WO2021251201A1 - Electric vehicle control device - Google Patents

Electric vehicle control device Download PDF

Info

Publication number
WO2021251201A1
WO2021251201A1 PCT/JP2021/020748 JP2021020748W WO2021251201A1 WO 2021251201 A1 WO2021251201 A1 WO 2021251201A1 JP 2021020748 W JP2021020748 W JP 2021020748W WO 2021251201 A1 WO2021251201 A1 WO 2021251201A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
output
shift position
range
accelerator opening
Prior art date
Application number
PCT/JP2021/020748
Other languages
French (fr)
Japanese (ja)
Inventor
航輝 宮下
亮 清水
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to JP2022530479A priority Critical patent/JP7306585B2/en
Publication of WO2021251201A1 publication Critical patent/WO2021251201A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a control device for an electric vehicle using an electric motor as a drive source.
  • Japanese Patent Application Laid-Open No. 2013-183503 describes the creep torque after the shift position is switched between the forward range and the reverse range while the vehicle is stopped or at a low vehicle speed, and before the vehicle starts.
  • the technology of the control device which outputs the backlash filling torque smaller than that is disclosed. It is said that the output of this backlash filling torque can suppress the generation of noise and vibration generated from the meshing portion when the vehicle starts.
  • the control device of Japanese Patent Application Laid-Open No. 2013-183503 described above can suppress the generation of sound and vibration to some extent when the vehicle starts after switching the shift position. However, if you want to start as soon as possible after switching the shift position, the start time may be delayed or you may not be able to obtain satisfactory acceleration after starting.
  • the present disclosure provides a control device for an electric vehicle capable of suppressing the generation of sound and vibration after switching the shift position between the forward range and the reverse range, and appropriately responding to the subsequent start and acceleration. offer.
  • the control device of the electric vehicle includes an electric motor as a driving source for traveling, an accelerator opening detection unit for detecting the accelerator opening, and a shift position for detecting the selected shift position.
  • a detection unit, a driver required torque calculation unit that calculates a driver required torque based on the accelerator opening degree, and an output torque command unit that commands an output torque to the electric motor are provided, and the output torque command unit is the said.
  • the output reduction control is performed to set the output torque to an output relaxation torque lower than the driver required torque, and the output reduction control is the accelerator opening. It is released when the accelerator is ON when the degree is equal to or higher than the first predetermined value.
  • the increase rate of the output torque is set so as to correspond to the driver required torque based on the accelerator opening degree.
  • the configuration may be adopted.
  • a braking device that generates a braking force based on the operation amount of the brake operation unit is further provided, and in the output reduction control, the output relaxation torque is reduced as the operation amount of the brake operation unit is smaller.
  • a configuration may be adopted in which the duration to be set is set to be short.
  • a braking device that generates a braking force based on the operation amount of the brake operation unit is further provided, and in the output reduction control, the operation amount of the brake operation unit is a second predetermined value or more.
  • a configuration may be adopted in which the duration for setting the output relaxation torque is set to be shorter in the braking release state in which the operation amount of the brake operation unit is less than the second predetermined value than in the braking state.
  • the control device of the electric vehicle includes an electric motor as a driving source for traveling, an accelerator opening detection unit for detecting the accelerator opening, and a shift for detecting a selected shift position. It is controlled based on the operation amount of the position detection unit, the driver required torque calculation unit that calculates the driver required torque based on the accelerator opening, the output torque command unit that commands the output torque to the electric motor, and the brake operation unit.
  • the output torque command unit includes a braking device that generates power, and the output torque command unit reduces the output torque to a torque lower than the driver required torque when the shift position is switched between the forward range and the backward range.
  • the output reduction control set to the torque is performed, and the output reduction control is set so that the smaller the operation amount of the brake operation unit is, the shorter the duration for setting the output relaxation torque is.
  • FIG. 1 is a time chart showing a first control example of one embodiment in the present disclosure.
  • FIG. 2 is a time chart showing a second control example of one embodiment.
  • FIG. 3 is a time chart showing a third control example of one embodiment.
  • FIG. 4 is a flowchart showing a control example.
  • FIG. 5 is a schematic diagram of a vehicle and a vehicle control device.
  • the power transmission path is It is a control device 10 for an electric vehicle that suppresses the generation of noise and vibration in the electric vehicle and appropriately responds to the subsequent start and acceleration.
  • the low speed range is a state in which the vehicle speed, that is, the speed of the vehicle 20 is a minute vehicle speed of a predetermined speed or less, and the driver operates the shift lever 26 to change the shift position from the forward range to the reverse range via the neutral range. Or, it means an extremely low speed state (including forward and backward) in which the reverse range is switched to the forward range via the neutral range, or a stopped state of the vehicle 20.
  • the neutral range is referred to as an N range.
  • the forward range means a forward travel range such as a drive range (D range) and a second range (2 range) in which forward drive torque is applied to the drive wheels 28 and 29, and the backward range is defined as a backward range. It means a reverse range (R range) to which a reverse drive torque is applied.
  • a shift change from the D range to the R range via the N range or a shift change from the R range to the D range via the N range causes the vehicle 20 to stop completely at a vehicle speed of 0 km / h. It is desirable to carry out such a shift change, but in many cases, the driver is allowed to make such a shift change in the driving state of a low vehicle speed.
  • the predetermined speed that defines the low speed range means the maximum vehicle speed (for example, about 2 to 3 km / h) at which such a shift change is allowed.
  • FIG. 5 is a schematic diagram of a vehicle (electric vehicle) 20 on which the control device 10 according to the present embodiment is mounted.
  • the vehicle 20 is an electric vehicle provided with an electric motor 22 that generates a driving force by electric power, and is a plug-in hybrid electric vehicle in the present embodiment.
  • the engine 24 drives a generator to exert a power generation function, electric power is supplied to the electric motor 22 which is a driving source for traveling, and electricity is stored in the storage battery 23. Further, the storage of electricity in the storage battery 23 is also performed by connecting the vehicle 20 and the power source on the ground side with a dedicated cable.
  • the electric motor 22 includes a front motor 22a and a rear motor 22b, and the front motor 22a and the rear motor 22b separately drive both the front wheels and the rear wheels 28 and 29 via the differential 27, respectively.
  • the vehicle 20 may drive all the drive wheels 28 and 29 with one electric motor 22.
  • Brake units 31 equipped with brake discs, brake calipers, etc. are mounted on the left and right front wheels 28, 28 and the left and right rear wheels 29, 29 of the vehicle 20, respectively.
  • the brake unit 31 generates braking force on the drive wheels 28 and 29 based on the operation amount of the brake operation unit 30.
  • These brake units 31, the brake operation unit 30, and the brake control unit 7 that controls them constitute a braking device for the vehicle 20.
  • the driver's seat is equipped with a brake pedal (hereinafter referred to as a brake pedal 30) as the brake operation unit 30, and the depression amount or depression strength of the brake pedal 30 serves as a reference for determining the strength of the braking force. It is said to be a quantity.
  • the electric motor 22 functions as a generator by the rotation reversely input from the drive wheels 28 and 29, and electric power is regenerated.
  • the vehicle control device 10 determines the speed detection unit 1 that detects the vehicle speed, the accelerator opening detection unit 2 that detects the accelerator opening based on the information from the accelerator position sensor, and the shift position selected based on the information from the shift position sensor. It includes a shift position detection unit 3 for detection, a driver required torque calculation unit 4 for calculating a driver required torque based on an accelerator opening degree, and an output torque command unit 5 for commanding an output torque for an electric motor. These are provided in the electronic control unit (Electronic Control Unit) 21. Further, the vehicle 20 is provided with sensors for detecting various information necessary for driving control, such as a torque sensor for detecting the output torque from the electric motor 22 and a sensor for detecting the amount of depression of the brake pedal. .. Information from these sensors is transmitted to the control unit 6 that controls the overall control of the electronic control unit 21. The electronic control unit 21 also includes a brake control unit 7.
  • the speed detection unit 1 detects the traveling speed of the vehicle 20 based on the information from the vehicle speed sensors provided on the drive wheels 28, 29 and the like.
  • the accelerator opening degree detecting unit 2 can detect the accelerator opening degree, that is, the amount of depression of the accelerator pedal 25 by the driver with a numerical value between 0% and 100%.
  • 0% is a state in which the accelerator pedal 25 is not depressed at all
  • 100% is a state in which the accelerator pedal 25 is fully depressed.
  • the driver required torque calculation unit 4 can detect the presence / absence of an acceleration request for the vehicle 20 and the magnitude of the acceleration request (accelerator required torque).
  • the shift position detection unit 3 detects the shift position of the automatic transmission based on the information from the shift position sensor that detects the position of the shift lever 26. Further, when the shift position is switched, the switching information is transmitted to the electronic control unit 21. Therefore, for example, when the shift position is switched from the D range to the N range, from the N range to the R range, or from the R range to the N range, and from the N range to the D range, the change is said to have occurred. Information is transmitted to the control unit 6 of the electronic control unit 21.
  • the information that the shift position has been switched may be, for example, a signal indicating the switching transmitted at the time of the switching, or the shift position may be changed every minute constant time (for example, every 0.01 seconds).
  • the shift position information includes information on where the current shift position is and information on the shift position being switched as described above.
  • the shift position is determined.
  • the detection unit 3 determines that the shift position has been switched back and forth.
  • the predetermined detection time for determining the presence / absence of front / rear switching may be, for example, a minute fixed time, which is the transmission interval of the above-mentioned shift position signal, or a time that is an integral multiple of the minute fixed time. can.
  • the output torque command unit 5 has a function of commanding the output torque to the electric motor 22.
  • FIG. 4 shows the calculation of the output torque by the output torque command unit 5 and the flow of the command.
  • Reference numerals p1 and p2 in the figure are information on accelerator required torque and creep torque calculated based on the accelerator opening degree (accelerator position sensor voltage), respectively.
  • the accelerator required torque and creep torque are calculated by the driver required torque calculation unit 4 based on information on the accelerator opening degree, information from the torque sensor, and various other information indicating the operating state. Further, the driver required torque calculation unit 4 calculates the driver required torque based on the information such as the accelerator required torque and the creep torque (see step s1).
  • step s2 it is determined whether or not the shift position is switched back and forth. Whether or not to perform output reduction control is determined based on the presence or absence of the front-back switching (see step s2). In the normal operating state without switching the shift position back and forth, the output reduction control is not performed. If the shift position is switched back and forth, the output reduction control is started.
  • the output torque command unit 5 commands the output torque to the electric motor 22 by commanding the increase rate of the output torque with respect to the output torque at that time (see steps s3 and s4).
  • it is commanded by an index of how much the current output torque should be increased or decreased in order to match the current output torque with the driver's required torque, that is, the required torque increase rate. ..
  • an output relaxation torque that is relatively lower than the driver required torque is adopted.
  • the ratio of the current output torque is adjusted. It is commanded by the index of whether to increase or decrease, that is, the torque increase rate during relaxation.
  • the output reduction control is canceled even during the control if the accelerator is turned on when the accelerator opening becomes the first predetermined value or more during the duration in which the output relaxation torque is set.
  • Whether or not the accelerator opening degree is in the accelerator ON state is determined by whether or not the accelerator opening degree is equal to or higher than the first predetermined value which is the accelerator ON threshold value.
  • the first predetermined value can be, for example, 5%, which is obtained by adding pedal play to the accelerator opening degree of 0%. Since the output reduction control is released in the accelerator ON state, it is possible to appropriately respond to the start and acceleration required by the driver thereafter.
  • step s5 of FIG. 4 the required motor torques for the front and rear electric motors 22a and 22b are calculated based on the calculated output torque and the information of the increase rate of the output torque (required motor shown by reference numeral p3). Torque (front), required motor torque (rear) indicated by reference numeral p4).
  • FIG. 1 is a time chart showing a first control example of one embodiment in the present disclosure.
  • a first control example of the present disclosure will be described with reference to the time chart of FIG. It is assumed that the shift position is switched from the R range to the D range via the N range at the a0 point indicated by the symbol (a) in FIG.
  • the stroke (depression amount) of the brake pedal 30 is positive, and the brake ON state in which the braking force is applied slightly strongly to the extent that the vehicle 20 stops. ..
  • the accelerator opening degree is zero and the accelerator is OFF.
  • the vehicle speed is an operating state in a low speed range of almost zero.
  • the output torque is a creep torque as indicated by the symbol e1 in the symbol (e) in FIG.
  • the brake ON state is defined as a braking state in which the amount of depression of the brake pedal 30 (the amount of operation of the brake operation unit) is equal to or higher than a predetermined second predetermined value
  • the brake OFF state is defined as the depression of the brake pedal 30. It can be defined as a braking release state in which the amount (the amount of operation of the brake operating unit) is less than the second predetermined value.
  • the second predetermined value may be, for example, the depression amount of the brake pedal 30 (the operation amount of the brake operation unit) may be zero, or may be set to a positive value in consideration of the play of the pedal or the like until the brake actually starts to work. You may.
  • the state (or status) of the shift position rises from -1 (corresponding to the R range) to 1 (corresponding to the D range) as indicated by the symbol f0 in the symbol (f) in FIG. .. That is, the positive sign of torque indicates forward, and the negative sign indicates reverse.
  • the solid line g2 shown by the symbol (g) in FIG. 1 is the required motor torque corresponding to the output torque after the output reduction control is performed, and the chain line g1 is the required motor corresponding to the driver required torque before the output reduction control is performed. It is torque.
  • the symbol (g) in FIG. 1 illustrates the state of the front motor, the same control can be performed with the rear motor.
  • the required motor torque commanded to the electric motor 22 is reduced from the chain line g1 shown by the symbol (g) in FIG. 1 to the solid line g2.
  • the MAP for limiting the increase rate of the output torque for each drive mode which is normally used, is switched to the suppression MAP for the output reduction control, and each operating state is selected.
  • a command for the rate of increase is issued according to the above.
  • the output relaxation torque indicated by the solid line g2 in the symbol (g) in FIG. 1 remains almost unchanged or slightly increases when the shift position is switched back and forth (the torque increase rate during relaxation changes at zero or near zero), and then. ,
  • the output relaxation torque gradually increases (the torque increase rate during relaxation also gradually increases), and the amount of increase in the output relaxation torque per unit time decreases or increases near the torque zero where the drive direction of the electric motor 22 reverses back and forth.
  • the amount becomes zero once that is, it becomes flat with a smaller increase amount than before and after (the torque increase rate at the time of relaxation decreases or becomes zero once).
  • Such a section in a flat state near zero torque is referred to as an output torque adjustment section, and in this control example in the brake ON state, the output torque adjustment section is set for time t1.
  • the output torque adjustment section can be defined within a range in which the amount of change in output per unit time is small, in which the rate of increase in output relaxation torque is less than a preset predetermined rate of increase.
  • the time t2 in the figure is the time required between the inflection points of the increase rate of the output torque.
  • the chain line h2 of the symbol (h) in FIG. 1 indicates the acceleration of the vibration of the vehicle 20 that occurs when the output reduction control is not performed (the increase in torque at the g0 point in the figure is the vibration of the chain line h2 as shown by the arrow B).
  • the solid line h1 indicates the acceleration of the vibration of the vehicle 20 when the output reduction control is performed.
  • FIG. 2 is a time chart showing a second control example of one embodiment.
  • a second control example of the present disclosure will be described with reference to the time chart of FIG.
  • the second control example assumes a case where the accelerator is turned on when the accelerator opening degree becomes the first predetermined value or more after the output reduction control is started. When the accelerator is turned on, the output reduction control is canceled. Since the control until the output reduction control is started is the same as that in FIG. 1, the description thereof will be omitted.
  • "'" is attached to the code in FIG. 2, and the reference numerals a0', b0', c0', f0', g0', arrow A'and the like in FIG. 2 are shown in FIG. It corresponds to the reference numerals a0, b0, c0, f0, g0, and the arrow A and the like.
  • the output torque After shifting to the accelerator ON state and releasing the output reduction control, normally, the output torque will be restored without the output reduction control. However, when the output reduction control is completed and the output torque is suddenly returned to the value before the reduction correction, the output torque is discontinuously fluctuated, which leads to deterioration of riding comfort. Therefore, when the accelerator is turned on, the increase rate of the output torque is set according to the driver required torque based on the accelerator opening degree.
  • the output torque at the time of acceleration after the output reduction control is released is determined based on the normal output torque increase rate (required torque increase rate) based on the accelerator opening, the symbol in FIG. 2 ( As shown by the symbol g3', the torque increases with the same slope as the degree of increase in the torque when there is no output reduction control indicated by the symbol g1'in g). After that, the torque increase control continues based on the accelerator operation, and the control ends when the acceleration ends. In this control when the accelerator is ON, the time t1'in the output torque adjustment section near zero torque is shorter than the time t1 when the brake is ON in FIG. 1, and the time required between the inflection points of the increase rate of the output relaxation torque is t2.
  • the maximum value of the increase rate during the time t1'in the output torque adjustment section is larger than that of the first control example in FIG. 1 (the slope of the increase is large).
  • FIG. 3 is a time chart showing a third control example of one embodiment.
  • a third control example of the present disclosure will be described with reference to the time chart of FIG.
  • the third control example assumes a case where the brake is OFF when the output reduction control is started. In the brake OFF state, even if the brake pedal 30 is not operated or is depressed, the amount of depression is about play, and the brake is not substantially operated. Therefore, it is a driving state in which the driver is expected to immediately operate the accelerator. Since the main part is the same as the control when the brake is turned on in FIG. 1, the description thereof will be omitted, and the differences related to the ON / OFF of the brake will be mainly described below. In addition, "" "is added to the code in FIG. 3 to distinguish it from the code of the corresponding portion in FIG.
  • the time t1 "in the output torque adjustment section is shorter than the time t1 when the brake is turned on in FIG. 1, and the time t2" between the inflection points of the increase rate of the output relaxation torque is also shown in FIG. It is set shorter than the time t2 when the brake is turned on, and is prepared for the demand for acceleration that is expected to be performed subsequently.
  • the duration t0 for setting the output relaxation torque in the OFF state of the brake is the output relaxation in the brake ON state. It is set shorter than the duration t0 for setting the torque.
  • the time t1, t1 "in the output torque adjustment section, the required time t2, t2" between the variation points of the increase rate of the output relaxation torque, and the output relaxation has been described for each of the durations t0 and t0 "in which the torque is set, in two stages of whether the brake is on or off.
  • the control is not limited to this example, and for example, the brake pedal 30 may be used.
  • a control set may be adopted so that the smaller the stepping amount (the operating amount of the brake operating portion) is, the shorter the stepping amount is gradually or steplessly and continuously.
  • the content of the control is explained assuming that the shift position is switched from the R range to the N range and then to the D range.
  • the shift position is from the D range to the N range and then to the R range. Even when it is switched to, the same control with the drive direction reversed is possible.
  • the plug-in hybrid electric vehicle is adopted as the vehicle 20, but in addition to the present embodiment, the present disclosure is disclosed in various electric vehicles provided with an electric motor 22 that generates a driving force by electric power. Applicable.

Abstract

When a shift position is switched between a forward range and a reverse range, an output torque command unit (5) of an electric vehicle control device according to the present invention carries out output reduction control that sets the output torque for an electric motor (22) to an output-mitigated torque that is lower than driver-requested torque. The output reduction control is canceled by an accelerator ON state in which the accelerator opening detected by an accelerator opening detection unit (2) is equal to or greater than a first prescribed value.

Description

電動車両の制御装置Control device for electric vehicles
 本開示は、電動モータを駆動源とする電動車両の制御装置に関する。 The present disclosure relates to a control device for an electric vehicle using an electric motor as a drive source.
 電動モータを駆動源とする電動車両では、ドライバのシフト操作によってシフトポジションが前進レンジ(ドライブレンジ(Dレンジ)等)に選択されると、電動モータの駆動軸が正方向に回転し、後退レンジ(リバースレンジ(Rレンジ))に選択されると、電動モータの駆動軸は逆方向に回転する。電動モータの駆動軸の回転は、減速機やデファレンシャル等を介して駆動輪に伝達される。このとき、駆動軸が正方向に回転すると車両は前進し、逆方向に回転すると車両は後退する。 In an electric vehicle that uses an electric motor as a drive source, when the shift position is selected to the forward range (drive range (D range), etc.) by the shift operation of the driver, the drive shaft of the electric motor rotates in the positive direction and the reverse range. When selected to (reverse range (R range)), the drive shaft of the electric motor rotates in the opposite direction. The rotation of the drive shaft of the electric motor is transmitted to the drive wheels via a speed reducer, a differential, or the like. At this time, when the drive shaft rotates in the forward direction, the vehicle moves forward, and when the drive shaft rotates in the opposite direction, the vehicle moves backward.
 ところで、電動モータの駆動軸から駆動輪に至るまでの動力伝達経路には、多数のギヤが介在する。これらのギヤの歯同士の噛み合い部にはバックラッシュ、すなわち、部材の運動方向に意図的に設定された隙間等に起因するクリアランスが存在する。このため、シフトポジションが前進レンジから後退レンジに切り替えられた際に、あるいは、その切り替え後すぐに車両が発進した際には、まずは噛み合い部におけるクリアランスがなくなった後(「ガタ詰め」と呼称してもよい)に駆動力が伝達されることになる。噛み合い部におけるクリアランスがなくなる際には、互いに噛み合う部材同士が強く衝突し、音や振動が発生する場合がある。また、これらのバックラッシュは経年とともに部材が磨耗して増大する傾向があるので、歯打ち音や振動が時間の経過とともに大きくなっていく場合もある。 By the way, a large number of gears intervene in the power transmission path from the drive shaft of the electric motor to the drive wheels. There is a backlash in the meshing portion between the teeth of these gears, that is, a clearance caused by a gap or the like intentionally set in the movement direction of the member. For this reason, when the shift position is switched from the forward range to the reverse range, or when the vehicle starts immediately after the switch, first after the clearance at the meshing portion disappears (referred to as "playing"). The driving force may be transmitted to). When the clearance at the meshing portion is lost, the members that mesh with each other may collide strongly with each other, and sound or vibration may be generated. In addition, since these backlashes tend to increase as the members wear over time, the rattling noise and vibration may increase with the passage of time.
 そこで、日本国特開2013-183503号公報には、停車中や微車速状態で、シフトポジションが前進レンジと後退レンジとの間で切り替えられた後、車両が発進するまでの間に、クリープトルクよりも小さいガタ詰めトルクを出力させる制御装置の技術が開示されている。このガタ詰めトルクの出力により、車両の発進時における噛み合い部から生じる音や振動の発生を抑制できるとされている。 Therefore, Japanese Patent Application Laid-Open No. 2013-183503 describes the creep torque after the shift position is switched between the forward range and the reverse range while the vehicle is stopped or at a low vehicle speed, and before the vehicle starts. The technology of the control device which outputs the backlash filling torque smaller than that is disclosed. It is said that the output of this backlash filling torque can suppress the generation of noise and vibration generated from the meshing portion when the vehicle starts.
 上記の日本国特開2013-183503号公報の制御装置では、シフトポジションを切り替え後、車両が発進する際における音や振動の発生をある程度抑制できる。しかし、シフトポジションを切り替えた後に少しでも早く発進したい場合等には、その発進時期が遅れ、あるいは、発進後に満足な加速が得られない場合もある。 The control device of Japanese Patent Application Laid-Open No. 2013-183503 described above can suppress the generation of sound and vibration to some extent when the vehicle starts after switching the shift position. However, if you want to start as soon as possible after switching the shift position, the start time may be delayed or you may not be able to obtain satisfactory acceleration after starting.
 本開示は、シフトポジションを前進レンジと後退レンジとの間で切り替えた後の音や振動の発生を抑制するとともに、その後の発進及び加速に適切に対応することが可能な電動車両の制御装置を提供する。 The present disclosure provides a control device for an electric vehicle capable of suppressing the generation of sound and vibration after switching the shift position between the forward range and the reverse range, and appropriately responding to the subsequent start and acceleration. offer.
 本開示の一態様によれば、電動車両の制御装置は、走行用の駆動源である電動モータと、アクセル開度を検出するアクセル開度検出部と、選択されたシフトポジションを検出するシフトポジション検出部と、前記アクセル開度に基づいてドライバ要求トルクを算出するドライバ要求トルク算出部と、前記電動モータに対する出力トルクを指令する出力トルク指令部と、を備え、前記出力トルク指令部は、前記シフトポジションが前進レンジと後退レンジとの間で切り替えられた場合に、前記出力トルクを前記ドライバ要求トルクよりも低い出力緩和トルクに設定する出力低減制御を行い、前記出力低減制御は、前記アクセル開度が第1所定値以上となるアクセルON状態で解除される。 According to one aspect of the present disclosure, the control device of the electric vehicle includes an electric motor as a driving source for traveling, an accelerator opening detection unit for detecting the accelerator opening, and a shift position for detecting the selected shift position. A detection unit, a driver required torque calculation unit that calculates a driver required torque based on the accelerator opening degree, and an output torque command unit that commands an output torque to the electric motor are provided, and the output torque command unit is the said. When the shift position is switched between the forward range and the backward range, the output reduction control is performed to set the output torque to an output relaxation torque lower than the driver required torque, and the output reduction control is the accelerator opening. It is released when the accelerator is ON when the degree is equal to or higher than the first predetermined value.
 本開示の前記態様によれば、前記アクセルON状態で前記出力低減制御が解除された後、前記アクセル開度に基づく前記ドライバ要求トルクに対応するように、前記出力トルクの増加率が設定される構成を採用してもよい。 According to the aspect of the present disclosure, after the output reduction control is released in the accelerator ON state, the increase rate of the output torque is set so as to correspond to the driver required torque based on the accelerator opening degree. The configuration may be adopted.
 本開示の前記態様によれば、ブレーキ操作部の操作量に基づいて制動力を発生させる制動装置をさらに備え、前記出力低減制御は、前記ブレーキ操作部の操作量が小さいほど前記出力緩和トルクを設定する継続時間が短くなるよう設定されている構成を採用してもよい。 According to the aspect of the present disclosure, a braking device that generates a braking force based on the operation amount of the brake operation unit is further provided, and in the output reduction control, the output relaxation torque is reduced as the operation amount of the brake operation unit is smaller. A configuration may be adopted in which the duration to be set is set to be short.
 本開示の前記態様によれば、ブレーキ操作部の操作量に基づいて制動力を発生させる制動装置をさらに備え、前記出力低減制御は、前記ブレーキ操作部の操作量が第2所定値以上である制動状態よりも、前記ブレーキ操作部の操作量が前記第2所定値未満である制動緩解状態において前記出力緩和トルクを設定する継続時間が短くなるよう設定されている構成を採用してもよい。 According to the aspect of the present disclosure, a braking device that generates a braking force based on the operation amount of the brake operation unit is further provided, and in the output reduction control, the operation amount of the brake operation unit is a second predetermined value or more. A configuration may be adopted in which the duration for setting the output relaxation torque is set to be shorter in the braking release state in which the operation amount of the brake operation unit is less than the second predetermined value than in the braking state.
 本開示の他の態様によれば、電動車両の制御装置は、走行用の駆動源である電動モータと、アクセル開度を検出するアクセル開度検出部と、選択されたシフトポジションを検出するシフトポジション検出部と、前記アクセル開度に基づいてドライバ要求トルクを算出するドライバ要求トルク算出部と、前記電動モータに対する出力トルクを指令する出力トルク指令部と、ブレーキ操作部の操作量に基づいて制動力を発生させる制動装置と、を備え、前記出力トルク指令部は、前記シフトポジションが前進レンジと後退レンジとの間で切り替えられた場合に、前記出力トルクを前記ドライバ要求トルクよりも低い出力緩和トルクに設定する出力低減制御を行い、前記出力低減制御は、前記ブレーキ操作部の操作量が小さいほど前記出力緩和トルクを設定する継続時間が短くなるよう設定されている。 According to another aspect of the present disclosure, the control device of the electric vehicle includes an electric motor as a driving source for traveling, an accelerator opening detection unit for detecting the accelerator opening, and a shift for detecting a selected shift position. It is controlled based on the operation amount of the position detection unit, the driver required torque calculation unit that calculates the driver required torque based on the accelerator opening, the output torque command unit that commands the output torque to the electric motor, and the brake operation unit. The output torque command unit includes a braking device that generates power, and the output torque command unit reduces the output torque to a torque lower than the driver required torque when the shift position is switched between the forward range and the backward range. The output reduction control set to the torque is performed, and the output reduction control is set so that the smaller the operation amount of the brake operation unit is, the shorter the duration for setting the output relaxation torque is.
図1は、本開示における一実施形態の第1制御例を示すタイムチャートである。FIG. 1 is a time chart showing a first control example of one embodiment in the present disclosure. 図2は、一実施形態の第2制御例を示すタイムチャートである。FIG. 2 is a time chart showing a second control example of one embodiment. 図3は、一実施形態の第3制御例を示すタイムチャートである。FIG. 3 is a time chart showing a third control example of one embodiment. 図4は、制御例を示すフローチャートである。FIG. 4 is a flowchart showing a control example. 図5は、車両及び車両制御装置の模式図である。FIG. 5 is a schematic diagram of a vehicle and a vehicle control device.
 本開示における実施形態を、図1~図5に基づいて説明する。本実施形態は、車両20が低速で走行している状態又は車両20の停止時等の低速域において、ドライバが、シフトポジションを前進レンジと後退レンジとの間で切り替えた際に、動力伝達経路での音や振動の発生を抑制しつつ、且つ、その後の発進及び加速にも適切に対応する電動車両の制御装置10である。 The embodiments in the present disclosure will be described with reference to FIGS. 1 to 5. In this embodiment, when the driver switches the shift position between the forward range and the reverse range in a low speed region such as when the vehicle 20 is traveling at a low speed or when the vehicle 20 is stopped, the power transmission path is It is a control device 10 for an electric vehicle that suppresses the generation of noise and vibration in the electric vehicle and appropriately responds to the subsequent start and acceleration.
 ここで、低速域とは、車速、すなわち車両20の速度が所定速度以下の微車速の状態であり、ドライバがシフトレバー26を操作して、シフトポジションを前進レンジからニュートラルレンジを経て後退レンジへ、あるいは、後退レンジからニュートラルレンジを経て前進レンジへと切り替えるような極低速状態(前進及び後退を含む)、又は、車両20の停止状態を意味している。以下、ニュートラルレンジをNレンジと称する。また、前進レンジとは、駆動輪28,29に前進の駆動トルクが付与されるドライブレンジ(Dレンジ)やセカンドレンジ(2レンジ)等の前方への走行レンジを意味し、後退レンジとは、後進の駆動トルクが付与されるリバースレンジ(Rレンジ)を意味している。 Here, the low speed range is a state in which the vehicle speed, that is, the speed of the vehicle 20 is a minute vehicle speed of a predetermined speed or less, and the driver operates the shift lever 26 to change the shift position from the forward range to the reverse range via the neutral range. Or, it means an extremely low speed state (including forward and backward) in which the reverse range is switched to the forward range via the neutral range, or a stopped state of the vehicle 20. Hereinafter, the neutral range is referred to as an N range. Further, the forward range means a forward travel range such as a drive range (D range) and a second range (2 range) in which forward drive torque is applied to the drive wheels 28 and 29, and the backward range is defined as a backward range. It means a reverse range (R range) to which a reverse drive torque is applied.
 なお、一般的には、DレンジからNレンジを経てRレンジへのシフトチェンジ、あるいは、RレンジからNレンジを経てDレンジへのシフトチェンジは、車速が0km/hで車両20が完全に停止した状態で行うことが望ましいが、微車速の運転状態では、ドライバがこのようなシフトチェンジを行うことが許容されている場合が多い。低速域を既定する所定速度は、このようなシフトチェンジが許容される最大限の車速(例えば、2~3km/h程度)を意味している。 In general, a shift change from the D range to the R range via the N range or a shift change from the R range to the D range via the N range causes the vehicle 20 to stop completely at a vehicle speed of 0 km / h. It is desirable to carry out such a shift change, but in many cases, the driver is allowed to make such a shift change in the driving state of a low vehicle speed. The predetermined speed that defines the low speed range means the maximum vehicle speed (for example, about 2 to 3 km / h) at which such a shift change is allowed.
 図5は、本実施形態に係る制御装置10が搭載された車両(電動車両)20の模式図である。車両20は、電力により駆動力を発生する電動モータ22を備えた電動車両であり、本実施形態では、プラグインハイブリッド電気自動車としている。エンジン24が発電機を駆動して発電機能を発揮することで、走行用の駆動源である電動モータ22への電力の供給、ならびに、蓄電池23への蓄電が行われる。また、蓄電池23への蓄電は、この車両20と地上側の電源とを専用のケーブルで接続することによっても行われる。本実施形態では、電動モータ22はフロントモータ22aとリヤモータ22bとからなり、そのフロントモータ22aとリヤモータ22bが、それぞれデファレンシャル27を介して前輪及び後輪の両駆動輪28,29を別々に駆動しているが、一つの電動モータ22で全ての駆動輪28,29を駆動する車両20としてもよい。 FIG. 5 is a schematic diagram of a vehicle (electric vehicle) 20 on which the control device 10 according to the present embodiment is mounted. The vehicle 20 is an electric vehicle provided with an electric motor 22 that generates a driving force by electric power, and is a plug-in hybrid electric vehicle in the present embodiment. When the engine 24 drives a generator to exert a power generation function, electric power is supplied to the electric motor 22 which is a driving source for traveling, and electricity is stored in the storage battery 23. Further, the storage of electricity in the storage battery 23 is also performed by connecting the vehicle 20 and the power source on the ground side with a dedicated cable. In the present embodiment, the electric motor 22 includes a front motor 22a and a rear motor 22b, and the front motor 22a and the rear motor 22b separately drive both the front wheels and the rear wheels 28 and 29 via the differential 27, respectively. However, the vehicle 20 may drive all the drive wheels 28 and 29 with one electric motor 22.
 車両20の左右の前輪28,28、及び、左右の後輪29,29には、それぞれブレーキディスクとブレーキキャリパ等を備えたブレーキユニット31が装着されている。ブレーキ操作部30の操作量に基づいてブレーキユニット31は駆動輪28,29に制動力を発生させる。これらのブレーキユニット31とブレーキ操作部30、及び、それらを制御するブレーキ制御部7とで、車両20の制動装置を構成している。なお、通常はブレーキ操作部30として運転席にブレーキペダル(以下、ブレーキペダル30と称する)が装備され、そのブレーキペダル30の踏み込み量又は踏み込み強さが制動力の強弱を決定する基準となる操作量とされる。また、制動時には、駆動輪28,29から逆入力された回転によって電動モータ22が発電機として機能して電力が回生される。 Brake units 31 equipped with brake discs, brake calipers, etc. are mounted on the left and right front wheels 28, 28 and the left and right rear wheels 29, 29 of the vehicle 20, respectively. The brake unit 31 generates braking force on the drive wheels 28 and 29 based on the operation amount of the brake operation unit 30. These brake units 31, the brake operation unit 30, and the brake control unit 7 that controls them constitute a braking device for the vehicle 20. Normally, the driver's seat is equipped with a brake pedal (hereinafter referred to as a brake pedal 30) as the brake operation unit 30, and the depression amount or depression strength of the brake pedal 30 serves as a reference for determining the strength of the braking force. It is said to be a quantity. Further, at the time of braking, the electric motor 22 functions as a generator by the rotation reversely input from the drive wheels 28 and 29, and electric power is regenerated.
 車両制御装置10は、車速を検出する速度検出部1と、アクセルポジションセンサからの情報によりアクセル開度を検出するアクセル開度検出部2と、シフトポジションセンサからの情報により選択されたシフトポジションを検出するシフトポジション検出部3と、アクセル開度に基づいてドライバ要求トルクを算出するドライバ要求トルク算出部4と、電動モータに対する出力トルクを指令する出力トルク指令部5とを備えている。これらは、電子制御ユニット(Electronic Control Unit)21に備えられている。また、車両20は、電動モータ22からの出力トルクを検出するトルクセンサや、ブレーキペダルの踏込量等を検出するセンサ等、運転の制御に必要な各種の情報を検出するセンサ類を備えている。これらのセンサ類からの情報は、電子制御ユニット21の制御全般を司る制御部6に発信される。また、電子制御ユニット21はブレーキ制御部7も備えている。 The vehicle control device 10 determines the speed detection unit 1 that detects the vehicle speed, the accelerator opening detection unit 2 that detects the accelerator opening based on the information from the accelerator position sensor, and the shift position selected based on the information from the shift position sensor. It includes a shift position detection unit 3 for detection, a driver required torque calculation unit 4 for calculating a driver required torque based on an accelerator opening degree, and an output torque command unit 5 for commanding an output torque for an electric motor. These are provided in the electronic control unit (Electronic Control Unit) 21. Further, the vehicle 20 is provided with sensors for detecting various information necessary for driving control, such as a torque sensor for detecting the output torque from the electric motor 22 and a sensor for detecting the amount of depression of the brake pedal. .. Information from these sensors is transmitted to the control unit 6 that controls the overall control of the electronic control unit 21. The electronic control unit 21 also includes a brake control unit 7.
 速度検出部1は、駆動輪28,29等に設けた車速センサからの情報により、車両20の走行速度を検出する。アクセル開度検出部2は、アクセル開度、すなわちドライバによるアクセルペダル25の踏み込み量を、0%~100%の間の数値で検出することができる。ここで、0%はアクセルペダル25を全く踏み込んでいない状態、100%はアクセルペダル25を最大に踏み込んだ状態である。このアクセル開度に基づいて、ドライバ要求トルク算出部4は、車両20に対する加速要求の有無と、その加速要求の大きさ(アクセル要求トルク)をそれぞれ検出することができる。 The speed detection unit 1 detects the traveling speed of the vehicle 20 based on the information from the vehicle speed sensors provided on the drive wheels 28, 29 and the like. The accelerator opening degree detecting unit 2 can detect the accelerator opening degree, that is, the amount of depression of the accelerator pedal 25 by the driver with a numerical value between 0% and 100%. Here, 0% is a state in which the accelerator pedal 25 is not depressed at all, and 100% is a state in which the accelerator pedal 25 is fully depressed. Based on this accelerator opening degree, the driver required torque calculation unit 4 can detect the presence / absence of an acceleration request for the vehicle 20 and the magnitude of the acceleration request (accelerator required torque).
 シフトポジション検出部3は、シフトレバー26の位置を検出するシフトポジションセンサからの情報により、自動変速機のシフトポジションを検出する。また、シフトポジションが切り替えられた時には、その切り替えの情報が電子制御ユニット21に発信される。このため、例えば、シフトポジションがDレンジからNレンジへ、NレンジからRレンジへ、あるいは、RレンジからNレンジへ、NレンジからDレンジへ切り替えられた場合には、その切替えがあったという情報が電子制御ユニット21の制御部6に発信される。シフトポジションの切り替えがあったという情報は、例えば、その切替え時に発信される切り替えを意味する信号であってもよいし、微小な一定の時間毎(例えば0.01秒毎)にシフトポジションがいずれの位置にあるかを信号で判定するとともに、前回の判定時と今回の判定時とでシフトポジションの信号が同じであれば切り替えが無く、シフトポジションの信号が異なっていれば切り替えがあったと判定するようにしてもよい。シフトポジションの情報には、現在のシフトポジションがどの位置にあるかという情報と、上記のようなシフトポジションが切り替えられたという情報も含んでいる。 The shift position detection unit 3 detects the shift position of the automatic transmission based on the information from the shift position sensor that detects the position of the shift lever 26. Further, when the shift position is switched, the switching information is transmitted to the electronic control unit 21. Therefore, for example, when the shift position is switched from the D range to the N range, from the N range to the R range, or from the R range to the N range, and from the N range to the D range, the change is said to have occurred. Information is transmitted to the control unit 6 of the electronic control unit 21. The information that the shift position has been switched may be, for example, a signal indicating the switching transmitted at the time of the switching, or the shift position may be changed every minute constant time (for example, every 0.01 seconds). If the shift position signal is the same between the previous judgment and the current judgment, there is no switching, and if the shift position signal is different, it is judged that there was a switch. You may try to do it. The shift position information includes information on where the current shift position is and information on the shift position being switched as described above.
 ここで、予め設定された所定の検出時間内に、DレンジからNレンジを経てRレンジへ、あるいは、RレンジからNレンジを経てDレンジへ切り替えがあったと判別された場合には、シフトポジション検出部3は、シフトポジションの前後切り替えがあったと判別する。前後切り替えの有無を判別する所定の検出時間とは、例えば、前述のシフトポジションの信号の発信間隔である微小な一定の時間、あるいは、その微小な一定の時間の整数倍の時間とすることができる。 Here, if it is determined that there has been a switch from the D range to the R range via the N range or from the R range to the D range via the N range within a predetermined detection time set in advance, the shift position is determined. The detection unit 3 determines that the shift position has been switched back and forth. The predetermined detection time for determining the presence / absence of front / rear switching may be, for example, a minute fixed time, which is the transmission interval of the above-mentioned shift position signal, or a time that is an integral multiple of the minute fixed time. can.
 出力トルク指令部5は、電動モータ22に対する出力トルクを指令する機能を有している。出力トルク指令部5による出力トルクの算出と指令の流れを図4に示す。図中の符号p1、p2は、それぞれアクセル開度(アクセルポジションセンサ電圧)に基づいて算出されるアクセル要求トルク、クリープトルクの情報である。アクセル要求トルクやクリープトルクは、アクセル開度の情報やトルクセンサからの情報、その他運転状態を表す各種の情報に基づいて、ドライバ要求トルク算出部4が算出を行う。また、ドライバ要求トルク算出部4は、アクセル要求トルク、クリープトルク等の情報に基づいて、ドライバ要求トルクの算出を行う(行程s1参照)。 The output torque command unit 5 has a function of commanding the output torque to the electric motor 22. FIG. 4 shows the calculation of the output torque by the output torque command unit 5 and the flow of the command. Reference numerals p1 and p2 in the figure are information on accelerator required torque and creep torque calculated based on the accelerator opening degree (accelerator position sensor voltage), respectively. The accelerator required torque and creep torque are calculated by the driver required torque calculation unit 4 based on information on the accelerator opening degree, information from the torque sensor, and various other information indicating the operating state. Further, the driver required torque calculation unit 4 calculates the driver required torque based on the information such as the accelerator required torque and the creep torque (see step s1).
 続いて、シフトポジションの前後切り替えの有無が判別される。その前後切り替えの有無に基づいて、出力低減制御を行うか否かが決定される(行程s2参照)。シフトポジションの前後切り替えが無い通常の運転状態の場合、出力低減制御は行われない。また、シフトポジションの前後切り替えがあった場合は出力低減制御へ移行する。 Subsequently, it is determined whether or not the shift position is switched back and forth. Whether or not to perform output reduction control is determined based on the presence or absence of the front-back switching (see step s2). In the normal operating state without switching the shift position back and forth, the output reduction control is not performed. If the shift position is switched back and forth, the output reduction control is started.
 出力トルク指令部5による電動モータ22への出力トルクの指令は、その時点での出力トルクに対して、出力トルクの増加率を指令することにより行われる(行程s3,s4参照)。通常の制御では、原則として、現在の出力トルクをドライバ要求トルクに合致させるために、現在の出力トルクをどの程度の割合で増減させればよいかという指標、すなわち要求トルク増加率によって指令される。また、出力低減制御では、ドライバ要求トルクよりも相対的に低い出力緩和トルクが採用され、原則として、現在の出力トルクを出力緩和トルクに合致させるために、現在の出力トルクをどの程度の割合で増減させればよいかという指標、すなわち緩和時トルク増加率によって指令される。出力低減制御を行うことにより、シフトポジションを前進レンジと後退レンジとの間で切り替え後に発生する音や振動を抑制することができる。 The output torque command unit 5 commands the output torque to the electric motor 22 by commanding the increase rate of the output torque with respect to the output torque at that time (see steps s3 and s4). In normal control, as a general rule, it is commanded by an index of how much the current output torque should be increased or decreased in order to match the current output torque with the driver's required torque, that is, the required torque increase rate. .. In addition, in the output reduction control, an output relaxation torque that is relatively lower than the driver required torque is adopted. In principle, in order to match the current output torque with the output relaxation torque, the ratio of the current output torque is adjusted. It is commanded by the index of whether to increase or decrease, that is, the torque increase rate during relaxation. By performing output reduction control, it is possible to suppress the sound and vibration generated after switching the shift position between the forward range and the backward range.
 また、出力低減制御は、出力緩和トルクが設定される継続時間中に、アクセル開度が第1所定値以上となるアクセルON状態になれば、その制御の途中でも解除される。アクセル開度がアクセルON状態であるかどうかは、アクセル開度がアクセルON閾値である第1所定値以上となっているかどうかで判別される。ここで、第1所定値は、例えば、アクセル開度0%にペダルの遊びを付加した5%とすることができる。アクセルON状態で、出力低減制御が解除されるので、その後、ドライバが要求する発進及び加速に適切に対応することができる。 Further, the output reduction control is canceled even during the control if the accelerator is turned on when the accelerator opening becomes the first predetermined value or more during the duration in which the output relaxation torque is set. Whether or not the accelerator opening degree is in the accelerator ON state is determined by whether or not the accelerator opening degree is equal to or higher than the first predetermined value which is the accelerator ON threshold value. Here, the first predetermined value can be, for example, 5%, which is obtained by adding pedal play to the accelerator opening degree of 0%. Since the output reduction control is released in the accelerator ON state, it is possible to appropriately respond to the start and acceleration required by the driver thereafter.
 図4の行程s5では、算出された出力トルク及びその出力トルクの増加率の情報に基づいて、フロント、リヤの各電動モータ22a,22bに対する要求モータトルクが算出される(符号p3に示す要求モータトルク(フロント)、符号p4に示す要求モータトルク(リヤ)参照)。 In step s5 of FIG. 4, the required motor torques for the front and rear electric motors 22a and 22b are calculated based on the calculated output torque and the information of the increase rate of the output torque (required motor shown by reference numeral p3). Torque (front), required motor torque (rear) indicated by reference numeral p4).
 図1は、本開示における一実施形態の第1制御例を示すタイムチャートである。図1のタイムチャートに基づいて、本開示の第1制御例を説明する。図1における記号(a)に示すa0地点でシフトポジションがRレンジからNレンジを経てDレンジに切り替えられた場合を想定する。このとき、図1における記号(b)に示すb0地点はブレーキペダル30のストローク(踏込み量)がプラスであり、車両20が停止する程度にやや強く制動力が付与されているブレーキON状態である。また、図1における記号(c)に示すc0地点はアクセル開度がゼロでアクセルOFF状態である。また、図1における記号(d)に示すように、車速はほぼゼロの低速域の運転状態である。a0地点でシフトポジションの前後切り替えが成された時、図1における記号(e)に符号e1で示すように、出力トルクはクリープトルクとなっている。なお、ブレーキON状態は、ブレーキペダル30の踏込み量(ブレーキ操作部の操作量)が、予め決められた第2所定値以上である制動状態と規定し、ブレーキOFF状態は、ブレーキペダル30の踏込み量(ブレーキ操作部の操作量)が第2所定値未満である制動緩解状態と規定することができる。第2所定値は、例えば、ブレーキペダル30の踏込み量(ブレーキ操作部の操作量)をゼロとしてもよいし、ブレーキが実際に効き始めるまでのペダル等の遊びを考慮したプラスの数値に設定してもよい。 FIG. 1 is a time chart showing a first control example of one embodiment in the present disclosure. A first control example of the present disclosure will be described with reference to the time chart of FIG. It is assumed that the shift position is switched from the R range to the D range via the N range at the a0 point indicated by the symbol (a) in FIG. At this time, at the point b0 shown by the symbol (b) in FIG. 1, the stroke (depression amount) of the brake pedal 30 is positive, and the brake ON state in which the braking force is applied slightly strongly to the extent that the vehicle 20 stops. .. Further, at the c0 point shown by the symbol (c) in FIG. 1, the accelerator opening degree is zero and the accelerator is OFF. Further, as shown by the symbol (d) in FIG. 1, the vehicle speed is an operating state in a low speed range of almost zero. When the shift position is switched back and forth at the a0 point, the output torque is a creep torque as indicated by the symbol e1 in the symbol (e) in FIG. The brake ON state is defined as a braking state in which the amount of depression of the brake pedal 30 (the amount of operation of the brake operation unit) is equal to or higher than a predetermined second predetermined value, and the brake OFF state is defined as the depression of the brake pedal 30. It can be defined as a braking release state in which the amount (the amount of operation of the brake operating unit) is less than the second predetermined value. The second predetermined value may be, for example, the depression amount of the brake pedal 30 (the operation amount of the brake operation unit) may be zero, or may be set to a positive value in consideration of the play of the pedal or the like until the brake actually starts to work. You may.
 シフトポジションの前後切り替えによって、図1における記号(f)に符号f0で示すように、シフトポジションの状態(またはステータス)が-1(Rレンジに相当)から1(Dレンジに相当)へと立ち上がる。すなわち、トルクの正の符号は前進、負の符号は後進を表している。図1における記号(g)に示す実線g2は、出力低減制御を行った後の出力トルクに対応した要求モータトルクであり、鎖線g1は出力低減制御を行う前のドライバ要求トルクに対応した要求モータトルクである。図1における記号(g)はフロントモータの様子を例示しているが、リヤモータにおいても同様の制御をすることができる。電動モータ22に指令される要求モータトルクは、図1における記号(g)に示す鎖線g1から実線g2へと低減されている。ここで、出力低減制御を行うべき判定がなされた場合には、通常用いているドライブモード毎の出力トルクの増加率制限MAPから、出力低減制御用の抑制MAPに切り替えられて、それぞれの運転状態に応じた増加率の指令が出される。 By switching the shift position back and forth, the state (or status) of the shift position rises from -1 (corresponding to the R range) to 1 (corresponding to the D range) as indicated by the symbol f0 in the symbol (f) in FIG. .. That is, the positive sign of torque indicates forward, and the negative sign indicates reverse. The solid line g2 shown by the symbol (g) in FIG. 1 is the required motor torque corresponding to the output torque after the output reduction control is performed, and the chain line g1 is the required motor corresponding to the driver required torque before the output reduction control is performed. It is torque. Although the symbol (g) in FIG. 1 illustrates the state of the front motor, the same control can be performed with the rear motor. The required motor torque commanded to the electric motor 22 is reduced from the chain line g1 shown by the symbol (g) in FIG. 1 to the solid line g2. Here, when it is determined that the output reduction control should be performed, the MAP for limiting the increase rate of the output torque for each drive mode, which is normally used, is switched to the suppression MAP for the output reduction control, and each operating state is selected. A command for the rate of increase is issued according to the above.
 図1における記号(g)に実線g2で示す出力緩和トルクは、シフトポジションの前後切り替え時には概ねほぼ横ばい又は微増で推移し(緩和時トルク増加率はゼロ又はゼロに近い数値で推移し)、その後、出力緩和トルクは徐々に増加して(緩和時トルク増加率も徐々に増加し)、電動モータ22の駆動方向が前後反転するトルクゼロ付近で単位時間当たりの出力緩和トルクの増加量が減少又は増加量が一旦ゼロとなり、すなわち、前後よりも増加量が小さい横ばい状態になる(緩和時トルク増加率は減少する又は一旦ゼロになる)。このようなトルクゼロ付近での横ばい状態の区間を出力トルク調整区間と称し、このブレーキON状態の制御例では出力トルク調整区間が時間t1だけ設定されている。ここで、出力トルク調整区間は、出力緩和トルクの増加率が予め設定された所定増加率未満である単位時間当たりの出力の変化量が少ない範囲で規定することができる。出力緩和トルクが出力トルク調整区間を過ぎると、出力緩和トルクは徐々に増加して(緩和時トルク増加率も徐々に増加し)、鎖線g1で示す反転後のドライバ要求トルクに近づく手前で単位時間当たりの出力緩和トルクの増加量が減少して(緩和時トルク増加率は減少して)、最終的に出力緩和トルクがドライバ要求トルクに至り制御を終了する。図中の時間t2は、出力トルクの増加率の変曲点間の所要時間である。図1における記号(h)の鎖線h2は、出力低減制御を行わない場合に発生する車両20の振動の加速度を示し(図中のg0地点のトルクの増大が矢印Bのように鎖線h2の振動につながっている)、実線h1は、出力低減制御を行った場合の車両20の振動の加速度を示している。出力低減制御によって、車両20の振動の最大の振幅は、y0からy1に大幅に低減されている。 The output relaxation torque indicated by the solid line g2 in the symbol (g) in FIG. 1 remains almost unchanged or slightly increases when the shift position is switched back and forth (the torque increase rate during relaxation changes at zero or near zero), and then. , The output relaxation torque gradually increases (the torque increase rate during relaxation also gradually increases), and the amount of increase in the output relaxation torque per unit time decreases or increases near the torque zero where the drive direction of the electric motor 22 reverses back and forth. The amount becomes zero once, that is, it becomes flat with a smaller increase amount than before and after (the torque increase rate at the time of relaxation decreases or becomes zero once). Such a section in a flat state near zero torque is referred to as an output torque adjustment section, and in this control example in the brake ON state, the output torque adjustment section is set for time t1. Here, the output torque adjustment section can be defined within a range in which the amount of change in output per unit time is small, in which the rate of increase in output relaxation torque is less than a preset predetermined rate of increase. When the output relaxation torque passes the output torque adjustment section, the output relaxation torque gradually increases (the torque increase rate during relaxation also gradually increases), and the unit time is before approaching the driver required torque after reversal indicated by the chain line g1. The amount of increase in the output relaxation torque per hit decreases (the torque increase rate during relaxation decreases), and finally the output relaxation torque reaches the driver required torque and the control ends. The time t2 in the figure is the time required between the inflection points of the increase rate of the output torque. The chain line h2 of the symbol (h) in FIG. 1 indicates the acceleration of the vibration of the vehicle 20 that occurs when the output reduction control is not performed (the increase in torque at the g0 point in the figure is the vibration of the chain line h2 as shown by the arrow B). The solid line h1 indicates the acceleration of the vibration of the vehicle 20 when the output reduction control is performed. By the output reduction control, the maximum amplitude of the vibration of the vehicle 20 is significantly reduced from y0 to y1.
 図2は、一実施形態の第2制御例を示すタイムチャートである。図2のタイムチャートに基づいて、本開示の第2制御例を説明する。第2制御例は、出力低減制御が開始された後、アクセル開度が第1所定値以上となるアクセルON状態になった場合を想定している。アクセルON状態になると、出力低減制御は解除される。出力低減制御が開始されるまでの制御は、図1と共通であるので説明を省略する。なお、図2中の符号には「’」を付しており、図2中の符号a0’,b0’,c0’,f0’,g0’、及び、矢印A’等は、図1中の符号a0,b0,c0,f0,g0、及び、矢印A等に対応する。 FIG. 2 is a time chart showing a second control example of one embodiment. A second control example of the present disclosure will be described with reference to the time chart of FIG. The second control example assumes a case where the accelerator is turned on when the accelerator opening degree becomes the first predetermined value or more after the output reduction control is started. When the accelerator is turned on, the output reduction control is canceled. Since the control until the output reduction control is started is the same as that in FIG. 1, the description thereof will be omitted. In addition, "'" is attached to the code in FIG. 2, and the reference numerals a0', b0', c0', f0', g0', arrow A'and the like in FIG. 2 are shown in FIG. It corresponds to the reference numerals a0, b0, c0, f0, g0, and the arrow A and the like.
 アクセルON状態に移行して出力低減制御が解除された後、通常であれば、出力低減制御を行わない出力トルクに復帰することとなる。しかし、出力低減制御が終了して、急激に出力トルクを低減補正前の数値に戻すことは、出力トルクの不連続な変動をもたらし、乗り心地の悪化につながる。このため、アクセルON状態に移行した場合には、その後はアクセル開度に基づくドライバ要求トルクに対応して出力トルクの増加率が設定される。 After shifting to the accelerator ON state and releasing the output reduction control, normally, the output torque will be restored without the output reduction control. However, when the output reduction control is completed and the output torque is suddenly returned to the value before the reduction correction, the output torque is discontinuously fluctuated, which leads to deterioration of riding comfort. Therefore, when the accelerator is turned on, the increase rate of the output torque is set according to the driver required torque based on the accelerator opening degree.
 ここで、出力低減制御が解除後の加速時の出力トルクを、アクセル開度に基づいた通常の出力トルクの増加率(要求トルク増加率)に基づいて決定しているので、図2における記号(g)に符号g1’で示す出力低減制御が無い場合のトルクの上昇度合いと同じ傾きで、符号g3’で示すようにトルクが上昇していくことになる。このトルクの上昇制御は、その後はアクセル操作に基づいて継続し、加速の終了とともに制御を終了する。このアクセルON時の制御では、トルクゼロ付近の出力トルク調整区間の時間t1’は図1のブレーキON時の時間t1よりも短く、また、出力緩和トルクの増加率の変曲点間の所要時間t2’も図1のブレーキON時の時間t2よりも短く設定され早期の加速に対応している。また、出力トルク調整区間の時間t1’中の増加率の最大値は、図1の第一制御例よりも大きく(増加の傾きが大きく)なっている。 Here, since the output torque at the time of acceleration after the output reduction control is released is determined based on the normal output torque increase rate (required torque increase rate) based on the accelerator opening, the symbol in FIG. 2 ( As shown by the symbol g3', the torque increases with the same slope as the degree of increase in the torque when there is no output reduction control indicated by the symbol g1'in g). After that, the torque increase control continues based on the accelerator operation, and the control ends when the acceleration ends. In this control when the accelerator is ON, the time t1'in the output torque adjustment section near zero torque is shorter than the time t1 when the brake is ON in FIG. 1, and the time required between the inflection points of the increase rate of the output relaxation torque is t2. 'Is also set shorter than the time t2 when the brake is turned on in FIG. 1, and corresponds to early acceleration. Further, the maximum value of the increase rate during the time t1'in the output torque adjustment section is larger than that of the first control example in FIG. 1 (the slope of the increase is large).
 図3は、一実施形態の第3制御例を示すタイムチャートである。図3のタイムチャートに基づいて、本開示の第3制御例を説明する。第3制御例は、出力低減制御が開始される際に、ブレーキOFF状態である場合を想定している。ブレーキOFF状態では、ブレーキペダル30が操作されておらず又は踏み込まれていても遊び程度の踏み込み量であり、実質的にブレーキが操作されていない。このため、ドライバがすぐにアクセル操作をすると予測される運転状態である。主要な部分は図1のブレーキON時の制御と共通であるので説明を省略し、ブレーキのON・OFFに関わる差異点を中心に以下説明する。なお、図3中の符号には「”」を付して、図1中の対応する箇所の符号と区別している。 FIG. 3 is a time chart showing a third control example of one embodiment. A third control example of the present disclosure will be described with reference to the time chart of FIG. The third control example assumes a case where the brake is OFF when the output reduction control is started. In the brake OFF state, even if the brake pedal 30 is not operated or is depressed, the amount of depression is about play, and the brake is not substantially operated. Therefore, it is a driving state in which the driver is expected to immediately operate the accelerator. Since the main part is the same as the control when the brake is turned on in FIG. 1, the description thereof will be omitted, and the differences related to the ON / OFF of the brake will be mainly described below. In addition, "" "is added to the code in FIG. 3 to distinguish it from the code of the corresponding portion in FIG.
 第3制御例において、出力トルク調整区間の時間t1”は図1のブレーキON時の時間t1よりも短く、また、出力緩和トルクの増加率の変曲点間の所要時間t2”も図1のブレーキON時の時間t2よりも短く設定され、続いて行われると予測される加速の要求に備えている。また、出力低減制御では、出力トルク調整区間だけでなく、出力緩和トルクを設定する継続時間についても、ブレーキのOFF状態での出力緩和トルクを設定する継続時間t0”は、ブレーキON状態の出力緩和トルクを設定する継続時間t0よりも短く設定されている。ここで、出力トルク調整区間の時間t1,t1”、出力緩和トルクの増加率の変曲点間の所要時間t2,t2”、出力緩和トルクを設定する継続時間t0,t0”のそれぞれについて、ブレーキON状態であるかブレーキのOFFであるかの2段階に分けて制御を説明したが、この例に限らず、例えば、ブレーキペダル30が踏み込み量(ブレーキ操作部の操作量)が小さいほど、徐々に段階的に、又は、無段階で連続的に短くなるように設定される制御を採用してもよい。 In the third control example, the time t1 "in the output torque adjustment section is shorter than the time t1 when the brake is turned on in FIG. 1, and the time t2" between the inflection points of the increase rate of the output relaxation torque is also shown in FIG. It is set shorter than the time t2 when the brake is turned on, and is prepared for the demand for acceleration that is expected to be performed subsequently. Further, in the output reduction control, not only the output torque adjustment section but also the duration for setting the output relaxation torque, the duration t0 ”for setting the output relaxation torque in the OFF state of the brake is the output relaxation in the brake ON state. It is set shorter than the duration t0 for setting the torque. Here, the time t1, t1 "in the output torque adjustment section, the required time t2, t2" between the variation points of the increase rate of the output relaxation torque, and the output relaxation. The control has been described for each of the durations t0 and t0 "in which the torque is set, in two stages of whether the brake is on or off. However, the control is not limited to this example, and for example, the brake pedal 30 may be used. A control set may be adopted so that the smaller the stepping amount (the operating amount of the brake operating portion) is, the shorter the stepping amount is gradually or steplessly and continuously.
 上記の各制御例では、シフトポジションがRレンジからNレンジを経てDレンジに切り替えられた場合を想定して、その制御の内容を説明したが、シフトポジションがDレンジからNレンジを経てRレンジに切り替えられた場合においても、駆動方向を逆方向にした同様の制御が可能である。また、本実施形態では、車両20として、プラグインハイブリッド電気自動車を採用したが、本実施形態以外にも、電力により駆動力を発生する電動モータ22を備えた各種の電動車両において、本開示を適用できる。 In each of the above control examples, the content of the control is explained assuming that the shift position is switched from the R range to the N range and then to the D range. However, the shift position is from the D range to the N range and then to the R range. Even when it is switched to, the same control with the drive direction reversed is possible. Further, in the present embodiment, the plug-in hybrid electric vehicle is adopted as the vehicle 20, but in addition to the present embodiment, the present disclosure is disclosed in various electric vehicles provided with an electric motor 22 that generates a driving force by electric power. Applicable.
 本出願は、2020年6月12日出願の日本特許出願特願2020-102134に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2020-102134 filed on June 12, 2020, the contents of which are incorporated herein by reference.
1 速度検出部
2 アクセル開度検出部
3 シフトポジション検出部
4 ドライバ要求トルク算出部
5 出力トルク指令部
10 車両制御装置
20 車両
21 電子制御ユニット
22 電動モータ
1 Speed detection unit 2 Accelerator opening detection unit 3 Shift position detection unit 4 Driver required torque calculation unit 5 Output torque command unit 10 Vehicle control device 20 Vehicle 21 Electronic control unit 22 Electric motor

Claims (5)

  1.  走行用の駆動源である電動モータと、
     アクセル開度を検出するアクセル開度検出部と、
     選択されたシフトポジションを検出するシフトポジション検出部と、
     前記アクセル開度に基づいてドライバ要求トルクを算出するドライバ要求トルク算出部と、
     前記電動モータに対する出力トルクを指令する出力トルク指令部と、を備え、
     前記出力トルク指令部は、前記シフトポジションが前進レンジと後退レンジとの間で切り替えられた場合に、前記出力トルクを前記ドライバ要求トルクよりも低い出力緩和トルクに設定する出力低減制御を行い、
     前記出力低減制御は、前記アクセル開度が第1所定値以上となるアクセルON状態で解除される電動車両の制御装置。
    An electric motor, which is a driving source for driving,
    Accelerator opening detection unit that detects the accelerator opening, and
    A shift position detector that detects the selected shift position,
    A driver required torque calculation unit that calculates the driver required torque based on the accelerator opening, and a driver required torque calculation unit.
    It is provided with an output torque command unit that commands the output torque for the electric motor.
    The output torque command unit performs output reduction control to set the output torque to an output relaxation torque lower than the driver required torque when the shift position is switched between the forward range and the backward range.
    The output reduction control is a control device for an electric vehicle that is released in an accelerator ON state in which the accelerator opening degree is equal to or greater than a first predetermined value.
  2.  前記アクセルON状態で前記出力低減制御が解除された後、前記アクセル開度に基づく前記ドライバ要求トルクに対応するように、前記出力トルクの増加率が設定される請求項1に記載の電動車両の制御装置。 The electric vehicle according to claim 1, wherein the increase rate of the output torque is set so as to correspond to the driver required torque based on the accelerator opening degree after the output reduction control is released in the accelerator ON state. Control device.
  3.  ブレーキ操作部の操作量に基づいて制動力を発生させる制動装置をさらに備え、
     前記出力低減制御は、前記ブレーキ操作部の操作量が小さいほど前記出力緩和トルクを設定する継続時間が短くなるよう設定されている請求項1に記載の電動車両の制御装置。
    It is further equipped with a braking device that generates braking force based on the amount of operation of the brake operation unit.
    The control device for an electric vehicle according to claim 1, wherein the output reduction control is set so that the smaller the operation amount of the brake operation unit is, the shorter the duration for setting the output relaxation torque is.
  4.  ブレーキ操作部の操作量に基づいて制動力を発生させる制動装置をさらに備え、
     前記出力低減制御は、前記ブレーキ操作部の操作量が第2所定値以上である制動状態よりも、前記ブレーキ操作部の操作量が前記第2所定値未満である制動緩解状態において前記出力緩和トルクを設定する継続時間が短くなるよう設定されている請求項1に記載の電動車両の制御装置。
    It is further equipped with a braking device that generates braking force based on the amount of operation of the brake operation unit.
    The output reduction control is the output relaxation torque in the braking release state in which the operation amount of the brake operation unit is less than the second predetermined value than in the braking state in which the operation amount of the brake operation unit is equal to or more than the second predetermined value. The control device for an electric vehicle according to claim 1, wherein the duration is set to be short.
  5.  走行用の駆動源である電動モータと、
     アクセル開度を検出するアクセル開度検出部と、
     選択されたシフトポジションを検出するシフトポジション検出部と、
     前記アクセル開度に基づいてドライバ要求トルクを算出するドライバ要求トルク算出部と、
     前記電動モータに対する出力トルクを指令する出力トルク指令部と、
     ブレーキ操作部の操作量に基づいて制動力を発生させる制動装置と、を備え、
     前記出力トルク指令部は、前記シフトポジションが前進レンジと後退レンジとの間で切り替えられた場合に、前記出力トルクを前記ドライバ要求トルクよりも低い出力緩和トルクに設定する出力低減制御を行い、
     前記出力低減制御は、前記ブレーキ操作部の操作量が小さいほど前記出力緩和トルクを設定する継続時間が短くなるよう設定されている電動車両の制御装置。
    An electric motor, which is a driving source for driving,
    Accelerator opening detection unit that detects the accelerator opening, and
    A shift position detector that detects the selected shift position,
    A driver required torque calculation unit that calculates the driver required torque based on the accelerator opening, and a driver required torque calculation unit.
    An output torque command unit that commands the output torque for the electric motor,
    It is equipped with a braking device that generates braking force based on the amount of operation of the brake operation unit.
    The output torque command unit performs output reduction control to set the output torque to an output relaxation torque lower than the driver required torque when the shift position is switched between the forward range and the backward range.
    The output reduction control is a control device for an electric vehicle set so that the smaller the operation amount of the brake operation unit is, the shorter the duration for setting the output relaxation torque is.
PCT/JP2021/020748 2020-06-12 2021-05-31 Electric vehicle control device WO2021251201A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022530479A JP7306585B2 (en) 2020-06-12 2021-05-31 electric vehicle controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020102134 2020-06-12
JP2020-102134 2020-06-12

Publications (1)

Publication Number Publication Date
WO2021251201A1 true WO2021251201A1 (en) 2021-12-16

Family

ID=78845672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020748 WO2021251201A1 (en) 2020-06-12 2021-05-31 Electric vehicle control device

Country Status (2)

Country Link
JP (1) JP7306585B2 (en)
WO (1) WO2021251201A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06247188A (en) * 1993-02-23 1994-09-06 Mitsubishi Electric Corp Vehicle running control device
JP2009077585A (en) * 2007-09-21 2009-04-09 Mitsubishi Motors Corp Motor torque controller
JP2012086743A (en) * 2010-10-21 2012-05-10 Hino Motors Ltd Output restriction control apparatus, hybrid car, output restriction control method, and program
JP2012244751A (en) * 2011-05-19 2012-12-10 Daihatsu Motor Co Ltd Driving control device
JP2019213446A (en) * 2018-05-30 2019-12-12 三菱自動車工業株式会社 Vehicle control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6247188B2 (en) 2013-10-31 2017-12-13 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06247188A (en) * 1993-02-23 1994-09-06 Mitsubishi Electric Corp Vehicle running control device
JP2009077585A (en) * 2007-09-21 2009-04-09 Mitsubishi Motors Corp Motor torque controller
JP2012086743A (en) * 2010-10-21 2012-05-10 Hino Motors Ltd Output restriction control apparatus, hybrid car, output restriction control method, and program
JP2012244751A (en) * 2011-05-19 2012-12-10 Daihatsu Motor Co Ltd Driving control device
JP2019213446A (en) * 2018-05-30 2019-12-12 三菱自動車工業株式会社 Vehicle control device

Also Published As

Publication number Publication date
JPWO2021251201A1 (en) 2021-12-16
JP7306585B2 (en) 2023-07-11

Similar Documents

Publication Publication Date Title
US7291090B2 (en) Motor torque control system for vehicle
US7502679B2 (en) Deceleration control apparatus and method for a vehicle
US8905897B2 (en) Creep torque control method of vehicle
JP4623195B2 (en) Vehicle control apparatus and control method
US8862303B2 (en) Industrial vehicle
WO2000046062A1 (en) Vehicle braked by motor torque and method of controlling the vehicle
US10377242B2 (en) Regenerative brake control device
JP2009132270A (en) Braking control system of hybrid vehicle
WO2011048636A1 (en) Controller of vehicle
JP6729142B2 (en) Driving force control method and driving force control device
MX2012015284A (en) Creeping-cut control apparatus for electrically driven vehicle.
JP4591269B2 (en) Driving force control device for starting overstepping of hybrid vehicle
CN111605407B (en) Control device for electric vehicle
JP2013215063A (en) Creep control device of electric vehicle
JP2003061205A (en) Motor controller for electric vehicle
JP2020100349A (en) Vehicle control device
JP5173330B2 (en) Vehicle travel control device
WO2021251201A1 (en) Electric vehicle control device
JP7364072B2 (en) Vehicle control device
CN114407896B (en) Control device for vehicle
JP3690978B2 (en) Travel drive control device for hybrid vehicle
WO2022030007A1 (en) Method for controlling series hybrid vehicle and series hybrid vehicle
KR100598847B1 (en) Method of excessively controlling regenerating braking torque for hybrid electric vehicle
JP4419289B2 (en) Regenerative energy control device for electric vehicle
US11815175B2 (en) Control device and control method of electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822201

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022530479

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822201

Country of ref document: EP

Kind code of ref document: A1