WO2021251543A1 - Negative electrode active material for secondary battery, method for preparing same, and secondary battery comprising same - Google Patents

Negative electrode active material for secondary battery, method for preparing same, and secondary battery comprising same Download PDF

Info

Publication number
WO2021251543A1
WO2021251543A1 PCT/KR2020/008882 KR2020008882W WO2021251543A1 WO 2021251543 A1 WO2021251543 A1 WO 2021251543A1 KR 2020008882 W KR2020008882 W KR 2020008882W WO 2021251543 A1 WO2021251543 A1 WO 2021251543A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
active material
bips
bpsc
present technology
Prior art date
Application number
PCT/KR2020/008882
Other languages
French (fr)
Korean (ko)
Inventor
김광범
나자리안-사마니마수드
하기가트-시샤바니사파
나자리안-사마니마부베
이건우
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2021251543A1 publication Critical patent/WO2021251543A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present technology relates to an anode active material for a secondary battery, a method for manufacturing the same, and a secondary battery including the same.
  • lithium secondary batteries are currently the most common among secondary batteries, and since these lithium secondary cells use a lot of rare metals such as cobalt (Co), nickel (Ni), and lithium (Li), large There is concern about the supply of rare metals according to the increase in demand for secondary batteries.
  • One object of the present technology is to provide an anode active material for a secondary battery having improved charge/discharge characteristics and electrical characteristics.
  • Another object of the present technology is to provide a secondary battery including the negative active material for secondary batteries.
  • Another object of the present technology is to provide a method of manufacturing the negative active material for a secondary battery.
  • the present technology provides an anode active material for a secondary battery including a compound having an orthorhombic crystal structure and having a chemical formula of BiPS 4 .
  • the present technology provides a secondary battery including the negative active material.
  • the present technology (a) mixing bismuth (Bi), phosphorus (P) and sulfur (S) in a molar ratio of 1: 0.8 to 1.2: 3.8 to 4.2; And (b) ball milling the mixture to obtain a compound having a chemical formula of BiPS 4 having an orthorhombic crystal structure;
  • BiPS 4 having a tunnel structure which is an anode active material according to the present technology
  • BiPS 4 -CNT composite using the same can be manufactured through a simple process, and exhibit excellent charge/discharge characteristics and electrical characteristics compared to conventional anode active materials, so that not only lithium secondary batteries However, it can be usefully used as an anode material for a sodium secondary battery or a potassium secondary battery.
  • BiPS 4 having a tunnel structure which is an anode active material according to the present technology
  • BiPS 4 -CNT composite using the same can be manufactured through a simple process, and exhibit excellent charge/discharge characteristics and electrical characteristics compared to conventional anode active materials, so that not only lithium secondary batteries However, it can be usefully used as an anode material for a sodium secondary battery or a potassium secondary battery.
  • FIG. 2 shows the XRD measurement results of the negative active material for a secondary battery according to an embodiment of the present technology.
  • FIG. 3 is a view showing a measurement result of a selective region electron diffraction pattern of a negative active material for a secondary battery according to an embodiment of the present technology.
  • FIG. 4 shows the results of X-ray photoelectron spectroscopy analysis of a negative active material for a secondary battery according to an embodiment of the present technology.
  • Figure 5 shows the CV curve measurement result of the BPSC electrode when using the KPF 6 solute according to an embodiment of the present technology.
  • FIG. 8 is an HR-TEM micrograph at 0.01 V, which is the first discharge voltage of the BPSC electrode when KPF 6 solute is used according to an embodiment of the present technology.
  • FIG. 16 shows the SAED pattern at 0.01V, which is the first discharge voltage of the BPSC electrode, when the KFSI solute is used according to an embodiment of the present technology.
  • 17 is an HR-TEM micrograph at 3.0V, which is the first charging voltage of the BPSC electrode when KFSI solute is used according to an embodiment of the present technology.
  • 19 shows a result of measuring the initial charge/discharge capacity of an electrode according to an embodiment of the present technology.
  • 21 shows the results of measuring the speed performance of the electrode according to an embodiment of the present technology.
  • EIS electrochemical impedance spectroscopy
  • the present technology provides an anode active material for a secondary battery, including a compound having a chemical formula of BiPS 4 having an orthorhombic crystal structure.
  • the compound may have a tunnel structure.
  • the S atoms are located at the edge-shared tetrahedral positions and the other tetrahedral positions are filled with P atoms, resulting in a PS 4 tetrahedral structure with angles between 104.9 and 115.6 and edge lengths ranging from 3.26 to 3.39 ⁇ .
  • the negative active material may further include a carbon nanotube, and the weight ratio of the compound having the Chemical Formula BiPS 4 to the carbon nanotube (CNT) may be 6 to 8:3.
  • the present technology provides a secondary battery including the negative active material for secondary batteries.
  • the secondary battery may be a sodium secondary battery, a potassium secondary battery, or a lithium secondary battery, preferably a sodium secondary battery or a potassium secondary battery.
  • the present technology is another aspect, (a) mixing bismuth (Bi), phosphorus (P) and sulfur (S) in a molar ratio of 1: 0.8 to 1.2: 3.8 to 4.2; And (b) ball milling the mixture to obtain a compound having a chemical formula of BiPS 4 having an orthorhombic crystal structure;
  • the ball milling of step (b) may be performed by mixing the balls and the mixture in a weight ratio of 30 to 50: 1, and performing at a speed of 300 to 500 rpm for 16 to 24 hours.
  • Step (b) may be performed in an inert gas atmosphere.
  • the inert gas is a gaseous material corresponding to Group 18 on the periodic table and refers to a material that does not react with other elements.
  • the inert gas may be helium (He), neon (Ne), argon (Ar), or the like, preferably argon (Ar).
  • the method for manufacturing a negative active material for a secondary battery comprises the steps of (c) mixing a compound having the chemical formula BiPS 4 and carbon nanotubes (CNT) in a weight ratio of 6 to 8: 3; and (d) ball milling the mixture to obtain a BiPS 4 -CNT composite.
  • the ball milling in step (d) may be performed by mixing the balls and the mixture in a weight ratio of 10 to 30: 1, and performing for 40 to 60 hours at a speed of 200 to 400 rpm.
  • BPS Bismuth (Bi, Sigma Aldrich, 99.50 %), amorphous red P, Alfa Aesar, 98.90 %) and sulfur (S, Sigma Aldrich, 99.98 %) (1 : 1 : 4 and A total weight of 2 g) was put into a WC vial together with a WC ball and ball milled to synthesize BiPS 4 .
  • the weight ratio of the WC balls and these reactants was set to 40:1.
  • Ball milling was performed for 20 hours at a speed of 400 rpm with a 20-minute rest interval after 1 hour.
  • the synthesized BiPS 4 is hereinafter referred to as BPS.
  • the BiPS 4 represents a tunnel structure in which empty spaces are formed along the y and z axes in an orthorhombic shape.
  • the synthesized BPS and multi-walled carbon nanotubes (CNT, Carbon Nanomaterials Technology Co. Ltd., Korea) were mixed in a weight ratio of 7: 3 (total weight 1 g), and the mixed powder was placed inside the glove box. placed in a vial.
  • the weight ratio of the powder mixed with the WC balls was 20: 1. Ball milling was performed at a speed of 300 rpm for 50 hours.
  • the finally obtained BiPS 4 -CNT complex was named BPSC.
  • the crystal structures of BPS and BPSC prepared according to Example 1 were analyzed through powder X-ray diffraction (XRD) analysis.
  • X-ray diffraction patterns were measured on an Ultima IV Rigaku diffractometer at 40 kV and 40 mA using Cu Ka radiation.
  • High-resolution XRD (HRXRD) patterns were measured through SmartLab Rigaku at 45 kV and 200 mA using Cu K ⁇ radiation. The results are shown in FIGS. 2 to 4 .
  • X-ray photoelectron spectroscopy (XPS) of the BPS and BPSC prepared according to Example 1 above with monochromatic Al K ⁇ radiation was performed using an ESCA 2000, VG Microtech spectrometer. The results are shown in FIG. 4 .
  • An electrode was prepared using the BPS and BPSC prepared according to Example 1.
  • BPS and BPSC were mixed with carbon black and a binder in a weight ratio of 70: 15: 15, respectively, and then the formed slurry was cast on copper foil and the slurry loading of 1.30 - 1.50 mg was carried out at 150 ° C. It was dried under vacuum for 3 hours.
  • a binder a mixture of polyacrylic acid (PAA, 3 wt% in water) and sodium carboxyl methyl cellulose (NaCMC, 1 wt%) in a weight ratio of 1: 1 was used.
  • PAA polyacrylic acid
  • NaCMC sodium carboxyl methyl cellulose
  • Electrochemical properties of the BPS and BPSC electrodes prepared according to Example 3 were measured. This measurement was carried out inside a glove box filled with argon (Ar), and lithium (Li) or potassium (K) as a counter electrode. This was done using a CR2032 coin-type half cell using metal.
  • ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC) are mixed at 2: 2: 1 vol%,
  • An electrolyte containing 1 M LiPF6 was used in a solution to which 10 vol% of fluoroethylene carbonate (FEC) was added.
  • Galvanostatic cycling, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were performed using an electrochemical measuring instrument (potentiostat/galvanostat, VMP2, Princeton Applied Research, USA). It was carried out in a voltage range of 0.01 - 3.00 V with respect to Li + /Li or K + /K at room temperature.
  • EIS was performed in the charged state before and after cycling by applying a perturbation voltage of 5 mV at a frequency of 1 to 105 Hz.
  • the digested LIB and KIB cells were washed with DMC for 24 hours and then dried overnight in a glove box.
  • EC 5 is an ethylene carbonate (EC) / diethyl carbonate (DEC) solvent using an electrolyte using 0.8M potassium hexafluorophosphate (KPF 6 ) solute at a scan rate of 0.05 mV s -1 to 0.01 - 3.00 V
  • KPF 6 potassium hexafluorophosphate
  • FIGS. 8 to 11 this was confirmed through HR-TEM micrographs and SAED patterns.
  • 8 is an HR-TEM micrograph at a first discharge voltage of 0.01V.
  • FIG. 9 shows the SAED pattern in FIG. 8 .
  • 10 is an HR-TEM micrograph at a first charging voltage of 3.0V.
  • FIG. 11 shows the SAED pattern in FIG. 10 .
  • BiPS 4 was irreversibly consumed in the KPF 6 electrolyte confirmed in FIG. 7 .
  • the measurement was performed using an electrolyte using 1M potassium bis(fluorosulfonyl)imide (KFSI) solute in an ethylene carbonate (EC)/diethyl carbonate (DEC) solvent.
  • KFSI potassium bis(fluorosulfonyl)imide
  • FIG. 15 is an HR-TEM micrograph at a first discharge of 0.01 V;
  • FIG. 16 shows the SAED pattern in FIG. 15 .
  • 17 is an HR-TEM micrograph at a first charge of 3.0V.
  • 18 shows the SAED pattern in FIG. 17 .
  • the electrochemical properties of BPS and BPSC electrodes applied to KIB and LIB were analyzed with coin-type 2032 cells within potential windows of 0.01 and 3.00 V. As shown in FIGS.
  • the BPSC electrode (BPSC-KFSI) using an electrolyte containing KFSI had an initial charge/discharge capacity of 523.26/648.39 mAh g -1 at a current density of 0.05 A g -1 . was measured. As a result of the measurement, it was found that the initial Coulombic efficiency (ICE) was 80.70%.
  • the initial discharge capacity at a current density of 0.2 A ⁇ g -1 was 438.98 mAh g -1 , and was maintained at 387.62 mAh g -1 after 300 cycles (88.30% capacity retention rate).
  • the CE value increased rapidly from 94.50% to 99.96% or more, and it was found to be steadily maintained for more than 300 cycles.
  • BPS electrode (BPS-KFSI) using an electrolyte containing KFSI is measured with 0.05 A ⁇ g -1 initial charge / discharge capacity of the 523.73 / 992.21 mAh ⁇ g -1 at a current density of: was (ICE 52.78%).
  • ICE initial coulombic efficiency
  • the first discharge capacity at a current density of A ⁇ g -1 was measured as 344.78 mAhA ⁇ g -1 tended to gradually decrease to 300 cycles, the discharge capacity at the final cycle is measured as the 171.23 mAh ⁇ g -1 became In addition, the CE value increased to 99.02% after about 20 cycles at a current density of 0.20 A ⁇ g ⁇ 1 and showed stable behavior for 300 cycles.
  • the BPSC electrode (BPSC-KFSI) using an electrolyte containing KFSI has current densities of 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.70, 1.00, 1.50 and 2.00 A g -1
  • the discharge capacities were measured as 653.49, 493.14, 433.78, 420.20, 415.21, 408.19, 399.65, 384.64, 359.65 and 348.66 mAh g -1 , respectively, which significantly superior rate performance (0.1 - 2) than BPS-KFSI and BPSC-KPF 6 . 70.70% capacity retention at A ⁇ g -1) was confirmed.
  • the current density is switched back to 0.05A ⁇ g -1 (519.24mAh ⁇ g -1 ) corresponding to 79.46% of the initial capacity, the capacity is increased.
  • the BPSC electrode using an electrolyte containing KPF 6 (BPSC-KPF 6 ) exhibited similar or higher capacity (up to 0.20 A g -1 ) to the BPSC electrode (BPSC-KFSI) using the KFSI electrolyte, 2A ⁇ g -1 was in the charge / discharge capacity of the 133.51 / 144.69 mAh ⁇ g -1, when the current density is again changed to 0.05 a ⁇ g -1 charge / discharge capacity is increased to 415.52 / 451.11 mAh ⁇ g -1 appeared to do
  • BPS electrode using an electrolyte comprising a KFSI is 0.05 A ⁇ g -1 in the charge / discharge capacity at the initial cycle was specified by the 523.95 / 1002.33 mAh ⁇ g -1, 2.00 A g ⁇ g - It was measured to be 147.62/152.85 mAh ⁇ g -1 at 1 .
  • BPS-KFSI As shown in FIG. 22, after 1, 10, and 50 cycles in a fully charged state, BPS-KFSI (FIG. 22A), BPSC-KPF 6 (FIG. 22B) and BPSC-KFSI (FIG. 22C) electrodes Comparing the Nyquist plots of , three resistors were considered consistent with the circuit. In particular, it was confirmed that the BPSC electrode (BPSC-KFSI) using an electrolyte containing KFSI showed the minimum resistance in various cycles.
  • the negative electrode active material according to the present technology has excellent charge/discharge characteristics and electron and ion transport performance, and thus can be usefully used as a negative electrode material for a secondary battery.
  • the negative active material for a secondary battery according to the present technology exhibits excellent charge/discharge characteristics and electrical characteristics compared to the existing negative electrode active material, so that it can be usefully used as an anode material for a lithium secondary battery as well as a sodium secondary battery or a potassium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present technology relates to a negative electrode active material for a secondary battery, a method for preparing same, and a secondary battery comprising same. BiPS4 having a tunnel structure, which is the negative electrode active material according to the present invention, and a BiPS3-CNT composite using same can be prepared through a simple process, and exhibit excellent charge/discharge properties and electrical properties as compared to existing negative electrode active materials, and thus can be effectively used as a negative electrode material of not only lithium secondary batteries but also sodium secondary batteries or potassium secondary batteries.

Description

이차전지용 음극활물질, 이의 제조방법 및 이를 포함하는 이차전지Anode active material for secondary battery, manufacturing method thereof, and secondary battery comprising same
본 기술은 이차전지용 음극활물질, 이의 제조방법 및 이를 포함하는 이차전지에 관한 것이다.The present technology relates to an anode active material for a secondary battery, a method for manufacturing the same, and a secondary battery including the same.
최근, 휴대폰, 스마트폰 및 태블릿 PC와 같은 개인휴대 단말장치나 하이브리드 전기자동차, 플러그인 전기자동차와 같은 전기자동차의 전원장치로 이차전지(Secondary cell)에 대한 수요가 크게 증가하고 있다. 특히 이차전지 중 현재 리튬이차전지가 가장 보편화되어 있는데, 이러한 리튬이차전지(Lithium secondary cell)는 코발트(Co), 니켈(Ni), 리튬(Li) 등의 희소 금속을 많이 사용하고 있기 때문에, 대형 이차전지의 수요 증대에 따른 희소 금속의 공급이 염려되고 있다.Recently, the demand for a secondary cell as a power device for a personal portable terminal device such as a mobile phone, a smart phone, and a tablet PC or an electric vehicle such as a hybrid electric vehicle or a plug-in electric vehicle is increasing significantly. In particular, lithium secondary batteries are currently the most common among secondary batteries, and since these lithium secondary cells use a lot of rare metals such as cobalt (Co), nickel (Ni), and lithium (Li), large There is concern about the supply of rare metals according to the increase in demand for secondary batteries.
이에 대하여 리튬이차전지의 대체재로 고효율의 높은 안정성을 나타내는 나트륨이차전지 및 칼륨이차전지의 개발이 요구되고 있다. 나트륨이차전지 및 칼륨이차전지는 자원 수급이 용이하고, 제조 비용이 낮다는 점을 장점으로하여 에너지 저장 및 변환 디바이스로서 현재의 리튬이차전지의 한계를 극복할 수 있는 차세대 이차전지로 주목받고 있다. 그러나, 리튬이차전지에서 주로 사용되는 음극활물질을 나트륨이차전지 및 칼륨이차전지에 그대로 적용하기에는 전지의 성능과 에너지 특성면에서 적합하지 않다는 문제가 있다.In this regard, there is a demand for the development of sodium secondary batteries and potassium secondary batteries that exhibit high efficiency and high stability as substitutes for lithium secondary batteries. Sodium secondary batteries and potassium secondary batteries are attracting attention as next-generation secondary batteries that can overcome the limitations of current lithium secondary batteries as energy storage and conversion devices because of the advantages of easy resource supply and demand and low manufacturing cost. However, there is a problem in that the negative active material mainly used in lithium secondary batteries is not suitable in terms of battery performance and energy characteristics to be directly applied to sodium secondary batteries and potassium secondary batteries.
본 기술의 하나의 목적은, 충방전 특성 및 전기적 특성이 향상된 이차전지용 음극활물질을 제공하는 것이다.One object of the present technology is to provide an anode active material for a secondary battery having improved charge/discharge characteristics and electrical characteristics.
본 기술의 다른 하나의 목적은 상기 이차전지용 음극활물질을 포함하는 이차전지를 제공하는 것이다. Another object of the present technology is to provide a secondary battery including the negative active material for secondary batteries.
본 기술의 또 다른 하나의 목적은 상기 이차전지용 음극활물질의 제조방법을 제공하는 것이다.Another object of the present technology is to provide a method of manufacturing the negative active material for a secondary battery.
상기와 같은 목적을 달성하기 위하여, In order to achieve the above object,
본 기술은 사방정계 결정구조를 가지는 화학식이 BiPS4인 화합물을 포함하는 이차전지용 음극활물질을 제공한다.The present technology provides an anode active material for a secondary battery including a compound having an orthorhombic crystal structure and having a chemical formula of BiPS 4 .
또한, 본 기술은 상기 음극활물질을 포함하는 이차전지를 제공한다.In addition, the present technology provides a secondary battery including the negative active material.
또한, 본 기술은, (a) 비스무트(Bi), 인(P) 및 황(S)을 1 : 0.8 내지 1.2 : 3.8 내지 4.2 몰비로 혼합하는 단계; 및 (b) 혼합물을 볼 밀링하여 사방정계 결정구조를 가지는 화학식이 BiPS4인 화합물을 수득하는 단계;를 포함하는, 이차전지용 음극활물질의 제조방법을 제공한다.In addition, the present technology, (a) mixing bismuth (Bi), phosphorus (P) and sulfur (S) in a molar ratio of 1: 0.8 to 1.2: 3.8 to 4.2; And (b) ball milling the mixture to obtain a compound having a chemical formula of BiPS 4 having an orthorhombic crystal structure;
본 기술에 따른 음극활물질인 터널 구조의 BiPS4 및 이를 이용한 BiPS4-CNT 복합체는 간단한 공정을 통해 제조될 수 있으며, 기존의 음극활물질과 대비하여 우수한 충방전 특성 및 전기적 특성을 나타내어 리튬 이차전지 뿐만아니라 나트륨 이차전지 또는 칼륨 이차전지의 음극 소재로 유용하게 활용될 수 있다. 본 기술에 따른 음극활물질인 터널 구조의 BiPS4 및 이를 이용한 BiPS4-CNT 복합체는 간단한 공정을 통해 제조될 수 있으며, 기존의 음극활물질과 대비하여 우수한 충방전 특성 및 전기적 특성을 나타내어 리튬 이차전지 뿐만아니라 나트륨 이차전지 또는 칼륨 이차전지의 음극 소재로 유용하게 활용될 수 있다. BiPS 4 having a tunnel structure, which is an anode active material according to the present technology, and BiPS 4 -CNT composite using the same can be manufactured through a simple process, and exhibit excellent charge/discharge characteristics and electrical characteristics compared to conventional anode active materials, so that not only lithium secondary batteries However, it can be usefully used as an anode material for a sodium secondary battery or a potassium secondary battery. BiPS 4 having a tunnel structure, which is an anode active material according to the present technology, and BiPS 4 -CNT composite using the same can be manufactured through a simple process, and exhibit excellent charge/discharge characteristics and electrical characteristics compared to conventional anode active materials, so that not only lithium secondary batteries However, it can be usefully used as an anode material for a sodium secondary battery or a potassium secondary battery.
도 1은 본 기술의 일실시예에 따른 BiPS4의 구조를 나타낸 것이다.1 shows the structure of BiPS 4 according to an embodiment of the present technology.
도 2는 본 기술의 일실시예에 따른 이차전지용 음극활물질의 XRD 측정결과를 나타낸 것이다.2 shows the XRD measurement results of the negative active material for a secondary battery according to an embodiment of the present technology.
도 3은 본 기술의 일실시예에 따른 이차전지용 음극활물질의 선택 영역 전자 회절 패턴 측정결과를 나타낸 것이다.3 is a view showing a measurement result of a selective region electron diffraction pattern of a negative active material for a secondary battery according to an embodiment of the present technology.
도 4는 본 기술의 일실시예에 따른 이차전지용 음극활물질의 X-선 광전자 분광분석 결과를 나타낸 것이다.4 shows the results of X-ray photoelectron spectroscopy analysis of a negative active material for a secondary battery according to an embodiment of the present technology.
도 5는 본 기술의 일실시예에 따라 KPF6 용질을 사용한 경우 BPSC 전극의 CV 곡선 측정 결과를 나타낸 것이다.Figure 5 shows the CV curve measurement result of the BPSC electrode when using the KPF 6 solute according to an embodiment of the present technology.
도 6은 본 기술의 일실시예에 따라 KPF6 용질을 사용한 경우 BPSC 전극을 스캔 속도를 달리하여 측정한 CV 곡선 측정 결과를 나타낸 것이다.6 shows the CV curve measurement results obtained by measuring the BPSC electrode at different scan speeds when KPF 6 solute is used according to an embodiment of the present technology.
도 7은 본 기술의 일실시예에 따라 KPF6 용질을 사용한 경우 BPSC 전극의 제1 충전/방전 곡선 상의 10 개의 지점에서의 전위를 HRXRD를 사용하여 분석한 결과를 나타낸 것이다. 7 shows the results of analyzing the potentials at 10 points on the first charge/discharge curve of the BPSC electrode using HRXRD when KPF 6 solute is used according to an embodiment of the present technology.
도 8는 본 기술의 일실시예에 따라 KPF6 용질을 사용한 경우 BPSC 전극의 제1 방전 전압인 0.01V에서의 HR-TEM 현미경 사진이다. FIG. 8 is an HR-TEM micrograph at 0.01 V, which is the first discharge voltage of the BPSC electrode when KPF 6 solute is used according to an embodiment of the present technology.
도 9은 본 기술의 일실시예에 따라 KPF6 용질을 사용한 경우 BPSC 전극의 제1 방전 전압인 0.01V 에서의 SAED 패턴을 나타낸 것이다. 9 shows the SAED pattern at 0.01V, which is the first discharge voltage of the BPSC electrode, when the KPF 6 solute is used according to an embodiment of the present technology.
도 10은 본 기술의 일실시예에 따라 KPF6 용질을 사용한 경우 BPSC 전극의 제1 충전 전압인 3.0V에서의 HR-TEM 현미경 사진이다. 10 is an HR-TEM micrograph at 3.0V, which is the first charging voltage of the BPSC electrode when KPF 6 solute is used according to an embodiment of the present technology.
도 11은 본 기술의 일실시예에 따라 KPF6 용질을 사용한 경우 BPSC 전극의 제1 충전 전압인 3.0V에서의 SAED 패턴을 나타낸 것이다. 11 shows the SAED pattern at 3.0V, which is the first charging voltage of the BPSC electrode, when the KPF 6 solute is used according to an embodiment of the present technology.
도 12는 본 기술의 일실시예에 따라 KFSI 용질을 사용한 경우 BPSC 전극의 CV 곡선 측정 결과를 나타낸 것이다.12 shows the CV curve measurement result of the BPSC electrode when the KFSI solute is used according to an embodiment of the present technology.
도 13은 본 기술의 일실시예에 따라 KFSI 용질을 사용한 경우 BPSC 전극을 스캔 속도를 달리하여 측정한 CV 곡선 측정 결과를 나타낸 것이다.13 shows the CV curve measurement results obtained by measuring the BPSC electrode at different scan speeds when KFSI solute is used according to an embodiment of the present technology.
도 14는 본 기술의 일실시예에 따라 KFSI 용질을 사용한 경우 BPSC 전극의 제1 충전/방전 곡선 상의 10 개의 지점에서의 전위를 HRXRD를 사용하여 분석한 결과를 나타낸 것이다. 14 shows the results of analyzing the potentials at 10 points on the first charge/discharge curve of the BPSC electrode using HRXRD when KFSI solute is used according to an embodiment of the present technology.
도 15는 본 기술의 일실시예에 따라 KFSI 용질을 사용한 경우 BPSC 전극의 제1 방전 전압인 0.01V에서의 HR-TEM 현미경 사진이다. 15 is an HR-TEM micrograph at 0.01 V, which is the first discharge voltage of the BPSC electrode when KFSI solute is used according to an embodiment of the present technology.
도 16은 본 기술의 일실시예에 따라 KFSI 용질을 사용한 경우 BPSC 전극의 제1 방전 전압인 0.01V 에서의 SAED 패턴을 나타낸 것이다. FIG. 16 shows the SAED pattern at 0.01V, which is the first discharge voltage of the BPSC electrode, when the KFSI solute is used according to an embodiment of the present technology.
도 17은 본 기술의 일실시예에 따라 KFSI 용질을 사용한 경우 BPSC 전극의 제1 충전 전압인 3.0V에서의 HR-TEM 현미경 사진이다. 17 is an HR-TEM micrograph at 3.0V, which is the first charging voltage of the BPSC electrode when KFSI solute is used according to an embodiment of the present technology.
도 18은 본 기술의 일실시예에 따라 KFSI 용질을 사용한 경우 BPSC 전극의 제1 충전 전압인 3.0V에서의 SAED 패턴을 나타낸 것이다. 18 shows the SAED pattern at 3.0V, which is the first charging voltage of the BPSC electrode, when the KFSI solute is used according to an embodiment of the present technology.
도 19는 본 기술의 일실시예에 따른 전극의 초기 충전/방전 용량을 측정한 결과를 나타낸 것이다. 19 shows a result of measuring the initial charge/discharge capacity of an electrode according to an embodiment of the present technology.
도 20은 본 기술의 일실시예에 따른 전극의 초기 쿨롱 효율을 측정한 결과를 나타낸 것이다. 20 shows the results of measuring the initial Coulombic efficiency of the electrode according to an embodiment of the present technology.
도 21은 본 기술의 일실시예에 따른 전극의 속도 성능을 측정한 결과를 나타낸 것이다.21 shows the results of measuring the speed performance of the electrode according to an embodiment of the present technology.
도 22는 전기 화학적 임피던스 분광(EIS) 분석을 통하여 본 기술의 일실시예에 따른 전극의 전자 및 K+ 이온 수송 성능을 측정한 결과를 나타낸 것이다.22 shows the results of measuring electron and K + ion transport performance of an electrode according to an embodiment of the present technology through electrochemical impedance spectroscopy (EIS) analysis.
이하 설명하는 기술은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 이하 설명하는 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 이하 설명하는 기술의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The technology to be described below may have various changes and may have various embodiments, and specific embodiments will be illustrated in the drawings and described in detail. However, this is not intended to limit the technology described below to specific embodiments, and it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the technology described below.
본 기술은 하나의 양태로, 사방정계 결정구조를 가지는 화학식이 BiPS4인 화합물을 포함하는, 이차전지용 음극활물질을 제공한다.The present technology provides an anode active material for a secondary battery, including a compound having a chemical formula of BiPS 4 having an orthorhombic crystal structure.
상기 화합물은 터널 구조인 것일 수 있다. 이러한 구조에서, Bi 원자는 (0 ¼ z), (0 ¾ -z), (½ ¾ z), 및 (½ ¼ z) 위치에 배치되고, 여기서 z = 0.1414 및 z = 0.3986이다. P 원자는 (x 0 ¼), (-x 0 ¾), (x ½ ¾), (-x ½ ¼), (¼ y 0), (¾ y 0), (¾ -y ½) 및 (¼ -y ½) 위치에 배치되고, 여기서 x = 0.035, y = 0.221이다. S 원자는 가장자리 공유 사면체 위치에 위치하고 다른 사면체 위치는 P 원자로 채워져 PS4 사면체는 104.9 ~ 115.6 사이의 각도와 가장자리의 길이가 3.26 ~ 3.39 Å 범위인 구조를 이룬다.The compound may have a tunnel structure. In this structure, Bi atoms are placed at the (0 ¼ z), (0 ¾ -z), (½ ¾ z), and (½ ¼ z) positions, where z = 0.1414 and z = 0.3986. The P atoms are (x 0 ¼), (-x 0 ¾), (x ½ ¾), (-x ½ ¼), (¼ y 0), (¾ y 0), (¾ -y ½) and (¼ -y ½), where x = 0.035 and y = 0.221. The S atoms are located at the edge-shared tetrahedral positions and the other tetrahedral positions are filled with P atoms, resulting in a PS 4 tetrahedral structure with angles between 104.9 and 115.6 and edge lengths ranging from 3.26 to 3.39 Å.
상기 음극활물질은 탄소 나노 튜브를 더 포함하고, 상기 화학식이 BiPS4인 화합물과 탄소 나노 튜브(carbon nanotube; CNT)는 중량비가 6 내지 8 : 3인 것일 수 있다.The negative active material may further include a carbon nanotube, and the weight ratio of the compound having the Chemical Formula BiPS 4 to the carbon nanotube (CNT) may be 6 to 8:3.
또한, 본 기술은 다른 하나의 양태로, 상기 이차전지용 음극활물질을 포함하는, 이차전지를 제공한다. In another aspect, the present technology provides a secondary battery including the negative active material for secondary batteries.
상기 이차전지는 나트륨 이차전지, 칼륨 이차전지 또는 리튬 이차전지일 수 있으며, 바람직하게는 나트륨 이차전지 또는 칼륨 이차전지이다.The secondary battery may be a sodium secondary battery, a potassium secondary battery, or a lithium secondary battery, preferably a sodium secondary battery or a potassium secondary battery.
또한, 본 기술은 또 다른 하나의 양태로, (a) 비스무트(Bi), 인(P) 및 황(S)을 1 : 0.8 내지 1.2 : 3.8 내지 4.2 몰비로 혼합하는 단계; 및 (b) 혼합물을 볼 밀링하여 사방정계 결정구조를 가지는 화학식이 BiPS4인 화합물을 수득하는 단계;를 포함하는, 이차전지용 음극활물질의 제조방법을 제공한다. In addition, the present technology is another aspect, (a) mixing bismuth (Bi), phosphorus (P) and sulfur (S) in a molar ratio of 1: 0.8 to 1.2: 3.8 to 4.2; And (b) ball milling the mixture to obtain a compound having a chemical formula of BiPS 4 having an orthorhombic crystal structure;
상기 (b) 단계의 볼 밀링은 볼과 상기 혼합물을 30 내지 50 : 1의 중량비로 혼합하고, 300 내지 500 rpm의 속도로 16 내지 24 시간 동안 실시하는 것일 수 있다.The ball milling of step (b) may be performed by mixing the balls and the mixture in a weight ratio of 30 to 50: 1, and performing at a speed of 300 to 500 rpm for 16 to 24 hours.
상기 (b) 단계는 불활성 기체 분위기에서 수행하는 것일 수 있다. 상기 불활성 기체는 주기율표상의 18족에 해당하는 기체상의 물질로 다른 원소와 반응을 하지 않는 물질을 의미한다. 상기 불활성기체는 헬륨(He), 네온(Ne), 아르곤(Ar) 등일 수 있으며, 바람직하게는 아르곤(Ar)일 수 있다. Step (b) may be performed in an inert gas atmosphere. The inert gas is a gaseous material corresponding to Group 18 on the periodic table and refers to a material that does not react with other elements. The inert gas may be helium (He), neon (Ne), argon (Ar), or the like, preferably argon (Ar).
또한, 본 기술에 따른 이차전지용 음극활물질의 제조방법은 (c) 화학식이 BiPS4인 화합물과 탄소 나노 튜브(carbon nanotubes; CNT)를 6 내지 8 : 3의 중량비로 혼합하는 단꼐; 및 (d) 상기 혼합물을 볼 밀링하여 BiPS4-CNT 복합체를 수득하는 단계;를 더 포함할 수 있다.In addition, the method for manufacturing a negative active material for a secondary battery according to the present technology comprises the steps of (c) mixing a compound having the chemical formula BiPS 4 and carbon nanotubes (CNT) in a weight ratio of 6 to 8: 3; and (d) ball milling the mixture to obtain a BiPS 4 -CNT composite.
상기 (d) 단계의 볼 밀링은 볼과 상기 혼합물을 10 내지 30 : 1의 중량비로 혼합하고, 200 내지 400 rpm의 속도로 40 내지 60 시간 동안 실시하는 것일 수 있다.The ball milling in step (d) may be performed by mixing the balls and the mixture in a weight ratio of 10 to 30: 1, and performing for 40 to 60 hours at a speed of 200 to 400 rpm.
이하, 본 기술의 이해를 돕기 위하여 첨부된 도면을 참고하여 본 기술을 보다 상세히 설명한다. 그러나 하기의 실시예는 본 기술을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 기술의 내용이 한정되는 것은 아니다.Hereinafter, the present technology will be described in more detail with reference to the accompanying drawings in order to help the understanding of the present technology. However, the following examples are only provided for easier understanding of the present technology, and the content of the present technology is not limited by the following examples.
실시예 1: 음극활물질의 제조Example 1: Preparation of negative electrode active material
고순도 아르곤(Ar) 분위기 하에서 비스무트(Bi, Sigma Aldrich, 99.50 %), 비정질 레드 인(amorphous red P, Alfa Aesar, 98.90 %) 및 황 (S, Sigma Aldrich, 99.98 %) (1 : 1 : 4 및 총 중량 2g)을 WC 볼(ball)과 함께 WC 바이알에 넣고 볼 밀링하여 BiPS4를 합성하였다. WC 볼과 이들 반응물의 중량비는 40 : 1이 되도록 하였다. 볼 밀링은 1시간 진행 후 20 분의 휴지 간격을 두면서, 400 rpm의 속도로 20 시간 동안 실시하였다. 합성된 BiPS4는 이하 BPS로 명명한다.Bismuth (Bi, Sigma Aldrich, 99.50 %), amorphous red P, Alfa Aesar, 98.90 %) and sulfur (S, Sigma Aldrich, 99.98 %) (1 : 1 : 4 and A total weight of 2 g) was put into a WC vial together with a WC ball and ball milled to synthesize BiPS 4 . The weight ratio of the WC balls and these reactants was set to 40:1. Ball milling was performed for 20 hours at a speed of 400 rpm with a 20-minute rest interval after 1 hour. The synthesized BiPS 4 is hereinafter referred to as BPS.
상기 BiPS4는 도 1에 도시한 바와 같이, 사방정계 형태로 y 및 z 축을 따라 각각 빈 공간이 형성되는 터널 구조를 나타낸다. As shown in FIG. 1 , the BiPS 4 represents a tunnel structure in which empty spaces are formed along the y and z axes in an orthorhombic shape.
다음으로 합성된 BPS와 다중벽 탄소 나노 튜브(carbon nanotubes; CNT, Carbon Nanomaterials Technology Co. Ltd., Korea)를 7 : 3의 중량비(총 중량 1g)로 혼합하고, 혼합된 분말을 글러브 박스 내부의 바이알에 넣었다. WC 볼과 혼합된 분말의 중량비는 20 : 1이 되도록하였다. 볼 밀링은 300 rpm 속도로 50 시간 동안 실시하였다. 최종적으로 수득된 BiPS4-CNT 복합체를 BPSC로 명명하였다.Next, the synthesized BPS and multi-walled carbon nanotubes (CNT, Carbon Nanomaterials Technology Co. Ltd., Korea) were mixed in a weight ratio of 7: 3 (total weight 1 g), and the mixed powder was placed inside the glove box. placed in a vial. The weight ratio of the powder mixed with the WC balls was 20: 1. Ball milling was performed at a speed of 300 rpm for 50 hours. The finally obtained BiPS 4 -CNT complex was named BPSC.
실시예 2: 음극활물질 구조 분석Example 2: Structural Analysis of Anode Active Material
2-1. XRD 분석2-1. XRD analysis
분말 X-선 회절(Powder X-ray diffraction; XRD) 분석을 통하여 상기 실시예 1에 따라 제조된 BPS 및 BPSC의 결정 구조를 분석하였다. The crystal structures of BPS and BPSC prepared according to Example 1 were analyzed through powder X-ray diffraction (XRD) analysis.
X-선 회절 패턴을 Cu Kα 방사선을 이용하여 40 kV 및 40 mA에서 울티마 IV 리가쿠(Ultima IV Rigaku) 회절계를 통해 측정하였다. 고해상도 XRD (High-resolution XRD; HRXRD) 패턴은 Cu Kα 방사선을 이용하여 45 kV 및 200 mA에서 스마트랩 리가쿠(SmartLab Rigaku)를 통해 측정하였다. 그 결과를 도 2 내지 4에 나타내었다.X-ray diffraction patterns were measured on an Ultima IV Rigaku diffractometer at 40 kV and 40 mA using Cu Ka radiation. High-resolution XRD (HRXRD) patterns were measured through SmartLab Rigaku at 45 kV and 200 mA using Cu Kα radiation. The results are shown in FIGS. 2 to 4 .
도 2에 나타낸 바와 같이, XRD 측정결과 상기 실시예 1에 따라 제조된 BPS는 완전한 다결정 구조를 이루고 있음을 확인하였다. 또한 BiPS4의 모든 XRD 피크는 ICDD(The International Centre for Diffraction Data)의 Powder Diffraction File(PDF) #01-071-0364의 정보와 일치함을 확인하였다. 이로써, 상기 실시예 1의 방법에 따라 본 기술에 따른 BPS가 제조되었음을 확인할 수 있다.As shown in FIG. 2 , as a result of XRD measurement, it was confirmed that the BPS prepared according to Example 1 had a complete polycrystalline structure. In addition, it was confirmed that all XRD peaks of BiPS 4 were consistent with the information of Powder Diffraction File (PDF) #01-071-0364 of ICDD (The International Center for Diffraction Data). Accordingly, it can be confirmed that the BPS according to the present technology was manufactured according to the method of Example 1.
또한, XRD 패턴에 따르면, BPS 결정질의 특성은 이를 이용하여 BiPS4-CNT 복합체(BPSC)로 제조한 후에도 변하지 않고 유지되는 것으로 확인되었다. 이는 도 3에 나타낸 바와 같이, BPS와 BPSC의 선택 영역 전자 회절(selected area electron diffraction; SAED) 패턴을 비교하여도 확인될 수 있다. BPS 및 BPSC의 SAED 패턴에서 투명한 고리는 BPS와 BPSC에서 BiPS4가 다결정성을 가짐을 의미한다.In addition, according to the XRD pattern, it was confirmed that the properties of the BPS crystalline remained unchanged even after being prepared as a BiPS 4 -CNT composite (BPSC) using the same. This can also be confirmed by comparing the selected area electron diffraction (SAED) patterns of BPS and BPSC, as shown in FIG. 3 . The transparent rings in the SAED patterns of BPS and BPSC mean that BiPS 4 has polycrystalline properties in BPS and BPSC.
2-2. XPS 분석2-2. XPS analysis
ESCA 2000, VG Microtech 분광계를 사용하여 단색 Al Kα 방사선으로 상기 실시예 1에 따라 제조된 BPS 및 BPSC의 X-선 광전자 분광법(X-ray photoelectron spectroscopy; XPS)을 실시하였다. 그 결과를 도 4에 나타내었다. X-ray photoelectron spectroscopy (XPS) of the BPS and BPSC prepared according to Example 1 above with monochromatic Al Kα radiation was performed using an ESCA 2000, VG Microtech spectrometer. The results are shown in FIG. 4 .
도 4에 나타난 바와 같이, XPS 측정 결과는 BPS 및 BPSC 모두에 대하여 Bi 4f7/2 및 Bi 4f5/2 피크와 S 2p3/2 및 S 2p1/2 피크뿐만 아니라 P 2p3/2 및 P 2p1/2 피크를 명확하게 나타내었다. BPSC의 피크는 BPS의 피크와 비교하여 더 높은 결합 에너지로 이동하고 더 넓어지니는 것을 확인할 수 있다. 이는, BiPS4와 CNT 네트워크 사이에 안정적인 Bi-O-C, S-O-C 및 P-O-C 화학결합이 형성되었음을 의미한다. As shown in Figure 4, XPS measurement results for both BPS and BPSC Bi 4f 7/2 and Bi 4f 5/2 peaks and S 2p 3/2 and S 2p 1/2 peaks, as well as P 2p 3/2 and The P 2p 1/2 peak was clearly shown. It can be seen that the peak of BPSC moves to a higher binding energy and becomes wider than that of BPS. This means that stable Bi-OC, SOC and POC chemical bonds were formed between BiPS 4 and the CNT network.
상기 결과로부터 본 기술에 따른 BPS 및 BPSC는 매우 안정적인 구조를 이룸을 알 수 있다.From the above results, it can be seen that the BPS and BPSC according to the present technology form a very stable structure.
실시예 3: 전극 제조Example 3: Electrode Preparation
상기 실시예 1에 따라 제조된 BPS와 BPSC를 이용하여 전극(음극)을 제조하였다. 먼저 BPS와 BPSC를 각각 카본 블랙(carbon black) 및 결합제(binder)와 70: 15: 15의 중량비로 혼합한 후, 형성된 슬러리를 구리 호일 상에 캐스팅하고 1.30 - 1.50 mg의 슬러리 로딩을 150℃에서 3 시간 동안 진공 하에서 건조시켰다. 결합제로는 폴리아크릴산(polyacrylic acid; PAA, 3 wt% in water) 및 소듐 카복실 메틸 셀룰로스(sodium carboxyl methyl cellulose; NaCMC, 1 wt%)가 1: 1의 중량비로 혼합한 것을 사용하였다. An electrode (cathode) was prepared using the BPS and BPSC prepared according to Example 1. First, BPS and BPSC were mixed with carbon black and a binder in a weight ratio of 70: 15: 15, respectively, and then the formed slurry was cast on copper foil and the slurry loading of 1.30 - 1.50 mg was carried out at 150 ° C. It was dried under vacuum for 3 hours. As a binder, a mixture of polyacrylic acid (PAA, 3 wt% in water) and sodium carboxyl methyl cellulose (NaCMC, 1 wt%) in a weight ratio of 1: 1 was used.
실시예 4: 전기화학적 특성 측정Example 4: Measurement of electrochemical properties
상기 실시예 3에 따라 제조된 BPS 및 BPSC 전극에 대한 전기화학적 특성을 측정하였다, 본 측정은 아르곤(Ar)으로 충전된 글로브 박스 내부에서 실시되었으며, 카운터 전극으로 리튬(Li) 또는 포타슘(K) 금속을 이용하는 CR2032 코인형 반쪽 전지(coin-type half cell)를 사용하여 수행되었다. Electrochemical properties of the BPS and BPSC electrodes prepared according to Example 3 were measured. This measurement was carried out inside a glove box filled with argon (Ar), and lithium (Li) or potassium (K) as a counter electrode. This was done using a CR2032 coin-type half cell using metal.
리튬이온전지(lithium ion battery; LIB)에는 에틸렌 카보네이트(ethylene carbonate ; EC), 디메틸 카보네이트(dimethyl carbonate; DMC) 및 디에틸 카보네이트(diethyl carbonate ; DEC)를 2 : 2 : 1 vol%로 혼합하고, 10 vol%의 플루오로에틸렌 카보네이트(fluoroethylene carbonate; FEC)를 첨가한 용액에 1 M LiPF6가 포함된 전해질을 사용하였다.In a lithium ion battery (LIB), ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC) are mixed at 2: 2: 1 vol%, An electrolyte containing 1 M LiPF6 was used in a solution to which 10 vol% of fluoroethylene carbonate (FEC) was added.
칼륨이온전지(K ion battery; KIB)에는 EC와 DEC가 1 : 1 vol%로 혼합된 EC-DEC 혼합물에 전해질 염으로 비스(플루오로설포닐)이미드(Either bis(fluorosulfonyl)imide , KFSI, 1 M) 또는 포타슘 헥사플루오로포스페이트(potassium hexafluorophosphate, KPF6, 0.8 M)가 포함된 전해질을 사용하였다. In a potassium ion battery (KIB), bis (fluorosulfonyl) imide (Either bis (fluorosulfonyl) imide , KFSI, 1 M) or an electrolyte containing potassium hexafluorophosphate (KPF 6 , 0.8 M) was used.
충방전 사이클링(Galvanostatic cycling), 순환 전압전류법(cyclic voltammetry; CV), 및 전기화학 임피던스 분광법(electrochemical impedance spectroscopy; EIS)은 전기화학 계측장비(potentiostat/ galvanostat, VMP2, Princeton Applied Research, USA)를 사용하여 상온에서 Li+/Li 또는 K+/K에 대하여 0.01 - 3.00 V의 전압 범위로 수행되었다.Galvanostatic cycling, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were performed using an electrochemical measuring instrument (potentiostat/galvanostat, VMP2, Princeton Applied Research, USA). It was carried out in a voltage range of 0.01 - 3.00 V with respect to Li + /Li or K + /K at room temperature.
EIS는 1 내지 105 Hz의 주파수에서 5mV의 교란 전압(perturbation voltage )을 인가함으로써 사이클링 전후 충전된 상태에서 수행되었다. 분해된 LIB 및 KIB 셀(cell)은 24시간 동안 DMC로 세척한 후 글로브 박스에서 밤새 건조되었다.EIS was performed in the charged state before and after cycling by applying a perturbation voltage of 5 mV at a frequency of 1 to 105 Hz. The digested LIB and KIB cells were washed with DMC for 24 hours and then dried overnight in a glove box.
도 5는 에틸렌 카보네이트(EC)/디에틸 카보네이트(DEC) 용매에 0.8M 칼륨 헥사플루오로포스페이트(KPF6) 용질을 사용한 전해질을 이용하여 0.05 mV·s-1의 스캔 속도로 0.01 - 3.00 V의 전압 범위에서 측정한 BPSC 전극의 CV 곡선을 나타낸다. 5 is an ethylene carbonate (EC) / diethyl carbonate (DEC) solvent using an electrolyte using 0.8M potassium hexafluorophosphate (KPF 6 ) solute at a scan rate of 0.05 mV s -1 to 0.01 - 3.00 V The CV curve of the BPSC electrode measured in the voltage range is shown.
도 5에 도시된 바와 같이, 초기 음극 스캔 측정결과 약 1.40 V에서 시작되는 넓고 비가역적인 피크와 0.15 V에서 크고 명확한 피크가 측정되었다. 약 1.40 V에서의 피크는 터널 구조의 BiPS4로 K+가 삽입되는 것과 K-Bi, K-P 및 K-S 상이 형성되는 다단계 전환/합금 반응이 발생하는 것 뿐만 아니라, 고체 전해질 계간(solid electrolyte interphase; SEI) 층이 형성됨을 나타낸다. 이어서, 4 개의 양극 피크가 0.27, 0.63, 1.29 및 2.29 V에서 검출되었으며, 이는 K+ 이온의 탈-칼륨뿐만 아니라 탈-합금 및 역 전환 반응을 나타낸다.As shown in FIG. 5 , as a result of the initial cathode scan measurement, a broad and irreversible peak starting at about 1.40 V and a large and clear peak at 0.15 V were measured. The peak at about 1.40 V is the insertion of K + into BiPS 4 of the tunnel structure and multi-step conversion/alloying reaction in which K-Bi, KP and KS phases are formed, as well as solid electrolyte interphase (SEI). ) indicates that a layer is formed. Then, four anodic peaks were detected at 0.27, 0.63, 1.29 and 2.29 V, indicating de-potassium as well as de-alloying and reverse conversion reactions of K + ions.
또한, 0.05 mV·s-1에서 최대 3.00 mV·s-1의까지 스캔 속도를 다르게 하여 측정하였다. 도 6에 도시된 바와 같이, 스캔 속도가 증가하면서 더 높은 전위로 상당한 양극의 피크가 이동되었으며, 더 낮은 전위로도 음극의 피크도 더 낮은 전위로 이동되었다. 이는 양극 사이에 분극이 크게 발생함을 나타낸다.In addition, measurements were made by varying the scan speed from 0.05 mV·s −1 to a maximum of 3.00 mV·s −1 . As shown in FIG. 6 , as the scan rate increased, a significant positive peak shifted to a higher potential, and a negative peak shifted to a lower potential even with a lower potential. This indicates that a large amount of polarization occurs between the anodes.
칼륨화/탈칼륨화 과정 동안의 상 변화를 측정하기 위해, HRXRD를 사용하여 BPSC 전극의 제1 충전/방전 곡선 상의 10 개의 지점에서의 전위를 분석하였다. 그 결과를 도 7에 나타내었다. To measure the phase change during the potassiumization/depotassation process, HRXRD was used to analyze the potential at 10 points on the first charge/discharge curve of the BPSC electrode. The results are shown in FIG. 7 .
도 7에 도시된 바와 같이, KPF6 용질을 사용한 경우 최종 방전 생성물은 K3Bi, K4P3 및 K2S이다. 그리고 충전 단계가 끝나면 BiPS4는 복구되지 않았다. 대신, 비정질 P 뿐만 아니라 결정질 Bi 및 S가 검출되는 것으로 나타나, KPF6 전해질에서는 BiPS4가 비가역적으로 소모됨을 확인하였다.As shown in FIG. 7 , when KPF 6 solute is used, the final discharge products are K 3 Bi, K 4 P 3 and K 2 S. And at the end of the charging phase, BiPS 4 was not restored. Instead, it was found that not only amorphous P but also crystalline Bi and S were detected, confirming that BiPS 4 was irreversibly consumed in the KPF 6 electrolyte.
도 8 내지 도 11에 도시한 바와 같이, HR-TEM 현미경 사진 및 SAED 패턴을 통하여 이를 확인하였다. 도 8는 제1 방전 전압인 0.01V에서의 HR-TEM 현미경 사진이다. 도 9은 도 8에서의 SAED 패턴을 나타낸 것이다. 이를 통해 도 7에서 확인되었던 반응물에 대해서 재확인이 가능하였다. 도 10은 제1 충전 전압인 3.0V에서의 HR-TEM 현미경 사진이다. 도 11은 도 10에서의 SAED 패턴을 나타낸 것이다. 이를 통해 도 7에서 확인되었던 KPF6 전해질에서는 BiPS4가 비가역적으로 소모됨을 재확인하였다.As shown in FIGS. 8 to 11 , this was confirmed through HR-TEM micrographs and SAED patterns. 8 is an HR-TEM micrograph at a first discharge voltage of 0.01V. FIG. 9 shows the SAED pattern in FIG. 8 . Through this, it was possible to reconfirm the reactants identified in FIG. 7 . 10 is an HR-TEM micrograph at a first charging voltage of 3.0V. FIG. 11 shows the SAED pattern in FIG. 10 . Through this, it was reconfirmed that BiPS 4 was irreversibly consumed in the KPF 6 electrolyte confirmed in FIG. 7 .
이와 반대로, 도 12 및 도 13에 도시된 바와 같이, 에틸렌 카보네이트(EC)/디에틸 카보네이트(DEC) 용매에 1M 칼륨 비스(플루오로설포닐)이미드(KFSI) 용질을 사용한 전해질을 이용하여 측정한 BPSC 전극의 CV 곡선에서 산화 환원 피크는 스위프 속도가 증가함에도 그 변화량은 무시할만한 수준으로 나타났다.In contrast, as shown in FIGS. 12 and 13 , the measurement was performed using an electrolyte using 1M potassium bis(fluorosulfonyl)imide (KFSI) solute in an ethylene carbonate (EC)/diethyl carbonate (DEC) solvent. In the CV curve of one BPSC electrode, the redox peak showed negligible change even as the sweep speed increased.
도 14에 도시된 바와 같이, KFSI 용질을 사용한 경우 최종 배출 생성물은 K3Bi, K4P3, KP, K2S 및 일부 미반응 황이고, 충전 단계가 끝나면 BiPS4가 가역적으로 복구됨을 확인할 수 있다. As shown in Figure 14, in the case of using the KFSI solute final discharge product K 3 Bi, K 4 and P 3, KP, K 2 S, and a part of unreacted sulfur, the end of the charge phase BiPS 4 is seen that reversibly Recovery can
\*62또한, 도 15 내지 18에 도시된 바와 같이, HR-TEM 현미경 사진 및 SAED 패턴을 통하여 이를 확인하였다.\*62In addition, as shown in FIGS. 15 to 18, this was confirmed through HR-TEM micrographs and SAED patterns.
도 15는 제1 방전 0.01V 에서의 HR-TEM 현미경 사진이다. 도 16은 도 15에서의 SAED 패턴을 나타낸 것이다. 이를 통해 도 14에서 확인되었던 반응물에 대해서 재확인이 가능하였다. 도 17은 제1 충전 3.0V 에서의 HR-TEM 현미경 사진이다. 도 18은 도 17에서의 SAED 패턴을 나타낸 것이다. 이를 통해 도 14에서 확인되었던 충전단계가 완료시 가역적으로 복구됨을 재확인하였다. KIB 및 LIB에 적용된 BPS 및 BPSC 전극의 전기 화학적 특성은 0.01 및 3.00 V의 전위창(potential window) 내에서 코인형 2032 셀로 분석되었다. 도 19 및 20에 도시된 바와같이, KFSI를 포함하는 전해질을 사용한 BPSC 전극(BPSC-KFSI)은 0.05 A·g-1의 전류 밀도에서 초기 충전/방전 용량이 523.26/648.39 mAh·g-1로 측정되었다. 측정 결과 초기 쿨롱 효율(initial Coulombic efficiency; ICE)은 80.70%인 것으로 나타났다. 0.2 A·g-1의 전류 밀도에서의 초기 방전 용량은 438.98 mAh·g-1이며, 300 사이클 후 387.62 mAh·g-1로 유지(88.30% 용량 유지율)되었다. 마찬가지로, 0.20 mAh·g-1에서 3 회 사이클 후 CE 값이 94.50%에서 99.96% 이상으로 급격히 증가하였으며 300 회 이상의 사이클 동안 꾸준히 유지되는 것으로 나타났다.15 is an HR-TEM micrograph at a first discharge of 0.01 V; FIG. 16 shows the SAED pattern in FIG. 15 . Through this, it was possible to reconfirm the reactants identified in FIG. 14 . 17 is an HR-TEM micrograph at a first charge of 3.0V. 18 shows the SAED pattern in FIG. 17 . Through this, it was reconfirmed that the charging step confirmed in FIG. 14 was reversibly restored upon completion. The electrochemical properties of BPS and BPSC electrodes applied to KIB and LIB were analyzed with coin-type 2032 cells within potential windows of 0.01 and 3.00 V. As shown in FIGS. 19 and 20, the BPSC electrode (BPSC-KFSI) using an electrolyte containing KFSI had an initial charge/discharge capacity of 523.26/648.39 mAh g -1 at a current density of 0.05 A g -1 . was measured. As a result of the measurement, it was found that the initial Coulombic efficiency (ICE) was 80.70%. The initial discharge capacity at a current density of 0.2 A·g -1 was 438.98 mAh g -1 , and was maintained at 387.62 mAh g -1 after 300 cycles (88.30% capacity retention rate). Similarly, after 3 cycles at 0.20 mAh g -1 , the CE value increased rapidly from 94.50% to 99.96% or more, and it was found to be steadily maintained for more than 300 cycles.
KFSI를 포함하는 전해질을 사용한 BPS 전극(BPS-KFSI)은 0.05 A·g-1 의 전류 밀도에서 초기 충전/방전 용량이 523.73/992.21 mAh·g-1로 측정(ICE : 52.78 %)되었다. 측정 결과 초기 쿨롱 효율(ICE)은 52.78%인 것으로 나타났다. 0.20 A·g-1의 전류 밀도에서 첫 번째 방전 용량은 344.78 mAhA·g-1로 측정되었고 300 사이클까지 완만하게 감소하는 경향을 보였으며, 최종 사이클의 방전 용량은 171.23 mAh·g-1로 측정되었다. 또한, 0.20 A·g-1의 전류 밀도에서 약 20 회 사이클 후 CE 값이 99.02%로 증가하고 300 회 동안 안정적인 거동을 나타냈다.BPS electrode (BPS-KFSI) using an electrolyte containing KFSI is measured with 0.05 A · g -1 initial charge / discharge capacity of the 523.73 / 992.21 mAh · g -1 at a current density of: was (ICE 52.78%). As a result of the measurement, the initial coulombic efficiency (ICE) was found to be 52.78%. 0.20 The first discharge capacity at a current density of A · g -1 was measured as 344.78 mAhA · g -1 tended to gradually decrease to 300 cycles, the discharge capacity at the final cycle is measured as the 171.23 mAh · g -1 became In addition, the CE value increased to 99.02% after about 20 cycles at a current density of 0.20 A·g −1 and showed stable behavior for 300 cycles.
KFSI 및 KPF6를 포함하는 전해질을 각각 사용한 BPS 및 BPSC 전극의 속도 성능을 측정하였다. 그 결과를 도 21에 도시하였다.The rate performance of BPS and BPSC electrodes using KFSI and KPF 6-containing electrolytes, respectively, was measured. The results are shown in FIG. 21 .
도 21에 도시된 바와 같이, KFSI를 포함하는 전해질을 사용한 BPSC 전극(BPSC-KFSI)은 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.70, 1.00, 1.50 및 2.00 A·g-1의 전류 밀도에서 방전 용량이 각각 653.49, 493.14, 433.78, 420.20, 415.21, 408.19, 399.65, 384.64, 359.65 및 348.66 mAh·g-1로 측정되어, BPS-KFSI 및 BPSC-KPF6보다 상당히 우수한 속도 성능(0.1 - 2 A·g-1 에서 70.70% 용량 유지)을 나타내는 것으로 확인되었다. 또한, 전류 밀도가 초기 용량의 79.46%에 해당하는 0.05A·g-1 (519.24mAh·g-1)로 다시 전환되면 용량이 증가하는 것으로 나타났다. As shown in FIG. 21, the BPSC electrode (BPSC-KFSI) using an electrolyte containing KFSI has current densities of 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.70, 1.00, 1.50 and 2.00 A g -1 The discharge capacities were measured as 653.49, 493.14, 433.78, 420.20, 415.21, 408.19, 399.65, 384.64, 359.65 and 348.66 mAh g -1 , respectively, which significantly superior rate performance (0.1 - 2) than BPS-KFSI and BPSC-KPF 6 . 70.70% capacity retention at A·g -1) was confirmed. In addition, when the current density is switched back to 0.05A·g -1 (519.24mAh·g -1 ) corresponding to 79.46% of the initial capacity, the capacity is increased.
KPF6를 포함하는 전해질을 사용하는 BPSC 전극(BPSC-KPF6)은 KFSI 전해질을 사용하는 BPSC 전극(BPSC-KFSI)과 유사하거나 더 높은 용량(최대 0.20 A·g-1)을 나타내었으며, 2A·g-1에서 충전/방전 용량이 133.51/144.69 mAh·g-1이 되었다가, 전류 밀도가 다시 0.05 A·g-1로 변경되면 충전/방전 용량은 415.52/451.11 mAh·g-1로 증가하는 것으로 나타났다.The BPSC electrode using an electrolyte containing KPF 6 (BPSC-KPF 6 ) exhibited similar or higher capacity (up to 0.20 A g -1 ) to the BPSC electrode (BPSC-KFSI) using the KFSI electrolyte, 2A · g -1 was in the charge / discharge capacity of the 133.51 / 144.69 mAh · g -1, when the current density is again changed to 0.05 a · g -1 charge / discharge capacity is increased to 415.52 / 451.11 mAh · g -1 appeared to do
KFSI를 포함하는 전해질을 사용하는 BPS 전극(BPS-KFSI 포함)은 0.05 A·g-1에서 초기 사이클에서 충전/방전 용량은 523.95/1002.33 mAh·g-1로 특정되었으며, 2.00 A g·g-1에서 147.62/152.85 mAh·g-1이 되는 것으로 측정되었다.(With BPS-KFSI) BPS electrode using an electrolyte comprising a KFSI is 0.05 A · g -1 in the charge / discharge capacity at the initial cycle was specified by the 523.95 / 1002.33 mAh · g -1, 2.00 A g · g - It was measured to be 147.62/152.85 mAh·g -1 at 1 .
칼륨 이차전지의 음극 소재로 활용 가능성을 확인하기 위하여 BPS 및 BPSC의 전자 및 K+ 이온 수송 성능을 측정하였다. 이를 위하여 전기 화학적 임피던스 분광(EIS) 분석을 수행하였다. 그 결과를 도 22에 나타내었다. The electron and K + ion transport performance of BPS and BPSC were measured to confirm their potential to be used as an anode material for a potassium secondary battery. For this purpose, electrochemical impedance spectroscopy (EIS) analysis was performed. The results are shown in FIG. 22 .
도 22에 도시한 바와 같이, 완전 충전 상태에서 1, 10, 50 사이클 후 BPS-KFSI(도 22의 a), BPSC-KPF6(도 22의 b) 및 BPSC-KFSI(도 22의 c) 전극의 나이퀴스트 플롯(Nyquist plots)을 비교한 결과, 3 개의 저항이 회로와 일치하는 것으로 간주되었다. 특히 KFSI를 포함하는 전해질을 사용한 BPSC 전극(BPSC-KFSI)은 다양한 주기에서 최소 저항을 나타내는 것으로 확인되었다.As shown in FIG. 22, after 1, 10, and 50 cycles in a fully charged state, BPS-KFSI (FIG. 22A), BPSC-KPF 6 (FIG. 22B) and BPSC-KFSI (FIG. 22C) electrodes Comparing the Nyquist plots of , three resistors were considered consistent with the circuit. In particular, it was confirmed that the BPSC electrode (BPSC-KFSI) using an electrolyte containing KFSI showed the minimum resistance in various cycles.
본 실시예의 측정 결과를 통하여, 본 기술에 따른 음극활물질은 충전/방전 특성과 전자 및 이온의 수송 성능이 뛰어나므로, 이차전지의 음극 소재로 유용하게 활용될 수 있음을 확인할 수 있다.Through the measurement results of this embodiment, it can be confirmed that the negative electrode active material according to the present technology has excellent charge/discharge characteristics and electron and ion transport performance, and thus can be usefully used as a negative electrode material for a secondary battery.
상기 진술한 본 기술의 설명은 예시를 위한 것이며, 본 기술이 속하는 기술분야의 통상의 지식을 가진 자는 본 기술의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. The description of the present technology stated above is for illustration, and those of ordinary skill in the art to which this technology pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential characteristics of the present technology. There will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.
본 기술에 따른 이차전지용 음극활물질은 기존의 음극활물질과 대비하여 우수한 충방전 특성 및 전기적 특성을 나타내어 리튬 이차전지 뿐만아니라 나트륨 이차전지 또는 칼륨 이차전지의 음극 소재로 유용하게 활용될 수 있다. The negative active material for a secondary battery according to the present technology exhibits excellent charge/discharge characteristics and electrical characteristics compared to the existing negative electrode active material, so that it can be usefully used as an anode material for a lithium secondary battery as well as a sodium secondary battery or a potassium secondary battery.

Claims (10)

  1. 사방정계 결정구조를 가지는 화학식이 BiPS4인 화합물을 포함하는, 이차전지용 음극활물질.A negative active material for a secondary battery, comprising a compound having a chemical formula BiPS 4 having an orthorhombic crystal structure.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 화합물은 터널 구조인 것을 특징으로 하는, 이차전지용 음극활물질.The compound is characterized in that the tunnel structure, a negative active material for secondary batteries.
  3. 제 1 항에 있어서, The method of claim 1,
    탄소 나노 튜브를 더 포함하고, 상기 화학식이 BiPS4인 화합물과 탄소 나노 튜브(carbon nanotube; CNT)는 중량비가 6 내지 8 : 3인, 이차전지용 음금활물질.Further comprising carbon nanotubes, wherein the weight ratio of the compound having the formula BiPS 4 and carbon nanotube (CNT) is 6 to 8: 3, a negative electrode active material for a secondary battery.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 이차전지용 음극활물질을 포함하는, 이차전지.A secondary battery comprising the negative active material for the secondary battery.
  5. 제 4 항에 있어서,5. The method of claim 4,
    상기 이차전지는 나트륨 이차전지 또는 칼륨 이차전지인 것을 특징으로 하는, 이차전지.The secondary battery is a sodium secondary battery or a potassium secondary battery, characterized in that the secondary battery.
  6. (a) 비스무트(Bi), 인(P) 및 황(S)을 1 : 0.8 내지 1.2 : 3.8 내지 4.2 몰비로 혼합하는 단계; 및(a) mixing bismuth (Bi), phosphorus (P) and sulfur (S) in a molar ratio of 1: 0.8 to 1.2: 3.8 to 4.2; and
    (b) 혼합물을 볼 밀링하여 사방정계 결정구조를 가지는 화학식이 BiPS4인 화합물을 수득하는 단계;를 포함하는, 이차전지용 음극활물질의 제조방법.(B) ball milling the mixture to obtain a compound having the formula BiPS 4 having an orthorhombic crystal structure; comprising, a method for producing a negative active material for a secondary battery.
  7. 제 6 항에 있어서, 7. The method of claim 6,
    상기 (b) 단계의 볼 밀링은 볼과 상기 혼합물을 30 내지 50 : 1의 중량비로 혼합하고, 300 내지 500 rpm의 속도로 16 내지 24 시간 동안 실시하는 것을 특징으로 하는, 이차전지용 음극활물질의 제조방법.The ball milling of step (b) is performed by mixing the balls and the mixture in a weight ratio of 30 to 50: 1, and performing at a speed of 300 to 500 rpm for 16 to 24 hours, Preparation of a negative active material for secondary batteries Way.
  8. 제 6 항에 있어서, 7. The method of claim 6,
    상기 (b) 단계는 불활성 기체 분위기에서 수행하는 것을 특징으로 하는, 이차전지용 음극활물질의 제조방법.The step (b) is a method of manufacturing a negative active material for a secondary battery, characterized in that it is performed in an inert gas atmosphere.
  9. 제 6 항에 있어서, 7. The method of claim 6,
    (c) 화학식이 BiPS4인 화합물과 탄소 나노 튜브(carbon nanotubes; CNT)를 6 내지 8 : 3의 중량비로 혼합하는 단계; 및(c) mixing a compound having the chemical formula BiPS 4 and carbon nanotubes (CNT) in a weight ratio of 6 to 8: 3; and
    (d) 상기 혼합물을 볼 밀링하여 BiPS4-CNT 복합체를 수득하는 단계;를 더 포함하는, 이차전지용 음극활물질의 제조방법.(d) ball milling the mixture to obtain a BiPS 4 -CNT composite; further comprising, a method for producing a negative active material for a secondary battery.
  10. 제 9 항에 있어서, 10. The method of claim 9,
    상기 (d) 단계의 볼 밀링은 볼과 상기 혼합물을 10 내지 30 : 1의 중량비로 혼합하고, 200 내지 400 rpm의 속도로 40 내지 60 시간 동안 실시하는 것을 특징으로 하는, 이차전지용 음극활물질의 제조방법.The ball milling of step (d) is characterized in that the balls and the mixture are mixed in a weight ratio of 10 to 30: 1, and carried out at a speed of 200 to 400 rpm for 40 to 60 hours, Preparation of a negative active material for secondary batteries Way.
PCT/KR2020/008882 2020-06-11 2020-07-08 Negative electrode active material for secondary battery, method for preparing same, and secondary battery comprising same WO2021251543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200071142A KR102294471B1 (en) 2020-06-11 2020-06-11 Negative electrode active material for secondary battery and secondary battery comprising the same
KR10-2020-0071142 2020-06-11

Publications (1)

Publication Number Publication Date
WO2021251543A1 true WO2021251543A1 (en) 2021-12-16

Family

ID=77495006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008882 WO2021251543A1 (en) 2020-06-11 2020-07-08 Negative electrode active material for secondary battery, method for preparing same, and secondary battery comprising same

Country Status (2)

Country Link
KR (1) KR102294471B1 (en)
WO (1) WO2021251543A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123236A (en) * 2005-09-30 2007-05-17 Sanyo Electric Co Ltd Electrode for nonaqueous electrolyte secondary battery and nonaqueous secondary battery
KR20170115545A (en) * 2015-02-05 2017-10-17 보드 오브 리전츠 더 유니버시티 오브 텍사스 시스템 Bismuth-antimony anode for lithium or sodium ion batteries
CN110071282A (en) * 2019-05-15 2019-07-30 燕山大学 A kind of bismuth phosphate composite reduction graphene oxide composite material and its preparation method and application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140145285A (en) 2013-06-13 2014-12-23 전자부품연구원 Complex optical film with near-infrared shielding function

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123236A (en) * 2005-09-30 2007-05-17 Sanyo Electric Co Ltd Electrode for nonaqueous electrolyte secondary battery and nonaqueous secondary battery
KR20170115545A (en) * 2015-02-05 2017-10-17 보드 오브 리전츠 더 유니버시티 오브 텍사스 시스템 Bismuth-antimony anode for lithium or sodium ion batteries
CN110071282A (en) * 2019-05-15 2019-07-30 燕山大学 A kind of bismuth phosphate composite reduction graphene oxide composite material and its preparation method and application

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MAYORGA-MARTINEZ CARMEN C., SOFER ZDENĚK, SEDMIDUBSKÝ DAVID, HUBER ŠTĚPÁN, ENG ALEX YONG SHENG, PUMERA MARTIN: "Layered Metal Thiophosphite Materials: Magnetic, Electrochemical, and Electronic Properties", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 9, no. 14, 12 April 2017 (2017-04-12), US , pages 12563 - 12573, XP055878621, ISSN: 1944-8244, DOI: 10.1021/acsami.6b16553 *
TIWARI DEVENDRA, ALIBHAI DOMINIC, CHERNS DAVID, FERMIN DAVID J: "Crystal and Electronic Structure of Bismuth Thiophosphate, BiPS 4 : An Earth-Abundant Solar Absorber", CHEMISTRY OF MATERIALS, AMERICAN CHEMICAL SOCIETY, US, vol. 32, no. 3, 11 February 2020 (2020-02-11), US , pages 1235 - 1242, XP055878615, ISSN: 0897-4756, DOI: 10.1021/acs.chemmater.9b04626 *
WASALATHILAKE KIMAL CHANDULA; LI HENAN; XU LI; YAN CHENG: "Recent advances in graphene based materials as anode materials in sodium-ion batteries", JOURNAL OF ENERGY CHEMISTRY, ELSEVIER, AMSTERDAM, NL, vol. 42, 28 June 2019 (2019-06-28), AMSTERDAM, NL , pages 91 - 107, XP085914466, ISSN: 2095-4956, DOI: 10.1016/j.jechem.2019.06.016 *

Also Published As

Publication number Publication date
KR102294471B1 (en) 2021-08-25
KR102294471B9 (en) 2022-01-24

Similar Documents

Publication Publication Date Title
Yan et al. W3Nb14O44 nanowires: ultrastable lithium storage anode materials for advanced rechargeable batteries
US10084220B2 (en) Hybrid solid state electrolyte for lithium secondary battery
Li et al. A nanoarchitectured Na 6 Fe 5 (SO 4) 8/CNTs cathode for building a low-cost 3.6 V sodium-ion full battery with superior sodium storage
Yan et al. High-safety lithium-sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte
Sun et al. A gradient topology host for a dendrite-free lithium metal anode
US20100141211A1 (en) Hybrid electrochemical generator with a soluble anode
Zhu et al. An all-solid-state and all-organic sodium-ion battery based on redox-active polymers and plastic crystal electrolyte
Yin et al. Reversible lithium storage in Na2Li2Ti6O14 as anode for lithium ion batteries
CN111574545B (en) Borate compound, preparation method thereof and electrolyte containing borate compound
WO2012036519A2 (en) Electrode for a magnesium rechargeable battery and a magnesium rechargeable battery comprising the same
WO2015099243A1 (en) Electrode active material containing boron compound and electrochemical device using same
WO2014126312A1 (en) Method for producing anodic composite material for lithium secondary battery, method for producing electrode using same, and method for charging and discharging electrode
WO2014168327A1 (en) Anode for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2010143805A1 (en) Cathode material for a lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
CN114039097A (en) Lithium ion battery
CN109390629B (en) Electrolyte and battery
CN111063871B (en) Sodium ion full cell and preparation method thereof
WO2018194345A1 (en) Anode for lithium secondary battery, lithium secondary battery comprising same, and manufacturing method therefor
CN103972580A (en) Lithium sulfur battery
Wang et al. K2. 13V1. 52Ti0. 48 (PO4) 3 as an anode material with a long cycle life for potassium-ion batteries
CN103367728A (en) Activated natural graphite modified Li2FeSiO4 cathode material and its preparation method
WO2021251543A1 (en) Negative electrode active material for secondary battery, method for preparing same, and secondary battery comprising same
Yan et al. Pseudocapacitive trimetallic NiCoMn-111 perovskite fluorides for advanced Li-ion supercabatteries
WO2019022358A1 (en) Cathode for lithium-sulfur battery, and lithium-sulfur battery comprising same
WO2021091324A2 (en) One-dimensional electrically conductive ni-organic structure and super capacitor electrode comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939824

Country of ref document: EP

Kind code of ref document: A1