WO2021251365A1 - Optical spectrum generation device and optical spectrum generation method - Google Patents

Optical spectrum generation device and optical spectrum generation method Download PDF

Info

Publication number
WO2021251365A1
WO2021251365A1 PCT/JP2021/021693 JP2021021693W WO2021251365A1 WO 2021251365 A1 WO2021251365 A1 WO 2021251365A1 JP 2021021693 W JP2021021693 W JP 2021021693W WO 2021251365 A1 WO2021251365 A1 WO 2021251365A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
wavelength
optical spectrum
pulsed light
Prior art date
Application number
PCT/JP2021/021693
Other languages
French (fr)
Japanese (ja)
Inventor
典彦 西澤
真仁 山中
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Priority to JP2022530568A priority Critical patent/JPWO2021251365A1/ja
Publication of WO2021251365A1 publication Critical patent/WO2021251365A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the present disclosure relates to an apparatus for generating an optical spectrum having a linear peak, and a method thereof.
  • optical frequency comb The optical spectrum in which spectral lines with very narrow line widths are discretely arranged in a comb-teeth pattern at equal intervals is called an optical frequency comb and is used as a frequency measure.
  • a method of generating an optical frequency comb a method using a mode lock laser is known.
  • an object of the present disclosure is to realize an optical spectrum generator and an optical spectrum generation method for generating an optical spectrum having a linear peak.
  • the inventors When a pulsed light having a linear dip in the spectrum is passed through the optical waveguide, the inventors periodically change the light intensity at the wavelength of the dip according to the propagation distance in the optical waveguide, and the dip and the peak alternate. I found a phenomenon that appears in. The present disclosure is based on this novel phenomenon.
  • the present disclosure is an optical spectrum generator that generates pulsed light of a spectrum having a peak, and is an optical spectrum light source that generates pulsed light and optical modulation that intensity-modulates or phase-modulates a predetermined wavelength of pulsed light from the pulsed light source. It has a device and an optical waveguide that propagates pulsed light from a light intensity modulator, causes a non-linear effect in the pulsed light, and produces a peak at a predetermined wavelength, and the spectral width of the pulsed light is the spectral width of the dip. It is an optical spectrum generator characterized by being more than twice as large.
  • FIG. The figure which showed the structure of the optical spectrum generation apparatus of Example 1.
  • FIG. The figure which showed the spectral shape schematically.
  • a graph showing the relationship between the spectrum of pulsed light and the propagation distance A graph showing the measurement results of the spectrum, and a graph showing the spectrum obtained by numerical calculation.
  • a graph showing the measurement results of the spectral shape. A graph showing an enlarged spectrum shape.
  • the figure which showed the structure of the light intensity modulator 13. A graph showing the spectra of input light and output light. A graph showing the spectrum.
  • FIG. A graph showing the spectra of input light and output light.
  • FIG. 1 is a diagram showing the configuration of the optical spectrum generator of the first embodiment.
  • the optical spectrum generator of the first embodiment includes a short pulse light source 10, an optical amplifier 11, a wavelength shift fiber 12, an optical intensity modulator 13, and an optical waveguide 14. .
  • the optical spectrum generator of the first embodiment utilizes the phenomenon discovered by the inventors. The phenomenon is that when pulsed light having a narrow line width dip (a sharp drop in light intensity) in the spectrum is passed through the optical waveguide 14, the light intensity at the wavelength of the dip changes according to the propagation distance in the optical waveguide 14. It changes periodically, and dips and peaks appear alternately. Hereinafter, this phenomenon may be referred to as spectral peaking.
  • the optical spectrum generator of the first embodiment utilizes this spectral peaking to convert a dip into a peak.
  • the short pulse light source 10 is a light source that emits light having a narrow pulse width (time width).
  • a fiber laser of a ring type resonator can be used.
  • the time width (full width at half maximum) of the pulsed light is, for example, 10 fs to 100 ps. It is also possible to use an optical frequency comb light source that outputs an optical frequency comb.
  • the pulse shape of the pulsed light is arbitrary, and is, for example, sech 2 type (soliton), Gauss type, super Gauss type, or the like.
  • sech 2 type is preferable.
  • a clearer and clearer linear peak can be obtained.
  • the optical amplifier 11 is a device that amplifies the light intensity of the pulsed light from the short pulse light source 10.
  • a rare earth-doped optical fiber amplifier such as an erbium-doped fiber amplifier can be used. Since the non-linear effect in the optical waveguide 14 in the subsequent stage occurs at a constant light intensity or higher, the optical amplifier 11 is used to amplify the light intensity. The period of spectral peaking also depends on the light intensity. Therefore, the period of spectral peaking can be adjusted by the amplification factor in the optical amplifier 11.
  • the wavelength shift fiber 12 shifts the wavelength of the pulsed light from the optical amplifier 11. This adjusts the position of the absorption peak by the light intensity modulator 13 in the subsequent stage with respect to the spectrum of the pulsed light. For example, the peak wavelength of the pulsed light is adjusted to be close to the wavelength of the absorption peak. Since the wavelength shift amount in the wavelength shift fiber 12 depends on the light intensity, the wavelength shift amount can be controlled by the optical amplifier 11.
  • the light intensity modulator 13 is a filter that causes absorption in a narrow band with respect to the pulsed light from the wavelength shift fiber 12 and causes a linear dip in the spectrum of the pulsed light.
  • the number of dips to be generated does not have to be one, and a plurality of dips may be generated.
  • spectral peaking can generate a spectrum of evenly spaced linear peaks.
  • the wavelength of the dip may be any wavelength as long as it is within the wavelength band of the pulsed light. However, in order to sufficiently increase the intensity of the peak, the vicinity of the center wavelength is preferable.
  • the spectral shape of the dip by the light intensity modulator 13 is arbitrary, but Lorentz type, Gauss type, sech 2 type and the like are preferable. You can get a cleaner and clearer peak.
  • Spectral peaking can be generated by setting the spectral width of the pulsed light or the spectral width of the dip in this way.
  • the spectral width of the dip is arbitrary as long as it is within the range satisfying this, but is, for example, 10 nm or less, preferably 1 nm or less.
  • the absorption rate in the dip is arbitrary, but it is preferable to set the absorption rate to 50% or more in order to sufficiently increase the light intensity of the peak. It is more preferably 70% or more, still more preferably 90% or more.
  • the light intensity modulator 13 is arbitrary as long as it has an absorption peak in a narrow band, and a gas cell, a diffraction grating, a photonic crystal, or the like can be used.
  • a gas cell, a diffraction grating, a photonic crystal, or the like can be used.
  • the optical spectrum generator of Example 1 can be configured with all fibers, and handling becomes easy. Further, in the case of a diffraction grating or a photonic crystal, it is possible to change the wavelength of the absorption peak by controlling the temperature.
  • a dip may be generated at an arbitrary wavelength by using a diffraction grating 132 and a spatial light modulator (SLM) 131. That is, the pulsed light is wavelength-separated by the diffraction grating 132 so that the arrival position at the SLM 131 differs depending on the wavelength. Since the SLM 131 can modulate the light intensity for each arrival position of the light, the light intensity of a desired wavelength can be weakened to generate a dip. The light intensity may be weakened by scattering or weakened by absorption.
  • SLM spatial light modulator
  • both the diffraction grating 132 and the SLM 131 are of the reflective type, but one or both of them may be of the transmissive type.
  • the wavelength may be separated by using another wavelength separating element such as a prism instead of the diffraction grating 132.
  • a plurality of dips having the same frequency interval can be generated, so that an optical frequency comb can be generated by converting the dips into peaks by spectral peaking.
  • a dip can be generated with a spectral resolution of 40 pm when the number of pixels of the SLM 131 is 1250 and a spectral resolution of 12 pm when the number of pixels is 4000.
  • the absorption of gas such as methane, ethane, and carbon dioxide has a large number of absorption peaks at equal intervals, so that it is possible to generate a spectrum in which linear peaks are arranged at equal intervals.
  • the light intensity modulator 13 absorbs and reflects the light to cause a dip in the transmitted light of the light intensity modulator 13, but the reflected light is not a transmitted light but a dip is generated. There may be.
  • the optical waveguide 14 propagates the pulsed light from the light intensity modulator 13 and causes a non-linear effect in the pulsed light. Due to this non-linear effect, the light intensity at the wavelength of the dip is changed and the dip is converted into a peak.
  • the optical waveguide 14 may be arbitrary as long as it propagates pulsed light and causes a non-linear effect in the pulsed light.
  • it may be an optical fiber, a planar optical waveguide, a rectangular optical waveguide, or the like. Further, a photonic crystal structure may be used.
  • An optical fiber is preferable from the viewpoint that the optical spectrum generator of the first embodiment can be configured by all fibers.
  • the propagation distance in the optical waveguide 14 is set so as to be output from the optical waveguide 14 at the timing when the dip is converted to a peak. Since the light intensity at the wavelength of the dip fluctuates periodically according to the propagation distance and the dip and the peak are repeated alternately, if the propagation distance in the optical waveguide 14 is set appropriately, the light is optical at the timing of the peak. It can be output from the waveguide 14. In order to sufficiently increase the light intensity of the peak, it is preferable that the propagation distance is set at the timing when the light intensity at the wavelength of the dip is near the maximum value.
  • the vicinity of the maximum value is, for example, a range in which the light intensity of the maximum value is 0.5 times or more.
  • the propagation distance is set so as to be near the initial maximum value. That is, it is preferable that the propagation distance is set to the minimum of the propagation distances near the maximum value. This is because the longer the propagation distance, the lower the light intensity due to Raman scattering and the like. Further, when converting a plurality of dips into peaks, the deviation of the period of spectral peaking between those dips becomes remarkable as the propagation distance becomes long.
  • the optical waveguide 14 is an optical fiber
  • the waveform can be shaped into soliton, so the shape of the generated peak can be made clearer and clearer.
  • a small diameter core fiber is also suitable as the optical waveguide 14.
  • the small-diameter core fiber has a large non-linear effect and can efficiently generate spectral peaking.
  • the signal-to-noise ratio ratio of peak light intensity to background light intensity
  • An optical fiber amplifier is also suitable as the optical waveguide 14. If an optical fiber amplifier is used, spectral peaking can be efficiently generated, and at the same time, the peak intensity can be increased.
  • an optical fiber amplifier for example, an erbium-doped fiber amplifier (EDFA) can be used.
  • EDFA erbium-doped fiber amplifier
  • the pulsed light may be converted into supercontinuum light before the input to the optical waveguide 14, or the pulsed light may be converted into supercontinuum light after output from the optical waveguide 14.
  • a highly non-linear optical fiber can be used for conversion to supercontinuum light. By converting to supercontinuum light, the SN ratio can be improved. Moreover, since the spectral width becomes very large, the number of peaks can be increased.
  • the optical waveguide 14 may be configured by an anomalous dispersion single-mode optical fiber and a highly non-linear optical fiber connected to a subsequent stage.
  • optical waveguide 14 may be configured by connecting a plurality of types of optical fibers, a planar optical waveguide, a rectangular optical waveguide, or the like.
  • the optical spectrum generator of the first embodiment it is possible to generate pulsed light having a spectrum having a linear peak.
  • the linear peak can be set to a desired wavelength.
  • the light intensity of the pulsed light emitted from the pulse light source 10 is amplified by the optical amplifier 11, the wavelength band is adjusted by the wavelength shift fiber 12, and then the light is passed through the light intensity modulator 13.
  • the pulsed light is strongly absorbed at the light intensity modulator 13 absorption peak. Therefore, the spectrum of the pulsed light transmitted through the light intensity modulator 13 has a dip (see FIG. 2A).
  • the pulsed light from the light intensity modulator 13 is passed through the optical waveguide 14.
  • the light intensity at the wavelength of the dip changes periodically according to the propagation distance in the optical waveguide 14, and the dip and the peak are alternately repeated.
  • the propagation distance in the optical waveguide 14 is set so as to be output from the optical waveguide 14 at the timing when the dip is converted to a peak. Therefore, the pulsed light output from the optical waveguide 14 has a spectrum having a linear peak at the wavelength that was a dip (see FIG. 2B). If you have multiple dips, you can convert them to peaks at the same time.
  • the optical frequency combs can be cut out, and in particular, by making a plurality of dips at equal intervals, the optical frequency combs can be cut out at equal intervals. Further, by controlling the wavelength of the dip with the light intensity modulator 13, the peak can be set to a desired wavelength.
  • the period of spectral peaking depends not only on the propagation distance in the optical waveguide 14 but also on the light intensity of the pulsed light. Therefore, instead of controlling the propagation distance in the optical waveguide 14, it is possible to set the output from the optical waveguide 14 at the timing when the dip is converted to the peak by controlling the light intensity of the pulsed light. The stronger the light intensity of the pulsed light, the larger the non-linear effect in the optical waveguide 14, and the larger the amount of phase change, so that the period of spectral peaking becomes shorter. Of course, both the light intensity and the propagation distance in the optical waveguide 14 may be controlled.
  • a linear dip in the spectrum can be converted into a linear peak, and pulsed light of a spectrum having a linear peak at a desired wavelength is generated. be able to.
  • the spectrum of the pulsed light emitted from the optical waveguide 14 of the optical spectrum generator of Example 1 was obtained by numerical calculation.
  • Various conditions in this numerical calculation are as follows.
  • the pulsed light input to the optical waveguide 14 had a spectrum width of 6 nm, a pulse width of 400 fs, a sech 2 type (soliton), a peak output of 500 W, and a center wavelength of 1650 nm.
  • the dip was a Lorentz type with a center wavelength of 1650 nm and a spectrum width (full width at half maximum) of 20 pm, and had an absorption rate of 85%.
  • the soliton order N 0.94. Moreover, the influence of the phase shift due to absorption was ignored.
  • FIG. 3 is a graph showing the result obtained by numerical calculation of the relationship between the spectrum of the pulsed light output from the optical waveguide 14 and the propagation distance in the optical waveguide 14.
  • FIG. 3A shows a case where Raman scattering is taken into consideration
  • FIG. 3B shows a case where Raman scattering is ignored.
  • FIG. 4 is a graph showing the relationship between the light intensity at a wavelength of 1650 nm and the fiber length (propagation distance) of the optical waveguide 14.
  • the solid line is the case where Raman scattering is considered
  • the dotted line is the case where Raman scattering is ignored.
  • the light intensity at a wavelength of 1650 nm changes periodically according to the propagation distance, and continuously changes from dip to peak and from peak to dip. From this, it was found that if the propagation distance of the optical waveguide 14 is appropriately set, an optical pulse having a spectrum having a peak can be radiated from the optical waveguide 14. Further, as shown in FIGS. 3A and 4, when Raman scattering is taken into consideration, the spectrum as a whole shifts to the long wavelength side according to the propagation distance, and the light intensity also decreases as a whole, but with a dip. The wavelength at which the peak changed periodically was 1650 nm and did not change.
  • FIG. 5A is a graph showing the relationship between the spectral width of the dip and the spectral width of the peak
  • FIG. 5B is an enlarged view of the dip and the peak.
  • the pulse widths of the pulsed light are 200 fs and 400 fs, and the other numerical calculation conditions are the same as in FIGS. 3 and 4.
  • the spectral width of the peak was about 0.8 times the spectral width of the dip.
  • FIG. 6A is a graph showing the result of numerically calculating the relationship between the dip absorption rate at a wavelength of 1650 nm and the light intensity of the peak
  • FIG. 6B is a graph showing the dip absorption rate of 99%. It is a graph which showed the spectrum at the time of.
  • the propagation distance was set to 0 m and 11.2 m, and the conditions were the same as in FIGS. 3 and 4 except that Raman scattering was taken into consideration.
  • the light intensity is a value specified by the light intensity at a wavelength of 1650 nm when there is no absorption.
  • the absorption rate of the dip is preferably 50% or more.
  • FIG. 7 is a graph showing the results of investigating the dependence of the spectral width of the dip on the relationship between the light intensity at a wavelength of 1650 nm and the fiber length (propagation distance) of the optical waveguide 14. The conditions were the same as in FIGS. 3 and 4 except that the spectral width of the dip was changed.
  • a periodic change in light intensity was observed up to a dip spectrum width of 3 nm, but no periodic change was observed when the dip spectrum width exceeded 3 nm. From this, it was found that the spectral width of the pulsed light needs to be at least twice the spectral width of the dip in order to convert the dip into a peak.
  • FIG. 8 is a graph showing the results of investigating the dependence of the peak output of pulsed light on the relationship between the light intensity at a wavelength of 1650 nm and the fiber length (propagation distance) of the optical waveguide 14. The conditions were the same as in FIGS. 3 and 4 except that the peak output of the pulsed light was changed to 400 W and 500 W.
  • FIG. 9A is a graph showing the relationship between the light intensity at a wavelength of 1650 nm and the fiber length (propagation distance) of the optical waveguide 14 when the spectral shape of the pulsed light is changed from sech 2 type to Gauss type. ..
  • the spectral shape was Gaussian, and the conditions were the same as in FIGS. 3 and 4 except that the peak outputs were changed to 500 W, 700 W, and 1000 W.
  • FIG. 9B is a graph showing the spectral shape of the pulsed light when the peak output is 500 W and the fiber length is 16 m.
  • FIG. 10A is a graph showing the relationship between the light intensity at a wavelength of 1650 nm and the fiber length (propagation distance) of the optical waveguide 14 when the spectral shape of the pulsed light is changed from sech 2 type to Super Gauss type. be.
  • the spectral shape was a Super Gaussian type, and the conditions were the same as in FIGS. 3 and 4 except that the peak outputs were changed to 500 W, 750 W, and 1000 W.
  • FIG. 10B is a graph showing the spectral shape of the pulsed light when the peak output is 500 W, the fiber length is 0 m, and the fiber length is 26 m.
  • the spectral shape is a Super Gaussian type
  • the light intensity changes periodically and can be converted from a dip to a peak.
  • the shape of the peak was slightly distorted as compared with the sec 2 type, it was a thin, linear and strong peak. It was also found that the overall spectral shape became narrower.
  • the sech 2 type is the most preferable for the spectral shape of the pulsed light.
  • the sech 2 type soliton pulse undergoes a uniform phase shift over the time waveform in the steady state, and the pulse waveform is also maintained stable, so it is thought that the peak shape appears more clearly than the Gauss type and Super Gauss type. ..
  • FIG. 11A is a graph showing the relationship between the light intensity at a wavelength of 1650 nm and the fiber length (propagation distance) of the optical waveguide 14 when the spectral shape of the dip is changed from the Lorentz type to the Gauss type.
  • the conditions were the same as in FIGS. 3 and 4 except that the spectral shape of the dip was Gaussian and the peak output was 500 W.
  • FIG. 11B is a graph showing the spectral shape of the pulsed light when the fiber length is 0 m and 26 m.
  • FIGS. 12 (d) to 12 (f) are graphs showing the time waveforms and phases corresponding to them. Is.
  • the reason why dips and peaks appear periodically is considered as follows.
  • the time waveform is represented by a superposition of a narrow pulse and a wide pulse. Wide pulses correspond to dips and peaks in the spectral shape, and narrow pulses correspond to parts other than dips and peaks.
  • the fiber length is 0 m
  • the phases of the narrow pulse and the wide pulse are different by ⁇ and are canceled out. Therefore, as shown in FIG. 12 (a), the spectral shape is dip. Become.
  • the narrow pulse When the pulsed light propagates through the optical waveguide 14, the narrow pulse has a high intensity and is continuously subjected to a phase shift due to a non-linear effect.
  • a wide pulse On the other hand, a wide pulse has a weak intensity, so the phase shift is negligibly small. Therefore, when the phase difference between the narrow pulse and the wide pulse changes periodically according to the fiber length and the phase difference becomes 0 or even multiples of ⁇ as shown in FIG. 12 (f). In addition, the narrow pulse and the wide pulse strengthen each other, resulting in a strong linear peak in the spectral shape as shown in FIG. 12 (c). Further, when the phase difference becomes ⁇ or an odd multiple of ⁇ as shown in FIG. 12 (d), a linear dip is obtained in the spectral shape as shown in FIG. 12 (a). In this way, the light intensity changes periodically according to the fiber length, and dips and peaks appear alternately and periodically.
  • FIG. 13 shows the results obtained by numerical calculation of the relationship between the spectrum of the pulsed light output from the optical waveguide 14 and the propagation distance in the optical waveguide 14 when the dip is a plurality of absorption lines in the vicinity of 1650 nm of methane. It is a graph.
  • the pulsed light was a sech 2 type with a pulse width of 400 fs, a peak output of 2 kW, and a center wavelength of 1650 nm. Other conditions were the same as in FIGS. 3 and 4.
  • the light intensity at the wavelengths of those dips changes periodically according to the propagation distance, and can be simultaneously converted into a plurality of linear peaks.
  • the absorption lines of methane are arranged at equal intervals, the converted plurality of linear peaks are also at equal intervals.
  • the intensity of each peak was strong near the center wavelength of the pulsed light and weakened as the distance from the center wavelength increased.
  • the periodicity of each peak shifts as the propagation distance increases. It is considered that this is because the phase shift amount has a wavelength dependence.
  • a pulse train having an ultra-high repetition rate of 290 GHz can be generated.
  • the optical spectrum generator of Example 1 was actually manufactured, its output was measured by an optical spectrum analyzer and optical power, and the spectrum shape at each average output was measured.
  • the specific device configuration is as follows.
  • the short pulse light source 10 is a fiber laser of a ring-type resonator using a polarization-retaining Er-doped fiber and a single-layer carbon nanotube, and is used to output pulsed light having a repetition rate of 28 MHz, a pulse width of 300 fs, and a center wavelength of 1556 nm. board.
  • As the optical amplifier 11 a fully polarized wave holding type Er-doped fiber amplifier was used.
  • an anomalous dispersion single-mode polarization holding fiber was used, and the output thereof was a sech 2 type soliton pulse having a pulse width of 200 fs. Further, the output was adjusted in the optical amplifier 11 so that the center wavelength was 1650 nm.
  • the light intensity modulator 13 was a gas cell filled with methane gas, and the output from the wavelength shift fiber 12 was passed through a long-pass filter and then passed through the gas cell.
  • the optical waveguide 14 was a 20 m single-mode fiber, and pulsed light transmitted through the gas cell was passed through the single-mode fiber.
  • FIG. 14 (a) is a graph showing the measurement results of the spectrum
  • FIG. 14 (b) is a graph showing the spectrum obtained by numerical calculation.
  • FIG. 14A at an average output of 1.0 mW, a plurality of equally spaced absorption lines due to methane gas were observed. It was found that when the average output increased, the spectral width was compressed by the soliton effect, the light intensity at the wavelength of the absorption line changed, and the linear dip could be converted into a linear peak. Further, when FIG. 14 (a) and FIG. 14 (b) were compared, the measurement results were substantially in agreement with the results of the numerical calculation.
  • FIG. 15 is a graph showing the measurement result of the spectral shape.
  • the small-diameter core fiber has a higher soliton order than the single-mode fiber used in FIG. 14, the larger the average output, the wider the spectrum width.
  • the number of dips and peaks also increased.
  • the larger the average output the greater the deformation of the spectral shape due to self-phase modulation and Raman scattering.
  • FIG. 16 is an enlarged graph showing the spectral shape near the wavelength of 1650 nm. As shown in FIG. 16, a dip having a spectrum width of 20 pm was converted into a peak having a spectrum width of 18 pm, which was in good agreement with the result of the numerical calculation. In addition, the background output level was low due to the collapse of the pulse shape, and a high SN ratio was obtained.
  • the optical waveguide 14 was replaced with a single-mode fiber and a normally dispersed high-non-linear optical fiber connected in order, and the spectral shape was measured in the same manner.
  • the single-mode fiber in the first stage was set to 10 cm, and the high-non-linear optical fiber in the rear stage was set to 5 m.
  • FIG. 17 is a graph showing the measurement results of the spectral shape. As shown in FIG. 17, it was found that the light intensity at the wavelength of the absorption line changed, and the linear dip and the linear peak changed periodically as the average output increased. It was also found that the spectral width was greatly widened due to the strong self-phase modulation by the highly nonlinear optical fiber, the number of peaks increased, and the SN ratio also increased.
  • the diffraction grating 132 used was 900 lines / mm, and the SLM 131 was 800 pixels at a pitch of 20 ⁇ m.
  • FIG. 19 is a graph showing spectra of input light and output light to the light intensity modulator 13 of FIG. As shown in FIG. 19, a plurality of evenly spaced dips could be generated at a desired wavelength.
  • FIG. 20 is a graph showing a spectrum after passing light from the light intensity modulator 13 of FIG. 18 through an optical fiber. As shown in FIG. 20, the dip could be converted into a peak. As a result, it was found that the peak can be generated at a desired wavelength by using the light intensity modulator 13 of FIG.
  • FIG. 21 is a diagram showing the configuration of the optical spectrum generator of the second embodiment.
  • the optical spectrum generator of the second embodiment replaces the optical intensity modulator 13 of the optical spectrum generator of the first embodiment with an optical phase modulator 23, and has the same other configurations.
  • the optical phase modulator 23 is a device that modulates the phase of an arbitrary wavelength.
  • the configuration may be a combination of the diffraction grating 132 and the SLM 131, as in FIG. However, it differs in that it is phase-modulated rather than intensity-modulated by SLM131.
  • spectral peaking occurs at the phase-modulated wavelength as in the first embodiment. That is, dips and peaks appear alternately and repeatedly at the phase-modulated wavelength according to the transmission distance of the optical waveguide 14. Therefore, by appropriately setting the transmission distance of the optical waveguide 14, pulsed light having a spectrum having a linear peak at a predetermined wavelength can be generated.
  • the phase modulation amount may be arbitrary as long as it is not 0, but the closer to ⁇ , the larger the peak intensity can be. For example, the phase modulation amount is 0.1 to ⁇ (rad) or ⁇ to ⁇ 0.1 (rad).
  • the reason why spectral peaking occurs even in phase modulation instead of intensity modulation is as suggested in FIG. That is, a difference in the amount of phase shift in the optical waveguide 14 occurs due to the non-linear effect between the region subjected to the phase modulation and the portion other than the region subjected to the phase modulation. Therefore, when the phase difference between the region subjected to phase modulation and the portion other than the region subjected to phase modulation changes periodically according to the transmission distance and the phase difference becomes 0 or an even multiple of ⁇ . They strengthen each other and weaken each other when the phase difference becomes ⁇ or an odd multiple of ⁇ . As a result, the light intensity changes periodically according to the transmission distance in the optical waveguide 14, and dips and peaks appear alternately and periodically.
  • intensity modulation and phase modulation may be performed.
  • spectral peaking can occur and peaks can be generated.
  • FIG. 22 is a result obtained by numerically calculating the spectrum of the pulsed light radiated from the optical waveguide 14 of the optical spectrum generator of the second embodiment.
  • FIG. 22A is a graph showing the power spectrum and phase spectrum of the pulsed light input to the optical waveguide 14.
  • FIG. 22B is a graph showing the power spectrum of the pulsed light output from the optical waveguide 14.
  • the pulsed light to be input is phase-modulated at predetermined frequency intervals.
  • FIG. 22 (b) it was found that a peak was generated at the wavelength subjected to the phase modulation.
  • the optical spectrum generator of the present disclosure is suitable for generating a spectrum having a plurality of linear peaks.
  • Light having such a spectrum can be used for optical multiplex communication and the like.
  • the optical spectrum generator of the present disclosure is suitable for cutting out optical frequency combs at equal intervals.
  • the comb interval is narrow, and practically, it is required to widen the comb interval or appropriately thin the comb lines, but such control is difficult.
  • the optical frequency combs can be cut out at desired intervals due to the characteristics of the optical intensity modulator 13, so that practicality can be improved.
  • the comb interval is several tens of MHz, but according to the present disclosure, this can be cut out at an interval of several hundred GHz.
  • pulsed light having a high repetition rate can be obtained, which is suitable for optical sampling.
  • the wavelength of the peak generated by the present disclosure is not limited, and a peak of any wavelength can be generated.
  • peaks can be generated even in the mid-infrared band and the far-infrared band.
  • This disclosure can be used for generation of optical frequency combs, optical wavelength division multiplexing, optical sampling, and the like.
  • Pulse light source 11 Pulse light source 11: Optical amplifier 12: Wavelength shift fiber 13: Optical intensity modulator 14: Optical wave guide 23: Optical phase modulator

Abstract

[Problem] To provide an optical spectrum generation device for generating an optical spectrum having a narrow line width. [Solution] This optical spectrum generation device has: a short-pulse light source 10; an optical amplifier 11; a wavelength shift fiber 12; a light intensity modulator 13; and an optical waveguide 14. The light intensity modulator 13 is a filter for causing narrow-band absorption in pulse light from the wavelength shift fiber 12, and generating a linear dip of a pulse light spectrum. The optical waveguide 14 propagates the pulse light from the light intensity modulator 13, and generates a nonlinear effect in the pulse light. Through this nonlinear effect, light intensity at the wavelength of the dip is changed, and the dip is converted into a peak.

Description

光スペクトル生成装置、光スペクトル生成方法Optical spectrum generator, optical spectrum generation method
 本開示は、線状のピークを有した光スペクトルを生成する装置、およびその方法に関するものである。 The present disclosure relates to an apparatus for generating an optical spectrum having a linear peak, and a method thereof.
 線幅の非常に狭いスペクトル線が離散的に等間隔で櫛歯状に並んだ光スペクトルは光周波数コムと呼ばれ、周波数の物差しとして利用されている。光周波数コムの生成方法としては、モードロックレーザーを用いる方法が知られている。 The optical spectrum in which spectral lines with very narrow line widths are discretely arranged in a comb-teeth pattern at equal intervals is called an optical frequency comb and is used as a frequency measure. As a method of generating an optical frequency comb, a method using a mode lock laser is known.
国際公開第2018/181213号International Publication No. 2018/181213
 しかし、線状のピークを有した光スペクトルを生成する装置は高価であり、装置の低コスト化が求められていた。また、線状のピークが得られる波長も限られていた。 However, an apparatus that generates an optical spectrum having a linear peak is expensive, and there is a demand for cost reduction of the apparatus. In addition, the wavelength at which a linear peak can be obtained is also limited.
 そこで本開示は、線状のピークを有した光スペクトルを生成する光スペクトル生成装置および光スペクトル生成方法を実現することを目的とする。 Therefore, an object of the present disclosure is to realize an optical spectrum generator and an optical spectrum generation method for generating an optical spectrum having a linear peak.
 発明者らは、スペクトルに線状のディップを有したパルス光を光導波路に通すと、その光導波路における伝搬距離に応じてディップの波長における光強度が周期的に変化しディップとピークとが交互に現れる現象を発見した。本開示はこの新規な現象に基づくものである。 When a pulsed light having a linear dip in the spectrum is passed through the optical waveguide, the inventors periodically change the light intensity at the wavelength of the dip according to the propagation distance in the optical waveguide, and the dip and the peak alternate. I found a phenomenon that appears in. The present disclosure is based on this novel phenomenon.
 本開示は、ピークを有したスペクトルのパルス光を生成する光スペクトル生成装置であって、パルス光を発生させるパルス光源と、パルス光源からのパルス光の所定波長を強度変調または位相変調する光変調器と、光強度変調器からのパルス光を伝搬させ、パルス光に非線形効果を生じさせ、所定波長にピークを生じさせる光導波路とを有し、パルス光のスペクトル幅は、ディップのスペクトル幅の2倍以上である、ことを特徴とする光スペクトル生成装置である。 The present disclosure is an optical spectrum generator that generates pulsed light of a spectrum having a peak, and is an optical spectrum light source that generates pulsed light and optical modulation that intensity-modulates or phase-modulates a predetermined wavelength of pulsed light from the pulsed light source. It has a device and an optical waveguide that propagates pulsed light from a light intensity modulator, causes a non-linear effect in the pulsed light, and produces a peak at a predetermined wavelength, and the spectral width of the pulsed light is the spectral width of the dip. It is an optical spectrum generator characterized by being more than twice as large.
 本開示によれば、線状のピークを有した光スペクトルを生成する装置を安価に実現することができる。 According to the present disclosure, it is possible to inexpensively realize an apparatus for generating an optical spectrum having a linear peak.
実施例1の光スペクトル生成装置の構成を示した図。The figure which showed the structure of the optical spectrum generation apparatus of Example 1. FIG. スペクトル形状を模式的に示した図。The figure which showed the spectral shape schematically. パルス光のスペクトルと伝搬距離の関係を示したグラフ。A graph showing the relationship between the spectrum of pulsed light and the propagation distance. 光強度とファイバー長との関係を示したグラフ。A graph showing the relationship between light intensity and fiber length. ディップのスペクトル幅とピークのスペクトル幅の関係を示したグラフ。A graph showing the relationship between the spectral width of a dip and the spectral width of a peak. ディップの吸収率とピークの光強度との関係を示したグラフ。A graph showing the relationship between the absorption rate of dips and the light intensity of peaks. 光強度とファイバー長との関係について、ディップのスペクトル幅の依存性を調べた結果を示したグラフ。A graph showing the results of investigating the dependence of the spectral width of the dip on the relationship between the light intensity and the fiber length. 光強度とファイバー長との関係について、パルス光のピーク出力の依存性を調べた結果を示したグラフ。A graph showing the results of investigating the dependence of the peak output of pulsed light on the relationship between light intensity and fiber length. パルス光のスペクトル形状をガウス型に替えた場合の光強度とファイバー長との関係について示したグラフ。A graph showing the relationship between the light intensity and the fiber length when the spectral shape of the pulsed light is changed to the Gaussian type. パルス光のスペクトル形状をスーパーガウス型に替えた場合の光強度とファイバー長との関係について示したグラフ。A graph showing the relationship between the light intensity and the fiber length when the spectral shape of the pulsed light is changed to the Super Gaussian type. ディップのスペクトル形状をガウス型に替えた場合の光強度とファイバー長との関係について示したグラフ。A graph showing the relationship between the light intensity and the fiber length when the spectral shape of the dip is changed to the Gaussian type. スペクトル形状とそれらに対応する時間波形と位相を示したグラフ。A graph showing the spectral shapes and their corresponding time waveforms and phases. パルス光のスペクトルと伝搬距離の関係を示したグラフ。A graph showing the relationship between the spectrum of pulsed light and the propagation distance. スペクトルの測定結果を示したグラフ、数値計算により求めたスペクトルを示したグラフ。A graph showing the measurement results of the spectrum, and a graph showing the spectrum obtained by numerical calculation. スペクトル形状の測定結果を示したグラフ。A graph showing the measurement results of the spectral shape. スペクトル形状を拡大して示したグラフ。A graph showing an enlarged spectrum shape. スペクトル形状の測定結果を示したグラフ。A graph showing the measurement results of the spectral shape. 光強度変調器13の構成を示した図。The figure which showed the structure of the light intensity modulator 13. 入力光および出力光のスペクトルを示したグラフ。A graph showing the spectra of input light and output light. スペクトルを示したグラフ。A graph showing the spectrum. 実施例2の光スペクトル生成装置の構成を示した図。The figure which showed the structure of the optical spectrum generation apparatus of Example 2. FIG. 入力光および出力光のスペクトルを示したグラフ。A graph showing the spectra of input light and output light.
 以下、本開示の具体的な実施例について図を参照に説明するが、本開示は実施例に限定されるものではない。 Hereinafter, specific examples of the present disclosure will be described with reference to the drawings, but the present disclosure is not limited to the examples.
 図1は、実施例1の光スペクトル生成装置の構成を示した図である。図1のように、実施例1の光スペクトル生成装置は、短パルス光源10と、光増幅器11と、波長シフトファイバー12と、光強度変調器13と、光導波路14と、を有している。実施例1の光スペクトル生成装置は、発明者らが発見した現象を利用するものである。その現象は、スペクトルに狭線幅のディップ(光強度の急激な落ち込み)を有したパルス光を光導波路14に通すと、その光導波路14における伝搬距離に応じて、ディップの波長における光強度が周期的に変化し、ディップとピークとが交互に現れるというものである。以下、この現象をスペクトラルピーキングと呼ぶことがある。実施例1の光スペクトル生成装置は、このスペクトラルピーキングを利用して、ディップをピークに変換するものである。 FIG. 1 is a diagram showing the configuration of the optical spectrum generator of the first embodiment. As shown in FIG. 1, the optical spectrum generator of the first embodiment includes a short pulse light source 10, an optical amplifier 11, a wavelength shift fiber 12, an optical intensity modulator 13, and an optical waveguide 14. .. The optical spectrum generator of the first embodiment utilizes the phenomenon discovered by the inventors. The phenomenon is that when pulsed light having a narrow line width dip (a sharp drop in light intensity) in the spectrum is passed through the optical waveguide 14, the light intensity at the wavelength of the dip changes according to the propagation distance in the optical waveguide 14. It changes periodically, and dips and peaks appear alternately. Hereinafter, this phenomenon may be referred to as spectral peaking. The optical spectrum generator of the first embodiment utilizes this spectral peaking to convert a dip into a peak.
 短パルス光源10は、パルス幅(時間幅)の狭い光を放射する光源である。たとえばリング型共振器のファイバーレーザーなどを用いることができる。パルス光の時間幅(半値全幅)は、たとえば10fs~100psである。また、光周波数コムを出力する光周波数コム光源を用いることも可能である。 The short pulse light source 10 is a light source that emits light having a narrow pulse width (time width). For example, a fiber laser of a ring type resonator can be used. The time width (full width at half maximum) of the pulsed light is, for example, 10 fs to 100 ps. It is also possible to use an optical frequency comb light source that outputs an optical frequency comb.
 パルス光のパルス形状は任意であり、たとえばsech型(ソリトン)、ガウス型、スーパーガウス型などである。特に、sech型が好ましい。より明瞭で綺麗な線状のピークを得ることができる。 The pulse shape of the pulsed light is arbitrary, and is, for example, sech 2 type (soliton), Gauss type, super Gauss type, or the like. In particular, sech 2 type is preferable. A clearer and clearer linear peak can be obtained.
 光増幅器11は、短パルス光源10からのパルス光の光強度を増幅する装置である。たとえば、エルビウムドープファイバーアンプなどの希土類ドープ光ファイバーアンプを用いることができる。後段の光導波路14における非線形効果は、一定の光強度以上で生ずるため、光増幅器11を用いて光強度の増幅を図っている。また、スペクトラルピーキングの周期は光強度にも依存する。そのため、光増幅器11における増幅率によってスペクトラルピーキングの周期を調整することができる。 The optical amplifier 11 is a device that amplifies the light intensity of the pulsed light from the short pulse light source 10. For example, a rare earth-doped optical fiber amplifier such as an erbium-doped fiber amplifier can be used. Since the non-linear effect in the optical waveguide 14 in the subsequent stage occurs at a constant light intensity or higher, the optical amplifier 11 is used to amplify the light intensity. The period of spectral peaking also depends on the light intensity. Therefore, the period of spectral peaking can be adjusted by the amplification factor in the optical amplifier 11.
 波長シフトファイバー12は、光増幅器11からのパルス光の波長をシフトするものである。これにより、パルス光のスペクトルに対する後段の光強度変調器13による吸収ピークの位置を調整する。たとえば、パルス光のピーク波長が吸収ピークの波長付近となるように調整する。波長シフトファイバー12における波長シフト量は光強度に依存するため、光増幅器11によって波長シフト量を制御できる。 The wavelength shift fiber 12 shifts the wavelength of the pulsed light from the optical amplifier 11. This adjusts the position of the absorption peak by the light intensity modulator 13 in the subsequent stage with respect to the spectrum of the pulsed light. For example, the peak wavelength of the pulsed light is adjusted to be close to the wavelength of the absorption peak. Since the wavelength shift amount in the wavelength shift fiber 12 depends on the light intensity, the wavelength shift amount can be controlled by the optical amplifier 11.
 光強度変調器13は、波長シフトファイバー12からのパルス光に対して狭帯域の吸収を生じさせ、パルス光のスペクトルに線状のディップを生じさせるフィルタである。生じさせるディップは1つである必要はなく、複数生じさせてもよい。等間隔で並んだディップを生じさせれば、スペクトラルピーキングによって線状のピークが等間隔で並んだスペクトルの生成が可能である。ディップの波長は、パルス光の波長帯域内であれば任意の波長でよい。ただし、ピークの強度を十分に高めるためには中心波長付近が好ましい。 The light intensity modulator 13 is a filter that causes absorption in a narrow band with respect to the pulsed light from the wavelength shift fiber 12 and causes a linear dip in the spectrum of the pulsed light. The number of dips to be generated does not have to be one, and a plurality of dips may be generated. By generating evenly spaced dips, spectral peaking can generate a spectrum of evenly spaced linear peaks. The wavelength of the dip may be any wavelength as long as it is within the wavelength band of the pulsed light. However, in order to sufficiently increase the intensity of the peak, the vicinity of the center wavelength is preferable.
 光強度変調器13によるディップのスペクトル形状は任意であるが、ローレンツ型やガウス型、sech型などが好ましい。よりきれいで明確なピークを得ることができる。 The spectral shape of the dip by the light intensity modulator 13 is arbitrary, but Lorentz type, Gauss type, sech 2 type and the like are preferable. You can get a cleaner and clearer peak.
 パルス光のスペクトル幅(半値全幅)がディップのスペクトル幅(半値全幅)の2倍以上となるようにする。このようにパルス光のスペクトル幅またはディップのスペクトル幅を設定することにより、スペクトラルピーキングを発生させることができる。これを満たす範囲であればディップのスペクトル幅は任意であるが、たとえば10nm以下、好ましくは1nm以下である。 Make sure that the spectral width of the pulsed light (full width at half maximum) is at least twice the spectral width of the dip (full width at half maximum). Spectral peaking can be generated by setting the spectral width of the pulsed light or the spectral width of the dip in this way. The spectral width of the dip is arbitrary as long as it is within the range satisfying this, but is, for example, 10 nm or less, preferably 1 nm or less.
 ディップにおける吸収率は任意であるが、ピークの光強度を十分に高めるためには50%以上の吸収率とすることが好ましい。より好ましくは70%以上、さらに好ましくは90%以上である。 The absorption rate in the dip is arbitrary, but it is preferable to set the absorption rate to 50% or more in order to sufficiently increase the light intensity of the peak. It is more preferably 70% or more, still more preferably 90% or more.
 光強度変調器13は、狭帯域の吸収ピークを有したものであれば任意であり、ガスセル、回折格子、フォトニック結晶などを用いることができる。特に、回折格子としてファイバーブラッググレーティング(FBG)を用いると、実施例1の光スペクトル生成装置をオールファイバーで構成することができ、取り扱いが容易となる。また、回折格子やフォトニック結晶の場合、温度制御によって吸収ピークの波長を変化させることも可能である。 The light intensity modulator 13 is arbitrary as long as it has an absorption peak in a narrow band, and a gas cell, a diffraction grating, a photonic crystal, or the like can be used. In particular, when a fiber Bragg grating (FBG) is used as the diffraction grating, the optical spectrum generator of Example 1 can be configured with all fibers, and handling becomes easy. Further, in the case of a diffraction grating or a photonic crystal, it is possible to change the wavelength of the absorption peak by controlling the temperature.
 図18のように、回折格子132と空間光変調器(SLM)131を用いることにより、任意の波長にディップを生じさせてもよい。つまり、回折格子132によってパルス光を波長分離し、波長によってSLM131への到達位置が異なるようにする。SLM131は、その光の到達位置ごとに光強度を変調することができるので、所望の波長の光強度を弱めてディップを生じさせることができる。光強度は、散乱により弱めてもよいし、吸収により弱めてもよい。たとえば、液晶による回折格子によって光を散乱させることにより光強度を弱める方式でもよいし、MEMSミラーにより反射角を変えることで光強度を弱める方式でもよい。なお、図18では回折格子132とSLM131の両方を反射型としているが、一方または両方を透過型としてもよい。また、回折格子132に替えてプリズムなどの他の波長分離素子を用いて波長分離してもよい。 As shown in FIG. 18, a dip may be generated at an arbitrary wavelength by using a diffraction grating 132 and a spatial light modulator (SLM) 131. That is, the pulsed light is wavelength-separated by the diffraction grating 132 so that the arrival position at the SLM 131 differs depending on the wavelength. Since the SLM 131 can modulate the light intensity for each arrival position of the light, the light intensity of a desired wavelength can be weakened to generate a dip. The light intensity may be weakened by scattering or weakened by absorption. For example, a method of reducing the light intensity by scattering light with a diffraction grating made of a liquid crystal may be used, or a method of weakening the light intensity by changing the reflection angle with a MEMS mirror may be used. In FIG. 18, both the diffraction grating 132 and the SLM 131 are of the reflective type, but one or both of them may be of the transmissive type. Further, the wavelength may be separated by using another wavelength separating element such as a prism instead of the diffraction grating 132.
 回折格子132とSLM131を用いる方式では、周波数間隔が等しい複数のディップを生じさせることができるので、スペクトラルピーキングによりディップをピークに変換することで光周波数コムを生成することができる。 In the method using the diffraction grating 132 and the SLM 131, a plurality of dips having the same frequency interval can be generated, so that an optical frequency comb can be generated by converting the dips into peaks by spectral peaking.
 たとえば、波長範囲が50nmの場合、SLM131のピクセル数が1250ではスペクトル分解能40pm、ピクセル数が4000であればスペクトル分解能12pmでディップを生成することができる。 For example, when the wavelength range is 50 nm, a dip can be generated with a spectral resolution of 40 pm when the number of pixels of the SLM 131 is 1250 and a spectral resolution of 12 pm when the number of pixels is 4000.
 ガスセルを用いる場合、特に、メタン、エタン、二酸化炭素などのガスの吸収は、等間隔で多数の吸収ピークを有するので、線状のピークが等間隔で並んだスペクトルを生成することができる。 When a gas cell is used, in particular, the absorption of gas such as methane, ethane, and carbon dioxide has a large number of absorption peaks at equal intervals, so that it is possible to generate a spectrum in which linear peaks are arranged at equal intervals.
 なお、実施例1では、光強度変調器13により吸収、反射させることで、光強度変調器13の透過光にディップを生じさせているが、透過光でなく反射光にディップを生じさせるものであってもよい。 In Example 1, the light intensity modulator 13 absorbs and reflects the light to cause a dip in the transmitted light of the light intensity modulator 13, but the reflected light is not a transmitted light but a dip is generated. There may be.
 光導波路14は、光強度変調器13からのパルス光を伝搬させ、パルス光に非線形効果を生じさせるものである。この非線形効果により、ディップの波長における光強度を変化させ、ディップをピークに変換している。 The optical waveguide 14 propagates the pulsed light from the light intensity modulator 13 and causes a non-linear effect in the pulsed light. Due to this non-linear effect, the light intensity at the wavelength of the dip is changed and the dip is converted into a peak.
 光導波路14は、パルス光を伝搬させ、そのパルス光に非線形効果を生じさせるものであれば任意でよい。たとえば光ファイバーでもよいし、平面光導波路、矩形光導波路などであってもよい。また、フォトニック結晶構造でもよい。実施例1の光スペクトル生成装置をオールファイバーで構成できる点からは、光ファイバーであることが好ましい。 The optical waveguide 14 may be arbitrary as long as it propagates pulsed light and causes a non-linear effect in the pulsed light. For example, it may be an optical fiber, a planar optical waveguide, a rectangular optical waveguide, or the like. Further, a photonic crystal structure may be used. An optical fiber is preferable from the viewpoint that the optical spectrum generator of the first embodiment can be configured by all fibers.
 光導波路14における伝搬距離は、ディップがピークに変換されたタイミングで光導波路14から出力されるように設定されている。ディップの波長における光強度は伝搬距離に応じて周期的に変動してディップとピークとを交互に繰り返すため、光導波路14における伝搬距離が適切に設定されていれば、ピークとなったタイミングで光導波路14から出力させることができる。ピークの光強度を十分に高めるために、ディップの波長における光強度が極大値付近となるタイミングに伝搬距離が設定されていることが好ましい。極大値付近とは、たとえば極大値の光強度に対して0.5倍以上となる範囲である。より好ましくは0.8倍以上、さらに好ましくは0.9倍以上である。特に、最初の極大値付近となるように伝搬距離が設定されていることが好ましい。つまり、極大値付近となる伝搬距離のうち、最小の伝搬距離に設定されていることが好ましい。伝搬距離が長くなるほど光強度はラマン散乱等に起因して減少していくためである。また、複数のディップをピークに変換する場合、伝搬距離が長くなるとそれらのディップ間でのスペクトラルピーキングの周期のずれが顕著となるためである。 The propagation distance in the optical waveguide 14 is set so as to be output from the optical waveguide 14 at the timing when the dip is converted to a peak. Since the light intensity at the wavelength of the dip fluctuates periodically according to the propagation distance and the dip and the peak are repeated alternately, if the propagation distance in the optical waveguide 14 is set appropriately, the light is optical at the timing of the peak. It can be output from the waveguide 14. In order to sufficiently increase the light intensity of the peak, it is preferable that the propagation distance is set at the timing when the light intensity at the wavelength of the dip is near the maximum value. The vicinity of the maximum value is, for example, a range in which the light intensity of the maximum value is 0.5 times or more. It is more preferably 0.8 times or more, still more preferably 0.9 times or more. In particular, it is preferable that the propagation distance is set so as to be near the initial maximum value. That is, it is preferable that the propagation distance is set to the minimum of the propagation distances near the maximum value. This is because the longer the propagation distance, the lower the light intensity due to Raman scattering and the like. Further, when converting a plurality of dips into peaks, the deviation of the period of spectral peaking between those dips becomes remarkable as the propagation distance becomes long.
 光導波路14を光ファイバーとする場合、異常分散のシングルモード光ファイバーを用いるとよい。異常分散のシングルモード光ファイバーでは、ソリトンへと波形を整形できるので、生成するピークの形状をより綺麗で明瞭とすることができる。 When the optical waveguide 14 is an optical fiber, it is preferable to use a single-mode optical fiber with anomalous dispersion. In the anomalous dispersion single-mode optical fiber, the waveform can be shaped into soliton, so the shape of the generated peak can be made clearer and clearer.
 また、光導波路14として小径コアファイバーも好適である。小径コアファイバーは、非線形効果が大きく、効率的にスペクトラルピーキングを生じさせることができる。また、SN比(バックグラウンドの光強度に対するピークの光強度の比)を向上させることができる。 Further, a small diameter core fiber is also suitable as the optical waveguide 14. The small-diameter core fiber has a large non-linear effect and can efficiently generate spectral peaking. In addition, the signal-to-noise ratio (ratio of peak light intensity to background light intensity) can be improved.
 また、光導波路14として光ファイバーアンプも好適である。光ファイバーアンプを用いれば、効率的にスペクトラルピーキングを生じさせることができ、同時にピーク強度も高めることができる。光ファイバーアンプとして、たとえばエルビウムドープファイバーアンプ(EDFA)を用いることができる。 An optical fiber amplifier is also suitable as the optical waveguide 14. If an optical fiber amplifier is used, spectral peaking can be efficiently generated, and at the same time, the peak intensity can be increased. As the optical fiber amplifier, for example, an erbium-doped fiber amplifier (EDFA) can be used.
 また、光導波路14への入力前にパルス光をスーパーコンティニューム光に変換してもよいし、光導波路14から出力後にパルス光をスーパーコンティニューム光に変換してもよい。スーパーコンティニューム光への変換は、高非線形光ファイバーを用いることができる。スーパーコンティニューム光へ変換することでSN比向上を図ることができる。また、スペクトル幅が非常に大きくなるため、ピークの本数を増加させることができる。たとえば、異常分散のシングルモード光ファイバーと、その後段に接続された高非線形光ファイバーとによって光導波路14を構成してもよい。 Further, the pulsed light may be converted into supercontinuum light before the input to the optical waveguide 14, or the pulsed light may be converted into supercontinuum light after output from the optical waveguide 14. A highly non-linear optical fiber can be used for conversion to supercontinuum light. By converting to supercontinuum light, the SN ratio can be improved. Moreover, since the spectral width becomes very large, the number of peaks can be increased. For example, the optical waveguide 14 may be configured by an anomalous dispersion single-mode optical fiber and a highly non-linear optical fiber connected to a subsequent stage.
 また、光導波路14は複数種類の光ファイバーや平面光導波路、矩形光導波路などを接続して構成されていてもよい。 Further, the optical waveguide 14 may be configured by connecting a plurality of types of optical fibers, a planar optical waveguide, a rectangular optical waveguide, or the like.
 以上、実施例1の光スペクトル生成装置によれば、線状のピークを有したスペクトルのパルス光を生成することができる。特に、線状のピークが等間隔で櫛歯状に並んだ光スペクトルを生成することができる。また、光強度変調器13によりディップの波長を制御することで、線状のピークを所望の波長とすることができる。 As described above, according to the optical spectrum generator of the first embodiment, it is possible to generate pulsed light having a spectrum having a linear peak. In particular, it is possible to generate an optical spectrum in which linear peaks are arranged in a comb-teeth pattern at equal intervals. Further, by controlling the wavelength of the dip with the light intensity modulator 13, the linear peak can be set to a desired wavelength.
 次に、実施例1の光スペクトル生成装置の動作について説明する。 Next, the operation of the optical spectrum generator of the first embodiment will be described.
 パルス光源10から放射されたパルス光は、光増幅器11によって光強度が増幅され、波長シフトファイバー12によって波長帯域が調整された後、光強度変調器13に通される。パルス光は光強度変調器13吸収ピークにおいて強い吸収を受ける。そのため、光強度変調器13を透過したパルス光のスペクトルは、ディップを有することになる(図2(a)参照)。 The light intensity of the pulsed light emitted from the pulse light source 10 is amplified by the optical amplifier 11, the wavelength band is adjusted by the wavelength shift fiber 12, and then the light is passed through the light intensity modulator 13. The pulsed light is strongly absorbed at the light intensity modulator 13 absorption peak. Therefore, the spectrum of the pulsed light transmitted through the light intensity modulator 13 has a dip (see FIG. 2A).
 次に、光強度変調器13からのパルス光は、光導波路14に通される。ここで、ディップの波長における光強度は、光導波路14における伝搬距離に応じて周期的に変化し、ディップとピークとを交互に繰り返す。ここで、光導波路14における伝搬距離は、ディップがピークに変換されたタイミングで光導波路14から出力されるように設定されている。そのため、光導波路14から出力されるパルス光は、ディップであった波長に線状のピークを有したスペクトルとなる(図2(b)参照)。ディップを複数有する場合も、それらを同時にピークに変換することができる。また、パルス光源10を光周波数コム光源とする場合、光周波数コムを切り出すことができ、特にディップを等間隔で複数とすることで、光周波数コムを等間隔で切り出すことができる。また、光強度変調器13によりディップの波長を制御することで、ピークを所望の波長とすることができる。 Next, the pulsed light from the light intensity modulator 13 is passed through the optical waveguide 14. Here, the light intensity at the wavelength of the dip changes periodically according to the propagation distance in the optical waveguide 14, and the dip and the peak are alternately repeated. Here, the propagation distance in the optical waveguide 14 is set so as to be output from the optical waveguide 14 at the timing when the dip is converted to a peak. Therefore, the pulsed light output from the optical waveguide 14 has a spectrum having a linear peak at the wavelength that was a dip (see FIG. 2B). If you have multiple dips, you can convert them to peaks at the same time. Further, when the pulse light source 10 is used as an optical frequency comb light source, the optical frequency combs can be cut out, and in particular, by making a plurality of dips at equal intervals, the optical frequency combs can be cut out at equal intervals. Further, by controlling the wavelength of the dip with the light intensity modulator 13, the peak can be set to a desired wavelength.
 なお、スペクトラルピーキングの周期は、光導波路14における伝搬距離以外に、パルス光の光強度にも依存する。そのため、光導波路14における伝搬距離の制御に替えて、パルス光の光強度の制御によって、ディップがピークに変換されたタイミングで光導波路14から出力されるように設定することも可能である。パルス光の光強度が強いほど光導波路14における非線形効果が大きくなり、位相変化量が大きくなるので、スペクトラルピーキングの周期は短くなる。もちろん、光強度と光導波路14における伝搬距離の両方を制御してもよい。 The period of spectral peaking depends not only on the propagation distance in the optical waveguide 14 but also on the light intensity of the pulsed light. Therefore, instead of controlling the propagation distance in the optical waveguide 14, it is possible to set the output from the optical waveguide 14 at the timing when the dip is converted to the peak by controlling the light intensity of the pulsed light. The stronger the light intensity of the pulsed light, the larger the non-linear effect in the optical waveguide 14, and the larger the amount of phase change, so that the period of spectral peaking becomes shorter. Of course, both the light intensity and the propagation distance in the optical waveguide 14 may be controlled.
 以上、実施例1の光スペクトル生成装置によれば、スペクトルにおける線状のディップを線状のピークに変換することができ、所望の波長に線状のピークを有したスペクトルのパルス光を生成することができる。特に、複数の線状のピークが等間隔で櫛歯状に並んだ光スペクトルを生成することができる。 As described above, according to the optical spectrum generator of Example 1, a linear dip in the spectrum can be converted into a linear peak, and pulsed light of a spectrum having a linear peak at a desired wavelength is generated. be able to. In particular, it is possible to generate an optical spectrum in which a plurality of linear peaks are arranged in a comb-teeth shape at equal intervals.
 次に、実施例1の光スペクトル生成装置に関する各種実験結果について説明する。 Next, various experimental results regarding the optical spectrum generator of Example 1 will be described.
 実施例1の光スペクトル生成装置の光導波路14から放射されるパルス光のスペクトルを数値計算により求めた。この数値計算における各種条件は次の通りである。光導波路14に入力されるパルス光は、スペクトル幅6nm、パルス幅400fsのsech型(ソリトン)でピーク出力500W、中心波長1650nmとした。また、ディップは、中心波長が1650nm、スペクトル幅(半値全幅)が20pmのローレンツ型で、吸収率85%とした。また、光導波路14は異常分散シングルモードファイバーとし、パルス光の波長範囲において二次分散値β=-33ps/km、三次分散値β=0.18ps/km、MFD=11μmとし、ソリトン次数N=0.94とした。また、吸収による位相シフトの影響は無視した。 The spectrum of the pulsed light emitted from the optical waveguide 14 of the optical spectrum generator of Example 1 was obtained by numerical calculation. Various conditions in this numerical calculation are as follows. The pulsed light input to the optical waveguide 14 had a spectrum width of 6 nm, a pulse width of 400 fs, a sech 2 type (soliton), a peak output of 500 W, and a center wavelength of 1650 nm. The dip was a Lorentz type with a center wavelength of 1650 nm and a spectrum width (full width at half maximum) of 20 pm, and had an absorption rate of 85%. The optical waveguide 14 is an anomalous dispersion single mode fiber, and the secondary dispersion value β 2 = −33 ps 2 / km, the tertiary dispersion value β 3 = 0.18 ps 3 / km, and MFD = 11 μm in the wavelength range of the pulsed light. The soliton order N = 0.94. Moreover, the influence of the phase shift due to absorption was ignored.
 図3は、光導波路14から出力されるパルス光のスペクトルと、光導波路14における伝搬距離の関係を数値計算により求めた結果を示したグラフである。図3(a)はラマン散乱を考慮した場合、図3(b)はラマン散乱を無視した場合である。また、図4は、波長1650nmにおける光強度と光導波路14のファイバー長(伝搬距離)との関係を示したグラフである。図3において実線はラマン散乱を考慮した場合、点線はラマン散乱を無視した場合である。 FIG. 3 is a graph showing the result obtained by numerical calculation of the relationship between the spectrum of the pulsed light output from the optical waveguide 14 and the propagation distance in the optical waveguide 14. FIG. 3A shows a case where Raman scattering is taken into consideration, and FIG. 3B shows a case where Raman scattering is ignored. Further, FIG. 4 is a graph showing the relationship between the light intensity at a wavelength of 1650 nm and the fiber length (propagation distance) of the optical waveguide 14. In FIG. 3, the solid line is the case where Raman scattering is considered, and the dotted line is the case where Raman scattering is ignored.
 図3、4のように、波長1650nmにおける光強度が伝搬距離に応じて周期的に変化し、ディップからピーク、ピークからディップと連続的に変化することがわかった。これにより光導波路14の伝搬距離を適切に設定すれば、ピークを有したスペクトルの光パルスを光導波路14から放射させることができるとわかった。また、図3(a)、図4のように、ラマン散乱を考慮するとスペクトル全体としては伝搬距離に応じて長波長側へとシフトし、光強度も全体的に低下していくが、ディップとピークが周期的に変化する波長は1650nmであり変化しなかった。 As shown in FIGS. 3 and 4, it was found that the light intensity at a wavelength of 1650 nm changes periodically according to the propagation distance, and continuously changes from dip to peak and from peak to dip. From this, it was found that if the propagation distance of the optical waveguide 14 is appropriately set, an optical pulse having a spectrum having a peak can be radiated from the optical waveguide 14. Further, as shown in FIGS. 3A and 4, when Raman scattering is taken into consideration, the spectrum as a whole shifts to the long wavelength side according to the propagation distance, and the light intensity also decreases as a whole, but with a dip. The wavelength at which the peak changed periodically was 1650 nm and did not change.
 図5(a)は、ディップのスペクトル幅とピークのスペクトル幅の関係を示したグラフであり、図5(b)はディップとピークを拡大して示した図である。パルス光のパルス幅は200fs、400fsとし、他の数値計算の条件は図3、4と同様である。 FIG. 5A is a graph showing the relationship between the spectral width of the dip and the spectral width of the peak, and FIG. 5B is an enlarged view of the dip and the peak. The pulse widths of the pulsed light are 200 fs and 400 fs, and the other numerical calculation conditions are the same as in FIGS. 3 and 4.
 図5のように、ピークのスペクトル幅は、ディップのスペクトル幅のおよそ0.8倍となることがわかった。 As shown in FIG. 5, it was found that the spectral width of the peak was about 0.8 times the spectral width of the dip.
 図6(a)は、波長1650nmにおけるディップの吸収率とピークの光強度との関係を数値計算により求めた結果を示したグラフであり、図6(b)は、ディップの吸収率を99%としたときのスペクトルを示したグラフである。伝搬距離を0m、11.2mとし、ラマン散乱を考慮した以外は図3、4と同一の条件とした。光強度は吸収がない場合の波長1650nmの光強度で規格した値である。 FIG. 6A is a graph showing the result of numerically calculating the relationship between the dip absorption rate at a wavelength of 1650 nm and the light intensity of the peak, and FIG. 6B is a graph showing the dip absorption rate of 99%. It is a graph which showed the spectrum at the time of. The propagation distance was set to 0 m and 11.2 m, and the conditions were the same as in FIGS. 3 and 4 except that Raman scattering was taken into consideration. The light intensity is a value specified by the light intensity at a wavelength of 1650 nm when there is no absorption.
 図6のように、吸収率が0~25%までは、ピークの光強度はおよそ線形に増加し、吸収量と同等であった。吸収率が50%以上では、ピークの光強度は指数関数的に増加し、吸収率99%ではピークの光強度はおよそ240%となった。この結果、ディップの吸収率は50%以上が好ましいことがわかった。 As shown in FIG. 6, when the absorption rate was 0 to 25%, the light intensity of the peak increased approximately linearly and was equivalent to the absorption amount. When the absorption rate was 50% or more, the peak light intensity increased exponentially, and when the absorption rate was 99%, the peak light intensity was about 240%. As a result, it was found that the absorption rate of the dip is preferably 50% or more.
 図7は、波長1650nmにおける光強度と光導波路14のファイバー長(伝搬距離)との関係について、ディップのスペクトル幅の依存性を調べた結果を示したグラフである。ディップのスペクトル幅を変化させた以外は図3、4と同じ条件とした。 FIG. 7 is a graph showing the results of investigating the dependence of the spectral width of the dip on the relationship between the light intensity at a wavelength of 1650 nm and the fiber length (propagation distance) of the optical waveguide 14. The conditions were the same as in FIGS. 3 and 4 except that the spectral width of the dip was changed.
 図7のように、ディップのスペクトル幅が3nmまでは周期的な光強度の変化が見られたが、3nmを超えると周期的な変化は見られなかった。このことから、ディップをピークへと変換するためには、パルス光のスペクトル幅をディップのスペクトル幅の2倍以上とする必要があることがわかった。 As shown in FIG. 7, a periodic change in light intensity was observed up to a dip spectrum width of 3 nm, but no periodic change was observed when the dip spectrum width exceeded 3 nm. From this, it was found that the spectral width of the pulsed light needs to be at least twice the spectral width of the dip in order to convert the dip into a peak.
 図8は、波長1650nmにおける光強度と光導波路14のファイバー長(伝搬距離)との関係について、パルス光のピーク出力の依存性を調べた結果を示したグラフである。パルス光のピーク出力を400W、500Wと変化させた以外は図3、4と同じ条件とした。 FIG. 8 is a graph showing the results of investigating the dependence of the peak output of pulsed light on the relationship between the light intensity at a wavelength of 1650 nm and the fiber length (propagation distance) of the optical waveguide 14. The conditions were the same as in FIGS. 3 and 4 except that the peak output of the pulsed light was changed to 400 W and 500 W.
 図8のように、光強度は周期的に変化し、その周期は伝搬距離とピーク出力によって変化することがわかった。このことから、波長1650nmにおける光強度が極大となるタイミングで光導波路14から出力されるように制御するためには、光導波路14における伝搬距離またはパルス光のピーク出力を制御すればよいことがわかった。 As shown in FIG. 8, it was found that the light intensity changes periodically, and the period changes depending on the propagation distance and the peak output. From this, it was found that in order to control the output from the optical waveguide 14 at the timing when the light intensity at the wavelength of 1650 nm is maximized, the propagation distance in the optical waveguide 14 or the peak output of the pulsed light should be controlled. rice field.
 図9(a)は、パルス光のスペクトル形状をsech型からガウス型に替えた場合の、波長1650nmにおける光強度と光導波路14のファイバー長(伝搬距離)との関係について示したグラフである。スペクトル形状をガウス型とし、ピーク出力を500W、700W、1000Wと変化させた以外は図3、4と同じ条件とした。また、図9(b)は、ピーク出力500W、ファイバー長16mとしたときのパルス光のスペクトル形状を示したグラフである。 FIG. 9A is a graph showing the relationship between the light intensity at a wavelength of 1650 nm and the fiber length (propagation distance) of the optical waveguide 14 when the spectral shape of the pulsed light is changed from sech 2 type to Gauss type. .. The spectral shape was Gaussian, and the conditions were the same as in FIGS. 3 and 4 except that the peak outputs were changed to 500 W, 700 W, and 1000 W. Further, FIG. 9B is a graph showing the spectral shape of the pulsed light when the peak output is 500 W and the fiber length is 16 m.
 図9のように、スペクトル形状をガウス型とした場合にも、光強度は周期的に変化し、ディップからピークへと変換可能であることがわかった。また、sech型に比べてピークの形状は若干崩れているが、細く線状で強いピークであった。 As shown in FIG. 9, it was found that even when the spectral shape is Gaussian, the light intensity changes periodically and can be converted from a dip to a peak. Moreover, although the shape of the peak was slightly distorted as compared with the sec 2 type, it was a thin, linear and strong peak.
 図10(a)は、パルス光のスペクトル形状をsech型からスーパーガウス型に替えた場合の、波長1650nmにおける光強度と光導波路14のファイバー長(伝搬距離)との関係について示したグラフである。スペクトル形状をスーパーガウス型とし、ピーク出力を500W、750W、1000Wと変化させた以外は図3、4と同じ条件とした。また、図10(b)は、ピーク出力500W、ファイバー長0m、26mとしたときのパルス光のスペクトル形状を示したグラフである。 FIG. 10A is a graph showing the relationship between the light intensity at a wavelength of 1650 nm and the fiber length (propagation distance) of the optical waveguide 14 when the spectral shape of the pulsed light is changed from sech 2 type to Super Gauss type. be. The spectral shape was a Super Gaussian type, and the conditions were the same as in FIGS. 3 and 4 except that the peak outputs were changed to 500 W, 750 W, and 1000 W. Further, FIG. 10B is a graph showing the spectral shape of the pulsed light when the peak output is 500 W, the fiber length is 0 m, and the fiber length is 26 m.
 図10のように、スペクトル形状をスーパーガウス型とした場合にも、光強度は周期的に変化し、ディップからピークへと変換可能であることがわかった。また、sech型に比べてピークの形状は若干崩れているが、細く線状で強いピークであった。また、全体のスペクトル形状がより狭くなることがわかった。 As shown in FIG. 10, it was found that even when the spectral shape is a Super Gaussian type, the light intensity changes periodically and can be converted from a dip to a peak. Moreover, although the shape of the peak was slightly distorted as compared with the sec 2 type, it was a thin, linear and strong peak. It was also found that the overall spectral shape became narrower.
 図3、4、9、10を比較すると、パルス光のスペクトル形状はsech型が最も好ましいことがわかった。sech型のソリトンパルスは、定常状態では時間波形にわたって一様な位相シフトを受け、パルス波形も安定で維持されるため、ガウス型やスーパーガウス型に比べてピーク形状が綺麗に出ると考えられる。 Comparing FIGS. 3, 4, 9 and 10, it was found that the sech 2 type is the most preferable for the spectral shape of the pulsed light. The sech 2 type soliton pulse undergoes a uniform phase shift over the time waveform in the steady state, and the pulse waveform is also maintained stable, so it is thought that the peak shape appears more clearly than the Gauss type and Super Gauss type. ..
 図11(a)は、ディップのスペクトル形状をローレンツ型からガウス型に替えた場合の、波長1650nmにおける光強度と光導波路14のファイバー長(伝搬距離)との関係について示したグラフである。ディップのスペクトル形状をガウス型とし、ピーク出力500Wとした以外は図3、4と同じ条件とした。また、図11(b)は、ファイバー長0m、26mとしたときのパルス光のスペクトル形状を示したグラフである。 FIG. 11A is a graph showing the relationship between the light intensity at a wavelength of 1650 nm and the fiber length (propagation distance) of the optical waveguide 14 when the spectral shape of the dip is changed from the Lorentz type to the Gauss type. The conditions were the same as in FIGS. 3 and 4 except that the spectral shape of the dip was Gaussian and the peak output was 500 W. Further, FIG. 11B is a graph showing the spectral shape of the pulsed light when the fiber length is 0 m and 26 m.
 図11のように、ディップのスペクトル形状をガウス型とした場合も、ローレンツ型の場合と同様に、細く線状で強いピークとすることができた。 As shown in FIG. 11, even when the spectral shape of the dip was Gaussian, it was possible to obtain a thin, linear and strong peak as in the case of the Lorentz type.
 図12(a)~(c)は、ファイバー長が0m、6m、12mのときのスペクトル形状を示し、図12(d)~(f)は、それらに対応する時間波形と位相を示したグラフである。 12 (a) to 12 (c) show the spectral shapes when the fiber lengths are 0 m, 6 m, and 12 m, and FIGS. 12 (d) to 12 (f) are graphs showing the time waveforms and phases corresponding to them. Is.
 図12から、ディップとピークが周期的に現れる理由は次のように考えられる。図12(d)~(f)のように、時間波形は、幅の狭いパルスと、幅の広いパルスの重ね合わせで表現される。幅の広いパルスは、スペクトル形状におけるディップやピークに対応し、幅の狭いパルスは、ディップやピーク以外の部分に対応している。ファイバー長が0mでは、図12(d)のように、幅の狭いパルスと幅の広いパルスとで位相がπ異なっていて打ち消されるため、図12(a)のようにスペクトル形状においてはディップとなる。パルス光が光導波路14を伝搬すると、幅の狭いパルスは強度が強いため非線形効果による位相シフトを連続的に受ける。一方、幅の広いパルスは強度が弱いため位相シフトは無視できるほど小さい。そのため、幅の狭いパルスと幅の広いパルスとの位相差が、ファイバー長に応じて周期的に変化し、図12(f)のように位相差が0、またはπの偶数倍となったときに、幅の狭いパルスと幅の広いパルスとが強め合い、図12(c)のようにスペクトル形状においては強い線状のピークとなる。また、図12(d)のように位相差がπ、またはπの奇数倍となったときに、図12(a)のようにスペクトル形状においては線状のディップとなる。このようにして、ファイバー長に応じて光強度が周期的に変化し、ディップとピークが交互に周期的に現れる。 From Fig. 12, the reason why dips and peaks appear periodically is considered as follows. As shown in FIGS. 12 (d) to 12 (f), the time waveform is represented by a superposition of a narrow pulse and a wide pulse. Wide pulses correspond to dips and peaks in the spectral shape, and narrow pulses correspond to parts other than dips and peaks. When the fiber length is 0 m, as shown in FIG. 12 (d), the phases of the narrow pulse and the wide pulse are different by π and are canceled out. Therefore, as shown in FIG. 12 (a), the spectral shape is dip. Become. When the pulsed light propagates through the optical waveguide 14, the narrow pulse has a high intensity and is continuously subjected to a phase shift due to a non-linear effect. On the other hand, a wide pulse has a weak intensity, so the phase shift is negligibly small. Therefore, when the phase difference between the narrow pulse and the wide pulse changes periodically according to the fiber length and the phase difference becomes 0 or even multiples of π as shown in FIG. 12 (f). In addition, the narrow pulse and the wide pulse strengthen each other, resulting in a strong linear peak in the spectral shape as shown in FIG. 12 (c). Further, when the phase difference becomes π or an odd multiple of π as shown in FIG. 12 (d), a linear dip is obtained in the spectral shape as shown in FIG. 12 (a). In this way, the light intensity changes periodically according to the fiber length, and dips and peaks appear alternately and periodically.
 図13は、ディップをメタンの1650nm付近の複数の吸収線とした場合について、光導波路14から出力されるパルス光のスペクトルと、光導波路14における伝搬距離の関係を数値計算により求めた結果を示したグラフである。パルス光は、パルス幅400fsのsech型でピーク出力2kW、中心波長1650nmとした。他の条件は図3、4と同様とした。 FIG. 13 shows the results obtained by numerical calculation of the relationship between the spectrum of the pulsed light output from the optical waveguide 14 and the propagation distance in the optical waveguide 14 when the dip is a plurality of absorption lines in the vicinity of 1650 nm of methane. It is a graph. The pulsed light was a sech 2 type with a pulse width of 400 fs, a peak output of 2 kW, and a center wavelength of 1650 nm. Other conditions were the same as in FIGS. 3 and 4.
 図13のように、複数のディップを有する場合であっても、伝搬距離に応じてそれらのディップの波長における光強度が周期的に変化し、複数の線状のピークに同時に変換可能であることがわかった。また、メタンの吸収線は等間隔で並んでいるため、変換された複数の線状のピークも等間隔であった。また、各ピークの強度はパルス光の中心波長付近で強く、中心波長から離れるほど弱くなることがわかった。また、伝搬距離が長くなると各ピークの周期性にずれが生じることもわかった。これは、位相シフト量に波長依存性があるためと考えられる。また、図13から、290GHzの超高繰り返し率のパルス列を生成可能であることがわかった。 As shown in FIG. 13, even when having a plurality of dips, the light intensity at the wavelengths of those dips changes periodically according to the propagation distance, and can be simultaneously converted into a plurality of linear peaks. I understood. Moreover, since the absorption lines of methane are arranged at equal intervals, the converted plurality of linear peaks are also at equal intervals. It was also found that the intensity of each peak was strong near the center wavelength of the pulsed light and weakened as the distance from the center wavelength increased. It was also found that the periodicity of each peak shifts as the propagation distance increases. It is considered that this is because the phase shift amount has a wavelength dependence. Further, from FIG. 13, it was found that a pulse train having an ultra-high repetition rate of 290 GHz can be generated.
 次に、実施例1の光スペクトル生成装置を実際に作製し、その出力を光スペクトルアナライザーと光パワーにより測定し、各平均出力におけるスペクトル形状を測定した。具体的な装置構成は次の通りとした。短パルス光源10は、偏波保持Erドープファイバーと単層カーボンナノチューブを用いたリング型共振器のファイバーレーザーとし、繰り返し率28MHz、パルス幅300fs、中心波長1556nmのパルス光が出力されるものを用いた。光増幅器11には、全偏波保持型のErドープファイバー増幅器を用いた。波長シフトファイバー12には、異常分散シングルモード偏波保持ファイバーを用い、その出力はパルス幅200fsのsech型ソリトンパルスとした。また、中心波長が1650nmとなるように光増幅器11において出力を調整した。光強度変調器13はメタンガスを封入したガスセルとし、波長シフトファイバー12からの出力をロングパスフィルタに通した後、ガスセルに通した。光導波路14は20mのシングルモードファイバーとし、ガスセルを透過したパルス光をシングルモードファイバーに通した。 Next, the optical spectrum generator of Example 1 was actually manufactured, its output was measured by an optical spectrum analyzer and optical power, and the spectrum shape at each average output was measured. The specific device configuration is as follows. The short pulse light source 10 is a fiber laser of a ring-type resonator using a polarization-retaining Er-doped fiber and a single-layer carbon nanotube, and is used to output pulsed light having a repetition rate of 28 MHz, a pulse width of 300 fs, and a center wavelength of 1556 nm. board. As the optical amplifier 11, a fully polarized wave holding type Er-doped fiber amplifier was used. As the wavelength shift fiber 12, an anomalous dispersion single-mode polarization holding fiber was used, and the output thereof was a sech 2 type soliton pulse having a pulse width of 200 fs. Further, the output was adjusted in the optical amplifier 11 so that the center wavelength was 1650 nm. The light intensity modulator 13 was a gas cell filled with methane gas, and the output from the wavelength shift fiber 12 was passed through a long-pass filter and then passed through the gas cell. The optical waveguide 14 was a 20 m single-mode fiber, and pulsed light transmitted through the gas cell was passed through the single-mode fiber.
 図14(a)は、スペクトルの測定結果を示したグラフ、図14(b)は、数値計算により求めたスペクトルを示したグラフである。図14(a)のように、平均出力1.0mWではメタンガスによる等間隔の複数の吸収線が見られた。平均出力が大きくなると、ソリトン効果によりスペクトル幅が圧縮され、吸収線の波長における光強度が変化し、線状のディップを線状のピークに変換できることがわかった。また、図14(a)と図14(b)とを比較すると、測定結果は数値計算の結果とおおよそ一致していた。 FIG. 14 (a) is a graph showing the measurement results of the spectrum, and FIG. 14 (b) is a graph showing the spectrum obtained by numerical calculation. As shown in FIG. 14A, at an average output of 1.0 mW, a plurality of equally spaced absorption lines due to methane gas were observed. It was found that when the average output increased, the spectral width was compressed by the soliton effect, the light intensity at the wavelength of the absorption line changed, and the linear dip could be converted into a linear peak. Further, when FIG. 14 (a) and FIG. 14 (b) were compared, the measurement results were substantially in agreement with the results of the numerical calculation.
 次に、光導波路14をファイバー長が5mでMFD=5.5μmの小径コアファイバーに替えて同様にスペクトル形状を測定した。図15はそのスペクトル形状の測定結果を示したグラフである。図15のように、吸収線の波長における光強度が変化し、線状のディップを線状のピークに変換できることがわかった。また、小径コアファイバーは図14で用いたシングルモードファイバーに比べてソリトン次数が高いため、平均出力が大きいほどスペクトル幅が広がった。スペクトル幅が広がった結果、ディップやピークの数も増加した。また、平均出力が大きいほど自己位相変調とラマン散乱によるスペクトル形状の崩れが大きくなった。 Next, the optical waveguide 14 was replaced with a small-diameter core fiber having a fiber length of 5 m and MFD = 5.5 μm, and the spectral shape was measured in the same manner. FIG. 15 is a graph showing the measurement result of the spectral shape. As shown in FIG. 15, it was found that the light intensity at the wavelength of the absorption line changed and the linear dip could be converted into a linear peak. Further, since the small-diameter core fiber has a higher soliton order than the single-mode fiber used in FIG. 14, the larger the average output, the wider the spectrum width. As a result of the widening of the spectral width, the number of dips and peaks also increased. In addition, the larger the average output, the greater the deformation of the spectral shape due to self-phase modulation and Raman scattering.
 図16は、波長1650nm付近のスペクトル形状を拡大して示したグラフである。図16のように、スペクトル幅20pmのディップがスペクトル幅18pmのピークに変換されており、数値計算の結果とおおよそ一致していた。また、パルス形状の崩れによってバックグラウンドの出力レベルが低く、高いSN比が得られた。 FIG. 16 is an enlarged graph showing the spectral shape near the wavelength of 1650 nm. As shown in FIG. 16, a dip having a spectrum width of 20 pm was converted into a peak having a spectrum width of 18 pm, which was in good agreement with the result of the numerical calculation. In addition, the background output level was low due to the collapse of the pulse shape, and a high SN ratio was obtained.
 次に、光導波路14をシングルモードファイバーと正常分散の高非線形光ファイバーを順に接続したものに替えて同様にスペクトル形状を測定した。前段のシングルモードファイバーは10cmとし、後段の高非線形光ファイバーは5mとした。高非線形光ファイバーの二次分散値β=6.4ps/km、三次分散値β=0.0057ps/kmとし、非線形係数は波長1.56μmで23W-1km-1とした。 Next, the optical waveguide 14 was replaced with a single-mode fiber and a normally dispersed high-non-linear optical fiber connected in order, and the spectral shape was measured in the same manner. The single-mode fiber in the first stage was set to 10 cm, and the high-non-linear optical fiber in the rear stage was set to 5 m. The secondary dispersion value β 2 = 6.4 ps 2 / km and the tertiary dispersion value β 3 = 0.0057 ps 3 / km of the highly nonlinear optical fiber were set, and the nonlinear coefficient was set to 23 W -1 km -1 at a wavelength of 1.56 μm.
 図17はスペクトル形状の測定結果を示したグラフである。図17のように、吸収線の波長における光強度が変化し、平均出力が増加するにつれて線状のディップと線状のピークが周期的に変化することがわかった。また、高非線形光ファイバーによる強い自己位相変調のためスペクトル幅が大きく広がり、ピークの本数が増加し、SN比も増加することがわかった。 FIG. 17 is a graph showing the measurement results of the spectral shape. As shown in FIG. 17, it was found that the light intensity at the wavelength of the absorption line changed, and the linear dip and the linear peak changed periodically as the average output increased. It was also found that the spectral width was greatly widened due to the strong self-phase modulation by the highly nonlinear optical fiber, the number of peaks increased, and the SN ratio also increased.
 次に、光強度変調器13として、図18に示す回折格子132とSLM131の組み合わせを用いた。回折格子132には、900line/mmのものを用い、SLM131には20μmピッチで800ピクセルのものを用いた。 Next, as the light intensity modulator 13, a combination of the diffraction grating 132 and SLM131 shown in FIG. 18 was used. The diffraction grating 132 used was 900 lines / mm, and the SLM 131 was 800 pixels at a pitch of 20 μm.
 図19は、図18の光強度変調器13への入力光および出力光のスペクトルを示したグラフである。図19のように、等間隔の複数のディップを所望の波長に生成することができた。 FIG. 19 is a graph showing spectra of input light and output light to the light intensity modulator 13 of FIG. As shown in FIG. 19, a plurality of evenly spaced dips could be generated at a desired wavelength.
 図20は、図18の光強度変調器13からの光を光ファイバーに通した後のスペクトルを示したグラフである。図20のように、ディップをピークに変換することができた。この結果、図18の光強度変調器13を用いれば、所望の波長にピークを生成できることがわかった。 FIG. 20 is a graph showing a spectrum after passing light from the light intensity modulator 13 of FIG. 18 through an optical fiber. As shown in FIG. 20, the dip could be converted into a peak. As a result, it was found that the peak can be generated at a desired wavelength by using the light intensity modulator 13 of FIG.
 図21は、実施例2の光スペクトル生成装置の構成を示した図である。実施例2の光スペクトル生成装置は、実施例1の光スペクトル生成装置の光強度変調器13を、光位相変調器23に替えたものであり、他の構成は同様である。 FIG. 21 is a diagram showing the configuration of the optical spectrum generator of the second embodiment. The optical spectrum generator of the second embodiment replaces the optical intensity modulator 13 of the optical spectrum generator of the first embodiment with an optical phase modulator 23, and has the same other configurations.
 光位相変調器23は、任意の波長の位相を変調する装置である。その構成は、図18と同様に、回折格子132とSLM131を組み合わせた構成とすることができる。ただし、SLM131により強度変調させるのではなく、位相変調させる点で異なっている。光位相変調器23により所定の波長が位相変調されたパルス光を、光導波路14に通すと、実施例1と同様に位相変調された波長にスペクトルピーキングが発生する。つまり、位相変調された波長に光導波路14の伝送距離に応じてディップとピークが交互に繰り返し現れる。したがって、光導波路14の伝送距離を適切に設定することで、所定の波長に線状のピークを有したスペクトルのパルス光を生成することができる。位相変調量は0でなければ任意でよいが、πに近いほどピーク強度を大きくすることができる。たとえば、0.1~π(rad)、または-π~-0.1(rad)の位相変調量とする。 The optical phase modulator 23 is a device that modulates the phase of an arbitrary wavelength. The configuration may be a combination of the diffraction grating 132 and the SLM 131, as in FIG. However, it differs in that it is phase-modulated rather than intensity-modulated by SLM131. When pulsed light whose phase has been phase-modulated by the optical phase modulator 23 is passed through the optical waveguide 14, spectral peaking occurs at the phase-modulated wavelength as in the first embodiment. That is, dips and peaks appear alternately and repeatedly at the phase-modulated wavelength according to the transmission distance of the optical waveguide 14. Therefore, by appropriately setting the transmission distance of the optical waveguide 14, pulsed light having a spectrum having a linear peak at a predetermined wavelength can be generated. The phase modulation amount may be arbitrary as long as it is not 0, but the closer to π, the larger the peak intensity can be. For example, the phase modulation amount is 0.1 to π (rad) or −π to −0.1 (rad).
 このように、強度変調ではなく位相変調でもスペクトルピーキングが発生する理由は、図12に示唆されている通りである。つまり、位相変調を受けた領域と、位相変調を受けた領域以外の部分とでは、非線形効果によって光導波路14中における位相シフト量に違いが生じる。そのため、位相変調を受けた領域と位相変調を受けた領域以外の部分との位相差が、伝送距離に応じて周期的に変化し、位相差が0、またはπの偶数倍となったときに強め合い、位相差がπ、またはπの奇数倍となったときに弱め合う。その結果、光導波路14における伝送距離に応じて光強度が周期的に変化し、ディップとピークが交互に周期的に現れる。 As described above, the reason why spectral peaking occurs even in phase modulation instead of intensity modulation is as suggested in FIG. That is, a difference in the amount of phase shift in the optical waveguide 14 occurs due to the non-linear effect between the region subjected to the phase modulation and the portion other than the region subjected to the phase modulation. Therefore, when the phase difference between the region subjected to phase modulation and the portion other than the region subjected to phase modulation changes periodically according to the transmission distance and the phase difference becomes 0 or an even multiple of π. They strengthen each other and weaken each other when the phase difference becomes π or an odd multiple of π. As a result, the light intensity changes periodically according to the transmission distance in the optical waveguide 14, and dips and peaks appear alternately and periodically.
 なお、強度変調と位相変調の双方を行ってもよい。同様にスペクトルピーキングが発生し、ピークを生成することができる。 Note that both intensity modulation and phase modulation may be performed. Similarly, spectral peaking can occur and peaks can be generated.
 図22は、実施例2の光スペクトル生成装置の光導波路14から放射されるパルス光のスペクトルを数値計算により求めた結果である。図22(a)は、光導波路14に入力されるパルス光のパワースペクトルと位相スペクトルを示したグラフである。図22(b)は、光導波路14から出力されるパルス光のパワースペクトルを示したグラフである。図22(a)のように、入力させるパルス光は、所定の周波数間隔で位相変調を受けている。そして図22(b)のように、位相変調を受けた波長にピークが生成されることがわかった。 FIG. 22 is a result obtained by numerically calculating the spectrum of the pulsed light radiated from the optical waveguide 14 of the optical spectrum generator of the second embodiment. FIG. 22A is a graph showing the power spectrum and phase spectrum of the pulsed light input to the optical waveguide 14. FIG. 22B is a graph showing the power spectrum of the pulsed light output from the optical waveguide 14. As shown in FIG. 22A, the pulsed light to be input is phase-modulated at predetermined frequency intervals. Then, as shown in FIG. 22 (b), it was found that a peak was generated at the wavelength subjected to the phase modulation.
(各種変形例)
 本開示の光スペクトル生成装置は、線状のピークを複数有したスペクトルを生成するのに好適である。そのようなスペクトルの光は、光多重通信などに利用することができる。
(Various deformation examples)
The optical spectrum generator of the present disclosure is suitable for generating a spectrum having a plurality of linear peaks. Light having such a spectrum can be used for optical multiplex communication and the like.
 また、本開示の光スペクトル生成装置は、光周波数コムを等間隔で切り出すのに好適である。従来の光周波数コム生成方法はコム間隔が狭く、実用上、コム間隔を広げたり、コム線を適度に間引くことが求められていたが、そのような制御は困難であった。しかし、本開示によれば、光強度変調器13の特性によって光周波数コムを所望の間隔で切り出すことができるので、実用性を向上させることができる。たとえば、従来の光周波数コムではコム間隔は数十MHzであったが、本開示によればこれを数百GHzの間隔で切り出すことができる。 Further, the optical spectrum generator of the present disclosure is suitable for cutting out optical frequency combs at equal intervals. In the conventional optical frequency comb generation method, the comb interval is narrow, and practically, it is required to widen the comb interval or appropriately thin the comb lines, but such control is difficult. However, according to the present disclosure, the optical frequency combs can be cut out at desired intervals due to the characteristics of the optical intensity modulator 13, so that practicality can be improved. For example, in the conventional optical frequency comb, the comb interval is several tens of MHz, but according to the present disclosure, this can be cut out at an interval of several hundred GHz.
 また、本開示の光スペクトル生成装置によれば、高繰り返し率のパルス光とすることができるので、光サンプリングにも好適である。 Further, according to the optical spectrum generator of the present disclosure, pulsed light having a high repetition rate can be obtained, which is suitable for optical sampling.
 本開示により生成するピークの波長は限定されず、任意の波長のピークを生成することができる。たとえば、中赤外線帯域や遠赤外線帯域などにおいてもピークを生成することができる。 The wavelength of the peak generated by the present disclosure is not limited, and a peak of any wavelength can be generated. For example, peaks can be generated even in the mid-infrared band and the far-infrared band.
 本開示は、光周波数コムの生成、光波長多重通信、光サンプリングなどに利用することができる。 This disclosure can be used for generation of optical frequency combs, optical wavelength division multiplexing, optical sampling, and the like.
 10:パルス光源
 11:光増幅器
 12:波長シフトファイバー
 13:光強度変調器
 14:光導波路
 23:光位相変調器
10: Pulse light source 11: Optical amplifier 12: Wavelength shift fiber 13: Optical intensity modulator 14: Optical wave guide 23: Optical phase modulator

Claims (19)

  1.  ピークを有したスペクトルのパルス光を生成する光スペクトル生成装置であって、
     パルス光を発生させるパルス光源と、
     前記パルス光源からのパルス光の所定波長を強度変調または位相変調する光変調器と、
    前記光変調器からのパルス光を伝搬させ、前記パルス光に非線形効果を生じさせ、前記所定波長に前記ピークを生じさせる光導波路と、
    を有し、
     パルス光のスペクトル幅は、前記所定波長のスペクトル幅の2倍以上である、
    ことを特徴とする光スペクトル生成装置。
    An optical spectrum generator that generates pulsed light in a spectrum with a peak.
    A pulse light source that generates pulsed light and
    An optical modulator that intensity-modulates or phase-modulates a predetermined wavelength of pulsed light from the pulsed light source,
    An optical waveguide that propagates pulsed light from the light modulator, causes the pulsed light to have a non-linear effect, and produces the peak at the predetermined wavelength.
    Have,
    The spectral width of the pulsed light is at least twice the spectral width of the predetermined wavelength.
    An optical spectrum generator characterized by this.
  2.  前記パルス光のパルス形状は、sech型である、ことを特徴とする請求項1に記載の光スペクトル生成装置。 The optical spectrum generator according to claim 1, wherein the pulse shape of the pulsed light is sech 2 type.
  3.  前記光変調器は、複数の波長に強度変調または位相変調を生じさせる、ことを特徴とする請求項1または請求項2に記載の光スペクトル生成装置。 The optical spectrum generator according to claim 1 or 2, wherein the light modulator causes intensity modulation or phase modulation at a plurality of wavelengths.
  4.  前記光変調器は、等間隔で離散的に並んだ複数の波長に強度変調または位相変調を生じさせる、ことを特徴とする請求項3に記載の光スペクトル生成装置。 The optical spectrum generator according to claim 3, wherein the light modulator causes intensity modulation or phase modulation at a plurality of wavelengths discretely arranged at equal intervals.
  5.  前記光変調器は、前記所定波長を強度変調してディップを生じさせる光強度変調器である、ことを特徴とする請求項1から請求項4までのいずれか1項に記載の光スペクトル生成装置。 The optical spectrum generator according to any one of claims 1 to 4, wherein the light modulator is an optical intensity modulator that intensity-modulates the predetermined wavelength to generate a dip. ..
  6.  前記ディップのスペクトル形状は、ローレンツ型またはガウス型である、ことを特徴とする請求項5に記載の光スペクトル生成装置。 The optical spectrum generator according to claim 5, wherein the spectral shape of the dip is a Lorentz type or a Gauss type.
  7.  前記光強度変調器は、ガスであることを特徴とする請求項5または請求項6に記載の光スペクトル生成装置。 The optical spectrum generator according to claim 5 or 6, wherein the light intensity modulator is a gas.
  8.  前記ガスはメタンである、ことを特徴とする請求項7に記載の光スペクトル生成装置。 The optical spectrum generator according to claim 7, wherein the gas is methane.
  9.  前記光強度変調器は、ファイバーブラッググレーティングであることを特徴とする請求項5または請求項6に記載の光スペクトル生成装置。 The optical spectrum generator according to claim 5 or 6, wherein the optical intensity modulator is a fiber Bragg grating.
  10.  前記光強度変調器は、
     前記パルス光源からのパルス光を波長分離する波長分離素子と、
     前記波長分離素子からの光が波長ごとに異なる位置に入射し、その位置ごとに光を強度変調する空間光強度変調器と、
     を有する、ことを特徴とする請求項5または請求項6に記載の光スペクトル生成装置。
    The light intensity modulator is
    A wavelength separation element that separates the pulsed light from the pulse light source by wavelength,
    A spatial light intensity modulator in which light from the wavelength separation element is incident at different positions for each wavelength and the intensity of the light is modulated for each position.
    The optical spectrum generator according to claim 5 or 6, wherein the optical spectrum generator comprises the above.
  11.  前記光変調器は、前記所定波長を位相変調する光位相変調器である、ことを特徴とする請求項1から請求項4までのいずれか1項に記載の光スペクトル生成装置。 The optical spectrum generator according to any one of claims 1 to 4, wherein the light modulator is an optical phase modulator that phase-modulates the predetermined wavelength.
  12.  前記光位相変調器は、
     前記パルス光源からのパルス光を波長分離する波長分離素子と、
     前記波長分離素子からの光が波長ごとに異なる位置に入射し、その位置ごとに光を位相変調する空間光位相変調器と、
     を有する、ことを特徴とする請求項11に記載の光スペクトル生成装置。
    The optical phase modulator is
    A wavelength separation element that separates the pulsed light from the pulse light source by wavelength,
    A spatial optical phase modulator in which light from the wavelength separation element is incident at different positions for each wavelength and phase-modulates the light for each position.
    11. The optical spectrum generator according to claim 11.
  13.  前記パルス光源は、光周波数コムを出力する光周波数コム光源である、ことを特徴とする請求項1から請求項12までのいずれか1項に記載の光スペクトル生成装置。 The optical spectrum generator according to any one of claims 1 to 12, wherein the pulse light source is an optical frequency comb light source that outputs an optical frequency comb.
  14.  前記光導波路は、異常分散のシングルモード光ファイバーである、ことを特徴とする請求項1から請求項13までのいずれか1項に記載の光スペクトル生成装置。 The optical spectrum generator according to any one of claims 1 to 13, wherein the optical waveguide is an anomalous dispersion single-mode optical fiber.
  15.  前記光導波路は、小径コアファイバーである、ことを特徴とする請求項1から請求項13までのいずれか1項に記載の光スペクトル生成装置。 The optical spectrum generator according to any one of claims 1 to 13, wherein the optical waveguide is a small-diameter core fiber.
  16.  前記光導波路は、異常分散のシングルモードファイバーと、前記異常分散のシングルモードファイバーの後段に接続された高非線形光ファイバーと、により構成されている、ことを特徴とする請求項1から請求項13までのいずれか1項に記載の光スペクトル生成装置。 Claims 1 to 13 are characterized in that the optical waveguide is composed of an anomalous dispersion single-mode fiber and a highly nonlinear optical fiber connected to a subsequent stage of the anomalous dispersion single-mode fiber. The optical spectrum generator according to any one of the above items.
  17.  前記光導波路は、光ファイバーアンプである、ことを特徴とする請求項1から請求項13までのいずれか1項に記載の光スペクトル生成装置。 The optical spectrum generator according to any one of claims 1 to 13, wherein the optical waveguide is an optical fiber amplifier.
  18.  パルス光のパルス幅は、10fs~100psである、ことを特徴とする請求項1から請求項17までのいずれか1項に記載の光スペクトル生成装置。 The optical spectrum generator according to any one of claims 1 to 17, wherein the pulse width of the pulsed light is 10 fs to 100 ps.
  19.  ピークを有したスペクトルのパルス光を生成する光スペクトル生成方法であって、
     パルス光の所定波長に強度変調または位相変調を生じさせた後、光導波路に前記パルス光を伝搬させて前記パルス光に非線形効果を生じさせ、前記所定波長に前記ピークを生じさせる、
     ことを特徴とする光スペクトル生成方法。
    It is an optical spectrum generation method that generates pulsed light of a spectrum having a peak.
    After causing intensity modulation or phase modulation at a predetermined wavelength of the pulsed light, the pulsed light is propagated to the optical waveguide to cause a non-linear effect on the pulsed light, and the peak is generated at the predetermined wavelength.
    A method for generating an optical spectrum.
PCT/JP2021/021693 2020-06-11 2021-06-08 Optical spectrum generation device and optical spectrum generation method WO2021251365A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022530568A JPWO2021251365A1 (en) 2020-06-11 2021-06-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020101543 2020-06-11
JP2020-101543 2020-06-11

Publications (1)

Publication Number Publication Date
WO2021251365A1 true WO2021251365A1 (en) 2021-12-16

Family

ID=78845688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021693 WO2021251365A1 (en) 2020-06-11 2021-06-08 Optical spectrum generation device and optical spectrum generation method

Country Status (2)

Country Link
JP (1) JPWO2021251365A1 (en)
WO (1) WO2021251365A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224319A (en) * 2002-01-30 2003-08-08 Japan Science & Technology Corp Device and method for generating laser light
JP2004062153A (en) * 2002-06-03 2004-02-26 Nippon Telegr & Teleph Corp <Ntt> Standard radio frequency signal generating method and standard radio frequency signal generating device
JP2004193666A (en) * 2002-12-06 2004-07-08 Fujitsu Ltd Optical time division demultiplexer
WO2008003138A1 (en) * 2006-07-07 2008-01-10 The University Of Sydney Tunable optical supercontinuum enhancement
US20090245729A1 (en) * 2008-03-26 2009-10-01 Imra America, Inc. Ultra small core fiber with dispersion tailoring
JP2017146217A (en) * 2016-02-18 2017-08-24 日本電信電話株式会社 Optical frequency comb measurement device
US20180048113A1 (en) * 2015-04-08 2018-02-15 Imra America, Inc. Systems and methods for low noise frequency multiplication, division, and synchronization

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224319A (en) * 2002-01-30 2003-08-08 Japan Science & Technology Corp Device and method for generating laser light
JP2004062153A (en) * 2002-06-03 2004-02-26 Nippon Telegr & Teleph Corp <Ntt> Standard radio frequency signal generating method and standard radio frequency signal generating device
JP2004193666A (en) * 2002-12-06 2004-07-08 Fujitsu Ltd Optical time division demultiplexer
WO2008003138A1 (en) * 2006-07-07 2008-01-10 The University Of Sydney Tunable optical supercontinuum enhancement
US20090245729A1 (en) * 2008-03-26 2009-10-01 Imra America, Inc. Ultra small core fiber with dispersion tailoring
US20180048113A1 (en) * 2015-04-08 2018-02-15 Imra America, Inc. Systems and methods for low noise frequency multiplication, division, and synchronization
JP2017146217A (en) * 2016-02-18 2017-08-24 日本電信電話株式会社 Optical frequency comb measurement device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PIOGER P H, COUDERC V, LEPROUX P, CHAMPERT P A,: "High spectral power density supercontinuum generation in a nonlinear fiber amplifier", OPTICS EXPRESS, vol. 15, no. 18, 22 August 2007 (2007-08-22), pages 11358 - 11363, XP055885461 *

Also Published As

Publication number Publication date
JPWO2021251365A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
US6775447B2 (en) All fiber low noise supercontinuum source
JP3941887B2 (en) Wavelength moving laser and method of operating the same
US6195484B1 (en) Method and apparatus for arbitrary spectral shaping of an optical pulse
Lee et al. Soliton self-frequency shift: experimental demonstrations and applications
De Sterke et al. High-intensity pulse propagation in uniform gratings and grating superstructures
US9106051B1 (en) Multi-wavelength seed source for coherent fiber amplifiers
US10141709B2 (en) Transient Bragg gratings in optical waveguides and their applications
US9172206B2 (en) Fiber laser system
Burgoyne et al. Programmable lasers: design and applications
Chen et al. Applications of ultrashort pulse propagation in Bragg gratings for wavelength-division multiplexing and code-division multiple access
JP2008216716A (en) Supercontinuum light source
Huang et al. Generation of dissipative solitons and self-similar pulses by a mode-locked fiber laser using a bandwidth tunable Mach-Zehnder interferometer filter
Smirnov et al. Supercontinuum in telecom applications
US20020164135A1 (en) Optical pulse waveform conversion
Zuo et al. Recent progress and development trend of self-sweeping fiber laser
US11881681B2 (en) Precision light source
Song et al. Switchable and tunable dual-wavelength ultrashort pulse generation in a passively mode-locked erbium-doped fiber ring laser
US20050286108A1 (en) Ultrafast optical delay lines using a time-prism pair
US20150043598A1 (en) Method for generating optical pulses and optical pulse generator
WO2021251365A1 (en) Optical spectrum generation device and optical spectrum generation method
Wang et al. All-fiber wavelength-tunable mode-locked cylindrical vector beams laser based on multimode interference
US20090263079A1 (en) Optical routers and logical gates based on the propagation of bragg solitons in non-uniform one-dimensional photonic crystals
Luo et al. Simple open-cavity pulsed Brillouin fiber laser with broadband supercontinuum generation
US10135220B2 (en) Synchronized tunable mode-locked lasers
Feng et al. Wavelength and pulse-number tunable ultrafast vortex fiber laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530568

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821106

Country of ref document: EP

Kind code of ref document: A1