WO2021251366A1 - 端末装置、基地局装置、方法、および、集積回路 - Google Patents

端末装置、基地局装置、方法、および、集積回路 Download PDF

Info

Publication number
WO2021251366A1
WO2021251366A1 PCT/JP2021/021706 JP2021021706W WO2021251366A1 WO 2021251366 A1 WO2021251366 A1 WO 2021251366A1 JP 2021021706 W JP2021021706 W JP 2021021706W WO 2021251366 A1 WO2021251366 A1 WO 2021251366A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
state
pdcch
spcell
layer
Prior art date
Application number
PCT/JP2021/021706
Other languages
English (en)
French (fr)
Inventor
秀和 坪井
昇平 山田
貴子 堀
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2022530569A priority Critical patent/JPWO2021251366A1/ja
Publication of WO2021251366A1 publication Critical patent/WO2021251366A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to terminal devices, base station devices, methods, and integrated circuits.
  • the present application claims priority with respect to Japanese Patent Application No. 2020-99022 filed in Japan on June 8, 2020, the contents of which are incorporated herein by reference.
  • Wireless access method and wireless network for cellular mobile communication (hereinafter referred to as "Long Term Evolution (LTE: registered trademark)” or “Evolved Universal Terrestrial Radio Access: EUTRA”), and core network (hereinafter referred to as “Evolved”).
  • LTE Long Term Evolution
  • EUTRA Evolved Universal Terrestrial Radio Access
  • EPC Packet Core
  • 3GPP 3rd Generation Partnership Project
  • EUTRA is also referred to as E-UTRA.
  • Non-Patent Document 1 LTE-Advanced Pro, which is an extended technology of LTE, and NR (New Radio technology) technology, which is a new wireless access technology. Examination and standard formulation are being carried out (Non-Patent Document 1).
  • 5GC 5 Generation Core Network
  • Non-Patent Document 2 5GC (5 Generation Core Network), which is a core network for the 5th generation cellular system, is also being studied (Non-Patent Document 2).
  • 3GPP RP-170855 "Work Item on New Radio (NR) Access Technology” 3GPP TS 23.501 v15.3.0, “System Architecture for the 5G System; Stage 2” 3GPP RP-182076, “WID on Multi-RAT Dual-Connectivity and Carrier Aggregation enhancements” 3GPP TS 36.300, v15.3.0, "Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Digital Terrestrial Radio Access; Network; Network; Network; Network.
  • dual connectivity also called multi-connectivity
  • one or more base station devices and terminal devices communicate using multiple cell groups in order to enable large-capacity data communication.
  • the terminal device in order to communicate in each cell group, the terminal device needs to monitor the presence or absence of a message addressed to itself in each cell group.
  • the terminal device needs to constantly monitor a plurality of cell groups so that communication can be performed with low delay when a large amount of data communication occurs, which causes a problem of consuming a large amount of power. Therefore, studies on a technique (cell group dormant technique) for monitoring or stopping a part of cell groups at low frequency have been started (Non-Patent Document 3).
  • SpCell cells that are always active at present
  • One aspect of the present invention has been made in view of the above circumstances, and one of the objects is to provide a terminal device, a base station device, a method, and an integrated circuit capable of efficiently performing communication control.
  • the first embodiment of the present invention is a terminal device, which includes a control unit that transitions from the first state to the second state when instructed to enter the second state of the cell group.
  • the first BWP is activated in the SpCell of the cell group
  • the downlink control channel (PDCCH) is monitored in the first BWP
  • the channel state with respect to the first BWP The state of executing the measurement of information (CSI)
  • the second state is that the second BWP is activated in the SpCell of the cell group, the PDCCH is not monitored in the second BWP, and the PDCCH is not monitored. It is a state of executing the measurement of the channel state information (CSI) for the second BWP.
  • CSI channel state information
  • the second embodiment of the present invention is a base station device that communicates with the terminal device, and the terminal device is first operated by instructing the terminal device to enter the second state of the cell group.
  • the first BWP is activated in the SpCell of the cell group, and the downlink control channel (PDCCH) is activated in the first BWP.
  • the measurement of the channel state information (CSI) for the first BWP is executed.
  • the second BWP is activated in the SpCell of the cell group.
  • the PDCCH is not monitored and the channel state information (CSI) for the second BWP is measured.
  • the third embodiment of the present invention is a method applied to a terminal device, from the first state to the second state when instructed to enter the second state of the cell group.
  • the first state comprises a transition step in which the first BWP is activated in the SpCell of the cell group, the downlink control channel (PDCCH) is monitored in the first BWP, and the first.
  • the second state the second BWP is activated in the SpCell of the cell group, and the PDCCH is set in the second BWP. It is a state in which the measurement of the channel state information (CSI) for the second BWP is performed without monitoring.
  • CSI channel state information
  • the fourth embodiment of the present invention is a method applied to a base station device that communicates with a terminal device, and is described by instructing the terminal device to enter a second state of a cell group.
  • the terminal device is provided with a step of transitioning from the first state to the second state, and in the first state, the first BWP is activated in the SpCell of the cell group, and the downlink is performed in the first BWP.
  • the control channel (PDCCH) is monitored and the channel state information (CSI) is measured for the first BWP.
  • the second BWP is activated by the SpCell of the cell group.
  • the PDCCH is not monitored and the channel state information (CSI) for the second BWP is measured.
  • the fifth embodiment of the present invention is an integrated circuit mounted on a terminal device, and is from the first state to the second state when instructed to enter the second state of the cell group.
  • the first BWP is activated in the SpCell of the cell group
  • the downlink control channel (PDCCH) is activated in the first BWP.
  • the second state is the state in which the second BWP is activated in the SpCell of the cell group
  • the second state is the state in which the measurement of the channel state information (CSI) for the first BWP is executed.
  • the PDCCH is not monitored and the measurement of the channel state information (CSI) for the second BWP is executed.
  • the sixth embodiment of the present invention is an integrated circuit mounted on a base station device that communicates with a terminal device, and by instructing the terminal device to enter the second state of the cell group.
  • the function of transitioning the terminal device from the first state to the second state is exerted on the base station device, and in the first state, the first BWP is activated by SpCell of the cell group.
  • the downlink control channel (PDCCH) is monitored in the first BWP, and the channel state information (CSI) is measured for the first BWP, and the second state is the cell group.
  • the second BWP is activated in SpCell, and the PDCCH is not monitored in the second BWP, and the measurement of the channel state information (CSI) for the second BWP is executed.
  • the terminal device can realize efficient communication control processing.
  • the schematic diagram of the communication system which concerns on each embodiment of this invention.
  • the block diagram which shows the structure of the terminal apparatus in each embodiment of this invention.
  • An example of an information element relating to cell group setting in E-UTRA in the embodiment of the present invention An example of the process relating to dormancy of SCG in the embodiment of the present invention.
  • An example of the process relating to dormancy of SCG in the embodiment of the present invention An example of the process relating to dormancy of SCG in the embodiment of the present invention.
  • LTE (and LTE-A Pro) and NR may be defined as different radio access technologies (Radio Access Technology: RAT).
  • LTE that can be connected to NR by Multi Radio Dual connectivity may be distinguished from conventional LTE.
  • LTE having a core network of 5GC may be distinguished from conventional LTE having a core network of EPC.
  • This embodiment may be applied to NR, LTE and other RATs.
  • terms related to LTE and NR will be used, but the present embodiment may be applied to other techniques using other terms.
  • E-UTRA in the present embodiment may be replaced with the term LTE
  • LTE may be replaced with the term E-UTRA.
  • FIG. 1 is a schematic diagram of a communication system according to each embodiment of the present invention.
  • E-UTRA100 is a wireless access technology described in Non-Patent Document 4 and the like, and is composed of a cell group (Cell Group: CG) composed of one or a plurality of frequency bands.
  • the eNB (E-UTRAN Node B) 102 is a base station device of the E-UTRA100.
  • the EPC (Evolved Packet Core) 104 is a core network described in Non-Patent Document 14 and the like, and was designed as a core network for the E-UTRA100.
  • the interface 112 is an interface between the eNB 102 and the EPC 104, and has a control plane (Control Plane: CP) through which a control signal passes and a user plane (User Plane: UP) through which the user data passes.
  • Control Plane: CP Control Plane
  • User Plane: UP User Plane
  • NR106 is a wireless access technology described in Non-Patent Document 5 and the like, and is composed of a cell group (Cell Group: CG) composed of one or a plurality of frequency bands.
  • the gNB (g Node B) 108 is a base station device of NR106.
  • the 5GC110 is a core network described in Non-Patent Document 2 and the like, and is designed as a core network for NR106, but may be used as a core network for E-UTRA100 having a function of connecting to the 5GC110.
  • the E-UTRA 100 may include the E-UTRA 100 having a function of connecting to the 5GC110.
  • Interface 114 is an interface between eNB 102 and 5GC110, interface 116 is an interface between gNB108 and 5GC110, interface 118 is an interface between gNB108 and EPC104, interface 120 is an interface between eNB102 and gNB108, and interface 124 is an interface between EPC104 and 5GC110.
  • the interface 114, interface 116, interface 118, interface 120, interface 124, and the like may be CP only, UP only, or an interface that passes through both CP and UP. Further, the interface 114, the interface 116, the interface 118, the interface 120, the interface 124, and the like may not exist depending on the communication system provided by the telecommunications carrier.
  • UE 122 is a terminal device corresponding to a part or all of E-UTRA100 and NR106. As described in some or all of Non-Patent Documents 4 and 5, when the UE 122 connects to the core network via some or all of the E-UTRA100 and NR106, the UE 122 and A logical path called a radio bearer (RB: Radio Bearer) is established between some or all of the E-UTRA100 and the NR106.
  • the radio bearer used for CP is called a signaling radio bearer (SRB: Signaling Radio Bearer), and the radio bearer used for UP is called a data radio bearer (DRB Data Radio Bearer).
  • SRB Signaling Radio Bearer
  • DRB Data Radio Bearer Data Radio Bearer
  • FIG. 2 is a protocol stack (Protocol Stack) diagram of UP and CP of a terminal device and a base station device in the E-UTRA wireless access layer (radio access layer) in each embodiment of the present invention.
  • Protocol stack Protocol Stack
  • FIG. 2A is an UP protocol stack diagram used when the UE 122 communicates with the eNB 102 in the E-UTRA100.
  • the PHY (Physical layer) 200 is a wireless physical layer (radio physical layer), and provides a transmission service to an upper layer (upper layer) by using a physical channel (Physical Channel).
  • the PHY200 is connected to a higher-level MAC (Medium Access Control layer) 202, which will be described later, by a transport channel (Transport Channel). Data moves between MAC202 and PHY200 via the transport channel. Data is transmitted and received between the UE 122 and the PHY of the eNB 102 via the radio physical channel.
  • MAC202 is a medium access control layer (medium access control layer) that maps various logical channels (logical channels) to various transport channels.
  • the MAC 202 is connected to a higher-level RLC (Radio Link Control layer) 204, which will be described later, by a logical channel (logical channel).
  • the logical channel is roughly classified according to the type of information to be transmitted, and is divided into a control channel for transmitting control information and a traffic channel for transmitting user information.
  • MAC202 has a function to control PHY200 for intermittent transmission / reception (DRX / DTX), a function to execute a random access (Random Access) procedure, a function to notify transmission power information, a function to perform HARQ control, and the like. You may have it.
  • the MAC 302 may have a function of controlling the active state of the cell set in the RRC layer (Non-Patent Document 6).
  • the RLC204 divides the data received from the upper PDCP (Packet Data Convergence Protocol Layer) 206, which will be described later, by segmentation, and adjusts the data size so that the lower layer (lower layer) can appropriately transmit the data. It is a wireless link control layer (wireless link control layer).
  • PDCP Packet Data Convergence Protocol Layer
  • the PDCP206 is a packet data convergence protocol layer (packet data convergence protocol layer) for efficiently transmitting user data such as an IP packet (IP Packet) in a wireless section.
  • the PDCP206 may have a header compression function for compressing unnecessary control information.
  • the PDCP206 may also have a data encryption function.
  • the data processed by MAC202, RLC204, and PDCP206 are referred to as MAC PDU (Protocol Data Unit), RLC PDU, and PDCP PDU, respectively.
  • MAC PDU Protocol Data Unit
  • RLC PDU Packet Data Unit
  • PDCP PDU Packet Data Unit
  • the data passed to the MAC202, RLC204, and PDCP206 from the upper layer or the data passed to the upper layer are referred to as MAC SDU (Service Data Unit), RLC SDU, and PDU SDU, respectively.
  • the divided RLC SDU is called an RLC SDU segment.
  • FIG. 2B is a protocol stack diagram of the CP used when the UE 122 communicates with the eNB 102 and the MME (Mobile Management Entry), which is a logical node that provides functions such as authentication and mobility management, in the E-UTRA100. ..
  • MME Mobile Management Entry
  • the CP protocol stack includes RRC (Radio Resource Control layer) 208 and NAS (non Access Stratum) 210.
  • the RRC208 performs processing such as establishment, re-establishment, suspension (suspend), and suspension (resume) of the RRC connection, and resetting of the RRC connection, for example, a radio bearer (RB) and a cell group (Cell Group).
  • Wireless link control layer wireless link control
  • that establishes, changes, releases, etc. controls logical channels, transport channels, physical channels, etc., and also sets handover and measurement (measurement). Layer).
  • the RB may be divided into a Signaling Radio Bearer (SRB) and a Data Radio Bearer (DRB), and the SRB is used as a route for transmitting RRC messages which are control information. You may.
  • the DRB may be used as a route for transmitting user data.
  • Each RB may be set between the eNB 102 and the RRC 208 of the UE 122. Further, the portion of the RB composed of the RLC 204 and the logical channel (logical channel) may be referred to as an RLC bearer.
  • NAS layer that carries the signal between the MME and the UE 122
  • AS layers Access Stratum layers
  • MAC202, RLC204, PDCP206, and RRC208 is an example, and a part or all of each function may not be implemented. Further, a part or all of the functions of each layer may be included in another layer.
  • the IP layer, the TCP (Transmission Control Protocol) layer (TCP layer) above the IP layer, the UDP (User Datagram Protocol) layer (UDP layer), the application layer (application layer), and the like are higher layers (application layer) of the PDCP layer. Upper layer) (not shown). Further, the RRC layer and the NAS (non Access Stratum) layer are also higher layers of the PDCP layer (not shown).
  • the PDCP layer is an RRC layer, a NAS layer, an IP layer, a TCP (Transmission Control Protocol) layer above the IP layer, a UDP (User Datagram Protocol) layer, and a lower layer (lower layer) of the application layer.
  • FIG. 3 is a protocol stack diagram of UP and CP of the terminal device and the base station device in the NR radio access layer in each embodiment of the present invention.
  • FIG. 3A is a protocol stack diagram of UP used when UE 122 communicates with gNB 108 in NR106.
  • the PHY (Physical layer) 300 is a wireless physical layer (radio physical layer) of NR, and a transmission service may be provided to an upper layer by using a physical channel (Physical Channel).
  • the PHY 300 may be connected to a higher-level MAC (Medium Access Control layer) 302 described later by a transport channel (Transport Channel). Data may be moved between MAC 302 and PHY 300 via the transport channel. Data may be transmitted and received between the UE 122 and the PHY of the gNB 108 via the radio physical channel.
  • the following physical channels may be used for wireless communication between the terminal device and the base station device.
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • PBCH is used to notify the system information required by the terminal device.
  • the PBCH may be used to notify the time index (SSB-Index) within the period of the block of the synchronization signal (also referred to as the SS / PBCH block).
  • SSB-Index time index within the period of the block of the synchronization signal
  • PDCCH is used to transmit (or carry) downlink control information (Downlink Control Information: DCI) in downlink wireless communication (wireless communication from a base station device to a terminal device).
  • DCI Downlink Control Information
  • one or more DCIs (which may be referred to as DCI format) are defined for the transmission of downlink control information. That is, the field for the downlink control information is defined as DCI and mapped to the information bit.
  • the PDCCH is transmitted in the PDCCH candidate.
  • the terminal device monitors a set of PDCCH candidates in the serving cell. Monitoring means attempting to decode the PDCCH according to a certain DCI format.
  • Certain DCI formats may be used for scheduling PUSCH in serving cells.
  • the PUSCH may be used for transmitting user data, transmitting an RRC message, and the like.
  • the PUCCH may be used to transmit uplink control information (Uplink Control Information: UCI) in uplink wireless communication (wireless communication from a terminal device to a base station device).
  • the uplink control information may include channel state information (CSI: Channel State Information) used to indicate the status of the downlink channel.
  • the uplink control information may include a scheduling request (SR: Scheduling Request) used for requesting a UL-SCH resource.
  • the uplink control information may include HARQ-ACK (Hybrid Automatic Repeat ACKnowledgement).
  • the PDSCH may be used for transmission of downlink data (DL-SCH: Downlink Shared Channel) from the MAC layer. Further, in the case of a downlink, it is also used for transmission of system information (SI: System Information) and random access response (RAR: Random Access Response).
  • SI System Information
  • RAR Random Access Response
  • PUSCH may be used to transmit HARQ-ACK and / or CSI together with uplink data (UL-SCH: Uplink Shared Channel) or uplink data from the MAC layer.
  • PUSCH may also be used to transmit CSI only, or HARQ-ACK and CSI only. That is, the PUSCH may be used to transmit only the UCI.
  • the PDSCH or PUSCH may be used for transmitting RRC signaling (also referred to as RRC message) and a MAC control element (MAC CE).
  • RRC signaling also referred to as RRC message
  • MAC CE MAC control element
  • the RRC signaling transmitted from the base station device may be a signal common to a plurality of terminal devices in the cell.
  • the RRC signaling transmitted from the base station apparatus may be dedicated signaling (also referred to as designated signaling) for a certain terminal apparatus. That is, the information unique to the terminal device (UE specific) may be transmitted to a certain terminal device using a dedicated signaling. Further, the PUSCH may be used for transmitting the capability of the UE (UE Capacity) on the uplink.
  • PRACH may be used to send a random access preamble.
  • the PRACH is used to indicate an initial connection establishment procedure, a handover procedure, a connection re-station procedure, synchronization (timing adjustment) for uplink transmission, and a request for PUSCH (UL-SCH) resources. May be used for.
  • the MAC 302 is a medium access control layer (medium access control layer) that maps various logical channels (logical channels) to various transport channels.
  • the MAC 302 may be connected to a higher-level RLC (Radio Link Control layer) 304, which will be described later, by a logical channel (logical channel).
  • the logical channel is roughly classified according to the type of information to be transmitted, and may be divided into a control channel for transmitting control information and a traffic channel for transmitting user information.
  • MAC302 has a function to control PHY300 for intermittent transmission / reception (DRX / DTX), a function to execute a random access (Random Access) procedure, a function to notify transmission power information, a function to perform HARQ control, and the like. You may have it. Further, the MAC 302 may have a function of controlling the active state of the cell set in the RRC layer (Non-Patent Document 7).
  • the RLC 304 is a wireless link control that divides the data received from the upper PDCP (Packet Data Convergence Protocol Layer) 306, which will be described later, and adjusts the data size so that the lower layer can appropriately transmit the data. It is a layer (wireless link control layer).
  • PDCP Packet Data Convergence Protocol Layer
  • PDCP306 is a packet data convergence protocol layer (packet data convergence protocol layer) that efficiently transmits user data such as IP packets (IP Packet) in a wireless section.
  • the PDCP306 may have a header compression function for compressing unnecessary control information.
  • the PDCP306 may also have data encryption and data integrity protection functions.
  • the SDAP (Service Data Analysis Protocol) 310 is associated with the downlink QoS flow sent from the 5GC110 to the terminal device via the base station device and the DRB (mapping: mapping), and from the terminal device to the base station device via the base station device. It is a service data adaptation protocol layer (service data adaptation protocol layer) having a function of mapping between the QoS flow of the uplink sent to the 5GC110 and the DRB and storing the mapping rule information.
  • service data adaptation protocol layer service data adaptation protocol layer
  • MAC PDU Protocol Data Unit
  • RLC PDU Physical Location
  • PDCP PDU Physical Location
  • SDAP PDU Secure Protocol Data Unit
  • RLC SDU Service Data Unit
  • RLC SDU Service Data Unit
  • PDU SDU Physical Location
  • SDAP SDU Secure Data Unit
  • FIG. 3B is a protocol stack diagram of the CP used when the UE 122 communicates with the gNB 108 and the AMF (Access and Mobility Management function), which is a logical node that provides functions such as authentication and mobility management, in the NR 106. ..
  • AMF Access and Mobility Management function
  • RRC Radio Resource Control layer
  • NAS Non Access Stratum
  • the RRC308 performs processing such as establishment, re-establishment, suspension (suspend), and suspension (resume) of the RRC connection, and resetting of the RRC connection, for example, a radio bearer (RB) and a cell group (Cell Group).
  • Wireless link control layer wireless link control
  • the RB may be divided into a Signaling Radio Bearer (SRB) and a Data Radio Bearer (DRB), and the SRB is used as a route for transmitting RRC messages which are control information. You may.
  • the DRB may be used as a route for transmitting user data.
  • Each RB may be set between the gNB 108 and the RRC308 of the UE 122. Further, the portion of the RB composed of the RLC 304 and the logical channel (logical channel) may be referred to as an RLC bearer.
  • the NAS layer that carries the signal between the AMF and the UE 122
  • some or all layers of the PHY300, MAC302, RLC304, PDCP306, RRC308, SDAP310 that carry the signal and data between the UE 122 and the gNB 108. May be referred to as an AS (Access Stratum) layer.
  • AS Access Stratum
  • MAC302, RLC304, PDCP306, SDAP310, and RRC308 is an example, and a part or all of each function may not be implemented. Further, a part or all of the functions of each layer (each layer) may be included in another layer (layer).
  • the upper layer (not shown) of the AS layer may be referred to as a PDU layer (PDU layer) as described in Non-Patent Document 2.
  • the PDU layer may include any or all of an IP layer, a TCP (Transmission Control Protocol) layer above the IP layer, a UDP (User Datagram Protocol) layer, and other layers.
  • the application layer may be an upper layer of the PDU layer, or may be included in the PDU layer.
  • the PDU layer may be an upper layer with respect to the user plane of the AS layer.
  • the RRC layer and the NAS (non Access Stratum) layer may also be an upper layer of any or all of the SDAP layer and the PDCP layer (not shown).
  • any or all of the SDAP layer and the PDCP layer are the RRC layer, the NAS layer, the IP layer, and the TCP (Transmission Control Protocol) layer above the IP layer, the UDP (User Datagram Protocol) layer, and the application layer. It becomes a lower layer of any or all of.
  • the physical layer, MAC layer, RLC layer, PDCP layer, and SDAP layer of the terminal device may be established, set, and controlled by the RRC layer of the terminal device, or all of them may be performed. Further, the RRC layer of the terminal device may establish and / or set the physical layer, the MAC layer, the RLC layer, the PDCP layer, and the SDAP layer according to the RRC message transmitted from the RRC layer of the base station device. Further, the MAC layer (MAC layer), RLC layer (RLC layer), PDCP layer (PDCP layer), and SDAP layer (SDAP layer) are divided into a MAC sublayer (MAC sublayer), an RLC sublayer (RLC sublayer), and a PDCP sublayer, respectively. It may be called a layer (PDCP sublayer) or a SDAP sublayer (SDAP sublayer).
  • MAC sublayer MAC sublayer
  • RLC sublayer RLC sublayer
  • SDAP sublayer SDAP sublayer
  • each layer belonging to the AS layer set in any or all of the terminal device and the base station device, or the function of each layer may be referred to as an entity. That is, a physical layer (PHY layer), a MAC layer, an RLC layer, and a PDCP layer in which any or all of establishment, setting, and control are performed on any or all of the terminal device and the base station device. , SNAP layer, and RRC layer, or the function of each layer may be referred to as a physical entity (PHY entity), a MAC entity, an RLC entity, a PDCP entity, a SDAP entity, and an RRC entity, respectively. Further, the entity of each layer may be included in one or more in each layer.
  • the PDCP entity and the RLC entity may be established, set, and controlled for each radio bearer, or all of them may be performed.
  • the MAC entity may be established, set, and controlled for each cell group, or all of them may be performed.
  • the SDAP entity may be established, configured, and controlled for each PDU session, either or all.
  • MAC202, RLC204, PDCP206, and RRC208 are used as MAC for E-UTRA or MAC for LTE, E-UTRA, respectively. It may also be referred to as RLC for RLC or RLC for LTE, PDCP for E-UTRA or PDCP for LTE, and RRC for E-UTRA or RRC for LTE. Further, MAC302, RLC304, PDCP306, and RRC308 may be referred to as MAC for NR, RLC for NR, RLC for NR, and RRC for NR, respectively. Alternatively, it may be described using a space such as E-UTRA PDCP, LTE PDCP, NR PDCP, or the like.
  • the eNB 102, gNB 108, EPC 104, and 5GC 110 may be connected via the interface 112, the interface 116, the interface 118, the interface 120, and the interface 114. Therefore, the RRC208 in FIG. 2 may be replaced with the RRC308 in FIG. 3 in order to support various communication systems.
  • the PDCP206 of FIG. 2 may be replaced with the PDCP306 of FIG.
  • the RRC308 of FIG. 3 may include the function of the RRC208 of FIG.
  • the PDCP306 in FIG. 3 may be the PDCP206 in FIG.
  • NR PDCP may be used as the PDCP even when the UE 122 communicates with the eNB 102.
  • the UE 122 connected to the EPC or 5GC may be in the RRC_CONNECTED state when the RRC connection is established (RRC connection has been staffed).
  • the state in which the RRC connection is established may include a state in which the UE 122 holds a part or all of the UE context described later. Further, the state in which the RRC connection is established may include a state in which the UE 122 can transmit and / or receive unicast data.
  • the UE 122 may be in the RRC_INACTIVE state (if the UE 122 is connected to the 5GC) when the RRC connection is dormant. If not in those cases, UE 122 may be in the RRC_IDLE state.
  • the suspension of the RRC connection may be started by E-UTRAN.
  • the UE 122 transitions to the RRC_IDLE state by holding the AS context of the UE and the identifier used for returning.
  • the return of the RRC connection is permitted by E-UTRAN, and the UE 122 needs to transition from the RRC_IDLE state to the RRC_CONTECTED state, the hibernated RRC Restoration of the connection may be initiated by a higher layer (eg NAS layer).
  • a higher layer eg NAS layer
  • the definition of hibernation may differ between the UE 122 connected to the EPC and the UE 122 connected to the 5GC. Further, when the UE 122 is connected to the EPC (when it is paused in the RRC_IDLE state) and when the UE 122 is connected to the 5GC (when it is paused in the RRC_INACTIVE state), the UE 122 returns from the pause. All or part of the procedure may be different.
  • the RRC_CONNECTED state, RRC_INACTIVE state, and RRC_IDLE state may be referred to as a connected state (connected mode), an inactive state (inactive mode), and an idle state (idle mode), respectively, and the RRC connected state (RRC connected mode).
  • RRC inactive state RRC inactive mode
  • RRC hibernation state RRC idle mode
  • the AS context of the UE held by the UE 122 is the current RRC setting, the current security context, the PDCP state including the ROHC (RObust Header Compression) state, and the C-RNTI (Cell Radio) used in the PCell of the connection source (Source).
  • Information may be information including all or a part of a Network Frequency Identity), a cell identifier, and a physical cell identifier of the PCell of the connection source.
  • the AS context of the UE held by any or all of the eNB 102 and the gNB 108 may include the same information as the AS context of the UE held by the UE 122, or the information included in the AS context of the UE held by the UE 122. May contain different information.
  • FIG. 4 is a diagram showing an example of the flow of procedures for various settings in RRC208 and / or (and / or) RRC308 in each embodiment of the present invention.
  • FIG. 4 is an example of a flow in which an RRC message is sent from the base station apparatus (eNB 102 and / or gNB 108) to the terminal apparatus (UE122).
  • the base station apparatus creates an RRC message (step S400).
  • the creation of the RRC message in the base station device may be performed when the base station device distributes broadcast information (SI: System Information) or paging information, or the base station device processes a specific terminal device.
  • SI System Information
  • the base station device processes a specific terminal device.
  • security-related settings for example, security-related settings, RRC connection (connection) resetting (wireless bearer processing (establishment, change, release, etc.), cell group processing (establishment, addition, change, etc.)) , Release, etc.), Measurement setting, Handover setting, etc.), RRC connection state release, etc. may be performed.
  • the RRC message includes information (parameters) for various information notifications and settings.
  • Non-Patent Document 8 and Non-Patent Document 9 these parameters are referred to as fields and / or information elements, and ASN. It is described using the description method of 1 (Abust Synchronization Notation One).
  • the RRC message may be created for other purposes.
  • the RRC message may be used for setting the Dual Connectivity (DC) or the Multi-Radio Dual Connectivity (MR-DC).
  • the base station apparatus then transmits the created RRC message to the terminal apparatus (step S402).
  • the terminal device performs processing when processing such as setting is required according to the received RRC message (step S404).
  • Dual Connectivity is a cell group composed of two base station devices (nodes), that is, a master cell group (Master Cell Group: MCG) and a secondary node (Technery) composed of a master node (Master Node: MN). It may be a technique for performing data communication using both radio resources of a secondary cell group (Node: SN) configured (Node: SN). Further, the master node and the secondary node may be the same node (same base station device). With MR-DC, both E-UTRA and NR RAT (Radio Access Technology) cells are grouped into cells for each RAT and assigned to the UE, and data communication is performed using both MCG and SCG radio resources. It may be a technique to be performed.
  • MR-DC both E-UTRA and NR RAT (Radio Access Technology) cells are grouped into cells for each RAT and assigned to the UE, and data communication is performed using both MCG and SCG radio resources. It may be a technique to be performed.
  • the master node means the main RRC functions related to MR-DC, for example, functions such as addition of secondary node, establishment, change and release of RB, addition, change, release and handover of MCG. It may be a base station having, and the secondary node may be a base station having some RRC functions such as change and release of SCG.
  • RRC of RAT on the master node side may be used to set both MCG and SCG.
  • the MR-DC is EN-DC (E-UTRA-NR Dual Connection)
  • the core network is 5GC110
  • the master node is eNB102.
  • NGEN-DC NG-RAN E-UTRA-NR Dual Conductivity
  • the RRC message of E-UTRA may be transmitted and received between the eNB 102 and the UE 122.
  • the RRC message may include not only LTE (E-UTRA) setting information but also NR setting information.
  • the RRC message transmitted from the eNB 102 to the UE 122 may be transmitted from the eNB 102 to the UE 122 via the gNB 108.
  • the configuration of this RRC message is non-MR-DC, and may be used for E-UTRA / 5GC in which eNB 102 (extended eNB) uses 5GC as a core network.
  • the RRC messages of NR are gNB108 and UE122. It may be sent and received to and from.
  • the RRC message in this case may include not only the NR setting information but also the LTE (E-UTRA) setting information.
  • the RRC message transmitted from the gNB 108 to the UE 122 may be transmitted from the gNB 108 to the UE 122 via the eNB 102.
  • the RRC message for E-UTRA transmitted from eNB 102 to UE 122 may include the RRC message for NR, or for NR transmitted from gNB 108 to UE 122.
  • the RRC message may include an RRC message for E-UTRA.
  • FIG. 7 is an ASN. Representing a part or all of the fields and information elements related to the cell group setting included in the message related to the RRC connection reset in NR in FIG. It is an example of one description.
  • FIG. 8 is an ASN. It is an example of one description. Not limited to FIGS. 7 and 8, the ASN.
  • ⁇ omitted> and ⁇ omitted> are ASN. It indicates that other information is omitted, not a part of the notation of 1. Note that the information element may be omitted even in places where there is no description of ⁇ omitted> or ⁇ omitted>.
  • ASN An example of 1 is ASN.
  • ASN ASN.
  • the first example shows only an example relating to the main information closely related to one embodiment of the present invention, in order to avoid complicating the explanation.
  • the parameters described in 1 may be referred to as information elements without distinguishing them into fields, information elements, and the like. Further, in the embodiment of the present invention, the ASN. Parameters such as fields and information elements described in 1 may be referred to as information.
  • the message regarding the resetting of the RRC connection may be an RRC resetting message in NR or an RRC connection resetting message in E-UTRA.
  • the radioBearerConfig included in the RRCReconfiguration message may include the wireless bearer setting.
  • the masterCellGroup may include settings for the MCG when the MCG is NR.
  • the secondaryCellGroup may include settings related to the SCG when the SCG cell notifies the terminal device.
  • the mrdc-SecondayCellGroupConfig may include settings related to SCG when the cell of the MCG notifies the terminal device.
  • the masterCellGroup, secondaryCellGroup, and / or the mrdc-SecondaryCellGroupConfig may include a CellGroupConfig information element as a value.
  • the CellGroupConfig information element may include settings related to cell groups.
  • the cellGroupId included in the CellGroupConfig information element may include information on an identifier for identifying a cell group.
  • the mac-CellGroupConfig may include settings related to the MAC layer of the cell group.
  • the spCellConfig may include settings related to SpCell.
  • the sCellToAdModList may include settings for adding or changing SCells belonging to a cell group.
  • the sCellToReleaseList may contain information regarding the deletion of SCells belonging to a cell group.
  • the sCellToReleaseList-r10 included in the RRCConceptionReconnectionMessage may include information regarding the deletion of the SCell belonging to the MCG.
  • the sCellToAddModList-r10 may include settings for adding or changing SCells belonging to the MCG.
  • the scg-Configuration-r12 may include settings relating to SCG.
  • the scg-ConfigPartSCG-r12 included in scg-Configuration-r12 includes settings related to SCG SpCell (pSCellToAdMod-r12, etc.), settings related to addition or modification of SCells belonging to a cell group (sCellToAdModListSCG-r12, etc.), and / or cells.
  • Information on the deletion of SCells belonging to the group may be included.
  • the setting for adding or changing the SCell at the time of handover and / or the setting for adding or changing the SCell when adding the SCell may include information indicating the initial state of the SCell.
  • the RRC message may include information indicating either an activated state or a dormant state (Dormant).
  • the initial state of the SCell may be set to the activated state or the dormant state (Dormant) based on this information.
  • the initial state of the SCell may be set to the Activated state.
  • the terminal device that has received the RRC message including the above information from the base station device sets the MCG SpCell (PCell), the MCG SCell, the SCG SpCell (PSCell), and / or the SCG SCell based on the information.
  • the terminal device may perform wireless link monitoring in a serving cell (eg, PCell and / or PSCell) using some type of reference signal (eg, cell-specific reference signal (CRS)). Further, the terminal device receives a setting (wireless link monitoring setting: RadioLinkMotoringConfig) indicating which reference signal is used for wireless link monitoring in the serving cell (for example, PCell and / or PSCell) from the base station device, and is set to one or the like. Wireless link monitoring may be performed using a plurality of reference signals (hereinafter referred to as RLM-RS). Further, the terminal device may perform wireless link monitoring using other signals.
  • RLM-RS reference signals
  • the wireless link monitoring setting may include information indicating the purpose of monitoring and identifier information indicating a reference signal.
  • the purpose of monitoring may include the purpose of monitoring radio link failure, the purpose of monitoring beam failure, or both.
  • the identifier information indicating the reference signal may include information indicating the identifier (SSB-Index) of the synchronization signal block (SSB) of the cell. That is, the reference signal may include a synchronization signal.
  • the identifier information indicating the reference signal may include information indicating the identifier associated with the channel state information reference signal (CSI-RS) set in the terminal device.
  • CSI-RS channel state information reference signal
  • the RRC layer processing unit of the terminal device corresponds to the case where the out-of-synchronization notified from the physical layer processing unit in each SpCell is continuously received a predetermined number of times (N310 times).
  • the SpCell timer (T310) may be started (Start) or restarted (Restart). Further, the RRC layer processing unit of the terminal device may stop (Stop) the timer (T310) of the SpCell when the synchronization is continuously received a predetermined number of times (N311 times) in each SpCell.
  • the RRC layer processing unit of the terminal device When the timer (T310) of each SpCell expires (Expire), the RRC layer processing unit of the terminal device performs a transition to an idle state or a procedure for reestablishing an RRC connection if the SpCell is a PCell. May be good. Further, if SpCell is PSCell, an SCG failure information procedure (SCG failure information process) for notifying the network of an SCG failure may be executed.
  • SCG failure information process SCG failure information process
  • the above explanation is an example when intermittent reception (DRX) is not set in the terminal device.
  • DRX intermittent reception
  • the RRC layer processing unit of the terminal device physically sets the period for measuring the wireless link quality and the notification interval to the upper layer to be different from the value when DRX is not set. It may be set for the layer processing unit. Even if DRX is set, when the timer is running, DRX is set for the period for measuring the wireless link quality for estimating synchronization and the notification interval to the upper layer. It may be a value when there is no such thing.
  • the RLM-RS may be undefined if it is not explicitly or implicitly set from the network. That is, the terminal device does not have to perform wireless link monitoring when the RLM-RS is not set from the network (for example, the base station device).
  • wireless link monitoring using CRS may be performed in the cell of EUTRA, and wireless link monitoring using RLM-RS may be performed in the cell of NR, but the present invention is not limited to this.
  • the master cell group (MCG) setting and the secondary cell group (SCG) are set by the above-mentioned message regarding the resetting of the RRC connection.
  • MCG master cell group
  • SCG secondary cell group
  • Each cell group may be composed of a special cell (SpCell) and no other cells (secondary cell: SCell).
  • SpCell secondary cell
  • SCell secondary cell
  • MCG's SpCell is also referred to as PCell.
  • SCG SpCell is also referred to as PSCell.
  • Cell inactivation is not applied to SpCell, but may be applied to SCell.
  • the cell inactivation is not applied to the PCell and may be applied to the PSCell.
  • the cell inactivation may be a different process for SpCell and SCell.
  • cell activation and deactivation may be processed by MAC entities existing for each cell group.
  • the SCell set in the terminal device may be activated and / or inactivated by the following (A) and / or (B).
  • (B) Timer set for each SCell for which PUCCH is not set (sCellDactionTimer)
  • the MAC entity may perform the following processing (AD) on each SCell set in the cell group.
  • processing AD-1 If a MAC CE that activates SCell is received, processing (AD-1) is performed. Otherwise, if the MAC CE that inactivates the SCell is received or the timer (sCellDactionTimer) expires in the SCell in the active state, the process (AD-2) is performed. If the PDCCH of the active SCell notifies the uplink grant or downlink assignment, or if the PDCCH of a serving cell notifies the uplink grant or downlink assignment to the active SCell, or it is set. When the MAC PDU is transmitted in the uplink grant or the MAC PDU is received in the configured downlink allocation, the timer (sCellDactionTimer) associated with the SCell is restarted. If the SCell becomes inactive, the treatment (AD-3) is performed.
  • the SCell is activated and a normal SCell operation (Operation) including a part or all of the following (A) to (E) is applied (implemented).
  • SRS sounding reference signal
  • B Report of channel state information
  • C Monitor of PDCCH in this SCell
  • D Monitor of PDCCH for this SCell (others)
  • E If PUCCH is set, PUCCH transmission in this SCell
  • (A) Activates the BWP indicated by the downlink BWP identifier (firstActiveDownlinkBWP-Id) set in the RRC message.
  • (B) Indicated by the uplink BWP identifier (firstActiveUplinkBWP-Id) set in the RRC message. Activates the BWP
  • the timer (sCellDactionTimer) associated with this SCell is started or restarted (if it has already started).
  • the MAC entity performs processing (AD) to activate and inactivate the SCell.
  • the initial state of the SCell may be set by the RRC message.
  • the SCell for which the PUCCH is not set may be notified by an RRC message of the value of the timer (sCellDactionTimer) (information about the time when the timer is considered to have expired). For example, when the RRC message notifies the information indicating 40 ms as the value of the timer (sCellDactionTimer), the time notified without stopping the timer after starting or restarting the timer in the above process (AD) (here). Then, when 40 ms) has elapsed, the timer is considered to have expired.
  • band portion (BWP) will be described.
  • BWP may be a part or all of the band of the serving cell. Further, the BWP may be referred to as a carrier BWP (Carrier BWP).
  • Carrier BWP Carrier BWP
  • One or more BWPs may be set in the terminal device.
  • a certain BWP may be set by the information included in the broadcast information associated with the synchronization signal detected by the initial cell search. Further, a certain BWP may have a frequency bandwidth associated with the frequency at which the initial cell search is performed. Further, a certain BWP may be set by RRC signaling (for example, Distributed RRC signaling). Further, the downlink BWP (DL BWP) and the uplink BWP (UL BWP) may be set individually.
  • RRC signaling for example, Distributed RRC signaling
  • one or more uplink BWPs may be associated with one or more downlink BWPs.
  • the association between the uplink BWP and the downlink BWP may be a default association, an association by RRC signaling (for example, Distributed RRC signing), or physical layer signaling (for example, downlink).
  • the correspondence may be based on the downlink control information (DCI) notified by the control channel, or may be a combination thereof.
  • DCI downlink control information
  • the BWP may be composed of a group of continuous physical radio blocks (PRB: Physical Resource Block). Further, the BWP (one or more BWP) parameters of each component carrier may be set for the terminal device in the connected state.
  • the BWP parameters for each component carrier include (A) cyclic prefix type, (B) subcarrier spacing, and (C) BWP frequency position (eg, low frequency starting or center frequency position of BWP) ( For the frequency position, for example, ARFCN may be used, an offset from a specific subcarrier of the serving cell may be used, and the unit of the offset may be a subcarrier unit or a resource block unit. Good.
  • both ARFCN and offset may be set), (D) BWP bandwidth (eg PRB number), (E) control signal resource setting information, (F) SS block center frequency.
  • Position for example, the frequency position may be ARFCN, an offset from a specific subcarrier of the serving cell may be used, and the unit of offset may be a subcarrier unit, or a resource block. It may be a unit, and both ARFCN and offset may be set), which may include some or all.
  • the resource setting information of the control signal may be included in the setting of at least a part or all of the PCell and / or PSCell.
  • the terminal device may transmit and receive in the active BWP (Active BWP) among one or a plurality of set BWPs.
  • active BWP active BWP
  • the activated downlink BWP is also referred to as an Active DL BWP.
  • the activated uplink BWP is also referred to as Active UL BWP.
  • One serving cell may be configured with one or more BWPs.
  • BWP switching in the serving cell is used to activate the inactivated BWP (also referred to as the Inactive BWP) and inactivate the activated BWP.
  • the inactivated BWP also referred to as the Inactive BWP
  • BWP switching is controlled by the MAC entity itself for the initiation of a PDCCH, timer (bwp-Inactivity Timer), RRC signaling, or random access procedure indicating a downlink assignment or uplink grant.
  • timer bwp-Inactivity Timer
  • RRC Radio Resource Control
  • random access procedure indicating a downlink assignment or uplink grant.
  • the Active BWP of the serving cell is indicated by RRC or PDCCH.
  • the Dormant BWP Entering the dormant BWP or leaving the dormant BWP is done by switching the BWP.
  • This control is performed by the PDCCH for each SCell or for each group called a dormant SCell group (Dormancy SCell Group).
  • the configuration of the dormant SCell group is indicated by RRC signaling.
  • dormant BWP applies only to SCell. It should be noted that the dormant BWP does not change a certain BWP to a dormant state, but may be interpreted as one BWP set for dormancy among one or a plurality of BWPs set for the UE. .. Further, there may be a plurality of BWPs set in the UE for dormancy.
  • a BWP is a dormant BWP may be indicated by the fact that the BWP settings do not include certain parameters.
  • the BWP is a dormant BWP by not including the PDCCH-Config information element, which is an information element for setting the parameters of the UE-specific PDCCH included in the downlink BWP setting. May be shown. Further, for example, some of the parameters included in the PDCCH-Config information element, which is an information element for setting the UE-specific (Specific) PDCCH parameters included in the downlink BWP setting, are not set (not included). ) May indicate that the BWP is a dormant BWP.
  • the current specifications do not support the setting of dormant BWP to PUCCH SCell that can transmit SpCell and PUCCH such as PCell and PSCell.
  • a UE that receives a PDCCH indicating that it will exit the dormant BWP outside a set period (active time) in SpCell receives a downlink BWP indicated by a first downlink BWP identifier notified in advance by RRC signaling. Activate.
  • a UE that has received a PDCCH indicating that it will exit the dormant BWP within a set period (active time) in SpCell receives a downlink BWP indicated by a second downlink BWP identifier notified in advance by RRC signaling. Activate.
  • the UE that has received the PDCCH indicating that it will enter the dormant BWP activates the downlink BWP indicated by the third downlink BWP identifier (dormantDownlinkBWP-Id) notified in advance by RRC signaling.
  • the above-mentioned entry and exit to the dormant BWP is performed by switching the BWP, and when a new BWP is activated, the BWP that was in the active state until then is inactivated. That is, when exiting the dormant BWP, the dormant BWP is inactivated, and when entering the dormant BWP, the dormant BWP is activated.
  • a UE for which intermittent reception (DRX) is set in SpCell may monitor PDCCH with Active BWP of SpCell in order to detect a certain DCI format (for example, DCI format 2_6) outside the active time of DRX. good.
  • the DCI format CRC may be scrambled with a certain RNTI (eg PS-RNTI).
  • the UE in which the dormant SCell group is set determines the switching of Active DL BWP based on the bitmap information included in the payload of DCI format 2_6.
  • BWP switching is executed to another preset BWP. If the Active DL BWP is not a dormant BWP, it may stay at that BWP. Further, when the bit is 0, the BWP switching may be executed so that the Active DL BWP becomes the dormant BWP.
  • the UE does not have to monitor the PDCCH for the purpose of detecting DCI format 2_6 during the active time of DRX.
  • a UE for which intermittent reception (DRX) is set in the SpCell may monitor the PDCCH in the Active BWP of the SpCell in order to detect a certain DCI format (for example, DCI formats 0_1 and 1-11) in the active time of the DRX.
  • the DCI format CRC may be scrambled with some RNTI (eg C-RNTI or MCS-C-RNTI).
  • the UE in which the dormant SCell group is set determines the switching of Active DL BWP based on the bitmap information contained in the payload of DCI format 0_1 or DCI format 1-1.1.
  • BWP switching is executed to another preset BWP. If the Active DL BWP is not a dormant BWP, it may stay at that BWP. Further, when the bit is 0, the BWP switching may be executed so that the Active DL BWP becomes the dormant BWP. Further, the "another preset BWP" may be a BWP different from the "another preset BWP" used in the description of the DCI format 2_6.
  • the UE does not have to monitor the PDCCH for the purpose of detecting DCI format 0_1 and DCI format 1-11 outside the active time of DRX.
  • Monitoring the PDCCH indicating exiting the dormant BWP means monitoring the PDCCH for the purpose of detecting DCI format 2_6 outside the active time of DRX, and in the active time of DRX, DCI format 0_1 and DCI format 1-11. It may be to monitor the PDCCH for the purpose of detecting the above.
  • the MAC entity is part of (A) to (H) below if the BWP is activated (active BWP) and the BWP is not a dormant BWP. Or do it all.
  • A UL-SCH is transmitted by the BWP.
  • B If the PRACH occasion is set, the RACH is transmitted by the BWP.
  • C Monitor the PDCCH with the BWP.
  • D If PUCCH is set, PUCCH is transmitted by the BWP.
  • E Report the CSI in the BWP.
  • SRS If SRS is set, SRS is transmitted by the BWP.
  • G Receive DL-SCH at the BWP.
  • H Initialize the grant type 1 confidated upstream link grant set and suspended by the BWP.
  • the MAC entity is one of (A) to (G) below if the BWP is activated (active BWP) and the BWP is a dormant BWP. Do part or all.
  • A If the timer (bwp-Inactivity Timer) of the serving cell of this BWP is running, stop it.
  • B Do not monitor the PDCCH of the BWP.
  • C Do not monitor the PDCCH for that BWP.
  • the BWP does not receive DL-SCH.
  • E If the CSI measurement is set, the CSI measurement is executed at the BWP.
  • the uplink transmission is stopped, the grant type 1 confidated uplink grant associated with the cell is suspended, and the grant type 2 configure uplink grant associated with the cell is cleared.
  • the beam failure Beam Failure
  • Detect the beam failure
  • Beam Failure Recovery Beam Failure Recovery
  • the MAC entity if the BWP is inactivated, does some or all of (A) to (I) below.
  • B) The BWP does not transmit RACH.
  • C) The BWP does not monitor the PDCCH.
  • D) PUCCH is not transmitted by the BWP.
  • the BWP does not receive DL-SCH.
  • H Clear the Grant Type 2 Configure Uplink Grant set in the BWP.
  • the MAC entity When initiating a random access procedure in a serving cell, the MAC entity performs some or all of the following (A) to (E) on the selected carrier of this serving cell.
  • (A) If the resource (occasion) for transmitting the PRACH is not set for the Active UL BWP, (A1) the Active UL BWP is switched to the BWP indicated by the RRC parameter (initialUplinkBWP), and (A2). If the serving cell is SpCell, the Active UL BWP is switched to the BWP indicated by the RRC parameter (initialDownlinkBWP).
  • the serving cell is SpCell, and the Active DL BWP and the Active UL BWP have the same identifier (bwp-Id). If not, the Active DL BWP is switched to the BWP having the same identifier as the Active UL BWP.
  • C If the timer (bwp-InactivityTimer) associated with the Active DL BWP of this serving cell is running, this timer is stopped.
  • D If the serving cell is SCell, stop this timer if the timer (bwp-InactivityTimer) associated with the Active DL BWP of SpCell is running.
  • E Execute a random access procedure on the Active DL BWP of SpCell and the Active UL BWP of this serving cell.
  • the MAC entity performs the following processing (A) for each of the activated serving cells (Activated Serving Cell) in which the timer (bwp-Inactivity Timer) is set. (A) If the default downlink BWP identifier (defaltDownlinkBWP-Id) is set and the Active DL BWP is not the BWP indicated by the identifier (domantDownlinkBWP-Id), or if the default downlink BWP identifier (def-Def).
  • the Active DL BWP is not the initialDownlinkBWP, and the Active DL BWP is not the BWP indicated by the identifier (domantDownlinkBWP-Id), the following processes (B) and (D) are performed. (B) If, on the Active DL BWP, a PDCCH addressed to the C-RNTI or CS-RNTI, indicating an Associate or uplink grant, has been received, or if, for the Active DL BWP.
  • the next process (A) is performed.
  • the switched Active DL BWP is not the BWP indicated by the identifier (dormantDownlinkBWP-Id), and the switched ActiveWorldPl If it is not the BWP indicated by Id, start or restart the bhp-InactivityTimer associated with the Active DL BWP.
  • beam failure recovery procedures may be set by RRC for each serving cell. Beam failure is detected by counting the beam failure instance notifications notified to the MAC entity from the lower layer (PHY layer).
  • the MAC entity may perform some or all of the following processes (A), (B), and (C) in each serving cell for beam failure detection.
  • (A) If the beam failure instance notification is received from the lower layer, the timer (beamFailureDetectionTimer) is started or restarted, and the counter (BFI-COUNTER) is incremented by 1. If the value of BFI_COUNTER is equal to or higher than the set threshold value (beamFailureInsenceMaxCount), the following process (A-1) is performed.
  • A-1) If the serving cell is SCell, trigger beam failure recovery (BFR) for this serving cell, otherwise initiate a random access procedure in SpCell.
  • BFR beam failure recovery
  • B) If the beamFairureDetectionTimer for this serving cell has expired, or if the beamFailureDetectionTimer, beamFairulreDetectionTimer, and / or the reference signal setting for beam failure detection has been changed to 0 by the upper layer, B.
  • BFI_COUNTER is set to 0, the timer (beamFailureRecoveryTimer) is stopped, and the beam failure recovery procedure is considered to be completed successfully.
  • the serving cell is a SCell
  • C-RNTI which indicates a new uplink grant to send information for SCell beam failure recovery (eg, information contained in the SCell BFR MAC CE).
  • SCell beam failure recovery eg, information contained in the SCell BFR MAC CE.
  • the MAC entity performs the process (A) below.
  • the UL-SCH resource can include the BFR MAC CE of the SCell and its subheader in consideration of the priority of the logical channel, the BFR MAC CE of the SCell and its subheader are included. Otherwise, if the UL-SCH resource can include SCell's truncated BFR MAC CE and its subheaders, taking into account the priority of the logical channel, SCell's truncated BFR MAC CE and its subheaders. Include subheaders. Otherwise, it triggers a scheduling request for SCell beam failure recovery.
  • SCell dormancy is performed by activating dormant BWP in this SCell. Further, even when the SCell is in a dormant state, CSI measurement in this SCell, automatic gain control (AGC), and beam control (beam management) including beam failure recovery may be performed.
  • AGC automatic gain control
  • beam control beam management
  • the dormant state of SCG may be included in the RRC_CONCEPTED state.
  • the dormant state of the SCG may be a state in which the terminal device performs a part or all of the following (A) to (E) in the SpCell (PSCell) of the SCG. ..
  • A SRS is not transmitted by this SpCell.
  • B Do not report the CSI for this SpCell.
  • C Do not transmit PUCCH, UL-SCH, and / or RACH on this SpCell.
  • D Do not monitor the PDCCH of this SpCell and / or the PDCCH for this SpCell.
  • E Intermittent reception (DRX) is performed by this SpCell.
  • the state in which the SCG is dormant may be a state in which a part or all of the above (A) to (E) and the following (F) to (H) are performed.
  • the BWP set in the dormant BWP in this SpCell is referred to as an activated BWP (Active BWP).
  • Active BWP activated BWP
  • G Only the PDCCH indicating exiting the dormant BWP in this activated dormant BWP of SpCell is monitored.
  • C-RNTI is not monitored by PDCCH in this activated dormant BWP of SpCell.
  • the terminal device may determine and / or execute SCG dormancy based on some or all of (A) to (H) below.
  • the following messages (A) to (F) and control elements may be notified to the terminal device from a cell group other than the SCG.
  • SCG dormancy may be referred to as entry into the dormant SCG (Dormant SCG). Further, the dormancy of SCG may mean that the dormant BWP of SpCell of the cell group is activated.
  • A Reception of RRC message instructing SCG dormancy
  • B Reception of MAC control element instructing SCG dormancy
  • C Reception of RRC message instructing SpCell dormancy
  • D MAC instructing SpCell dormancy Receiving control elements
  • E Receiving other RRC messages
  • F Receiving other MAC control elements
  • G Expiration of timer for SCG dormancy
  • H Expiration of timer for dormancy of PSCell
  • the terminal device may determine and / or execute a resume from the dormant state of the SCG based on some or all of the following (A) to (H).
  • the following messages (A) to (F) and control elements may be notified to the terminal device from a cell group other than the SCG.
  • the return of the SCG from the dormant state may be referred to as leaving the dormant SCG. Further, the return from the dormant state of the SCG may be a BWP switch from the dormant BWP to another (not the dormant BWP) BWP in the SpCell of the cell group.
  • A Reception of RRC message instructing to return from the dormant state of SCG
  • B Reception of MAC control element instructing to return from the dormant state of SCG
  • C RRC message instructing to return from the dormant state of SpCell
  • D Reception of MAC control element instructing to return from the dormant state of SpCell
  • E Reception of other RRC messages
  • G Timer related to SCG dormancy
  • H PSCell dormancy timer
  • the terminal device that executes the dormancy of the SCG may execute a part or all of the following processes (A) to (F) in the SCG.
  • A) Inactivate all SCells.
  • B) All of the timers (sCellDactionTimer) associated with the active SCell are considered to have expired.
  • C) All of the timers (sCellDactionTimer) associated with the dormant SCell are considered to have expired.
  • D Do not start or restart the timer (sCellDactionTimer) associated with all SCells.
  • E Ignore the MAC CE that activates SCell.
  • the process (AD-1) is performed when the MAC CE that activates the SCell is received and the SCG is not instructed to dormant (or the SCG is not in the dormant state). .. (F)
  • the process (AD-2) is executed.
  • the process (AD-2) is performed.
  • the terminal device that executes the return from the dormant state of the SCG may execute a part or all of the following processes (A) to (C) in the SCG.
  • A) The process (AD-1) is executed in order to activate all SCells.
  • FIG. 9 is a diagram showing an example of the embodiment.
  • the UE 122 receives a message (RRC message) notifying the eNB 102 or gNB 108 that the SCG is in the dormant state (first state) (step S902). Based on the above notification, the UE 122 controls cells other than the SCG SpCell (second cell) (that is, SCell) so as to be inactive.
  • RRC message a message notifying the eNB 102 or gNB 108 that the SCG is in the dormant state (first state)
  • the UE 122 controls cells other than the SCG SpCell (second cell) (that is, SCell) so as to be inactive.
  • SCell SCG SpCell
  • the UE may monitor the PDCCH with the Active BWP of the SpCell in order to detect a certain DCI format (for example, DCI format 2_6).
  • the DCI format CRC may be scrambled with a certain RNTI (eg PS-RNTI).
  • the UE in which the dormant SCell group is set determines the switching of Active DL BWP based on the bitmap information included in the payload of DCI format 2_6.
  • BWP switching is executed to another preset BWP. If the Active DL BWP is not a dormant BWP, it may stay at that BWP. Further, when the bit is 0, the BWP switching may be executed so that the Active DL BWP becomes the dormant BWP.
  • the UE does not have to monitor PDCCH for the purpose of detecting DCI format 2_6 in the active time of DRX.
  • the UE for which intermittent reception (DRX) is set in SpCell has a DCI format (for example, DCI format 0_1) in the active time of DRX. And 1_1) may be monitored on the PDCCH with the Active BWP of SpCell.
  • the DCI format CRC may be scrambled with some RNTI (eg C-RNTI or MCS-C-RNTI).
  • the UE in which the dormant SCell group is set determines the switching of the Active DL BWP based on the bitmap information contained in the payload of DCI format 0_1 or DCI format 1-11.
  • a BWP switch is executed to another preset BWP. Active DL If the BWP is not a dormant BWP, it may stay at that BWP. Further, when the bit is 0, the BWP switching may be executed so that the Active DL BWP becomes the dormant BWP. Further, the "another preset BWP" may be a BWP different from the "another preset BWP" used in the description of the DCI format 2_6.
  • the UE does not have to monitor the PDCCH for the purpose of detecting DCI format 0_1 and DCI format 1-11 outside the active time of DRX.
  • Monitoring the PDCCH indicating exiting the dormant BWP may be monitoring the PDCCH for the purpose of detecting DCI format 2_6. At that time, it is not necessary to monitor the PDCCH for the purpose of detecting other DCI formats.
  • monitoring the PDCCH indicating exiting the dormant BWP is intended to detect DCI format 2_6 outside the active time of DRX.
  • the PDCCH may be monitored for the purpose of detecting DCI format 0_1 and DCI format 1-11 during the active time of DRX. At that time, it is not necessary to monitor the PDCCH for the purpose of detecting other DCI formats.
  • the SCG When the SCG is dormant, all uplink transmissions may be stopped in the SCG. In this case, information about the SCG may be transmitted in another cell group (eg, MCG). Alternatively, information about the SCG may be transmitted in the SCG that has exited the dormant state. Further, when the SCG is in a dormant state, some or all of the uplink transmissions may be permitted in the SCG.
  • MCG cell group
  • uplink transmissions may be permitted in the SCG.
  • beam failure recovery when beam control (beam management) including beam failure recovery is performed in a dormant SCG SpCell will be described.
  • beam failure recovery procedures may be set by RRC for each serving cell.
  • the beam failure recovery procedure In the dormant SCG, the beam failure recovery procedure may be set and / or executed (Perform) only in SpCell, and in the dormant SCG, the beam failure recovery procedure may be set and / or executed in SpCell and some or all SCells. / Or may be performed.
  • Beam failure is detected by counting the beam failure instance notifications notified to the MAC entity from the lower layer (PHY layer).
  • the MAC entity may perform some or all of the following processes (A), (B), and (C) in each serving cell for beam failure detection.
  • the timer (beamFailureDetectionTimer) is started or restarted, and the counter (BFI-COUNTER) is incremented by 1. If the value of BFI_COUNTER is equal to or higher than the set threshold value (beamFailureInsenceMaxCount), the following process (A-1) is performed.
  • A-1) If the serving cell is SCell, trigger beam failure recovery (BFR) for this serving cell, otherwise initiate a random access procedure in SpCell. If the SCell does not trigger the beam recovery, it is not necessary to trigger the beam failure recovery for the SCell here. That is, only when the serving cell is SpCell, the process of starting the random access procedure in SpCell may be performed.
  • B If the beamFairureDetectionTimer for this serving cell has expired, or if the beamFailureDetectionTimer, beamFairulreDetectionTimer, and / or the reference signal setting for beam failure detection has been changed to 0 by the upper layer, B.
  • C If the serving cell is SpCell and the random access procedure is successfully completed, BFI_COUNTER is set to 0, the timer (beamFailureRecoveryTimer) is stopped, and the beam failure recovery procedure is considered to be completed successfully. Instead, if the serving cell is a SCell, it is addressed to C-RNTI, which indicates a new uplink grant to send information for SCell beam failure recovery (eg, information contained in the SCell BFR MAC CE). Upon receiving the PDCCH, or if the SCell is inactive, set BFI_COUNTER to 0, assume that the beam failure recovery procedure has been successfully completed, and all beam failure recovery triggered for this serving cell ( BFR) is cancelled.
  • C-RNTI indicates a new
  • the MAC entity should request a scheduling request for SCell beam failure recovery, if necessary, if at least one beam failure recovery (BFR) has been triggered by the beam failure recovery procedure and it has not been cancelled. Trigger.
  • BFR beam failure recovery
  • the MAC entity of the SCG initiates a random access procedure in SpCell if a valid PUCCH resource for the pending scheduling request has not been set.
  • the MAC PDU may not include the MAC SDU.
  • a random access procedure in SpCell is started in the dormant SCG by the trigger of the scheduling request for transmitting the MAC PDU including the data (MAC SDU) from the upper layer such as user data and RRC message. May be done.
  • the first state is a state in which UL-SCH transmission and RACH transmission are possible in SpCell of a certain cell group.
  • the first state is C-RNTI, MCS-C-RNTI, and / or CS indicating an uplink grant for RACH transmission is possible and / or UL-SCH transmission in the SpCell of the cell group.
  • -It may be in a state of monitoring PDCCH addressed to RNTI.
  • the first BWP is activated in the SpCell of the cell group, and C-RNTI, MCS-C-RNTI, and / or CS showing an uplink grant in the first BWP.
  • -It may be in a state of monitoring the PDCCH addressed to RNTI.
  • the first state may be a state in which the measurement of channel state information (CSI) with respect to the first BWP is executed.
  • the first state may be a state in which intermittent reception (DRX) is set.
  • the state of monitoring PDCCH addressed to C-RNTI, MCS-C-RNTI, and / or CS-RNTI indicating the uplink grant for UL-SCH transmission means that the Active BWP of SpCell of the cell group is dormant. It may include being in a non-BWP state. Further, the first state may be a state in which the cell group (SCG) has returned from the dormant state. Further, the first state may be a state in which the cell group (SCG) is not in a dormant state.
  • the first state is a state in which a transition is made from the second state when a random access procedure due to a scheduling request triggered to transmit a MAC PDU including a MAC SDU is started. You may. Further, for example, the first state may be a state of transitioning from the second state when the RRC entity instructs to return from the dormant state. Further, for example, the first state may be a state in which the PDCCH indicating exiting the dormant BWP (exiting the dormant BWP) is not monitored.
  • the second state is the state in which UL-SCH transmission and RACH transmission are stopped in SpCell of a certain cell group.
  • the second state is C-RNTI, MCS-C-RNTI, and / or CS-RNTI that do not transmit RACH and / or indicate an uplink grant for UL-SCH transmission in the SpCell of the cell group.
  • the PDCCH addressed to may not be monitored.
  • the second BWP is activated in the SpCell of the cell group, and in the second BWP, C-RNTI, MCS- indicating an uplink grant for UL-SCH transmission.
  • the PDCCH addressed to C-RNTI and / or CS-RNTI and the PDCCH indicating exit from the dormant BWP may not be monitored.
  • the second state may be a state in which the second BWP is activated in the SpCell of the cell group, and only the PDCCH indicating that the second BWP exits the dormant BWP is monitored in the second BWP. ..
  • the second state may be a state in which the measurement of channel state information (CSI) with respect to the second BWP is executed.
  • CSI channel state information
  • the second state may be a state in which the Active BWP of SpCell is a dormant BWP.
  • the third state is a state in which a limited UL-SCH transmission and a RACH transmission are possible in SpCell of a certain cell group.
  • RACH can be transmitted in the SpCell of the cell group, and for limited UL-SCH transmission, C-RNTI, MCS-C-RNTI, and / or indicating an uplink grant are indicated. It may be in a state of monitoring PDCCH addressed to CS-RNTI.
  • the third state may be a part of the first state in which the cell group (SCG) has returned from the dormant state, and the first state in which the cell group (SCG) has returned from the dormant state is It may be in a different state.
  • the third state may be a state that transitions from the second state when the random access procedure triggered by the MAC entity is started. Further, for example, the third state may be a state of transitioning from the second state when the value of BFI_COUNTER becomes equal to or higher than the set threshold value. Further, for example, the third state may be a state of transitioning from the second state when the value of BFI_COUNTER becomes equal to or higher than the set threshold value and the random access procedure is started in PSCell. Further, for example, the third state may be a state in which the value of BFI_COUNTER becomes equal to or higher than the set threshold value, and when the BFR is triggered by the SCell, the state transitions from the second state.
  • the third state may be a state in which the third BWP is activated in the SpCell of the cell group, and the PDCCH indicating that the third BWP exits the dormant BWP is monitored in the third BWP.
  • the third state may be a state in which the PDCCH addressed to the C-RNTI, MCS-C-RNTI, and / or CS-RNTI indicating the uplink grant is not monitored in the third BWP. ..
  • the third state may be a state in which the measurement of channel state information (CSI) with respect to the third BWP is executed.
  • CSI channel state information
  • the third state is a state in which the transition from the second state is started when the random access procedure due to the scheduling request triggered to send the MAC PDU not including the MAC SDU is started. There may be. Also, for example, the third state is a state of transitioning from the second state when a random access procedure due to a scheduling request triggered to send a MAC PDU containing a specific MAC CE is started. There may be.
  • the specific MAC CE may include a BFR MAC CE. Further, for example, the third state may be a state of transitioning from the second state when the MAC PDU including the specific MAC CE does not include the MAC SDU.
  • the UE determines whether to start the random access procedure in the dormant SCG (step S1000), and when starting the random access, the Active BWP is changed to another BWP (for example, a third BWP). It may be switched to BWP) (step S1002).
  • the third state may be a state of transitioning from the second state when performing a random access procedure for requesting an uplink grant.
  • the UE includes a BWP (first BWP) that becomes active when the SCG returns from the dormant state and becomes the first state, and a BWP (second BWP) that becomes active in the second state.
  • the BWP (third BWP) that becomes active in the state of may be set independently. Further, one or more BWPs may be set for each of the first to third BWPs. Further, each of the first to third BWPs may be composed of a downlink BWP and / or an uplink BWP.
  • the transition to the first state and the fact that the first BWP becomes Active may have the same meaning.
  • the transition to the second state and the fact that the second BWP becomes Active may have the same meaning.
  • the transition to the third state and the fact that the third BWP becomes Active may have the same meaning.
  • the transition to the first state may have the same meaning as the BWP other than the first BWP becoming an inactivated BWP.
  • Transitioning to the second state may mean that a BWP other than the second BWP becomes an activated BWP.
  • Transitioning to the third state may mean that a BWP other than the third BWP becomes an activated BWP.
  • Part or all of the first to third BWPs may be set in the UE by an RRC message.
  • the setting of the second BWP may not include some or all of the parameters required for monitoring the PDCCH as described above.
  • the second BWP setting may not include the uplink BWP setting.
  • the third BWP setting may include at least the parameters required for monitoring the PDCCH to receive a random access preamble response (random access response).
  • the setting of the third BWP may include the setting of the uplink BWP.
  • the uplink BWP settings may include information required to send the random access preamble.
  • the dormant state of SCG may be the above-mentioned third state. That is, the entry of the SCG into the dormant state and the transition to the third state may have the same meaning.
  • the second state may be defined as a state different from the dormant state of the SCG, or the second state may not exist.
  • the purpose of this procedure may be to inform the network of MCG failures encountered by the UE (ie, MCG radio link failures). Even if the UE of RRC_CONTECTED, where the security of the AS layer of SRB2 is active and at least one DRB is set up, initiates a high speed MCG link recovery procedure to maintain the RRC connection without reestablishment. good.
  • the UE in which the split SRB1 or SRB3 is set is satisfied when some or all of the following conditions (A) to (D) are satisfied and the condition (E) is satisfied.
  • the procedure for reporting MCG failure may be initiated (step S1102).
  • (A) Both MCG and SCG transmissions are not suspended (B) Timer T316 is set (C) SCG is not in the fourth state (D) SCG SpCell active BWP is not dormant BWP (E) When the MCG wireless link failure is detected while the timer T316 is not running
  • the timer T316 is a timer that starts when the MCG failure information message is transmitted, and this timer stops when the transmission on the MCG is restored, when the RRCReleases message is received, or when the re-establishment procedure is started. do.
  • the fourth state is that the fourth BWP is activated in the SpCell of the cell group, and in the fourth BWP, only the PDCCH indicating that the dormant BWP is exited is monitored, and the fourth BWP is monitored. It may be in a state of performing a measurement of channel state information (CSI) for. Further, in the fourth state, the fourth BWP is activated in the SpCell of the cell group, and in the fourth BWP, C-RNTI is not monitored by the PDCCH, and the fourth BWP is relative to the fourth BWP. It may be in a state where the measurement of channel state information (CSI) is performed. Further, the fourth state may be the above-mentioned third state.
  • CSI channel state information
  • the UE suspends the MCG transmission for all SRBs and DRBs other than SRB0, resets the MCG MAC, and starts transmitting the MCG failure information message.
  • the UE considers the transmission of the SCG to be suspended when the active BWP of the SCG's SpCell is a dormant BWP.
  • the UE in which the split SRB1 or SRB3 is set is in the third state when the following conditions (A) to (B) are partially or all satisfied and the condition (C) is satisfied.
  • the procedure of transitioning to the first state and reporting the MCG failure may be started.
  • FIG. 5 is a block diagram showing a configuration of a terminal device (UE122) according to each embodiment of the present invention. In order to avoid complicated explanation, FIG. 5 shows only the main components closely related to one embodiment of the present invention.
  • the UE 122 shown in FIG. 5 is a part of a receiving unit 500 that receives an RRC message or the like from a base station device, various information elements (IE: Information Elements) included in the received message, various fields, various conditions, and the like.
  • it includes a processing unit 502 that performs processing according to all the setting information, and a transmission unit 504 that transmits an RRC message or the like to the base station apparatus.
  • the above-mentioned base station device may be an eNB 102 or a gNB 108.
  • the processing unit 502 may include some or all of the functions of various layers (eg, physical layer, MAC layer, RLC layer, PDCP layer, RRC layer, and NAS layer). That is, the processing unit 502 may include a physical layer processing unit, a MAC layer processing unit, an RLC layer processing unit, a PDCP layer processing unit, an RRC layer processing unit, and a part or all of the NAS layer processing unit.
  • FIG. 6 is a block diagram showing a configuration of a base station device according to each embodiment of the present invention. In order to avoid complicated explanation, FIG. 6 shows only the main components closely related to one aspect of the present invention.
  • the above-mentioned base station device may be an eNB 102 or a gNB 108.
  • the base station apparatus shown in FIG. 6 has a transmission unit 600 for transmitting an RRC message or the like to the UE 122, various information elements (IE: Information Elements), various fields, various conditions, and some or all of the setting information. It is configured to include a processing unit 602 that causes the processing unit 502 of the UE 122 to perform processing by creating an RRC message including the RRC message and transmitting it to the UE 122, and a receiving unit 604 that receives an RRC message or the like from the UE 122. Further, the processing unit 602 may include a part or all of the functions of various layers (for example, a physical layer, a MAC layer, an RLC layer, a PDCP layer, an RRC layer, and a NAS layer). That is, the processing unit 602 may include a physical layer processing unit, a MAC layer processing unit, an RLC layer processing unit, a PDCP layer processing unit, an RRC layer processing unit, and a part or all of the NAS layer processing unit.
  • the first embodiment of the present invention is a terminal device, which is a control unit that transitions from the first state to the second state when instructed to enter the second state of the cell group.
  • the first BWP is activated in the SpCell of the cell group
  • the downlink control channel is monitored in the first BWP
  • the channel state information for the first BWP ( The state in which the measurement of CSI) is executed, and the second state is only the PDCCH indicating that the second BWP is activated in the SpCell of the cell group and exits the dormant BWP in the second BWP.
  • the second embodiment of the present invention is a base station device that communicates with the terminal device, and the terminal device is first operated by instructing the terminal device to enter the second state of the cell group.
  • the first state the first BWP is activated in the SpCell of the cell group, and the downlink control channel is monitored in the first BWP.
  • it is a state in which the measurement of the channel state information (CSI) for the first BWP is executed, and in the second state, the second BWP is activated in the SpCell of the cell group, and the second BWP is activated.
  • CSI channel state information
  • the third embodiment of the present invention is a method applied to a terminal device, from the first state to the second state when instructed to enter the second state of the cell group.
  • the first state comprises a transition step in which the first BWP is activated in the SpCell of the cell group, the downlink control channel is monitored in the first BWP, and the first BWP is relative to the first BWP.
  • the state in which the measurement of the channel state information (CSI) is executed, and the second state is that the second BWP is activated in the SpCell of the cell group and exits the dormant BWP in the second BWP. It is a state in which only the PDCCH indicating the above is monitored and the measurement of the channel state information (CSI) for the second BWP is executed.
  • the fourth embodiment of the present invention is a method applied to a base station device that communicates with a terminal device, and is described by instructing the terminal device to enter a second state of a cell group.
  • the terminal device is provided with a step of transitioning from the first state to the second state, and in the first state, the first BWP is activated in the SpCell of the cell group, and the downlink is performed in the first BWP.
  • It is a state of monitoring the control channel and executing the measurement of the channel state information (CSI) for the first BWP, and in the second state, the second BWP is activated in the SpCell of the cell group.
  • CSI channel state information
  • the fifth embodiment of the present invention is an integrated circuit mounted on a terminal device, and is from the first state to the second state when instructed to enter the second state of the cell group.
  • the first state the first BWP is activated in the SpCell of the cell group, and the downlink control channel is monitored in the first BWP.
  • the state in which the measurement of the channel state information (CSI) for the first BWP is executed, and the second state is that the second BWP is activated in the SpCell of the cell group, and the second BWP is activated.
  • the BWP only the PDCCH indicating that the dormant BWP is exited is monitored, and the measurement of the channel state information (CSI) for the second BWP is executed.
  • the sixth embodiment of the present invention is an integrated circuit mounted on a base station device that communicates with a terminal device, and by instructing the terminal device to enter the second state of the cell group.
  • the function of transitioning the terminal device from the first state to the second state is exerted on the base station device, and in the first state, the first BWP is activated by SpCell of the cell group.
  • the downlink control channel is monitored in the first BWP, and the channel state information (CSI) is measured for the first BWP, and the second state is the SpCell of the cell group.
  • CSI channel state information
  • the program operating in the apparatus controls the Central Processing Unit (CPU) and the like to operate the computer so as to realize the functions of the above-described embodiment related to the one aspect of the present invention. It may be a program.
  • the program or the information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) at the time of processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD), and is required.
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • a part of the device in the above-described embodiment may be realized by a computer.
  • the program for realizing this control function is recorded on a recording medium that can be read by the computer, and the program recorded on this recording medium is read by the computer system and executed. May be good.
  • the "computer system” as used herein is a computer system built into the device, and includes hardware such as an operating system and peripheral devices.
  • the "recording medium that can be read by a computer” may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
  • a "recording medium that can be read by a computer” is a communication line that dynamically holds a program for a short time, like a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned functions, and may be further realized by combining the above-mentioned functions with a program already recorded in the computer system. ..
  • each functional block or feature of the device used in the above-described embodiment can be implemented or executed in an electric circuit, that is, typically an integrated circuit or a plurality of integrated circuits.
  • Electrical circuits designed to perform the functions described herein are general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or others.
  • Programmable Logic Devices Discrete Gate or Transistor Logic, Discrete Hardware Components, or Combinations thereof.
  • the general purpose processor may be a microprocessor or instead the processor may be a conventional processor, controller, microprocessor, or steady machine.
  • the general-purpose processor or each of the above-mentioned circuits may be composed of a digital circuit or an analog circuit.
  • an integrated circuit technology that replaces the current integrated circuit appears due to advances in semiconductor technology, it is also possible to use an integrated circuit based on this technology.
  • the invention of the present application is not limited to the above-described embodiment.
  • an example of the device has been described, but the present invention is not limited to this, and the present invention is not limited to this, and the stationary or non-movable electronic device installed indoors or outdoors, for example, an AV device, a kitchen device, and the like. It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
  • One aspect of the present invention is used in, for example, a communication system, a communication device (for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (for example, a communication chip), a program, or the like. be able to.
  • a communication device for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device
  • an integrated circuit for example, a communication chip
  • a program or the like.
  • E-UTRA 102 eNB 104 EPC 106 NR 108 gNB 110 5GC 112, 114, 116, 118, 120, 124 Interface 122 UE 200, 300 PHY 202, 302 MAC 204, 304 RLC 206, 306 PDCP 208, 308 RRC 310 SDAP 210, 312 NAS 500,604 Receiver 502,602 Processing 504,600 Transmitter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末装置が、セルグループの第2の状態へ入るよう指示された場合に第1の状態から第2の状態に遷移する制御部を備え、第1の状態は、前記セルグループのSpCellで第1のBWPが活性化されており、前記第1のBWPにおいて下りリンク制御チャネル(PDCCH)をモニタし、かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり、第2の状態は、前記セルグループのSpCellで第2のBWPが活性化されており、前記第2のBWPにおいて、PDCCHをモニタせず、かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である。

Description

端末装置、基地局装置、方法、および、集積回路
 本発明は、端末装置、基地局装置、方法、および、集積回路に関する。
 本願は、2020年6月8日に日本に出願された特願2020-99022号について優先権を主張し、その内容をここに援用する。
 セルラ-移動通信の無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution(LTE:登録商標)」、または、「Evolved Universal Terrestrial Radio Access:EUTRA」と称する。)、及びコアネットワーク(以下、「Evolved Packet Core:EPC」)が、第3世代パートナーシッププロジェクト(3rd Generation Partnership Project:3GPP)において検討されている。EUTRAはE-UTRAとも称する。
 また、3GPPにおいて、第5世代のセルラ-システムに向けた無線アクセス方式および無線ネットワーク技術として、LTEの拡張技術であるLTE-Advanced Pro、および新しい無線アクセス技術であるNR(New Radio technology)の技術検討及び規格策定が行われている(非特許文献1)。また第5世代セルラーシステムに向けたコアネットワークである、5GC(5 Generation Core Network)の検討も行われている(非特許文献2)。
3GPP RP-170855,"Work Item on New Radio (NR) Access Technology" 3GPP TS 23.501 v15.3.0,"System Architecture for the 5G System; Stage 2" 3GPP RP-182076, "WID on Multi-RAT Dual-Connectivity and Carrier Aggregation enhancements" 3GPP TS 36.300, v15.3.0,"Evolved Universal Terestrial Radio Access (E-UTRA)and Evolved Universal Terestrial Radio Access Network (E-UTRAN);Overall description; Stage 2" 3GPP TS 38.300v 15.3.0,"NR;NR and NG-RAN Overall description; Stage 2" 3GPP TS 36.321 v15.3.0,"Evolved Universal Terestrial Radio Access (E-UTRA);Medium Access Control (MAC) protocol specification" 3GPP TS 38.321 v15.3.0,"NR;Medium Access Control (MAC) protocol specification" 3GPP TS 36.331 v15.4.0,"Evolved Universal Terestrial Radio Access (E-UTRA);Radio Resource Control (RRC);Protocol specifications" 3GPP TS 38.331 v15.4.0,"NR;Radio Resource Control (RRC);Protocol specifications"
 NRの技術の一つとして、大容量のデータ通信を可能とするために、複数のセルグループを用いて一つまたは複数の基地局装置と端末装置とが通信するデュアルコネクティビティ(マルチコネクティビティとも称する)技術がある。このデュアルコネクティビティでは、それぞれのセルグループで通信を行うために、端末装置はそれぞれのセルグループにおいて自分宛のメッセージの有無をモニタする必要がある。端末装置は大容量のデータ通信が発生したときに低遅延で通信できるように、常に複数のセルグループのモニタを行う必要があり、多くの電力を消費する問題があった。そのため、一部のセルグループのモニタを低頻度で行う、または停止する技術(セルグループの休眠(Dormant)技術)の検討が開始された(非特許文献3)。
 セルグループの休眠において、現状では常に活性(Activate)状態であるセル(SpCell)をどのように扱うかが検討されているが、SpCell以外のセルについても検討する必要がある。
 本発明の一態様は、上記した事情に鑑みてなされたもので、通信制御を効率的に行うことができる端末装置、基地局装置、方法、集積回路を提供することを目的の一つとする。
 上記の目的を達成するために、本発明の一態様は、以下のような手段を講じた。すなわち、本発明の第1の実施の様態は、端末装置であって、セルグループの第2の状態へ入るよう指示された場合に第1の状態から第2の状態に遷移する制御部を備え、第1の状態は、前記セルグループのSpCellで第1のBWPが活性化されており、前記第1のBWPにおいて下りリンク制御チャネル(PDCCH)をモニタし、かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり、第2の状態は、前記セルグループのSpCellで第2のBWPが活性化されており、前記第2のBWPにおいて、PDCCHをモニタせず、かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である。
 (2)本発明の第2の実施の様態は、端末装置と通信する基地局装置であって、セルグループの第2の状態へ入るよう前記端末装置に指示することにより前記端末装置を第1の状態から第2の状態に遷移させる制御部を備え、第1の状態は、前記セルグループのSpCellで第1のBWPが活性化されており、前記第1のBWPにおいて下りリンク制御チャネル(PDCCH)をモニタし、かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり、第2の状態は、前記セルグループのSpCellで第2のBWPが活性化されており、前記第2のBWPにおいて、PDCCHをモニタせず、かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である。
 (3)本発明の第3の実施の様態は、端末装置に適用される方法であって、セルグループの第2の状態へ入るよう指示された場合に第1の状態から第2の状態に遷移するステップを備え、第1の状態は、前記セルグループのSpCellで第1のBWPが活性化されており、前記第1のBWPにおいて下りリンク制御チャネル(PDCCH)をモニタし、かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり、第2の状態は、前記セルグループのSpCellで第2のBWPが活性化されており、前記第2のBWPにおいて、PDCCHをモニタせず、かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である。
 (4)本発明の第4の実施の様態は、端末装置と通信する基地局装置に適用される方法であって、セルグループの第2の状態へ入るよう前記端末装置に指示することにより前記端末装置を第1の状態から第2の状態に遷移させるステップを備え、第1の状態は、前記セルグループのSpCellで第1のBWPが活性化されており、前記第1のBWPにおいて下りリンク制御チャネル(PDCCH)をモニタし、かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり、第2の状態は、前記セルグループのSpCellで第2のBWPが活性化されており、前記第2のBWPにおいて、PDCCHをモニタせず、かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である。
 (5)本発明の第5の実施の様態は、端末装置に実装される集積回路であって、セルグループの第2の状態へ入るよう指示された場合に第1の状態から第2の状態に遷移する機能を前記端末装置に対して発揮させ、第1の状態は、前記セルグループのSpCellで第1のBWPが活性化されており、前記第1のBWPにおいて下りリンク制御チャネル(PDCCH)をモニタし、かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり、第2の状態は、前記セルグループのSpCellで第2のBWPが活性化されており、前記第2のBWPにおいて、PDCCHをモニタせず、かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である。
 (6)本発明の第6の実施の様態は、端末装置と通信する基地局装置に実装される集積回路であって、セルグループの第2の状態へ入るよう前記端末装置に指示することにより前記端末装置を第1の状態から第2の状態に遷移させる機能を前記基地局装置に対して発揮させ、第1の状態は、前記セルグループのSpCellで第1のBWPが活性化されており、前記第1のBWPにおいて下りリンク制御チャネル(PDCCH)をモニタし、かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり、第2の状態は、前記セルグループのSpCellで第2のBWPが活性化されており、前記第2のBWPにおいて、PDCCHをモニタせず、かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本発明の一態様によれば、端末装置は、効率的な通信制御処理を実現することができる。
本発明の各実施の形態に係る通信システムの概略図。 本発明の各実施の形態における、E-UTRAにおける端末装置と基地局装置のUP及びCPのプロトコルスタック図。 本発明の各実施の形態における、NRにおける端末装置と基地局装置のUP及びCPのプロトコルスタック図。 本発明の各実施の形態におけるRRC208及び/又はRRC308における、各種設定のための手順のフローの一例を示す図 本発明の各実施の形態における端末装置の構成を示すブロック図。 本発明の各実施の形態における基地局装置の構成を示すブロック図。 本発明の実施の形態におけるNRでのセルグループ設定に関する情報要素の一例。 本発明の実施の形態におけるE-UTRAでのセルグループ設定に関する情報要素の一例。 本発明の実施の形態におけるSCGの休眠に関する処理の一例。 本発明の実施の形態におけるSCGの休眠に関する処理の一例。 本発明の実施の形態におけるSCGの休眠に関する処理の一例。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 LTE(およびLTE-A Pro)とNRは、異なる無線アクセス技術(Radio Access Technology:RAT)として定義されてもよい。また、NRとMulti Radio Dual connectivityで接続可能なLTEは、従来のLTEと区別されてもよい。また、コアネットワークが5GCであるLTEは、コアネットワークがEPCである従来のLTEと区別されてもよい。本実施形態はNR、LTEおよび他のRATに適用されてよい。以下の説明では、LTEおよびNRに関連する用語を用いて説明するが、本実施形態は他の用語を用いる他の技術において適用されてもよい。また本実施形態でのE-UTRAという用語は、LTEという用語に置き換えられてもよいし、LTEという用語はE-UTRAという用語に置き換えられてもよい。
 図1は本発明の各実施の形態に係る通信システムの概略図である。
 E-UTRA100は非特許文献4等に記載の無線アクセス技術であり、1つ又は複数の周波数帯域で構成するセルグループ(Cell Group:CG)から成る。eNB(E-UTRAN Node B)102は、E-UTRA100の基地局装置である。EPC(Evolved Packet Core)104は、非特許文献14等に記載のコア網であり、E-UTRA100用のコア網として設計された。インタフェース112はeNB102とEPC104の間のインタフェース(interface)であり、制御信号が通る制御プレーン(Control Plane:CP)と、そのユーザデータが通るユーザプレーン(User Plane:UP)が存在する。
 NR106は非特許文献5等に記載の無線アクセス技術であり、1つ又は複数の周波数帯域で構成するセルグループ(Cell Group:CG)から成る。gNB(g Node B)108は、NR106の基地局装置である。5GC110は、非特許文献2等に記載のコア網であり、NR106用のコア網として設計されているが、5GC110に接続する機能をもつE-UTRA100用のコア網として使われてもよい。以下E-UTRA100とは5GC110に接続する機能をもつE-UTRA100を含んでもよい。
 インタフェース114はeNB102と5GC110の間のインタフェース、インタフェース116はgNB108と5GC110の間のインタフェース、インタフェース118はgNB108とEPC104の間のインタフェース、インタフェース120はeNB102とgNB108の間のインタフェース、インタフェース124はEPC104と5GC110間のインタフェースである。インタフェース114、インタフェース116、インタフェース118、インタフェース120、及びインタフェース124等はCPのみ、又はUPのみ、又はCP及びUP両方を通すインタフェースであってもよい。また、インタフェース114、インタフェース116、インタフェース118、インタフェース120、及びインタフェース124等は、通信事業者が提供する通信システムに応じて存在しない場合があってもよい。
 UE122はE-UTRA100及びNR106の内の一部または全てに対応した端末装置である。非特許文献4、及び非特許文献5の内の一部または全てに記載の通り、UE122が、E-UTRA100及びNR106の内の一部または全てを介してコア網と接続する際、UE122と、E-UTRA100及びNR106の内の一部または全てとの間に、無線ベアラ(RB:Radio Bearer)と呼ばれる論理経路が確立される。CPに用いられる無線ベアラは、シグナリング無線ベアラ(SRB:Signaling Radio Bearer)と呼ばれ、UPに用いられる無線ベアラは、データ無線ベアラ(DRB Data Radio Bearer)と呼ばれる。
 図2は本発明の各実施の形態における、E-UTRA無線アクセス層(無線アクセスレイヤ)における端末装置と基地局装置のUP及びCPのプロトコルスタック(Protocol Stack)図である。
 図2(A)はE-UTRA100においてUE122がeNB102と通信を行う際に用いるUPのプロトコルスタック図である。
 PHY(Physical layer)200は、無線物理層(無線物理レイヤ)であり、物理チャネル(Physical Channel)を利用して上位層(上位レイヤ)に伝送サービスを提供する。PHY200は、後述する上位のMAC(Medium Access Control layer)202とトランスポートチャネル(Transport Channel)で接続される。トランスポートチャネルを介して、MAC202とPHY200の間でデ-タが移動する。UE122とeNB102のPHY間において、無線物理チャネルを介してデ-タの送受信が行われる。
 MAC202は、多様な論理チャネル(ロジカルチャネル:Logical Channel)を多様なトランスポートチャネルにマッピングを行う媒体アクセス制御層(媒体アクセス制御レイヤ)である。MAC202は、後述する上位のRLC(Radio Link Control layer)204と、論理チャネル(ロジカルチャネル)で接続される。論理チャネルは、伝送される情報の種類によって大きく分けられ、制御情報を伝送する制御チャネルとユ-ザ情報を伝送するトラフィックチャネルに分けられる。MAC202は、間欠受送信(DRX・DTX)を行うためにPHY200の制御を行う機能、ランダムアクセス(Random Access)手順を実行する機能、送信電力の情報を通知する機能、HARQ制御を行う機能などを持ってもよい。また、MAC302は、RRCレイヤで設定されたセルの活性状態を制御する機能を持ってもよい(非特許文献6)。
 RLC204は、後述する上位のPDCP(Packet Data Convergence Protocol Layer)206から受信したデ-タを分割(Segmentation)し、下位層(下位レイヤ)が適切にデ-タ送信できるようにデ-タサイズを調節する無線リンク制御層(無線リンク制御レイヤ)である。
 PDCP206は、IPパケット(IP Packet)等のユーザデータを無線区間で効率的に伝送するためのパケットデータ収束プロトコル層(パケットデータ収束プロトコルレイヤ)である。PDCP206は、不要な制御情報の圧縮を行うヘッダ圧縮機能を持ってもよい。また、PDCP206は、デ-タの暗号化の機能も持ってもよい。
 なお、MAC202、RLC204、PDCP206において処理されたデータの事を、それぞれMAC PDU(Protocol Data Unit)、RLC PDU、PDCP PDUと呼ぶ。また、MAC202、RLC204、PDCP206に上位層から渡されるデータ、又は上位層に渡すデータの事を、それぞれMAC SDU(Service Data Unit)、RLC SDU、PDCP SDUと呼ぶ。また分割されたRLC SDUの事をRLC SDUセグメントと呼ぶ。
 図2(B)はE-UTRA100において、UE122がeNB102、および認証やモビリティマネージメントなどの機能を提供する論理ノードであるMME(Mobility Management Entity)と通信を行う際に用いるCPのプロトコルスタック図である。
 CPのプロトコルスタックには、PHY200、MAC202、RLC204、PDCP206に加え、RRC(Radio Resource Control layer)208、およびNAS(non Access Strarum)210が存在する。RRC208は、RRC接続の確立、再確立、一時停止(suspend)、一時停止解除(resume)等の処理や、RRC接続の再設定、例えば無線ベアラ(Radio Bearer:RB)及びセルグループ(Cell Group)の確立、変更、解放等の設定を行い、論理チャネル、トランスポートチャネル及び物理チャネルの制御などを行う他、ハンドオーバ及び測定(Measurement:メジャメント)の設定などを行う、無線リンク制御層(無線リンク制御レイヤ)である。RBは、シグナリグ無線ベアラ(Signaling Radio Bearer:SRB)とデ-タ無線ベアラ(Data Radio Bearer:DRB)とに分けられてもよく、SRBは、制御情報であるRRCメッセージを送信する経路として利用されてもよい。DRBは、ユーザデータを送信する経路として利用されてもよい。eNB102とUE122のRRC208間で各RBの設定が行われてもよい。またRBのうちRLC204と論理チャネル(ロジカルチャネル)で構成される部分をRLCベアラと称してもよい。また、MMEとUE122との間の信号を運ぶNAS層(NASレイヤ)に対して、UE122とeNB102との間の信号及びデータを運ぶPHY200、MAC202、RLC204、PDCP206、RRC208の一部の層(レイヤ)あるいはすべての層(レイヤ)をAS(Access Strarum)層(ASレイヤ)と称してよい。
 前述のMAC202、RLC204、PDCP206、及びRRC208の機能分類は一例であり、各機能の一部あるいは全部が実装されなくてもよい。また、各層の機能の一部あるいは全部が他の層に含まれてもよい。
 なお、IPレイヤ、及びIPレイヤより上のTCP(Transmission Control Protocol)層(TCPレイヤ)、UDP(User Datagram Protocol)層(UDPレイヤ)、アプリケーション層(アプリケーションレイヤ)などは、PDCPレイヤの上位層(上位レイヤ)となる(不図示)。またRRCレイヤやNAS(non Access Strarum)レイヤもPDCPレイヤの上位レイヤとなる(不図示)。言い換えれば、PDCPレイヤはRRCレイヤ、NASレイヤ、IPレイヤ、及びIPレイヤより上のTCP(Transmission Control Protocol)レイヤ、UDP(User Datagram Protocol)レイヤ、アプリケーションレイヤの下位層(下位レイヤ)となる。
 図3は本発明の各実施の形態における、NR無線アクセスレイヤにおける端末装置と基地局装置のUP及びCPのプロトコルスタック(Protocol Stack)図である。
 図3(A)はNR106においてUE122がgNB108と通信を行う際に用いるUPのプロトコルスタック図である。
 PHY(Physical layer)300は、NRの無線物理層(無線物理レイヤ)であり、物理チャネル(Physical Channel)を利用して上位層に伝送サービスを提供してもよい。PHY300は、後述する上位のMAC(Medium Access Control layer)302とトランスポートチャネル(Transport Channel)で接続されてもよい。トランスポートチャネルを介して、MAC302とPHY300の間でデ-タが移動してもよい。UE122とgNB108のPHY間において、無線物理チャネルを介してデ-タの送受信が行われてもよい。
 ここで、物理チャネルについて説明する。
 端末装置と基地局装置との無線通信では、以下の物理チャネルが用いられてよい。
  PBCH(物理報知チャネル:Physical Broadcast CHannel)
  PDCCH(物理下りリンク制御チャネル:Physical Downlink Control CHannel)
  PDSCH(物理下りリンク共用チャネル:Physical Downlink Shared CHannel)
  PUCCH(物理上りリンク制御チャネル:Physical Uplink Control CHannel)
  PUSCH(物理上りリンク共用チャネル:Physical Uplink Shared CHannel)
  PRACH(物理ランダムアクセスチャネル:Physical Random Access CHannel)
 PBCHは、端末装置が必要とするシステム情報を報知するために用いられる。
 また、NRにおいて、PBCHは、同期信号のブロック(SS/PBCHブロックとも称する)の周期内の時間インデックス(SSB-Index)を報知するために用いられてよい。
 PDCCHは、下りリンクの無線通信(基地局装置から端末装置への無線通信)において、下りリンク制御情報(Downlink Control Information:DCI)を送信する(または運ぶ)ために用いられる。ここで、下りリンク制御情報の送信に対して、1つまたは複数のDCI(DCIフォーマットと称してもよい)が定義される。すなわち、下りリンク制御情報に対するフィールドがDCIとして定義され、情報ビットへマップされる。PDCCHは、PDCCH候補において送信される。端末装置は、サービングセルにおいてPDCCH候補(candidate)のセットをモニタする。モニタするとは、あるDCIフォーマットに応じてPDCCHのデコードを試みることを意味する。あるDCIフォーマットは、サービングセルにおけるPUSCHのスケジューリングのために用いられてもよい。PUSCHは、ユーザデータの送信や、RRCメッセージの送信などのために使われてよい。
 PUCCHは、上りリンクの無線通信(端末装置から基地局装置への無線通信)において、上りリンク制御情報(Uplink Control Information:UCI)を送信するために用いられてよい。ここで、上りリンク制御情報には、下りリンクのチャネルの状態を示すために用いられるチャネル状態情報(CSI:Channel State Information)が含まれてもよい。また、上りリンク制御情報には、UL-SCHリソースを要求するために用いられるスケジューリング要求(SR:Scheduling Request)が含まれてもよい。また、上りリンク制御情報には、HARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)が含まれてもよい。
 PDSCHは、MAC層からの下りリンクデータ(DL-SCH:Downlink Shared CHannel)の送信に用いられてよい。また、下りリンクの場合にはシステム情報(SI:System Information)やランダムアクセス応答(RAR:Random Access Response)などの送信にも用いられる。
 PUSCHは、MAC層からの上りリンクデータ(UL-SCH:Uplink Shared CHannel)または上りリンクデータと共にHARQ-ACKおよび/またはCSIを送信するために用いられてもよい。またPUSCHは、CSIのみ、または、HARQ-ACKおよびCSIのみを送信するために用いられてもよい。すなわちPUSCHは、UCIのみを送信するために用いられてもよい。また、PDSCHまたはPUSCHは、RRCシグナリング(RRCメッセージとも称する)、およびMAC制御要素(MAC CE)を送信するために用いられてもよい。ここで、PDSCHにおいて、基地局装置から送信されるRRCシグナリングは、セル内における複数の端末装置に対して共通のシグナリングであってもよい。また、基地局装置から送信されるRRCシグナリングは、ある端末装置に対して専用のシグナリング(dedicated signalingとも称する)であってもよい。すなわち、端末装置固有(UEスペシフィック)の情報は、ある端末装置に対して専用のシグナリングを用いて送信されてもよい。また、PUSCHは、上りリンクにおいてUEの能力(UE Capability)の送信に用いられてもよい。
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられてもよい。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、上りリンク送信に対する同期(タイミング調整)、およびPUSCH(UL-SCH)リソースの要求を示すために用いられてもよい。
 MAC302は、多様な論理チャネル(ロジカルチャネル:Logical Channel)を多様なトランスポートチャネルにマッピングを行う媒体アクセス制御層(媒体アクセス制御レイヤ)である。MAC302は、後述する上位のRLC(Radio Link Control layer)304と、論理チャネル(ロジカルチャネル)で接続されてもよい。論理チャネルは、伝送される情報の種類によって大きく分けられ、制御情報を伝送する制御チャネルとユ-ザ情報を伝送するトラフィックチャネルに分けられてもよい。MAC302は、間欠受送信(DRX・DTX)を行うためにPHY300の制御を行う機能、ランダムアクセス(Random Access)手順を実行する機能、送信電力の情報を通知する機能、HARQ制御を行う機能などを持ってもよい。また、MAC302は、RRCレイヤで設定されたセルの活性状態を制御する機能を持ってもよい(非特許文献7)。
 RLC304は、後述する上位のPDCP(Packet Data Convergence Protocol Layer)306から受信したデ-タを分割(Segmentation)し、下位層が適切にデ-タ送信できるようにデ-タサイズを調節する無線リンク制御層(無線リンク制御レイヤ)である。
 PDCP306は、IPパケット(IP Packet)等のユーザデータを無線区間で効率的に伝送するパケットデータ収束プロトコル層(パケットデータ収束プロトコル層)である。PDCP306は、不要な制御情報の圧縮を行うヘッダ圧縮機能を持ってもよい。また、PDCP306は、デ-タの暗号化、データの完全性保護の機能も持ってもよい。
 SDAP(Service Data Adaptation Protocol)310は、5GC110から基地局装置を介して端末装置に送られるダウンリンクのQoSフローとDRBとの対応付け(マッピング:mapping)、及び端末装置から基地局装置を介して5GC110に送られるアップリンクのQoSフローと、DRBとのマッピングを行い、マッピングルール情報を格納する機能を持もつ、サービスデータ適応プロトコル層(サービスデータ適応プロトコルレイヤ)である。
 なお、MAC302、RLC304、PDCP306、SDAP310において処理されたデータの事を、それぞれMAC PDU(Protocol Data Unit)、RLC PDU、PDCP PDU、SDAP PDUと呼ぶ。また、MAC302、RLC304、PDCP306、SDAP310に上位層から渡されるデータ、又は上位層に渡すデータの事を、それぞれMAC SDU(Service Data Unit)、RLC SDU、PDCP SDU、SDAP SDUと呼ぶ。また、分割されたRLC SDUの事をRLC SDUセグメントと呼ぶ。
 図3(B)はNR106において、UE122がgNB108、および認証やモビリティマネージメントなどの機能を提供する論理ノードであるAMF(Access and Mobility Management function)と通信を行う際に用いるCPのプロトコルスタック図である。
 CPのプロトコルスタックには、PHY300、MAC302、RLC304、PDCP306に加え、RRC(Radio Resource Control layer)308、およびNAS(non Access Strarum)312が存在する。RRC308は、RRC接続の確立、再確立、一時停止(suspend)、一時停止解除(resume)等の処理や、RRC接続の再設定、例えば無線ベアラ(Radio Bearer:RB)及びセルグループ(Cell Group)の確立、変更、解放等の設定を行い、論理チャネル、トランスポートチャネル及び物理チャネルの制御などを行う他、ハンドオーバ及び測定(Measurement:メジャメント)の設定などを行う、無線リンク制御層(無線リンク制御レイヤ)である。RBは、シグナリグ無線ベアラ(Signaling Radio Bearer:SRB)とデ-タ無線ベアラ(Data Radio Bearer:DRB)とに分けられてもよく、SRBは、制御情報であるRRCメッセージを送信する経路として利用されてもよい。DRBは、ユーザデータを送信する経路として利用されてもよい。gNB108とUE122のRRC308間で各RBの設定が行われてもよい。またRBのうちRLC304と論理チャネル(ロジカルチャネル)で構成される部分をRLCベアラと称してもよい。また、AMFとUE122との間の信号を運ぶNASレイヤに対して、UE122とgNB108との間の信号及びデータを運ぶPHY300、MAC302、RLC304、PDCP306、RRC308、SDAP310の一部のレイヤあるいはすべてのレイヤをAS(Access Strarum)レイヤと称してよい。
 前述のMAC302、RLC304、PDCP306、SDAP310、及びRRC308の機能分類は一例であり、各機能の一部あるいは全部が実装されなくてもよい。また、各層(各レイヤ)の機能の一部あるいは全部が他の層(レイヤ)に含まれてもよい。
 なお、AS層の上位層(不図示)を非特許文献2に記載の通り、PDU層(PDUレイヤ)と呼んでもよい。PDUレイヤには、IPレイヤ、及びIPレイヤより上のTCP(Transmission Control Protocol)レイヤ、UDP(User Datagram Protocol)レイヤ、その他の層のうちの何れか又は全てが含まれてもよい。アプリケーションレイヤはPDU層の上位層であってもよいし、PDU層に含まれていてもよい。なお、PDU層は、AS層のユーザプレーンに対する上位層であってもよい。またRRCレイヤやNAS(non Access Strarum)レイヤもSDAPレイヤ及びPDCPレイヤの内のいずれかまたは全ての上位レイヤとなってもよい(不図示)。言い換えれば、SDAPレイヤ及びPDCPレイヤの内のいずれかまたは全てはRRCレイヤ、NASレイヤ、IPレイヤ、及びIPレイヤより上のTCP(Transmission Control Protocol)レイヤ、UDP(User Datagram Protocol)レイヤ、及びアプリケーションレイヤの内のいずれかまたは全ての下位レイヤとなる。
 なお、端末装置の物理層、MAC層、RLC層、PDCP層、及びSDAP層は、端末装置のRRC層により確立、設定、及び制御のうちの何れか又は全てが行われてもよい。また端末装置のRRC層は、基地局装置のRRC層から送信されるRRCのメッセージに従って、物理層、MAC層、RLC層、PDCP層、及びSDAP層を確立、及び/又は設定してもよい。また、MAC層(MACレイヤ)、RLC層(RLCレイヤ)、PDCP層(PDCPレイヤ)、SDAP層(SDAPレイヤ)を、それぞれMAC副層(MACサブレイヤ)、RLC副層(RLCサブレイヤ)、PDCP副層(PDCPサブレイヤ)、SDAP副層(SDAPサブレイヤ)と呼んでもよい。
 なお、端末装置、及び基地局装置の内のいずれかまたは全てに設定されるASレイヤに属する各層、又は各層の機能の事を、エンティティと呼んでもよい。即ち、端末装置、及び基地局装置の内のいずれかまたは全てに、確立、設定、及び制御のうちの何れか又は全てが行われる、物理層(PHY層)、MAC層、RLC層、PDCP層、SDAP層、及びRRC層の事、又は各層の機能の事を、物理エンティティ(PHYエンティティ)、MACエンティティ、RLCエンティティ、PDCPエンティティ、SDAPエンティティ、及びRRCエンティティと、それぞれ呼んでもよい。また、各層のエンティティは、各層に一つ又は複数含まれていてもよい。また、PDCPエンティティ、及びRLCエンティティは、無線ベアラ毎に、確立、設定、及び制御のうちの何れか又は全てが行われてもよい。また、MACエンティティはセルグループ毎に、確立、設定、及び制御のうちの何れか又は全てが行われてもよい。また、SDAPエンティティはPDUセッション毎に、確立、設定、及び制御のうちの何れか又は全てが行われてもよい。
 なお、本発明の各実施の形態では、以下E-UTRAのプロトコルとNRのプロトコルを区別するため、MAC202、RLC204、PDCP206、及びRRC208を、それぞれE-UTRA用MAC又はLTE用MAC、E-UTRA用RLC又はLTE用RLC、E-UTRA用PDCP又はLTE用PDCP、及びE-UTRA用RRC又はLTE用RRCと呼ぶ事もある。また、MAC302、RLC304、PDCP306、RRC308を、それぞれNR用MAC、NR用RLC、NR用RLC、及びNR用RRCと呼ぶ事もある。又は、E-UTRA PDCP又はLTE PDCP、NR PDCPなどとスペースを用いて記述する場合もある。
 また、図1に示す通り、eNB102、gNB108、EPC104、5GC110は、インタフェース112、インタフェース116、インタフェース118、インタフェース120、及びインタフェース114を介して繋がってもよい。このため、多様な通信システムに対応するため、図2のRRC208は、図3のRRC308に置き換えられてもよい。また図2のPDCP206は、図3のPDCP306に置き換えられてもよい。また、図3のRRC308は、図2のRRC208の機能を含んでもよい。また図3のPDCP306は、図2のPDCP206であってもよい。また、E-UTRA100において、UE122がeNB102と通信する場合であってもPDCPとしてNR PDCPが使われてもよい。
 次にLTE及びNRにおけるUE122の状態遷移について説明する。EPC、又は5GCに接続するUE122は、RRC接続が設立されている(RRC connection has been established)とき、RRC_CONNECTED状態であってよい。RRC接続が設立されている状態とは、UE122が、後述のUEコンテキストの一部又は全てを保持している状態を含んでもよい。またRRC接続が設立されている状態とは、UE122がユニキャストデータを送信、及び/又は受信できる状態を含んでもよい。また、UE122は、RRC接続が休止しているとき、(もしUE122が5GCに接続しているなら)RRC_INACTIVE状態であってよい。もし、それらのケースでないなら、UE122は、RRC_IDLE状態であってよい。
 なお、EPCに接続するUE122は、RRC_INACTIVE状態を持たないが、E-UTRANによってRRC接続の休止が開始されてもよい。この場合、RRC接続が休止されるとき、UE122はUEのASコンテキストと復帰に用いる識別子(resumeIdentity)を保持してRRC_IDLE状態に遷移する。UE122がUEのASコンテキストを保持しており、かつE-UTRANによってRRC接続の復帰が許可(Permit)されており、かつUE122がRRC_IDLE状態からRRC_CONNECTED状態に遷移する必要があるとき、休止されたRRC接続の復帰が上位レイヤ(例えばNASレイヤ)によって開始されてよい。
 すなわち、EPCに接続するUE122と、5GCに接続するUE122とで、休止の定義が異なってよい。また、UE122がEPCに接続している場合(RRC_IDLE状態で休止している場合)と、UE122が5GCに接続している場合(RRC_INACTIVE状態で休止している場合)とで、UE122が休止から復帰する手順のすべてあるいは一部が異なってよい。
 なお、RRC_CONNECTED状態、RRC_INACTIVE状態、RRC_IDLE状態の事をそれぞれ、接続状態(connected mode)、非活性状態(inactive mode)、休止状態(idle mode)と呼んでもよいし、RRC接続状態(RRC connected mode)、RRC非活性状態(RRC inactive mode)、RRC休止状態(RRC idle mode)と呼んでもよい。
 UE122が保持するUEのASコンテキストは、現在のRRC設定、現在のセキュリティコンテキスト、ROHC(RObust Header Compression)状態を含むPDCP状態、接続元(Source)のPCellで使われていたC-RNTI(Cell Radio Network Temporary Identifier)、セル識別子(cellIdentity)、接続元のPCellの物理セル識別子、のすべてあるいは一部を含む情報であってよい。なお、eNB102およびgNB108の内のいずれかまたは全ての保持するUEのASコンテキストは、UE122が保持するUEのASコンテキストと同じ情報を含んでもよいし、UE122が保持するUEのASコンテキストに含まれる情報とは異なる情報が含まれてもよい。
 図4は、本発明の各実施の形態におけるRRC208及び/又は(and/or)RRC308における、各種設定のための手順(procedure)のフローの一例を示す図である。図4は、基地局装置(eNB102及び/又はgNB108)から端末装置(UE122)にRRCメッセージが送られる場合のフローの一例である。
 図4において、基地局装置はRRCメッセージを作成する(ステップS400)。基地局装置におけるRRCメッセージの作成は、基地局装置が報知情報(SI:System Information)やページング情報を配信する際に行われてもよいし、基地局装置が特定の端末装置に対して処理を行わせる必要があると判断した際、例えばセキュリティに関する設定や、RRC接続(コネクション)の再設定(無線線ベアラの処理(確立、変更、解放など)や、セルグループの処理(確立、追加、変更、解放など)、メジャメント設定、ハンドオーバ設定など)、RRC接続状態の解放などの際に行われてもよい。RRCメッセージには各種情報通知や設定のための情報(パラメータ)が含まれる。RRCに関する仕様書(非特許文献8、非特許文献9)では、これらのパラメータは、フィールド及び/又は情報要素呼ばれ、ASN.1(Abstract Syntax Notation One)という記述方式を用いて記述される。
 RRCメッセージは、その他の目的のために作成されてもよい。例えば、RRCメッセージは、Dual Connectivity(DC)や、Multi-Radio Dual Connectivity(MR-DC)に関する設定に用いられてもよい。
 図4において、次に基地局装置は、作成したRRCメッセージを端末装置に送信する(ステップS402)。次に端末装置は受信した上述のRRCメッセージに従って、設定などの処理が必要な場合には処理を行う(ステップS404)。
 Dual Connectivity(DC)とは、2つの基地局装置(ノード)がそれぞれ構成するセルグループ、すなわちマスターノード(Master Node:MN)が構成するマスターセルグループ(Master Cell Group:MCG)及びセカンダリノード(Secondery Node:SN)が構成するセカンダリセルグループ(Secondery Cell Group:SCG)の両方の無線リソースを利用してデータ通信を行う技術であってもよい。また、マスターノードとセカンダリノードは同じノード(同じ基地局装置)であってもよい。またMR-DCとは、E-UTRAとNRの両方のRAT(Radio Access Technology)のセルをRAT毎にセルグループ化してUEに割り当て、MCGとSCGの両方の無線リソースを利用してデータ通信を行う技術であってもよい。MR-DCにおいて、マスターノードとは、MR-DCに係る主なRRC機能、例えば、セカンダリノードの追加、RBの確立、変更、及び解放、MCGの追加、変更、解放、ハンドオーバ等の機能、を持つ基地局であってもよく、セカンダリノードとは、一部のRRC機能、例えばSCGの変更、及び解放等、を持つ基地局であってもよい。
 MR-DCにおいて、マスターノード側のRATのRRCが、MCG及びSCG両方の設定を行うために用いられてもよい。例えばコア網がEPC104で、マスターノードがeNB102(拡張型eNB102とも称する)である場合のMR-DCであるEN-DC(E-UTRA-NR Dual Connectivity)、コア網が5GC110で、マスターノードがeNB102である場合のMR-DCであるNGEN-DC(NG-RAN E-UTRA-NR Dual Connectivity)において、E-UTRAのRRCメッセージがeNB102とUE122との間で送受信されてもよい。この場合RRCメッセージには、LTE(E-UTRA)の設定情報だけでなく、NRの設定情報が含まれてもよい。またeNB102からUE122に送信されるRRCメッセージは、eNB102からgNB108を経由してUE122に送信されてもよい。また、本RRCメッセージの構成は、非MR-DCであって、eNB102(拡張型eNB)がコア網として5GCを用いるE-UTRA/5GCに用いられてもよい。
 また逆に、MR-DCにおいて、コア網が5GC110で、マスターノードがgNB108である場合のMR-DCであるNE-DC(NR-E-UTRA Dual Connectivity)において、NRのRRCメッセージがgNB108とUE122との間で送受信されてもよい。この場合のRRCメッセージには、NRの設定情報だけでなく、LTE(E-UTRA)の設定情報が含まれてもよい。またgNB108からUE122に送信されるRRCメッセージは、gNB108からeNB102を経由してUE122に送信されてもよい。
 なお、MR-DCを利用する場合に限らず、eNB102からUE122に送信されるE-UTRA用RRCメッセージに、NR用RRCメッセージが含まれていてもよいし、gNB108からUE122に送信されるNR用RRCメッセージに、E-UTRA用RRCメッセージが含まれていてもよい。
 図7は、図4における、NRでのRRCコネクション再設定に関するメッセージに含まれる、セルグループ設定に関するフィールド及び情報要素うちの一部または全部を表すASN.1記述の一例である。また図8は、図4における、E-UTRAでのRRCコネクション再設定に関するメッセージに含まれる、セルグループ設定に関するフィールド及び情報要素うちの一部または全部を表すASN.1記述の一例である。図7、図8に限らず、本発明の実施の形態におけるASN.1の例で、<略>及び<中略>とは、ASN.1の表記の一部ではなく、他の情報を省略している事を示す。なお<略>又は<中略>という記載の無い所でも、情報要素が省略されていてもよい。なお本発明の実施の形態においてASN.1の例はASN.1表記方法に正しく従ったものではなく、本発明の実施形態におけるRRCコネクションの再設定に関するメッセージのパラメータの一例を表記したものであり、他の名称や他の表記が使われてもよい。またASN.1の例は、説明が煩雑になることを避けるために、本発明の一形態と密接に関連する主な情報に関する例のみを示す。なお、ASN.1で記述されるパラメータを、フィールド、情報要素等に区別せず、全て情報要素と言う場合がある。また本発明の実施の形態において、RRCメッセージに含まれる、ASN.1で記述されるフィールド、情報要素等のパラメータを、情報と言う場合もある。なおRRCコネクションの再設定に関するメッセージとは、NRにおけるRRC再設定メッセージであってもよいし、E-UTRAにおけるRRCコネクション再設定メッセージであってもよい。
 図7において、RRCReconfigurationメッセージに含まれるradioBearerConfigには、無線ベアラの設定が含まれてよい。masterCellGroupには、MCGがNRである場合のMCGに関する設定が含まれてよい。secondaryCellGroupには、SCGのセルから端末装置に通知される場合のSCGに関する設定が含まれてよい。mrdc-SecondaryCellGroupConfigには、MCGのセルから端末装置に通知される場合のSCGに関する設定が含まれてよい。
 上記masterCellGroup、secondaryCellGroup、および/または、mrdc-SecondaryCellGroupConfigには、値としてCellGroupConfig情報要素が含まれてもよい。
 CellGroupConfig情報要素は、セルグループに関する設定が含まれてよい。CellGroupConfig情報要素に含まれるcellGroupIdには、セルグループを識別するための識別子の情報が含まれてよい。mac-CellGroupConfigには、セルグループのMAC層に関する設定が含まれてよい。spCellConfigにはSpCellに関する設定が含まれてよい。sCellToAddModListには、セルグループに属するSCellの追加または変更に関する設定が含まれてよい。sCellToReleaseListには、セルグループに属するSCellの削除に関する情報が含まれてよい。
 図8において、RRCConnectionReconfigurationメッセージに含まれるsCellToReleaseList-r10には、MCGに属するSCellの削除に関する情報が含まれてよい。sCellToAddModList-r10には、MCGに属するSCellの追加または変更に関する設定が含まれてよい。scg-Configuration-r12には、SCGに関する設定が含まれてよい。scg-Configuration-r12に含まれるscg-ConfigPartSCG-r12には、SCGのSpCellに関する設定(pSCellToAddMod-r12など)、セルグループに属するSCellの追加または変更に関する設定(sCellToAddModListSCG-r12など)、および/またはセルグループに属するSCellの削除に関する情報(sCellToReleaseListSCG-r12など)が含まれてよい。また、ハンドオーバ時のSCellの追加または変更に関する設定、および/またはSCellを追加するときのSCellの追加または変更に関する設定に、SCellの初期状態を示す情報が含まれてもよい。例えば、活性状態(Activated)と休眠状態(Dormant)の何れかを示す情報がRRCメッセージに含まれてもよい。この情報が含まれる場合に、この情報に基づきSCellの初期状態を活性状態(Activated)または休眠状態(Dormant)に設定してもよい。この情報が含まれない場合にSCellの初期状態を不活性状態(Deactivated)にしてもよい。
 なお、上記各フィールドや情報要素は、上記用途に限定されなくてもよい。
 上記情報を含むRRCメッセージを基地局装置から受信した端末装置は、情報に基づき、MCGのSpCell(PCell)、MCGのSCell、SCGのSpCell(PSCell)、および/またはSCGのSCellの設定を行う。
 端末装置は、サービングセル(例えばPCellおよび/またはPSCell)において、ある種類の参照信号(例えばセル固有の参照信号(CRS))を用いて無線リンク監視を行なってもよい。また、端末装置は、サービングセル(例えばPCellおよび/またはPSCell)における無線リンク監視にどの参照信号を用いるかを示す設定(無線リンク監視設定:RadioLinkMonitoringConfig)を基地局装置から受け取り、設定された1つまたは複数の参照信号(ここではRLM-RSと称する)を用いて無線リンク監視を行なってもよい。また、端末装置は、その他の信号を用いて無線リンク監視を行なってもよい。端末装置の物理層処理部は、サービングセル(例えばPCellおよび/またはPSCell)において同期中となる条件を満たしている場合には、同期中を上位レイヤに通知してもよい。
 前記無線リンク監視設定には、監視の目的を示す情報と、参照信号を示す識別子情報とが含まれてよい。例えば、監視の目的には、無線リンク失敗を監視する目的、ビームの失敗を監視する目的、あるいはその両方の目的、などが含まれてよい。また、例えば、参照信号を示す識別子情報は、セルの同期信号ブロック(Synchronization Signal Block:SSB)の識別子(SSB-Index)を示す情報が含まれてよい。すなわち、参照信号には同期信号が含まれてよい。また、例えば、参照信号を示す識別子情報は、端末装置に設定されたチャネル状態情報参照信号(CSI-RS)に紐づけられた識別子を示す情報が含まれてよい。
 SpCell(MCGにおけるPCell、およびSCGにおけるPSCell)において、端末装置のRRC層処理部は、各SpCellにおいて物理層処理部から通知される同期外を既定回数(N310回)連続して受け取った場合に当該SpCellのタイマー(T310)を開始(Start)あるいは再開始(Restart)してもよい。また、端末装置のRRC層処理部は、各SpCellにおいて既定回数(N311回)連続して同期中を受け取った場合に当該SpCellのタイマー(T310)を停止(Stop)してもよい。端末装置のRRC層処理部は、各SpCellのタイマー(T310)が満了(Expire)した場合に、SpCellがPCellであれば、アイドル状態への遷移あるいはRRC接続の再確立手順を実施するようにしてもよい。また、SpCellがPSCellであれば、SCG障害をネットワークに通知するためのSCG障害情報手順(SCG failure information procedure)を実行してよい。
 上記説明は端末装置に間欠受信(DRX)が設定されていない場合の例である。端末装置にDRXが設定されている場合、端末装置のRRC層処理部は、無線リンク品質を測定する期間や上位レイヤへの通知間隔をDRXが設定されていない場合と異なる値をとるように物理層処理部に対して設定してもよい。なお、DRXが設定されている場合であっても、上記タイマーが走っているときには、同期中を推定するための無線リンク品質を測定する期間や上位レイヤへの通知間隔を、DRXが設定されていない場合の値としてもよい。
 また、前記RLM-RSは明示的にあるいは暗黙的にネットワークから設定されない場合には未定義であってもよい。すなわち、端末装置は、ネットワーク(例えば基地局装置)からRLM-RSの設定がなされない場合には無線リンク監視をしなくてもよい。
 また、CRSを用いた無線リンク監視がEUTRAのセルで行われ、RLM-RSを用いた無線リンク監視がNRのセルで行われてよいが、これに限定されない。
 セルの活性化(Activation)および不活性化(Deactivation)について説明する。デュアルコネクティビティで通信する端末装置は、前述のRRCコネクションの再設定に関するメッセージによって、マスターセルグループ(MCG)の設定とセカンダリセルグループ(SCG)が設定される。各セルグループは、特別なセル(SpCell)とそれ以外の0個以上のセル(セカンダリセル:SCell)とで構成されてよい。MCGのSpCellはPCellとも称する。SCGのSpCellはPSCellとも称する。セルの不活性化は、SpCellには適用されず、SCellに適用されてよい。
 また、セルの不活性化は、PCellには適用されず、PSCellには適用されてもよい。この場合、セルの不活性化は、SpCellとSCellとで異なる処理であってもよい。
 非特許文献6および非特許文献7で示されるように、セルの活性化および不活性化はセルグループ毎に存在するMACエンティティで処理されてよい。端末装置に設定されたSCellは下記(A)および/または(B)によって活性化および/または不活性化されてよい。
  (A)SCell活性化/不活性化を示すMAC CEの受信
  (B)PUCCHが設定されていないSCellごとに設定されるタイマー(sCellDeactivationTimer)
 具体的には、端末装置は、MACエンティティはセルグループに設定されている各SCellに対して以下の処理(AD)をおこなってよい。
 (処理AD)
 もし、SCellを活性化させるMAC CEを受信したら、処理(AD-1)を行う。そうでなく、もし、SCellを不活性化させるMAC CEを受信した、または、活性状態のSCellにおいてタイマー(sCellDeactivationTimer)が満了したら、処理(AD-2)を行う。もし、活性状態のSCellのPDCCHによって上りリンクグラントまたは下りリンク割り当てが通知されたら、または、あるサービングセルのPDCCHによって、活性状態のSCellに対する上りリンクグラントまたは下りリンク割り当てが通知されたら、または、設定された上りリンクグラントにおいてMAC PDUが送信された、または、設定された下りリンク割り当てにおいてMAC PDUが受信されたら、そのSCellに関連付けられたタイマー(sCellDeactivationTimer)を再スタートする。もし、SCellが不活性状態となったら、処理(AD-3)を行う。
 (処理AD-1)
 SCellを活性状態にして、下記(A)から(E)の一部または全部を含む通常のSCell動作(Operation)を適用(実施)する。
  (A)このSCellにおけるサウンディング参照信号(SRS)の送信
  (B)このSCellのためのチャネル状態情報(CSI)の報告
  (C)このSCellにおけるPDCCHのモニタ
  (D)このSCellに対するPDCCHのモニタ(他のサービングセルにおいてこのSCellに対するスケジュールが行われる場合)
  (E)もしPUCCHが設定されていれば、このSCellにおけるPUCCH送信
 また、もし、NRにおいて、この活性化させるMAC CEを受信する前にこのSCellが不活性状態であったなら、下記(A)から(B)の一部または全部を実施する。
  (A)RRCメッセージで設定されている下りリンクBWPの識別子(firstActiveDownlinkBWP-Id)で示されるBWPを活性化する
  (B)RRCメッセージで設定されている上りリンクBWPの識別子(firstActiveUplinkBWP-Id)で示されるBWPを活性化する
 また、このSCellに対応付けられたタイマー(sCellDeactivationTimer)をスタート、または(すでにスタートしている場合は)再スタートする。
 (処理AD-2)
 このSCellを不活性化する。
 また、このSCellに対応付けられたタイマー(sCellDeactivationTimer)を停止する。
 このSCellに対応付けられたすべての活性化されたBWPを不活性化する。
 このSCellに対応付けられたHARQのバッファをフラッシュする。
 (処理AD-3)
 下記(A)から(D)の一部または全部を実施する。
  (A)このSCellでSRSを送信しない。
  (B)このSCellのためのCSIを報告しない。
  (C)このSCellでPUCCH,UL-SCH、および/またはRACHを送信しない。
  (D)このSCellのPDCCH、および/またはこのSCellに対するPDCCHのモニタをしない。
 上記のように、MACエンティティが処理(AD)を行うことにより、SCellの活性化および不活性化が行われる。
 また前述のようにSCellが追加される場合にRRCメッセージによってSCellの初期状態が設定されてもよい。
 ここで、タイマー(sCellDeactivationTimer)について説明する。PUCCHが設定されないSCellに対しては、RRCメッセージによって、タイマー(sCellDeactivationTimer)の値(タイマーが満了したとみなされる時間に関する情報)が通知されてよい。例えば、RRCメッセージでタイマー(sCellDeactivationTimer)の値として40msを示す情報が通知された場合、上記処理(AD)において、タイマーをスタートまたは再スタートしてからタイマーが停止することなく通知された時間(ここでは40ms)が経過したしたときに、タイマーが満了したとみなされる。
 ここで、帯域部分(BWP)について説明する。
 BWPはサービングセルの帯域の一部あるいは全部の帯域であってよい。また、BWPはキャリアBWP(Carrier BWP)と呼称されてもよい。端末装置には、1つまたは複数のBWPが設定されてよい。あるBWPは初期セルサーチで検出された同期信号に対応づけられた報知情報に含まれる情報によって設定されてもよい。また、あるBWPは初期セルサーチを行う周波数に対応づけられた周波数帯域幅であってもよい。また、あるBWPはRRCシグナリング(例えばDedicated RRC signaling)で設定されてもよい。また、下りリンクのBWP(DL BWP)と上りリンクのBWP(UL BWP)とが個別に設定されてもよい。また、1つまたは複数の上りリンクのBWPが1つまたは複数の下りリンクのBWPと対応づけられてよい。また、上りリンクのBWPと下りリンクのBWPとの対応づけは既定の対応づけであってもよいし、RRCシグナリング(例えばDedicated RRC signaling)による対応付けでもよいし、物理層のシグナリング(例えば下りリンク制御チャネルで通知される下りリンク制御情報(DCI)による対応付けであってもよいし、それらの組み合わせであってもよい。
 BWPは連続する物理無線ブロック(PRB:Physical Resource Block)のグループで構成されてよい。また、接続状態の端末装置に対して、各コンポーネントキャリアのBWP(1つまたは複数のBWP)のパラメータが設定されてよい。各コンポーネントキャリアのBWPのパラメータには、(A)サイクリックプレフィックスの種類、(B)サブキャリア間隔、(C)BWPの周波数位置(例えば、BWPの低周波数側の開始位置または中央周波数位置)(周波数位置は例えば、ARFCNが用いられてもよいし、サービングセルの特定のサブキャリアからのオフセットが用いられてもよい。また、オフセットの単位はサブキャリア単位であってもよいし、リソースブロック単位でもよい。また、ARFCNとオフセットの両方が設定されるかもしれない。)、(D)BWPの帯域幅(例えばPRB数)、(E)制御信号のリソース設定情報、(F)SSブロックの中心周波数位置(周波数位置は例えば、ARFCNが用いられてもよいし、サービングセルの特定のサブキャリアからのオフセットが用いられてもよい。また、オフセットの単位はサブキャリア単位であってもよいし、リソースブロック単位でもよい。また、ARFCNとオフセットの両方が設定されるかもしれない。)、の一部あるいは全部が含まれてよい。また、制御信号のリソース設定情報が、少なくともPCellおよび/またはPSCellの一部あるいは全部のBWPの設定に含まれてもよい。
 端末装置は、1つまたは複数の設定されたBWPのうち、アクティブなBWP(Active BWP)において送受信をおこなってよい。端末装置に対して、一つのサービングセルに対して設定された1つまたは複数のBWPのうち、ある時間において、最大で1つの上りリンクBWP、および/または最大で1つの下りリンクBWPとがアクティブなBWPとなるように設定されてもよい。活性化された下りリンクのBWPをAcitve DL BWPとも称する。活性化された上りリンクBWPをActive UL BWPとも称する。
 次にBWPの不活性化について説明する。1つのサービングセルは、1つまたは複数のBWPが設定されてよい。サービングセルにおけるBWP切り替え(BWP switching)は、不活性化されたBWP(インアクティブ(Inactive)BWPとも称する)を活性化して、活性化されていたBWPを不活性化するために用いられる。
 BWP切り替えは、下りリンク割り当てまたは上りリンクグラントを示すPDCCH、タイマー(bwp-InactivityTimer)、RRCシグナリング、またはランダムアクセス手順の開始のためにMACエンティティそれ自身によって制御される。サービングセルのActive BWPは、RRCまたはPDCCHによって示される。
 次に休眠(Dormant)BWPについて説明する。休眠BWPへの入場(Entering)または休眠BWPからの退出(Leaving)は、BWP切り替えによってなされる。この制御はPDCCHによって、SCellごと、または休眠SCellグループ(Dormancy SCell Group)と呼ばれるグループごとに行われる。休眠SCellグループの設定は、RRCシグナリングによって示される。また、現在の仕様では休眠BWPはSCellにのみ適用される。なお、休眠BWPとはあるBWPを休眠状態に変化させるものではなく、UEに対して設定される1つまたは複数のBWPのうち、休眠用として設定される1つのBWPであると解釈してよい。また、休眠用としてUEに設定されるBWPは、複数あってもよい。
 あるBWPが休眠BWPであることは、BWPの設定に特定のパラメータが含まれないことによって示されてもよい。例えば、下りリンクBWPの設定に含まれる、UE固有(Specific)なPDCCHのパラメータを設定するための情報要素であるPDCCH-Config情報要素が含まれないことによって、そのBWPが休眠BWPであることを示してもよい。また、例えば、下りリンクBWPの設定に含まれる、UE固有(Specific)なPDCCHのパラメータを設定するための情報要素であるPDCCH-Config情報要素に含まれるパラメータの一部が設定されない(含まれない)ことによって、そのBWPが休眠BWPであることを示してもよい。例えば、あるBWPの設定として、PDCCH-Config情報要素によって設定される、どこで、および/またはどのように、PDCCHの候補を検索(Search)するかを定義するサーチスペースに関する設定の一部または全部が設定されない(含まれない)ことによって、そのBWPが休眠BWPであることを示してもよい。
 また、現在の仕様では、PCellやPSCellなどのSpCellおよびPUCCHの送信がおこなえるPUCCH SCellへの休眠BWPの設定はサポートされていない。
 ある設定された期間(アクティブ時間)の外で休眠BWPから退出することを示すPDCCHをSpCellで受信したUEは、予めRRCシグナリングで通知された第1の下りリンクBWP識別子で示される下りリンクBWPを活性化する。
 ある設定された期間(アクティブ時間)の内で休眠BWPから退出することを示すPDCCHをSpCellで受信したUEは、予めRRCシグナリングで通知された第2の下りリンクBWP識別子で示される下りリンクBWPを活性化する。
 休眠BWPに入場することを示すPDCCHを受信したUEは、予めRRCシグナリングで通知された第3の下りリンクBWP識別子(dormantDownlinkBWP-Id)で示される下りリンクBWPを活性化する。
 上記の休眠BWPへの入場と退出は、BWP切り替えによって行われ、新たなBWPを活性化する際に、それまで活性状態であったBWPが不活性化される。すなわち、休眠BWPから退出する場合、休眠BWPが不活性化され、休眠BWPに入場する場合、休眠BWPが活性化される。
 ここで、休眠BWPに入場することを示すPDCCHと休眠BWPから退場することを示すPDCCHについて説明する。
 例えば、SpCellにおいて間欠受信(DRX)が設定されているUEは、DRXのアクティブタイムの外において、あるDCIフォーマット(例えばDCIフォーマット2_6)を検出するためにSpCellのActive BWPでPDCCHをモニタしてもよい。前記DCIフォーマットのCRCはあるRNTI(例えばPS-RNTI)でスクランブルされていてもよい。休眠SCellグループが設定されたUEは、DCIフォーマット2_6のペイロードに含まれるビットマップ情報に基づき、Active DL BWPの切り替えを判断する。例えば、ビットマップのあるビットがひとつの休眠SCellグループに紐づけられ、ビットが1である場合に、Active DL BWPが休眠BWPであれば、あらかじめ設定された別のBWPにBWP切り替えを実行し、Active DL BWPが休眠BWPでなければ、そのBWPにとどまるようにしてもよい。また、ビットが0である場合に、Active DL BWPが休眠BWPになるようにBWP切り替えを実行してもよい。
 UEはDRXのアクティブタイムにおいて、DCIフォーマット2_6の検出を目的としたPDCCHのモニタをしなくてもよい。
 SpCellにおいて間欠受信(DRX)が設定されているUEは、DRXのアクティブタイムにおいて、あるDCIフォーマット(例えばDCIフォーマット0_1および1_1)を検出するためにSpCellのActive BWPでPDCCHをモニタしてもよい。前記DCIフォーマットのCRCはあるRNTI(例えばC-RNTIまたはMCS-C-RNTI)でスクランブルされていてもよい。休眠SCellグループが設定されたUEは、DCIフォーマット0_1またはDCIフォーマット1_1のペイロードに含まれるビットマップ情報に基づき、Active DL BWPの切り替えを判断する。例えば、ビットマップのあるビットがひとつの休眠SCellグループに紐づけられ、ビットが1である場合に、Active DL BWPが休眠BWPであれば、あらかじめ設定された別のBWPにBWP切り替えを実行し、Active DL BWPが休眠BWPでなければ、そのBWPにとどまるようにしてもよい。また、ビットが0である場合に、Active DL BWPが休眠BWPになるようにBWP切り替えを実行してもよい。また、前記「あらかじめ設定された別のBWP」は、DCIフォーマット2_6の説明で用いた「あらかじめ設定された別のBWP」とは異なるBWPであってよい。
 UEはDRXのアクティブタイムの外において、DCIフォーマット0_1およびDCIフォーマット1_1の検出を目的としたPDCCHのモニタをしなくてもよい。
 休眠BWPを抜けることを示すPDCCHをモニタすることとは、DRXのアクティブタイムの外でDCIフォーマット2_6の検出を目的としたPDCCHのモニタをし、DRXのアクティブタイムにおいて、DCIフォーマット0_1およびDCIフォーマット1_1の検出を目的としたPDCCHのモニタをすることであってよい。
 BWPが設定された活性化された各サービングセルにおいて、MACエンティティは、もし、BWPが活性化され(Active BWPであり)、そのBWPが休眠BWPでないなら、下記(A)から(H)の一部または全部を行う。
  (A)そのBWPでUL-SCHを送信する。
  (B)もしPRACHオケージョンが設定されているなら、そのBWPでRACHを送信する。
  (C)そのBWPでPDCCHをモニタする。
  (D)もしPUCCHが設定されているなら、そのBWPでPUCCHを送信する。
  (E)そのBWPでCSIを報告する。
  (F)もしSRSが設定されているなら、そのBWPでSRSを送信する。
  (G)そのBWPでDL-SCHを受信する。
  (H)そのBWPで設定されてサスペンドされた、グラントタイプ1のコンフィギュアード上りリンクグラントを初期化する。
 BWPが設定された活性化された各サービングセルにおいて、MACエンティティは、もし、BWPが活性化され(Active BWPであり)、そのBWPが休眠BWPであるなら、下記(A)から(G)の一部または全部を行う。
  (A)このBWPのサービングセルのタイマー(bwp-InactivityTimer)が走っているなら止める。
  (B)そのBWPのPDCCHをモニタしない。
  (C)そのBWPのためのPDCCHをモニタしない。
  (D)そのBWPでDL-SCHを受信しない。
  (E)もしCSI測定が設定されていたら、そのBWPでCSI測定を実行する。
  (F)すべての上りリンクの挙動(Behavior)を止める。すなわち、上りリンク送信を止め、そのセルに関連付けられたグラントタイプ1のコンフィギュアード上りリンクグラントをサスペンドし、そのセルに関連付けられたグラントタイプ2のコンフィギュアード上りリンクグラントをクリアする。
  (G)もしビーム失敗に関する設定が設定されていたら、ビーム失敗(Beam Failure)を検出(Detect)し、もしビーム失敗が検出されたらビーム失敗回復(Beam Failure Recovery)を実行する。
 MACエンティティは、もし、BWPが不活性化されたら、下記(A)から(I)の一部または全部を行う。
  (A)そのBWPでUL-SCHを送信しない。
  (B)そのBWPでRACHを送信しない。
  (C)そのBWPでPDCCHをモニタしない。
  (D)そのBWPでPUCCHを送信しない。
  (E)そのBWPでCSIを報告しない。
  (F)そのBWPでSRSを送信しない。
  (G)そのBWPでDL-SCHを受信しない。
  (H)そのBWPで設定された、グラントタイプ2のコンフィギュアード上りリンクグラントをクリアする。
  (I)その不活性化されたBWP(インアクティブBWP)のグラントタイプ1のコンフィギュアード上りリンクグラントをサスペンドする。
 次にBWPが設定されたUEにおけるランダムアクセス手順について説明する。あるサービングセルにおいてランダムアクセス手順を開始するときにMACエンティティはこのサービングセルの選択したキャリアにおいて、次の(A)から(E)の一部または全部の処理をおこなう。
  (A)もし、PRACHを送信するリソース(オケージョン)が、Active UL BWPに対して設定されていなければ、(A1)Active UL BWPをRRCのパラメータ(initialUplinkBWP)によって示されるBWPに切り替え、(A2)もし、サービングセルがSpCellであれば、Active UL BWPをRRCのパラメータ(initialDownlinkBWP)によって示されるBWPに切り替える。
  (B)もし、PRACHを送信するリソース(オケージョン)がActive UL BWPに対して設定されていれば、もし、サービングセルがSpCellであり、Active DL BWPとActive UL BWPとが同じ識別子(bwp-Id)を持たなければ、Active DL BWPをActive UL BWPの識別子と同じ識別子のBWPに切り替える。
  (C)もしこのサービングセルのActive DL BWPに対応付けられたタイマー(bwp-InactivityTimer)が走っていたらこのタイマーを止める。
  (D)もしサービングセルがSCellなら、もしSpCellのActive DL BWPに対応付けられたタイマー(bwp-InactivityTimer)が走っていたらこのタイマーを止める。
  (E)SpCellのActive DL BWPとこのサービングセルのActive UL BWP上でランダムアクセスプロシージャを実行する。
 次にタイマー(bwp-InactivityTimer)について説明する。タイマー(bwp-InactivityTimer)が設定された活性化されたサービングセル(Activated Serving Cell)の各々に対してMACエンティティは、次の(A)の処理をおこなう。
  (A)もしデフォルト下りリンクBWPの識別子(defaultDownlinkBWP-Id)が設定されており、Active DL BWPが識別子(dormantDownlinkBWP-Id)で示されるBWPでない、または、もしデフォルト下りリンクBWPの識別子(defaultDownlinkBWP-Id)が設定されておらず、Active DL BWPがinitialDownlinkBWPでなく、Active DL BWPが識別子(dormantDownlinkBWP-Id)で示されるBWPでないなら、次の(B)および(D)の処理をおこなう。
  (B)もし、Active DL BWPで、下りリンク割り当て(Assignment)または上りリンクグラントを示す、C-RNTIまたはCS-RNTIにアドレスされたPDCCHを受信した、または、もし、Active DL BWPのための、下りリンク割り当てまたは上りリンクグラントを示す、C-RNTIまたはCS-RNTIにアドレスされたPDCCHを受信した、または、もし、コンフィギュアード上りリンクグラントでMAC PDUが送信された、またはコンフィギュアード下りリンク割り当てでMAC PDUが受信されたなら、次の(C)の処理をおこなう。
  (C)もし、このサービングセルに関連付けられたランダムアクセス手順が実行中でない、または、このサービングセルに関連付けられた実行中のランダムアクセス手順が、C-RNTIにアドレスされたPDCCHの受信によって成功裏に完了(Successfully completed)したら、Active DL BWPに関連付けられたbwp-InactivityTimerをスタートまたは再スタートする。
  (D)もし、Active DL BWPに関連付けられたbwp-InactivityTimerが満了(Expire)したら、次の(E)の処理をおこなう。
  (E)もし、defaultDownlinkBWP-Idが設定されていたら、このdefaultDownlinkBWP-Idで示されるBWPにBWP切り替えをおこない、そうでないなら、initialDownlinkBWPにBWP切り替えをおこなう。
 また、MACエンティティは、もし、BWP切り替えのためのPDCCHを受信し、Active DL BWPを切り替えたら、次の(A)の処理をおこなう。
  (A)もしデフォルト下りリンクBWPの識別子(defaultDownlinkBWP-Id)が設定されており、切り替えたActive DL BWPが識別子(dormantDownlinkBWP-Id)で示されるBWPでない、かつ、もし切り替えたActive DL BWPがdormantDownlinkBWP-Idで示されるBWPでないなら、Active DL BWPに関連付けられたbwp-InactivityTimerをスタートまたは再スタートする。
 次にビーム失敗(Beam failure)の検出(Detection)およびリカバリ(Recovery)の手順について説明する。
 MACエンティティは、サービングセルごとにビーム失敗回復手順がRRCによって設定されてもよい。ビーム失敗は、下位レイヤ(PHY層)からMACエンティティに通知されるビーム失敗インスタンス通知をカウントすることによって検出される。MACエンティティはビーム失敗検出のために各サービングセルで下記の(A)、(B)、(C)の一部または全部の処理をおこなってよい。
  (A)もし、下位レイヤからビーム失敗インスタンス通知を受信したら、タイマー(beamFailureDetectionTimer)をスタートまたは再スタートし、カウンター(BFI-COUNTER)を1加算する。もしBFI_COUNTERの値が設定された閾値(beamFailureInstanceMaxCount)以上であれば、下記の(A-1)の処理をおこなう。
  (A-1)もし、サービングセルがSCellなら、このサービングセルに対するビーム失敗回復(BFR)をトリガし、そうでなければ、SpCellでランダムアクセス手順を開始する。
  (B)もし、このサービングセルに対する、beamFailureDetectionTimerが満了した、または、もし、beamFailureDetectionTimer、beamFailureInstanceMaxCount、および/またはビーム失敗検出のための参照信号の設定が上位レイヤによって変更されたら、BFI_COUNTERを0に設定する。
  (C)もし、サービングセルがSpCellであり、ランダムアクセス手順が成功裏に完了したら、BFI_COUNTERを0に設定し、タイマー(beamFailureRecoveryTimer)を停止し、ビーム失敗回復手順が成功裏に完了したとみなす。そうでなく、もし、サービングセルがSCellで、SCellのビーム失敗回復のための情報(例えばSCell BFR MAC CEに含まれる情報)を送信するための、新しい上りリンクグラントを示すC-RNTIにアドレスされたPDCCHを受信したら、または、SCellが不活性状態であれば、BFI_COUNTERを0に設定し、ビーム失敗回復手順が成功裏に完了したとみなし、このサービングセルに対してトリガされたすべてのビーム失敗回復(BFR)をキャンセルする。
 MACエンティティは、もし、ビーム失敗回復手順によって少なくとも1つのビーム失敗回復(BFR)がトリガされており、それがキャンセルされていないのであれば、下記の(A)の処理をおこなう。
  (A)もし、UL-SCHリソースが論理チャネルの優先度を考慮したうえでSCellのBFR MAC CEとそのサブヘッダを含めることができるのであれば、SCellのBFR MAC CEとそのサブヘッダを含める。そうでなければ、もし、UL-SCHリソースが論理チャネルの優先度を考慮したうえでSCellのトランケートしたBFR MAC CEとそのサブヘッダを含めることができるのであれば、SCellのトランケートしたBFR MAC CEとそのサブヘッダを含める。そうでなければ、SCellビーム失敗回復のためのスケジューリングリクエストをトリガする。
 SCellの休眠は、このSCellにおいて休眠BWPを活性化することによっておこなわれる。また、SCellを休眠した状態であっても、このSCellにおけるCSIの測定、自動増幅制御(Automatic Gain Control:AGC)、およびビーム失敗回復を含むビーム制御(ビームマネジメント)はおこなわれてよい。
 次にSCGの休眠(Dormant)について説明する。
 LTEおよび/またはNRにおいて、SCGが休眠している状態は、RRC_CONNECTED状態に含まれてもよい。
 LTEおよび/またはNRにおいて、SCGが休眠している状態とは、端末装置が、そのSCGのSpCell(PSCell)において下記(A)から(E)の一部または全部を実施する状態であってよい。
  (A)このSpCellでSRSを送信しない。
  (B)このSpCellのためのCSIを報告しない。
  (C)このSpCellでPUCCH、UL-SCH、および/またはRACHを送信しない。
  (D)このSpCellのPDCCH、および/またはこのSpCellに対するPDCCHをモニタしない。
  (E)このSpCellで間欠受信(DRX)を行う。
 また、SCGが休眠している状態とは、前記(A)から(E)、および下記(F)から(H)、の一部または全部の処理を実施する状態であってよい。
  (F)このSpCellで休眠BWPに設定されたBWPを活性化されたBWP(Active BWP)とする。
  (G)このSpCellの活性化された休眠BWPにおいて休眠BWPを抜けることを示すPDCCHのみモニタする。
  (H)このSpCellの活性化された休眠BWPにおいてC-RNTIをPDCCHでモニタしない。
 LTEおよび/またはNRにおいて、端末装置は、以下の(A)から(H)の一部または全部に基づいて、SCGの休眠を判断および/または実行してよい。なお、下記(A)から(F)のメッセージや制御要素は、当該SCG以外のセルグループから端末装置に通知されてもよい。
 SCGの休眠は、休眠SCG(Dormant SCG)への入場(Entering)と称してもよい。また、SCGの休眠とは、当該セルグループのSpCellの休眠BWPが活性化されることであってもよい。
  (A)SCGの休眠を指示するRRCメッセージの受信
  (B)SCGの休眠を指示するMAC制御要素の受信
  (C)SpCellの休眠を指示するRRCメッセージの受信
  (D)SpCellの休眠を指示するMAC制御要素の受信
  (E)その他のRRCメッセージの受信
  (F)その他のMAC制御要素の受信
  (G)SCGの休眠に関するタイマーの満了
  (H)PSCellの休眠に関するタイマーの満了
 LTEおよび/またはNRにおいて、端末装置は、以下の(A)から(H)の一部または全部に基づいて、SCGの休眠状態からの復帰(Resume)を判断および/または実行してよい。なお、下記(A)から(F)のメッセージや制御要素は、当該SCG以外のセルグループから端末装置に通知されてもよい。
 SCGの休眠状態からの復帰は、休眠SCGからの退出(Leaving)と称してもよい。また、SCGの休眠状態からの復帰とは、当該セルグループのSpCellにおいて休眠BWPから他の(休眠BWPでない)BWPにBWPスイッチすることであってもよい。
  (A)SCGの休眠状態からの復帰を指示するRRCメッセージの受信
  (B)SCGの休眠状態からの復帰を指示するMAC制御要素の受信
  (C)SpCellの休眠状態からの復帰を指示するRRCメッセージの受信
  (D)SpCellの休眠状態からの復帰を指示するMAC制御要素の受信
  (E)その他のRRCメッセージの受信
  (F)その他のMAC制御要素の受信
  (G)SCGの休眠に関するタイマー
  (H)PSCellの休眠に関するタイマー
 SCGの休眠を実行する端末装置は、当該SCGにおいて、以下の(A)から(F)の一部または全部の処理を実行してよい。
  (A)すべてのSCellを不活性状態とする。
  (B)活性状態のSCellに関連付けられたタイマー(sCellDeactivationTimer)のすべてが満了したとみなす。
  (C)休眠状態のSCellに関連付けられたタイマー(sCellDeactivationTimer)のすべてが満了したとみなす。
  (D)すべてのSCellに関連付けられたタイマー(sCellDeactivationTimer)をスタートまたは再スタートしない。
  (E)SCellを活性化させるMAC CEを無視する。例えば、前記処理(AD)において、SCellを活性化させるMAC CEを受信して、かつ、SCGの休眠を指示されてない(またはSCGの休眠状態でない)場合に、処理(AD-1)を行う。
  (F)前記処理(AD-2)を実行する。例えば、前記処理(AD)において、SCGの休眠を指示された(またはSCGの休眠状態となった)場合に、処理(AD-2)を行う。
 SCGの休眠状態からの復帰を実行する端末装置は、当該SCGにおいて、以下の(A)から(C)の一部または全部の処理を実行してよい。
  (A)すべてのSCellを活性状態とするために、処理(AD-1)を実行する。
  (B)すべてのSCellを不活性状態のままとする。ただし、休眠状態ではないので、例えば、前記処理(AD)において、SCellを活性化させるMAC CEを受信した場合、SCGの休眠を指示されてない(またはSCGの休眠状態でない)ので、処理(AD-1)を行うようにしてもよい。
  (C)SCGの休眠状態からの復帰をRRCメッセージに基づいて実行する場合、このRRCメッセージに、一部または全部のSCellに対するランダムアクセスに関するパラメータが含まれるなら、通知されたパラメータに基づき、対象のSCellにおいてランダムアクセス手順を開始する。
 図9は実施の形態の一例を示す図である。図9において、UE122は、eNB102またはgNB108からSCGを休眠状態(第1の状態)とすることを通知するメッセージ(RRCメッセージ)を受信する(ステップS902)。UE122は、上記通知に基づき、SCGのSpCell(第2のセル)以外のセル(すなわちSCell)を不活性状態となるように制御する。
 上記の動作により、SCGを休眠させる処理において、当該SCGのSCellの状態を不活性状態に変更するためのMAC CEを独立して送信することなく、効率的な状態変更が可能となる。また、SCGの休眠がRRCメッセージに基づいて実行される場合、従来では、初期状態の設定はRRC層でおこない、状態変更はMAC層でおこなっていたが、上記の動作により、RRC層の指示とMAC層の指示のミスマッチを回避しつつ効率的にSCGの状態変更を行うことができる。
 ここで、休眠BWPを抜けることを示すPDCCHについて説明する。
 例えば、SpCellが休眠状態(休眠BWPが活性化されている状態)において、UEは、あるDCIフォーマット(例えばDCIフォーマット2_6)を検出するためにSpCellのActive BWPでPDCCHをモニタしてもよい。前記DCIフォーマットのCRCはあるRNTI(例えばPS-RNTI)でスクランブルされていてもよい。休眠SCellグループが設定されたUEは、DCIフォーマット2_6のペイロードに含まれるビットマップ情報に基づき、Active DL BWPの切り替えを判断する。例えば、ビットマップのあるビットがひとつの休眠SCellグループに紐づけられ、ビットが1である場合に、Active DL BWPが休眠BWPであれば、あらかじめ設定された別のBWPにBWP切り替えを実行し、Active DL BWPが休眠BWPでなければ、そのBWPにとどまるようにしてもよい。また、ビットが0である場合に、Active DL BWPが休眠BWPになるようにBWP切り替えを実行してもよい。
 もし、SpCellの休眠状態において、SpCellで間欠受信が設定されるシステムである場合、UEはDRXのアクティブタイムにおいて、DCIフォーマット2_6の検出を目的としたPDCCHのモニタをしなくてもよい。
 もし、SpCellの休眠状態において、SpCellで間欠受信が設定されるシステムである場合、SpCellにおいて間欠受信(DRX)が設定されているUEは、DRXのアクティブタイムにおいて、あるDCIフォーマット(例えばDCIフォーマット0_1および1_1)を検出するためにSpCellのActive BWPでPDCCHをモニタしてもよい。前記DCIフォーマットのCRCはあるRNTI(例えばC-RNTIまたはMCS-C-RNTI)でスクランブルされていてもよい。休眠SCellグループが設定されたUEは、DCIフォーマット0_1またはDCIフォーマット1_1のペイロードに含まれるビットマップ情報に基づき、Active DL BWPの切り替えを判断する。例えば、ビットマップのあるビットがひとつの休眠SCellグループに紐づけられ、ビットが1である場合に、Active DL BWPが休眠BWPであれば、あらかじめ設定された別のBWPにBWP切り替えを実行し、Active DL
 BWPが休眠BWPでなければ、そのBWPにとどまるようにしてもよい。また、ビットが0である場合に、Active DL BWPが休眠BWPになるようにBWP切り替えを実行してもよい。また、前記「あらかじめ設定された別のBWP」は、DCIフォーマット2_6の説明で用いた「あらかじめ設定された別のBWP」とは異なるBWPであってよい。
 UEはDRXのアクティブタイムの外において、DCIフォーマット0_1およびDCIフォーマット1_1の検出を目的としたPDCCHのモニタをしなくてもよい。
 休眠BWPを抜けることを示すPDCCHをモニタすることとは、DCIフォーマット2_6の検出を目的としたPDCCHのモニタをすることであってよい。その際に、他のDCIフォーマットを検出する目的としたPDCCHのモニタをしなくてもよい。
 もし、SpCellの休眠状態において、SpCellで間欠受信が設定されるシステムである場合、休眠BWPを抜けることを示すPDCCHをモニタすることとは、DRXのアクティブタイムの外でDCIフォーマット2_6の検出を目的としたPDCCHのモニタをし、DRXのアクティブタイムにおいて、DCIフォーマット0_1およびDCIフォーマット1_1の検出を目的としたPDCCHのモニタをすることであってよい。その際に、他のDCIフォーマットを検出する目的としたPDCCHのモニタをしなくてもよい。
 SCGが休眠状態であるときには、SCGにおいてすべての上りリンク送信が停止されていてもよい。この場合、そのSCGに関する情報は、他のセルグループ(例えばMCG)において送信されてもよい。または、そのSCGに関する情報は、休眠状態から退出したそのSCGにおいて送信されてもよい。また、SCGが休眠状態であるときには、SCGにおいて一部、またはすべての上りリンク送信が許可されていてもよい。ここでは、SCGが休眠状態であるときに、SCGにおいて上りリンク送信を行う例について説明する。
 例えば、休眠状態のSCGのSpCellにおいて、ビーム失敗回復を含むビーム制御(ビームマネジメント)が行われる場合のビーム失敗回復について説明する。
 MACエンティティは、サービングセルごとにビーム失敗回復手順がRRCによって設定されてもよい。なお、休眠状態のSCGではSpCellでのみビーム失敗回復手順が設定および/または実行(Perform)されてもよいし、休眠状態のSCGではSpCellおよび一部または全部のSCellでビーム失敗回復手順が設定および/または実行(Perform)されてもよい。ビーム失敗は、下位レイヤ(PHY層)からMACエンティティに通知されるビーム失敗インスタンス通知をカウントすることによって検出される。MACエンティティはビーム失敗検出のために各サービングセルで下記の(A)、(B)、(C)の一部または全部の処理をおこなってよい。
  (A)もし、下位レイヤからビーム失敗インスタンス通知を受信したら、タイマー(beamFailureDetectionTimer)をスタートまたは再スタートし、カウンター(BFI-COUNTER)を1加算する。もしBFI_COUNTERの値が設定された閾値(beamFailureInstanceMaxCount)以上であれば、下記の(A-1)の処理をおこなう。
  (A-1)もし、サービングセルがSCellなら、このサービングセルに対するビーム失敗回復(BFR)をトリガし、そうでなければ、SpCellでランダムアクセス手順を開始する。なお、SCellでビーム回復をトリガしない場合は、ここでSCellに対するビーム失敗回復をトリガしなくてもよい。すなわち、サービングセルがSpCellである場合にのみ、SpCellでランダムアクセス手順を開始する処理をおこなってよい。
  (B)もし、このサービングセルに対する、beamFailureDetectionTimerが満了した、または、もし、beamFailureDetectionTimer、beamFailureInstanceMaxCount、および/またはビーム失敗検出のための参照信号の設定が上位レイヤによって変更されたら、BFI_COUNTERを0に設定する。
  (C)もし、サービングセルがSpCellであり、ランダムアクセス手順が成功裏に完了したら、BFI_COUNTERを0に設定し、タイマー(beamFailureRecoveryTimer)を停止し、ビーム失敗回復手順が成功裏に完了したとみなす。そうでなく、もし、サービングセルがSCellで、SCellのビーム失敗回復のための情報(例えばSCell BFR MAC CEに含まれる情報)を送信するための、新しい上りリンクグラントを示すC-RNTIにアドレスされたPDCCHを受信したら、または、SCellが不活性状態であれば、BFI_COUNTERを0に設定し、ビーム失敗回復手順が成功裏に完了したとみなし、このサービングセルに対してトリガされたすべてのビーム失敗回復(BFR)をキャンセルする。
 MACエンティティは、もし、ビーム失敗回復手順によって少なくとも1つのビーム失敗回復(BFR)がトリガされており、それがキャンセルされていないのであれば、必要に応じて、SCellビーム失敗回復のためのスケジューリングリクエストをトリガする。
 スケジューリングリクエストがトリガされたときに、当該SCGのMACエンティティは、もし、保留中(Pending)のスケジューリングリクエストのための有効なPUCCHリソースが設定されていなかったら、SpCellにおいてランダムアクセス手順を開始する。
 前述のように、MACエンティティによるMAC CEを含むMAC PDUを送信するためのスケジューリングリクエストのトリガによって、またはMACエンティティによってダイレクトに、SpCell(PSCell)におけるランダムアクセス手順が休眠中のSCGにおいて開始される場合がある。このとき、MAC PDUにはMAC SDUが含まれないかもしれない。
 また一方で、ユーザデータやRRCメッセージなどの上位レイヤからのデータ(MAC SDU)を含むMAC PDUを送信するためのスケジューリングリクエストのトリガによって、SpCell(PSCell)におけるランダムアクセス手順が休眠中のSCGにおいて開始される場合があってもよい。
 ここで、あるセルグループのSpCellにおいて、UL-SCHの送信とRACHの送信が可能である状態を第1の状態とする。第1の状態は、前記セルグループのSpCellにおいて、RACHの送信が可能である、および/またはUL-SCH送信のための上りリンクグラントを示すC-RNTI、MCS-C-RNTI、および/またはCS-RNTIにアドレスされたPDCCHをモニタする状態であってもよい。また、第1の状態は、前記セルグループのSpCellで第1のBWPが活性化されており、前記第1のBWPにおいて上りリンクグラントを示すC-RNTI、MCS-C-RNTI、および/またはCS-RNTIにアドレスされたPDCCHをモニタする状態であってもよい。さらに、第1の状態は、前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であってもよい。また、第1の状態は、間欠受信(DRX)が設定された状態であってもよい。
 UL-SCH送信のための上りリンクグラントを示すC-RNTI、MCS-C-RNTI、および/またはCS-RNTIにアドレスされたPDCCHをモニタする状態とは、前記セルグループのSpCellのActive BWPが休眠BWPでない状態であることを含んでよい。また、第1の状態は、前記セルグループ(SCG)が休眠状態から復帰した状態であってよい。また、第1の状態は、前記セルグループ(SCG)が休眠状態でない状態であってよい。
 また、例えば、第1の状態は、MAC SDUが含まれるMAC PDUを送信するためにトリガされたスケジューリングリクエストに起因するランダムアクセス手順が開始される場合に、第2の状態から遷移する状態であってもよい。また、例えば、第1の状態は、RRCエンティティから休眠状態からの復帰が指示された場合に、第2の状態から遷移する状態であってもよい。また、例えば、第1の状態は、休眠BWPを抜ける(休眠BWPから退出する)ことを示すPDCCHをモニタしない状態であってもよい。
 あるセルグループのSpCellにおいて、UL-SCHの送信とRACHの送信が停止された状態を第2の状態とする。第2の状態は、前記セルグループのSpCellにおいて、RACHを送信をしない、および/またはUL-SCH送信のための上りリンクグラントを示すC-RNTI、MCS-C-RNTI、および/またはCS-RNTIにアドレスされたPDCCHをモニタしない状態であってもよい。また、第2の状態は、前記セルグループのSpCellで第2のBWPが活性化されており、前記第2のBWPにおいて、UL-SCH送信のための上りリンクグラントを示すC-RNTI、MCS-C-RNTI、および/またはCS-RNTIにアドレスされたPDCCHおよび休眠BWPを抜けることを示すPDCCHをモニタしない状態であってもよい。また、第2の状態は、前記セルグループのSpCellで第2のBWPが活性化されており、前記第2のBWPにおいて、休眠BWPを抜けることを示すPDCCHのみをモニタする状態であってもよい。さらに、第2の状態は、前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であってもよい。
 第2の状態とは、SpCellのActive BWPが休眠BWPである状態であってよい。
 あるセルグループのSpCellにおいて、限られたUL-SCHの送信と、RACHの送信とが可能である状態を第3の状態とする。第3の状態は、前記セルグループのSpCellにおいて、RACHの送信が可能であり、限られたUL-SCH送信のために、上りリンクグラントを示すC-RNTI、MCS-C-RNTI、および/またはCS-RNTIにアドレスされたPDCCHをモニタする状態であってもよい。第3の状態は、前記セルグループ(SCG)が休眠状態から復帰した第1の状態の一部であってもよいし、前記セルグループ(SCG)が休眠状態から復帰した第1の状態とは異なる状態であってもよい。
 例えば、第3の状態は、MACエンティティによってトリガされたランダムアクセス手順が開始される場合に、第2の状態から遷移する状態であってもよい。また、例えば、第3の状態は、BFI_COUNTERの値が設定された閾値以上となった場合に、第2の状態から遷移する状態であってもよい。また、例えば、第3の状態は、BFI_COUNTERの値が設定された閾値以上となり、PSCellでランダムアクセス手順が開始される場合に、第2の状態から遷移する状態であってもよい。また、例えば、第3の状態は、BFI_COUNTERの値が設定された閾値以上となり、SCellでBFRがトリガされる場合に、第2の状態から遷移する状態であってもよい。
 また、第3の状態は、前記セルグループのSpCellで第3のBWPが活性化されており、前記第3のBWPにおいて、休眠BWPを抜けることを示すPDCCHをモニタする状態であってもよい。さらに、第3の状態は、前記第3のBWPにおいて、上りリンクグラントを示すC-RNTI、MCS-C-RNTI、および/またはCS-RNTIにアドレスされたPDCCHをモニタしない状態であってもよい。さらに、第3の状態は、前記第3のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であってもよい。UEが前記第3のBWPにおいて自局に対する休眠BWPを抜けることを示すPDCCHを受信した場合、あらかじめ設定されたBWP(例えば第1のBWP)にBWPをスイッチしてもよい。
 また、例えば、第3の状態は、MAC SDUが含まれないMAC PDUを送信するためにトリガされたスケジューリングリクエストに起因するランダムアクセス手順が開始される場合に、第2の状態から遷移する状態であってもよい。また、例えば、第3の状態は、特定のMAC CEを含むMAC PDUを送信するためにトリガされたスケジューリングリクエストに起因するランダムアクセス手順が開始される場合に、第2の状態から遷移する状態であってもよい。特定のMAC CEにはBFR MAC CEが含まれてもよい。また、例えば、第3の状態は、特定のMAC CEを含むMAC PDUにMAC SDUが含まれない場合に、第2の状態から遷移する状態であってもよい。
 例えば、図10に示すように、UEは、休眠状態のSCGにおいてランダムアクセス手順を開始するかを判断し(ステップS1000)、ランダムアクセスを開始する場合にActive BWPを別のBWP(例えば第3のBWP)に切り替えてもよい(ステップS1002)。
 また、例えば、第3の状態は、上りリンクグラントを要求するためのランダムアクセス手順を行う場合に、第2の状態から遷移する状態であってもよい。
 UEには、SCGの休眠状態から復帰して第1の状態となるときにActiveになるBWP(第1のBWP)と、第2の状態でActiveになるBWP(第2のBWP)と第3の状態でActiveになるBWP(第3のBWP)とが独立して設定されてもよい。また、第1から第3のBWPのそれぞれには、1つ以上のBWPが設定されてもよい。また、第1から第3のBWPのそれぞれは、下りリンクのBWPおよび/または上りリンクのBWPで構成されてよい。
 第1の状態に遷移することと、第1のBWPがActiveになることとは同じ意味であってもよい。第2の状態に遷移することと、第2のBWPがActiveになることとは同じ意味であってもよい。第3の状態に遷移することと、第3のBWPがActiveになることとは同じ意味であってもよい。
 第1の状態に遷移することと、第1のBWP以外のBWPが不活性化されたBWPになることとは同じ意味であってもよい。第2の状態に遷移することと、第2のBWP以外のBWPが活性化されたBWPになることとは同じ意味であってもよい。第3の状態に遷移することと、第3のBWP以外のBWPが活性化されたBWPになることとは同じ意味であってもよい。
 第1から第3のBWPの一部または全部はRRCメッセージによってUEに設定されてもよい。第2のBWPの設定には、前述のようにPDCCHのモニタに必要なパラメータの一部または全部が含まれなくてもよい。第2のBWPの設定には上りリンクのBWPの設定が含まれなくてもよい。第3のBWPの設定には、少なくともランダムアクセスプリアンブルの返答(ランダムアクセスレスポンス)を受信するためのPDCCHのモニタに必要なパラメータが含まれてよい。第3のBWPの設定に上りリンクのBWPの設定が含まれてもよい。上りリンクのBWPの設定にはランダムアクセスプリアンブルの送信に必要な情報が含まれてもよい。
 また、別の一例として、SCGの休眠状態は上記第3の状態であってもよい。すなわち、SCGが休眠状態に入場することと、第3の状態に遷移することとが同じ意味であってもよい。この場合、第2の状態はSCGの休眠状態とは異なる別の状態として定義されてもよいし、第2の状態が存在しなくてもよい。
 これにより、SCGの休眠状態においても必要な上りリンクの送信をトリガすることが可能となる。また、SCGの休眠状態において、必要な信号のみをモニタすることで省電力化が可能となる。
 MCG失敗について説明する。このプロシージャの目的は、ネットワークにUEが遭遇したMCG失敗(すなわちMCG無線リンク失敗)について知らせることであってよい。SRB2のAS層のセキュリティが活性状態であり、少なくとも一つのDRBがセットアップされている、RRC_CONNECTEDのUEは、再確立することなくRRC接続を維持するために、高速MCGリンクリカバリー手順を開始してもよい。
 図11に示すように、スプリットSRB1またはSRB3が設定されているUEは、以下の(A)から(D)の一部または全部の条件が満たされ、かつ(E)の条件が満たされるときに(ステップS1100)、MCG失敗を報告する手順を開始してよい(ステップS1102)。
  (A)MCGおよびSCG両方の送信がサスペンドされていない
  (B)タイマーT316が設定されている
  (C)SCGが第4の状態でない
  (D)SCGのSpCellのアクティブBWPが休眠BWPでない
  (E)タイマーT316が走っていない状態でMCGの無線リンク失敗を検出したとき
 なお、MCG失敗を報告する手順が開始されると、SRB0以外のすべてのSRBとDRBのためのMCG送信がサスペンドされる。また、SCG失敗を報告する手順が開始されると、すべてのSRBとDRBのためのSCG送信がサスペンドされる。
 タイマーT316とは、MCG失敗情報メッセージを送信するときに開始するタイマーであり、このタイマーは、MCGでの送信が回復したとき、RRCReleaseメッセージを受信したとき、または再確立手順を開始するときに停止する。
 第4の状態とは、そのセルグループのSpCellで第4のBWPが活性化されており、前記第4のBWPにおいて、休眠BWPを抜けることを示すPDCCHのみをモニタし、かつ前記第4のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であってよい。また、第4の状態とは、そのセルグループのSpCellで第4のBWPが活性化されており、前記第4のBWPにおいて、C-RNTIをPDCCHでモニタせず、かつ前記第4のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であってよい。また、第4の状態は、前述の第3の状態であってもよい。
 MCG失敗を報告する手順が開始されると、UEは、SRB0以外のすべてのSRBとDRBのためのMCG送信をサスペンドし、MCGのMACをリセットし、MCG失敗情報メッセージの送信を開始する。
 これにより、SCGの休眠状態を考慮して、MCG失敗を報告する手順を制御することができる。
 また、MCG失敗の別の一例を説明する。この例においてUEは、SCGのSpCellのアクティブBWPが休眠BWPであるときにはSCGの送信がサスペンドされたとみなす。
 スプリットSRB1またはSRB3が設定されているUEは、以下の(A)から(B)の一部または全部の条件が満たされ、かつ(C)の条件が満たされるときに、前記第3の状態、または前記第1の状態に遷移してMCG失敗を報告する手順を開始してよい。
  (A)MCGおよびSCG両方の送信がサスペンドされていない
  (B)タイマーT316が設定されている
  (C)タイマーT316が走っていない状態でMCGの無線リンク失敗を検出したとき
 これにより、新たな条件を追加することなくMCG失敗を報告する手順を制御することができる。
 図5は本発明の各実施の形態における端末装置(UE122)の構成を示すブロック図である。なお、説明が煩雑になることを避けるために、図5では、本発明の一形態と密接に関連する主な構成部のみを示す。
 図5に示すUE122は、基地局装置よりRRCメッセージ等を受信する受信部500、及び受信したメッセージに含まれる各種情報要素(IE:Information Element)、各種フィールド、及び各種条件等の内の一部または全ての設定情報に従って処理を行う処理部502、および基地局装置にRRCメッセージ等を送信する送信部504から成る。上述の基地局装置とは、eNB102である場合もあるし、gNB108である場合もある。また、処理部502には様々な層(例えば、物理層、MAC層、RLC層、PDCP層、RRC層、およびNAS層)の機能の一部または全部が含まれてよい。すなわち、処理部502は、物理層処理部、MAC層処理部、RLC層処理部、PDCP層処理部、RRC層処理部、およびNAS層処理部の一部または全部が含まれてよい。
 図6は本発明の各実施の形態における基地局装置の構成を示すブロック図である。なお、説明が煩雑になることを避けるために、図6では、本発明の一態様と密接に関連する主な構成部のみを示す。上述の基地局装置とは、eNB102である場合もあるし、gNB108である場合もある。
 図6に示す基地局装置は、UE122へRRCメッセージ等を送信する送信部600、及び各種情報要素(IE:Information Element)、各種フィールド、及び各種条件等の内の一部または全ての設定情報を含めたRRCメッセージを作成し、UE122に送信する事により、UE122の処理部502に処理を行わせる処理部602、およびUE122からRRCメッセージ等を受信する受信部604を含んで構成される。また、処理部602には様々な層(例えば、物理層、MAC層、RLC層、PDCP層、RRC層、およびNAS層)の機能の一部または全部が含まれてよい。すなわち、処理部602は、物理層処理部、MAC層処理部、RLC層処理部、PDCP層処理部、RRC層処理部、およびNAS層処理部の一部または全部が含まれてよい。
 また上記説明における各処理の例、又は各処理のフローの例において、ステップの一部または全ては実行されなくてもよい。また上記説明における各処理の例、又は各処理のフローの例において、ステップの順番は異なってもよい。また上記説明における各処理の例、又は各処理のフローの例において、各ステップ内の一部または全ての処理は実行されなくてもよい。また上記説明における各処理の例、又は各処理のフローの例において、各ステップ内の処理の順番は異なってもよい。
 以下、本発明の実施形態における、端末装置の種々の態様について説明する。
 (1)本発明の第1の実施の様態は、端末装置であって、セルグループの第2の状態へ入るよう指示された場合に第1の状態から第2の状態に遷移する制御部を備え、第1の状態は、前記セルグループのSpCellで第1のBWPが活性化されており、前記第1のBWPにおいて下りリンク制御チャネルをモニタし、かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり、第2の状態は、前記セルグループのSpCellで第2のBWPが活性化されており、前記第2のBWPにおいて、休眠BWPを抜けることを示すPDCCHのみをモニタし、かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である。
 (2)本発明の第2の実施の様態は、端末装置と通信する基地局装置であって、セルグループの第2の状態へ入るよう前記端末装置に指示することにより前記端末装置を第1の状態から第2の状態に遷移させる制御部を備え、第1の状態は、前記セルグループのSpCellで第1のBWPが活性化されており、前記第1のBWPにおいて下りリンク制御チャネルをモニタし、かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり、第2の状態は、前記セルグループのSpCellで第2のBWPが活性化されており、前記第2のBWPにおいて、休眠BWPを抜けることを示すPDCCHのみをモニタし、かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である。
 (3)本発明の第3の実施の様態は、端末装置に適用される方法であって、セルグループの第2の状態へ入るよう指示された場合に第1の状態から第2の状態に遷移するステップを備え、第1の状態は、前記セルグループのSpCellで第1のBWPが活性化されており、前記第1のBWPにおいて下りリンク制御チャネルをモニタし、かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり、第2の状態は、前記セルグループのSpCellで第2のBWPが活性化されており、前記第2のBWPにおいて、休眠BWPを抜けることを示すPDCCHのみをモニタし、かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である。
 (4)本発明の第4の実施の様態は、端末装置と通信する基地局装置に適用される方法であって、セルグループの第2の状態へ入るよう前記端末装置に指示することにより前記端末装置を第1の状態から第2の状態に遷移させるステップを備え、第1の状態は、前記セルグループのSpCellで第1のBWPが活性化されており、前記第1のBWPにおいて下りリンク制御チャネルをモニタし、かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり、第2の状態は、前記セルグループのSpCellで第2のBWPが活性化されており、前記第2のBWPにおいて、休眠BWPを抜けることを示すPDCCHのみをモニタし、かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である。
 (5)本発明の第5の実施の様態は、端末装置に実装される集積回路であって、セルグループの第2の状態へ入るよう指示された場合に第1の状態から第2の状態に遷移する機能を前記端末装置に対して発揮させ、第1の状態は、前記セルグループのSpCellで第1のBWPが活性化されており、前記第1のBWPにおいて下りリンク制御チャネルをモニタし、かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり、第2の状態は、前記セルグループのSpCellで第2のBWPが活性化されており、前記第2のBWPにおいて、休眠BWPを抜けることを示すPDCCHのみをモニタし、かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である。
 (6)本発明の第6の実施の様態は、端末装置と通信する基地局装置に実装される集積回路であって、セルグループの第2の状態へ入るよう前記端末装置に指示することにより前記端末装置を第1の状態から第2の状態に遷移させる機能を前記基地局装置に対して発揮させ、第1の状態は、前記セルグループのSpCellで第1のBWPが活性化されており、前記第1のBWPにおいて下りリンク制御チャネルをモニタし、かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり、第2の状態は、前記セルグループのSpCellで第2のBWPが活性化されており、前記第2のBWPにおいて、休眠BWPを抜けることを示すPDCCHのみをモニタし、かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である。
 本発明の一態様に関わる装置で動作するプログラムは、本発明の一態様に関わる上述した実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュ-タを機能させるプログラムであってもよい。プログラムあるいはプログラムによって取り扱われる情報は、処理時に一時的にRandom Access Memory(RAM)などの揮発性メモリに読み込まれ、あるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。
 なお、上述した実施形態における装置の一部、をコンピュ-タで実現するようにしてもよい。その場合、この制御機能を実現するためのプログラムをコンピュ-タが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュ-タシステムに読み込ませ、実行することによって実現してもよい。ここでいう「コンピュ-タシステム」とは、装置に内蔵されたコンピュ-タシステムであって、オペレ-ティングシステムや周辺機器等のハ-ドウェアを含むものとする。また、「コンピュ-タが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体等のいずれであってもよい。
 さらに「コンピュ-タが読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュ-タシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュ-タシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、すなわち典型的には集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、代わりにプロセッサは従来型のプロセッサ、コントロ-ラ、マイクロコントロ-ラ、またはステ-トマシンであってもよい。汎用用途プロセッサ、または前述した各回路は、デジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明の一態様は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 本発明の一態様は、例えば、通信システム、通信機器(例えば、携帯電話装置、基地局装置、無線LAN装置、或いはセンサーデバイス)、集積回路(例えば、通信チップ)、又はプログラム等において、利用することができる。
100 E-UTRA
102 eNB
104 EPC
106 NR
108 gNB
110 5GC
112、114、116,118、120、124 インタフェース
122 UE
200、300 PHY
202、302 MAC
204、304 RLC
206、306 PDCP
208、308 RRC
310 SDAP
210、312 NAS
500,604 受信部
502、602 処理部
504、600 送信部

Claims (6)

  1.  端末装置であって
     セルグループの第2の状態へ入るよう指示された場合に第1の状態から第2の状態に遷移する制御部を備え、
     第1の状態は、
     前記セルグループのSpCellで第1のBWPが活性化されており、
     前記第1のBWPにおいて下りリンク制御チャネル(PDCCH)をモニタし、
     かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり
     第2の状態は、
     前記セルグループのSpCellで第2のBWPが活性化されており、
     前記第2のBWPにおいて、PDCCHをモニタせず、
     かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である
     端末装置。
  2.  端末装置と通信する基地局装置であって
     セルグループの第2の状態へ入るよう前記端末装置に指示することにより前記端末装置を第1の状態から第2の状態に遷移させる制御部を備え、
     第1の状態は、
     前記セルグループのSpCellで第1のBWPが活性化されており、
     前記第1のBWPにおいて下りリンク制御チャネル(PDCCH)をモニタし、
     かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり
     第2の状態は、
     前記セルグループのSpCellで第2のBWPが活性化されており、
     前記第2のBWPにおいて、PDCCHをモニタせず、
     かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である
     基地局装置。
  3.  端末装置に適用される方法であって
     セルグループの第2の状態へ入るよう指示された場合に第1の状態から第2の状態に遷移するステップを備え、
     第1の状態は、
     前記セルグループのSpCellで第1のBWPが活性化されており、
     前記第1のBWPにおいて下りリンク制御チャネル(PDCCH)をモニタし、
     かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり
     第2の状態は、
     前記セルグループのSpCellで第2のBWPが活性化されており、
     前記第2のBWPにおいて、PDCCHをモニタせず、
     かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である
     方法。
  4.  端末装置と通信する基地局装置に適用される方法であって
     セルグループの第2の状態へ入るよう前記端末装置に指示することにより前記端末装置を第1の状態から第2の状態に遷移させるステップを備え、
     第1の状態は、
     前記セルグループのSpCellで第1のBWPが活性化されており、
     前記第1のBWPにおいて下りリンク制御チャネル(PDCCH)をモニタし、
     かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり
     第2の状態は、
     前記セルグループのSpCellで第2のBWPが活性化されており、
     前記第2のBWPにおいて、PDCCHをモニタせず、
     かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である
     方法。
  5.  端末装置に実装される集積回路であって
     セルグループの第2の状態へ入るよう指示された場合に第1の状態から第2の状態に遷移する機能を前記端末装置に対して発揮させ、
     第1の状態は、
     前記セルグループのSpCellで第1のBWPが活性化されており、
     前記第1のBWPにおいて下りリンク制御チャネル(PDCCH)をモニタし、
     かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり
     第2の状態は、
     前記セルグループのSpCellで第2のBWPが活性化されており、
     前記第2のBWPにおいて、PDCCHをモニタせず、
     かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である
     集積回路。
  6.  端末装置と通信する基地局装置に実装される集積回路であって
     セルグループの第2の状態へ入るよう前記端末装置に指示することにより前記端末装置を第1の状態から第2の状態に遷移させる機能を前記基地局装置に対して発揮させ、
     第1の状態は、
     前記セルグループのSpCellで第1のBWPが活性化されており、
     前記第1のBWPにおいて下りリンク制御チャネル(PDCCH)をモニタし、
     かつ前記第1のBWPに対するチャネル状態情報(CSI)の測定を実行する状態であり
     第2の状態は、
     前記セルグループのSpCellで第2のBWPが活性化されており、
     前記第2のBWPにおいて、PDCCHをモニタせず、
     かつ前記第2のBWPに対するチャネル状態情報(CSI)の測定を実行する状態である
     集積回路。
PCT/JP2021/021706 2020-06-08 2021-06-08 端末装置、基地局装置、方法、および、集積回路 WO2021251366A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022530569A JPWO2021251366A1 (ja) 2020-06-08 2021-06-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-099022 2020-06-08
JP2020099022 2020-06-08

Publications (1)

Publication Number Publication Date
WO2021251366A1 true WO2021251366A1 (ja) 2021-12-16

Family

ID=78845692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021706 WO2021251366A1 (ja) 2020-06-08 2021-06-08 端末装置、基地局装置、方法、および、集積回路

Country Status (2)

Country Link
JP (1) JPWO2021251366A1 (ja)
WO (1) WO2021251366A1 (ja)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "MAC and dormant SCell configuration", 3GPP DRAFT; R2-2004837, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Elbonia; 20200601 - 20200611, 21 May 2020 (2020-05-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051887464 *

Also Published As

Publication number Publication date
JPWO2021251366A1 (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
WO2020196039A1 (ja) 端末装置、方法、および、集積回路
WO2022071234A1 (ja) 端末装置、通信方法、および基地局装置
WO2021251356A1 (ja) 端末装置、方法、および、集積回路
WO2022080419A1 (ja) 端末装置、基地局装置、および、方法
WO2022210285A1 (ja) 端末装置、方法、および、集積回路
WO2022080306A1 (ja) 端末装置、基地局装置、および、方法
WO2022145403A1 (ja) 端末装置、基地局装置、および、方法
WO2022085663A1 (ja) 方法、および、集積回路
WO2021251366A1 (ja) 端末装置、基地局装置、方法、および、集積回路
WO2022030487A1 (ja) 端末装置、基地局装置、方法、および、集積回路
WO2022030590A1 (ja) 端末装置、基地局装置、方法、および、集積回路
WO2021182169A1 (ja) 端末装置、基地局装置、方法、および、集積回路
WO2023042752A1 (ja) 端末装置、基地局装置および、方法
WO2023042747A1 (ja) 端末装置、基地局装置および、方法
WO2023063342A1 (ja) 端末装置、基地局装置および、方法
WO2023063345A1 (ja) 端末装置、基地局装置および、方法
WO2023013292A1 (ja) 端末装置、基地局装置および、方法
WO2023106315A1 (ja) 端末装置、基地局装置、および、方法
WO2023008043A1 (ja) 端末装置、方法、および、集積回路
WO2022080341A1 (ja) 端末装置、基地局装置、および、方法
WO2023100981A1 (ja) 端末装置、方法、および、集積回路
WO2023112531A1 (ja) 端末装置、方法、および、集積回路
WO2023112792A1 (ja) 端末装置、方法、および、集積回路
WO2022196550A1 (ja) 端末装置、基地局装置および、方法
WO2023136231A1 (ja) 端末装置、方法、および、集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530569

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821469

Country of ref document: EP

Kind code of ref document: A1