WO2021251230A1 - Exhaust gas purification system and exhaust gas purification device - Google Patents

Exhaust gas purification system and exhaust gas purification device Download PDF

Info

Publication number
WO2021251230A1
WO2021251230A1 PCT/JP2021/020965 JP2021020965W WO2021251230A1 WO 2021251230 A1 WO2021251230 A1 WO 2021251230A1 JP 2021020965 W JP2021020965 W JP 2021020965W WO 2021251230 A1 WO2021251230 A1 WO 2021251230A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
gas
exhaust
path
desulfurizer
Prior art date
Application number
PCT/JP2021/020965
Other languages
French (fr)
Japanese (ja)
Inventor
将大 ▲高▼橋
和輝 壽
祐介 本田
Original Assignee
ヤンマーホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマーホールディングス株式会社 filed Critical ヤンマーホールディングス株式会社
Priority to JP2022530499A priority Critical patent/JPWO2021251230A1/ja
Publication of WO2021251230A1 publication Critical patent/WO2021251230A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel

Definitions

  • the present invention relates to an exhaust gas purification system and an exhaust gas purification device, which are provided with a desulfurizing device and an oxidation catalyst and purify the exhaust gas of a gas consuming device such as an engine that consumes fuel gas.
  • An exhaust gas purification system or an exhaust gas purification device is applied to a gas consumption device such as an engine that consumes fuel gas such as natural gas.
  • the exhaust gas purification system or the exhaust gas purification device is equipped with a desulfurizer that adsorbs and removes toxic components such as sulfur compounds and an oxidation catalyst that oxidizes and removes harmful components such as hydrocarbons, and discharges from the gas consumption device. Purifies the exhaust gas that is produced.
  • the exhaust gas purification device disclosed in Patent Document 1 is a gas consuming device that consumes a fuel gas containing a hydrocarbon and a sulfur compound, and an exhaust gas discharged from the gas consuming device is introduced to adsorb the sulfur compound in the exhaust gas.
  • a desulfurizer containing a desulfurizing agent, a heating means for heating the desulfurizing agent, and a catalyst for oxidizing hydrocarbons and carbon monoxide in the desulfurized exhaust gas after the desulfurized exhaust gas discharged from the desulfurization device are introduced. It is equipped with a desulfurized oxidation treatment device.
  • the desulfurizer when a predetermined amount or more of the sulfur compound is adsorbed on the desulfurizing agent, the function of removing the sulfur compound deteriorates. Therefore, it is necessary to regenerate the desulfurizing agent by heating the desulfurizing agent to desorb the sulfur compound.
  • the desulfurizer When the desulfurizer is placed upstream of the oxidation catalyst in the exhaust gas emission direction as in the conventional exhaust gas purification device, fuel gas is supplied to the oxidation catalyst when the desulfurizer is regenerated, and it is generated in the oxidation treatment of the fuel gas. It is necessary to feed back the generated heat to the desulfurizer on the upstream side, which complicates the configuration.
  • the sulfur compound desorbed during regeneration of the desulfurizer may flow to the oxidation catalyst and deteriorate the oxidation catalyst.
  • the temperature of the desulfurizing agent in order to regenerate such a desulfurizing agent, it is necessary to raise the temperature of the desulfurizing agent to a higher temperature, for example, 500 degrees or more, so that the cost of a heating means such as a heater or a burner for heating the desulfurizing device becomes high.
  • a heating means such as a heater or a burner for heating the desulfurizing device becomes high.
  • the configuration may be complicated due to the installation of heating means.
  • the exhaust gas purification device of Patent Document 1 includes a bypass short-circuited between the airway that supplies fuel gas to the gas consuming device and the airway that discharges exhaust gas from the gas consuming device so as to avoid the gas consuming device. ing. Then, when the fuel gas is introduced into the oxidation treatment device by bypass, the oxidation reaction heat of the fuel gas is generated, and the oxidation reaction heat is transferred to the desulfurization device to regenerate the desulfurization device.
  • the exhaust gas purification device of Patent Document 1 heats the desulfurizer with a heating means such as a heater or a burner to regenerate it.
  • the exhaust gas purification device is provided with a bypass or a heating means such as a heater or a burner, the cost is high and the configuration may be complicated.
  • the sulfur compound desorbed during regeneration of the desulfurizer may flow to the oxidation catalyst and deteriorate the oxidation catalyst.
  • An object of the present invention is to provide an exhaust gas purification system and an exhaust gas purification device that efficiently remove poisonous components and purify exhaust gas.
  • the exhaust gas purification system of the present invention is an exhaust gas purification system applied to a gas consuming device that consumes fuel gas and discharges exhaust gas, and removes poisonous components contained in the fuel gas.
  • Oxidation treatment containing a desulfurizer containing a desulfurizing agent to be removed and an oxidation catalyst provided in an exhaust path for discharging the exhaust gas from the gas consuming device and oxidizing harmful components contained in the exhaust gas passing through the exhaust path.
  • a device, a bypass path branched from the exhaust path, and a switching unit provided in the exhaust path to switch the exhaust gas discharge destination from the oxidation treatment device to the bypass path when the desulfurizer is regenerated. It is characterized by that.
  • the exhaust gas purification device of the present invention is an exhaust gas purification device applied to a gas consumption device that consumes fuel gas and discharges exhaust gas, and contains a desulfurizing agent that removes toxic components contained in the fuel gas.
  • An oxidation treatment device provided in the exhaust path for exhausting the exhaust gas from the gas consuming device and accommodating an oxidation catalyst for oxidizing harmful components contained in the exhaust gas that has passed through the exhaust path, and the exhaust path. It is characterized by including a bypass path branched from the above, and a switching unit provided in the exhaust path and switching the exhaust gas discharge destination from the oxidation treatment device to the bypass path when the exhaust gas is regenerated.
  • the exhaust gas purification device of the present invention is an exhaust gas purification device applied to a gas consumption device that consumes fuel gas and discharges exhaust gas, and discharges the exhaust gas from the gas consumption device.
  • a desulfurizing device provided in the exhaust path and containing a desulfurizing agent for removing the toxic component contained in the exhaust gas, and the exhaust gas in close proximity to or in contact with the desulfurizing device on the downstream side of the desulfurizing device in the exhaust gas discharge direction. It is supplied to at least one of the oxidation treatment device provided in the path and containing an oxidation catalyst that oxidizes the harmful components contained in the exhaust gas, and the plurality of cylinders provided in the gas consuming device when the desulfurization device is regenerated. It is characterized by comprising a control unit for controlling the gas consuming device so that the exhausted fuel gas is discharged to the exhaust path.
  • an exhaust gas purification system and an exhaust gas purification device for efficiently removing poisonous components and purifying exhaust gas are provided.
  • the exhaust gas purification system 1 according to the first embodiment of the present invention will be described. As shown in FIG. 1, the exhaust gas purification system 1 is applied to a gas consuming device 2 such as an engine that consumes fuel gas such as natural gas, and purifies the exhaust gas discharged from the gas consuming device 2. Since the fuel gas contains harmful components such as hydrocarbons that cause air pollution and poisonous components such as sulfur compounds that cause catalyst deterioration, the exhaust gas purification system 1 has these harmful components and poisonous components. Is configured to remove.
  • the gas consuming device 2 is connected to a supply path 3 for supplying fuel gas from a fuel tank or the like and an exhaust path 4 for discharging exhaust gas.
  • the exhaust gas purification system 1 includes a desulfurizer 5 that removes toxic components such as sulfur compounds contained in the fuel gas, and an oxidation treatment device 6 that oxidizes harmful components such as hydrocarbons contained in the exhaust gas. Further, the exhaust gas purification system 1 is configured to include the exhaust gas path 4 described above, and includes a bypass path 7 branched from the exhaust gas path 4.
  • the exhaust gas purification system 1 includes a switching unit 8 at a branch position between the exhaust path 4 and the bypass path 7, and further includes a heat exchanger 9 in the bypass path 7.
  • the gas consuming device 2 is composed of an engine that burns and operates using fuel gas such as liquefied natural gas (LNG).
  • LNG liquefied natural gas
  • These engines include gas engines that use fuel gas as fuel, dual fuel engines that operate using fuel gas and liquid fuel such as gasoline and diesel fuel, and operation that uses fuel gas and operation that uses liquid fuel.
  • These engines are applied to, for example, a drive source for ships such as coastal vessels and a drive source for land such as a generator and a heat pump.
  • the gas consuming device 2 includes a plurality of cylinders 10, an intake unit 11, a fuel gas supply unit 12, and an exhaust unit 13, and a piston (not shown) is housed in each cylinder 10.
  • the intake unit 11 includes an intake manifold 15 connected to the combustion chamber of each cylinder 10.
  • the intake manifold 15 includes each distribution path 16 connected to the combustion chamber of each cylinder 10, and distributes the air supplied from the intake pipe (not shown) and supplies the air to the combustion chamber of each cylinder 10.
  • the fuel gas supply unit 12 is connected to the supply path 3, and distributes and supplies the fuel gas supplied from the fuel tank (not shown) or the like via the supply path 3 to the combustion chambers of each cylinder 10. For example, the fuel gas supply unit 12 distributes the fuel gas to each distribution path 16 of the intake manifold 15 of the intake unit 11.
  • the mixed gas of the air supplied from the intake pipe and the fuel gas supplied from the fuel gas supply unit 12 is supplied to the combustion chamber of each cylinder 10 via each distribution path 16 of the intake manifold 15. ..
  • a throttle valve (not shown) is provided in each distribution path 16, and the ratio and amount of the mixed gas supplied to the combustion chamber of each cylinder 10 are adjusted by the throttle valve.
  • the exhaust unit 13 includes an exhaust manifold 17 connected to the combustion chamber of each cylinder 10.
  • the exhaust manifold 17 is also connected to the exhaust path 4, and collects the exhaust gas discharged from the combustion chamber of each cylinder 10 and discharges the exhaust gas through the exhaust path 4.
  • the gas in the fuel gas supply direction between the fuel tank and the fuel gas supply unit 12 of the gas consuming device 2 is provided so that the fuel gas flowing through the supply path 3 passes through the desulfurizer 5. It is provided in the supply path 3 on the upstream side of the consumption device 2.
  • the desulfurizer 5 contains a desulfurizing agent that removes toxic components such as sulfur compounds from the fuel gas.
  • the desulfurizer 5 has an adsorbent such as activated carbon or zeolite that physically adsorbs the toxic component as a desulfurizing agent, or has a direct decomposition type hydrogen sulfide production catalyst and zirconium oxide and zinc oxide that remove the toxic component. It has a chemically adsorbed desulfurizing agent consisting of a catalyst containing it.
  • the desulfurizer 5 adsorbs and removes the toxic component from the fuel gas flowing through the supply path 3 to the desulfurizing agent, and the toxic substance composed of the toxic component is accumulated in the desulfurizing agent. As a result, the fuel gas from which the poisonous component has been removed, that is, the desulfurized fuel gas is supplied to the gas consuming device 2.
  • a desulfurizing agent made of activated carbon, zeolite or the like is a catalyst that can be regenerated at a relatively low temperature, for example, about 200 ° C.
  • the exhaust gas purification system 1 may be provided with a temperature sensor 18 for detecting the temperature of the desulfurizer 5 in the vicinity of the desulfurizer 5.
  • the oxidation treatment device 6 is provided in the exhaust path 4 so that the exhaust gas flowing through the exhaust path 4 passes through the oxidation treatment device 6.
  • the oxidation treatment device 6 contains an oxidation catalyst that removes harmful components such as hydrocarbons (for example, methane) and carbon monoxide from the exhaust gas.
  • the oxidation treatment device 6 oxidizes and removes harmful components into carbon dioxide and water by an oxidation catalyst.
  • the bypass path 7 branches from the exhaust path 4 between the exhaust unit 13 of the gas consuming device 2 and the oxidation treatment device 6, in other words, on the upstream side of the oxidation treatment device 6 in the exhaust gas discharge direction.
  • the exhaust gas discharged from the gas consuming device 2 via the exhaust path 4 is divided into a discharge via the oxidation treatment device 6 and a discharge via the bypass path 7.
  • the switching unit 8 is provided at a branch position to the bypass path 7 in the exhaust path 4 as described above.
  • the switching unit 8 is configured to switch the exhaust gas discharged from the gas consuming device 2 via the exhaust path 4 to a discharge via the oxidation treatment device 6 and a discharge via the bypass path 7.
  • the switching unit 8 is a damper, a valve, or the like that switches the flow path downstream from the branch position in the exhaust gas discharge direction to the flow path on the oxidation processor 6 side and the flow path on the bypass path 7 side. It is composed.
  • the switching unit 8 completely closes either the flow path on the oxidation processor 6 side or the flow path on the bypass path 7 side.
  • the switching unit 8 is controlled to switch to the flow path on the bypass path 7 side when the desulfurizer 5 is regenerated.
  • the heat exchanger 9 is provided in the bypass path 7 as described above, and is arranged in close proximity to or in contact with the desulfurization device 5. When the exhaust gas flows through the bypass path 7, the heat exchanger 9 heats the desulfurizer 5 by performing heat treatment by heat exchange using the high-temperature exhaust gas.
  • the heat exchanger 9 may heat the heat transfer material and heat the desulfurization device 5 with the heat transfer material.
  • the exhaust gas purification system 1 includes a control unit 20.
  • the control unit 20 includes a computer such as a CPU and a storage device including a ROM, a RAM, and the like.
  • the storage device stores programs and data for controlling various components and functions of the exhaust gas purification system 1, and a computer executes arithmetic processing based on the programs and data stored in the storage device. Controls various components and functions.
  • the control unit 20 may be configured by using an engine ECU that controls an engine that is a gas consuming device 2.
  • the exhaust gas purification system 1 operates by switching between a normal mode and a regeneration mode as an operation mode.
  • the control unit 20 functions as a mode control unit 21 that controls an operation mode by executing a program stored in the storage device.
  • the mode control unit 21 switches the operation mode to the normal mode when the gas consuming device 2 is operated normally, and switches the operation mode to the reproduction mode when the desulfurizer 5 is regenerated. Further, the mode control unit 21 stops the heat exchanger 9 in the normal mode, while operating the heat exchanger 9 in the regeneration mode.
  • the mode control unit 21 normally sets the operation mode to the normal mode, and when the integrated amount of the poisonous substance accumulated in the desulfurizer 5 exceeds a predetermined integrated amount threshold value, the operation mode is normally set to the normal mode. Switch from mode to playback mode.
  • the integrated amount threshold value is appropriately set according to the type of desulfurized material of the desulfurizer 5.
  • the mode control unit 21 detects the amount of fuel gas supplied to the gas consuming device 2 or the amount of exhaust gas discharged from the gas consuming device 2, and is a toxic substance based on the amount of fuel gas supplied or the amount of exhaust gas discharged. Estimate and calculate the integrated amount. For example, the mode control unit 21 may detect the fuel gas supply amount by the fuel gas flow rate sensor 22 provided in the supply path 3. Further, the mode control unit 21 may detect the exhaust gas supply amount by the exhaust gas flow rate sensor 23 provided in the exhaust path 4. The mode control unit 21 resets the integrated amount of poisonous substances when the operation mode is switched from the reproduction mode to the normal mode.
  • the mode control unit 21 may switch the operation mode to the regeneration mode when another abnormality of the desulfurizer 5 is detected or when the desulfurizer 5 is instructed to be regenerated by a manual operation.
  • the mode control unit 21 switches the operation mode from the regeneration mode to the normal mode after the regeneration of the desulfurizer 5 is completed in the regeneration mode, for example, after a predetermined regeneration time has elapsed after the regeneration of the desulfurizer 5 is started.
  • the mode control unit 21 sets the operation mode to the normal mode (step S1), and sets the flow path downstream from the branch position of the exhaust path 4 to the oxidation processor 6 side.
  • the switching unit 8 is controlled so as to switch to the flow path of. At this time, the switching unit 8 opens the flow path on the oxidation treatment device 6 side and closes the flow path on the bypass path 7 side.
  • step S2 When the gas consuming device 2 is operated in the normal mode (step S2), the fuel gas is supplied from the fuel tank to the gas consuming device 2 via the supply path 3 and the desulfurization device 5. At this time, the poisonous component of the fuel gas is adsorbed by the desulfurization device 5, and the desulfurized fuel gas is supplied to the gas consuming device 2. The fuel gas is burned in the combustion chamber of each cylinder 10 of the gas consuming device 2 during operation, and as a result, the exhaust gas is discharged from the gas consuming device 2 to the exhaust path 4.
  • step S3 Yes
  • the operation of the exhaust gas purification system 1 is also terminated.
  • Step S4 Yes
  • the operation mode is switched from the normal mode to the reproduction mode (step S5).
  • the mode control unit 21 controls the switching unit 8 so as to switch the flow path on the downstream side of the branch position of the exhaust path 4 to the flow path on the bypass path 7 side (step S6). At this time, the switching unit 8 opens the flow path on the bypass path 7 side and closes the flow path on the oxidation processor 6 side. Further, the mode control unit 21 controls and operates the heat exchanger 9.
  • the fuel gas flows through the supply path 3 and the desulfurizing device 5 and the fuel gas desulfurized by the desulfurizing device 5 is supplied to the gas consuming device 2 as in the normal mode. Desulfurization.
  • the fuel gas is burned in each cylinder 10 of the gas consuming device 2, and the exhaust gas is discharged from the gas consuming device 2 to the exhaust path 4.
  • step S7 Since the flow path of the exhaust path 4 is connected to the bypass path 7 side, the exhaust gas is discharged to the bypass path 7. At this time, the exhaust gas passes through the heat exchanger 9 in the middle of the bypass path 7, and the exhaust gas becomes high temperature due to the combustion of the fuel gas. 5 is heated (step S7).
  • the mode control unit 21 detects the temperature of the desulfurizer 5 by the temperature sensor 18, and based on the detection result, heats the desulfurizer 5 so that the temperature does not exceed a predetermined temperature threshold (for example, about 200 degrees). It is preferable to control the heating by the exchanger 9 and the operation of the gas consuming device 2.
  • the mode control unit 21 may appropriately adjust the heating temperature (that is, the temperature threshold value) of the desulfurizer 5 by the heat exchanger 9 according to the type of the desulfurized material of the desulfurizer 5.
  • the desulfurizer 5 when the desulfurizing agent in which the toxic substance is accumulated is heated by the heat exchanger 9, the toxic substance is desorbed from the desulfurizing agent, whereby the desulfurizing agent in the desulfurizing apparatus 5 is regenerated.
  • the desorbed poisonous substance is sent to the gas consuming device 2 together with the fuel gas through the supply path 3, and is sent to the exhaust path 4 together with the exhaust gas, but is not sent to the oxidation treatment device 6 but is sent through the bypass path 7. Is discharged.
  • step S8 Yes
  • the mode control unit 21 switches the operation mode from the playback mode to the normal mode (step S1).
  • the exhaust gas purification system 1 has described an example in which the desulfurization device 5 is arranged in the supply path 3 for supplying the fuel gas to the gas consuming device 2, but the present invention is not limited to this example. ..
  • the exhaust gas purification system 1 may arrange the desulfurizer 5 in the exhaust path 4 for discharging the exhaust gas from the gas consuming device 2.
  • the desulfurizer 5 is arranged between the exhaust portion 13 of the gas consuming device 2 and the branch position to the bypass path 7 in the exhaust path 4, in other words, the branch to the bypass path 7 in the exhaust gas discharge direction. It is located upstream of the position.
  • the mode control unit 21 controls the switching unit 8 so as to switch the flow path of the exhaust path 4 to the flow path on the bypass path 7 side in the reproduction mode. Therefore, the toxic substance desorbed from the desulfurization device 5 during regeneration of the desulfurization device 5 is discharged via the bypass path 7 without being sent to the oxidation treatment device 6.
  • the exhaust gas purification system 1 applied to the gas consuming device 2 that consumes the fuel gas and discharges the exhaust gas removes the toxic component contained in the fuel gas.
  • An oxidation treatment device that is provided in the desulfurizing device 5 that houses the desulfurizing agent and the exhaust gas that discharges the exhaust gas from the gas consuming device 2 and that houses the oxidation catalyst that oxidizes the harmful components contained in the exhaust gas that has passed through the exhaust gas path 4. 6 and.
  • the exhaust gas purification system 1 is provided in the bypass path 7 branched from the exhaust path 4 and the exhaust path 4, and switches the exhaust gas discharge destination from the oxidation treatment device 6 to the bypass path 7 when the desulfurizer 5 is regenerated.
  • a unit 8 is provided.
  • the toxic substance desorbed from the desulfurization device 5 during regeneration of the desulfurization device 5 is not sent to the oxidation treatment device 6, and is bypassed through the bypass path 7. Is discharged through. Therefore, it is possible to suppress the poisoning of the oxidation treatment device 6 by the poisonous substance desorbed from the desulfurization device 5 at the time of regeneration, and it is possible to reduce the deterioration of the oxidation treatment device 6.
  • the exhaust gas purification system 1 suppresses the poisoning of the oxidation treatment device 6 by a simple configuration to which the bypass path 7 is applied, the desulfurization device 5 can be applied without complicated configuration.
  • the exhaust gas purification system 1 can efficiently remove the poisonous component and purify the exhaust gas.
  • the exhaust gas purification system 1 can more reliably block the distribution of the poisonous substance to the oxidation treatment device 6 at the time of regeneration of the desulfurization device 5 by the damper, valve or the like of the switching unit 8.
  • the desulfurizer 5 is provided in the supply path 3 that stores the desulfurizing agent that adsorbs the poisonous component by physical adsorption and supplies the fuel gas to the gas consuming device 2. ..
  • the desulfurizer 5 desulfurizes the poisonous component from the fuel gas before combustion, which is lower in temperature than the exhaust gas after combustion, so that a desulfurizing agent that adsorbs the poisonous component at a relatively low temperature can be applied. .. Therefore, the desulfurizer 5 can improve the collection rate of the poisoned component by the configuration of desulfurizing the poisoned component from the low temperature fuel gas, as compared with the case of desulfurizing the poisoned component from the high temperature exhaust gas.
  • a desulfurizer 5 at a lower cost can be applied as compared with the case where the poisonous component is desulfurized from the high temperature exhaust gas.
  • the exhaust gas purification system 1 can reduce the heating of the desulfurizer 5 when heating the desulfurizer 5 to regenerate it, as compared with the case of desulfurizing the poisonous component from the high temperature exhaust gas. Therefore, the cost of the heating means of the desulfurization device 5 can be reduced, and the complexity of the configuration and installation of the heating means can be suppressed.
  • the exhaust gas purification system 1 of the first embodiment of the present invention is connected to the bypass path 7, and heat exchange heats the desulfurizer 5 by heat exchange using the exhaust gas flowing through the bypass path 7 when the desulfurizer 5 is regenerated. Further equipped with a vessel 9. As a result, the exhaust gas purification system 1 applies the heat exchanger 9 as the heating means of the desulfurization device 5, thereby reducing the cost of the heating means of the desulfurization device 5 and suppressing the complexity of the configuration and installation of the heating means. Can be realized.
  • the mode control unit 21 is a desulfurizer based on the amount of fuel gas supplied to the gas consuming device 2 or the amount of exhaust gas discharged from the gas consuming device 2.
  • the integrated amount of the poisonous component accumulated in 5 is calculated, and when the integrated amount exceeds a predetermined threshold value, the regeneration of the desulfurizer 5 is started.
  • the exhaust gas purification system 1 appropriately grasps the accumulated amount of the poisonous component accumulated in the desulfurization device 5, and when the decrease in the desulfurization capacity of the desulfurization device 5 is detected, the desulfurization device 5 is regenerated. be able to. Since the integrated amount threshold value of the accumulated amount of the poisonous substance is appropriately set according to the type of the desulfurizing material of the desulfurizing device 5, the desulfurizing device 5 can be regenerated at an appropriate timing for each desulfurizing device 5.
  • the present invention is applied to an exhaust gas purification system 1 including a desulfurizer 5, an oxidation treatment device 6, a bypass path 7, a switching unit 8, a heat exchanger 9, and a control unit 20.
  • the present invention is not limited to this example.
  • the present invention comprises an exhaust gas purification device 100 including a desulfurizer 5, an oxidation treatment device 6, a bypass path 7, a switching unit 8, a heat exchanger 9, and a control unit 20. May be done (see Figure 1).
  • the desulfurization device 5 is connected to the supply path 3 extending from the gas consumption device 2, and the oxidation treatment device 6 and the bypass are connected to the exhaust path 4 extending from the gas consumption device 2.
  • the path 7 and the switching unit 8 are connected.
  • the exhaust gas purification device 100 may be configured to include a supply path 3 and an exhaust path 4 connected to the gas consumption device 2.
  • the exhaust gas purification device 101 according to the second embodiment of the present invention will be described with reference to the drawings.
  • the exhaust gas purifying device 101 is applied to a gas consuming device 102 such as an engine that consumes fuel gas such as natural gas, and the exhaust gas discharged from the gas consuming device 102.
  • the gas consuming device 102 is connected to a supply path 103 for supplying fuel gas from a fuel tank or the like and an exhaust path 104 for discharging exhaust gas. Since the fuel gas contains harmful components such as hydrocarbons that cause air pollution and poisonous components such as sulfur compounds that cause catalyst deterioration, the exhaust gas purification device 101 is derived from the exhaust gas generated by the combustion of the fuel gas. It is configured to remove harmful and toxic components.
  • the exhaust gas purification device 101 of the second embodiment of the present invention will be described with reference to FIG.
  • the exhaust gas purification device 101 includes a desulfurization device 105 that removes toxic components such as sulfur compounds contained in the fuel gas, and an oxidation treatment device 106 that oxidizes harmful components such as hydrocarbons contained in the exhaust gas.
  • the exhaust gas purification device 101 is configured to include the exhaust path 104 described above.
  • the gas consuming device 102 is composed of an engine that burns and operates using fuel gas such as liquefied natural gas (LNG). These engines include gas engines that use fuel gas as fuel, dual fuel engines that operate using fuel gas and liquid fuel such as gasoline and diesel fuel, and operation that uses fuel gas and operation that uses liquid fuel. There is a bi-fuel engine, etc. that operates by switching. These engines are applied to, for example, a drive source for ships such as coastal vessels and a drive source for land such as a generator and a heat pump.
  • the gas consuming device 102 is a multi-cylinder engine in which a plurality of cylinders 110 are arranged, and includes an intake unit 111, a fuel gas supply unit 112, and an exhaust unit 113.
  • each cylinder 110 is composed of a cylinder 115 having a combustion chamber, a piston 116 housed in the cylinder 115, and an ignition device 117.
  • the ignition device 117 is composed of, for example, a spark plug, an injector for pilot ignition, and the like.
  • the cylinder 110 introduces a mixed gas containing fuel gas into the combustion chamber of the cylinder 115, ignites the mixed gas in the combustion chamber by operating the ignition device 117, and burns the mixed gas, and discharges the exhaust gas generated by the combustion. Further, when the ignition device 117 is stopped, the cylinder 110 misfires without being burned.
  • the intake unit 111 includes an intake manifold 118 connected to each cylinder 110.
  • the intake manifold 118 includes each distribution path 119 connected to the cylinder 115 of each cylinder 110, and distributes the air supplied from the intake pipe (not shown) to the combustion chamber of each cylinder 115.
  • the intake unit 111 includes an intake valve 120 between each distribution path 119 and each cylinder 115.
  • the fuel gas supply unit 112 is provided in the supply path 103, and distributes and supplies the fuel gas supplied from the fuel tank (not shown) or the like via the supply path 103 to the cylinder 115 of each cylinder 110.
  • the fuel gas supply unit 112 supplies the fuel gas to each distribution path 119 of the intake manifold 118 of the intake unit 111, so that the fuel gas is distributed. It is supplied to the combustion chamber of each cylinder 115 via the path 119.
  • the mixed gas of the air supplied from the intake pipe and the fuel gas supplied from the fuel gas supply unit 112 is supplied to the combustion chamber of each cylinder 115 via each distribution path 119 of the intake manifold 118. ..
  • a throttle valve (not shown) is provided in each distribution path 119, and the throttle valve adjusts the ratio and amount of the mixed gas supplied to the combustion chamber of each cylinder 115.
  • the gas consuming device 102 may be configured as an in-cylinder direct injection engine.
  • the fuel gas supply unit 112 is provided not in the supply path 103 but in each cylinder 115, and directly injects and supplies the fuel gas to the combustion chamber of each cylinder 115.
  • the air supplied from the intake unit 111 and the fuel gas supplied from the fuel gas supply unit 112 are mixed to generate a mixed gas.
  • the fuel gas supply unit 112 may include a fuel valve (not shown), and by opening and closing the fuel valve, supply or shutoff of fuel gas to the combustion chamber of each cylinder 115 is controlled, and fuel is also supplied. The gas supply is adjusted.
  • the exhaust unit 113 includes an exhaust manifold 121 connected to the cylinder 115 of each cylinder 110.
  • the exhaust manifold 121 is also connected to the exhaust path 104, and collects the exhaust gas discharged from the combustion chamber of each cylinder 115 and discharges the exhaust gas through the exhaust path 104.
  • the exhaust unit 113 includes an exhaust valve 122 between each cylinder 115 and the exhaust manifold 121. By opening and closing the exhaust valve 122, exhaust gas emission or shutoff from the combustion chamber of each cylinder 115 is controlled.
  • the gas consuming device 102 sets at least one of the plurality of cylinders 110 as the fuel supply cylinder 110a at the time of regeneration of the desulfurization device 105, and is configured to be able to discharge the fuel gas to the exhaust path 104 through the fuel supply cylinder 110a. Will be done.
  • the normal cylinder 110b which is a cylinder 110 other than the fuel supply cylinder 110a, may perform normal operation to burn the fuel gas and discharge the exhaust gas.
  • the gas consuming device 102 stops the ignition device 117 of the fuel supply cylinder 110a and misfires the fuel supply cylinder 110a.
  • the gas consuming device 102 opens the intake valve 120 of the fuel supply cylinder 110a to introduce the mixed gas into the combustion chamber of the cylinder 115 of the fuel supply cylinder 110a, but since the ignition device 117 is stopped, the mixed gas is used. Not ignited and not burned.
  • a mixed gas containing a higher concentration fuel gas may be introduced into the fuel supply cylinder 110a as compared with the case where the fuel supply cylinder 110a is not misfired.
  • the gas consuming device 102 opens the exhaust valve 122 of the fuel supply cylinder 110a and discharges the mixed gas introduced into the fuel supply cylinder 110a to the exhaust path 104 without burning. As a result, in the gas consuming device 102, the fuel gas contained in the mixed gas is discharged to the exhaust path 104. Since the normal cylinder 110b burns the fuel gas and discharges the exhaust gas to the exhaust path 104, the mixed gas from the fuel supply cylinder 110a and the exhaust gas from the normal cylinder 110b are aggregated in the exhaust path 104. Exhaust gas including fuel gas is emitted. Therefore, the exhaust gas containing the fuel gas having a higher concentration is discharged to the exhaust path 104 as compared with the case where the fuel supply cylinder 110a is not misfired.
  • the desulfurization device 105 is provided in the exhaust path 104 on the downstream side of the gas consuming device 102 in the exhaust gas discharge direction so that the exhaust gas discharged from the exhaust unit 113 passes through the desulfurization device 105.
  • the desulfurizer 105 contains a desulfurizing agent that removes toxic components such as sulfur compounds.
  • the desulfurizer 105 has a chemically adsorbed desulfurizing agent consisting of a directly decomposing hydrogen sulfide production catalyst and a catalyst containing zinc oxide and zinc oxide for removing toxic components.
  • the desulfurizer 105 adsorbs and removes the toxic component from the exhaust gas discharged from the exhaust path 104 to the desulfurizing agent, and the toxic substance composed of the toxic component is accumulated in the desulfurizing agent.
  • the exhaust gas from which the poisonous component has been removed that is, the desulfurized exhaust gas, is discharged to the oxidation treatment device 106.
  • the desulfurizing agent is heated to a predetermined regeneration temperature or higher, the toxic substance such as the sulfur compound adsorbed on the desulfurizing agent is desorbed and the desulfurizer 105 is regenerated.
  • the oxidation treatment device 106 is provided in the exhaust path 104 on the downstream side of the desulfurization device 105 in the exhaust gas discharge direction so that the exhaust gas that has passed through the desulfurization device 105 passes through the oxidation treatment device 106.
  • the oxidation treatment device 106 is arranged in close proximity to or in contact with the desulfurization device 105.
  • the oxidation treatment device 106 houses an oxidation catalyst (for example, a methane oxidation catalyst) that removes harmful components such as hydrocarbons (for example, methane) and carbon monoxide from the exhaust gas.
  • the oxidation treatment device 106 removes harmful components contained in the exhaust gas discharged through the exhaust path 104 by oxidizing them to carbon dioxide or water by an oxidation catalyst.
  • the oxidation catalyst of the oxidation treatment device 106 generates heat of oxidation reaction by oxidizing hydrocarbons such as methane.
  • hydrocarbons such as methane.
  • the exhaust gas containing the unburned fuel gas is introduced into the oxidation treatment device 106. Will be introduced to. Therefore, as compared with the normal operation of the gas consuming device 102, the exhaust gas containing a high concentration fuel gas, that is, the exhaust gas containing a high concentration hydrocarbon is introduced into the oxidation treatment device 106 during the regeneration of the desulfurization device 105, and more of the exhaust gas is introduced.
  • Oxidation reaction heat is generated.
  • the oxidation treatment device 106 heats and regenerates the desulfurization device 105 by transferring the generated oxidation reaction heat to the desulfurization device 105 in close proximity or in contact with the desulfurization device 105.
  • the oxidation treatment device 106 may include a transfer member that transfers the heat of the oxidation reaction to the desulfurization device 105.
  • the exhaust gas purification device 101 includes a control unit 130 as a control unit.
  • the control unit 130 includes a computer such as a CPU and a storage device including a ROM, a RAM, and the like.
  • the storage device stores programs and data for controlling various components and functions of the exhaust gas purification device 101, and a computer executes arithmetic processing based on the programs and data stored in the storage device. Controls various components and functions.
  • the control unit 130 may be configured by using an engine ECU that controls an engine that is a gas consuming device 102.
  • the exhaust gas purification device 101 operates by switching between a normal mode and a reproduction mode as an operation mode.
  • the control unit 130 functions as a mode control unit 131 that controls an operation mode by executing a program stored in the storage device.
  • the mode control unit 131 switches the operation mode to the normal mode when the gas consuming device 102 is operated normally, and switches the operation mode to the reproduction mode when the desulfurizer 105 is regenerated. Further, the mode control unit 131 normally operates a plurality of cylinders 110 of the gas consuming device 102 in the normal mode. On the other hand, in the regeneration mode, the mode control unit 131 selects the fuel supply cylinder 110a for discharging the fuel gas from the plurality of cylinders 110, misfires the fuel supply cylinder 110a, and normally operates the normal cylinder 110b. The mode control unit 131 may not select only the predetermined cylinder 110 as the fuel supply cylinder 110a, but may switch the cylinder 110 selected as the fuel supply cylinder 110a every predetermined number of times of switching the regeneration mode.
  • the mode control unit 131 normally sets the operation mode to the normal mode, and when the integrated amount of the poisonous substance accumulated in the desulfurizer 105 exceeds a predetermined integrated amount threshold value, the operation mode is normally set to the normal mode. Switch from mode to playback mode.
  • the integrated amount threshold value is appropriately set according to the type of desulfurized material of the desulfurizer 105.
  • the mode control unit 131 detects the amount of fuel gas supplied to the gas consuming device 102 or the amount of exhaust gas discharged from the gas consuming device 102, and is a toxic substance based on the amount of fuel gas supplied or the amount of exhaust gas discharged. Estimate and calculate the integrated amount. For example, the mode control unit 131 may detect the fuel gas supply amount by the fuel gas flow rate sensor 132 provided in the supply path 103. The control unit 130 is connected to the flow rate sensor 132, and inputs the detected amount of fuel gas from the flow rate sensor 132. Further, the mode control unit 131 may detect the exhaust gas supply amount by the exhaust gas flow rate sensor 133 provided in the exhaust path 104. The control unit 130 is connected to the flow rate sensor 133, and inputs the detected amount of exhaust gas from the flow rate sensor 133.
  • the mode control unit 131 may switch the operation mode to the regeneration mode when another abnormality of the desulfurizer 105 is detected or when the desulfurizer 105 is instructed to be regenerated by a manual operation.
  • the mode control unit 131 switches the operation mode from the regeneration mode to the normal mode after the regeneration of the desulfurizer 105 is completed in the regeneration mode, for example, after a predetermined regeneration time has elapsed after the regeneration of the desulfurizer 105 is started.
  • the mode control unit 131 resets the integrated amount of poisonous substances when the operation mode is switched from the reproduction mode to the normal mode.
  • the mode control unit 131 controls the amount of fuel gas discharged from the gas consuming device 102 in order to desorb the toxic substance adsorbed on the desulfurizing agent, and oxidizes.
  • the heating of the desulfurizer 105 by the heat of the oxidation reaction of the processor 106 is controlled.
  • the mode control unit 131 adjusts the number of fuel supply cylinders 110a, the amount of fuel gas supplied to the fuel supply cylinder 110a, or the ratio of the mixed gas to adjust the amount of fuel gas discharged from the gas consuming device 102. Control.
  • the exhaust gas purification device 101 includes a temperature sensor 134 that detects the temperature of the desulfurizer 105 in the vicinity of the desulfurizer 105.
  • the control unit 130 is connected to the temperature sensor 134, and inputs the detection temperature of the desulfurizer 105 from the temperature sensor 134. Then, the mode control unit 131 controls the amount of fuel gas discharged from the gas consuming device 102 so that the detection temperature of the desulfurization device 105 becomes a predetermined regeneration temperature.
  • the mode control unit 131 sets the operation mode to the normal mode (step S11).
  • step S12 When operating the gas consuming device 102 in the normal mode (step S12), fuel gas is supplied from the fuel tank to the gas consuming device 102 via the supply path 103.
  • the fuel gas is burned in the combustion chamber of the cylinder 115 of each cylinder 110 of the gas consuming device 102 during operation, and as a result, the exhaust gas is discharged from the gas consuming device 102 to the exhaust path 104.
  • the exhaust gas flows through the exhaust path 104 and is introduced into the desulfurization device 105, the poisonous component of the exhaust gas is adsorbed by the desulfurization device 105, and the exhaust gas after desulfurization is discharged from the desulfurization device 105.
  • the exhaust gas discharged from the desulfurization device 105 flows through the exhaust path 104 and is introduced into the oxidation treatment device 106, the harmful components of the exhaust gas are removed by the oxidation treatment device 106, and the purified exhaust gas is discharged from the oxidation treatment device 106. ..
  • the gas consuming device 102 is stopped (step S13: Yes)
  • the operation of the exhaust gas purifying device 101 also ends.
  • Step S14 Yes
  • the operation mode is switched from the normal mode to the reproduction mode (step S15).
  • the mode control unit 131 selects the fuel supply cylinder 110a for discharging the fuel gas from the plurality of cylinders 110 and causes a misfire (step S16).
  • the exhaust gas containing the high-concentration fuel gas is discharged from the gas consuming device 102 to the exhaust path 104.
  • the exhaust gas flows through the exhaust path 104 and is introduced into the desulfurization device 105, the poisonous component of the exhaust gas is adsorbed by the desulfurization device 105, and the exhaust gas after desulfurization is discharged from the desulfurization device 105.
  • the exhaust gas after desulfurization still contains a high concentration fuel gas.
  • the exhaust gas discharged from the desulfurization device 105 flows through the exhaust path 104 and is introduced into the oxidation treatment device 106, the harmful components of the exhaust gas are removed by the oxidation treatment device 106, and the purified exhaust gas is discharged from the oxidation treatment device 106. ..
  • the high-concentration hydrocarbon contained in the fuel gas in the exhaust gas is oxidized by the oxidation catalyst of the oxidation treatment device 106, high-temperature oxidation reaction heat is generated and transferred to the desulfurization device 105, and the desulfurizing agent of the desulfurization device 105 is generated. Is heated (step S17).
  • the mode control unit 131 While the desulfurizer 105 is being heated, the mode control unit 131 detects the temperature of the desulfurizer 105 by the temperature sensor 134, and the gas consuming device 102 so that the detected temperature of the desulfurizer 105 becomes a predetermined regeneration temperature. It is preferable to control the emission of fuel gas by the fuel supply cylinder 110a.
  • the mode control unit 131 may appropriately adjust the heating temperature (that is, the regeneration temperature) of the desulfurization device 105 due to the heat of oxidation reaction of the oxidation treatment device 106 according to the type of the desulfurization material of the desulfurization device 105.
  • the desulfurizer 105 when the desulfurizing agent in which the toxic substance is accumulated is heated by the oxidation reaction heat of the oxidation treatment device 106, the toxic substance is desorbed from the desulfurizing agent, whereby the desulfurizing agent in the desulfurizing apparatus 105 is regenerated. (Step S17).
  • step S18 When a predetermined playback time has elapsed since the mode control unit 131 started the playback mode (step S18: Yes), the mode control unit 131 switches the operation mode from the playback mode to the normal mode (step S11).
  • the mode control unit 131 may determine a reproduction timing that is not easily affected by the output decrease of the gas consuming device 102, and may control the operation mode to be switched to the reproduction mode only at the reproduction timing. For example, even when the integrated amount of the poisonous substance exceeds a predetermined integrated amount threshold value, the mode control unit 131 may control so as not to switch to the reproduction mode when it is necessary to maintain the output of the gas consuming device 102.
  • the mode control unit 131 may be controlled to switch to the reproduction mode in advance, or to switch to the reproduction mode when it is no longer affected by the output decrease of the gas consuming device 102.
  • the exhaust gas purification device 101 will be described by taking as an example that the integrated amount of the toxic substance of the desulfurizer 105 exceeds a predetermined integrated amount threshold value as a condition for switching the operation mode to the regeneration mode.
  • the conditions for switching to the reproduction mode of the present invention are not limited to this example.
  • the exhaust gas purifying device 101 switches the operation mode from the normal mode to the reproduction mode when the temperature rise amount of the exhaust gas passing through the oxidation treatment device 106 falls below a predetermined temperature threshold value.
  • the temperature threshold value is appropriately set according to the type of the desulfurizing material of the desulfurizer 105 and the oxidation catalyst of the oxidation treatment device 106.
  • the desulfurizer 105 cannot accumulate the toxic substance and discharges the toxic substance, and the toxic substance discharged from the desulfurizer 105 is introduced into the oxidation treatment device 106. .. Since the toxic substance introduced into the oxidation treatment device 106 deteriorates the oxidation catalyst, the efficiency of oxidizing hydrocarbons in the exhaust gas is reduced, and the heat of oxidation reaction is reduced. Therefore, the amount of temperature rise of the exhaust gas that has passed through the oxidation treatment device 106 can be determined, and the integrated amount of the toxic substance of the desulfurizing device 105 can be estimated based on this temperature rise amount. In addition, it can be determined that the integrated amount of the toxic substance of the desulfurizer 105 exceeds the integrated amount threshold.
  • the exhaust gas purification device 101 includes an input temperature sensor 135 and an output temperature sensor 136 that detect the temperature of the exhaust gas flowing through the exhaust path 104.
  • the input temperature sensor 135 is provided on the upstream side of the desulfurization device 105 in the exhaust gas discharge direction, and detects the temperature of the exhaust gas input to the desulfurization device 105 and the oxidation treatment device 106.
  • the output temperature sensor 136 is provided on the downstream side of the oxidation treatment device 106 in the exhaust gas discharge direction, and detects the temperature of the exhaust gas output from the desulfurization device 105 and the oxidation treatment device 106.
  • the control unit 130 is connected to the input temperature sensor 135 and the output temperature sensor 136, and inputs the detected temperature of the exhaust gas from the input temperature sensor 135 and the output temperature sensor 136.
  • the mode control unit 131 determines the amount of temperature rise of the exhaust gas that has passed through the oxidation treatment device 106 based on the difference between the detection temperature of the input temperature sensor 135 and the detection temperature of the output temperature sensor 136, that is, the temperature difference.
  • the exhaust gas purifying device 101 reproduces the operation mode from the normal mode when the predetermined component of the exhaust gas that has passed through the oxidation treatment device 106 does not satisfy the predetermined component amount threshold value. You may switch to the mode.
  • the predetermined component of the exhaust gas is, for example, oxygen, a hydrocarbon, a sulfur compound, or the like, and the component amount such as the concentration or amount of the predetermined component is compared with the predetermined component amount threshold value.
  • the component amount threshold value is appropriately set according to the type of the desulfurizing material of the desulfurizer 105 and the oxidation catalyst of the oxidation treatment device 106, and the type of the predetermined component.
  • the mode control unit 131 determines the oxidation efficiency of the hydrocarbon by the oxidation catalyst of the oxidation treatment device 106 based on the component amount of the predetermined component of the exhaust gas, and poisons the desulfurization device 105 based on the oxidation efficiency of the oxidation treatment device 106.
  • the amount of accumulated material can be estimated.
  • the mode control unit 131 integrates the toxic substance integrated amount of the desulfurizer 105 when the oxygen concentration of the exhaust gas exceeds the component amount threshold value or when the amount of the hydrocarbon or sulfur compound in the exhaust gas exceeds the component amount threshold value. It can be determined that the quantity threshold is exceeded.
  • the exhaust gas purification device 101 includes an exhaust gas sensor 137 that detects a predetermined component such as oxygen, a hydrocarbon, or a sulfur compound contained in the exhaust gas flowing through the exhaust path 104.
  • the exhaust gas sensor 137 is provided on the downstream side of the oxidation treatment device 106 in the exhaust gas discharge direction, and detects the amount of a predetermined component of the exhaust gas discharged from the oxidation treatment device 106.
  • the control unit 130 is connected to the exhaust gas sensor 137, and inputs the amount of a predetermined component of the exhaust gas from the exhaust gas sensor 137 to cause the mode control unit 131 to determine the component amount.
  • the exhaust gas purification device 101 may switch to the regeneration mode when at least one of the above three conditions or two or more conditions are satisfied as the switching conditions to the regeneration mode.
  • the exhaust gas purification device 101 has been described by taking as an example the misfire of the fuel supply cylinder 110a as a configuration for discharging the fuel gas to the fuel supply cylinder 110a, but the fuel of the present invention has been described.
  • the fuel gas emission configuration of the supply cylinder 110a is not limited to this example.
  • the exhaust gas purification device 101 is used to fuel the exhaust valve 122 immediately before opening, that is, immediately before exhausting.
  • Fuel gas may be supplied to the exhaust manifold 121 by the gas supply unit 112.
  • the fuel gas supply unit 112 After closing the intake valve 120 of the fuel supply cylinder 110a and burning the mixed gas in the combustion chamber of the cylinder 115, immediately before opening the exhaust valve 122 and discharging the exhaust gas, the fuel gas supply unit 112 The fuel valve is opened to supply fuel gas into the combustion chamber. The fuel gas supplied to the combustion chamber is supplied to the exhaust manifold 121 via the exhaust valve 122. As a result, it is possible to avoid a decrease in the total output of the gas consuming device 102.
  • the exhaust gas purification device 101 is provided with a fuel gas supply unit during a valve overlap period in which the intake valve 120 and the exhaust valve 122 of the fuel supply cylinder 110a are simultaneously opened.
  • Fuel gas may be supplied by 112.
  • the fuel gas supply unit 112 supplies fuel gas to the distribution path 119 connected to the fuel supply cylinder 110a in the intake manifold 118 of the intake unit 111. Since the intake valve 120 of the fuel supply cylinder 110a is open, the fuel gas is supplied to the combustion chamber of the cylinder 115 of the fuel supply cylinder 110a via the distribution path 119. Further, since the exhaust valve 122 of the fuel supply cylinder 110a is also open, the fuel gas blows through the cylinder 115 of the fuel supply cylinder 110a (passes through) and passes through the exhaust valve 122 and the exhaust manifold 121 together with the exhaust gas to the exhaust path 104. Is discharged to. As a result, it is possible to avoid a decrease in the total output of the gas consuming device 102.
  • the exhaust gas purification device 101 applied to the gas consuming device 102 that consumes fuel gas and discharges exhaust gas is an exhaust gas that discharges exhaust gas from the gas consuming device 102.
  • the mode control unit 131 of the control unit 130 (control unit) that controls the gas consumption device 102 is provided so that the fuel gas supplied to the 110a is discharged to the exhaust path 104.
  • high-concentration fuel gas is discharged through the fuel supply cylinder 110a and oxidized without providing a bypass for introducing the fuel gas into the oxidation treatment device 106. It can be introduced into the processor 106. Further, since the oxidation treatment device 106 transfers the high-temperature oxidation reaction heat generated by the high-concentration fuel gas to the desulfurization device 105, the desulfurization device 105 can be heated without providing a heating means such as a heater or a burner. ..
  • the desulfurizing agent of the desulfurizing device 105 can be regenerated at low cost without complicating the configuration and installation of the heating means for heating the desulfurizing device 105.
  • the exhaust gas purification device 101 can efficiently remove the poisonous component and purify the exhaust gas.
  • the exhaust gas purification device 101 of the second embodiment of the present invention regenerates the desulfurization device 105 when the integrated amount of the poisoned component accumulated in the desulfurization device 105 exceeds a predetermined threshold value.
  • the exhaust gas purification device 101 can regenerate the desulfurization device 105 when it detects a decrease in the desulfurization capacity of the desulfurization device 105. Since the integrated amount threshold value of the accumulated amount of the poisonous substance is appropriately set according to the type of the desulfurizing material of the desulfurizing device 105, the desulfurizing device 105 can be regenerated at an appropriate timing for each desulfurizing device 105.
  • the mode control unit 131 controls the gas consumption device 102 so as to misfire at least one fuel supply cylinder 110a when the desulfurization device 105 is regenerated.
  • the high-concentration fuel gas can be discharged through the fuel supply cylinder 110a and introduced into the oxidation treatment device 106 without complicated configuration.
  • the mode control unit 131 uses the fuel gas supply unit 112 of the gas consumption device 102 configured as an in-cylinder direct injection type to supply fuel gas to at least one fuel supply cylinder 110a immediately before exhaust gas.
  • the gas consuming device 102 may be controlled so as to supply the gas.
  • high-concentration fuel gas can be discharged through the fuel supply cylinder 110a and introduced into the oxidation treatment device 106 without reducing the total output of the gas consuming device 102.
  • the mode control unit 131 is at least one by the fuel gas supply unit 112 of the gas consuming device 102 during the valve overlap period in which the intake valve 120 and the exhaust valve 122 of the cylinder 110 are simultaneously opened at the time of regeneration of the desulfurizer 105.
  • the gas consuming device 102 may be controlled so as to supply fuel gas to one fuel supply cylinder 110a. Also in this case, the high-concentration fuel gas can be discharged through the fuel supply cylinder 110a and introduced into the oxidation treatment device 106 without reducing the total output of the gas consuming device 102.
  • the exhaust gas purification device 101 is provided with only one desulfurization device 105 on the upstream side of the oxidation treatment device 106 in the exhaust gas discharge direction has been described, but the configuration of the desulfurization device 105 of the present invention has been described. Is not limited to this example.
  • the desulfurization device 105 includes two first desulfurization device 141 and a second desulfurization device 142.
  • the description of the same configuration as that of the second embodiment will be omitted.
  • Each of the first desulfurizer 141 and the second desulfurizer 142 is configured in the same manner as the desulfurizer 105 of the second embodiment.
  • the first desulfurizer 141 and the second desulfurizer 142 are arranged in close proximity to or in contact with the oxidation treatment device 106 with the oxidation treatment device 106 interposed therebetween, and communicate with the oxidation treatment device 106.
  • a temperature sensor 134 for detecting the temperature of the desulfurizer 105 is provided for each of the first desulfurizer 141 and the second desulfurizer 142.
  • the oxidation treatment device 106 transfers the heat of oxidation reaction generated when the exhaust gas is oxidized to the first desulfurization device 141 or the second desulfurization device 142 which is in close contact with or in contact with the first desulfurization device 141 or the second desulfurization device 142.
  • the second desulfurizer 142 is heated and regenerated.
  • the oxidation treatment device 106 may include a transmission member that transfers the heat of the oxidation reaction to the first desulfurization device 141 and the second desulfurization device 142.
  • the exhaust gas purification device 101 has a first branch path 143 and a second branch path 144 branched from the exhaust path 104 at the same branch position.
  • the exhaust path 104 has a gas consuming device 102 side from the branch position, that is, an upstream side exhaust path 104a, and an outside air side from the branch position, that is, a downstream side exhaust path 104b, and the exhaust path 104 and the first branch path 143.
  • a cross-shaped path is formed by the second branch path 144 and the second branch path 144.
  • the first desulfurizer 141 and the second desulfurizer 142 are connected to the first branch path 143 and the second branch path 144, respectively. Note that FIGS.
  • FIGS. 6 and 7 show an example in which the downstream exhaust path 104b passes through the back surface side of the oxidation processor 106, that is, the downstream exhaust path 104b is not connected to the oxidation processor 106.
  • the downstream exhaust path 104b By arranging the downstream exhaust path 104b adjacent to the oxidation treatment device 106, the heat retention of the oxidation treatment device 106 can be enhanced by the exhaust gas flowing through the downstream exhaust path 104b.
  • the exhaust gas purification device 101 of the third embodiment has a first flow path 145 (see FIG. 6) via the first branch path 143 from the upstream exhaust path 104a as a flow path for discharging the exhaust gas from the gas consuming device 102. It has a second flow path 146 (see FIG. 7) via the second branch path 144 from the upstream side exhaust path 104a.
  • the exhaust gas is introduced from the first branch path 143 to the first desulfurizer 141, the oxidation treatment device 106 and the second desulfurizer 142, and goes through the second branch path 144 to the downstream exhaust path 104b. Is discharged to.
  • the exhaust gas is introduced from the second branch path 144 to the second desulfurizer 142, the oxidation treatment device 106 and the first desulfurizer 141, and is passed through the first branch path 143 to the downstream exhaust path 104b. Is discharged to.
  • the exhaust gas purification device 101 of the third embodiment includes a switching unit 147 at a branch position to the first desulfurizer 141 and the second desulfurizer 142 in the exhaust path 104.
  • the switching unit 147 is composed of a valve, a damper, or the like that opens and closes the flow path.
  • the switching unit 147 has a three-way valve that outputs the first branch path 143 or the second branch path 144 to the upstream exhaust path 104a, and the first branch path 143 or the second branch path 143 or the second branch path 144b to the downstream exhaust path 104b. It may be composed of a three-way valve having a branch path 144 as an input.
  • the switching unit 147 is connected to the control unit 130 and is controlled by the mode control unit 131 to switch between the first flow path 145 and the second flow path 146.
  • the switching unit 147 closes the second branch path 144 and the downstream side exhaust path 104b when viewed from the upstream side exhaust path 104a, and at the same time, the downstream side exhaust.
  • the upstream exhaust path 104a and the first branch path 143 when viewed from the path 104b are blocked.
  • the switching unit 147 communicates the upstream side exhaust path 104a and the first branch path 143, and also communicates the second branch path 144 and the downstream side exhaust path 104b.
  • the switching unit 147 closes the first branch path 143 and the downstream side exhaust path 104b when viewed from the upstream side exhaust path 104a, and at the same time, the downstream side exhaust.
  • the upstream exhaust path 104a and the second branch path 144 when viewed from the path 104b are blocked.
  • the switching unit 147 communicates the upstream side exhaust path 104a and the second branch path 144, and also communicates the first branch path 143 and the downstream side exhaust path 104b.
  • condition for the mode control unit 131 to switch the operation mode to the normal mode or the reproduction mode may be set in the same manner as in the second embodiment.
  • the exhaust gas discharge operation in the normal mode of the third embodiment will be described below.
  • the mode control unit 131 switches to the first flow path 145 by the switching unit 147.
  • the exhaust gas flowing through the first flow path 145 is first introduced into the first desulfurization device 141, the poisonous component of the exhaust gas is adsorbed by the first desulfurization device 141, and the exhaust gas after desulfurization is discharged from the first desulfurization device 141.
  • Desulfurization The exhaust gas discharged from the first desulfurization device 141 is introduced into the oxidation treatment device 106, harmful components of the exhaust gas are removed by the oxidation treatment device 106, and the purified exhaust gas is discharged from the oxidation treatment device 106.
  • the purified exhaust gas is discharged to the downstream exhaust path 104b via the second desulfurizer 142 and the second flow path 146.
  • the mode control unit 131 switches to the second flow path 146 by the switching unit 147.
  • the exhaust gas containing the fuel gas having a higher concentration than that in the normal mode is discharged from the gas consuming device 102 and flows through the second flow path 146 of the exhaust path 104.
  • the exhaust gas flowing through the second flow path 146 is first introduced into the second desulfurization device 142, the poisonous component of the exhaust gas is adsorbed by the second desulfurization device 142, and the exhaust gas after desulfurization is discharged from the second desulfurization device 142. Desulfurization.
  • the exhaust gas after desulfurization still contains a high concentration fuel gas.
  • the exhaust gas discharged from the second desulfurization device 142 is introduced into the oxidation treatment device 106, the harmful components of the exhaust gas are removed by the oxidation treatment device 106, and the purified exhaust gas is discharged from the oxidation treatment device 106.
  • high-concentration hydrocarbons contained in the fuel gas in the exhaust gas are oxidized by the oxidation catalyst of the oxidation treatment device 106, high-temperature oxidation reaction heat is generated and transferred to the first desulfurization device 141, and the first desulfurization device is used.
  • the desulfurization agent of 141 is heated.
  • the desulfurizing agent in which the toxic substance is accumulated is heated by the oxidation reaction heat of the oxidation treatment device 106, and the toxic substance is desorbed from the desulfurizing agent, whereby the desulfurizing agent of the first desulfurizing apparatus 141 is released. Will be played.
  • the purified exhaust gas introduced into the first desulfurizer 141 is discharged together with the desorbed poisonous substance, and is discharged to the downstream exhaust path 104b via the first flow path 145.
  • the operation mode is switched from the reproduction mode to the normal mode, and the operation mode is switched to the first flow path 145 by the switching unit 147.
  • the first desulfurizer 141 or the second desulfurizer 142 is always arranged on the upstream side of the oxidation treatment device 106 in the exhaust gas discharge direction in both the normal mode and the regeneration mode. Therefore, it is possible to always avoid the introduction of the toxic substance of the exhaust gas into the oxidation treatment device 106. Further, in the regeneration mode, the exhaust gas can be desulfurized by the second desulfurization device 142 on the upstream side of the oxidation treatment device 106 in the discharge direction, and the first desulfurization device 141 on the downstream side of the oxidation treatment device 106 can be regenerated. ..
  • the switching unit 147 switches to the first flow path 145 in the normal mode and switches to the second flow path 146 in the reproduction mode
  • the present invention is not limited to this example. That is, the present invention does not limit the flow paths used in the normal mode and the reproduction mode to the first flow path 145 and the second flow path 146, respectively, and may use the first flow path 145 or the second flow path 146 as necessary. May be selectively switched.
  • the switching unit 147 may be switched to the second flow path 146 in the normal mode, while switching to the first flow path 145 in the reproduction mode.
  • the flow of the exhaust gas is in the opposite direction to the above-mentioned example, and the functions of the first desulfurization device 141 and the second desulfurization device 142 are also reversed, but the same effect as the above-mentioned example is obtained.
  • the first desulfurizer 141 or the second desulfurizer 142 is always arranged on the upstream side of the oxidation treatment device 106 in the exhaust gas discharge direction, so that the exhaust gas is a poisonous substance.
  • the second desulfurization device 142 on the downstream side of the oxidation treatment device 106 can be regenerated while the exhaust gas is desulfurized by the first desulfurization device 141 on the upstream side of the oxidation treatment device 106 in the discharge direction. ..
  • the mode control unit 131 monitors the frequency of use of the first desulfurizer 141 in normal operation when the first flow path 145 is used in the normal mode, and when the frequency of use reaches a predetermined frequency threshold value, the mode control unit 131 monitors the frequency of use. You may switch to use the second flow path 146 in normal mode. Similarly, when the second flow path 146 is used in the normal mode, the mode control unit 131 monitors the frequency of use of the second desulfurizer 142 in the normal operation, and the frequency of use reaches a predetermined frequency threshold value. In some cases, the normal mode may be switched to use the first flow path 145.
  • the frequency of use of the first desulfurizer 141 or the second desulfurizer 142 is, for example, the operating time of the gas consuming device 102, the engine rotation speed, the total usage time of the first desulfurizer 141 or the second desulfurizer 142, or the flow rate of the exhaust gas. , The number of regenerations, the total regeneration time, the total integrated amount of poisonous substances, and the like may be used for determination.
  • the mode control unit 131 is switched to the first flow path 145 by the switching unit 147 after the reproduction of the first flow path 145 is completed in the reproduction mode. Not limited to. In another example, even if the operation mode is switched from the reproduction mode to the normal mode after the reproduction of the first flow path 145 is completed in the reproduction mode, the mode control unit 131 does not switch to the first flow path 145 and is the second flow.
  • the second flow path 146 may be used in normal mode while maintaining the path 146.
  • the mode control unit 131 does not switch to the second flow path 146 and the first flow path 145.
  • the first flow path 145 may be used in the normal mode.
  • the first branch path is located in the vicinity of the first desulfurizer 141.
  • the 143 is equipped with a first temperature sensor 148
  • the second branch path 144 is provided with a second temperature sensor 149 in the vicinity of the second desulfurizer 142.
  • the first temperature sensor 148 and the second temperature sensor 149 are used in the same manner as the input temperature sensor 135 and the output temperature sensor 136 of the second embodiment.
  • the second flow path 146 is used in the normal mode
  • the first temperature sensor 148 and the second temperature sensor 149 are used in the same manner as the output temperature sensor 136 and the input temperature sensor 135 of the second embodiment.
  • the first branch is made in the vicinity of the first desulfurizer 141.
  • the first exhaust gas sensor 150 is provided in the path 143
  • the second exhaust gas sensor 151 is provided in the second branch path 144 in the vicinity of the second desulfurizer 142.
  • the first flow path 145 is used in the normal mode
  • the first exhaust gas sensor 150 is used in the same manner as the exhaust gas sensor 137 of the second embodiment.
  • the second exhaust gas sensor 151 is used in the same manner as the exhaust gas sensor 137 of the second embodiment.
  • the first branch path 143 for introducing the exhaust gas into the first desulfurizer 141 in the normal mode is in the regeneration mode. It also serves as a route for discharging the exhaust gas purified by the oxidation treatment device 106 from the first desulfurization device 141.
  • the second branch path 144 for introducing the exhaust gas to the second desulfurizer 142 in the regeneration mode discharges the exhaust gas purified by the oxidation treatment device 106 in the normal mode from the second desulfurizer 142. Is also used.
  • the route for discharging the exhaust gas purified by the oxidation treatment device 106 is not limited to the example in which the first branch path 143 and the second branch path 144 are also used as in the third embodiment.
  • the exhaust gas purification device 101 of the fourth embodiment includes a third branch path 160 for discharging the exhaust gas purified by the oxidation treatment device 106 from the second desulfurization device 142 in the normal mode. Further, as shown in FIG. 9, the exhaust gas purification device 101 of the fourth embodiment includes a fourth branch path 161 for discharging the exhaust gas purified by the oxidation treatment device 106 in the regeneration mode from the first desulfurization device 141.
  • the description of the configuration similar to that of the second embodiment or the third embodiment will be omitted.
  • the third branch path 160 is provided by branching from the first branch path 143 and joins the downstream exhaust path 104b.
  • the fourth branch path 161 is provided by branching from the second branch path 144 and joins the downstream exhaust path 104b.
  • the upstream exhaust path 104a is branched into the first branch path 143 and the second branch path 144, but is not directly connected to the downstream exhaust path 104b.
  • the first flow path 145 and the second flow path 146 that discharge the exhaust gas from the gas consuming device 102 are different from the third embodiment.
  • the exhaust gas is discharged from the first branch path 143 to the first desulfurizer 141, the oxidation treatment device 106 and the second. It is introduced into the desulfurizer 142 and discharged to the downstream exhaust path 104b via the fourth branch path 161.
  • the second flow path 146 from the upstream exhaust path 104a via the second branch path 144 as shown in FIG.
  • the exhaust gas is discharged from the second branch path 144 to the second desulfurizer 142, the oxidation treatment device 106 and the oxidation treatment device 106. It is introduced into the first desulfurizer 141 and discharged to the downstream exhaust path 104b via the third branch path 160.
  • the configuration for switching the flow path for discharging the exhaust gas from the gas consuming device 102 is different from the switching unit 147 in the third embodiment.
  • the exhaust gas purification device 101 includes a first switching unit 162 in the first branch path 143 in the vicinity of the upstream exhaust path 104a, and a second switching unit 163 in the second branch path 144 in the vicinity of the upstream exhaust path 104a. .. Further, the exhaust gas purification device 101 includes a third switching section 164 in the third branch path 160 in the vicinity of the first branch path 143, and a fourth switching section 165 in the fourth branch path 161 in the vicinity of the second branch path 144. To prepare for.
  • the first switching unit 162, the second switching unit 163, the third switching unit 164, and the fourth switching unit 165 are composed of valves, dampers, and the like that open and close the flow path.
  • the first switching unit 162 and the second switching unit 163 may be configured by a three-way valve having the first branch path 143 or the second branch path 144 as an output with respect to the upstream exhaust path 104a.
  • the first switching unit 162, the second switching unit 163, the third switching unit 164, and the fourth switching unit 165 are connected to the control unit 130 and are controlled by the mode control unit 131 to open and close each route. Switch.
  • the first switching unit 162 switches between discharging and shutting off the exhaust gas to the first branch path 143
  • the second switching unit 163 switches between discharging and shutting off the exhaust gas to the second branch path 144
  • the third switching unit 164 switches between discharging and shutting off the exhaust gas to the third branch path 160
  • the fourth switching unit 165 switches between discharging and shutting off the exhaust gas to the fourth branch path 161.
  • the first switching section 162 opens the first branch path 143 and the second switching section 163 blocks the second branch path 144.
  • the upstream exhaust path 104a and the first branch path 143 are communicated with each other.
  • the third switching section 164 blocks the third branch path 160 and the fourth switching section 165 opens the fourth branch path 161 so that the fourth branch path 161 and the downstream exhaust path 104b communicate with each other.
  • the mode control unit 131 may control the first switching unit 162 and the second switching unit 163 so that the first branch path 143 is opened and the second branch path 144 is closed at the same time.
  • the mode control unit 131 may control the third switching unit 164 and the fourth switching unit 165 so that the third branch path 160 is closed and the fourth branch path 161 is opened at the same time.
  • the first switching section 162 blocks the first branch path 143 and the second switching section 163 opens the second branch path 144.
  • the upstream exhaust path 104a and the second branch path 144 are communicated with each other.
  • the third switching section 164 opens the third branch path 160 and the fourth switching section 165 closes the fourth branch path 161 so that the third branch path 160 and the downstream exhaust path 104b communicate with each other.
  • the mode control unit 131 may control the first switching unit 162 and the second switching unit 163 so that the first branch path 143 is closed and the second branch path 144 is opened at the same time.
  • the mode control unit 131 may control the third switching unit 164 and the fourth switching unit 165 so that the third branch path 160 is opened and the fourth branch path 161 is closed at the same time.
  • the condition for the mode control unit 131 to switch the operation mode to the normal mode or the reproduction mode may be set in the same manner as in the third embodiment.
  • the first flow path 145 and the second flow path 146 of the fourth embodiment function in the same manner as the third embodiment. Since the exhaust gas discharge operation in the normal mode and the regeneration mode of the fourth embodiment is the same as that of the third embodiment, the description thereof will be omitted.
  • the flow paths used in the normal mode and the reproduction mode are not limited to the first flow path 145 and the second flow path 146, respectively, and the first flow path 145 is the same as in the third embodiment. And the second flow path 146 may be selectively switched as needed.
  • the desulfurization device 105 has a first desulfurization device 141 and a second desulfurization device 142, and is an oxidation treatment device.
  • the 106 is provided between the first desulfurizer 141 and the second desulfurizer 142.
  • the mode control unit 131 includes a first flow path 145 that discharges exhaust gas in the order of the first desulfurizer 141, the oxidation treatment device 106, and the second desulfurization device 142, and the second desulfurization device 142, the oxidation treatment device 106, and the first desulfurization device.
  • the second flow path 146 that discharges the exhaust gas is switched in the order of 141.
  • the first desulfurizer 141 or the second desulfurizer 142 is always arranged on the upstream side of the oxidation treatment device 106 in the exhaust gas discharge direction, so that the toxic substance of the exhaust gas Can always be avoided from being introduced into the oxidation treatment device 106.
  • the exhaust gas is desulfurized by the first desulfurizer 141 or the second desulfurizer 142 on the upstream side of the oxidation treatment device 106 in the discharge direction, while the exhaust gas is desulfurized on the downstream side of the oxidation treatment device 106 or the second desulfurization device 142. Can be played.
  • the exhaust gas purification device 101 can more efficiently remove the poisonous component and purify the exhaust gas.
  • the first flow path 145 and the second flow path 146 are further switched.
  • the regenerated first desulfurizer 141 or second desulfurizer 142 is always arranged on the upstream side of the oxidation treatment device 106 in the exhaust gas discharge direction. Therefore, in the restarted normal mode, desulfurization can be performed by the refreshed first desulfurization device 141 or the second desulfurization device 142, and the poisonous component can be removed more efficiently.
  • the present invention can be appropriately modified within the scope of the claims and within the scope not contrary to the gist or idea of the invention that can be read from the entire specification, and the exhaust gas purification system and the exhaust gas purification device accompanied by such changes are also the present invention. It is included in the technical idea of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

The present invention addresses the problem of providing an exhaust gas purification system and an exhaust gas purification device that purify exhaust gas by efficiently removing poisoning components therefrom. This exhaust gas purification system (1) is applicable to a gas consuming device (2) that consumes fuel gas and discharges exhaust gas, and is provided with: a desulfurizer (5) that houses therein a desulfurization agent for removing poisoning components contained in fuel gas; and an oxidation treatment device (6) that is disposed in an exhaust path (4) through which exhaust gas from the gas consuming device (2) is discharged, and houses therein an oxidation catalyst for oxidizing hazardous components contained in the exhaust gas having passed through the exhaust path (4). The exhaust gas purification system (1) is further provided with: a bypass path (7) which is branched from the exhaust path (4); and a switching part (8) which is disposed in the exhaust path (4) and which switches the discharge destination of exhaust gas from the oxidation treatment device (6) to the bypass path (7) during regeneration of the desulfurizer (5).

Description

排ガス浄化システム及び排ガス浄化装置Exhaust gas purification system and exhaust gas purification device
 本発明は、脱硫器及び酸化触媒を備えていて、燃料ガスを消費するエンジン等のガス消費装置の排ガスを浄化する排ガス浄化システム及び排ガス浄化装置に関する。 The present invention relates to an exhaust gas purification system and an exhaust gas purification device, which are provided with a desulfurizing device and an oxidation catalyst and purify the exhaust gas of a gas consuming device such as an engine that consumes fuel gas.
 天然ガス等の燃料ガスを消費するエンジン等のガス消費装置に対して、排ガス浄化システム又は排ガス浄化装置が適用される。排ガス浄化システム又は排ガス浄化装置は、硫黄化合物等の被毒成分を吸着して除去する脱硫器と、炭化水素等の有害成分を酸化させて除去する酸化触媒とを備えて、ガス消費装置から排出される排ガスを浄化する。 An exhaust gas purification system or an exhaust gas purification device is applied to a gas consumption device such as an engine that consumes fuel gas such as natural gas. The exhaust gas purification system or the exhaust gas purification device is equipped with a desulfurizer that adsorbs and removes toxic components such as sulfur compounds and an oxidation catalyst that oxidizes and removes harmful components such as hydrocarbons, and discharges from the gas consumption device. Purifies the exhaust gas that is produced.
 例えば、特許文献1に開示される排ガス浄化装置は、炭化水素及び硫黄化合物を含む燃料ガスを消費するガス消費装置と、ガス消費装置から排出された排ガスが導入され、排ガス中の硫黄化合物を吸着する脱硫剤が収納された脱硫器と、脱硫剤を加熱する加熱手段と、脱硫器から排出された脱硫後排ガスが導入され、脱硫後排ガス中の炭化水素及び一酸化炭素を酸化させる触媒が収納された酸化処理器と、を備えている。 For example, the exhaust gas purification device disclosed in Patent Document 1 is a gas consuming device that consumes a fuel gas containing a hydrocarbon and a sulfur compound, and an exhaust gas discharged from the gas consuming device is introduced to adsorb the sulfur compound in the exhaust gas. A desulfurizer containing a desulfurizing agent, a heating means for heating the desulfurizing agent, and a catalyst for oxidizing hydrocarbons and carbon monoxide in the desulfurized exhaust gas after the desulfurized exhaust gas discharged from the desulfurization device are introduced. It is equipped with a desulfurized oxidation treatment device.
特開2018-135808号公報Japanese Unexamined Patent Publication No. 2018-135808
 脱硫器は、所定量以上の硫黄化合物が脱硫剤に吸着すると、硫黄化合物の除去機能が低下するため、脱硫剤を加熱して硫黄化合物を脱離させることで脱硫剤を再生する必要がある。従来の排ガス浄化装置のように、排ガスの排出方向において酸化触媒よりも上流側に脱硫器を配置した場合、脱硫器の再生時に、燃料ガスを酸化触媒へ供給して燃料ガスの酸化処理で発生した熱を上流側の脱硫器へフィードバックする必要があり、構成が複雑になる。また、脱硫器の再生時に脱離した硫黄化合物が酸化触媒へ流通して、酸化触媒を劣化させるおそれがある。 In the desulfurizer, when a predetermined amount or more of the sulfur compound is adsorbed on the desulfurizing agent, the function of removing the sulfur compound deteriorates. Therefore, it is necessary to regenerate the desulfurizing agent by heating the desulfurizing agent to desorb the sulfur compound. When the desulfurizer is placed upstream of the oxidation catalyst in the exhaust gas emission direction as in the conventional exhaust gas purification device, fuel gas is supplied to the oxidation catalyst when the desulfurizer is regenerated, and it is generated in the oxidation treatment of the fuel gas. It is necessary to feed back the generated heat to the desulfurizer on the upstream side, which complicates the configuration. In addition, the sulfur compound desorbed during regeneration of the desulfurizer may flow to the oxidation catalyst and deteriorate the oxidation catalyst.
 更に、従来の排ガス浄化装置のように、排ガスの排出方向において、ガス消費装置より下流側に脱硫器を配置すると、高温の排ガスが脱硫器に流通する。脱硫器は、高温の排ガスに含まれる硫黄化合物を吸着し難いので、硫黄化合物を除去する効率が低下するおそれがある。また、高温に対応した脱硫剤を備える必要があるので、脱硫器自体のコストが高くなる恐れがある。更に、このような脱硫剤を再生するために脱硫剤をより高温に、例えば、500度以上に昇温する必要があるので、脱硫器を加熱するヒーターやバーナー等の加熱手段のコストが高くなり、加熱手段の設置のために構成が複雑化するおそれがある。 Furthermore, if a desulfurizer is placed downstream of the gas consuming device in the exhaust gas discharge direction as in the conventional exhaust gas purification device, high-temperature exhaust gas will be distributed to the desulfurizer. Since the desulfurizer is difficult to adsorb sulfur compounds contained in high-temperature exhaust gas, the efficiency of removing sulfur compounds may decrease. In addition, since it is necessary to provide a desulfurizing agent that can handle high temperatures, the cost of the desulfurizing device itself may increase. Further, in order to regenerate such a desulfurizing agent, it is necessary to raise the temperature of the desulfurizing agent to a higher temperature, for example, 500 degrees or more, so that the cost of a heating means such as a heater or a burner for heating the desulfurizing device becomes high. , The configuration may be complicated due to the installation of heating means.
 また、特許文献1の排ガス浄化装置は、ガス消費装置へ燃料ガスを供給する気道とガス消費装置から排ガスを排出する気道との間に、ガス消費装置を回避するように短絡させたバイパスを備えている。そして、燃料ガスがバイパスによって酸化処理器へ導入されると、燃料ガスの酸化反応熱が発生し、この酸化反応熱を脱硫器へ伝達することで脱硫器を再生する。あるいは、特許文献1の排ガス浄化装置は、ヒーターやバーナー等の加熱手段で脱硫器を加熱して再生する。しかし、排ガス浄化装置がバイパス又はヒーターやバーナー等の加熱手段を備える場合、コストが高くなり、構成が複雑化するおそれがある。また、脱硫器の再生時に脱離した硫黄化合物が酸化触媒へ流通して、酸化触媒を劣化させるおそれがある。 Further, the exhaust gas purification device of Patent Document 1 includes a bypass short-circuited between the airway that supplies fuel gas to the gas consuming device and the airway that discharges exhaust gas from the gas consuming device so as to avoid the gas consuming device. ing. Then, when the fuel gas is introduced into the oxidation treatment device by bypass, the oxidation reaction heat of the fuel gas is generated, and the oxidation reaction heat is transferred to the desulfurization device to regenerate the desulfurization device. Alternatively, the exhaust gas purification device of Patent Document 1 heats the desulfurizer with a heating means such as a heater or a burner to regenerate it. However, if the exhaust gas purification device is provided with a bypass or a heating means such as a heater or a burner, the cost is high and the configuration may be complicated. In addition, the sulfur compound desorbed during regeneration of the desulfurizer may flow to the oxidation catalyst and deteriorate the oxidation catalyst.
 上記の結果、従来の排ガス浄化装置では、構成の複雑化や燃費の悪化により排ガスを浄化する効率が低下してしまう。 As a result of the above, in the conventional exhaust gas purification device, the efficiency of purifying the exhaust gas is lowered due to the complicated configuration and deterioration of fuel efficiency.
 本発明は、効率よく被毒成分を除去して排ガスを浄化する排ガス浄化システム及び排ガス浄化装置を提供することを目的とする。 An object of the present invention is to provide an exhaust gas purification system and an exhaust gas purification device that efficiently remove poisonous components and purify exhaust gas.
 上記課題を解決するために、本発明の排ガス浄化システムは、燃料ガスを消費して排ガスを排出するガス消費装置に適用される排ガス浄化システムであって、前記燃料ガスに含まれる被毒成分を除去する脱硫剤を収納した脱硫器と、前記ガス消費装置から前記排ガスを排出する排気経路に設けられ、前記排気経路を通過した前記排ガスに含まれる有害成分を酸化させる酸化触媒を収納した酸化処理器と、前記排気経路から分岐したバイパス経路と、前記排気経路に設けられ、前記脱硫器の再生時に、前記排ガスの排出先を前記酸化処理器から前記バイパス経路へと切り替える切替部と、を備えることを特徴とする。 In order to solve the above problems, the exhaust gas purification system of the present invention is an exhaust gas purification system applied to a gas consuming device that consumes fuel gas and discharges exhaust gas, and removes poisonous components contained in the fuel gas. Oxidation treatment containing a desulfurizer containing a desulfurizing agent to be removed and an oxidation catalyst provided in an exhaust path for discharging the exhaust gas from the gas consuming device and oxidizing harmful components contained in the exhaust gas passing through the exhaust path. A device, a bypass path branched from the exhaust path, and a switching unit provided in the exhaust path to switch the exhaust gas discharge destination from the oxidation treatment device to the bypass path when the desulfurizer is regenerated. It is characterized by that.
 また、本発明の排ガス浄化装置は、燃料ガスを消費して排ガスを排出するガス消費装置に適用される排ガス浄化装置であって、前記燃料ガスに含まれる被毒成分を除去する脱硫剤を収納した脱硫器と、前記ガス消費装置から前記排ガスを排出する排気経路に設けられ、前記排気経路を通過した前記排ガスに含まれる有害成分を酸化させる酸化触媒を収納した酸化処理器と、前記排気経路から分岐したバイパス経路と、前記排気経路に設けられ、前記脱硫器の再生時に、前記排ガスの排出先を前記酸化処理器から前記バイパス経路へと切り替える切替部と、を備えることを特徴とする。 Further, the exhaust gas purification device of the present invention is an exhaust gas purification device applied to a gas consumption device that consumes fuel gas and discharges exhaust gas, and contains a desulfurizing agent that removes toxic components contained in the fuel gas. An oxidation treatment device provided in the exhaust path for exhausting the exhaust gas from the gas consuming device and accommodating an oxidation catalyst for oxidizing harmful components contained in the exhaust gas that has passed through the exhaust path, and the exhaust path. It is characterized by including a bypass path branched from the above, and a switching unit provided in the exhaust path and switching the exhaust gas discharge destination from the oxidation treatment device to the bypass path when the exhaust gas is regenerated.
 上記課題を解決するために、本発明の排ガス浄化装置は、燃料ガスを消費して排ガスを排出するガス消費装置に適用される排ガス浄化装置であって、前記ガス消費装置から前記排ガスを排出する排気経路に設けられ、前記排ガスに含まれる被毒成分を除去する脱硫剤を収納した脱硫器と、前記排ガスの排出方向において前記脱硫器より下流側で前記脱硫器に近接又は接触して前記排気経路に設けられ、前記排ガスに含まれる有害成分を酸化させる酸化触媒を収納した酸化処理器と、前記脱硫器の再生時に、前記ガス消費装置に備わる複数の気筒のうち、少なくとも一つの気筒に供給された前記燃料ガスが前記排気経路へ排出されるように、前記ガス消費装置を制御する制御部と、を備えることを特徴とする。 In order to solve the above problems, the exhaust gas purification device of the present invention is an exhaust gas purification device applied to a gas consumption device that consumes fuel gas and discharges exhaust gas, and discharges the exhaust gas from the gas consumption device. A desulfurizing device provided in the exhaust path and containing a desulfurizing agent for removing the toxic component contained in the exhaust gas, and the exhaust gas in close proximity to or in contact with the desulfurizing device on the downstream side of the desulfurizing device in the exhaust gas discharge direction. It is supplied to at least one of the oxidation treatment device provided in the path and containing an oxidation catalyst that oxidizes the harmful components contained in the exhaust gas, and the plurality of cylinders provided in the gas consuming device when the desulfurization device is regenerated. It is characterized by comprising a control unit for controlling the gas consuming device so that the exhausted fuel gas is discharged to the exhaust path.
 本発明によれば、効率よく被毒成分を除去して排ガスを浄化する排ガス浄化システム及び排ガス浄化装置を提供する。 According to the present invention, an exhaust gas purification system and an exhaust gas purification device for efficiently removing poisonous components and purifying exhaust gas are provided.
本発明の第1実施形態に係る排ガス浄化システムを示す模式図である。It is a schematic diagram which shows the exhaust gas purification system which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る排ガス浄化システムの動作を示すフローチャートである。It is a flowchart which shows the operation of the exhaust gas purification system which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る排ガス浄化装置を示す模式図である。It is a schematic diagram which shows the exhaust gas purification apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る排ガス浄化装置に適用されるガス消費装置を示す模式図である。It is a schematic diagram which shows the gas consumption apparatus applied to the exhaust gas purification apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る排ガス浄化システムの動作を示すフローチャートである。It is a flowchart which shows the operation of the exhaust gas purification system which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る通常モードの排ガス浄化装置を示す模式図である。It is a schematic diagram which shows the exhaust gas purification apparatus of the normal mode which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る再生モードの排ガス浄化装置を示す模式図である。It is a schematic diagram which shows the exhaust gas purification apparatus of the regeneration mode which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る通常モードの排ガス浄化装置を示す模式図である。It is a schematic diagram which shows the exhaust gas purification apparatus of the normal mode which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る再生モードの排ガス浄化装置を示す模式図である。It is a schematic diagram which shows the exhaust gas purification apparatus of the regeneration mode which concerns on 4th Embodiment of this invention.
 本発明の第1実施形態による排ガス浄化システム1について説明する。排ガス浄化システム1は、図1に示すように、天然ガス等の燃料ガスを消費するエンジン等のガス消費装置2に対して適用され、ガス消費装置2から排出される排ガスを浄化する。燃料ガスは、大気汚染の原因となる炭化水素等の有害成分と、触媒劣化の原因となる硫黄化合物等の被毒成分とを含むため、排ガス浄化システム1は、これらの有害成分及び被毒成分を除去するように構成される。 The exhaust gas purification system 1 according to the first embodiment of the present invention will be described. As shown in FIG. 1, the exhaust gas purification system 1 is applied to a gas consuming device 2 such as an engine that consumes fuel gas such as natural gas, and purifies the exhaust gas discharged from the gas consuming device 2. Since the fuel gas contains harmful components such as hydrocarbons that cause air pollution and poisonous components such as sulfur compounds that cause catalyst deterioration, the exhaust gas purification system 1 has these harmful components and poisonous components. Is configured to remove.
 ガス消費装置2は、燃料タンク等から燃料ガスを供給する供給経路3と、排ガスを排出する排気経路4とに接続されている。排ガス浄化システム1は、燃料ガスに含まれる硫黄化合物等の被毒成分を除去する脱硫器5と、排ガスに含まれる炭化水素等の有害成分を酸化させる酸化処理器6とを備える。また、排ガス浄化システム1は、上記した排気経路4を含むように構成され、排気経路4から分岐したバイパス経路7を備える。排ガス浄化システム1は、排気経路4とバイパス経路7との分岐位置に切替部8を備え、更に、バイパス経路7に熱交換器9を備える。 The gas consuming device 2 is connected to a supply path 3 for supplying fuel gas from a fuel tank or the like and an exhaust path 4 for discharging exhaust gas. The exhaust gas purification system 1 includes a desulfurizer 5 that removes toxic components such as sulfur compounds contained in the fuel gas, and an oxidation treatment device 6 that oxidizes harmful components such as hydrocarbons contained in the exhaust gas. Further, the exhaust gas purification system 1 is configured to include the exhaust gas path 4 described above, and includes a bypass path 7 branched from the exhaust gas path 4. The exhaust gas purification system 1 includes a switching unit 8 at a branch position between the exhaust path 4 and the bypass path 7, and further includes a heat exchanger 9 in the bypass path 7.
 ガス消費装置2は、液化天然ガス(LNG)等の燃料ガスを用いて燃焼運転するエンジンで構成される。これらのエンジンは、燃料ガスを燃料として用いるガスエンジンや、燃料ガスとガソリンやディーゼル燃料等の液体燃料とを用いて運転するデュアルフューエルエンジン、燃料ガスを用いた運転と液体燃料を用いた運転とを切り替えて運転するバイフューエルエンジン等がある。これらのエンジンは、例えば、内航船等の船舶用の駆動源や、発電機、ヒートポンプ等の陸用の駆動源に適用される。例えば、ガス消費装置2は、複数のシリンダ10と、吸気部11と、燃料ガス供給部12と、排気部13とを備え、各シリンダ10にはピストン(図示せず)が収容される。 The gas consuming device 2 is composed of an engine that burns and operates using fuel gas such as liquefied natural gas (LNG). These engines include gas engines that use fuel gas as fuel, dual fuel engines that operate using fuel gas and liquid fuel such as gasoline and diesel fuel, and operation that uses fuel gas and operation that uses liquid fuel. There is a bi-fuel engine, etc. that operates by switching. These engines are applied to, for example, a drive source for ships such as coastal vessels and a drive source for land such as a generator and a heat pump. For example, the gas consuming device 2 includes a plurality of cylinders 10, an intake unit 11, a fuel gas supply unit 12, and an exhaust unit 13, and a piston (not shown) is housed in each cylinder 10.
 吸気部11は、各シリンダ10の燃焼室に接続される吸気マニホールド15を備える。吸気マニホールド15は、各シリンダ10の燃焼室へ接続される各分配経路16を備え、吸気管(図示せず)から供給される空気を分配して各シリンダ10の燃焼室へ供給する。 The intake unit 11 includes an intake manifold 15 connected to the combustion chamber of each cylinder 10. The intake manifold 15 includes each distribution path 16 connected to the combustion chamber of each cylinder 10, and distributes the air supplied from the intake pipe (not shown) and supplies the air to the combustion chamber of each cylinder 10.
 燃料ガス供給部12は、供給経路3に接続されていて、燃料タンク(図示せず)等から供給経路3を介して供給される燃料ガスを各シリンダ10の燃焼室へ分配して供給する。例えば、燃料ガス供給部12は、吸気部11の吸気マニホールド15の各分配経路16へ燃料ガスを分配する。 The fuel gas supply unit 12 is connected to the supply path 3, and distributes and supplies the fuel gas supplied from the fuel tank (not shown) or the like via the supply path 3 to the combustion chambers of each cylinder 10. For example, the fuel gas supply unit 12 distributes the fuel gas to each distribution path 16 of the intake manifold 15 of the intake unit 11.
 これにより、吸気管から供給される空気と、燃料ガス供給部12から供給される燃料ガスとの混合ガスが、吸気マニホールド15の各分配経路16を介して各シリンダ10の燃焼室へ供給される。なお、各分配経路16には、スロットルバルブ(図示せず)が設けられ、スロットルバルブによって、各シリンダ10の燃焼室へ供給される混合ガスの比率や量が調整される。 As a result, the mixed gas of the air supplied from the intake pipe and the fuel gas supplied from the fuel gas supply unit 12 is supplied to the combustion chamber of each cylinder 10 via each distribution path 16 of the intake manifold 15. .. A throttle valve (not shown) is provided in each distribution path 16, and the ratio and amount of the mixed gas supplied to the combustion chamber of each cylinder 10 are adjusted by the throttle valve.
 排気部13は、各シリンダ10の燃焼室に接続される排気マニホールド17を備える。排気マニホールド17は、排気経路4にも接続されていて、各シリンダ10の燃焼室から排出される排ガスを集約して排気経路4を介して排出する。 The exhaust unit 13 includes an exhaust manifold 17 connected to the combustion chamber of each cylinder 10. The exhaust manifold 17 is also connected to the exhaust path 4, and collects the exhaust gas discharged from the combustion chamber of each cylinder 10 and discharges the exhaust gas through the exhaust path 4.
 脱硫器5は、供給経路3を流れる燃料ガスが脱硫器5を通過するように、燃料タンクとガス消費装置2の燃料ガス供給部12との間で、換言すれば燃料ガスの供給方向においてガス消費装置2よりも上流側で、供給経路3に設けられる。脱硫器5は、燃料ガスから硫黄化合物等の被毒成分を除去する脱硫剤を収納している。例えば、脱硫器5は、被毒成分を物理吸着する活性炭やゼオライト等の吸着材を脱硫剤として有し、又は直接分解型の硫化水素製造触媒と被毒成分を除去する酸化ジルコニウム及び酸化亜鉛を含む触媒とからなる化学吸着の脱硫剤を有する。 In the desulfurizer 5, the gas in the fuel gas supply direction between the fuel tank and the fuel gas supply unit 12 of the gas consuming device 2 is provided so that the fuel gas flowing through the supply path 3 passes through the desulfurizer 5. It is provided in the supply path 3 on the upstream side of the consumption device 2. The desulfurizer 5 contains a desulfurizing agent that removes toxic components such as sulfur compounds from the fuel gas. For example, the desulfurizer 5 has an adsorbent such as activated carbon or zeolite that physically adsorbs the toxic component as a desulfurizing agent, or has a direct decomposition type hydrogen sulfide production catalyst and zirconium oxide and zinc oxide that remove the toxic component. It has a chemically adsorbed desulfurizing agent consisting of a catalyst containing it.
 脱硫器5は、供給経路3を流れる燃料ガスから被毒成分を脱硫剤へ吸着させて除去し、脱硫剤には被毒成分からなる被毒物質が蓄積される。これにより、被毒成分を除去された燃料ガス、すなわち脱硫された燃料ガスがガス消費装置2へ供給される。 The desulfurizer 5 adsorbs and removes the toxic component from the fuel gas flowing through the supply path 3 to the desulfurizing agent, and the toxic substance composed of the toxic component is accumulated in the desulfurizing agent. As a result, the fuel gas from which the poisonous component has been removed, that is, the desulfurized fuel gas is supplied to the gas consuming device 2.
 脱硫剤が所定の再生温度以上に加熱されると、脱硫剤に吸着した硫黄化合物等の被毒物質が脱離して脱硫器5が再生される。活性炭やゼオライト等からなる脱硫剤は、比較的低温で、例えば、約200度で再生可能な触媒である。また、排ガス浄化システム1は、脱硫器5の温度を検出する温度センサー18を脱硫器5の近傍に備えていてよい。 When the desulfurizing agent is heated to a predetermined regeneration temperature or higher, the toxic substance such as the sulfur compound adsorbed on the desulfurizing agent is desorbed and the desulfurizer 5 is regenerated. A desulfurizing agent made of activated carbon, zeolite or the like is a catalyst that can be regenerated at a relatively low temperature, for example, about 200 ° C. Further, the exhaust gas purification system 1 may be provided with a temperature sensor 18 for detecting the temperature of the desulfurizer 5 in the vicinity of the desulfurizer 5.
 酸化処理器6は、排気経路4を流れる排ガスが酸化処理器6を通過するように、排気経路4に設けられる。酸化処理器6は、排ガスから炭化水素(例えば、メタン)や一酸化炭素等の有害成分を除去する酸化触媒を収納している。酸化処理器6は、酸化触媒によって有害成分を二酸化炭素や水に酸化させて除去する。 The oxidation treatment device 6 is provided in the exhaust path 4 so that the exhaust gas flowing through the exhaust path 4 passes through the oxidation treatment device 6. The oxidation treatment device 6 contains an oxidation catalyst that removes harmful components such as hydrocarbons (for example, methane) and carbon monoxide from the exhaust gas. The oxidation treatment device 6 oxidizes and removes harmful components into carbon dioxide and water by an oxidation catalyst.
 バイパス経路7は、ガス消費装置2の排気部13と酸化処理器6との間で、換言すれば排ガスの排出方向において酸化処理器6よりも上流側で、排気経路4から分岐している。これにより、ガス消費装置2から排気経路4を介した排ガスの排出は、酸化処理器6を経由する排出と、バイパス経路7を経由する排出とに分かれている。 The bypass path 7 branches from the exhaust path 4 between the exhaust unit 13 of the gas consuming device 2 and the oxidation treatment device 6, in other words, on the upstream side of the oxidation treatment device 6 in the exhaust gas discharge direction. As a result, the exhaust gas discharged from the gas consuming device 2 via the exhaust path 4 is divided into a discharge via the oxidation treatment device 6 and a discharge via the bypass path 7.
 切替部8は、上記したように排気経路4においてバイパス経路7への分岐位置に設けられる。切替部8は、ガス消費装置2から排気経路4を介した排ガスの排出を、酸化処理器6を経由する排出と、バイパス経路7を経由する排出とに切り替えるように構成される。換言すれば、切替部8は、排ガスの排出方向において分岐位置よりも下流側の流路を、酸化処理器6側の流路と、バイパス経路7側の流路とに切り替えるダンパーや弁等で構成される。切替部8は、酸化処理器6側の流路及びバイパス経路7側の流路の何れかを全閉する。例えば、切替部8は、脱硫器5の再生時に、バイパス経路7側の流路に切り替えるように制御される。 The switching unit 8 is provided at a branch position to the bypass path 7 in the exhaust path 4 as described above. The switching unit 8 is configured to switch the exhaust gas discharged from the gas consuming device 2 via the exhaust path 4 to a discharge via the oxidation treatment device 6 and a discharge via the bypass path 7. In other words, the switching unit 8 is a damper, a valve, or the like that switches the flow path downstream from the branch position in the exhaust gas discharge direction to the flow path on the oxidation processor 6 side and the flow path on the bypass path 7 side. It is composed. The switching unit 8 completely closes either the flow path on the oxidation processor 6 side or the flow path on the bypass path 7 side. For example, the switching unit 8 is controlled to switch to the flow path on the bypass path 7 side when the desulfurizer 5 is regenerated.
 熱交換器9は、上記したようにバイパス経路7に設けられると共に、脱硫器5に近接又は接触して配置される。熱交換器9は、排ガスがバイパス経路7を流れる場合に、高温の排ガスを利用した熱交換によって加熱処理を行って脱硫器5を加熱する。なお、熱交換器9は、伝熱材を加熱して、伝熱材によって脱硫器5を加熱してもよい。 The heat exchanger 9 is provided in the bypass path 7 as described above, and is arranged in close proximity to or in contact with the desulfurization device 5. When the exhaust gas flows through the bypass path 7, the heat exchanger 9 heats the desulfurizer 5 by performing heat treatment by heat exchange using the high-temperature exhaust gas. The heat exchanger 9 may heat the heat transfer material and heat the desulfurization device 5 with the heat transfer material.
 また、排ガス浄化システム1は、制御ユニット20を備える。制御ユニット20は、CPU等のコンピュータと、ROM及びRAM等からなる記憶装置とを有して構成される。記憶装置は、排ガス浄化システム1の各種構成要素及び各種機能を制御するためのプログラムやデータを記憶し、コンピュータが、記憶装置に記憶されたプログラムやデータに基づいて演算処理を実行することにより、各種構成要素及び各種機能を制御する。なお、制御ユニット20は、ガス消費装置2であるエンジンを制御するエンジンECUを利用して構成されてもよい。 Further, the exhaust gas purification system 1 includes a control unit 20. The control unit 20 includes a computer such as a CPU and a storage device including a ROM, a RAM, and the like. The storage device stores programs and data for controlling various components and functions of the exhaust gas purification system 1, and a computer executes arithmetic processing based on the programs and data stored in the storage device. Controls various components and functions. The control unit 20 may be configured by using an engine ECU that controls an engine that is a gas consuming device 2.
 排ガス浄化システム1は、動作モードとして通常モードと再生モードとを切り替えて動作する。制御ユニット20は、記憶装置に記憶されたプログラムを実行することにより、動作モードを制御するモード制御部21として機能する。 The exhaust gas purification system 1 operates by switching between a normal mode and a regeneration mode as an operation mode. The control unit 20 functions as a mode control unit 21 that controls an operation mode by executing a program stored in the storage device.
 モード制御部21は、ガス消費装置2を通常運転させる場合には、動作モードを通常モードに切り替える一方、脱硫器5の再生を行う場合には、動作モードを再生モードに切り替える。また、モード制御部21は、通常モードにおいて熱交換器9を停止させる一方、再生モードにおいて熱交換器9を稼働させる。 The mode control unit 21 switches the operation mode to the normal mode when the gas consuming device 2 is operated normally, and switches the operation mode to the reproduction mode when the desulfurizer 5 is regenerated. Further, the mode control unit 21 stops the heat exchanger 9 in the normal mode, while operating the heat exchanger 9 in the regeneration mode.
 例えば、モード制御部21は、通常、動作モードを通常モードに設定していて、脱硫器5に蓄積される被毒物質の積算量が所定の積算量閾値を超えた場合に、動作モードを通常モードから再生モードに切り替える。積算量閾値は、脱硫器5の脱硫材の種別に応じて適宜設定される。 For example, the mode control unit 21 normally sets the operation mode to the normal mode, and when the integrated amount of the poisonous substance accumulated in the desulfurizer 5 exceeds a predetermined integrated amount threshold value, the operation mode is normally set to the normal mode. Switch from mode to playback mode. The integrated amount threshold value is appropriately set according to the type of desulfurized material of the desulfurizer 5.
 モード制御部21は、ガス消費装置2へ供給される燃料ガスの供給量又はガス消費装置2から排出される排ガスの排出量を検出し、燃料ガス供給量又は排ガス排出量に基づいて被毒物質積算量を推定して算出する。例えば、モード制御部21は、供給経路3に設けられる燃料ガスの流量センサー22によって、燃料ガス供給量を検出してよい。また、モード制御部21は、排気経路4に設けられる排ガスの流量センサー23によって、排ガス供給量を検出してよい。モード制御部21は、動作モードを再生モードから通常モードに切り替えるとき、被毒物質積算量をリセットする。 The mode control unit 21 detects the amount of fuel gas supplied to the gas consuming device 2 or the amount of exhaust gas discharged from the gas consuming device 2, and is a toxic substance based on the amount of fuel gas supplied or the amount of exhaust gas discharged. Estimate and calculate the integrated amount. For example, the mode control unit 21 may detect the fuel gas supply amount by the fuel gas flow rate sensor 22 provided in the supply path 3. Further, the mode control unit 21 may detect the exhaust gas supply amount by the exhaust gas flow rate sensor 23 provided in the exhaust path 4. The mode control unit 21 resets the integrated amount of poisonous substances when the operation mode is switched from the reproduction mode to the normal mode.
 あるいは、モード制御部21は、脱硫器5の他の異常を検出した場合や、手動操作によって脱硫器5の再生を指示された場合に、動作モードを再生モードに切り替えてもよい。 Alternatively, the mode control unit 21 may switch the operation mode to the regeneration mode when another abnormality of the desulfurizer 5 is detected or when the desulfurizer 5 is instructed to be regenerated by a manual operation.
 モード制御部21は、再生モードにおいて脱硫器5の再生終了後、例えば、脱硫器5の再生を開始してから所定の再生時間経過後に、動作モードを再生モードから通常モードに切り替える。 The mode control unit 21 switches the operation mode from the regeneration mode to the normal mode after the regeneration of the desulfurizer 5 is completed in the regeneration mode, for example, after a predetermined regeneration time has elapsed after the regeneration of the desulfurizer 5 is started.
 次に、排ガス浄化システム1の通常モードの動作例について図2を参照して説明する。排ガス浄化システム1が新たに設置された場合、モード制御部21は、動作モードを通常モードに設定し(ステップS1)、排気経路4の分岐位置よりも下流側の流路を酸化処理器6側の流路へ切り替えるように切替部8を制御する。このとき、切替部8は、酸化処理器6側の流路を開放し、バイパス経路7側の流路を閉塞する。 Next, an operation example of the exhaust gas purification system 1 in the normal mode will be described with reference to FIG. When the exhaust gas purification system 1 is newly installed, the mode control unit 21 sets the operation mode to the normal mode (step S1), and sets the flow path downstream from the branch position of the exhaust path 4 to the oxidation processor 6 side. The switching unit 8 is controlled so as to switch to the flow path of. At this time, the switching unit 8 opens the flow path on the oxidation treatment device 6 side and closes the flow path on the bypass path 7 side.
 通常モードにおいてガス消費装置2を運転させるとき(ステップS2)、燃料ガスが燃料タンクから供給経路3及び脱硫器5を経由してガス消費装置2へ供給される。このとき、燃料ガスの被毒成分が脱硫器5に吸着されて、脱硫後の燃料ガスがガス消費装置2へ供給される。燃料ガスは、運転中のガス消費装置2の各シリンダ10の燃焼室で燃焼され、その結果、排ガスがガス消費装置2から排気経路4に排出される。 When the gas consuming device 2 is operated in the normal mode (step S2), the fuel gas is supplied from the fuel tank to the gas consuming device 2 via the supply path 3 and the desulfurization device 5. At this time, the poisonous component of the fuel gas is adsorbed by the desulfurization device 5, and the desulfurized fuel gas is supplied to the gas consuming device 2. The fuel gas is burned in the combustion chamber of each cylinder 10 of the gas consuming device 2 during operation, and as a result, the exhaust gas is discharged from the gas consuming device 2 to the exhaust path 4.
 排気経路4の流路は酸化処理器6側に接続されているので、排ガスは酸化処理器6に排出される。このとき、排ガスの有害成分が酸化処理器6で除去され、浄化後の排ガスが酸化処理器6から排出される。ガス消費装置2を停止すると(ステップS3:Yes)、排ガス浄化システム1の動作も終了する。 Since the flow path of the exhaust path 4 is connected to the oxidation treatment device 6, the exhaust gas is discharged to the oxidation treatment device 6. At this time, the harmful components of the exhaust gas are removed by the oxidation treatment device 6, and the purified exhaust gas is discharged from the oxidation treatment device 6. When the gas consuming device 2 is stopped (step S3: Yes), the operation of the exhaust gas purification system 1 is also terminated.
 次に、排ガス浄化システム1の再生モードの動作例について図2を参照して説明する。通常モードでガス消費装置2が運転されている間、モード制御部21は、脱硫器5の被毒物質積算量を監視していて、被毒物質積算量が所定の積算量閾値を超えた場合に(ステップS4:Yes)、動作モードを通常モードから再生モードに切り替える(ステップS5)。 Next, an operation example of the regeneration mode of the exhaust gas purification system 1 will be described with reference to FIG. While the gas consuming device 2 is being operated in the normal mode, the mode control unit 21 monitors the integrated amount of the toxic substance of the desulfurizer 5, and the integrated amount of the toxic substance exceeds a predetermined integrated amount threshold value. (Step S4: Yes), the operation mode is switched from the normal mode to the reproduction mode (step S5).
 モード制御部21は、再生モードの場合、排気経路4の分岐位置よりも下流側の流路をバイパス経路7側の流路へ切り替えるように切替部8を制御する(ステップS6)。このとき、切替部8は、バイパス経路7側の流路を開放し、酸化処理器6側の流路を閉塞する。また、モード制御部21は、熱交換器9を制御して稼働させる。 In the reproduction mode, the mode control unit 21 controls the switching unit 8 so as to switch the flow path on the downstream side of the branch position of the exhaust path 4 to the flow path on the bypass path 7 side (step S6). At this time, the switching unit 8 opens the flow path on the bypass path 7 side and closes the flow path on the oxidation processor 6 side. Further, the mode control unit 21 controls and operates the heat exchanger 9.
 再生モードにおいてガス消費装置2を運転させるときも、通常モードと同様に、燃料ガスが供給経路3及び脱硫器5を流通し、脱硫器5で脱硫された燃料ガスがガス消費装置2へ供給される。燃料ガスは、ガス消費装置2の各シリンダ10で燃焼され、排ガスがガス消費装置2から排気経路4に排出される。 When the gas consuming device 2 is operated in the regeneration mode, the fuel gas flows through the supply path 3 and the desulfurizing device 5 and the fuel gas desulfurized by the desulfurizing device 5 is supplied to the gas consuming device 2 as in the normal mode. Desulfurization. The fuel gas is burned in each cylinder 10 of the gas consuming device 2, and the exhaust gas is discharged from the gas consuming device 2 to the exhaust path 4.
 排気経路4の流路はバイパス経路7側に接続されているので、排ガスはバイパス経路7に排出される。このとき、排ガスはバイパス経路7の途中で熱交換器9を通過し、燃料ガスの燃焼によって排ガスは高温になっているので、高温の排ガスを利用した熱交換器9の熱交換処理によって脱硫器5が加熱される(ステップS7)。 Since the flow path of the exhaust path 4 is connected to the bypass path 7 side, the exhaust gas is discharged to the bypass path 7. At this time, the exhaust gas passes through the heat exchanger 9 in the middle of the bypass path 7, and the exhaust gas becomes high temperature due to the combustion of the fuel gas. 5 is heated (step S7).
 モード制御部21は、温度センサー18によって脱硫器5の温度を検出し、その検出結果に基づいて、脱硫器5の温度が所定の温度閾値(例えば、約200度)を超えないように、熱交換器9による加熱やガス消費装置2の運転を制御するとよい。モード制御部21は、熱交換器9による脱硫器5の加熱温度(即ち、温度閾値)を、脱硫器5の脱硫材の種別に応じて適宜調整するとよい。 The mode control unit 21 detects the temperature of the desulfurizer 5 by the temperature sensor 18, and based on the detection result, heats the desulfurizer 5 so that the temperature does not exceed a predetermined temperature threshold (for example, about 200 degrees). It is preferable to control the heating by the exchanger 9 and the operation of the gas consuming device 2. The mode control unit 21 may appropriately adjust the heating temperature (that is, the temperature threshold value) of the desulfurizer 5 by the heat exchanger 9 according to the type of the desulfurized material of the desulfurizer 5.
 脱硫器5では、被毒物質の蓄積した脱硫剤が熱交換器9によって加熱されると脱硫剤から被毒物質が脱離し、これにより、脱硫器5の脱硫剤が再生される。脱離した被毒物質は、燃料ガスと共に供給経路3を介してガス消費装置2へ送られ、排ガスと共に排気経路4へ送られるが、酸化処理器6へ送られることなく、バイパス経路7を介して排出される。 In the desulfurizer 5, when the desulfurizing agent in which the toxic substance is accumulated is heated by the heat exchanger 9, the toxic substance is desorbed from the desulfurizing agent, whereby the desulfurizing agent in the desulfurizing apparatus 5 is regenerated. The desorbed poisonous substance is sent to the gas consuming device 2 together with the fuel gas through the supply path 3, and is sent to the exhaust path 4 together with the exhaust gas, but is not sent to the oxidation treatment device 6 but is sent through the bypass path 7. Is discharged.
 モード制御部21は、再生モードを開始してから所定の再生時間を経過すると(ステップS8:Yes)、動作モードを再生モードから通常モードに切り替える(ステップS1)。 When a predetermined playback time has elapsed since the mode control unit 21 started the playback mode (step S8: Yes), the mode control unit 21 switches the operation mode from the playback mode to the normal mode (step S1).
 なお、上記した第1実施形態では、排ガス浄化システム1は、ガス消費装置2に燃料ガスを供給する供給経路3に脱硫器5を配置する例を説明したが、本発明はこの例に限定されない。 In the first embodiment described above, the exhaust gas purification system 1 has described an example in which the desulfurization device 5 is arranged in the supply path 3 for supplying the fuel gas to the gas consuming device 2, but the present invention is not limited to this example. ..
 例えば、第1実施形態の他の例では、排ガス浄化システム1は、ガス消費装置2から排ガスを排出する排気経路4に脱硫器5を配置してもよい。この場合、脱硫器5は、排気経路4においてガス消費装置2の排気部13とバイパス経路7への分岐位置との間に配置され、換言すれば、排ガスの排出方向においてバイパス経路7への分岐位置よりも上流側に配置される。この場合でも、モード制御部21は、再生モードの場合、排気経路4の流路をバイパス経路7側の流路へ切り替えるように切替部8を制御する。そのため、脱硫器5の再生時に脱硫器5から脱離した被毒物質は、酸化処理器6へ送られることなく、バイパス経路7を介して排出される。 For example, in another example of the first embodiment, the exhaust gas purification system 1 may arrange the desulfurizer 5 in the exhaust path 4 for discharging the exhaust gas from the gas consuming device 2. In this case, the desulfurizer 5 is arranged between the exhaust portion 13 of the gas consuming device 2 and the branch position to the bypass path 7 in the exhaust path 4, in other words, the branch to the bypass path 7 in the exhaust gas discharge direction. It is located upstream of the position. Even in this case, the mode control unit 21 controls the switching unit 8 so as to switch the flow path of the exhaust path 4 to the flow path on the bypass path 7 side in the reproduction mode. Therefore, the toxic substance desorbed from the desulfurization device 5 during regeneration of the desulfurization device 5 is discharged via the bypass path 7 without being sent to the oxidation treatment device 6.
 上記のように、本発明の第1実施形態によれば、燃料ガスを消費して排ガスを排出するガス消費装置2に適用される排ガス浄化システム1は、燃料ガスに含まれる被毒成分を除去する脱硫剤を収納した脱硫器5と、ガス消費装置2から排ガスを排出する排気経路4に設けられ、排気経路4を通過した排ガスに含まれる有害成分を酸化させる酸化触媒を収納した酸化処理器6とを備える。また、排ガス浄化システム1は、排気経路4から分岐したバイパス経路7と、排気経路4に設けられ、脱硫器5の再生時に、排ガスの排出先を酸化処理器6からバイパス経路7へと切り替える切替部8とを備える。 As described above, according to the first embodiment of the present invention, the exhaust gas purification system 1 applied to the gas consuming device 2 that consumes the fuel gas and discharges the exhaust gas removes the toxic component contained in the fuel gas. An oxidation treatment device that is provided in the desulfurizing device 5 that houses the desulfurizing agent and the exhaust gas that discharges the exhaust gas from the gas consuming device 2 and that houses the oxidation catalyst that oxidizes the harmful components contained in the exhaust gas that has passed through the exhaust gas path 4. 6 and. Further, the exhaust gas purification system 1 is provided in the bypass path 7 branched from the exhaust path 4 and the exhaust path 4, and switches the exhaust gas discharge destination from the oxidation treatment device 6 to the bypass path 7 when the desulfurizer 5 is regenerated. A unit 8 is provided.
 これにより、本発明の第1実施形態の排ガス浄化システム1によれば、脱硫器5の再生時に脱硫器5から脱離した被毒物質は、酸化処理器6へ送られることなく、バイパス経路7を介して排出される。そのため、再生時の脱硫器5から脱離した被毒物質による酸化処理器6の被毒を抑制することができ、酸化処理器6の劣化を低減することができる。このように、排ガス浄化システム1は、バイパス経路7を適用した簡易な構成によって酸化処理器6の被毒を抑制するので、複雑に構成することなく脱硫器5を適用することができる。その結果、排ガス浄化システム1は、効率よく被毒成分を除去して排ガスを浄化することが可能となる。排ガス浄化システム1は、脱硫器5の再生時に、被毒物質の酸化処理器6への流通の遮断を、切替部8のダンパーや弁等によってより確実に実現することができる。 As a result, according to the exhaust gas purification system 1 of the first embodiment of the present invention, the toxic substance desorbed from the desulfurization device 5 during regeneration of the desulfurization device 5 is not sent to the oxidation treatment device 6, and is bypassed through the bypass path 7. Is discharged through. Therefore, it is possible to suppress the poisoning of the oxidation treatment device 6 by the poisonous substance desorbed from the desulfurization device 5 at the time of regeneration, and it is possible to reduce the deterioration of the oxidation treatment device 6. As described above, since the exhaust gas purification system 1 suppresses the poisoning of the oxidation treatment device 6 by a simple configuration to which the bypass path 7 is applied, the desulfurization device 5 can be applied without complicated configuration. As a result, the exhaust gas purification system 1 can efficiently remove the poisonous component and purify the exhaust gas. The exhaust gas purification system 1 can more reliably block the distribution of the poisonous substance to the oxidation treatment device 6 at the time of regeneration of the desulfurization device 5 by the damper, valve or the like of the switching unit 8.
 本発明の第1実施形態の排ガス浄化システム1において、脱硫器5は、物理吸着によって被毒成分を吸着する脱硫剤を収納し、ガス消費装置2へ燃料ガスを供給する供給経路3に設けられる。これにより、脱硫器5は、燃焼後の排ガスに比べて低温である燃焼前の燃料ガスから被毒成分を脱硫するので、比較的低温で被毒成分を吸着する脱硫剤を適用することができる。従って、脱硫器5は、高温の排ガスから被毒成分を脱硫する場合に比べて、低温の燃料ガスから被毒成分を脱硫する構成によって、被毒成分の捕集率を向上することができる。 In the exhaust gas purification system 1 of the first embodiment of the present invention, the desulfurizer 5 is provided in the supply path 3 that stores the desulfurizing agent that adsorbs the poisonous component by physical adsorption and supplies the fuel gas to the gas consuming device 2. .. As a result, the desulfurizer 5 desulfurizes the poisonous component from the fuel gas before combustion, which is lower in temperature than the exhaust gas after combustion, so that a desulfurizing agent that adsorbs the poisonous component at a relatively low temperature can be applied. .. Therefore, the desulfurizer 5 can improve the collection rate of the poisoned component by the configuration of desulfurizing the poisoned component from the low temperature fuel gas, as compared with the case of desulfurizing the poisoned component from the high temperature exhaust gas.
 また、このような排ガス浄化システム1は、高温の排ガスから被毒成分を脱硫する場合に比べて、低コストの脱硫器5を適用することができる。更に、排ガス浄化システム1は、脱硫器5を再生するために加熱するとき、高温の排ガスから被毒成分を脱硫する場合に比べて、脱硫器5の加熱を低くすることができる。そのため、脱硫器5の加熱手段を低コストにすることができ、また、加熱手段の構成及び設置の複雑化を抑制することができる。 Further, in such an exhaust gas purification system 1, a desulfurizer 5 at a lower cost can be applied as compared with the case where the poisonous component is desulfurized from the high temperature exhaust gas. Further, the exhaust gas purification system 1 can reduce the heating of the desulfurizer 5 when heating the desulfurizer 5 to regenerate it, as compared with the case of desulfurizing the poisonous component from the high temperature exhaust gas. Therefore, the cost of the heating means of the desulfurization device 5 can be reduced, and the complexity of the configuration and installation of the heating means can be suppressed.
 本発明の第1実施形態の排ガス浄化システム1は、バイパス経路7に接続されていて、脱硫器5の再生時に、バイパス経路7を流れる排ガスを利用した熱交換によって脱硫器5を加熱する熱交換器9を更に備える。これにより、排ガス浄化システム1は、脱硫器5の加熱手段として熱交換器9を適用することによって、脱硫器5の加熱手段を低コストにすると共に、加熱手段の構成及び設置の複雑化を抑制することを実現することができる。 The exhaust gas purification system 1 of the first embodiment of the present invention is connected to the bypass path 7, and heat exchange heats the desulfurizer 5 by heat exchange using the exhaust gas flowing through the bypass path 7 when the desulfurizer 5 is regenerated. Further equipped with a vessel 9. As a result, the exhaust gas purification system 1 applies the heat exchanger 9 as the heating means of the desulfurization device 5, thereby reducing the cost of the heating means of the desulfurization device 5 and suppressing the complexity of the configuration and installation of the heating means. Can be realized.
 本発明の第1実施形態の排ガス浄化システム1において、モード制御部21は、ガス消費装置2へ供給される燃料ガスの供給量又はガス消費装置から排出される排ガスの排出量に基づいて脱硫器5に蓄積される被毒成分の積算量を算出し、積算量が所定の閾値を超えた場合、脱硫器5の再生を開始する。これにより、排ガス浄化システム1は、脱硫器5に蓄積される被毒成分の積算量を適切に把握して、脱硫器5の脱硫能力の低下を検出した場合に、脱硫器5の再生を行うことができる。なお、被毒物質積算量の積算量閾値は、脱硫器5の脱硫材の種別に応じて適宜設定されるので、脱硫器5毎に適切なタイミングで脱硫器5の再生を行うことができる。 In the exhaust gas purification system 1 of the first embodiment of the present invention, the mode control unit 21 is a desulfurizer based on the amount of fuel gas supplied to the gas consuming device 2 or the amount of exhaust gas discharged from the gas consuming device 2. The integrated amount of the poisonous component accumulated in 5 is calculated, and when the integrated amount exceeds a predetermined threshold value, the regeneration of the desulfurizer 5 is started. As a result, the exhaust gas purification system 1 appropriately grasps the accumulated amount of the poisonous component accumulated in the desulfurization device 5, and when the decrease in the desulfurization capacity of the desulfurization device 5 is detected, the desulfurization device 5 is regenerated. be able to. Since the integrated amount threshold value of the accumulated amount of the poisonous substance is appropriately set according to the type of the desulfurizing material of the desulfurizing device 5, the desulfurizing device 5 can be regenerated at an appropriate timing for each desulfurizing device 5.
 上記した第1実施形態では、本発明が、脱硫器5、酸化処理器6、バイパス経路7、切替部8、熱交換器9及び制御ユニット20を備えた排ガス浄化システム1に適用される例を説明したが、本発明はこの例に限定されない。 In the first embodiment described above, the present invention is applied to an exhaust gas purification system 1 including a desulfurizer 5, an oxidation treatment device 6, a bypass path 7, a switching unit 8, a heat exchanger 9, and a control unit 20. As described above, the present invention is not limited to this example.
 例えば、第1実施形態の他の例では、本発明は、脱硫器5、酸化処理器6、バイパス経路7、切替部8、熱交換器9及び制御ユニット20を備えた排ガス浄化装置100で構成されてもよい(図1参照)。この場合、排ガス浄化装置100では、ガス消費装置2から延びている供給経路3に対して脱硫器5が接続され、ガス消費装置2から延びている排気経路4に対して酸化処理器6、バイパス経路7及び切替部8が接続される。あるいは、排ガス浄化装置100は、ガス消費装置2に接続される供給経路3や排気経路4を備えて構成されてもよい。 For example, in another example of the first embodiment, the present invention comprises an exhaust gas purification device 100 including a desulfurizer 5, an oxidation treatment device 6, a bypass path 7, a switching unit 8, a heat exchanger 9, and a control unit 20. May be done (see Figure 1). In this case, in the exhaust gas purification device 100, the desulfurization device 5 is connected to the supply path 3 extending from the gas consumption device 2, and the oxidation treatment device 6 and the bypass are connected to the exhaust path 4 extending from the gas consumption device 2. The path 7 and the switching unit 8 are connected. Alternatively, the exhaust gas purification device 100 may be configured to include a supply path 3 and an exhaust path 4 connected to the gas consumption device 2.
 本発明の第2実施形態に係る排ガス浄化装置101について図面を参照して説明する。排ガス浄化装置101は、図3、図6~図9に示すように、天然ガス等の燃料ガスを消費するエンジン等のガス消費装置102に対して適用され、ガス消費装置102から排出される排ガスを浄化する。ガス消費装置102は、燃料タンク等から燃料ガスを供給する供給経路103と、排ガスを排出する排気経路104とに接続されている。燃料ガスは、大気汚染の原因となる炭化水素等の有害成分と、触媒劣化の原因となる硫黄化合物等の被毒成分とを含むため、排ガス浄化装置101は、燃料ガスの燃焼により生じる排ガスから有害成分及び被毒成分を除去するように構成される。 The exhaust gas purification device 101 according to the second embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 3 and 6 to 9, the exhaust gas purifying device 101 is applied to a gas consuming device 102 such as an engine that consumes fuel gas such as natural gas, and the exhaust gas discharged from the gas consuming device 102. Purify. The gas consuming device 102 is connected to a supply path 103 for supplying fuel gas from a fuel tank or the like and an exhaust path 104 for discharging exhaust gas. Since the fuel gas contains harmful components such as hydrocarbons that cause air pollution and poisonous components such as sulfur compounds that cause catalyst deterioration, the exhaust gas purification device 101 is derived from the exhaust gas generated by the combustion of the fuel gas. It is configured to remove harmful and toxic components.
 本発明の第2実施形態の排ガス浄化装置101について図3を参照して説明する。排ガス浄化装置101は、燃料ガスに含まれる硫黄化合物等の被毒成分を除去する脱硫器105と、排ガスに含まれる炭化水素等の有害成分を酸化させる酸化処理器106とを備える。排ガス浄化装置101は、上記した排気経路104を含むように構成される。 The exhaust gas purification device 101 of the second embodiment of the present invention will be described with reference to FIG. The exhaust gas purification device 101 includes a desulfurization device 105 that removes toxic components such as sulfur compounds contained in the fuel gas, and an oxidation treatment device 106 that oxidizes harmful components such as hydrocarbons contained in the exhaust gas. The exhaust gas purification device 101 is configured to include the exhaust path 104 described above.
 ガス消費装置102は、液化天然ガス(LNG)等の燃料ガスを用いて燃焼運転するエンジンで構成される。これらのエンジンは、燃料ガスを燃料として用いるガスエンジンや、燃料ガスとガソリンやディーゼル燃料等の液体燃料とを用いて運転するデュアルフューエルエンジン、燃料ガスを用いた運転と液体燃料を用いた運転とを切り替えて運転するバイフューエルエンジン等がある。これらのエンジンは、例えば、内航船等の船舶用の駆動源や、発電機、ヒートポンプ等の陸用の駆動源に適用される。例えば、ガス消費装置102は、複数の気筒110を配列した多気筒エンジンであり、吸気部111と、燃料ガス供給部112と、排気部113とを備える。 The gas consuming device 102 is composed of an engine that burns and operates using fuel gas such as liquefied natural gas (LNG). These engines include gas engines that use fuel gas as fuel, dual fuel engines that operate using fuel gas and liquid fuel such as gasoline and diesel fuel, and operation that uses fuel gas and operation that uses liquid fuel. There is a bi-fuel engine, etc. that operates by switching. These engines are applied to, for example, a drive source for ships such as coastal vessels and a drive source for land such as a generator and a heat pump. For example, the gas consuming device 102 is a multi-cylinder engine in which a plurality of cylinders 110 are arranged, and includes an intake unit 111, a fuel gas supply unit 112, and an exhaust unit 113.
 各気筒110は、図4に示すように、燃焼室を有するシリンダ115と、シリンダ115に収容されるピストン116と、点火装置117とから構成される。点火装置117は、例えば、点火プラグやパイロット着火用のインジェクタ等で構成される。気筒110は、燃料ガスを含む混合ガスをシリンダ115の燃焼室に導入し、点火装置117を作動させることで燃焼室内の混合ガスに点火して燃焼し、その燃焼で生じた排ガスを排出する。また、気筒110は、点火装置117を停止させると、燃焼が行われずに失火する。 As shown in FIG. 4, each cylinder 110 is composed of a cylinder 115 having a combustion chamber, a piston 116 housed in the cylinder 115, and an ignition device 117. The ignition device 117 is composed of, for example, a spark plug, an injector for pilot ignition, and the like. The cylinder 110 introduces a mixed gas containing fuel gas into the combustion chamber of the cylinder 115, ignites the mixed gas in the combustion chamber by operating the ignition device 117, and burns the mixed gas, and discharges the exhaust gas generated by the combustion. Further, when the ignition device 117 is stopped, the cylinder 110 misfires without being burned.
 吸気部111は、各気筒110に接続される吸気マニホールド118を備える。吸気マニホールド118は、各気筒110のシリンダ115に接続される各分配経路119を備え、吸気管(図示せず)から供給される空気を分配して各シリンダ115の燃焼室へ供給する。吸気部111は、各分配経路119と各シリンダ115との間に吸気バルブ120を備える。 The intake unit 111 includes an intake manifold 118 connected to each cylinder 110. The intake manifold 118 includes each distribution path 119 connected to the cylinder 115 of each cylinder 110, and distributes the air supplied from the intake pipe (not shown) to the combustion chamber of each cylinder 115. The intake unit 111 includes an intake valve 120 between each distribution path 119 and each cylinder 115.
 燃料ガス供給部112は、供給経路103に設けられていて、燃料タンク(図示せず)等から供給経路103を介して供給される燃料ガスを各気筒110のシリンダ115へ分配して供給する。 The fuel gas supply unit 112 is provided in the supply path 103, and distributes and supplies the fuel gas supplied from the fuel tank (not shown) or the like via the supply path 103 to the cylinder 115 of each cylinder 110.
 例えば、ガス消費装置102がポート噴射式エンジンで構成される場合、燃料ガス供給部112は、吸気部111の吸気マニホールド118の各分配経路119へ燃料ガスを供給することで、燃料ガスが各分配経路119を介して各シリンダ115の燃焼室へ供給される。これにより、吸気管から供給される空気と、燃料ガス供給部112から供給される燃料ガスとの混合ガスが、吸気マニホールド118の各分配経路119を介して各シリンダ115の燃焼室へ供給される。吸気バルブ120を開閉することで、各シリンダ115の燃焼室に対して、混合ガスの供給又は遮断が制御され、また、混合ガスの供給量が調整される。なお、各分配経路119には、スロットルバルブ(図示せず)が設けられ、スロットルバルブによって、各シリンダ115の燃焼室へ供給される混合ガスの比率や量が調整される。 For example, when the gas consuming device 102 is composed of a port injection engine, the fuel gas supply unit 112 supplies the fuel gas to each distribution path 119 of the intake manifold 118 of the intake unit 111, so that the fuel gas is distributed. It is supplied to the combustion chamber of each cylinder 115 via the path 119. As a result, the mixed gas of the air supplied from the intake pipe and the fuel gas supplied from the fuel gas supply unit 112 is supplied to the combustion chamber of each cylinder 115 via each distribution path 119 of the intake manifold 118. .. By opening and closing the intake valve 120, the supply or shutoff of the mixed gas is controlled for the combustion chamber of each cylinder 115, and the supply amount of the mixed gas is adjusted. A throttle valve (not shown) is provided in each distribution path 119, and the throttle valve adjusts the ratio and amount of the mixed gas supplied to the combustion chamber of each cylinder 115.
 あるいは、ガス消費装置102は筒内直接噴射式エンジンとして構成されてもよい。この場合、燃料ガス供給部112は、供給経路103ではなく、各シリンダ115に設けられ、各シリンダ115の燃焼室へ燃料ガスを直接噴射して供給する。これにより、各シリンダ115の燃焼室には、吸気部111から供給される空気と、燃料ガス供給部112から供給される燃料ガスが混合して混合ガスが生成される。吸気バルブ120を開閉することで、各シリンダ115の燃焼室に対して、空気の供給又は遮断が制御され、また、空気の供給量が調整される。燃料ガス供給部112は、燃料バルブ(図示せず)を備えてよく、燃料バルブを開閉することで、各シリンダ115の燃焼室に対して、燃料ガスの供給又は遮断が制御され、また、燃料ガスの供給量が調整される。 Alternatively, the gas consuming device 102 may be configured as an in-cylinder direct injection engine. In this case, the fuel gas supply unit 112 is provided not in the supply path 103 but in each cylinder 115, and directly injects and supplies the fuel gas to the combustion chamber of each cylinder 115. As a result, in the combustion chamber of each cylinder 115, the air supplied from the intake unit 111 and the fuel gas supplied from the fuel gas supply unit 112 are mixed to generate a mixed gas. By opening and closing the intake valve 120, the supply or shutoff of air is controlled for the combustion chamber of each cylinder 115, and the amount of air supplied is adjusted. The fuel gas supply unit 112 may include a fuel valve (not shown), and by opening and closing the fuel valve, supply or shutoff of fuel gas to the combustion chamber of each cylinder 115 is controlled, and fuel is also supplied. The gas supply is adjusted.
 排気部113は、各気筒110のシリンダ115に接続される排気マニホールド121を備える。排気マニホールド121は、排気経路104にも接続されていて、各シリンダ115の燃焼室から排出される排ガスを集約して排気経路104を介して排出する。排気部113は、各シリンダ115と排気マニホールド121との間に排気バルブ122を備える。排気バルブ122を開閉することで、各シリンダ115の燃焼室からの排ガスの排出又は遮断が制御される。 The exhaust unit 113 includes an exhaust manifold 121 connected to the cylinder 115 of each cylinder 110. The exhaust manifold 121 is also connected to the exhaust path 104, and collects the exhaust gas discharged from the combustion chamber of each cylinder 115 and discharges the exhaust gas through the exhaust path 104. The exhaust unit 113 includes an exhaust valve 122 between each cylinder 115 and the exhaust manifold 121. By opening and closing the exhaust valve 122, exhaust gas emission or shutoff from the combustion chamber of each cylinder 115 is controlled.
 ガス消費装置102は、脱硫器105の再生時に、複数の気筒110のうち、少なくとも一つの気筒110を燃料供給気筒110aとして設定し、燃料供給気筒110aを通じて燃料ガスを排気経路104へ排出可能に構成される。このとき、燃料供給気筒110a以外の気筒110である通常気筒110bは、通常運転を行って燃料ガスを燃焼すると共に排ガスを排出してよい。 The gas consuming device 102 sets at least one of the plurality of cylinders 110 as the fuel supply cylinder 110a at the time of regeneration of the desulfurization device 105, and is configured to be able to discharge the fuel gas to the exhaust path 104 through the fuel supply cylinder 110a. Will be done. At this time, the normal cylinder 110b, which is a cylinder 110 other than the fuel supply cylinder 110a, may perform normal operation to burn the fuel gas and discharge the exhaust gas.
 例えば、ガス消費装置102は、燃料供給気筒110aの点火装置117を停止させて、燃料供給気筒110aを失火させる。ガス消費装置102は、燃料供給気筒110aの吸気バルブ120を開放して、燃料供給気筒110aのシリンダ115の燃焼室に混合ガスを導入するが、点火装置117が停止しているため、混合ガスは点火されずに燃焼されない。なお、燃料供給気筒110aを失火させない場合に比べて、より高濃度の燃料ガスを含む混合ガスを燃料供給気筒110aに導入してもよい。 For example, the gas consuming device 102 stops the ignition device 117 of the fuel supply cylinder 110a and misfires the fuel supply cylinder 110a. The gas consuming device 102 opens the intake valve 120 of the fuel supply cylinder 110a to introduce the mixed gas into the combustion chamber of the cylinder 115 of the fuel supply cylinder 110a, but since the ignition device 117 is stopped, the mixed gas is used. Not ignited and not burned. A mixed gas containing a higher concentration fuel gas may be introduced into the fuel supply cylinder 110a as compared with the case where the fuel supply cylinder 110a is not misfired.
 ガス消費装置102は、燃料供給気筒110aの排気バルブ122を開放して、燃料供給気筒110aに導入された混合ガスを燃焼させることなく排気経路104へ排出する。これにより、ガス消費装置102では、混合ガスに含まれる燃料ガスが排気経路104へ排出される。なお、通常気筒110bは、燃料ガスを燃焼して排ガスを排気経路104へ排出しているため、排気経路104では、燃料供給気筒110aからの混合ガスと通常気筒110bからの排ガスが集約されて、燃料ガスを含む排ガスが排出される。従って、燃料供給気筒110aを失火させない場合に比べて、より高濃度の燃料ガスを含む排ガスが排気経路104へ排出される。 The gas consuming device 102 opens the exhaust valve 122 of the fuel supply cylinder 110a and discharges the mixed gas introduced into the fuel supply cylinder 110a to the exhaust path 104 without burning. As a result, in the gas consuming device 102, the fuel gas contained in the mixed gas is discharged to the exhaust path 104. Since the normal cylinder 110b burns the fuel gas and discharges the exhaust gas to the exhaust path 104, the mixed gas from the fuel supply cylinder 110a and the exhaust gas from the normal cylinder 110b are aggregated in the exhaust path 104. Exhaust gas including fuel gas is emitted. Therefore, the exhaust gas containing the fuel gas having a higher concentration is discharged to the exhaust path 104 as compared with the case where the fuel supply cylinder 110a is not misfired.
 脱硫器105は、排気部113から排出された排ガスが脱硫器105を通過するように、排ガスの排出方向においてガス消費装置102よりも下流側で排気経路104に設けられる。脱硫器105は、硫黄化合物等の被毒成分を除去する脱硫剤を収納している。例えば、脱硫器105は、直接分解型の硫化水素製造触媒と被毒成分を除去する酸化ジルコニウム及び酸化亜鉛を含む触媒とからなる化学吸着の脱硫剤を有する。 The desulfurization device 105 is provided in the exhaust path 104 on the downstream side of the gas consuming device 102 in the exhaust gas discharge direction so that the exhaust gas discharged from the exhaust unit 113 passes through the desulfurization device 105. The desulfurizer 105 contains a desulfurizing agent that removes toxic components such as sulfur compounds. For example, the desulfurizer 105 has a chemically adsorbed desulfurizing agent consisting of a directly decomposing hydrogen sulfide production catalyst and a catalyst containing zinc oxide and zinc oxide for removing toxic components.
 硫黄化合物等の被毒成分を含む燃焼ガスがガス消費装置102で燃焼されたとき、燃焼で生じた排ガスに被毒成分が残量する。そこで、脱硫器105は、排気経路104を排出される排ガスから被毒成分を脱硫剤へ吸着させて除去し、脱硫剤には被毒成分からなる被毒物質が蓄積される。これにより、被毒成分を除去された排ガス、即ち脱硫された排ガスが酸化処理器106へ排出される。また、脱硫剤が所定の再生温度以上に加熱されると、脱硫剤に吸着した硫黄化合物等の被毒物質が脱離して脱硫器105が再生される。 When a combustion gas containing a toxic component such as a sulfur compound is burned by the gas consuming device 102, the toxic component remains in the exhaust gas generated by the combustion. Therefore, the desulfurizer 105 adsorbs and removes the toxic component from the exhaust gas discharged from the exhaust path 104 to the desulfurizing agent, and the toxic substance composed of the toxic component is accumulated in the desulfurizing agent. As a result, the exhaust gas from which the poisonous component has been removed, that is, the desulfurized exhaust gas, is discharged to the oxidation treatment device 106. Further, when the desulfurizing agent is heated to a predetermined regeneration temperature or higher, the toxic substance such as the sulfur compound adsorbed on the desulfurizing agent is desorbed and the desulfurizer 105 is regenerated.
 酸化処理器106は、脱硫器105を通過した排ガスが酸化処理器106を通過するように、排ガスの排出方向において脱硫器105よりも下流側で排気経路104に設けられる。酸化処理器106は、脱硫器105に近接又は接触して配置される。酸化処理器106は、排ガスから炭化水素(例えば、メタン)や一酸化炭素等の有害成分を除去する酸化触媒(例えば、メタン酸化触媒)を収納している。酸化処理器106は、排気経路104を介して排出される排ガスに含まれる有害成分を、酸化触媒によって二酸化炭素や水に酸化させて除去する。 The oxidation treatment device 106 is provided in the exhaust path 104 on the downstream side of the desulfurization device 105 in the exhaust gas discharge direction so that the exhaust gas that has passed through the desulfurization device 105 passes through the oxidation treatment device 106. The oxidation treatment device 106 is arranged in close proximity to or in contact with the desulfurization device 105. The oxidation treatment device 106 houses an oxidation catalyst (for example, a methane oxidation catalyst) that removes harmful components such as hydrocarbons (for example, methane) and carbon monoxide from the exhaust gas. The oxidation treatment device 106 removes harmful components contained in the exhaust gas discharged through the exhaust path 104 by oxidizing them to carbon dioxide or water by an oxidation catalyst.
 酸化処理器106の酸化触媒は、メタン等の炭化水素を酸化することで酸化反応熱を発生する。ガス消費装置102の通常運転時には、燃料ガスを燃焼した後の排ガスだけが酸化処理器106に導入されるが、脱硫器105の再生時には、燃焼していない燃料ガスを含む排ガスが酸化処理器106に導入される。そのため、ガス消費装置102の通常運転時に比べて、脱硫器105の再生時に、高濃度の燃料ガスを含む排ガス、即ち、高濃度の炭化水素を含む排ガスが酸化処理器106に導入され、より多くの酸化反応熱が発生する。酸化処理器106は、発生した酸化反応熱を、近接又は接触している脱硫器105へと伝達させることで、脱硫器105を加熱して再生させる。なお、酸化処理器106は、酸化反応熱を脱硫器105へ伝達させる伝達部材を備えていてもよい。 The oxidation catalyst of the oxidation treatment device 106 generates heat of oxidation reaction by oxidizing hydrocarbons such as methane. During normal operation of the gas consuming device 102, only the exhaust gas after burning the fuel gas is introduced into the oxidation treatment device 106, but when the desulfurization device 105 is regenerated, the exhaust gas containing the unburned fuel gas is introduced into the oxidation treatment device 106. Will be introduced to. Therefore, as compared with the normal operation of the gas consuming device 102, the exhaust gas containing a high concentration fuel gas, that is, the exhaust gas containing a high concentration hydrocarbon is introduced into the oxidation treatment device 106 during the regeneration of the desulfurization device 105, and more of the exhaust gas is introduced. Oxidation reaction heat is generated. The oxidation treatment device 106 heats and regenerates the desulfurization device 105 by transferring the generated oxidation reaction heat to the desulfurization device 105 in close proximity or in contact with the desulfurization device 105. The oxidation treatment device 106 may include a transfer member that transfers the heat of the oxidation reaction to the desulfurization device 105.
 また、排ガス浄化装置101は、制御部として制御ユニット130を備える。制御ユニット130は、CPU等のコンピュータと、ROM及びRAM等からなる記憶装置とを有して構成される。記憶装置は、排ガス浄化装置101の各種構成要素及び各種機能を制御するためのプログラムやデータを記憶し、コンピュータが、記憶装置に記憶されたプログラムやデータに基づいて演算処理を実行することにより、各種構成要素及び各種機能を制御する。なお、制御ユニット130は、ガス消費装置102であるエンジンを制御するエンジンECUを利用して構成されてもよい。 Further, the exhaust gas purification device 101 includes a control unit 130 as a control unit. The control unit 130 includes a computer such as a CPU and a storage device including a ROM, a RAM, and the like. The storage device stores programs and data for controlling various components and functions of the exhaust gas purification device 101, and a computer executes arithmetic processing based on the programs and data stored in the storage device. Controls various components and functions. The control unit 130 may be configured by using an engine ECU that controls an engine that is a gas consuming device 102.
 排ガス浄化装置101は、動作モードとして通常モードと再生モードとを切り替えて動作する。制御ユニット130は、記憶装置に記憶されたプログラムを実行することにより、動作モードを制御するモード制御部131として機能する。 The exhaust gas purification device 101 operates by switching between a normal mode and a reproduction mode as an operation mode. The control unit 130 functions as a mode control unit 131 that controls an operation mode by executing a program stored in the storage device.
 モード制御部131は、ガス消費装置102を通常運転させる場合には、動作モードを通常モードに切り替える一方、脱硫器105の再生を行う場合には、動作モードを再生モードに切り替える。また、モード制御部131は、通常モードでは、ガス消費装置102の複数の気筒110を通常運転させる。一方、モード制御部131は、再生モードでは、複数の気筒110のうち、燃料ガスを排出させる燃料供給気筒110aを選択し、燃料供給気筒110aを失火させると共に通常気筒110bを通常運転させる。なお、モード制御部131は、所定の気筒110だけを燃料供給気筒110aとして選択せず、再生モードの所定の切替回数毎に、燃料供給気筒110aとして選択する気筒110を切り替えてよい。 The mode control unit 131 switches the operation mode to the normal mode when the gas consuming device 102 is operated normally, and switches the operation mode to the reproduction mode when the desulfurizer 105 is regenerated. Further, the mode control unit 131 normally operates a plurality of cylinders 110 of the gas consuming device 102 in the normal mode. On the other hand, in the regeneration mode, the mode control unit 131 selects the fuel supply cylinder 110a for discharging the fuel gas from the plurality of cylinders 110, misfires the fuel supply cylinder 110a, and normally operates the normal cylinder 110b. The mode control unit 131 may not select only the predetermined cylinder 110 as the fuel supply cylinder 110a, but may switch the cylinder 110 selected as the fuel supply cylinder 110a every predetermined number of times of switching the regeneration mode.
 例えば、モード制御部131は、通常、動作モードを通常モードに設定していて、脱硫器105に蓄積される被毒物質の積算量が所定の積算量閾値を超えた場合に、動作モードを通常モードから再生モードに切り替える。積算量閾値は、脱硫器105の脱硫材の種別に応じて適宜設定される。 For example, the mode control unit 131 normally sets the operation mode to the normal mode, and when the integrated amount of the poisonous substance accumulated in the desulfurizer 105 exceeds a predetermined integrated amount threshold value, the operation mode is normally set to the normal mode. Switch from mode to playback mode. The integrated amount threshold value is appropriately set according to the type of desulfurized material of the desulfurizer 105.
 モード制御部131は、ガス消費装置102へ供給される燃料ガスの供給量又はガス消費装置102から排出される排ガスの排出量を検出し、燃料ガス供給量又は排ガス排出量に基づいて被毒物質積算量を推定して算出する。例えば、モード制御部131は、供給経路103に設けられる燃料ガスの流量センサー132によって、燃料ガス供給量を検出してよい。制御ユニット130は、流量センサー132に接続されていて、燃料ガスの検出量を流量センサー132から入力する。また、モード制御部131は、排気経路104に設けられる排ガスの流量センサー133によって、排ガス供給量を検出してよい。制御ユニット130は、流量センサー133に接続されていて、排ガスの検出量を流量センサー133から入力する。 The mode control unit 131 detects the amount of fuel gas supplied to the gas consuming device 102 or the amount of exhaust gas discharged from the gas consuming device 102, and is a toxic substance based on the amount of fuel gas supplied or the amount of exhaust gas discharged. Estimate and calculate the integrated amount. For example, the mode control unit 131 may detect the fuel gas supply amount by the fuel gas flow rate sensor 132 provided in the supply path 103. The control unit 130 is connected to the flow rate sensor 132, and inputs the detected amount of fuel gas from the flow rate sensor 132. Further, the mode control unit 131 may detect the exhaust gas supply amount by the exhaust gas flow rate sensor 133 provided in the exhaust path 104. The control unit 130 is connected to the flow rate sensor 133, and inputs the detected amount of exhaust gas from the flow rate sensor 133.
 あるいは、モード制御部131は、脱硫器105の他の異常を検出した場合や、手動操作によって脱硫器105の再生を指示された場合に、動作モードを再生モードに切り替えてもよい。 Alternatively, the mode control unit 131 may switch the operation mode to the regeneration mode when another abnormality of the desulfurizer 105 is detected or when the desulfurizer 105 is instructed to be regenerated by a manual operation.
 モード制御部131は、再生モードにおいて脱硫器105の再生終了後、例えば、脱硫器105の再生を開始してから所定の再生時間経過後に、動作モードを再生モードから通常モードに切り替える。モード制御部131は、動作モードを再生モードから通常モードに切り替えるとき、被毒物質積算量をリセットする。 The mode control unit 131 switches the operation mode from the regeneration mode to the normal mode after the regeneration of the desulfurizer 105 is completed in the regeneration mode, for example, after a predetermined regeneration time has elapsed after the regeneration of the desulfurizer 105 is started. The mode control unit 131 resets the integrated amount of poisonous substances when the operation mode is switched from the reproduction mode to the normal mode.
 再生モードで脱硫器105を再生するとき、モード制御部131は、脱硫剤に吸着した被毒物質を脱離させるために、ガス消費装置102から排出される燃料ガスの量を制御して、酸化処理器106の酸化反応熱による脱硫器105の加熱を制御する。例えば、モード制御部131は、燃料供給気筒110aの数又は燃料供給気筒110aへ供給される燃料ガスの量若しくは混合ガスの比率を調整して、ガス消費装置102から排出される燃料ガスの量を制御する。排ガス浄化装置101は、脱硫器105の温度を検出する温度センサー134を脱硫器105の近傍に備える。制御ユニット130は、温度センサー134に接続されていて、脱硫器105の検出温度を温度センサー134から入力する。そして、モード制御部131は、脱硫器105の検出温度が所定の再生温度になるように、ガス消費装置102から排出される燃料ガスの量を制御する。 When the desulfurizer 105 is regenerated in the regeneration mode, the mode control unit 131 controls the amount of fuel gas discharged from the gas consuming device 102 in order to desorb the toxic substance adsorbed on the desulfurizing agent, and oxidizes. The heating of the desulfurizer 105 by the heat of the oxidation reaction of the processor 106 is controlled. For example, the mode control unit 131 adjusts the number of fuel supply cylinders 110a, the amount of fuel gas supplied to the fuel supply cylinder 110a, or the ratio of the mixed gas to adjust the amount of fuel gas discharged from the gas consuming device 102. Control. The exhaust gas purification device 101 includes a temperature sensor 134 that detects the temperature of the desulfurizer 105 in the vicinity of the desulfurizer 105. The control unit 130 is connected to the temperature sensor 134, and inputs the detection temperature of the desulfurizer 105 from the temperature sensor 134. Then, the mode control unit 131 controls the amount of fuel gas discharged from the gas consuming device 102 so that the detection temperature of the desulfurization device 105 becomes a predetermined regeneration temperature.
 次に、排ガス浄化装置101の通常モードの動作例について図5を参照して説明する。排ガス浄化装置101又は脱硫器105が新たに設置された場合、モード制御部131は、動作モードを通常モードに設定する(ステップS11)。 Next, an operation example of the exhaust gas purification device 101 in the normal mode will be described with reference to FIG. When the exhaust gas purification device 101 or the desulfurization device 105 is newly installed, the mode control unit 131 sets the operation mode to the normal mode (step S11).
 通常モードにおいてガス消費装置102を運転させるとき(ステップS12)、燃料ガスが燃料タンクから供給経路103を経由してガス消費装置102へ供給される。燃料ガスは、運転中のガス消費装置102の各気筒110のシリンダ115の燃焼室で燃焼され、その結果、排ガスがガス消費装置102から排気経路104に排出される。排ガスは排気経路104を流通して脱硫器105に導入され、排ガスの被毒成分が脱硫器105に吸着されて、脱硫後の排ガスが脱硫器105から排出される。 When operating the gas consuming device 102 in the normal mode (step S12), fuel gas is supplied from the fuel tank to the gas consuming device 102 via the supply path 103. The fuel gas is burned in the combustion chamber of the cylinder 115 of each cylinder 110 of the gas consuming device 102 during operation, and as a result, the exhaust gas is discharged from the gas consuming device 102 to the exhaust path 104. The exhaust gas flows through the exhaust path 104 and is introduced into the desulfurization device 105, the poisonous component of the exhaust gas is adsorbed by the desulfurization device 105, and the exhaust gas after desulfurization is discharged from the desulfurization device 105.
 脱硫器105から排出された排ガスは排気経路104を流通して酸化処理器106に導入され、排ガスの有害成分が酸化処理器106で除去され、浄化後の排ガスが酸化処理器106から排出される。ガス消費装置102を停止すると(ステップS13:Yes)、排ガス浄化装置101の動作も終了する。 The exhaust gas discharged from the desulfurization device 105 flows through the exhaust path 104 and is introduced into the oxidation treatment device 106, the harmful components of the exhaust gas are removed by the oxidation treatment device 106, and the purified exhaust gas is discharged from the oxidation treatment device 106. .. When the gas consuming device 102 is stopped (step S13: Yes), the operation of the exhaust gas purifying device 101 also ends.
 次に、排ガス浄化装置101の再生モードの動作例について図5を参照して説明する。通常モードでガス消費装置102が運転されている間、モード制御部131は、脱硫器105の被毒物質積算量を監視していて、被毒物質積算量が所定の積算量閾値を超えた場合に(ステップS14:Yes)、動作モードを通常モードから再生モードに切り替える(ステップS15)。 Next, an operation example of the regeneration mode of the exhaust gas purification device 101 will be described with reference to FIG. While the gas consuming device 102 is operated in the normal mode, the mode control unit 131 monitors the integrated amount of poisonous substances in the desulfurizer 105, and the integrated amount of poisoned substances exceeds a predetermined integrated amount threshold value. (Step S14: Yes), the operation mode is switched from the normal mode to the reproduction mode (step S15).
 モード制御部131は、再生モードの場合、複数の気筒110のうち、燃料ガスを排出させる燃料供給気筒110aを選択して失火させる(ステップS16)。その結果、高濃度の燃料ガスを含む排ガスがガス消費装置102から排気経路104に排出される。排ガスは排気経路104を流通して脱硫器105に導入され、排ガスの被毒成分が脱硫器105に吸着されて、脱硫後の排ガスが脱硫器105から排出される。このとき、脱硫後の排ガスには、高濃度の燃料ガスが含まれたままである。 In the reproduction mode, the mode control unit 131 selects the fuel supply cylinder 110a for discharging the fuel gas from the plurality of cylinders 110 and causes a misfire (step S16). As a result, the exhaust gas containing the high-concentration fuel gas is discharged from the gas consuming device 102 to the exhaust path 104. The exhaust gas flows through the exhaust path 104 and is introduced into the desulfurization device 105, the poisonous component of the exhaust gas is adsorbed by the desulfurization device 105, and the exhaust gas after desulfurization is discharged from the desulfurization device 105. At this time, the exhaust gas after desulfurization still contains a high concentration fuel gas.
 脱硫器105から排出された排ガスは排気経路104を流通して酸化処理器106に導入され、排ガスの有害成分が酸化処理器106で除去され、浄化後の排ガスが酸化処理器106から排出される。このとき、排ガス中の燃料ガスに含まれる高濃度の炭化水素が酸化処理器106の酸化触媒によって酸化され、高温の酸化反応熱が発生して脱硫器105に伝達され、脱硫器105の脱硫剤を加熱する(ステップS17)。 The exhaust gas discharged from the desulfurization device 105 flows through the exhaust path 104 and is introduced into the oxidation treatment device 106, the harmful components of the exhaust gas are removed by the oxidation treatment device 106, and the purified exhaust gas is discharged from the oxidation treatment device 106. .. At this time, the high-concentration hydrocarbon contained in the fuel gas in the exhaust gas is oxidized by the oxidation catalyst of the oxidation treatment device 106, high-temperature oxidation reaction heat is generated and transferred to the desulfurization device 105, and the desulfurizing agent of the desulfurization device 105 is generated. Is heated (step S17).
 脱硫器105を加熱している間、モード制御部131は、温度センサー134によって脱硫器105の温度を検出し、脱硫器105の検出温度が所定の再生温度となるように、ガス消費装置102の燃料供給気筒110aによる燃料ガスの排出を制御するとよい。モード制御部131は、酸化処理器106の酸化反応熱による脱硫器105の加熱温度(即ち、再生温度)を、脱硫器105の脱硫材の種別に応じて適宜調整するとよい。 While the desulfurizer 105 is being heated, the mode control unit 131 detects the temperature of the desulfurizer 105 by the temperature sensor 134, and the gas consuming device 102 so that the detected temperature of the desulfurizer 105 becomes a predetermined regeneration temperature. It is preferable to control the emission of fuel gas by the fuel supply cylinder 110a. The mode control unit 131 may appropriately adjust the heating temperature (that is, the regeneration temperature) of the desulfurization device 105 due to the heat of oxidation reaction of the oxidation treatment device 106 according to the type of the desulfurization material of the desulfurization device 105.
 脱硫器105では、被毒物質の蓄積した脱硫剤が酸化処理器106の酸化反応熱によって加熱されると脱硫剤から被毒物質が脱離し、これにより、脱硫器105の脱硫剤が再生される(ステップS17)。 In the desulfurizer 105, when the desulfurizing agent in which the toxic substance is accumulated is heated by the oxidation reaction heat of the oxidation treatment device 106, the toxic substance is desorbed from the desulfurizing agent, whereby the desulfurizing agent in the desulfurizing apparatus 105 is regenerated. (Step S17).
 モード制御部131は、再生モードを開始してから所定の再生時間を経過すると(ステップS18:Yes)、動作モードを再生モードから通常モードに切り替える(ステップS11)。 When a predetermined playback time has elapsed since the mode control unit 131 started the playback mode (step S18: Yes), the mode control unit 131 switches the operation mode from the playback mode to the normal mode (step S11).
 ところで、燃料供給気筒110aで通常運転が行われない場合、ガス消費装置102の全出力は低下することになる。そこで、モード制御部131は、ガス消費装置102の出力低下の影響を受け難い再生タイミングを判定し、その再生タイミングに限り、動作モードを再生モードに切り替えるように制御してもよい。例えば、被毒物質積算量が所定の積算量閾値を超えた場合でも、ガス消費装置102の出力維持が必要な時には、モード制御部131は、再生モードに切り替えないように制御してもよい。更に、被毒物質積算量を推定し、ガス消費装置102の動作予定に基づいて、被毒物質積算量が所定の積算量閾値を超える際にガス消費装置102の出力維持が必要な場合には、モード制御部131は、前もって再生モードに切り替えるように、あるいは、ガス消費装置102の出力低下の影響を受けなくなった段階で、再生モードに切り替えるように制御してもよい。 By the way, if the fuel supply cylinder 110a is not normally operated, the total output of the gas consuming device 102 will decrease. Therefore, the mode control unit 131 may determine a reproduction timing that is not easily affected by the output decrease of the gas consuming device 102, and may control the operation mode to be switched to the reproduction mode only at the reproduction timing. For example, even when the integrated amount of the poisonous substance exceeds a predetermined integrated amount threshold value, the mode control unit 131 may control so as not to switch to the reproduction mode when it is necessary to maintain the output of the gas consuming device 102. Further, when the integrated amount of poisonous substance is estimated and it is necessary to maintain the output of the gas consuming device 102 when the integrated amount of poisoned substance exceeds a predetermined integrated amount threshold value based on the operation schedule of the gas consuming device 102. The mode control unit 131 may be controlled to switch to the reproduction mode in advance, or to switch to the reproduction mode when it is no longer affected by the output decrease of the gas consuming device 102.
 なお、上記した第2実施形態では、排ガス浄化装置101は、動作モードを再生モードに切り替える条件として、脱硫器105の被毒物質積算量が所定の積算量閾値を超えることを例に挙げて説明したが、本発明の再生モードへの切替条件はこの例に限定されない。 In the second embodiment described above, the exhaust gas purification device 101 will be described by taking as an example that the integrated amount of the toxic substance of the desulfurizer 105 exceeds a predetermined integrated amount threshold value as a condition for switching the operation mode to the regeneration mode. However, the conditions for switching to the reproduction mode of the present invention are not limited to this example.
 再生モードへの切替条件の他の例として、排ガス浄化装置101は、酸化処理器106を通過した排ガスの温度上昇量が所定の温度閾値を下回る場合に、動作モードを通常モードから再生モードに切り替えてもよい。温度閾値は、脱硫器105の脱硫材及び酸化処理器106の酸化触媒の種別に応じて適宜設定される。 As another example of the switching condition to the reproduction mode, the exhaust gas purifying device 101 switches the operation mode from the normal mode to the reproduction mode when the temperature rise amount of the exhaust gas passing through the oxidation treatment device 106 falls below a predetermined temperature threshold value. You may. The temperature threshold value is appropriately set according to the type of the desulfurizing material of the desulfurizer 105 and the oxidation catalyst of the oxidation treatment device 106.
 脱硫器105は、被毒物質の蓄積が許容量を超えると、被毒物質を蓄積できずに排出してしまい、脱硫器105から排出された被毒物質が酸化処理器106に導入されてしまう。酸化処理器106に導入された被毒物質は酸化触媒を劣化するので、排ガス中の炭化水素を酸化する効率が低下し、酸化反応熱が減少する。従って、酸化処理器106を通過した排ガスの温度上昇量を判定し、この温度上昇量に基づいて脱硫器105の被毒物質積算量を推定することができ、温度上昇量が温度閾値を下回る場合に、脱硫器105の被毒物質積算量が積算量閾値を超えると判定することができる。 If the accumulation of the toxic substance exceeds the permissible amount, the desulfurizer 105 cannot accumulate the toxic substance and discharges the toxic substance, and the toxic substance discharged from the desulfurizer 105 is introduced into the oxidation treatment device 106. .. Since the toxic substance introduced into the oxidation treatment device 106 deteriorates the oxidation catalyst, the efficiency of oxidizing hydrocarbons in the exhaust gas is reduced, and the heat of oxidation reaction is reduced. Therefore, the amount of temperature rise of the exhaust gas that has passed through the oxidation treatment device 106 can be determined, and the integrated amount of the toxic substance of the desulfurizing device 105 can be estimated based on this temperature rise amount. In addition, it can be determined that the integrated amount of the toxic substance of the desulfurizer 105 exceeds the integrated amount threshold.
 この場合、排ガス浄化装置101は、排気経路104を流通する排ガスの温度を検出する入力温度センサー135及び出力温度センサー136を備える。入力温度センサー135は、排ガスの排出方向において脱硫器105よりも上流側に設けられ、脱硫器105及び酸化処理器106に入力される排ガスの温度を検出する。出力温度センサー136は、排ガスの排出方向において酸化処理器106よりも下流側に設けられ、脱硫器105及び酸化処理器106から出力される排ガスの温度を検出する。 In this case, the exhaust gas purification device 101 includes an input temperature sensor 135 and an output temperature sensor 136 that detect the temperature of the exhaust gas flowing through the exhaust path 104. The input temperature sensor 135 is provided on the upstream side of the desulfurization device 105 in the exhaust gas discharge direction, and detects the temperature of the exhaust gas input to the desulfurization device 105 and the oxidation treatment device 106. The output temperature sensor 136 is provided on the downstream side of the oxidation treatment device 106 in the exhaust gas discharge direction, and detects the temperature of the exhaust gas output from the desulfurization device 105 and the oxidation treatment device 106.
 制御ユニット130は、入力温度センサー135及び出力温度センサー136に接続されていて、排ガスの検出温度を入力温度センサー135及び出力温度センサー136から入力する。モード制御部131は、入力温度センサー135の検出温度及び出力温度センサー136の検出温度の差分、即ち温度差に基づいて、酸化処理器106を通過した排ガスの温度上昇量を判定する。 The control unit 130 is connected to the input temperature sensor 135 and the output temperature sensor 136, and inputs the detected temperature of the exhaust gas from the input temperature sensor 135 and the output temperature sensor 136. The mode control unit 131 determines the amount of temperature rise of the exhaust gas that has passed through the oxidation treatment device 106 based on the difference between the detection temperature of the input temperature sensor 135 and the detection temperature of the output temperature sensor 136, that is, the temperature difference.
 あるいは、再生モードへの切替条件の他の例として、排ガス浄化装置101は、酸化処理器106を通過した排ガスの所定成分が所定の成分量閾値を満たさない場合に、動作モードを通常モードから再生モードに切り替えてもよい。排ガスの所定成分は、例えば、酸素、炭化水素又は硫黄化合物等であり、所定成分の濃度や量等の成分量が所定の成分量閾値と比較される。成分量閾値は、脱硫器105の脱硫材及び酸化処理器106の酸化触媒の種別や、所定成分の種別に応じて適宜設定される。 Alternatively, as another example of the switching condition to the regeneration mode, the exhaust gas purifying device 101 reproduces the operation mode from the normal mode when the predetermined component of the exhaust gas that has passed through the oxidation treatment device 106 does not satisfy the predetermined component amount threshold value. You may switch to the mode. The predetermined component of the exhaust gas is, for example, oxygen, a hydrocarbon, a sulfur compound, or the like, and the component amount such as the concentration or amount of the predetermined component is compared with the predetermined component amount threshold value. The component amount threshold value is appropriately set according to the type of the desulfurizing material of the desulfurizer 105 and the oxidation catalyst of the oxidation treatment device 106, and the type of the predetermined component.
 モード制御部131は、排ガスの所定成分の成分量に基づいて、酸化処理器106の酸化触媒による炭化水素の酸化効率を判定し、酸化処理器106の酸化効率に基づいて脱硫器105の被毒物質積算量を推定することができる。例えば、モード制御部131は、排ガスの酸素濃度が成分量閾値を上回る場合や、排ガスの炭化水素又は硫黄化合物の量が成分量閾値を超える場合に、脱硫器105の被毒物質積算量が積算量閾値を超えると判定することができる。 The mode control unit 131 determines the oxidation efficiency of the hydrocarbon by the oxidation catalyst of the oxidation treatment device 106 based on the component amount of the predetermined component of the exhaust gas, and poisons the desulfurization device 105 based on the oxidation efficiency of the oxidation treatment device 106. The amount of accumulated material can be estimated. For example, the mode control unit 131 integrates the toxic substance integrated amount of the desulfurizer 105 when the oxygen concentration of the exhaust gas exceeds the component amount threshold value or when the amount of the hydrocarbon or sulfur compound in the exhaust gas exceeds the component amount threshold value. It can be determined that the quantity threshold is exceeded.
 この場合、排ガス浄化装置101は、排気経路104を流通する排ガスに含まれる酸素、炭化水素又は硫黄化合物等の所定成分を検出する排ガスセンサー137を備える。排ガスセンサー137は、排ガスの排出方向において酸化処理器106よりも下流側に設けられ、酸化処理器106から排出される排ガスの所定成分の成分量を検出する。制御ユニット130は、排ガスセンサー137に接続されていて、排ガスの所定成分の成分量を排ガスセンサー137から入力してモード制御部131に判定させる。 In this case, the exhaust gas purification device 101 includes an exhaust gas sensor 137 that detects a predetermined component such as oxygen, a hydrocarbon, or a sulfur compound contained in the exhaust gas flowing through the exhaust path 104. The exhaust gas sensor 137 is provided on the downstream side of the oxidation treatment device 106 in the exhaust gas discharge direction, and detects the amount of a predetermined component of the exhaust gas discharged from the oxidation treatment device 106. The control unit 130 is connected to the exhaust gas sensor 137, and inputs the amount of a predetermined component of the exhaust gas from the exhaust gas sensor 137 to cause the mode control unit 131 to determine the component amount.
 若しくは、排ガス浄化装置101は、再生モードへの切替条件として上記した3つの条件のうち、少なくとも1つの条件又は2つ以上の条件を満たした場合に再生モードに切り替えてもよい。 Alternatively, the exhaust gas purification device 101 may switch to the regeneration mode when at least one of the above three conditions or two or more conditions are satisfied as the switching conditions to the regeneration mode.
 また、上記した第2実施形態では、排ガス浄化装置101は、燃料供給気筒110aに燃料ガスを排出させる構成として、燃料供給気筒110aを失火させることを例に挙げて説明したが、本発明の燃料供給気筒110aの燃料ガス排出構成はこの例に限定されない。 Further, in the second embodiment described above, the exhaust gas purification device 101 has been described by taking as an example the misfire of the fuel supply cylinder 110a as a configuration for discharging the fuel gas to the fuel supply cylinder 110a, but the fuel of the present invention has been described. The fuel gas emission configuration of the supply cylinder 110a is not limited to this example.
 燃料供給気筒110aの燃料ガス排出構成の他の例として、排ガス浄化装置101は、ガス消費装置102が筒内直接噴射式エンジンである場合、排気バルブ122の開放直前、即ち、排気直前に、燃料ガス供給部112によって燃料ガスを排気マニホールド121へ供給してもよい。 As another example of the fuel gas discharge configuration of the fuel supply cylinder 110a, when the gas consumption device 102 is an in-cylinder direct injection engine, the exhaust gas purification device 101 is used to fuel the exhaust valve 122 immediately before opening, that is, immediately before exhausting. Fuel gas may be supplied to the exhaust manifold 121 by the gas supply unit 112.
 具体的には、燃料供給気筒110aの吸気バルブ120を閉塞してシリンダ115の燃焼室で混合ガスを燃焼した後、排気バルブ122を開放して排ガスを排出する直前に、燃料ガス供給部112の燃料バルブを開放して燃料ガスを燃焼室中へ供給する。燃焼室に供給された燃料ガスは、排気バルブ122を介して、排気マニホールド121に供給される。これにより、ガス消費装置102の全出力の低下を回避することができる。 Specifically, after closing the intake valve 120 of the fuel supply cylinder 110a and burning the mixed gas in the combustion chamber of the cylinder 115, immediately before opening the exhaust valve 122 and discharging the exhaust gas, the fuel gas supply unit 112 The fuel valve is opened to supply fuel gas into the combustion chamber. The fuel gas supplied to the combustion chamber is supplied to the exhaust manifold 121 via the exhaust valve 122. As a result, it is possible to avoid a decrease in the total output of the gas consuming device 102.
 あるいは、燃料供給気筒110aの燃料ガス排出構成の他の例として、排ガス浄化装置101は、燃料供給気筒110aの吸気バルブ120及び排気バルブ122が同時に開放されるバルブオーバーラップ期間に、燃料ガス供給部112によって燃料ガスを供給してもよい。 Alternatively, as another example of the fuel gas discharge configuration of the fuel supply cylinder 110a, the exhaust gas purification device 101 is provided with a fuel gas supply unit during a valve overlap period in which the intake valve 120 and the exhaust valve 122 of the fuel supply cylinder 110a are simultaneously opened. Fuel gas may be supplied by 112.
 具体的には、バルブオーバーラップ期間に、燃料ガス供給部112は、吸気部111の吸気マニホールド118において燃料供給気筒110aに接続される分配経路119へ燃料ガスを供給する。燃料供給気筒110aの吸気バルブ120が開放しているので、燃料ガスは分配経路119を介して燃料供給気筒110aのシリンダ115の燃焼室へ供給される。また、燃料供給気筒110aの排気バルブ122も開放しているので、燃料ガスは燃料供給気筒110aのシリンダ115を吹き抜けて(素通りし)、排ガスと共に排気バルブ122及び排気マニホールド121を通って排気経路104へ排出される。これにより、ガス消費装置102の全出力の低下を回避することができる。 Specifically, during the valve overlap period, the fuel gas supply unit 112 supplies fuel gas to the distribution path 119 connected to the fuel supply cylinder 110a in the intake manifold 118 of the intake unit 111. Since the intake valve 120 of the fuel supply cylinder 110a is open, the fuel gas is supplied to the combustion chamber of the cylinder 115 of the fuel supply cylinder 110a via the distribution path 119. Further, since the exhaust valve 122 of the fuel supply cylinder 110a is also open, the fuel gas blows through the cylinder 115 of the fuel supply cylinder 110a (passes through) and passes through the exhaust valve 122 and the exhaust manifold 121 together with the exhaust gas to the exhaust path 104. Is discharged to. As a result, it is possible to avoid a decrease in the total output of the gas consuming device 102.
 上記のように、本発明の第2実施形態によれば、燃料ガスを消費して排ガスを排出するガス消費装置102に適用される排ガス浄化装置101は、ガス消費装置102から排ガスを排出する排気経路104に設けられ、排ガスに含まれる被毒成分を除去する脱硫剤を収納した脱硫器105と、排ガスの排出方向において脱硫器105より下流側で脱硫器105に近接又は接触して排気経路104に設けられ、排ガスに含まれる有害成分を酸化させる酸化触媒を収納した酸化処理器106と、脱硫器105の再生時に、ガス消費装置102に備わる複数の気筒110のうち、少なくとも一つの燃料供給気筒110aに供給された燃料ガスが排気経路104へ排出されるように、ガス消費装置102を制御する制御ユニット130(制御部)のモード制御部131と、を備える。 As described above, according to the second embodiment of the present invention, the exhaust gas purification device 101 applied to the gas consuming device 102 that consumes fuel gas and discharges exhaust gas is an exhaust gas that discharges exhaust gas from the gas consuming device 102. The desulfurizing device 105 provided in the path 104 and containing the desulfurizing agent for removing the toxic component contained in the exhaust gas, and the exhaust path 104 in close proximity to or in contact with the desulfurizing device 105 on the downstream side of the desulfurizing device 105 in the exhaust gas discharge direction. At least one fuel supply cylinder out of a plurality of cylinders 110 provided in the gas consuming device 102 at the time of regeneration of the oxidation treatment device 106 provided in the exhaust gas and containing an oxidation catalyst for oxidizing harmful components contained in the exhaust gas and the desulfurization device 105. The mode control unit 131 of the control unit 130 (control unit) that controls the gas consumption device 102 is provided so that the fuel gas supplied to the 110a is discharged to the exhaust path 104.
 これにより、本発明の第2実施形態の排ガス浄化装置101によれば、酸化処理器106へ燃料ガスを導入するバイパスを備えることなく、高濃度の燃料ガスを燃料供給気筒110aを通じて排出して酸化処理器106へ導入することができる。また、酸化処理器106が高濃度の燃料ガスによって発生した高温の酸化反応熱を脱硫器105に伝達するので、ヒーター又はバーナー等の加熱手段を備えることなく、脱硫器105を加熱することができる。そのため、脱硫器105を加熱する加熱手段の構成及び設置を複雑にすることなく、低コストで脱硫器105の脱硫剤を再生することができる。その結果、排ガス浄化装置101は、効率よく被毒成分を除去して排ガスを浄化することが可能となる。 As a result, according to the exhaust gas purification device 101 of the second embodiment of the present invention, high-concentration fuel gas is discharged through the fuel supply cylinder 110a and oxidized without providing a bypass for introducing the fuel gas into the oxidation treatment device 106. It can be introduced into the processor 106. Further, since the oxidation treatment device 106 transfers the high-temperature oxidation reaction heat generated by the high-concentration fuel gas to the desulfurization device 105, the desulfurization device 105 can be heated without providing a heating means such as a heater or a burner. .. Therefore, the desulfurizing agent of the desulfurizing device 105 can be regenerated at low cost without complicating the configuration and installation of the heating means for heating the desulfurizing device 105. As a result, the exhaust gas purification device 101 can efficiently remove the poisonous component and purify the exhaust gas.
 本発明の第2実施形態の排ガス浄化装置101は、脱硫器105に蓄積される被毒成分の積算量が所定の閾値を超えた場合に脱硫器105の再生を行う。これにより、排ガス浄化装置101は、脱硫器105の脱硫能力の低下を検出した場合に、脱硫器105の再生を行うことができる。なお、被毒物質積算量の積算量閾値は、脱硫器105の脱硫材の種別に応じて適宜設定されるので、脱硫器105毎に適切なタイミングで脱硫器105の再生を行うことができる。 The exhaust gas purification device 101 of the second embodiment of the present invention regenerates the desulfurization device 105 when the integrated amount of the poisoned component accumulated in the desulfurization device 105 exceeds a predetermined threshold value. As a result, the exhaust gas purification device 101 can regenerate the desulfurization device 105 when it detects a decrease in the desulfurization capacity of the desulfurization device 105. Since the integrated amount threshold value of the accumulated amount of the poisonous substance is appropriately set according to the type of the desulfurizing material of the desulfurizing device 105, the desulfurizing device 105 can be regenerated at an appropriate timing for each desulfurizing device 105.
 本発明の第2実施形態の排ガス浄化装置101において、例えば、モード制御部131は、脱硫器105の再生時に、少なくとも一つの燃料供給気筒110aを失火させるように、ガス消費装置102を制御する。これにより、複雑に構成することなく、高濃度の燃料ガスを燃料供給気筒110aを通じて排出して酸化処理器106へ導入することができる。 In the exhaust gas purification device 101 of the second embodiment of the present invention, for example, the mode control unit 131 controls the gas consumption device 102 so as to misfire at least one fuel supply cylinder 110a when the desulfurization device 105 is regenerated. As a result, the high-concentration fuel gas can be discharged through the fuel supply cylinder 110a and introduced into the oxidation treatment device 106 without complicated configuration.
 あるいは、モード制御部131は、脱硫器105の再生時に、筒内直接噴射式で構成されるガス消費装置102の燃料ガス供給部112によって、排気直前に、少なくとも一つの燃料供給気筒110aへ燃料ガスを供給させるように、ガス消費装置102を制御してもよい。これにより、ガス消費装置102の全出力を低下させることなく、高濃度の燃料ガスを燃料供給気筒110aを通じて排出して酸化処理器106へ導入することができる。 Alternatively, when the desulfurizer 105 is regenerated, the mode control unit 131 uses the fuel gas supply unit 112 of the gas consumption device 102 configured as an in-cylinder direct injection type to supply fuel gas to at least one fuel supply cylinder 110a immediately before exhaust gas. The gas consuming device 102 may be controlled so as to supply the gas. As a result, high-concentration fuel gas can be discharged through the fuel supply cylinder 110a and introduced into the oxidation treatment device 106 without reducing the total output of the gas consuming device 102.
 若しくは、モード制御部131は、脱硫器105の再生時に、気筒110の吸気バルブ120及び排気バルブ122が同時に開放されるバルブオーバーラップ期間に、ガス消費装置102の燃料ガス供給部112によって、少なくとも一つの燃料供給気筒110aへ燃料ガスを供給させるように、ガス消費装置102を制御してもよい。この場合も、ガス消費装置102の全出力を低下させることなく、高濃度の燃料ガスを燃料供給気筒110aを通じて排出して酸化処理器106へ導入することができる。 Alternatively, the mode control unit 131 is at least one by the fuel gas supply unit 112 of the gas consuming device 102 during the valve overlap period in which the intake valve 120 and the exhaust valve 122 of the cylinder 110 are simultaneously opened at the time of regeneration of the desulfurizer 105. The gas consuming device 102 may be controlled so as to supply fuel gas to one fuel supply cylinder 110a. Also in this case, the high-concentration fuel gas can be discharged through the fuel supply cylinder 110a and introduced into the oxidation treatment device 106 without reducing the total output of the gas consuming device 102.
 なお、第2実施形態では、排ガス浄化装置101は、排ガスの排出方向において酸化処理器106よりも上流側に脱硫器105を1つだけ備える例を説明したが、本発明の脱硫器105の構成はこの例に限定されない。 In the second embodiment, the example in which the exhaust gas purification device 101 is provided with only one desulfurization device 105 on the upstream side of the oxidation treatment device 106 in the exhaust gas discharge direction has been described, but the configuration of the desulfurization device 105 of the present invention has been described. Is not limited to this example.
 例えば、第3実施形態の排ガス浄化装置101では、図6及び図7に示すように、脱硫器105は、2つの第1脱硫器141及び第2脱硫器142を有して構成される。第3実施形態において、第2実施形態と同様の構成の説明は省略する。 For example, in the exhaust gas purification device 101 of the third embodiment, as shown in FIGS. 6 and 7, the desulfurization device 105 includes two first desulfurization device 141 and a second desulfurization device 142. In the third embodiment, the description of the same configuration as that of the second embodiment will be omitted.
 第1脱硫器141及び第2脱硫器142のそれぞれは、第2実施形態の脱硫器105と同様に構成される。第1脱硫器141及び第2脱硫器142は、酸化処理器106を挟んで酸化処理器106に近接又は接触して配置され、酸化処理器106に連通される。脱硫器105の温度を検出する温度センサー134は、第1脱硫器141及び第2脱硫器142のそれぞれに対して設けられる。 Each of the first desulfurizer 141 and the second desulfurizer 142 is configured in the same manner as the desulfurizer 105 of the second embodiment. The first desulfurizer 141 and the second desulfurizer 142 are arranged in close proximity to or in contact with the oxidation treatment device 106 with the oxidation treatment device 106 interposed therebetween, and communicate with the oxidation treatment device 106. A temperature sensor 134 for detecting the temperature of the desulfurizer 105 is provided for each of the first desulfurizer 141 and the second desulfurizer 142.
 酸化処理器106は、排ガスを酸化させたときに発生した酸化反応熱を、近接又は接触している第1脱硫器141又は第2脱硫器142へと伝達させることで、第1脱硫器141又は第2脱硫器142を加熱して再生させる。なお、酸化処理器106は、酸化反応熱を第1脱硫器141及び第2脱硫器142へ伝達させる伝達部材を備えていてもよい。 The oxidation treatment device 106 transfers the heat of oxidation reaction generated when the exhaust gas is oxidized to the first desulfurization device 141 or the second desulfurization device 142 which is in close contact with or in contact with the first desulfurization device 141 or the second desulfurization device 142. The second desulfurizer 142 is heated and regenerated. The oxidation treatment device 106 may include a transmission member that transfers the heat of the oxidation reaction to the first desulfurization device 141 and the second desulfurization device 142.
 排ガス浄化装置101は、同じ分岐位置で排気経路104から分岐した第1分岐経路143及び第2分岐経路144を有する。排気経路104は、分岐位置よりもガス消費装置102側、即ち上流側排気経路104aと、分岐位置よりも外気側、即ち下流側排気経路104bとを有し、排気経路104と第1分岐経路143及び第2分岐経路144とで十字型の経路が構成される。第1脱硫器141及び第2脱硫器142は、それぞれ第1分岐経路143及び第2分岐経路144に接続される。なお、図6及び図7では、下流側排気経路104bが酸化処理器106の背面側を通過する例を示し、即ち、下流側排気経路104bは酸化処理器106に接続されていない。下流側排気経路104bは酸化処理器106に隣接して配置されることで、下流側排気経路104bを流れる排ガスによって酸化処理器106の保温性を高めることができる。 The exhaust gas purification device 101 has a first branch path 143 and a second branch path 144 branched from the exhaust path 104 at the same branch position. The exhaust path 104 has a gas consuming device 102 side from the branch position, that is, an upstream side exhaust path 104a, and an outside air side from the branch position, that is, a downstream side exhaust path 104b, and the exhaust path 104 and the first branch path 143. A cross-shaped path is formed by the second branch path 144 and the second branch path 144. The first desulfurizer 141 and the second desulfurizer 142 are connected to the first branch path 143 and the second branch path 144, respectively. Note that FIGS. 6 and 7 show an example in which the downstream exhaust path 104b passes through the back surface side of the oxidation processor 106, that is, the downstream exhaust path 104b is not connected to the oxidation processor 106. By arranging the downstream exhaust path 104b adjacent to the oxidation treatment device 106, the heat retention of the oxidation treatment device 106 can be enhanced by the exhaust gas flowing through the downstream exhaust path 104b.
 第3実施形態の排ガス浄化装置101は、ガス消費装置102から排ガスを排出する流路として、上流側排気経路104aから第1分岐経路143を経由する第1流路145(図6参照)と、上流側排気経路104aから第2分岐経路144を経由する第2流路146(図7参照)とを有する。第1流路145では、排ガスは、第1分岐経路143から第1脱硫器141、酸化処理器106及び第2脱硫器142に導入され、第2分岐経路144を経由して下流側排気経路104bに排出される。第2流路146では、排ガスは、第2分岐経路144から第2脱硫器142、酸化処理器106及び第1脱硫器141に導入され、第1分岐経路143を経由して下流側排気経路104bに排出される。 The exhaust gas purification device 101 of the third embodiment has a first flow path 145 (see FIG. 6) via the first branch path 143 from the upstream exhaust path 104a as a flow path for discharging the exhaust gas from the gas consuming device 102. It has a second flow path 146 (see FIG. 7) via the second branch path 144 from the upstream side exhaust path 104a. In the first flow path 145, the exhaust gas is introduced from the first branch path 143 to the first desulfurizer 141, the oxidation treatment device 106 and the second desulfurizer 142, and goes through the second branch path 144 to the downstream exhaust path 104b. Is discharged to. In the second flow path 146, the exhaust gas is introduced from the second branch path 144 to the second desulfurizer 142, the oxidation treatment device 106 and the first desulfurizer 141, and is passed through the first branch path 143 to the downstream exhaust path 104b. Is discharged to.
 第3実施形態の排ガス浄化装置101は、排気経路104において第1脱硫器141及び第2脱硫器142への分岐位置に切替部147を備える。切替部147は、流路を開閉するバルブやダンパー等で構成される。なお、切替部147は、上流側排気経路104aに対して第1分岐経路143又は第2分岐経路144を出力とする三方弁と、下流側排気経路104bに対して第1分岐経路143又は第2分岐経路144を入力とする三方弁とで構成されてもよい。切替部147は、制御ユニット130に接続されていて、モード制御部131に制御されて第1流路145と第2流路146とを切り替える。 The exhaust gas purification device 101 of the third embodiment includes a switching unit 147 at a branch position to the first desulfurizer 141 and the second desulfurizer 142 in the exhaust path 104. The switching unit 147 is composed of a valve, a damper, or the like that opens and closes the flow path. The switching unit 147 has a three-way valve that outputs the first branch path 143 or the second branch path 144 to the upstream exhaust path 104a, and the first branch path 143 or the second branch path 143 or the second branch path 144b to the downstream exhaust path 104b. It may be composed of a three-way valve having a branch path 144 as an input. The switching unit 147 is connected to the control unit 130 and is controlled by the mode control unit 131 to switch between the first flow path 145 and the second flow path 146.
 例えば、第1流路145に切り替える場合、切替部147は、図6に示すように、上流側排気経路104aから見て第2分岐経路144及び下流側排気経路104bを閉塞すると共に、下流側排気経路104bから見て上流側排気経路104a及び第1分岐経路143を閉塞する。これにより、切替部147は、上流側排気経路104a及び第1分岐経路143を連通させると共に、第2分岐経路144及び下流側排気経路104bを連通させる。 For example, when switching to the first flow path 145, as shown in FIG. 6, the switching unit 147 closes the second branch path 144 and the downstream side exhaust path 104b when viewed from the upstream side exhaust path 104a, and at the same time, the downstream side exhaust. The upstream exhaust path 104a and the first branch path 143 when viewed from the path 104b are blocked. As a result, the switching unit 147 communicates the upstream side exhaust path 104a and the first branch path 143, and also communicates the second branch path 144 and the downstream side exhaust path 104b.
 一方、第2流路146に切り替える場合、切替部147は、図7に示すように、上流側排気経路104aから見て第1分岐経路143及び下流側排気経路104bを閉塞すると共に、下流側排気経路104bから見て上流側排気経路104a及び第2分岐経路144を閉塞する。これにより、切替部147は、上流側排気経路104a及び第2分岐経路144を連通させると共に、第1分岐経路143及び下流側排気経路104bを連通させる。 On the other hand, when switching to the second flow path 146, as shown in FIG. 7, the switching unit 147 closes the first branch path 143 and the downstream side exhaust path 104b when viewed from the upstream side exhaust path 104a, and at the same time, the downstream side exhaust. The upstream exhaust path 104a and the second branch path 144 when viewed from the path 104b are blocked. As a result, the switching unit 147 communicates the upstream side exhaust path 104a and the second branch path 144, and also communicates the first branch path 143 and the downstream side exhaust path 104b.
 第3実施形態において、モード制御部131が動作モードを通常モード又は再生モードに切り替える条件は、第2実施形態と同様に設定されてよい。 In the third embodiment, the condition for the mode control unit 131 to switch the operation mode to the normal mode or the reproduction mode may be set in the same manner as in the second embodiment.
 第3実施形態の通常モードでの排ガスの排出動作について以下に説明する。モード制御部131は、動作モードを通常モードに切り替える場合、切替部147によって第1流路145に切り替える。第1流路145を流通する排ガスは、先ず第1脱硫器141へ導入され、排ガスの被毒成分が第1脱硫器141に吸着されて、脱硫後の排ガスが第1脱硫器141から排出される。第1脱硫器141から排出された排ガスは酸化処理器106に導入され、排ガスの有害成分が酸化処理器106で除去され、浄化後の排ガスが酸化処理器106から排出される。浄化後の排ガスは、第2脱硫器142及び第2流路146を介して、下流側排気経路104bへ排出される。 The exhaust gas discharge operation in the normal mode of the third embodiment will be described below. When the operation mode is switched to the normal mode, the mode control unit 131 switches to the first flow path 145 by the switching unit 147. The exhaust gas flowing through the first flow path 145 is first introduced into the first desulfurization device 141, the poisonous component of the exhaust gas is adsorbed by the first desulfurization device 141, and the exhaust gas after desulfurization is discharged from the first desulfurization device 141. Desulfurization. The exhaust gas discharged from the first desulfurization device 141 is introduced into the oxidation treatment device 106, harmful components of the exhaust gas are removed by the oxidation treatment device 106, and the purified exhaust gas is discharged from the oxidation treatment device 106. The purified exhaust gas is discharged to the downstream exhaust path 104b via the second desulfurizer 142 and the second flow path 146.
 第3実施形態の再生モードでの排ガスの排出動作について以下に説明する。モード制御部131は、動作モードを再生モードに切り替える場合、切替部147によって第2流路146に切り替える。再生モードでは、通常モードに比べて高濃度の燃料ガスを含む排ガスが、ガス消費装置102から排出されて排気経路104の第2流路146を流通する。第2流路146を流通する排ガスは、先ず第2脱硫器142へ導入され、排ガスの被毒成分が第2脱硫器142に吸着されて、脱硫後の排ガスが第2脱硫器142から排出される。このとき、脱硫後の排ガスには、高濃度の燃料ガスが含まれたままである。 The exhaust gas discharge operation in the regeneration mode of the third embodiment will be described below. When the operation mode is switched to the reproduction mode, the mode control unit 131 switches to the second flow path 146 by the switching unit 147. In the regeneration mode, the exhaust gas containing the fuel gas having a higher concentration than that in the normal mode is discharged from the gas consuming device 102 and flows through the second flow path 146 of the exhaust path 104. The exhaust gas flowing through the second flow path 146 is first introduced into the second desulfurization device 142, the poisonous component of the exhaust gas is adsorbed by the second desulfurization device 142, and the exhaust gas after desulfurization is discharged from the second desulfurization device 142. Desulfurization. At this time, the exhaust gas after desulfurization still contains a high concentration fuel gas.
 第2脱硫器142から排出された排ガスは酸化処理器106に導入され、排ガスの有害成分が酸化処理器106で除去され、浄化後の排ガスが酸化処理器106から排出される。このとき、排ガス中の燃料ガスに含まれる高濃度の炭化水素が酸化処理器106の酸化触媒によって酸化され、高温の酸化反応熱が発生して第1脱硫器141に伝達され、第1脱硫器141の脱硫剤を加熱する。第1脱硫器141では、被毒物質の蓄積した脱硫剤が酸化処理器106の酸化反応熱によって加熱されて被毒物質が脱硫剤から脱離し、これにより、第1脱硫器141の脱硫剤が再生される。第1脱硫器141に導入された浄化後の排ガスは、脱離した被毒物質と共に排出され、第1流路145を介して、下流側排気経路104bへ排出される。 The exhaust gas discharged from the second desulfurization device 142 is introduced into the oxidation treatment device 106, the harmful components of the exhaust gas are removed by the oxidation treatment device 106, and the purified exhaust gas is discharged from the oxidation treatment device 106. At this time, high-concentration hydrocarbons contained in the fuel gas in the exhaust gas are oxidized by the oxidation catalyst of the oxidation treatment device 106, high-temperature oxidation reaction heat is generated and transferred to the first desulfurization device 141, and the first desulfurization device is used. The desulfurization agent of 141 is heated. In the first desulfurizer 141, the desulfurizing agent in which the toxic substance is accumulated is heated by the oxidation reaction heat of the oxidation treatment device 106, and the toxic substance is desorbed from the desulfurizing agent, whereby the desulfurizing agent of the first desulfurizing apparatus 141 is released. Will be played. The purified exhaust gas introduced into the first desulfurizer 141 is discharged together with the desorbed poisonous substance, and is discharged to the downstream exhaust path 104b via the first flow path 145.
 また、モード制御部131は、再生モードにおいて第1脱硫器141の再生を終了した後、動作モードを再生モードから通常モードに切り替えると共に、切替部147によって第1流路145に切り替える。 Further, after the mode control unit 131 finishes the reproduction of the first desulfurizer 141 in the reproduction mode, the operation mode is switched from the reproduction mode to the normal mode, and the operation mode is switched to the first flow path 145 by the switching unit 147.
 上記したように、第3実施形態では、通常モード及び再生モードの何れにおいても、排ガスの排出方向において酸化処理器106より上流側に第1脱硫器141又は第2脱硫器142が常に配置されるので、排ガスの被毒物質の酸化処理器106への導入を常に回避することができる。また、再生モードでは、排出方向において酸化処理器106より上流側の第2脱硫器142によって排ガスの脱硫を行いつつ、酸化処理器106より下流側の第1脱硫器141の再生を行うことができる。 As described above, in the third embodiment, the first desulfurizer 141 or the second desulfurizer 142 is always arranged on the upstream side of the oxidation treatment device 106 in the exhaust gas discharge direction in both the normal mode and the regeneration mode. Therefore, it is possible to always avoid the introduction of the toxic substance of the exhaust gas into the oxidation treatment device 106. Further, in the regeneration mode, the exhaust gas can be desulfurized by the second desulfurization device 142 on the upstream side of the oxidation treatment device 106 in the discharge direction, and the first desulfurization device 141 on the downstream side of the oxidation treatment device 106 can be regenerated. ..
 なお、第3実施形態では、切替部147が通常モードで第1流路145に切り替える一方、再生モードで第2流路146に切り替える例を説明したが、本発明はこの例に限定されない。即ち、本発明は、通常モード及び再生モードで使用される流路をそれぞれ第1流路145及び第2流路146に限定せず、第1流路145又は第2流路146を必要に応じて選択的に切り替えてよい。 In the third embodiment, an example in which the switching unit 147 switches to the first flow path 145 in the normal mode and switches to the second flow path 146 in the reproduction mode has been described, but the present invention is not limited to this example. That is, the present invention does not limit the flow paths used in the normal mode and the reproduction mode to the first flow path 145 and the second flow path 146, respectively, and may use the first flow path 145 or the second flow path 146 as necessary. May be selectively switched.
 第3実施形態の他の例では、切替部147は、通常モードで第2流路146に切り替える一方、再生モードで第1流路145に切り替えてもよい。この場合、排ガスの流れが上記した例と逆方向になり、第1脱硫器141及び第2脱硫器142の機能も逆転するが、上記した例と同様の効果を奏する。この場合でも、通常モード及び再生モードの何れにおいても、排ガスの排出方向において酸化処理器106より上流側に第1脱硫器141又は第2脱硫器142が常に配置されるので、排ガスの被毒物質の酸化処理器106への導入を常に回避することができる。また、再生モードでは、排出方向において酸化処理器106より上流側の第1脱硫器141によって排ガスの脱硫を行いつつ、酸化処理器106より下流側の第2脱硫器142の再生を行うことができる。 In another example of the third embodiment, the switching unit 147 may be switched to the second flow path 146 in the normal mode, while switching to the first flow path 145 in the reproduction mode. In this case, the flow of the exhaust gas is in the opposite direction to the above-mentioned example, and the functions of the first desulfurization device 141 and the second desulfurization device 142 are also reversed, but the same effect as the above-mentioned example is obtained. Even in this case, in both the normal mode and the regeneration mode, the first desulfurizer 141 or the second desulfurizer 142 is always arranged on the upstream side of the oxidation treatment device 106 in the exhaust gas discharge direction, so that the exhaust gas is a poisonous substance. Can always be avoided from being introduced into the oxidation treatment device 106. Further, in the regeneration mode, the second desulfurization device 142 on the downstream side of the oxidation treatment device 106 can be regenerated while the exhaust gas is desulfurized by the first desulfurization device 141 on the upstream side of the oxidation treatment device 106 in the discharge direction. ..
 モード制御部131は、通常モードで第1流路145を使用している場合、通常運転での第1脱硫器141の使用頻度を監視し、使用頻度が所定の頻度閾値に達した場合に、通常モードで第2流路146を使用するように切り替えてもよい。同様に、モード制御部131は、通常モードで第2流路146を使用している場合、通常運転での第2脱硫器142の使用頻度を監視し、使用頻度が所定の頻度閾値に達した場合に、通常モードで第1流路145を使用するように切り替えてもよい。第1脱硫器141又は第2脱硫器142の使用頻度は、例えば、ガス消費装置102の運転時間やエンジンの回転数、第1脱硫器141又は第2脱硫器142の使用総時間や排ガスの流量、再生回数や再生総時間、被毒物質の総積算量等で判定してよい。 The mode control unit 131 monitors the frequency of use of the first desulfurizer 141 in normal operation when the first flow path 145 is used in the normal mode, and when the frequency of use reaches a predetermined frequency threshold value, the mode control unit 131 monitors the frequency of use. You may switch to use the second flow path 146 in normal mode. Similarly, when the second flow path 146 is used in the normal mode, the mode control unit 131 monitors the frequency of use of the second desulfurizer 142 in the normal operation, and the frequency of use reaches a predetermined frequency threshold value. In some cases, the normal mode may be switched to use the first flow path 145. The frequency of use of the first desulfurizer 141 or the second desulfurizer 142 is, for example, the operating time of the gas consuming device 102, the engine rotation speed, the total usage time of the first desulfurizer 141 or the second desulfurizer 142, or the flow rate of the exhaust gas. , The number of regenerations, the total regeneration time, the total integrated amount of poisonous substances, and the like may be used for determination.
 また、第3実施形態では、再生モードにおいて第1流路145の再生を終了した後、モード制御部131が切替部147によって第1流路145に切り替える例を説明したが、本発明はこの例に限定されない。他の例では、再生モードにおいて第1流路145の再生を終了した後、動作モードを再生モードから通常モードに切り替えても、モード制御部131は第1流路145に切り替えずに第2流路146を維持して、通常モードで第2流路146を使用してもよい。同様に、再生モードにおいて第2流路146の再生を終了した後、動作モードを再生モードから通常モードに切り替えても、モード制御部131は第2流路146に切り替えずに第1流路145を維持して、通常モードで第1流路145を使用してもよい。 Further, in the third embodiment, an example in which the mode control unit 131 is switched to the first flow path 145 by the switching unit 147 after the reproduction of the first flow path 145 is completed in the reproduction mode has been described. Not limited to. In another example, even if the operation mode is switched from the reproduction mode to the normal mode after the reproduction of the first flow path 145 is completed in the reproduction mode, the mode control unit 131 does not switch to the first flow path 145 and is the second flow. The second flow path 146 may be used in normal mode while maintaining the path 146. Similarly, even if the operation mode is switched from the reproduction mode to the normal mode after the reproduction of the second flow path 146 is completed in the reproduction mode, the mode control unit 131 does not switch to the second flow path 146 and the first flow path 145. The first flow path 145 may be used in the normal mode.
 第3実施形態では、再生モードへの切替条件として、酸化処理器106を通過した排ガスの温度上昇量を第2実施形態と同様に判定する場合、第1脱硫器141の近傍で第1分岐経路143に第1温度センサー148を備え、第2脱硫器142の近傍で第2分岐経路144に第2温度センサー149を備える。通常モードで第1流路145を使用する場合には、第1温度センサー148及び第2温度センサー149を第2実施形態の入力温度センサー135及び出力温度センサー136と同様に使用する。一方、通常モードで第2流路146を使用する場合には、第1温度センサー148及び第2温度センサー149を第2実施形態の出力温度センサー136及び入力温度センサー135と同様に使用する。 In the third embodiment, as a condition for switching to the regeneration mode, when the temperature rise amount of the exhaust gas passing through the oxidation treatment device 106 is determined in the same manner as in the second embodiment, the first branch path is located in the vicinity of the first desulfurizer 141. The 143 is equipped with a first temperature sensor 148, and the second branch path 144 is provided with a second temperature sensor 149 in the vicinity of the second desulfurizer 142. When the first flow path 145 is used in the normal mode, the first temperature sensor 148 and the second temperature sensor 149 are used in the same manner as the input temperature sensor 135 and the output temperature sensor 136 of the second embodiment. On the other hand, when the second flow path 146 is used in the normal mode, the first temperature sensor 148 and the second temperature sensor 149 are used in the same manner as the output temperature sensor 136 and the input temperature sensor 135 of the second embodiment.
 また、第3実施形態では、再生モードへの切替条件として、酸化処理器106を通過した排ガスの所定成分を第2実施形態と同様に判定する場合、第1脱硫器141の近傍で第1分岐経路143に第1排ガスセンサー150を備え、第2脱硫器142の近傍で第2分岐経路144に第2排ガスセンサー151を備える。通常モードで第1流路145を使用する場合には、第1排ガスセンサー150を第2実施形態の排ガスセンサー137と同様に使用する。一方、通常モードで第2流路146を使用する場合には、第2排ガスセンサー151を第2実施形態の排ガスセンサー137と同様に使用する。 Further, in the third embodiment, as a condition for switching to the regeneration mode, when the predetermined component of the exhaust gas that has passed through the oxidation treatment device 106 is determined in the same manner as in the second embodiment, the first branch is made in the vicinity of the first desulfurizer 141. The first exhaust gas sensor 150 is provided in the path 143, and the second exhaust gas sensor 151 is provided in the second branch path 144 in the vicinity of the second desulfurizer 142. When the first flow path 145 is used in the normal mode, the first exhaust gas sensor 150 is used in the same manner as the exhaust gas sensor 137 of the second embodiment. On the other hand, when the second flow path 146 is used in the normal mode, the second exhaust gas sensor 151 is used in the same manner as the exhaust gas sensor 137 of the second embodiment.
 第1脱硫器141、酸化処理器106及び第2脱硫器142を直列に配置した第3実施形態では、通常モード時に第1脱硫器141に排ガスを導入する第1分岐経路143が、再生モード時に酸化処理器106で浄化された排ガスを第1脱硫器141から排出する経路を兼用する。また、第3実施形態では、再生モード時に第2脱硫器142に排ガスを導入する第2分岐経路144が、通常モード時に酸化処理器106で浄化された排ガスを第2脱硫器142から排出する経路を兼用する。しかし、本発明において酸化処理器106で浄化された排ガスを排出する経路は、第3実施形態のように第1分岐経路143及び第2分岐経路144を兼用する例に限定されない。 In the third embodiment in which the first desulfurizer 141, the oxidation treatment device 106, and the second desulfurizer 142 are arranged in series, the first branch path 143 for introducing the exhaust gas into the first desulfurizer 141 in the normal mode is in the regeneration mode. It also serves as a route for discharging the exhaust gas purified by the oxidation treatment device 106 from the first desulfurization device 141. Further, in the third embodiment, the second branch path 144 for introducing the exhaust gas to the second desulfurizer 142 in the regeneration mode discharges the exhaust gas purified by the oxidation treatment device 106 in the normal mode from the second desulfurizer 142. Is also used. However, in the present invention, the route for discharging the exhaust gas purified by the oxidation treatment device 106 is not limited to the example in which the first branch path 143 and the second branch path 144 are also used as in the third embodiment.
 例えば、第4実施形態の排ガス浄化装置101は、図8に示すように、通常モード時に酸化処理器106で浄化された排ガスを第2脱硫器142から排出する第3分岐経路160を備える。また、第4実施形態の排ガス浄化装置101は、図9に示すように、再生モード時に酸化処理器106で浄化された排ガスを第1脱硫器141から排出する第4分岐経路161を備える。第4実施形態において、第2実施形態又は第3実施形態と同様の構成の説明は省略する。 For example, as shown in FIG. 8, the exhaust gas purification device 101 of the fourth embodiment includes a third branch path 160 for discharging the exhaust gas purified by the oxidation treatment device 106 from the second desulfurization device 142 in the normal mode. Further, as shown in FIG. 9, the exhaust gas purification device 101 of the fourth embodiment includes a fourth branch path 161 for discharging the exhaust gas purified by the oxidation treatment device 106 in the regeneration mode from the first desulfurization device 141. In the fourth embodiment, the description of the configuration similar to that of the second embodiment or the third embodiment will be omitted.
 第3分岐経路160は、第1分岐経路143から分岐して設けられ、下流側排気経路104bに合流している。第4分岐経路161は、第2分岐経路144から分岐して設けられ、下流側排気経路104bに合流している。排気経路104において、上流側排気経路104aは、第1分岐経路143及び第2分岐経路144に分岐されるが、下流側排気経路104bと直接接続していない。 The third branch path 160 is provided by branching from the first branch path 143 and joins the downstream exhaust path 104b. The fourth branch path 161 is provided by branching from the second branch path 144 and joins the downstream exhaust path 104b. In the exhaust path 104, the upstream exhaust path 104a is branched into the first branch path 143 and the second branch path 144, but is not directly connected to the downstream exhaust path 104b.
 第4実施形態では、ガス消費装置102から排ガスを排出する第1流路145及び第2流路146が第3実施形態と異なる。上流側排気経路104aから第1分岐経路143を経由する第1流路145では、図8に示すように、排ガスは、第1分岐経路143から第1脱硫器141、酸化処理器106及び第2脱硫器142に導入され、第4分岐経路161を経由して下流側排気経路104bに排出される。また、上流側排気経路104aから第2分岐経路144を経由する第2流路146では、図9に示すように、排ガスは、第2分岐経路144から第2脱硫器142、酸化処理器106及び第1脱硫器141に導入され、第3分岐経路160を経由して下流側排気経路104bに排出される。 In the fourth embodiment, the first flow path 145 and the second flow path 146 that discharge the exhaust gas from the gas consuming device 102 are different from the third embodiment. In the first flow path 145 from the upstream exhaust path 104a via the first branch path 143, as shown in FIG. 8, the exhaust gas is discharged from the first branch path 143 to the first desulfurizer 141, the oxidation treatment device 106 and the second. It is introduced into the desulfurizer 142 and discharged to the downstream exhaust path 104b via the fourth branch path 161. Further, in the second flow path 146 from the upstream exhaust path 104a via the second branch path 144, as shown in FIG. 9, the exhaust gas is discharged from the second branch path 144 to the second desulfurizer 142, the oxidation treatment device 106 and the oxidation treatment device 106. It is introduced into the first desulfurizer 141 and discharged to the downstream exhaust path 104b via the third branch path 160.
 第4実施形態では、ガス消費装置102から排ガスを排出する流路を切り替える構成が第3実施形態の切替部147と異なる。排ガス浄化装置101は、上流側排気経路104aの近傍で第1分岐経路143に第1切替部162を備えると共に、上流側排気経路104aの近傍で第2分岐経路144に第2切替部163を備える。また、排ガス浄化装置101は、第1分岐経路143の近傍で第3分岐経路160に第3切替部164を備えると共に、第2分岐経路144の近傍で第4分岐経路161に第4切替部165を備える。 In the fourth embodiment, the configuration for switching the flow path for discharging the exhaust gas from the gas consuming device 102 is different from the switching unit 147 in the third embodiment. The exhaust gas purification device 101 includes a first switching unit 162 in the first branch path 143 in the vicinity of the upstream exhaust path 104a, and a second switching unit 163 in the second branch path 144 in the vicinity of the upstream exhaust path 104a. .. Further, the exhaust gas purification device 101 includes a third switching section 164 in the third branch path 160 in the vicinity of the first branch path 143, and a fourth switching section 165 in the fourth branch path 161 in the vicinity of the second branch path 144. To prepare for.
 第1切替部162、第2切替部163、第3切替部164及び第4切替部165は、流路を開閉するバルブやダンパー等で構成される。なお、第1切替部162及び第2切替部163は、上流側排気経路104aに対して第1分岐経路143又は第2分岐経路144を出力とする三方弁で構成されてもよい。第1切替部162、第2切替部163、第3切替部164及び第4切替部165は、制御ユニット130に接続されていて、モード制御部131に制御されて各経路の開放と閉塞とを切り替える。第1切替部162は、排ガスの第1分岐経路143への排出と遮断とを切り替え、第2切替部163は、排ガスの第2分岐経路144への排出と遮断とを切り替える。第3切替部164は、排ガスの第3分岐経路160への排出と遮断とを切り替え、第4切替部165は、排ガスの第4分岐経路161への排出と遮断とを切り替える。 The first switching unit 162, the second switching unit 163, the third switching unit 164, and the fourth switching unit 165 are composed of valves, dampers, and the like that open and close the flow path. The first switching unit 162 and the second switching unit 163 may be configured by a three-way valve having the first branch path 143 or the second branch path 144 as an output with respect to the upstream exhaust path 104a. The first switching unit 162, the second switching unit 163, the third switching unit 164, and the fourth switching unit 165 are connected to the control unit 130 and are controlled by the mode control unit 131 to open and close each route. Switch. The first switching unit 162 switches between discharging and shutting off the exhaust gas to the first branch path 143, and the second switching unit 163 switches between discharging and shutting off the exhaust gas to the second branch path 144. The third switching unit 164 switches between discharging and shutting off the exhaust gas to the third branch path 160, and the fourth switching unit 165 switches between discharging and shutting off the exhaust gas to the fourth branch path 161.
 例えば、第1流路145に切り替える場合、図8に示すように、第1切替部162が第1分岐経路143を開放する共に第2切替部163が第2分岐経路144を閉塞することで、上流側排気経路104aと第1分岐経路143とを連通させる。また、第3切替部164が第3分岐経路160を閉塞すると共に第4切替部165が第4分岐経路161を開放することで、第4分岐経路161と下流側排気経路104bとを連通させる。このとき、モード制御部131は、第1分岐経路143の開放と第2分岐経路144の閉塞が同時に行われるように、第1切替部162及び第2切替部163を制御するとよい。また、モード制御部131は、第3分岐経路160の閉塞と第4分岐経路161の開放が同時に行われるように、第3切替部164及び第4切替部165を制御するとよい。 For example, when switching to the first flow path 145, as shown in FIG. 8, the first switching section 162 opens the first branch path 143 and the second switching section 163 blocks the second branch path 144. The upstream exhaust path 104a and the first branch path 143 are communicated with each other. Further, the third switching section 164 blocks the third branch path 160 and the fourth switching section 165 opens the fourth branch path 161 so that the fourth branch path 161 and the downstream exhaust path 104b communicate with each other. At this time, the mode control unit 131 may control the first switching unit 162 and the second switching unit 163 so that the first branch path 143 is opened and the second branch path 144 is closed at the same time. Further, the mode control unit 131 may control the third switching unit 164 and the fourth switching unit 165 so that the third branch path 160 is closed and the fourth branch path 161 is opened at the same time.
 一方、第2流路146に切り替える場合、図9に示すように、第1切替部162が第1分岐経路143を閉塞する共に第2切替部163が第2分岐経路144を開放することで、上流側排気経路104aと第2分岐経路144とを連通させる。また、第3切替部164が第3分岐経路160を開放すると共に第4切替部165が第4分岐経路161を閉塞することで、第3分岐経路160と下流側排気経路104bとを連通させる。このとき、モード制御部131は、第1分岐経路143の閉塞と第2分岐経路144の開放が同時に行われるように、第1切替部162及び第2切替部163を制御するとよい。また、モード制御部131は、第3分岐経路160の開放と第4分岐経路161の閉塞が同時に行われるように、第3切替部164及び第4切替部165を制御するとよい。 On the other hand, when switching to the second flow path 146, as shown in FIG. 9, the first switching section 162 blocks the first branch path 143 and the second switching section 163 opens the second branch path 144. The upstream exhaust path 104a and the second branch path 144 are communicated with each other. Further, the third switching section 164 opens the third branch path 160 and the fourth switching section 165 closes the fourth branch path 161 so that the third branch path 160 and the downstream exhaust path 104b communicate with each other. At this time, the mode control unit 131 may control the first switching unit 162 and the second switching unit 163 so that the first branch path 143 is closed and the second branch path 144 is opened at the same time. Further, the mode control unit 131 may control the third switching unit 164 and the fourth switching unit 165 so that the third branch path 160 is opened and the fourth branch path 161 is closed at the same time.
 第4実施形態において、モード制御部131が動作モードを通常モード又は再生モードに切り替える条件は、第3実施形態と同様に設定されてよい。第4実施形態の第1流路145及び第2流路146は、第3実施形態と同様に機能する。第4実施形態の通常モード及び再生モードでの排ガスの排出動作は、第3実施形態と同様であるため、説明を省略する。また、第4実施形態でも、通常モード及び再生モードで使用される流路をそれぞれ第1流路145及び第2流路146に限定せず、第3実施形態と同様に、第1流路145及び第2流路146を必要に応じて選択的に切り替えてよい。 In the fourth embodiment, the condition for the mode control unit 131 to switch the operation mode to the normal mode or the reproduction mode may be set in the same manner as in the third embodiment. The first flow path 145 and the second flow path 146 of the fourth embodiment function in the same manner as the third embodiment. Since the exhaust gas discharge operation in the normal mode and the regeneration mode of the fourth embodiment is the same as that of the third embodiment, the description thereof will be omitted. Further, also in the fourth embodiment, the flow paths used in the normal mode and the reproduction mode are not limited to the first flow path 145 and the second flow path 146, respectively, and the first flow path 145 is the same as in the third embodiment. And the second flow path 146 may be selectively switched as needed.
 上記のように、本発明の第3実施形態又は第4実施形態によれば、排ガス浄化装置101において、脱硫器105は、第1脱硫器141及び第2脱硫器142を有し、酸化処理器106は、第1脱硫器141と第2脱硫器142との間に設けられる。モード制御部131は、第1脱硫器141、酸化処理器106、第2脱硫器142の順に排ガスを排出する第1流路145と、第2脱硫器142、酸化処理器106、第1脱硫器141の順に排ガスを排出する第2流路146とを切り替える。 As described above, according to the third embodiment or the fourth embodiment of the present invention, in the exhaust gas purification device 101, the desulfurization device 105 has a first desulfurization device 141 and a second desulfurization device 142, and is an oxidation treatment device. The 106 is provided between the first desulfurizer 141 and the second desulfurizer 142. The mode control unit 131 includes a first flow path 145 that discharges exhaust gas in the order of the first desulfurizer 141, the oxidation treatment device 106, and the second desulfurization device 142, and the second desulfurization device 142, the oxidation treatment device 106, and the first desulfurization device. The second flow path 146 that discharges the exhaust gas is switched in the order of 141.
 これにより、本発明の排ガス浄化装置101によれば、排ガスの排出方向において酸化処理器106より上流側に第1脱硫器141又は第2脱硫器142が常に配置されるので、排ガスの被毒物質の酸化処理器106への導入を常に回避することができる。また、再生モードでは、排出方向において酸化処理器106より上流側の第1脱硫器141又は第2脱硫器142によって排ガスの脱硫を行いつつ、酸化処理器106より下流側の又は第2脱硫器142の再生を行うことができる。その結果、排ガス浄化装置101は、より効率よく被毒成分を除去して排ガスを浄化することが可能となる。 As a result, according to the exhaust gas purification device 101 of the present invention, the first desulfurizer 141 or the second desulfurizer 142 is always arranged on the upstream side of the oxidation treatment device 106 in the exhaust gas discharge direction, so that the toxic substance of the exhaust gas Can always be avoided from being introduced into the oxidation treatment device 106. Further, in the regeneration mode, the exhaust gas is desulfurized by the first desulfurizer 141 or the second desulfurizer 142 on the upstream side of the oxidation treatment device 106 in the discharge direction, while the exhaust gas is desulfurized on the downstream side of the oxidation treatment device 106 or the second desulfurization device 142. Can be played. As a result, the exhaust gas purification device 101 can more efficiently remove the poisonous component and purify the exhaust gas.
 本発明の第3実施形態又は第4実施形態の排ガス浄化装置101によれば、モード制御部131は、脱硫器105の再生を開始するときに、第1流路145と第2流路146とを切り替え、脱硫器105の再生を終了するときに、第1流路145と第2流路146とを更に切り替える。これにより、再生モードから通常モードに切り替わった後、排ガスの排出方向において酸化処理器106より上流側に、再生後の第1脱硫器141又は第2脱硫器142が常に配置される。そのため、再開された通常モードでは、リフレッシュされた第1脱硫器141又は第2脱硫器142で脱硫を行うことができ、より効率よく被毒成分を除去することができる。 According to the exhaust gas purification device 101 of the third embodiment or the fourth embodiment of the present invention, when the mode control unit 131 starts the regeneration of the desulfurization device 105, the first flow path 145 and the second flow path 146 When the regeneration of the desulfurizer 105 is completed, the first flow path 145 and the second flow path 146 are further switched. As a result, after switching from the regeneration mode to the normal mode, the regenerated first desulfurizer 141 or second desulfurizer 142 is always arranged on the upstream side of the oxidation treatment device 106 in the exhaust gas discharge direction. Therefore, in the restarted normal mode, desulfurization can be performed by the refreshed first desulfurization device 141 or the second desulfurization device 142, and the poisonous component can be removed more efficiently.
 なお、本発明は、請求の範囲及び明細書全体から読み取ることのできる発明の要旨又は思想に反しない範囲で適宜変更可能であり、そのような変更を伴う排ガス浄化システム及び排ガス浄化装置もまた本発明の技術思想に含まれる。 The present invention can be appropriately modified within the scope of the claims and within the scope not contrary to the gist or idea of the invention that can be read from the entire specification, and the exhaust gas purification system and the exhaust gas purification device accompanied by such changes are also the present invention. It is included in the technical idea of the invention.
  1 排ガス浄化システム
  2、102 ガス消費装置
  3、103 供給経路
  4、104 排気経路
  5、105 脱硫器
  6、106 酸化処理器
  7 バイパス経路
  8 切替部
  9 熱交換器
 10 気筒
 10a 燃料供給気筒
 10b 通常気筒
 20、130 制御ユニット
 21、131 モード制御部
 100、101 排ガス浄化装置
 
 
1 Exhaust gas purification system 2,102 Gas consumption device 3,103 Supply path 4,104 Exhaust path 5,105 Desulfurizer 6,106 Oxidation processor 7 Bypass path 8 Switching unit 9 Heat exchanger 10 Cylinder 10a Fuel supply cylinder 10b Normal cylinder 20, 130 Control unit 21, 131 Mode control unit 100, 101 Exhaust gas purification device

Claims (12)

  1.  燃料ガスを消費して排ガスを排出するガス消費装置に適用される排ガス浄化システムであって、
     前記燃料ガスに含まれる被毒成分を除去する脱硫剤を収納した脱硫器と、
     前記ガス消費装置から前記排ガスを排出する排気経路に設けられ、前記排気経路を通過した前記排ガスに含まれる有害成分を酸化させる酸化触媒を収納した酸化処理器と、
     前記排気経路から分岐したバイパス経路と、
     前記排気経路に設けられ、前記脱硫器の再生時に、前記排ガスの排出先を前記酸化処理器から前記バイパス経路へと切り替える切替部と、
     を備えることを特徴とする排ガス浄化システム。
     
    An exhaust gas purification system applied to gas consuming equipment that consumes fuel gas and emits exhaust gas.
    A desulfurizer containing a desulfurizing agent that removes the toxic component contained in the fuel gas, and
    An oxidation treatment device provided in an exhaust path for discharging the exhaust gas from the gas consuming device and containing an oxidation catalyst for oxidizing harmful components contained in the exhaust gas that has passed through the exhaust path.
    Bypass path branched from the exhaust path and
    A switching unit provided in the exhaust path and switching the exhaust destination of the exhaust gas from the oxidation treatment device to the bypass path when the desulfurizer is regenerated.
    An exhaust gas purification system characterized by being equipped with.
  2.  前記脱硫器は、物理吸着によって前記被毒成分を吸着する前記脱硫剤を収納し、前記ガス消費装置へ前記燃料ガスを供給する供給経路に設けられることを特徴とする請求項1に記載の排ガス浄化システム。
     
    The exhaust gas according to claim 1, wherein the desulfurizer accommodates the desulfurizing agent that adsorbs the poisonous component by physical adsorption, and is provided in a supply path for supplying the fuel gas to the gas consuming device. Purification system.
  3.  前記バイパス経路に接続されていて、前記脱硫器の再生時に、前記バイパス経路を流れる前記排ガスを利用した熱交換によって前記脱硫器を加熱する熱交換器を更に備えることを特徴とする請求項2に記載の排ガス浄化システム。
     
    2. The second aspect of the invention is characterized in that the heat exchanger is further provided, which is connected to the bypass path and heats the desulfurizer by heat exchange using the exhaust gas flowing through the bypass path when the desulfurizer is regenerated. The described exhaust gas purification system.
  4.  前記ガス消費装置へ供給される前記燃料ガスの供給量又は前記ガス消費装置から排出される前記排ガスの排出量に基づいて前記脱硫器に蓄積される前記被毒成分の積算量を算出し、前記積算量が所定の閾値を超えた場合、前記脱硫器の再生を開始することを特徴とする請求項1~請求項3の何れか1項に記載の排ガス浄化システム。
     
    The integrated amount of the poisoned component accumulated in the desulfurizer is calculated based on the supply amount of the fuel gas supplied to the gas consuming device or the exhaust gas amount of the exhaust gas discharged from the gas consuming device. The exhaust gas purification system according to any one of claims 1 to 3, wherein when the integrated amount exceeds a predetermined threshold value, regeneration of the desulfurizer is started.
  5.  燃料ガスを消費して排ガスを排出するガス消費装置に適用される排ガス浄化装置であって、
     前記燃料ガスに含まれる被毒成分を除去する脱硫剤を収納した脱硫器と、
     前記ガス消費装置から前記排ガスを排出する排気経路に設けられ、前記排気経路を通過した前記排ガスに含まれる有害成分を酸化させる酸化触媒を収納した酸化処理器と、
     前記排気経路から分岐したバイパス経路と、
     前記排気経路に設けられ、前記脱硫器の再生時に、前記排ガスの排出先を前記酸化処理器から前記バイパス経路へと切り替える切替部と、
     を備えることを特徴とする排ガス浄化装置。
     
    An exhaust gas purification device applied to gas consumption devices that consume fuel gas and discharge exhaust gas.
    A desulfurizer containing a desulfurizing agent that removes the toxic component contained in the fuel gas, and
    An oxidation treatment device provided in an exhaust path for discharging the exhaust gas from the gas consuming device and containing an oxidation catalyst for oxidizing harmful components contained in the exhaust gas that has passed through the exhaust path.
    Bypass path branched from the exhaust path and
    A switching unit provided in the exhaust path and switching the exhaust destination of the exhaust gas from the oxidation treatment device to the bypass path when the desulfurizer is regenerated.
    An exhaust gas purification device characterized by being equipped with.
  6.  燃料ガスを消費して排ガスを排出するガス消費装置に適用される排ガス浄化装置であって、
     前記ガス消費装置から前記排ガスを排出する排気経路に設けられ、前記排ガスに含まれる被毒成分を除去する脱硫剤を収納した脱硫器と、
     前記排ガスの排出方向において前記脱硫器より下流側で前記脱硫器に近接又は接触して前記排気経路に設けられ、前記排ガスに含まれる有害成分を酸化させる酸化触媒を収納した酸化処理器と、
     前記脱硫器の再生時に、前記ガス消費装置に備わる複数の気筒のうち、少なくとも一つの気筒に供給された前記燃料ガスが前記排気経路へ排出されるように、前記ガス消費装置を制御する制御部と、
     を備えることを特徴とする排ガス浄化装置。
     
    An exhaust gas purification device applied to gas consumption devices that consume fuel gas and discharge exhaust gas.
    A desulfurizer provided in the exhaust path for discharging the exhaust gas from the gas consuming device and containing a desulfurizing agent for removing the toxic component contained in the exhaust gas, and a desulfurizer.
    An oxidation treatment device provided in the exhaust path in the vicinity of or in contact with the desulfurization device on the downstream side of the desulfurization device in the exhaust gas discharge direction and containing an oxidation catalyst for oxidizing harmful components contained in the exhaust gas.
    A control unit that controls the gas consuming device so that the fuel gas supplied to at least one of the plurality of cylinders provided in the gas consuming device is discharged to the exhaust path when the desulfurizer is regenerated. When,
    An exhaust gas purification device characterized by being equipped with.
  7.  前記脱硫器に蓄積される前記被毒成分の積算量が所定の閾値を超えた場合に前記脱硫器の再生を行うことを特徴とする請求項6に記載の排ガス浄化装置。
     
    The exhaust gas purification device according to claim 6, wherein the desulfurizer is regenerated when the accumulated amount of the poisoned component accumulated in the desulfurizer exceeds a predetermined threshold value.
  8.  前記制御部は、前記脱硫器の再生時に、前記少なくとも一つの気筒を失火させるように、前記ガス消費装置を制御することを特徴とする請求項6又は請求項7に記載の排ガス浄化装置。
     
    The exhaust gas purification device according to claim 6 or 7, wherein the control unit controls the gas consuming device so as to misfire the at least one cylinder when the desulfurizer is regenerated.
  9.  前記制御部は、前記脱硫器の再生時に、筒内直接噴射式で構成される前記ガス消費装置の燃料ガス供給部によって、排気直前に、前記少なくとも一つの気筒へ前記燃料ガスを供給させるように、前記ガス消費装置を制御することを特徴とする請求項6又は請求項7に記載の排ガス浄化装置。
     
    When the desulfurizer is regenerated, the control unit causes the fuel gas supply unit of the gas consuming device, which is composed of an in-cylinder direct injection type, to supply the fuel gas to the at least one cylinder immediately before exhaust gas. The exhaust gas purification device according to claim 6 or 7, wherein the gas consuming device is controlled.
  10.  前記制御部は、前記脱硫器の再生時に、前記気筒の吸気バルブ及び排気バルブが同時に開放されるバルブオーバーラップ期間に、前記ガス消費装置の燃料ガス供給部によって、前記少なくとも一つの気筒へ前記燃料ガスを供給させるように、前記ガス消費装置を制御することを特徴とする請求項6又は請求項7に記載の排ガス浄化装置。
     
    During the valve overlap period in which the intake valve and the exhaust valve of the cylinder are simultaneously opened at the time of regeneration of the desulfurizer, the control unit is subjected to the fuel to the at least one cylinder by the fuel gas supply unit of the gas consuming device. The exhaust gas purification device according to claim 6 or 7, wherein the gas consuming device is controlled so as to supply gas.
  11.  前記脱硫器は、第1脱硫器及び第2脱硫器を有し、
     前記酸化処理器は、前記第1脱硫器と前記第2脱硫器との間に設けられ、
     前記制御部は、前記第1脱硫器、前記酸化処理器、前記第2脱硫器の順に前記排ガスを排出する第1流路と、前記第2脱硫器、前記酸化処理器、前記第1脱硫器の順に前記排ガスを排出する第2流路とを切り替えることを特徴とする請求項6ないし請求項10の何れか1項に記載の排ガス浄化装置。
     
    The desulfurizer has a first desulfurizer and a second desulfurizer.
    The oxidation treatment device is provided between the first desulfurization device and the second desulfurization device.
    The control unit includes a first flow path for discharging the exhaust gas in the order of the first desulfurizer, the oxidation treatment device, and the second desulfurization device, the second desulfurization device, the oxidation treatment device, and the first desulfurization device. The exhaust gas purification device according to any one of claims 6 to 10, wherein the second flow path for discharging the exhaust gas is switched in this order.
  12.  前記制御部は、前記脱硫器の再生を開始するときに、前記第1流路と前記第2流路とを切り替え、前記脱硫器の再生を終了するときに、前記第1流路と前記第2流路とを更に切り替えることを特徴とする請求項11に記載の排ガス浄化装置。
     
    The control unit switches between the first flow path and the second flow path when starting the regeneration of the desulfurization device, and when the regeneration of the desulfurization device is completed, the first flow path and the first flow path. The exhaust gas purification device according to claim 11, wherein the two flow paths are further switched.
PCT/JP2021/020965 2020-06-09 2021-06-02 Exhaust gas purification system and exhaust gas purification device WO2021251230A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022530499A JPWO2021251230A1 (en) 2020-06-09 2021-06-02

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020100043 2020-06-09
JP2020-100043 2020-06-09
JP2020-100108 2020-06-09
JP2020100108 2020-06-09

Publications (1)

Publication Number Publication Date
WO2021251230A1 true WO2021251230A1 (en) 2021-12-16

Family

ID=78846072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020965 WO2021251230A1 (en) 2020-06-09 2021-06-02 Exhaust gas purification system and exhaust gas purification device

Country Status (2)

Country Link
JP (1) JPWO2021251230A1 (en)
WO (1) WO2021251230A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06336914A (en) * 1993-05-28 1994-12-06 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2006052696A (en) * 2004-08-12 2006-02-23 Toyota Motor Corp Gas-fuel engine system
JP2006307679A (en) * 2005-04-26 2006-11-09 Toyota Motor Corp Exhaust emission control device for internal combustion engine using hydrogen
JP2018507104A (en) * 2015-02-13 2018-03-15 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Oxidation catalyst for treating natural gas emissions
JP2018135808A (en) * 2017-02-22 2018-08-30 東京瓦斯株式会社 Exhaust gas purification device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06336914A (en) * 1993-05-28 1994-12-06 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2006052696A (en) * 2004-08-12 2006-02-23 Toyota Motor Corp Gas-fuel engine system
JP2006307679A (en) * 2005-04-26 2006-11-09 Toyota Motor Corp Exhaust emission control device for internal combustion engine using hydrogen
JP2018507104A (en) * 2015-02-13 2018-03-15 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Oxidation catalyst for treating natural gas emissions
JP2018135808A (en) * 2017-02-22 2018-08-30 東京瓦斯株式会社 Exhaust gas purification device

Also Published As

Publication number Publication date
JPWO2021251230A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
US7784276B2 (en) Exhaust gas purifier and method of control therefor
JP4608347B2 (en) Exhaust gas purification device
KR101048112B1 (en) Exhaust gas purification device of internal combustion engine and desulfurization method thereof
JP2006189033A (en) Filter desulfation system and method
US6845612B2 (en) NOx-reducing catalyst with temperature regulation of exhaust gas
JP5431677B2 (en) Exhaust gas purification device
JP5285296B2 (en) Exhaust gas purification device
JP2007100578A (en) Exhaust emission control device of internal combustion engine
US20100326057A1 (en) Exhaust Gas Purification Device
JP2018135808A (en) Exhaust gas purification device
WO2021251230A1 (en) Exhaust gas purification system and exhaust gas purification device
EP1306532B1 (en) Exhaust emission control device and exhaust emission control method for natural gas engine
JP4341196B2 (en) Exhaust gas purification device for internal combustion engine
WO2009113650A1 (en) Method for controlling exhaust gas purification apparatus
JP2842135B2 (en) Exhaust gas purification device for internal combustion engine
JP2009275530A (en) Exhaust emission control device, internal combustion engine and recovering method of catalyst
JP2008298034A (en) Exhaust emission control device
JP2006258058A (en) Exhaust emission control device
JPH05321649A (en) Exhaust emission control device
JPH05321647A (en) Exhaust emission control device of diesel engine
JPH0674032A (en) Exhaust emission control device
JP2000064825A (en) Engine and operation control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21820869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530499

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21820869

Country of ref document: EP

Kind code of ref document: A1