherein the second number of DMRS is less than the first number of DMRS; detect, via the at least one antenna, at least one first condition related to the PUSCH transmissions in the flexible slot; and dynamically reconfigure, via the at least one antenna, the UE to transmit the second number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one first condition.
Certain aspects of this disclosure provide a user equipment (UE) . The UE generally includes a receiver configured to receive, from a network entity, signaling configuring the UE to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots and a transmitter configured to transmit PUSCHs in the one or more uplink slots in accordance with the configuration, wherein: the receiver is further configured to receive, from the network entity, signaling dynamically reconfiguring the UE to transmit a second number of DMRS for PUSCH transmissions in the one or more uplink slots; and the transmitter is further configured to transmit PUSCHs in the one or more uplink slots in accordance with the dynamic reconfiguration.
Certain aspects of this disclosure provide an apparatus for wireless communications. The apparatus generally includes a processing system configured to: configure a user equipment (UE) to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots; configure the UE to transmit a second number of DMRS for PUSCH transmissions in a flexible slot comprising a configurable number of uplink symbols, wherein the second number of DMRS is less than the first number of DMRS; detect at least one first condition related to the PUSCH transmissions in the flexible slot; and dynamically reconfigure the UE to transmit the second number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one first condition.
Certain aspects of this disclosure provide an apparatus for wireless communications by a user equipment (UE) . The apparatus generally includes a processing system having an interface configured to: obtain, from a network entity, signaling configuring the UE to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots; output PUSCHs, for transmission, in the one or more uplink slots in accordance with the configuration; obtain, from the network entity, signaling dynamically reconfiguring the UE to transmit a second number of DMRS for PUSCH transmissions in the one or more uplink slots; and output PUSCHs, for transmission, in the one or more uplink slots in accordance with the dynamic reconfiguration.
Certain aspects of this disclosure provide a computer-readable medium for wireless communications. The computer-readable medium generally includes instructions executable to configure a user equipment (UE) to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots, configure the UE to transmit a second number of DMRS for PUSCH transmissions in a flexible slot comprising a configurable number of uplink symbols, wherein the second number of DMRS is less than the first number of DMRS, detect at least one first condition related to the PUSCH transmissions in the flexible slot, and dynamically reconfigure the UE to transmit the second number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one first condition.
Certain aspects of this disclosure provide a computer-readable medium for wireless communications by a user equipment (UE) . The computer-readable medium generally includes instructions executable to: receive, from a network entity, signaling configuring the UE to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots; transmit PUSCHs in the one or more uplink slots in accordance with the configuration; receive, from the network entity, signaling dynamically reconfiguring the UE to transmit a second number of DMRS for PUSCH transmissions in the one or more uplink slots; and transmit PUSCHs in the one or more uplink slots in accordance with the dynamic reconfiguration.
Aspects of the present disclosure provide means for, apparatus, processors, and computer-readable mediums for performing the methods described herein.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects.
FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
FIG. 2 is a block diagram illustrating an example logical architecture of a distributed radio access network (RAN) , in accordance with certain aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example physical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
FIG. 4 is a block diagram conceptually illustrating a design of an example base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
FIG. 5 illustrates an example PUSCH DMRS configuration.
FIG. 6 illustrates example flexible slot.
FIG. 7 illustrates example operations for wireless communications by a network entity, in accordance with certain aspects of the present disclosure.
FIG. 8 illustrates example operations for wireless communications by a UE, in accordance with certain aspects of the present disclosure.
FIG. 9 is a flow diagram illustrating dynamic PUSCH DMRS configuration, in accordance with certain aspects of the present disclosure.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one aspect may be beneficially utilized on other aspects without specific recitation.
DETAILED DESCRIPTION
Aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for dynamically configuring demodulation reference signals (A-DMRS) for physical uplink shared channel (PUSCH) transmissions in uplink slots. The configuration may be based on monitoring metrics (e.g., MCS and/or BLER) for PUSCH transmissions in a flexible slot.
The following description provides examples, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method that is practiced using other structure, functionality, or structure and functionality in addition to, or other than, the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
The techniques described herein may be used for various wireless communication technologies, such as LTE, CDMA, TDMA, FDMA, OFDMA, SC-FDMA and other networks. The terms “network” and “system” are often used interchangeably. A CDMA network may implement a radio technology such as Universal  Terrestrial Radio Access (UTRA) , cdma2000, etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA network may implement a radio technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
New Radio (NR) is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) . 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
New radio (NR) access (e.g., 5G technology) may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) . These services may include latency and reliability requirements. These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements. In addition, these services may co-exist in the same subframe.
FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed. For example, a base station 110 may be configured to perform operations 700 of FIG. 7 to dynamically configure DMRS for  PUSCH transmissions from a UE 120. Similarly, a UE 120a may be configured to perform operations described below with reference to FIG. 8 to transmit PUSCH with DMRS dynamically configured by a BS 110 (performing operations 700 of FIG. 7) .
As illustrated in FIG. 1, the wireless communication network 100 may include a number of base stations (BSs) 110a-z (each also individually referred to herein as BS 110 or collectively as BSs 110) and other network entities. In aspects of the present disclosure, a roadside service unit (RSU) may be considered a type of BS, and a BS 110 may be referred to as an RSU. A BS 110 may provide communication coverage for a particular geographic area, sometimes referred to as a “cell” , which may be stationary or may move according to the location of a mobile BS 110. In some examples, the BSs 110 may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces (e.g., a direct physical connection, a wireless connection, a virtual network, or the like) using any suitable transport network. In the example shown in FIG. 1, the  BSs  110a, 110b and 110c may be macro BSs for the  macro cells  102a, 102b and 102c, respectively. The BS 110x may be a pico BS for a pico cell 102x. The BSs 110y and 110z may be femto BSs for the  femto cells  102y and 102z, respectively. A BS may support one or multiple cells. The BSs 110 communicate with user equipment (UEs) 120a-y (each also individually referred to herein as UE 120 or collectively as UEs 120) in the wireless communication network 100. The UEs 120 (e.g., 120x, 120y, etc. ) may be dispersed throughout the wireless communication network 100, and each UE 120 may be stationary or mobile.
Wireless communication network 100 may also include relay stations (e.g., relay station 110r) , also referred to as relays or the like, that receive a transmission of data and/or other information from an upstream station (e.g., a BS 110a or a UE 120r) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
network controller 130 may couple to a set of BSs 110 and provide coordination and control for these BSs 110. The network controller 130 may communicate with the BSs 110 via a backhaul. The BSs 110 may also communicate with one another (e.g., directly or indirectly) via wireless or wireline backhaul.
The UEs 120 (e.g., 120x, 120y, etc. ) may be dispersed throughout the wireless communication network 100, and each UE may be stationary or mobile. A UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc. ) , an entertainment device (e.g., a music device, a video device, a satellite radio, etc. ) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium. Some UEs may be considered machine-type communication (MTC) devices or evolved MTC (eMTC) devices. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
Certain wireless networks (e.g., LTE) utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” (RB) ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast Fourier Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz) , respectively. The system bandwidth may also be partitioned into  subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8, or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
While aspects of the examples described herein may be associated with LTE technologies, aspects of the present disclosure may be applicable with other wireless communications systems, such as NR. NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD. Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
In some examples, access to the air interface may be scheduled. A scheduling entity (e.g., a BS) allocates resources for communication among some or all devices and equipment within its service area or cell. The scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity. Base stations are not the only entities that may function as a scheduling entity. In some examples, a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication. In some examples, a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may communicate directly with one another in addition to communicating with a scheduling entity.
In FIG. 1, a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink. A finely dashed line with double arrows indicates interfering transmissions between a UE and a BS.
FIG. 2 illustrates an example logical architecture of a distributed Radio Access Network (RAN) 200, which may be implemented in the wireless communication network 100 illustrated in FIG. 1. A 5G access node 206 may include an access node controller  (ANC) 202. ANC 202 may be a central unit (CU) of the distributed RAN 200. The backhaul interface to the Next Generation Core Network (NG-CN) 204 may terminate at ANC 202. The backhaul interface to neighboring next generation access Nodes (NG-ANs) 210 may terminate at ANC 202. ANC 202 may include one or more TRPs 208 (e.g., cells, BSs, gNBs, etc. ) .
The TRPs 208 may be a distributed unit (DU) . TRPs 208 may be connected to a single ANC (e.g., ANC 202) or more than one ANC (not illustrated) . For example, for RAN sharing, radio as a service (RaaS) , and service specific AND deployments, TRPs 208 may be connected to more than one ANC. TRPs 208 may each include one or more antenna ports. TRPs 208 may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.
The logical architecture of distributed RAN 200 may support fronthauling solutions across different deployment types. For example, the logical architecture may be based on transmit network capabilities (e.g., bandwidth, latency, and/or jitter) .
The logical architecture of distributed RAN 200 may share features and/or components with LTE. For example, next generation access node (NG-AN) 210 may support dual connectivity with NR and may share a common fronthaul for LTE and NR.
The logical architecture of distributed RAN 200 may enable cooperation between and among TRPs 208, for example, within a TRP and/or across TRPs via ANC 202. An inter-TRP interface may not be used.
Logical functions may be dynamically distributed in the logical architecture of distributed RAN 200. The Radio Resource Control (RRC) layer, Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, Medium Access Control (MAC) layer, and a Physical (PHY) layers may be adaptably placed at the DU (e.g., TRP 208) or CU (e.g., ANC 202) .
FIG. 3 illustrates an example physical architecture of a distributed RAN 300, according to aspects of the present disclosure. A centralized core network unit (C-CU) 302 may host core network functions. C-CU 302 may be centrally deployed. C-CU 302 functionality may be offloaded (e.g., to advanced wireless services (AWS) ) , in an effort to handle peak capacity.
A centralized RAN unit (C-RU) 304 may host one or more ANC functions. Optionally, the C-RU 304 may host core network functions locally. The C-RU 304 may have distributed deployment. The C-RU 304 may be close to the network edge.
DU 306 may host one or more TRPs (Edge Node (EN) , an Edge Unit (EU) , a Radio Head (RH) , a Smart Radio Head (SRH) , or the like) . The DU may be located at edges of the network with radio frequency (RF) functionality.
FIG. 4 illustrates example components of BS 110a and UE 120a (as depicted in FIG. 1) , which may be used to implement aspects of the present disclosure. For example, antennas 452,  processors  466, 458, 464, and/or controller/processor 480 of the UE 120a may be used to perform the various techniques and methods described herein with reference to FIG. 8. Similarly, antennas 434,  processors  420, 438, 430, and/or controller/processor 440 of the BS 110a may be used to perform the various techniques and methods described herein with reference to FIG. 7.
At the BS 110a, a transmit processor 420 may receive data from a data source 412 and control information from a controller/processor 440. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc. The data may be for the physical downlink shared channel (PDSCH) , etc. The processor 420 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The processor 420 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) . A transmit (TX) multiple-input multiple-output (MIMO) processor 430 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 432a through 432t. Each modulator 432 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 432a through 432t may be transmitted via the antennas 434a through 434t, respectively.
At the UE 120a, the antennas 452a through 452r may receive the downlink signals from the base station 110a and may provide received signals to the demodulators (DEMODs) in transceivers 454a through 454r, respectively. Each demodulator 454 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 456 may obtain received symbols from all the demodulators 454a through 454r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 458 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120a to a data sink 460, and provide decoded control information to a controller/processor 480.
On the uplink, at UE 120a, a transmit processor 464 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 462 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 480. The transmit processor 464 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) . The symbols from the transmit processor 464 may be precoded by a TX MIMO processor 466 if applicable, further processed by the demodulators in transceivers 454a through 454r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110a. At the BS 110a, the uplink signals from the UE 120a may be received by the antennas 434, processed by the modulators 432, detected by a MIMO detector 436 if applicable, and further processed by a receive processor 438 to obtain decoded data and control information sent by the UE 120a. The receive processor 438 may provide the decoded data to a data sink 439 and the decoded control information to the controller/processor 440.
The controllers/ processors  440 and 480 may direct the operation at the BS 110a and the UE 120a, respectively. The processor 440 and/or other processors and modules at the BS 110a may perform or direct the execution of processes for the techniques described herein. Although shown at the controller/processor 480 and controller/processor 440, other components of the UE 120a and BS 110a may be used performing the operations described herein. The  memories  442 and 482 may store data and program codes for BS 110a and UE 120a, respectively. A scheduler 444 may schedule UEs for data transmission on the downlink, sidelink, and/or uplink.
In some circumstances, two or more subordinate entities (e.g., UEs) may communicate with each other using sidelink signals. Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications. Generally, a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS) , even though the scheduling entity may be utilized for scheduling and/or control purposes. In some examples, the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks (WLANs) , which typically use an unlicensed spectrum) .
Example Dynamic DMRS Configuration for PUSCH based on Flexible Slot
Aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for dynamically configuring demodulation reference signals (A-DMRS) for physical uplink shared channel (PUSCH) transmissions in uplink slots. The configuration may be based on monitoring metrics (e.g., MCS and/or BLER) for PUSCH transmissions in a flexible slot.
As will be described in greater detail below, a UE may receive, from a network entity, signaling that dynamically configures/re-configures the UE to transmit additional DMRS for a PUSCH transmission in uplink slots.
FIG. 5 illustrates a DMRS configuration for a dedicated PUSCH (on a dedicated uplink slot) for a UE in RRC_CONNECTED state. The parameter dmrs-AdditionalPosition indicates a number of additional DMRS. When the additional DMRS is configured, this means that UL DMRS occupies two symbols in one uplink slot. With 14 symbols in a slot, if one UL DMRS symbol is enough for successful PUSCH decoding (e.g., when the UE is static in good coverage) , this will improve about 7%system capacity (relative to when the additional DMRS is configured) .
As shown in FIG. 6, a flexible slot may have a number of downlink symbols and a number of uplink symbols. As illustrated, the network typically configures the flexible slot with less UL symbols. As a result, the UL schedule in a flexible slot is typically limited to one UL DMRS symbol. Aspects of the present disclosure take  advantage of this observation by monitoring PUSCH sent in the flexible slot as an indication of when PUSCH with one UL DMRS (without additional DMRS configured) is sufficient.
Changing such a DMRS configuration via radio resource control (RRC) configuration (or reconfiguration) may be too slow to address rapidly changing channel conditions. By dynamically changing DMRS configuration via dynamic signaling, such as L1/L2 signaling via downlink control information (DCI) or a medium access control (MAC) control element (CE) , aspects of the present disclosure may be able to counter changes in channel conditions that warrant additional resources for channel estimation by configuring additional DMRS and dynamically reconfiguring the UE for no additional DMRS when not needed.
FIGs. 7 and 8 illustrate example operations that a network entity (e.g., a gNB) and UE, respectively, may perform for dynamic DMRS configuration for PUSCH transmissions in uplink slots.
FIG. 7 illustrates example operations 700 for wireless communications by a network entity, in accordance with certain aspects of the present disclosure. For example, operations 700 may be performed by a wireless network entity (which could be a base station 110 of FIGS. 1 or 4) .
Operations 700 begin, at 702, by configuring a user equipment (UE) to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots.
At 704, the network entity configures the UE to transmit a second number of DMRS for PUSCH transmissions in a flexible slot comprising a configurable number of uplink symbols, wherein the second number of DMRS is less than the first number of DMRS.
As noted above, the flexible slot may be configured with one UL DMRS symbol. Thus, the network may first schedule PUSCH transmission in the flexible slot for UL. The network entity may then monitor PUSCH transmission in the flexible slot to see if one DMRS may be used for all UL slots.
At 706, the network entity detects at least one first condition related to the PUSCH transmissions in the flexible slot. At 708, the network entity dynamically  reconfigures the UE to transmit the second number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one first condition.
For example, if the PUSCH transmissions on the flexible slot maintain an average modulation and coding scheme (MCS) index above a threshold level (e.g., 20) over a monitoring period and/or maintain a block error rate (BLER) below a threshold value (e.g., less than 10%) , the network entity may dynamically configure (or reconfigure) the DMRS on all uplink slots (e.g., to also use one DMRS) .
FIG. 8 illustrates example operations 800 for wireless communications by a UE that may be considered complementary to operations 700 of FIG. 7. For example, operations 800 may be performed by a UE 120 (e.g., of FIG. 1 or FIG. 4) to transmit a PUSCH with DMRS dynamically (re-) configured by a gNB (performing operations 700 of FIG. 7) .
Operations 800 begin, at 802, by receiving, from a network entity, signaling configuring the UE to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots. At 804, the UE transmits PUSCHs in the one or more uplink slots in accordance with the configuration. At 806, the UE receives, from the network entity, signaling dynamically reconfiguring the UE to transmit a second number of DMRS for PUSCH transmissions in the one or more uplink slots. At 808, the UE transmits PUSCHs in the one or more uplink slots in accordance with the dynamic reconfiguration.
Operations 700 of FIG. 7 and operations 800 of FIG. 8 for dynamically reconfiguring DMRS based on the UE state may be understood with reference to the flow diagram shown in FIG. 9.
As illustrated, the example assumes the network first configures (reconfigures) DMRS with pos1 for dedicated PUSCH. As described above with reference to FIG. 5, this means an additional DMRS is configured. The network then monitors PUSCH transmission on the flexible slot (one UL DMRS symbol) to determine if the UE can go without the additional DMRS.
As illustrated, the network may monitor PUSCH transmissions on the flexible slot for a monitoring period (T_mon) to see if an Average MCS index for that period meets a threshold (e.g., is not less than 20) . If this MCS condition is not met, the network maintains the current DMRS configuration.
If this first threshold condition is met, in some cases, the NW may further check an uplink block error rate (UL BLER) against a threshold (e.g., is less than 10%) . If this BLER condition is also met, the network reconfigure DMRS for dedicated PUSCH with pos0 (no additional DMRS) .
As illustrated, after reconfiguration, the network may monitor PUSCH transmission on all uplink slots for a monitoring period (T_back) to see if the Average MCS index is maintained after reconfiguration or if it has dropped below a threshold. If the MCS index falls below the threshold (e.g., if the MCS is less than 20) , the network entity reconfigures the PUSCH DMRS with pos1 (enabling additional DMRS) . Otherwise, if the MCS index does not fall below the threshold, the previous DMRS configuration may be maintained.
In some cases, one or both of the monitoring periods (T_mon and/or T_back) may be expressed in seconds. In some cases, the monitoring periods may have default values (e.g., 5s) . The monitoring periods may be configured. Similarly, the other monitoring parameters (e.g., the MCS and/or BLER thresholds) may also be configurable, for example, allowing these parameters to be to adjusted as needed to meet performance objectives.
Aspects of the present disclosure provide a new way to dynamically decrease the DMRS symbol (s) when certain conditions are met to enhance system capability. The network may also re-enable an additional DMRS when needed for decoding.
The methods disclosed herein comprise one or more steps or actions for achieving the methods. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
As used herein, the term “determining” encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving,  investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112 (f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”
The various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor. Generally, where there are operations illustrated in figures, those operations may have corresponding counterpart means-plus-function components. For example, various operations shown in FIG. 7 and 8 may be performed by various processors shown in FIG. 4 for UE 120a and/or BS 110a.
Means for receiving may include a receiver such as one or more antennas and/or receive processors illustrated in FIG. 4. Means for transmitting may include a transmitter such as one or more antennas and/or transmit processors illustrated in FIG. 4. Means for configuring, means for detecting and means for dynamically configuring may  include a processing system, which may include one or more processors, such as  processors  466, 458, 464, and/or controller/processor 480 of the UE 120a and/or  processors  420, 430, 438, and/or controller/processor 440 of the BS 110a shown in FIG. 4.
In some cases, rather than actually transmitting a frame a device may have an interface to output a frame for transmission (a means for outputting) . For example, a processor may output a frame, via a bus interface, to a radio frequency (RF) front end for transmission. Similarly, rather than actually receiving a frame, a device may have an interface to obtain a frame received from another device (a means for obtaining) . For example, a processor may obtain (or receive) a frame, via a bus interface, from an RF front end for reception.
The various illustrative logical blocks, modules and circuits described in connection with the present disclosure may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
If implemented in hardware, an example hardware configuration may comprise a processing system in a wireless node. The processing system may be implemented with a bus architecture. The bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints. The bus may link together various circuits including a processor, machine-readable media, and a bus interface. The bus interface may be used to connect a network adapter, among other things, to the processing system via the bus. The network adapter may be used to implement the signal processing functions of the PHY layer. In the case of a user terminal 120 (see FIG. 1) , a user interface (e.g., keypad, display, mouse, joystick, etc. ) may also be connected to the bus. The bus may also link  various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further. The processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
If implemented in software, the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium. Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. The processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media. A computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. By way of example, the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface. Alternatively, or in addition, the machine-readable media, or any portion thereof, may be integrated into the processor, such as the case may be with cache and/or general register files. Examples of machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof. The machine-readable media may be embodied in a computer-program product.
A software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs,  and across multiple storage media. The computer-readable media may comprise a number of software modules. The software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions. The software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices. By way of example, a software module may be loaded into RAM from a hard drive when a triggering event occurs. During execution of the software module, the processor may load some of the instructions into cache to increase access speed. One or more cache lines may then be loaded into a general register file for execution by the processor. When referring to the functionality of a software module below, it will be understood that such functionality is implemented by the processor when executing instructions from that software module.
Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and
Figure PCTCN2020096075-appb-000001
disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in some aspects computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) . In addition, for other aspects computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
Thus, certain aspects may comprise a computer program product for performing the operations presented herein. For example, such a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein. For example, instructions for performing the operations described herein and illustrated in FIG. 7-8.
Further, it should be appreciated that modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable. For example, such a device can be coupled to a server to facilitate the transfer of means for performing the methods described herein. Alternatively, various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device. Moreover, any other suitable technique for providing the methods and techniques described herein to a device can be utilized.
It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims.

Claims (37)

  1. A method for wireless communications by a network entity, comprising:
    configuring a user equipment (UE) to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots;
    configuring the UE to transmit a second number of DMRS for PUSCH transmissions in a flexible slot comprising a configurable number of uplink symbols, wherein the second number of DMRS is less than the first number of DMRS;
    detecting at least one first condition related to the PUSCH transmissions in the flexible slot; and
    dynamically reconfiguring the UE to transmit the second number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one first condition.
  2. The method of claim 1, wherein:
    the at least one first condition comprises observing the PUSCH transmissions in the flexible slot with an average modulation and coding scheme (MCS) index over a first monitoring period being greater than or equal to a first threshold MCS index.
  3. The method of claim 1 or 2, wherein the at least one condition further comprises an uplink block error rate (BLER) for the PUSCH transmissions in the flexible slot being less than a threshold BLER.
  4. The method of claim 2, wherein the first monitoring period is configurable.
  5. The method of claim 1or 2, wherein the dynamic reconfiguration results in fewer uplink DMRS symbols in the one or more uplink slots.
  6. The method of claim 1 or 2, further comprising:
    detecting at least one second condition related to the PUSCH transmissions in the one or more uplink slots after dynamically reconfiguring the UE to transmit the second number of DMRS for the PUSCH transmissions in the one or more uplink slots; and
    dynamically reconfiguring the UE to again transmit the first number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one second condition.
  7. The method of claim 6, wherein:
    the at least one second condition comprises observing the PUSCH transmissions in the one or more uplink slots with an average MCS index over a second monitoring period being less than or equal to a second threshold MCS index.
  8. The method of claim 7, wherein the second monitoring period is configurable.
  9. A method for wireless communications by a user equipment (UE) , comprising:
    receiving, from a network entity, signaling configuring the UE to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots;
    transmitting PUSCHs in the one or more uplink slots in accordance with the configuration;
    receiving, from the network entity, signaling dynamically reconfiguring the UE to transmit a second number of DMRS for PUSCH transmissions in the one or more uplink slots; and
    transmitting PUSCHs in the one or more uplink slots in accordance with the dynamic reconfiguration.
  10. The method of claim 9, wherein the dynamic reconfiguration results in fewer uplink DMRS symbols in the one or more uplink slots.
  11. The method of claim 9, further comprising:
    receiving, from the network entity, additional signaling dynamically reconfiguring the UE to again transmit the first number of DMRS for PUSCH transmissions in the one or more uplink slots.
  12. A network entity, comprising:
    means for configuring a user equipment (UE) to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots;
    means for configuring the UE to transmit a second number of DMRS for PUSCH transmissions in a flexible slot comprising a configurable number of uplink symbols, wherein the second number of DMRS is less than the first number of DMRS;
    means for detecting at least one first condition related to the PUSCH transmissions in the flexible slot; and
    means for dynamically reconfiguring the UE to transmit the second number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one first condition.
  13. The network entity of claim 12, wherein:
    the at least one first condition comprises observing the PUSCH transmissions in the flexible slot with an average modulation and coding scheme (MCS) index over a first monitoring period being greater than or equal to a first threshold MCS index.
  14. The network entity of claim 12 or 13, wherein the at least one condition further comprises an uplink block error rate (BLER) for the PUSCH transmissions in the flexible slot being less than a threshold BLER.
  15. The network entity of claim 13, wherein the first monitoring period is configurable.
  16. The network entity of claim 12or 13, wherein the dynamic reconfiguration results in fewer uplink DMRS symbols in the one or more uplink slots.
  17. The network entity of claim 12 or 13, further comprising:
    means for detecting at least one second condition related to the PUSCH transmissions in the one or more uplink slots after dynamically reconfiguring the UE to transmit the second number of DMRS for the PUSCH transmissions in the one or more uplink slots; and
    means for dynamically reconfiguring the UE to again transmit the first number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one second condition.
  18. The network entity of claim 17, wherein:
    the at least one second condition comprises observing the PUSCH transmissions in the one or more uplink slots with an average MCS index over a second monitoring period being less than or equal to a second threshold MCS index.
  19. The network entity of claim 18, wherein the second monitoring period is configurable.
  20. A user equipment (UE) , comprising:
    means for receiving, from a network entity, signaling configuring the UE to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots;
    means for transmitting PUSCHs in the one or more uplink slots in accordance with the configuration;
    means for receiving, from the network entity, signaling dynamically reconfiguring the UE to transmit a second number of DMRS for PUSCH transmissions in the one or more uplink slots; and
    means for transmitting PUSCHs in the one or more uplink slots in accordance with the dynamic reconfiguration.
  21. The UE of claim 20, wherein the dynamic reconfiguration results in fewer uplink DMRS symbols in the one or more uplink slots.
  22. The UE of claim 20, further comprising:
    means for receiving, from the network entity, additional signaling dynamically reconfiguring the UE to again transmit the first number of DMRS for PUSCH transmissions in the one or more uplink slots.
  23. A network entity, comprising:
    at least one antenna; and
    a processing system configured to:
    configure a user equipment (UE) , via the at least one antenna, to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots;
    configure, via the at least one antenna, the UE to transmit a second number of DMRS for PUSCH transmissions in a flexible slot comprising a configurable number of uplink symbols, wherein the second number of DMRS is less than the first number of DMRS;
    detect, via the at least one antenna, at least one first condition related to the PUSCH transmissions in the flexible slot; and
    dynamically reconfigure, via the at least one antenna, the UE to transmit the second number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one first condition.
  24. The network entity of claim 23, wherein:
    the at least one first condition comprises observing the PUSCH transmissions in the flexible slot with an average modulation and coding scheme (MCS) index over a first monitoring period being greater than or equal to a first threshold MCS index.
  25. The network entity of claim 23 or 24, wherein the at least one condition further comprises an uplink block error rate (BLER) for the PUSCH transmissions in the flexible slot being less than a threshold BLER.
  26. The network entity of claim 24, wherein the first monitoring period is configurable.
  27. The network entity of claim 23or 24, wherein the dynamic reconfiguration results in fewer uplink DMRS symbols in the one or more uplink slots.
  28. The network entity of claim 23 or 24, wherein the processing system is further configured to:
    detect at least one second condition related to the PUSCH transmissions in the one or more uplink slots after dynamically reconfiguring the UE to transmit the second number of DMRS for the PUSCH transmissions in the one or more uplink slots; and
    dynamically reconfigure the UE to again transmit the first number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one second condition.
  29. The network entity of claim 28, wherein:
    the at least one second condition comprises observing the PUSCH transmissions in the one or more uplink slots with an average MCS index over a second monitoring period being less than or equal to a second threshold MCS index.
  30. The network entity of claim 29, wherein the second monitoring period is configurable.
  31. A user equipment (UE) , comprising:
    a receiver configured to receive, from a network entity, signaling configuring the UE to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots; and
    a transmitter configured to transmit PUSCHs in the one or more uplink slots in accordance with the configuration, wherein:
    the receiver is further configured to receive, from the network entity, signaling dynamically reconfiguring the UE to transmit a second number of DMRS for PUSCH transmissions in the one or more uplink slots; and
    the transmitter is further configured to transmit PUSCHs in the one or more uplink slots in accordance with the dynamic reconfiguration.
  32. The UE of claim 31, wherein the dynamic reconfiguration results in fewer uplink DMRS symbols in the one or more uplink slots.
  33. The UE of claim 31, further comprising:
    receiving, from the network entity, additional signaling dynamically reconfiguring the UE to again transmit the first number of DMRS for PUSCH transmissions in the one or more uplink slots.
  34. An apparatus for wireless communications, comprising:
    a processing system configured to:
    configure a user equipment (UE) to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots;
    configure the UE to transmit a second number of DMRS for PUSCH transmissions in a flexible slot comprising a configurable number of uplink symbols, wherein the second number of DMRS is less than the first number of DMRS;
    detect at least one first condition related to the PUSCH transmissions in the flexible slot; and
    dynamically reconfigure the UE to transmit the second number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one first condition.
  35. An apparatus for wireless communications by a user equipment (UE) , comprising:
    a processing system having an interface configured to:
    obtain, from a network entity, signaling configuring the UE to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots;
    output PUSCHs, for transmission, in the one or more uplink slots in accordance with the configuration;
    obtain, from the network entity, signaling dynamically reconfiguring the UE to transmit a second number of DMRS for PUSCH transmissions in the one or more uplink slots; and
    output PUSCHs, for transmission, in the one or more uplink slots in accordance with the dynamic reconfiguration.
  36. A computer-readable medium for wireless communications by a network entity, comprising instructions executable to:
    configure a user equipment (UE) to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots;
    configure the UE to transmit a second number of DMRS for PUSCH transmissions in a flexible slot comprising a configurable number of uplink symbols, wherein the second number of DMRS is less than the first number of DMRS;
    detect at least one first condition related to the PUSCH transmissions in the flexible slot; and
    dynamically reconfigure the UE to transmit the second number of DMRS for PUSCH transmissions in the one or more uplink slots, based on the detection of the at least one first condition.
  37. A computer-readable medium for wireless communications by a user equipment (UE) , comprising instructions executable to:
    receive, from a network entity, signaling configuring the UE to transmit a first number of demodulation reference signals (DMRS) for physical uplink shared channel (PUSCH) transmissions in one or more uplink slots;
    transmit PUSCHs in the one or more uplink slots in accordance with the configuration;
    receive, from the network entity, signaling dynamically reconfiguring the UE to transmit a second number of DMRS for PUSCH transmissions in the one or more uplink slots; and
    transmit PUSCHs in the one or more uplink slots in accordance with the dynamic reconfiguration.
PCT/CN2020/096075 2020-06-15 2020-06-15 Dynamic ul-dmrs configuration based on flexible slot WO2021253154A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096075 WO2021253154A1 (en) 2020-06-15 2020-06-15 Dynamic ul-dmrs configuration based on flexible slot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096075 WO2021253154A1 (en) 2020-06-15 2020-06-15 Dynamic ul-dmrs configuration based on flexible slot

Publications (1)

Publication Number Publication Date
WO2021253154A1 true WO2021253154A1 (en) 2021-12-23

Family

ID=79268865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096075 WO2021253154A1 (en) 2020-06-15 2020-06-15 Dynamic ul-dmrs configuration based on flexible slot

Country Status (1)

Country Link
WO (1) WO2021253154A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023200538A1 (en) * 2022-04-12 2023-10-19 Qualcomm Incorporated Throughput improvement for radio frames containing time division duplex (tdd) special slots or tdd/frequency division duplex (fdd) rate-matched slots
WO2023206577A1 (en) * 2022-04-29 2023-11-02 Nokia Shanghai Bell Co., Ltd. Method and apparatus related to reference signal symbols for uplink transmissions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120250663A1 (en) * 2009-11-17 2012-10-04 Seung Hee Han Method and Device for Performing HARQ in a Multiple Antenna System
WO2018059589A1 (en) * 2016-09-30 2018-04-05 中兴通讯股份有限公司 Method and apparatus for transmitting physical uplink shared channel (pusch)
CN110535584A (en) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 A kind of method of uplink transmission, device, user terminal and readable storage medium storing program for executing
EP3609104A1 (en) * 2018-08-09 2020-02-12 Panasonic Intellectual Property Corporation of America Flexible repetition of pusch mini-slots within a slot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120250663A1 (en) * 2009-11-17 2012-10-04 Seung Hee Han Method and Device for Performing HARQ in a Multiple Antenna System
WO2018059589A1 (en) * 2016-09-30 2018-04-05 中兴通讯股份有限公司 Method and apparatus for transmitting physical uplink shared channel (pusch)
EP3609104A1 (en) * 2018-08-09 2020-02-12 Panasonic Intellectual Property Corporation of America Flexible repetition of pusch mini-slots within a slot
CN110535584A (en) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 A kind of method of uplink transmission, device, user terminal and readable storage medium storing program for executing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023200538A1 (en) * 2022-04-12 2023-10-19 Qualcomm Incorporated Throughput improvement for radio frames containing time division duplex (tdd) special slots or tdd/frequency division duplex (fdd) rate-matched slots
WO2023206577A1 (en) * 2022-04-29 2023-11-02 Nokia Shanghai Bell Co., Ltd. Method and apparatus related to reference signal symbols for uplink transmissions

Similar Documents

Publication Publication Date Title
US11233688B2 (en) Physical downlink control channel (PDCCH) aggregation level (AL) design for new radio (NR) ultra-reliable low latency communication (URLLC)
WO2018141090A1 (en) Coupling aperiodic channel state information (csi) reference symbol (rs) (csi-rs) structure with feedback content and reporting timing
WO2018226312A1 (en) Minimizing interference by controlling beam width of a wireless device
WO2021142704A1 (en) Monitoring for a combination downlink control information (dci) for scheduling transmissions in multiple cells
WO2018165911A1 (en) Method for indicating pdsch/pusch resource element mapping
WO2019052407A1 (en) Methods and apparatus for csi-rs port subset indication
EP3881479A1 (en) Physical downlink control channel limit for dual connectivity
WO2019214668A1 (en) Aperiodic channel state information computation for cross-carrier scheduling
EP3711422B1 (en) Efficient data scheduling with supplemental uplink carrier
EP3834331B1 (en) Quasi-colocation indication for non-zero power channel state information reference signal port groups
EP3619986B1 (en) Use of multiple paging radio network temporary identifiers (p-rnti) to reduce paging collisions
WO2020029880A1 (en) Quasi-colocation indication for demodulation reference signals
WO2019062726A1 (en) Rate matching for new radio (nr) physical downlink shared channel (pdsch) and physical uplink shared channel (pusch)
WO2022000249A1 (en) Switching among multiple component carriers
WO2021253154A1 (en) Dynamic ul-dmrs configuration based on flexible slot
CA3063156A1 (en) Short burst channel design and multiplexing
WO2020088607A1 (en) Channel state information (csi) measurement with different quasi-colocation (qcl) configurations for a same csi reference signal (csi-rs) resource
WO2020252612A1 (en) Low-complexity physical downlink control channels and related signaling
WO2020047800A1 (en) Handling issues with small bandwidth cells
WO2021035495A1 (en) Deactivation time for semi-persistent channel state information (sp-csi)
WO2020057660A1 (en) Preemption indication for dl multiplexing of different types of traffic with non-coherent joint transmission
WO2020220367A1 (en) Control channel demodulation reference signal bundling
WO2020061840A1 (en) Csi reporting without full csi-rs presence introduction
WO2022000255A1 (en) Autonomous transmit power management in a small cell
WO2020029900A1 (en) Collision handling for channel state information reports and uplink data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941439

Country of ref document: EP

Kind code of ref document: A1