WO2021251146A1 - Pupil detection device - Google Patents

Pupil detection device Download PDF

Info

Publication number
WO2021251146A1
WO2021251146A1 PCT/JP2021/020053 JP2021020053W WO2021251146A1 WO 2021251146 A1 WO2021251146 A1 WO 2021251146A1 JP 2021020053 W JP2021020053 W JP 2021020053W WO 2021251146 A1 WO2021251146 A1 WO 2021251146A1
Authority
WO
WIPO (PCT)
Prior art keywords
pupil
image
light
light source
opening
Prior art date
Application number
PCT/JP2021/020053
Other languages
French (fr)
Japanese (ja)
Inventor
嘉伸 海老澤
Original Assignee
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人静岡大学 filed Critical 国立大学法人静岡大学
Priority to JP2022530121A priority Critical patent/JPWO2021251146A1/ja
Publication of WO2021251146A1 publication Critical patent/WO2021251146A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/113Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras

Definitions

  • the embodiment relates to a pupil detection device that detects a pupil from a human image.
  • Patent Document 1 a device for detecting the position of a human pupil from an image obtained by using a light source such as a near-infrared light source and a video camera for the purpose of detecting the line of sight has become widespread (Patent Document 1 below).
  • the subject's face is irradiated with light that tends to make the pupil relatively bright, an image (bright pupil image) is acquired, and the light that tends to make the pupil relatively dark is applied to the subject's face. Is irradiated to obtain an image (dark pupil image). Then, the pupil of the subject is detected by calculating the difference image using those images.
  • Japanese Unexamined Patent Publication No. 2005-185431 Japanese Unexamined Patent Publication No. 2008-29702 Japanese Unexamined Patent Publication No. 2007-268026
  • the present embodiment has been made in view of the above problems, and an object of the present invention is to provide a pupil detection device capable of easily improving the pupil detection accuracy regardless of the state of the subject.
  • the pupil detection device in a camera that acquires an eye image by photographing the eyes of a subject and a camera that is provided outside or inside the opening of the camera.
  • the first light source that illuminates the subject's pupil with light of the first center wavelength and the subject's pupil that is provided outside or inside the opening of the camera and is different from the first center wavelength with respect to the camera.
  • a second light source that illuminates with a second center wavelength and a computing device that processes an ocular image are provided.
  • the calculated brightness is combined to obtain a bright pupil image in which the subject's pupil is relatively bright, and the brightness corresponding to the light of the second center wavelength is obtained based on the brightness of the adjacent pixels in the eye image.
  • the position of the subject's pupil image is determined based on the comparison image obtained by calculating and combining the calculated brightness to obtain a dark pupil image in which the subject's pupil appears relatively dark, and comparing the bright pupil image and the dark pupil image. calculate.
  • the "camera opening” here means a part for capturing the light of the image from the outside of the camera into the image sensor inside the camera, and does not necessarily mean the circular lens portion of the lens barrel of the camera.
  • the lens portion of the camera is covered with a cover member having an opening narrower than that of the lens portion, it means the opening.
  • the shape of the opening is not limited to a circle, and may be various shapes such as a polygon such as a rectangle and an ellipse.
  • the light from the pupil of the subject illuminated by the light of the first central wavelength by the first light source passes through the first dividing element of the optical element and has a predetermined angle. After being converted to linearly polarized light, its luminance is detected by adjacent pixels to which two types of polarizing elements of the image sensor are attached. At the same time, the light from the pupil of the subject illuminated by the light of the second central wavelength by the second light source is transmitted through the second dividing element of the optical element and converted into linearly polarized light having an angle different from the predetermined angle. After that, the brightness is detected by the adjacent pixels to which the two types of polarizing elements of the image sensor are attached.
  • the image of the pupil illuminated by the light of the first center wavelength is relatively brighter than the image of the pupil illuminated by the light of the second center wavelength.
  • the arithmetic device calculates the brightness corresponding to the light of the first center wavelength from the brightness of the adjacent pixels detected by the image sensor, and by combining the brightness, a bright pupil image is acquired and detected by the image sensor.
  • the brightness corresponding to the light of the second center wavelength is calculated from the brightness of the adjacent pixels, and the dark pupil image is acquired by combining the brightness, and the position of the pupil image is based on the bright pupil image and the dark pupil image. Is calculated.
  • the detection accuracy of the pupil can be easily improved regardless of the state of the subject.
  • FIG. 3 is a plan view of the lighting device of FIG. 1 as viewed from the outside of the housing.
  • FIG. 3 is a plan view of the optical element of FIG. 1 as viewed from the outside of the housing.
  • FIG. 3 is a plan view of the optical element of FIG. 1 as viewed from the outside of the housing.
  • It is a top view of the image pickup element of FIG.
  • It is a block diagram which shows the hardware composition of the control device of FIG.
  • It is a block diagram which shows the functional structure of the pupil detection apparatus of FIG.
  • the pupil detection device 1 includes a camera 2, a lighting device (light source) 3, and a control device (arithmetic device) 4.
  • the camera 2 has a housing 5, an image sensor (image sensor) 6 such as a CCD or CMOS housed in the housing 5, and an objective lens 7 and an optical element 9 housed in the housing 5.
  • the camera 2 may be a high-speed camera in which the acquisition time interval of one frame of an image is very short, a so-called medium-speed camera, a low-speed camera, or a camera having a frame rate of about 60 Hz or 30 Hz. You may.
  • the housing 5 has a circular opening 8 formed on a surface facing the eyeball A of the observer.
  • the objective lens 7 and the optical element 9 are arranged between the opening 8 inside the housing 5 and the image pickup element 6.
  • the optical axis L0 of the objective lens 7 coincides with the central axis of the opening 8.
  • the image sensor 6 is fixed so that its light receiving surface intersects the optical axis L0 of the objective lens 7 perpendicularly.
  • the optical element 9 is arranged inside the objective lens 7 (on the image sensor 6 side) on the optical axis L0 of the objective lens 7.
  • the image pickup device 6 generates eye image data by capturing an image of the eyeball A of the observation target and outputs it to the control device 4.
  • the control device 4 controls the light emission intensity, lighting timing, and lighting period (light emission period) of the lighting device 3, and the imaging timing and imaging period of the camera 2.
  • control device 4 executes an image generation process, a comparison process, a pupil detection process, and a corneal reflex detection process based on the eye image data output from the image pickup element 6. That is, the control device 4 also functions as a pupil detecting means and a corneal reflex detecting means.
  • the diameter of the opening 8 is smaller than the diameter of the objective lens 7, and is approximately the same as the effective diameter of the objective lens 7.
  • the optical element 9 has a substantially circular shape as a whole, and has a diameter substantially equal to the effective diameter of the objective lens 7.
  • the lighting device 3 emits illumination light toward the face of the observation target person.
  • the illuminating device 3 has a casing 10 and light sources 3A and 3B embedded in the casing 10.
  • the casing 10 is attached to the housing 5 so as to cover the outside of the opening 8 along the edge of the opening 8.
  • the light sources 3A and 3B are both provided on the casing 10 so as to emit illumination light along the optical axis L0 of the objective lens 7, and are configured to be point-symmetrical with respect to the center of the opening 8. ..
  • the light source (first light source) 3A is a light source for illuminating the eye portion (pupil) of the observer with the illumination light (first illumination light) for obtaining a bright pupil image.
  • the bright pupil image is an image in which the pupil of the observer is relatively brighter than the dark pupil image described later.
  • the light source 3A is composed of, for example, a plurality of semiconductor light emitting devices (LEDs) whose center wavelength (first center wavelength) of the output light is in the near infrared region, and the distance from the center of the opening 8 is relatively short. It is arranged at the position of the distance D1.
  • the light emitting elements constituting the light source 3A are continuously arranged in a ring shape at equal intervals along the edge of the opening 8 on the outside of the opening 8 on the casing 10.
  • the light source 3A is preferably provided at a position as close as possible to the edge of the opening 8.
  • the light source (second light source) 3B is a light source for illuminating the eye portion (pupil) of the observer with the illumination light (second illumination light) for obtaining a dark pupil image.
  • the dark pupil image is an image in which the pupil of the observer appears relatively darker than the above-mentioned bright pupil image.
  • the light source 3B is composed of, for example, a plurality of semiconductor light emitting elements (LEDs) in the near infrared region in which the center wavelength (second center wavelength) of the output light is longer than the first center wavelength, and is from the center of the opening 8. It is located at the position of the second distance D2, which is a relatively long distance. This second distance D2 is larger than the first distance D1.
  • the light emitting elements constituting the light source 3B are continuously arranged in a ring shape at equal intervals on the casing 10 so as to be separated from the light source 3A to the outside of the opening 8.
  • the illumination light is emitted from the light source 3A to the eyeball A of the observation target and the pupil illuminated by the illumination light is imaged by the camera 2, a bright pupil image is acquired. Further, when the illumination light is emitted from the light source 3B to the eyeball A of the observation target person and the pupil illuminated by the illumination light is imaged by the camera 2, a dark pupil image is acquired. This is due to the following properties. That is, when the illumination light to the eyeball A is incident from a position relatively distant from the optical axis L0 of the camera 2, the illumination light is incident from the pupil of the eyeball A, reflected inside the eyeball, and passes through the pupil again. However, since it is difficult to reach the camera 2, the pupil is relatively dark.
  • the first center wavelength of the output light of the light source 3A is set to, for example, 850 nm
  • the second center wavelength of the output light of the light source 3B is set to, for example, 940 nm, which is longer than the first center wavelength.
  • the light source 3A which is a light source for acquiring a bright pupil image, has a strong brightness of the light reflected back from the retina, and if it is a light source having a wavelength of output light shorter than around 900 nm, it is a light source of another wavelength. May be used.
  • the light source 3B which is a light source for acquiring dark pupils, is a light source having a wavelength of output light longer than around 900 nm in that the brightness of the light reflected from the retina and returned is weak. You may use it.
  • the light source 3B since the light emitting power of a light source having a long wavelength is weak and the sensitivity of the camera generally decreases as the wavelength becomes longer, it is preferable that the light source 3B includes about twice as many light emitting elements as the light source 3A. When there is no room for arranging a large number of light emitting elements, the light source 3B may have a structure in which the light emitting elements are arranged in a double ring shape.
  • the light emission intensity (light emission power) of the light sources 3A and 3B is such that the illuminance on the face of the observation target person who is the image shooting target when the light source 3A and the light source 3B are made to emit light in the same lighting period is substantially the same. Is preset to. Therefore, for example, the current value or the power value supplied from the control device 4 to the light sources 3A and 3B is preset.
  • FIG. 3 shows the structure of the optical element 9 arranged inside the opening 8.
  • the optical element 9 has a disk-shaped structure, and is arranged so that the optical axis L0 of the objective lens 7 passes near the center thereof and is substantially perpendicular to the optical axis L0.
  • the optical element 9 is composed of semicircular plate-shaped dividing elements 9A and 9B divided into two at the center.
  • the dividing element 9A is a bandpass filter that allows the first illumination light of the first center wavelength to pass through, and a first polarizing element that transmits linearly polarized light in the polarization direction of 0 degrees with respect to the vertical direction of the opening 8. Is an optical element that is a combination of two layers.
  • the dividing element 9B has two bandpass filters that allow the second illumination light of the second center wavelength to pass through and a second polarizing element that transmits linearly polarized light in the polarization direction of 90 degrees with respect to the vertical direction.
  • Optical elements combined in layers. That is, the polarization direction of the linearly polarized light transmitted by the first polarizing element and the polarization direction of the linearly polarized light transmitted by the second polarizing element are substantially orthogonal to each other.
  • the optical element 9 having such a structure is more specifically arranged so that the dividing elements 9A and 9B are arranged on both sides of the central axis (line) horizontally penetrating the center of the opening surface of the opening 8.
  • the light sources 3A and 3B of the lighting device 3 are similarly configured.
  • the shape of the optical element 9 in which the dividing elements 9A and 9B are combined is not limited to a disk shape, and any shape corresponding to the shape of the edge of the opening 8 may be another shape such as a rectangular shape. It is also good.
  • the optical element 9 may have a structure as shown in FIG.
  • the optical element 9 shown in FIG. 4 is composed of dividing elements 9A and 9B having a continuous shape corresponding to the shape of the edge of the opening 8, and these dividing elements 9A and 9B are along the edge of the opening 8. It has a shape divided into two by a boundary line, and the dividing element 9B is arranged inside the dividing element 9A. That is, the dividing element 9B has a disk-shaped shape (circular shape) whose center is located near the optical axis L0, and the dividing element 9A has a ring-shaped shape located outside the dividing element 9B.
  • the optical element 9 having such a structure is configured such that the dividing elements 9A and 9B are point-symmetrical with respect to the center of the opening 8.
  • the light sources 3A and 3B of the lighting device 3 are similarly configured.
  • the shape of the optical element 9 in which the dividing elements 9A and 9B are combined is not limited to a disk shape, and any shape corresponding to the shape of the edge of the opening 8 may be another shape such as a rectangular shape. It is also good.
  • FIG. 5 shows a structure seen from the opening 8 side of the image pickup device 6 arranged inside the opening 8.
  • the image pickup element 6 has a light receiving surface 20 arranged so as to be substantially perpendicular to the optical axis L0, and a plurality of light receiving elements (not shown) formed inside and arranged in a two-dimensional array on the light receiving surface 20.
  • Pixels 21 and four types of polarizing elements 22A, 22B, 22C, 22D arranged so as to cover the pixels 21 on the surface of each of the plurality of pixels 21. That is, different types of polarizing elements 22A, 22B, 22C, and 22D are attached to the surfaces of each of the four pixels 21 (hereinafter, also referred to as a four-pixel group) adjacent to each other.
  • the splitter 22A is an optical element that transmits linearly polarized light in the polarization direction of 0 degrees with respect to the vertical direction of the opening 8.
  • the splitter 22B is an optical element that transmits linearly polarized light in the polarization direction rotated by 45 degrees counterclockwise with respect to the vertical direction of the opening 8.
  • the splitter 22C is an optical element that transmits linearly polarized light in the polarization direction rotated 90 degrees counterclockwise with respect to the vertical direction of the opening 8.
  • the splitter 22D is an optical element that transmits linearly polarized light in the polarization direction rotated by 135 degrees counterclockwise with respect to the vertical direction of the opening 8.
  • the image pickup device 6 has a structure in which such a structure is repeated two-dimensionally (in the left-right direction and the up-down direction in FIG. 5).
  • the range of the four pixel group on the light receiving surface 20 of the image sensor 6 is sufficiently small compared to the size of the objective lens 7. Therefore, in the above optical element 9 and the image pickup element 6, the first illumination light transmitted through the dividing element 9A of the optical element 9 is incident on the four pixels constituting the four pixel group with the same intensity, and the optical element 9 is divided.
  • the second illumination light transmitted through the element 9B is configured to incident the four pixels constituting the four pixel group with the same intensity.
  • the control device 4 may be a computer that controls the image pickup element 6 and the light sources 3A and 3B, processes the eye image data of the observer, and detects the pupil and the corneal reflex.
  • the control device 4 may be built by a stationary or portable personal computer (PC), a workstation, or another type of computer. Alternatively, the control device 4 may be constructed by combining a plurality of arbitrary types of computers. When using multiple computers, these computers are connected via a communication network such as the Internet or an intranet.
  • the control device 4 includes a CPU (processor) 101, a main storage unit 102, an auxiliary storage unit 103, a communication control unit 104, an input device 105, and an output device 106.
  • the CPU 101 executes an operating system, an application program, and the like.
  • the main storage unit 102 is composed of a ROM and a RAM.
  • the auxiliary storage unit 103 is composed of a hard disk, a flash memory, or the like.
  • the communication control unit 104 is composed of a network card or a wireless communication module.
  • the input device 105 includes a keyboard, a mouse, and the like.
  • the output device 106 includes a display, a printer, and the like.
  • Each functional element of the control device 4 loads predetermined software on the CPU 101 or the main storage unit 102, and operates the communication control unit 104, the input device 105, the output device 106, and the like under the control of the CPU 101. It is realized by reading and writing data in the main storage unit 102 or the auxiliary storage unit 103. The data and database required for processing are stored in the main storage unit 102 or the auxiliary storage unit 103.
  • the control device 4 has an image pickup element drive unit 11, a lighting control unit 12, and a detection unit 13 as functional components.
  • the image pickup element drive unit 11 is a functional element that controls the imaging timing of the image pickup element 6. Specifically, the image sensor 6 is repeatedly imaged at a predetermined frame rate and a predetermined exposure time, and control is performed so as to continuously acquire eye image data representing an image of the eyeball A of the observation target.
  • the lighting control unit 12 is a functional element that controls the lighting timing so that the light sources 3A and 3B are turned on at the same time according to the image pickup of the image sensor 6, and also controls the amount of light emitted from the light sources 3A and 3B.
  • the lighting control unit 12 lights the light sources 3A and 3B in the same period in order to improve the accuracy of the detection position of the pupil or the corneal reflex when the head of the observation target person is moving.
  • the detection unit 13 is a functional element that detects the pupil and the corneal reflex in the eye image data by using the eye image data output from the image pickup element 6.
  • the control device 4 may display the result as an image, a figure, or text on a monitor, store it in a storage device such as a memory or a database, or transmit it to another computer system via a communication network. You may.
  • the detection unit 13 has an image acquisition unit 14, an image calculation unit 16, a difference image generation unit 17, a pupil detection unit 18, and a corneal reflex detection unit 19 as functional components.
  • the image acquisition unit 14 acquires eye image data continuously captured (acquired) from the image sensor 6 at a predetermined frame rate.
  • the image calculation unit 16 calculates the luminance value (light intensity) of each pixel of the bright pupil image based on the eye image data of each imaging timing, and acquires the bright pupil image by combining the luminance values. Further, the image calculation unit 16 calculates the luminance value (light intensity) of each pixel of the dark pupil image based on the eye image data of each imaging timing, and acquires the dark pupil image by combining the luminance values. ..
  • the difference image generation unit 17 generates a difference image as a kind of comparison image comparing the bright pupil image and the dark pupil image. Specifically, the difference image generation unit 17 generates a difference image comparing both images by calculating the difference in luminance between the corresponding pixels of the bright pupil image and the dark pupil image.
  • the pupil detection unit 18 is a functional element that calculates the position of the pupil image using the difference image.
  • the corneal reflex detection unit 19 is a functional element that calculates the position of the corneal reflex image using the bright pupil image or the dark pupil image.
  • An example of the processing performed by the pupil detection unit 18 and the corneal reflex detection unit 19 is as follows.
  • the pupil detection unit 18 binarizes the difference image with reference to the pupil threshold, and performs isolated point removal, noise removal by morphology processing, and labeling. Then, the pupil detection unit 18 detects a pixel group having the most pupil-like shape as a pupil. At this time, even when the pupil is hidden by the eyelid or eyelid, the boundary between the eyelid or eyelid and the pupil is excluded as a false pupil contour, and only the true pupil contour is elliptical fitted to obtain a difference image of the true pupil contour. The upper position is detected, and the center position of the pupil image is calculated from the ellipse equation obtained by ellipse fitting.
  • the corneal reflex detection unit 19 binarizes the vicinity of the pupil of the bright pupil image with a corneal reflex threshold higher than the pupil brightness, and obtains the center of the corneal reflex image as the center of gravity in consideration of the brightness.
  • the pupil brightness is given not by the area of the ellipse obtained as a result of ellipse fitting, but by the brightness average of the pixels constituting the pupil obtained by binarization.
  • the corneal reflex detection unit 19 may calculate the position of the corneal reflex image for the dark pupil image.
  • the principle of acquiring a bright pupil image and a dark pupil image by the image calculation unit 16 is as follows.
  • the light transmitted through the first dividing element 9A and the second dividing element 9B at the time of acquiring the ocular image data is incident on a group of four pixels composed of four pixels 21 adjacent to each other with the same light intensity.
  • the light intensities of the incident light are I ( ⁇ a1 ) and I ( ⁇ a2 )
  • they are detected by the pixel 21 to which the splitters 22A, 22B, 22C, and 22D are attached in the four pixel group, respectively.
  • angles of polarization directions of the light transmitted through the splitters 22A, 22B, 22C, and 22D are represented by ⁇ si , respectively, and the polarization directions of the light transmitted through the first dividing element 9A and the second dividing element 9B, respectively.
  • the angles of are expressed as ⁇ a1 and ⁇ a2, respectively.
  • the above equation can be expressed as a determinant to the following equation; Is transformed into. From such a relationship, the light intensities I ( ⁇ a1 ) and I ( ⁇ a2 ) of the light of the first and second center wavelengths transmitted through the first dividing element 9A and the second dividing element 9B, respectively, are determined. Using the pseudo-inverse matrix [ Mij ] + with 2 rows and 4 columns, the following equation; Calculated by.
  • the pseudo-image calculation unit 16 the luminance value of each 4 pixel groups from the eye image data read the [O i], the luminance value [O i], which is set in advance Using the inverse matrix [ Mij ] + , the luminance value I ( ⁇ a1 ) corresponding to the light of the first center wavelength incident on the 4-pixel group and the light of the second center wavelength incident on the 4-pixel group are obtained. The corresponding luminance value I ( ⁇ a2 ) is calculated.
  • the image calculation unit 16 acquires a bright pupil image by combining the luminance values I ( ⁇ a1 ) calculated for each of the four pixel groups on the light receiving surface 20 to generate two-dimensional image data, and each 4 A dark pupil image is acquired by generating two-dimensional image data by combining the luminance values I ( ⁇ a2) calculated for the pixel group.
  • the light from the pupil of the observer illuminated by the light of the first central wavelength by the light source 3A passes through the first dividing element 9A of the optical element 9.
  • the luminance value is detected by the adjacent four pixels to which the four types of polarizing elements 22A, 22B, 22C, and 22D of the image pickup element 6 are attached.
  • the light from the pupil of the observer illuminated by the light of the second central wavelength by the light source 3B passes through the second dividing element 9B of the optical element 9 and becomes linearly polarized light at an angle different from the predetermined angle.
  • the luminance value is detected by the adjacent four pixels to which the four types of polarizing elements 22A, 22B, 22C, and 22D of the image sensor 6 are attached.
  • the image of the pupil illuminated by the light of the first center wavelength is relatively brighter than the image of the pupil illuminated by the light of the second center wavelength.
  • the control device 4 calculates the luminance value corresponding to the light of the first center wavelength from the luminance values of the adjacent four pixels detected by the image pickup element 6, and the bright pupil image is acquired by combining the luminance values.
  • the luminance value corresponding to the light of the second center wavelength is calculated from the luminance values of the adjacent pixels detected by the image pickup element 6, and the dark pupil image is acquired by combining the luminance values with the bright pupil image.
  • the position of the pupil image is calculated based on the dark pupil image.
  • the polarization direction of the light transmitted by the first dividing element 9A and the polarization direction of the transmitted light of the second dividing element 9B are substantially orthogonal to each other.
  • the polarization directions between the light having the first center wavelength and the light having the second center wavelength incident on each pixel of the image pickup element 6 are clearly separated, the brightness of the bright pupil image and the dark pupil image The accuracy of the calculation is improved, and the detection accuracy of the position of the resulting pupil image is also improved.
  • the transducers 22A, 22B, 22C, and 22D that transmit linearly polarized light having four different angles are attached to each of the four adjacent pixels, and the control device 4 is an eye.
  • the luminance values corresponding to the respective lights of the first and second central wavelengths are calculated.
  • the images of the bright pupil image and the image of the dark pupil can be made uniform, and the accuracy of the position of the detected pupil image can be stabilized.
  • the distance from the center of the opening 8 of the camera 2 of the light source 3A is smaller than the distance from the center of the opening 8 of the light source 3B.
  • the optical element 9 is configured such that the first dividing element 9A and the second dividing element 9B are point-symmetrical or line-symmetrical with respect to the opening 8, and the light source 3A and the light source 3B have the opening 8. It is configured to be point-symmetrical or line-symmetrical at the center. By doing so, it is possible to prevent uneven brightness of the pupil image and its peripheral portion in the bright pupil image and the dark pupil image, and it is possible to make only the pupil image stand out in the comparison image, and the pupil image position using the comparison image can be prevented. It is possible to improve the detection accuracy of.
  • the optical element 9 has a structure as shown in FIG. 3, it is possible to prevent the brightness of the pupil image and its peripheral portion from being uneven in the vertical direction in the bright pupil image and the dark pupil image, and the comparative image can be displayed. It is possible to improve the detection accuracy of the used pupil image position. Further, when the optical element 9 has a structure as shown in FIG. 4, it is possible to prevent unevenness in the brightness of the pupil image and its peripheral portion in the two-dimensional direction in the bright pupil image and the dark pupil image, and the comparative image. It is possible to further improve the detection accuracy of the pupil image position using.
  • control device 4 calculates the position of the corneal reflex image of the observer generated by lighting the light source 3A or the light source 3B based on the bright pupil image or the dark pupil image. According to such a configuration, the position of the corneal reflex image can be stably detected.
  • FIG. 8 is a graph showing the relationship between the pupil luminance L D at the pupil luminance L B and the dark pupil image of the pupil area A and the bright pupil image, FIG.
  • the brightness other than the pupil portion is close to zero, it becomes easy to detect the pupil from the difference image.
  • the pupil when the pupil is small, the light incident on the pupil also decreases according to the pupil area, so that the brightness of the pupil is lowered.
  • the pupil when the pupil is small (for example, about 2.5 mm in diameter), it is necessary to irradiate the face with stronger light.
  • it is necessary to increase the amount of light from the light source, it is necessary to increase the current supplied to the light source or increase the number of light sources, which increases power consumption or cost.
  • FIG. 10 is a graph showing the relationship between the distance from the center of the opening of the camera to the light source (the angle difference of the straight line connecting the eye of the observer with the light source and the center of the opening) and the pupil brightness.
  • B is the relationship when the pupil is large
  • the graph G S indicates the relationship when the pupil is small.
  • the pupil brightness increases sharply as the distance between the opening and the light source decreases from a large value.
  • the light source 3A should be arranged as close to the opening as possible, and the light source 3B should be arranged away from the opening. Is preferable.
  • the pupil when the pupil is large, the difference in luminance between the bright pupil image and the dark pupil image tends to be large, so that the problem is unlikely to occur. The problem is most likely when the pupil becomes extremely small. Even in such a case, it is desirable to increase the pupil brightness of the bright pupil image in order to make it easier to detect the pupil from the difference image more reliably. This is because, if the pupil is small, as shown in the graph G S, if slightly release the light source 3B from opening fully pupil luminance is low (a distance D A), almost pupil luminance away than necessary It doesn't go down. In contrast, if brought close to the light source 3A in the opening (e.g., from a distance D B to the distance D C), the pupil luminance of the bright pupil image becomes abruptly high, the accuracy of the pupil detection from the difference image is high.
  • the configurations of the lighting device 3 and the optical element 9 as shown in FIGS. 2 and 3 are adopted.
  • the light source 3A can be arranged as close to the opening 8 as possible, and the light component of the first center wavelength in the pupil image from the observer is also the light of the second center wavelength.
  • the components can also be guided to the image pickup element 6 in the opening 8 in a well-balanced manner.
  • the optical component of the first center wavelength in the pupil image from the observer is observed.
  • the optical component of the second center wavelength can be guided to the image sensor 6 in the opening 8 in a well-balanced manner in the two-dimensional direction.
  • the light source 3A can be arranged close to the opening 8. Since the dividing element 9A has a ring shape, some light sources 3A will be far away when an arbitrary point of the dividing element 9A is used as a reference, but even one light source 3A close to that one point is available.
  • the light source 3A as a whole has a sufficient effect of brightening the pupil.
  • the light source 3B can be sufficiently separated from the dividing element 9B in the opening 8, and the pupil luminance of the dark pupil image can be sufficiently lowered.
  • the present invention is not limited to the above-described embodiment.
  • the configuration of the above embodiment can be changed in various ways.
  • the difference image generation unit 17 generates a difference image as a comparison image comparing the bright pupil image and the dark pupil image, but as described in Japanese Patent Application Laid-Open No. 2008-246004, A divided image may be used as the comparison image. Further, as a comparison image, an image comparing the bright pupil image and the dark pupil image may be generated by another calculation.
  • the control device 4 targets the position of the pupil image detected by the pupil detection unit 18 based on the difference image, and the dark pupil image and the bright pupil image by the corneal reflex detection unit 19.
  • the gaze direction and gaze point of the observer may be detected based on the position of the detected corneal reflex image.
  • the method developed by the present inventors see International Publication WO2012 / 020760
  • the position of the pupil image detected by the control device 4 of the present embodiment the line-of-sight direction and the gazing point of the observer can be stably detected.
  • each light source and the configuration of the optical element 9 in the lighting device 3 according to the above-described embodiment may be variously changed.
  • FIG. 11 shows a modified example of the arrangement of the light sources 3A and 3B and the dividing elements 9A and 9B.
  • the light sources 3A and 3B and the dividing elements 9A and 9B are more specifically arranged on both sides of a central axis (line) that vertically runs through the center of the opening surface of the opening 8.
  • the dividing element 9A has a bow-shaped shape, which is two divided shapes corresponding to the shape of the edge of the opening 8, provided on both sides of the central axis that vertically penetrates the center of the opening 8.
  • the dividing element 9A may have two or more (for example, four) divided shapes.
  • the dividing element 9B is sandwiched between the arcuate shapes and arranged at the center of the opening 8.
  • the light source 3A is separately arranged on the left and right outside the dividing element 9A in the vicinity of the opening 8, and the light source 3B is separately arranged on the left and right outside the light source 3A. Since this configuration also has a symmetrical configuration to the left and right, the luminance difference is kept small in the face region in the bright pupil image and the dark pupil image, and it is an effective configuration when it is desired to reduce the size of the lighting device 3 in the vertical direction. ..
  • FIG. 12 shows another modification of the arrangement of the light sources 3A and 3B and the dividing elements 9A and 9B.
  • the configurations of the dividing elements 9A and 9B are the same as those of FIG. 3, the light source 3A is arranged only in the vicinity of the opening 8 on the dividing element 9A side (left side), and the light source 3B is also separated on the left side of the opening 8. Is placed. In such a configuration, the distance between the opening 8 on the dividing element 9A side and the light source 3A is short, and there is no light source 3A far from the opening 8 on the dividing element 9A side, so that the pupil brightness in the bright pupil image is high. Be kept.
  • the distance of the light source 3B from the opening 8 on the side of the dividing element 9B can be maintained to some extent, and the distance from the light source 3A and the distance from the center of the opening 8 can be reduced. As a result, the size of the entire optical system can be reduced. Even if a luminance gradient occurs in the face or pupil in the bright pupil image and the dark pupil image, the tendency of the luminance gradient does not differ significantly between the two images because the positions of the light source 3A and the light source 3B are close to each other. In the image, the part other than the pupil is inconspicuous, and the detection accuracy of the pupil can be maintained.
  • the configuration is not limited to the point symmetry and the line symmetry, and the point symmetry or the line symmetry arrangement with respect to the center or the central axis of the opening 8 and the arrangement.
  • the arrangement and shape may be deviated from the shape.
  • the arrangement and shape may be adjusted from the point-symmetrical or line-symmetrical arrangement and shape.
  • the optical element 9 may be composed of a plurality of divided portions divided into a plurality of parts having an arbitrary shape.
  • it may be composed of a plurality of rectangular divisions.
  • the dividing elements 9A and 9B are appropriately (for example, alternately) assigned to the plurality of dividing portions, respectively.
  • the optical element 9 does not have to be arranged inside the objective lens 7 (on the side of the image pickup element 6), and may be arranged on the outside of the objective lens 7 (on the side of the observer).
  • the optical element 9 may be arranged between any two of the plurality of optical lenses. It may be arranged in front of and behind the entire camera lens (on the observation target side or the image pickup element 6 side).
  • the light sources 3A and 3B may be arranged inside the opening 8 of the camera 2. Further, the light source 3A may be arranged inside the opening 8 and the light source 3B may be arranged outside the opening 8.
  • the image pickup device 6 has a structure in which four types of polarizing elements are provided for each four pixel group, but a structure in which at least two or more types of polarizing elements are provided may be sufficient. ..
  • two types of polarizing elements may be provided for each of two adjacent pixels 21, or three types of polarizing elements may be provided for each of three adjacent pixels 21.
  • the control device 4 determines the luminance value of the light component of the first center wavelength and the second center wavelength based on the pixel values of two adjacent pixels or three adjacent pixels. It is possible to calculate the brightness value of the light component of.
  • the control device 4 calculates the brightness value of the light component of the first center wavelength and the brightness value of the light component of the second center wavelength based on the pixel values of the four adjacent pixels. However, based on the pixel values of at least two pixels (two pixels or three pixels) among the four adjacent pixels, the luminance value of the light component of the first center wavelength and the second center It is also possible to calculate the luminance value of the optical component of the wavelength.
  • the polarization direction of the light transmitted by the first polarizing element and the polarization direction of the light transmitted by the second polarizing element may be substantially orthogonal to each other.
  • the luminance calculation of the bright pupil image and the dark pupil image is performed.
  • the accuracy of the pupil image is improved, and the detection accuracy of the position of the resulting pupil image is also improved.
  • a transducer that transmits light of linearly polarized light having four different angles is attached to each of the four adjacent pixels, and the arithmetic unit is used for the four adjacent pixels in the ocular image.
  • the brightness corresponding to the light of the first and second center wavelengths may be calculated based on the brightness of at least two of the pixels.
  • the images of the bright pupil image and the image of the dark pupil can be made uniform, and the accuracy of the position of the detected pupil image can be stabilized.
  • the first light source is arranged at a position where the distance from the center of the opening of the camera is the first distance
  • the second light source is the second light source whose distance from the center of the opening is larger than the first distance. It may be located at a distance.
  • the luminance difference between the image of the pupil illuminated by the light of the first center wavelength and the image of the pupil illuminated by the light of the second center wavelength can be further increased.
  • the accuracy of detecting the position of the pupil image using the comparative image can be further improved.
  • the second dividing element may be arranged inside the first dividing element.
  • the second dividing element may have a circular shape arranged at the center of the opening, and the first dividing element may have a ring shape arranged outside the second dividing element. ..
  • only the pupil image can be made more conspicuous in the comparison image, and the detection accuracy of the pupil image position using the comparison image can be further improved.
  • first dividing element and the second dividing element are arranged so as to be arranged on both sides of the line on the optical element, and the first light source and the second light source are arranged so as to sandwich the opening from both sides. It may be configured to be. In this case, uneven brightness of the pupil image and its peripheral portion can be prevented in the bright pupil image and the dark pupil image, and only the pupil image can be conspicuous in the comparison image, and the pupil image using the comparison image can be prevented. The position detection accuracy can be improved.
  • the first dividing element has two or more divided shapes having a predetermined shape provided on both sides of the line on the optical element, and the second divided element is sandwiched between the two or more divided shapes. It may be arranged. Also in this case, it is possible to prevent uneven brightness of the pupil image and its peripheral portion in the bright pupil image and the dark pupil image, and it is possible to make the difference in brightness in the pupil image stand out. As a result, only the pupil image can be made more conspicuous in the comparison image, and the detection accuracy of the pupil image position using the comparison image can be further improved.
  • the optical element may have a plurality of divided portions having a predetermined shape and the first divided element and the second divided element may be assigned to the plurality of divided portions. Also in this case, it is possible to prevent uneven brightness of the pupil image and its peripheral portion in the bright pupil image and the dark pupil image, and it is possible to make the difference in brightness in the pupil image stand out. As a result, only the pupil image can be made more conspicuous in the comparison image, and the detection accuracy of the pupil image position using the comparison image can be further improved.
  • the arithmetic unit may calculate the position of the corneal reflex image of the subject generated by the lighting of the first light source or the second light source based on the bright pupil image or the dark pupil image. According to such a configuration, the position of the corneal reflex image can be stably detected.
  • the arithmetic unit detects the line-of-sight direction of the subject based on the position of the pupil image calculated based on the comparative image and the position of the corneal reflex image calculated based on the bright pupil image or the dark pupil image. , May be. By doing so, the line-of-sight direction of the subject can be stably detected.
  • One aspect of the present disclosure is to use a pupil detection device that detects a pupil from a human image, and to easily improve the detection accuracy of the pupil regardless of the state of the subject.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Human Computer Interaction (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

Provided is a pupil detection device capable of easily increasing the pupil detection accuracy irrespective of the state of a subject. A pupil detection device 1 is provided with: a light source 3A having a first central wavelength and provided at an opening 8 of a camera 2; a light source 3B having a second central wavelength and provided outside the light source 3A; and a control device 4. The camera 2 has: an optical element 9 provided with a division element 9A that allows light having the first central wavelength to pass therethrough and and allows transmission of linearly polarized light having a predetermined angle, and a division element 9B that allows light having the second central wavelength to pass therethrough and allows transmission of linearly polarized light having an angle different from the predetermined angle; and an imaging element 6 in which polarizers that allow transmission of linearly polarized light beams having four different angles are attached to respective pixels adjacent to each other. The control device 4 calculates a luminance corresponding to light having the first central wavelength on the basis of the luminances of the adjacent pixels to obtain a bright pupil image, calculates a luminance corresponding to light having the second central wavelength on the basis of the luminances of the adjacent pixels to obtain a dark pupil image, and calculates the position of a pupil image of a subject on the basis of a differential image obtained by comparing the bright pupil image with the dark pupil image.

Description

瞳孔検出装置Pupil detector
 実施形態は、人の画像から瞳孔を検出する瞳孔検出装置に関する。 The embodiment relates to a pupil detection device that detects a pupil from a human image.
 近年、視線検出等を目的として、近赤外光源等の光源とビデオカメラを使用して得られた画像から人の瞳孔の位置を検出する装置が普及しつつある(下記特許文献1)。この装置では、瞳孔を相対的に明るくする傾向を有する光を対象者の顔に照射して画像(明瞳孔画像)を取得し、瞳孔を相対的に暗くする傾向を有する光を対象者の顔に照射して画像(暗瞳孔画像)を取得する。その後、それらの画像を利用して差分画像を算出することにより、対象者の瞳孔を検出する。 In recent years, a device for detecting the position of a human pupil from an image obtained by using a light source such as a near-infrared light source and a video camera for the purpose of detecting the line of sight has become widespread (Patent Document 1 below). In this device, the subject's face is irradiated with light that tends to make the pupil relatively bright, an image (bright pupil image) is acquired, and the light that tends to make the pupil relatively dark is applied to the subject's face. Is irradiated to obtain an image (dark pupil image). Then, the pupil of the subject is detected by calculating the difference image using those images.
 このような差分画像に基づく瞳孔検出の方法においては、一般には、明瞳孔画像と暗瞳孔画像を取得するタイミングには時間差があるため、両画像の取得の間に対象者の頭部が移動すると、瞳孔も移動するため、明瞳孔画像中の瞳孔像と暗瞳孔画像中の瞳孔像に位置ずれが生じ、瞳孔の検出精度に限界が生じる。このような問題を改善する方法として、明瞳孔画像及び暗瞳孔画像から角膜反射像を検出して、角膜反射像の位置を基準に位置補正してから差分画像を生成する方法が用いられている(下記特許文献2参照。)。また、鼻孔の位置を利用した差分画像の生成方法も用いられている(下記特許文献3参照。)。 In such a method of pupil detection based on a difference image, in general, there is a time difference in the timing of acquiring a bright pupil image and a dark pupil image, so that the head of the subject moves between the acquisition of both images. Since the pupil also moves, the pupil image in the bright pupil image and the pupil image in the dark pupil image are displaced from each other, and the detection accuracy of the pupil is limited. As a method for improving such a problem, a method is used in which a corneal reflex image is detected from a bright pupil image and a dark pupil image, the position is corrected based on the position of the corneal reflex image, and then a difference image is generated. (See Patent Document 2 below.). Further, a method of generating a difference image using the position of the nostril is also used (see Patent Document 3 below).
特開2005-185431号公報Japanese Unexamined Patent Publication No. 2005-185431 特開2008-29702号公報Japanese Unexamined Patent Publication No. 2008-29702 特開2007-268026号公報Japanese Unexamined Patent Publication No. 2007-268026
 上述した従来の方法では、対象者において高速な眼球回転が生じた際には、画像に写る瞳孔の形状自体が変化するため、明瞳孔画像と暗瞳孔画像とを位置合わせしても瞳孔の像が両画像間で一致しないため、差分画像を用いた場合の瞳孔の検出精度が十分ではない。高速度カメラを利用して明瞳孔画像と暗瞳孔画像の時間差をできるだけ小さくすることも考えられるが、高速度カメラを導入することはコスト面において困難な場合がある。 In the above-mentioned conventional method, when a high-speed eyeball rotation occurs in the subject, the shape of the pupil reflected in the image itself changes. Therefore, even if the bright pupil image and the dark pupil image are aligned, the image of the pupil is imaged. Does not match between the two images, so the pupil detection accuracy when using the difference image is not sufficient. It is conceivable to use a high-speed camera to reduce the time difference between the bright pupil image and the dark pupil image as much as possible, but it may be difficult to introduce a high-speed camera in terms of cost.
 本実施形態は、上記課題に鑑みて為されたものであり、対象者の状態に関わらず瞳孔の検出精度を容易に高めることが可能な瞳孔検出装置を提供することを目的とする。 The present embodiment has been made in view of the above problems, and an object of the present invention is to provide a pupil detection device capable of easily improving the pupil detection accuracy regardless of the state of the subject.
 上記課題を解決するため、本開示の一形態にかかる瞳孔検出装置は、対象者の眼を撮像することにより眼画像を取得するカメラと、カメラの開口部の外側あるいは内側に設けられてカメラに対して対象者の瞳孔を第1の中心波長の光で照らす第1の光源と、カメラの開口部の外側あるいは内側に設けられてカメラに対して対象者の瞳孔を第1の中心波長と異なる第2の中心波長で照らす第2の光源と、眼画像を処理する演算装置とを備え、カメラは、互いに異なる少なくとも2種類の角度の直線偏光の光を透過する偏光子が、隣り合う画素毎に取り付けられたイメージセンサと、第1の中心波長の光を通過させるバンドパスフィルタと所定角度の直線偏光を透過する第1の偏光子とが組み合わされた第1の分割素子と、第2の中心波長の光を通過させるバンドパスフィルタと所定角度と異なる角度の直線偏光を透過する第2の偏光子とが組み合わされた第2の分割素子とが、開口部とイメージセンサとの間において開口部に沿って分割して設けられた光学素子と、を有し、演算装置は、眼画像のうちの隣り合う画素の輝度を基に、第1の中心波長の光に対応する輝度を計算し、計算した輝度を組み合わせて対象者の瞳孔が比較的明るく写った明瞳孔画像を取得し、眼画像のうちの隣り合う画素の輝度を基に、第2の中心波長の光に対応する輝度を計算し、計算した輝度を組み合わせて対象者の瞳孔が比較的暗く写った暗瞳孔画像を取得し、明瞳孔画像と暗瞳孔画像とを比較した比較画像を基に対象者の瞳孔像の位置を算出する。 In order to solve the above problems, the pupil detection device according to one embodiment of the present disclosure is provided in a camera that acquires an eye image by photographing the eyes of a subject and a camera that is provided outside or inside the opening of the camera. On the other hand, the first light source that illuminates the subject's pupil with light of the first center wavelength and the subject's pupil that is provided outside or inside the opening of the camera and is different from the first center wavelength with respect to the camera. A second light source that illuminates with a second center wavelength and a computing device that processes an ocular image are provided. A first dividing element in which an image sensor mounted on the camera, a bandpass filter that passes light of a first center wavelength, and a first polarizing element that transmits linearly polarized light at a predetermined angle are combined, and a second A second dividing element, which is a combination of a bandpass filter that allows light of a central wavelength to pass through and a second polarizing element that transmits linearly polarized light at a predetermined angle, opens an opening between the opening and the image sensor. It has an optical element divided along the section, and the arithmetic unit calculates the brightness corresponding to the light of the first center wavelength based on the brightness of adjacent pixels in the ocular image. , The calculated brightness is combined to obtain a bright pupil image in which the subject's pupil is relatively bright, and the brightness corresponding to the light of the second center wavelength is obtained based on the brightness of the adjacent pixels in the eye image. The position of the subject's pupil image is determined based on the comparison image obtained by calculating and combining the calculated brightness to obtain a dark pupil image in which the subject's pupil appears relatively dark, and comparing the bright pupil image and the dark pupil image. calculate.
 なお、ここでいう「カメラの開口部」とは、カメラの外側からの像の光をカメラの内部のイメージセンサに取り込むための部位のことを意味し、必ずしもカメラの鏡筒の円形のレンズ部分には限定されず、カメラのレンズ部分をレンズ部分より狭い開口を有するカバー部材で覆う場合はその開口を意味する。また、開口部の形状は、円形には限定されず、長方形等の多角形、楕円形、等の様々な形状であってよい。 The "camera opening" here means a part for capturing the light of the image from the outside of the camera into the image sensor inside the camera, and does not necessarily mean the circular lens portion of the lens barrel of the camera. When the lens portion of the camera is covered with a cover member having an opening narrower than that of the lens portion, it means the opening. Further, the shape of the opening is not limited to a circle, and may be various shapes such as a polygon such as a rectangle and an ellipse.
 上記形態の瞳孔検出装置によれば、第1の光源によって第1の中心波長の光で照らされた対象者の瞳孔からの光が、光学素子の第1の分割素子を透過して所定角度の直線偏光に変換された後、イメージセンサの2種類の偏光子が取り付けられた隣り合う画素によって、その輝度が検出される。同時に、第2の光源によって第2の中心波長の光で照らされた対象者の瞳孔からの光が、光学素子の第2の分割素子を透過して所定角度と異なる角度の直線偏光に変換された後、イメージセンサの2種類の偏光子が取り付けられた隣り合う画素によって、その輝度が検出される。ここで、第1の中心波長の光で照らされた瞳孔の像は、第2の中心波長の光で照らされた瞳孔の像よりも比較的明るい。そして、演算装置によって、イメージセンサによって検出された隣り合う画素の輝度から第1の中心波長の光に対応する輝度が計算され、その輝度を組み合わせることで明瞳孔画像が取得され、イメージセンサによって検出された隣り合う画素の輝度から第2の中心波長の光に対応する輝度が計算され、その輝度を組み合わせることで暗瞳孔画像が取得され、明瞳孔画像と暗瞳孔画像を基に瞳孔像の位置が算出される。これにより、明瞳孔画像と暗瞳孔画像の取得タイミングに差が生じないので、対象者の状態に関わらず(例えば、対象者において眼球回転が生じても)瞳孔像の検出精度を容易に高めることができる。 According to the pupil detection device of the above embodiment, the light from the pupil of the subject illuminated by the light of the first central wavelength by the first light source passes through the first dividing element of the optical element and has a predetermined angle. After being converted to linearly polarized light, its luminance is detected by adjacent pixels to which two types of polarizing elements of the image sensor are attached. At the same time, the light from the pupil of the subject illuminated by the light of the second central wavelength by the second light source is transmitted through the second dividing element of the optical element and converted into linearly polarized light having an angle different from the predetermined angle. After that, the brightness is detected by the adjacent pixels to which the two types of polarizing elements of the image sensor are attached. Here, the image of the pupil illuminated by the light of the first center wavelength is relatively brighter than the image of the pupil illuminated by the light of the second center wavelength. Then, the arithmetic device calculates the brightness corresponding to the light of the first center wavelength from the brightness of the adjacent pixels detected by the image sensor, and by combining the brightness, a bright pupil image is acquired and detected by the image sensor. The brightness corresponding to the light of the second center wavelength is calculated from the brightness of the adjacent pixels, and the dark pupil image is acquired by combining the brightness, and the position of the pupil image is based on the bright pupil image and the dark pupil image. Is calculated. As a result, there is no difference in the acquisition timing of the bright pupil image and the dark pupil image, so that the detection accuracy of the pupil image can be easily improved regardless of the state of the subject (for example, even if the eyeball rotation occurs in the subject). Can be done.
 実施形態によれば、対象者の状態に関わらず瞳孔の検出精度を容易に高めることができる。 According to the embodiment, the detection accuracy of the pupil can be easily improved regardless of the state of the subject.
第1実施形態にかかる瞳孔検出装置の概略構成を示す図である。It is a figure which shows the schematic structure of the pupil detection apparatus which concerns on 1st Embodiment. 図1の照明装置を筐体の外側から見た平面図である。FIG. 3 is a plan view of the lighting device of FIG. 1 as viewed from the outside of the housing. 図1の光学素子を筐体の外側から見た平面図である。FIG. 3 is a plan view of the optical element of FIG. 1 as viewed from the outside of the housing. 図1の光学素子を筐体の外側から見た平面図である。FIG. 3 is a plan view of the optical element of FIG. 1 as viewed from the outside of the housing. 図1の撮像素子の平面図である。It is a top view of the image pickup element of FIG. 図1の制御装置のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware composition of the control device of FIG. 図1の瞳孔検出装置の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the pupil detection apparatus of FIG. 瞳孔面積Aと明瞳孔画像における瞳孔輝度L及び暗瞳孔画像における瞳孔輝度Lとの関係を示すグラフである。It is a graph showing the relationship between the pupil luminance L D at the pupil luminance L B and the dark pupil image of the pupil area A and the bright pupil image. 瞳孔面積Aと差分画像における瞳孔輝度Lとの関係を示すグラフである。Is a graph showing the relationship between the pupil luminance L S in pupil area A and the difference image. カメラの開口部中心から光源までの距離と瞳孔輝度との関係を示すグラフである。It is a graph which shows the relationship between the distance from the center of an opening of a camera to a light source, and the brightness of a pupil. 変形例にかかる光源及び光学素子の構成を示す平面図である。It is a top view which shows the structure of the light source and the optical element which concerns on a modification. 変形例にかかる光源及び光学素子の構成を示す平面図である。It is a top view which shows the structure of the light source and the optical element which concerns on a modification.
 以下、図面を参照しつつ本発明に係る瞳孔検出装置の好適な実施形態について詳細に説明する。なお、図面の説明においては、同一又は相当部分には同一符号を付し、重複する説明を省略する。 Hereinafter, a preferred embodiment of the pupil detection device according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same or corresponding parts are designated by the same reference numerals, and duplicate description will be omitted.
(第1実施形態) (First Embodiment)
 図1に示されるように、本発明の第1実施形態である瞳孔検出装置1は、カメラ2と、照明装置(光源)3と、制御装置(演算装置)4と、を備えている。カメラ2は、筐体5と、筐体5内に収容されたCCD、CMOS等の撮像素子(イメージセンサ)6と、筐体5内に収容された対物レンズ7及び光学素子9とを有する。このカメラ2は、画像の1つのフレームの取得時間間隔が非常に短い高速度カメラであってもよいし、いわゆる中速度カメラ、低速度カメラ、又は60Hz、30Hz程度のフレームレートを有するカメラであってもよい。筐体5は、観察対象者の眼球Aと対向する面に形成された円形状の開口部8を有する。対物レンズ7及び光学素子9は、筐体5の内部の開口部8と撮像素子6との間に配置されている。対物レンズ7の光軸L0は、開口部8の中心軸線と一致している。撮像素子6は、その受光面が対物レンズ7の光軸L0に対して垂直に交わるように固定されている。光学素子9は、対物レンズ7の光軸L0上において対物レンズ7の内側(撮像素子6側)に配置されている。撮像素子6は、観察対象者の眼球Aの像を撮像することによって眼画像データを生成して制御装置4に出力する。制御装置4は、照明装置3の発光強度、点灯タイミング、及び点灯期間(発光期間)、並びにカメラ2の撮像タイミング及び撮像期間を制御する。また、制御装置4は、撮像素子6から出力された眼画像データに基づいて、画像生成処理、比較処理、瞳孔検出処理、及び角膜反射検出処理を実行する。すなわち、制御装置4は、瞳孔検出手段及び角膜反射検出手段としても機能する。 As shown in FIG. 1, the pupil detection device 1 according to the first embodiment of the present invention includes a camera 2, a lighting device (light source) 3, and a control device (arithmetic device) 4. The camera 2 has a housing 5, an image sensor (image sensor) 6 such as a CCD or CMOS housed in the housing 5, and an objective lens 7 and an optical element 9 housed in the housing 5. The camera 2 may be a high-speed camera in which the acquisition time interval of one frame of an image is very short, a so-called medium-speed camera, a low-speed camera, or a camera having a frame rate of about 60 Hz or 30 Hz. You may. The housing 5 has a circular opening 8 formed on a surface facing the eyeball A of the observer. The objective lens 7 and the optical element 9 are arranged between the opening 8 inside the housing 5 and the image pickup element 6. The optical axis L0 of the objective lens 7 coincides with the central axis of the opening 8. The image sensor 6 is fixed so that its light receiving surface intersects the optical axis L0 of the objective lens 7 perpendicularly. The optical element 9 is arranged inside the objective lens 7 (on the image sensor 6 side) on the optical axis L0 of the objective lens 7. The image pickup device 6 generates eye image data by capturing an image of the eyeball A of the observation target and outputs it to the control device 4. The control device 4 controls the light emission intensity, lighting timing, and lighting period (light emission period) of the lighting device 3, and the imaging timing and imaging period of the camera 2. Further, the control device 4 executes an image generation process, a comparison process, a pupil detection process, and a corneal reflex detection process based on the eye image data output from the image pickup element 6. That is, the control device 4 also functions as a pupil detecting means and a corneal reflex detecting means.
 なお、開口部8の径は、対物レンズ7の径に比較して小さく、対物レンズ7の有効径と略同程度である。また、光学素子9は全体として略円形の形状を有し、対物レンズ7の有効径と略同程度の径を有する。このような構成により、観察対象者の眼球A付近の像は、開口部8を経て対物レンズ7及びカメラ2内の撮像素子6に向けて導入された後、カメラ2内の対物レンズ7及び光学素子9を含む光学系によって、撮像素子6の受光面に収束するように結像される。 The diameter of the opening 8 is smaller than the diameter of the objective lens 7, and is approximately the same as the effective diameter of the objective lens 7. Further, the optical element 9 has a substantially circular shape as a whole, and has a diameter substantially equal to the effective diameter of the objective lens 7. With such a configuration, the image near the eyeball A of the observer is introduced toward the objective lens 7 and the image pickup element 6 in the camera 2 through the opening 8, and then the objective lens 7 in the camera 2 and the optics. The image is formed so as to converge on the light receiving surface of the image pickup device 6 by the optical system including the element 9.
 照明装置3は、観察対象者の顔に向けて照明光を出射する。図2に示されるように、照明装置3は、ケーシング10と、ケーシング10に埋め込まれた光源3A,3Bを有する。ケーシング10は、開口部8の縁部に沿って開口部8の外側を覆うように筐体5に取り付けられている。光源3A,3Bは、いずれも対物レンズ7の光軸L0に沿って照明光を出射するようにケーシング10上に設けられ、開口部8の中心を基準に点対称となるように構成されている。 The lighting device 3 emits illumination light toward the face of the observation target person. As shown in FIG. 2, the illuminating device 3 has a casing 10 and light sources 3A and 3B embedded in the casing 10. The casing 10 is attached to the housing 5 so as to cover the outside of the opening 8 along the edge of the opening 8. The light sources 3A and 3B are both provided on the casing 10 so as to emit illumination light along the optical axis L0 of the objective lens 7, and are configured to be point-symmetrical with respect to the center of the opening 8. ..
 光源(第1の光源)3Aは、明瞳孔画像を得るための照明光(第1の照明光)によって、観察対象者の眼部(瞳孔)を照らすための光源である。明瞳孔画像とは、後述の暗瞳孔画像と比較して観察対象者の瞳孔が相対的に明るく写った画像をいう。光源3Aは、例えば、出力光の中心波長(第1の中心波長)が近赤外領域の複数の半導体発光素子(LED)からなり、開口部8の中心からの距離が比較的近い第1の距離D1の位置に配置されている。具体的には、光源3Aを構成する発光素子は、ケーシング10上で、開口部8の外側において開口部8の縁に沿って等間隔でリング状に連続して配設されている。光源3Aは、開口部8の縁にできるだけ近い位置に設けられることが好ましい。これにより、後述するように、光源3Aにより照らし出される観察対象者の像においては、瞳孔がより明るく映し出され、小さい瞳孔であっても検出が容易になる。 The light source (first light source) 3A is a light source for illuminating the eye portion (pupil) of the observer with the illumination light (first illumination light) for obtaining a bright pupil image. The bright pupil image is an image in which the pupil of the observer is relatively brighter than the dark pupil image described later. The light source 3A is composed of, for example, a plurality of semiconductor light emitting devices (LEDs) whose center wavelength (first center wavelength) of the output light is in the near infrared region, and the distance from the center of the opening 8 is relatively short. It is arranged at the position of the distance D1. Specifically, the light emitting elements constituting the light source 3A are continuously arranged in a ring shape at equal intervals along the edge of the opening 8 on the outside of the opening 8 on the casing 10. The light source 3A is preferably provided at a position as close as possible to the edge of the opening 8. As a result, as will be described later, in the image of the observer illuminated by the light source 3A, the pupil is projected brighter, and even a small pupil can be easily detected.
 光源(第2の光源)3Bは、暗瞳孔画像を得るための照明光(第2の照明光)によって、観察対象者の眼部(瞳孔)を照らすための光源である。暗瞳孔画像とは、前述の明瞳孔画像と比較して観察対象者の瞳孔が相対的に暗く映った画像をいう。光源3Bは、例えば、出力光の中心波長(第2の中心波長)が第1の中心波長よりも長い近赤外領域の複数の半導体発光素子(LED)からなり、開口部8の中心からの距離が比較的遠い第2の距離D2の位置に配置されている。この第2の距離D2は第1の距離D1より大きい。具体的には、光源3Bを構成する発光素子は、ケーシング10上で、光源3Aから開口部8の外側に離間して等間隔でリング状に連続して配設されている。 The light source (second light source) 3B is a light source for illuminating the eye portion (pupil) of the observer with the illumination light (second illumination light) for obtaining a dark pupil image. The dark pupil image is an image in which the pupil of the observer appears relatively darker than the above-mentioned bright pupil image. The light source 3B is composed of, for example, a plurality of semiconductor light emitting elements (LEDs) in the near infrared region in which the center wavelength (second center wavelength) of the output light is longer than the first center wavelength, and is from the center of the opening 8. It is located at the position of the second distance D2, which is a relatively long distance. This second distance D2 is larger than the first distance D1. Specifically, the light emitting elements constituting the light source 3B are continuously arranged in a ring shape at equal intervals on the casing 10 so as to be separated from the light source 3A to the outside of the opening 8.
 上記の光源3Aから観察対象者の眼球Aに照明光が出射され、カメラ2によってその照明光で照らされた瞳孔が撮像されると明瞳孔画像が取得される。また、上記の光源3Bから観察対象者の眼球Aに照明光が出射され、カメラ2によってその照明光で照らされた瞳孔が撮像されると暗瞳孔画像が取得される。これは、次のような性質によるものである。つまり、眼球Aへの照明光がカメラ2の光軸L0から相対的に離れた位置から入射した場合には、眼球Aの瞳孔から入射し、眼球内部で反射されて再び瞳孔を通過した照明光がカメラ2に届きにくいため、瞳孔が相対的に暗く映るという性質である。 When the illumination light is emitted from the light source 3A to the eyeball A of the observation target and the pupil illuminated by the illumination light is imaged by the camera 2, a bright pupil image is acquired. Further, when the illumination light is emitted from the light source 3B to the eyeball A of the observation target person and the pupil illuminated by the illumination light is imaged by the camera 2, a dark pupil image is acquired. This is due to the following properties. That is, when the illumination light to the eyeball A is incident from a position relatively distant from the optical axis L0 of the camera 2, the illumination light is incident from the pupil of the eyeball A, reflected inside the eyeball, and passes through the pupil again. However, since it is difficult to reach the camera 2, the pupil is relatively dark.
 ここで、光源3Aの出力光の第1の中心波長は、例えば、850nmに設定され、光源3Bの出力光の第2の中心波長は、例えば、第1の中心波長よりも長い940nmに設定される。ただし、明瞳孔画像取得用の光源である光源3Aは、網膜を反射して戻ってくる光の輝度が強い点で、900nm付近より短い出力光の波長の光源であれば、他の波長の光源を用いてもよい。同様に、暗瞳孔取得用の光源である光源3Bは、網膜を反射して戻ってくる光の輝度が弱い点で、900nm付近より長い出力光の波長の光源であれば他の波長の光源を用いてもよい。一方で、長い波長の光源の発光パワーは弱くカメラの感度も一般に長波長になるに従って低くなるため、光源3Bは、光源3Aに比べて2倍程度の数の発光素子を備えることが好ましい。多数の発光素子を配置する余地が無い場合には、光源3Bは2重のリング状に発光素子が配置された構造であってもよい。 Here, the first center wavelength of the output light of the light source 3A is set to, for example, 850 nm, and the second center wavelength of the output light of the light source 3B is set to, for example, 940 nm, which is longer than the first center wavelength. To. However, the light source 3A, which is a light source for acquiring a bright pupil image, has a strong brightness of the light reflected back from the retina, and if it is a light source having a wavelength of output light shorter than around 900 nm, it is a light source of another wavelength. May be used. Similarly, the light source 3B, which is a light source for acquiring dark pupils, is a light source having a wavelength of output light longer than around 900 nm in that the brightness of the light reflected from the retina and returned is weak. You may use it. On the other hand, since the light emitting power of a light source having a long wavelength is weak and the sensitivity of the camera generally decreases as the wavelength becomes longer, it is preferable that the light source 3B includes about twice as many light emitting elements as the light source 3A. When there is no room for arranging a large number of light emitting elements, the light source 3B may have a structure in which the light emitting elements are arranged in a double ring shape.
 また、光源3A,3Bの発光強度(発光パワー)は、互いに同一の点灯期間で光源3A及び光源3Bを発光させたときの撮影対象である観察対象者の顔面での照度が略同一になるように予め設定されている。そのために、例えば、制御装置4から光源3A,3Bに供給される電流値あるいは電力値が予め設定される。 Further, the light emission intensity (light emission power) of the light sources 3A and 3B is such that the illuminance on the face of the observation target person who is the image shooting target when the light source 3A and the light source 3B are made to emit light in the same lighting period is substantially the same. Is preset to. Therefore, for example, the current value or the power value supplied from the control device 4 to the light sources 3A and 3B is preset.
 図3には、開口部8の内側に配置された光学素子9の構造を示す。光学素子9は、円板状の構造を有し、対物レンズ7の光軸L0がその中心近傍を通り、かつ、光軸L0に対して略垂直になるように配置されている。この光学素子9は、中心で2つに分割された半円の板状の分割素子9A,9Bによって構成されている。分割素子9Aは、第1の中心波長の第1の照明光を通過させるバンドパスフィルタと、開口部8の上下方向を基準にした0度の偏光方向の直線偏光を透過する第1の偏光子とが2枚重ねで組み合わされた光学素子である。分割素子9Bは、第2の中心波長の第2の照明光を通過させるバンドパスフィルタと、上下方向を基準にした90度の偏光方向の直線偏光を透過する第2の偏光子とが2枚重ねで組み合わされた光学素子である。すなわち、第1の偏光子の透過する直線偏光の偏光方向と、第2の偏光子の透過する直線偏光の偏光方向とは略直交する。このような構造の光学素子9は、分割素子9A,9Bが開口部8の開口面に沿ってその中心を水平方向に貫く中心軸(線)の両側に配置されるように、より具体的には、中心軸を基準に線対称となるように構成されている。照明装置3の光源3A,3Bも同様に構成されている。なお、分割素子9A,9Bを組み合わせた光学素子9の形状は円板状には限定されず、開口部8の縁の形状に対応した形状であれば、長方形状等の他の形状であってもよい。 FIG. 3 shows the structure of the optical element 9 arranged inside the opening 8. The optical element 9 has a disk-shaped structure, and is arranged so that the optical axis L0 of the objective lens 7 passes near the center thereof and is substantially perpendicular to the optical axis L0. The optical element 9 is composed of semicircular plate-shaped dividing elements 9A and 9B divided into two at the center. The dividing element 9A is a bandpass filter that allows the first illumination light of the first center wavelength to pass through, and a first polarizing element that transmits linearly polarized light in the polarization direction of 0 degrees with respect to the vertical direction of the opening 8. Is an optical element that is a combination of two layers. The dividing element 9B has two bandpass filters that allow the second illumination light of the second center wavelength to pass through and a second polarizing element that transmits linearly polarized light in the polarization direction of 90 degrees with respect to the vertical direction. Optical elements combined in layers. That is, the polarization direction of the linearly polarized light transmitted by the first polarizing element and the polarization direction of the linearly polarized light transmitted by the second polarizing element are substantially orthogonal to each other. The optical element 9 having such a structure is more specifically arranged so that the dividing elements 9A and 9B are arranged on both sides of the central axis (line) horizontally penetrating the center of the opening surface of the opening 8. Is configured to be axisymmetric with respect to the central axis. The light sources 3A and 3B of the lighting device 3 are similarly configured. The shape of the optical element 9 in which the dividing elements 9A and 9B are combined is not limited to a disk shape, and any shape corresponding to the shape of the edge of the opening 8 may be another shape such as a rectangular shape. It is also good.
 一方、光学素子9は、図4に示すような構造であってもよい。図4に示す光学素子9は、開口部8の縁の形状に対応した連続した形状を有する分割素子9A,9Bによって構成され、これらの分割素子9A,9Bは、開口部8の縁に沿った境界線で2つに分割された形状を有し、分割素子9Bは分割素子9Aの内側に配置されている。すなわち、分割素子9Bは、中心が光軸L0付近に位置する円板状の形状(円形形状)とされ、分割素子9Aは分割素子9Bの外側に位置するリング状の形状とされる。このような構造の光学素子9は、照明装置3と同様に、分割素子9A,9Bが開口部8の中心を基準に点対称となるように構成されている。照明装置3の光源3A,3Bも同様に構成されている。なお、分割素子9A,9Bを組み合わせた光学素子9の形状は円板状には限定されず、開口部8の縁の形状に対応した形状であれば、長方形状等の他の形状であってもよい。 On the other hand, the optical element 9 may have a structure as shown in FIG. The optical element 9 shown in FIG. 4 is composed of dividing elements 9A and 9B having a continuous shape corresponding to the shape of the edge of the opening 8, and these dividing elements 9A and 9B are along the edge of the opening 8. It has a shape divided into two by a boundary line, and the dividing element 9B is arranged inside the dividing element 9A. That is, the dividing element 9B has a disk-shaped shape (circular shape) whose center is located near the optical axis L0, and the dividing element 9A has a ring-shaped shape located outside the dividing element 9B. Similar to the lighting device 3, the optical element 9 having such a structure is configured such that the dividing elements 9A and 9B are point-symmetrical with respect to the center of the opening 8. The light sources 3A and 3B of the lighting device 3 are similarly configured. The shape of the optical element 9 in which the dividing elements 9A and 9B are combined is not limited to a disk shape, and any shape corresponding to the shape of the edge of the opening 8 may be another shape such as a rectangular shape. It is also good.
 図5には、開口部8の内側に配置された撮像素子6の開口部8側から見た構造を示す。撮像素子6は、光軸L0に略垂直となるように配置された受光面20と、受光素子(図示せず)が内部に形成され、受光面20上に二次元アレイ状に配置された複数の画素21と、複数の画素21のそれぞれの表面上に画素21を覆うように配置された4種類の偏光子22A,22B,22C,22Dとを有する。すなわち、互いに隣り合う4つの画素21(以下、4画素群とも言う。)のそれぞれの表面に、互いに異なる種類の偏光子22A,22B,22C,22Dが取り付けられる。偏光子22Aは、開口部8の上下方向に対して0度の偏光方向の直線偏光を透過する光学素子である。偏光子22Bは、開口部8の上下方向に対して反時計回りに45度回転させた偏光方向の直線偏光を透過する光学素子である。偏光子22Cは、開口部8の上下方向に対して反時計回りに90度回転させた偏光方向の直線偏光を透過する光学素子である。偏光子22Dは、開口部8の上下方向に対して反時計回りに135度回転させた偏光方向の直線偏光を透過する光学素子である。撮像素子6はこのような構造が二次元的(図5の左右方向及び上下方向に)に繰り返されたような構造を有する。 FIG. 5 shows a structure seen from the opening 8 side of the image pickup device 6 arranged inside the opening 8. The image pickup element 6 has a light receiving surface 20 arranged so as to be substantially perpendicular to the optical axis L0, and a plurality of light receiving elements (not shown) formed inside and arranged in a two-dimensional array on the light receiving surface 20. Pixels 21 and four types of polarizing elements 22A, 22B, 22C, 22D arranged so as to cover the pixels 21 on the surface of each of the plurality of pixels 21. That is, different types of polarizing elements 22A, 22B, 22C, and 22D are attached to the surfaces of each of the four pixels 21 (hereinafter, also referred to as a four-pixel group) adjacent to each other. The splitter 22A is an optical element that transmits linearly polarized light in the polarization direction of 0 degrees with respect to the vertical direction of the opening 8. The splitter 22B is an optical element that transmits linearly polarized light in the polarization direction rotated by 45 degrees counterclockwise with respect to the vertical direction of the opening 8. The splitter 22C is an optical element that transmits linearly polarized light in the polarization direction rotated 90 degrees counterclockwise with respect to the vertical direction of the opening 8. The splitter 22D is an optical element that transmits linearly polarized light in the polarization direction rotated by 135 degrees counterclockwise with respect to the vertical direction of the opening 8. The image pickup device 6 has a structure in which such a structure is repeated two-dimensionally (in the left-right direction and the up-down direction in FIG. 5).
 撮像素子6の受光面20上の4画素群の範囲は、対物レンズ7の大きさに比較して十分に小さい。従って、上記の光学素子9及び撮像素子6は、光学素子9の分割素子9Aを透過する第1の照明光が4画素群を構成する4つの画素に同じ強度で入射し、光学素子9の分割素子9Bを透過する第2の照明光が4画素群を構成する4つの画素を同じ強度で入射するように、構成される。 The range of the four pixel group on the light receiving surface 20 of the image sensor 6 is sufficiently small compared to the size of the objective lens 7. Therefore, in the above optical element 9 and the image pickup element 6, the first illumination light transmitted through the dividing element 9A of the optical element 9 is incident on the four pixels constituting the four pixel group with the same intensity, and the optical element 9 is divided. The second illumination light transmitted through the element 9B is configured to incident the four pixels constituting the four pixel group with the same intensity.
 続いて、図6及び図7を参照して、瞳孔検出装置1に含まれる制御装置4の構成について説明する。 Subsequently, with reference to FIGS. 6 and 7, the configuration of the control device 4 included in the pupil detection device 1 will be described.
 制御装置4は、撮像素子6及び光源3A,3Bの制御と、観察対象者の眼画像データを処理して瞳孔及び角膜反射の検出を実行するコンピュータであり得る。制御装置4は、据置型又は携帯型のパーソナルコンピュータ(PC)により構築されてもよいし、ワークステーションにより構築されてもよいし、他の種類のコンピュータにより構築されてもよい。あるいは、制御装置4は複数台の任意の種類のコンピュータを組み合わせて構築されてもよい。複数台のコンピュータを用いる場合には、これらのコンピュータはインターネットやイントラネットなどの通信ネットワークを介して接続される。 The control device 4 may be a computer that controls the image pickup element 6 and the light sources 3A and 3B, processes the eye image data of the observer, and detects the pupil and the corneal reflex. The control device 4 may be built by a stationary or portable personal computer (PC), a workstation, or another type of computer. Alternatively, the control device 4 may be constructed by combining a plurality of arbitrary types of computers. When using multiple computers, these computers are connected via a communication network such as the Internet or an intranet.
 図6に示されるように、制御装置4は、CPU(プロセッサ)101と、主記憶部102と、補助記憶部103と、通信制御部104と、入力装置105と、出力装置106とを備える。CPU101は、オペレーティングシステムやアプリケーション・プログラムなどを実行する。主記憶部102は、ROM及びRAMで構成される。補助記憶部103は、ハードディスクやフラッシュメモリなどで構成される。通信制御部104は、ネットワークカードあるいは無線通信モジュールで構成される。入力装置105は、キーボードやマウスなどを含む。出力装置106は、ディスプレイやプリンタなどを含む。 As shown in FIG. 6, the control device 4 includes a CPU (processor) 101, a main storage unit 102, an auxiliary storage unit 103, a communication control unit 104, an input device 105, and an output device 106. The CPU 101 executes an operating system, an application program, and the like. The main storage unit 102 is composed of a ROM and a RAM. The auxiliary storage unit 103 is composed of a hard disk, a flash memory, or the like. The communication control unit 104 is composed of a network card or a wireless communication module. The input device 105 includes a keyboard, a mouse, and the like. The output device 106 includes a display, a printer, and the like.
 後述する制御装置4の各機能要素は、CPU101又は主記憶部102の上に所定のソフトウェアを読み込ませ、CPU101の制御の下で通信制御部104、入力装置105、出力装置106などを動作させ、主記憶部102又は補助記憶部103におけるデータの読み出し及び書き込みを行うことで実現される。処理に必要なデータやデータベースは主記憶部102又は補助記憶部103内に格納される。 Each functional element of the control device 4, which will be described later, loads predetermined software on the CPU 101 or the main storage unit 102, and operates the communication control unit 104, the input device 105, the output device 106, and the like under the control of the CPU 101. It is realized by reading and writing data in the main storage unit 102 or the auxiliary storage unit 103. The data and database required for processing are stored in the main storage unit 102 or the auxiliary storage unit 103.
 図7に示されるように、制御装置4は機能的構成要素として、撮像素子駆動ユニット11と、点灯制御ユニット12と、検出ユニット13とを有する。撮像素子駆動ユニット11は、撮像素子6の撮影タイミングを制御する機能要素である。具体的には、撮像素子6を所定のフレームレート及び所定の露光時間で繰り返し撮像し、連続的に観察対象者の眼球Aの像を表す眼画像データを取得するように制御する。点灯制御ユニット12は、撮像素子6の撮影に合わせて、光源3A,3Bを同時に点灯させるように点灯タイミングを制御するとともに、光源3A,3Bの発光量を制御する機能要素である。このとき、点灯制御ユニット12は、観察対象者の頭部に動きがある場合に瞳孔あるいは角膜反射の検出位置の精度向上のためには、光源3A,3Bを同じ期間に点灯させることが好ましい。検出ユニット13は、撮像素子6から出力された眼画像データを利用して、当該眼画像データにおける瞳孔及び角膜反射を検出する機能要素である。検出された瞳孔及び角膜反射に関する情報の出力先は何ら限定されない。例えば、制御装置4は、結果を画像、図形、又はテキストでモニタに表示してもよいし、メモリやデータベースなどの記憶装置に格納してもよいし、通信ネットワーク経由で他のコンピュータシステムに送信してもよい。 As shown in FIG. 7, the control device 4 has an image pickup element drive unit 11, a lighting control unit 12, and a detection unit 13 as functional components. The image pickup element drive unit 11 is a functional element that controls the imaging timing of the image pickup element 6. Specifically, the image sensor 6 is repeatedly imaged at a predetermined frame rate and a predetermined exposure time, and control is performed so as to continuously acquire eye image data representing an image of the eyeball A of the observation target. The lighting control unit 12 is a functional element that controls the lighting timing so that the light sources 3A and 3B are turned on at the same time according to the image pickup of the image sensor 6, and also controls the amount of light emitted from the light sources 3A and 3B. At this time, it is preferable that the lighting control unit 12 lights the light sources 3A and 3B in the same period in order to improve the accuracy of the detection position of the pupil or the corneal reflex when the head of the observation target person is moving. The detection unit 13 is a functional element that detects the pupil and the corneal reflex in the eye image data by using the eye image data output from the image pickup element 6. There is no limitation on the output destination of the information regarding the detected pupil and corneal reflex. For example, the control device 4 may display the result as an image, a figure, or text on a monitor, store it in a storage device such as a memory or a database, or transmit it to another computer system via a communication network. You may.
 検出ユニット13は、機能的構成要素として、画像取得部14と、画像計算部16と、差分画像生成部17と、瞳孔検出部18と、角膜反射検出部19、とを有する。画像取得部14は、撮像素子6から所定のフレームレートで連続的に撮影(取得)される眼画像データを取得する。画像計算部16は、各撮像タイミングの眼画像データを基に、明瞳孔画像の各画素の輝度値(光強度)を計算し、それらの輝度値を組み合わせることにより明瞳孔画像を取得する。また、画像計算部16は、各撮像タイミングの眼画像データを基に、暗瞳孔画像の各画素の輝度値(光強度)を計算し、それらの輝度値を組み合わせることにより暗瞳孔画像を取得する。差分画像生成部17は、明瞳孔画像及び暗瞳孔画像を比較した比較画像の一種としての差分画像を生成する。具体的には、差分画像生成部17は、明瞳孔画像及び暗瞳孔画像の対応する画素間の輝度の差分を計算することにより、両画像を比較した差分画像を生成する。瞳孔検出部18は、差分画像を利用して瞳孔像の位置を算出する機能要素である。角膜反射検出部19は、明瞳孔画像あるいは暗瞳孔画像を利用して角膜反射像の位置を算出する機能要素である。瞳孔検出部18及び角膜反射検出部19により行われる処理の一例は、次の通りである。まず、瞳孔検出部18は、差分画像を瞳孔用閾値を基準に2値化し、孤立点除去、モルフォロジー処理によるノイズ除去、ラベリングを行う。そして、瞳孔検出部18は、最も瞳孔らしい形状を有する画素群を、瞳孔として検出する。このとき、瞳孔がまぶたやまつ毛で隠れた場合にも、まぶたやまつ毛と瞳孔との境界を偽の瞳孔輪郭として排除し、真の瞳孔輪郭のみを楕円フィッティングして、真の瞳孔輪郭の差分画像上の位置を検出し、楕円フィッティングで求まる楕円の式から瞳孔像の中心位置を算出する。また、角膜反射検出部19は、明瞳孔画像の瞳孔の近傍から瞳孔輝度よりも高い角膜反射用閾値で2値化し、角膜反射像の中心を、輝度を考慮した重心として求める。瞳孔輝度は、楕円フィッティングした結果得られる楕円の面積ではなく、2値化して得られた瞳孔を構成する画素の輝度平均で与えられる。角膜反射検出部19は、角膜反射像の位置を、暗瞳孔画像を対象にして算出してもよい。 The detection unit 13 has an image acquisition unit 14, an image calculation unit 16, a difference image generation unit 17, a pupil detection unit 18, and a corneal reflex detection unit 19 as functional components. The image acquisition unit 14 acquires eye image data continuously captured (acquired) from the image sensor 6 at a predetermined frame rate. The image calculation unit 16 calculates the luminance value (light intensity) of each pixel of the bright pupil image based on the eye image data of each imaging timing, and acquires the bright pupil image by combining the luminance values. Further, the image calculation unit 16 calculates the luminance value (light intensity) of each pixel of the dark pupil image based on the eye image data of each imaging timing, and acquires the dark pupil image by combining the luminance values. .. The difference image generation unit 17 generates a difference image as a kind of comparison image comparing the bright pupil image and the dark pupil image. Specifically, the difference image generation unit 17 generates a difference image comparing both images by calculating the difference in luminance between the corresponding pixels of the bright pupil image and the dark pupil image. The pupil detection unit 18 is a functional element that calculates the position of the pupil image using the difference image. The corneal reflex detection unit 19 is a functional element that calculates the position of the corneal reflex image using the bright pupil image or the dark pupil image. An example of the processing performed by the pupil detection unit 18 and the corneal reflex detection unit 19 is as follows. First, the pupil detection unit 18 binarizes the difference image with reference to the pupil threshold, and performs isolated point removal, noise removal by morphology processing, and labeling. Then, the pupil detection unit 18 detects a pixel group having the most pupil-like shape as a pupil. At this time, even when the pupil is hidden by the eyelid or eyelid, the boundary between the eyelid or eyelid and the pupil is excluded as a false pupil contour, and only the true pupil contour is elliptical fitted to obtain a difference image of the true pupil contour. The upper position is detected, and the center position of the pupil image is calculated from the ellipse equation obtained by ellipse fitting. Further, the corneal reflex detection unit 19 binarizes the vicinity of the pupil of the bright pupil image with a corneal reflex threshold higher than the pupil brightness, and obtains the center of the corneal reflex image as the center of gravity in consideration of the brightness. The pupil brightness is given not by the area of the ellipse obtained as a result of ellipse fitting, but by the brightness average of the pixels constituting the pupil obtained by binarization. The corneal reflex detection unit 19 may calculate the position of the corneal reflex image for the dark pupil image.
 次に、画像計算部16の機能構成について詳細に説明する。 Next, the functional configuration of the image calculation unit 16 will be described in detail.
 画像計算部16による明瞳孔画像及び暗瞳孔画像の取得の原理は次のとおりである。眼画像データの取得時に第1の分割素子9A及び第2の分割素子9Bを透過した光は、それぞれ、互いに隣り合う4つの画素21で構成される4画素群に同一の光強度で入射する。入射するそれぞれの光の光強度を、I(λa1),I(λa2)とすると、4画素群のうち、偏光子22A,22B,22C,22Dが取り付けられた画素21によって検出されるそれぞれの光強度O(i=1~4)は、下記式で表わされる。
Figure JPOXMLDOC01-appb-M000001
 
上記式中、偏光子22A,22B,22C,22Dの透過する光の偏光方向の角度をそれぞれ、θsiで表わし、第1の分割素子9A及び第2の分割素子9Bを透過する光の偏光方向の角度をそれぞれθa1、θa2と表している。
The principle of acquiring a bright pupil image and a dark pupil image by the image calculation unit 16 is as follows. The light transmitted through the first dividing element 9A and the second dividing element 9B at the time of acquiring the ocular image data is incident on a group of four pixels composed of four pixels 21 adjacent to each other with the same light intensity. Assuming that the light intensities of the incident light are I (λ a1 ) and I (λ a2 ), they are detected by the pixel 21 to which the splitters 22A, 22B, 22C, and 22D are attached in the four pixel group, respectively. The light intensity O i (i = 1 to 4) of is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001

In the above equation, the angles of polarization directions of the light transmitted through the splitters 22A, 22B, 22C, and 22D are represented by θ si , respectively, and the polarization directions of the light transmitted through the first dividing element 9A and the second dividing element 9B, respectively. The angles of are expressed as θ a1 and θ a2, respectively.
 上記式は、行列式で表現することにより、下記式;
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000003
 
に変形される。このような関係から、第1の分割素子9A及び第2の分割素子9Bのそれぞれを透過した第1及び第2の中心波長の光の光強度I(λa1),I(λa2)は、2行4列の擬似逆行列[Mijを用いて、下記式;
Figure JPOXMLDOC01-appb-M000004
 
によって計算される。
The above equation can be expressed as a determinant to the following equation;
Figure JPOXMLDOC01-appb-M000002

Figure JPOXMLDOC01-appb-M000003

Is transformed into. From such a relationship, the light intensities I (λ a1 ) and I (λ a2 ) of the light of the first and second center wavelengths transmitted through the first dividing element 9A and the second dividing element 9B, respectively, are determined. Using the pseudo-inverse matrix [ Mij ] + with 2 rows and 4 columns, the following equation;
Figure JPOXMLDOC01-appb-M000004

Calculated by.
 上記のような計算式を利用して、画像計算部16は、眼画像データの中から各4画素群の輝度値[O]を読み取り、輝度値[O]と、予め設定された擬似逆行列[Mijを用いて、4画素群に入射する第1の中心波長の光に対応する輝度値I(λa1)と、4画素群に入射する第2の中心波長の光に対応する輝度値I(λa2)とを計算する。そして、画像計算部16は、受光面20上の各4画素群を対象に計算した輝度値I(λa1)を組み合わせて二次元画像データを生成することにより明瞳孔画像を取得し、各4画素群を対象に計算した輝度値I(λa2)を組み合わせて二次元画像データを生成することにより暗瞳孔画像を取得する。 Using the above-mentioned formula, the pseudo-image calculation unit 16, the luminance value of each 4 pixel groups from the eye image data read the [O i], the luminance value [O i], which is set in advance Using the inverse matrix [ Mij ] + , the luminance value I (λ a1 ) corresponding to the light of the first center wavelength incident on the 4-pixel group and the light of the second center wavelength incident on the 4-pixel group are obtained. The corresponding luminance value I (λ a2 ) is calculated. Then, the image calculation unit 16 acquires a bright pupil image by combining the luminance values I (λ a1 ) calculated for each of the four pixel groups on the light receiving surface 20 to generate two-dimensional image data, and each 4 A dark pupil image is acquired by generating two-dimensional image data by combining the luminance values I (λ a2) calculated for the pixel group.
 第1実施形態の瞳孔検出装置1の作用効果について説明する。 The operation and effect of the pupil detection device 1 of the first embodiment will be described.
 上述した実施形態の瞳孔検出装置1においては、光源3Aによって第1の中心波長の光で照らされた観察対象者の瞳孔からの光が、光学素子9の第1の分割素子9Aを透過して所定角度の直線偏光に変換された後、撮像素子6の4種類の偏光子22A,22B,22C,22Dが取り付けられた隣り合う4画素によって、その輝度値が検出される。同時に、光源3Bによって第2の中心波長の光で照らされた観察対象者の瞳孔からの光が、光学素子9の第2の分割素子9Bを透過して上記所定角度と異なる角度の直線偏光に変換された後、撮像素子6の4種類の偏光子22A,22B,22C,22Dが取り付けられた隣り合う4画素によって、その輝度値が検出される。ここで、第1の中心波長の光で照らされた瞳孔の像は、第2の中心波長の光で照らされた瞳孔の像よりも比較的明るい。そして、制御装置4によって、撮像素子6によって検出された隣り合う4画素の輝度値から第1の中心波長の光に対応する輝度値が計算され、その輝度値を組み合わせることで明瞳孔画像が取得され、撮像素子6によって検出された隣り合う画素の輝度値から第2の中心波長の光に対応する輝度値が計算され、その輝度値を組み合わせることで暗瞳孔画像が取得され、明瞳孔画像と暗瞳孔画像を基に瞳孔像の位置が算出される。これにより、明瞳孔画像と暗瞳孔画像の取得タイミングに差が生じないので、観察対象者の状態に関わらず(例えば、観察対象者において眼球回転が生じても)瞳孔像の検出精度を容易に高めることができる。 In the pupil detection device 1 of the above-described embodiment, the light from the pupil of the observer illuminated by the light of the first central wavelength by the light source 3A passes through the first dividing element 9A of the optical element 9. After being converted into linearly polarized light at a predetermined angle, the luminance value is detected by the adjacent four pixels to which the four types of polarizing elements 22A, 22B, 22C, and 22D of the image pickup element 6 are attached. At the same time, the light from the pupil of the observer illuminated by the light of the second central wavelength by the light source 3B passes through the second dividing element 9B of the optical element 9 and becomes linearly polarized light at an angle different from the predetermined angle. After the conversion, the luminance value is detected by the adjacent four pixels to which the four types of polarizing elements 22A, 22B, 22C, and 22D of the image sensor 6 are attached. Here, the image of the pupil illuminated by the light of the first center wavelength is relatively brighter than the image of the pupil illuminated by the light of the second center wavelength. Then, the control device 4 calculates the luminance value corresponding to the light of the first center wavelength from the luminance values of the adjacent four pixels detected by the image pickup element 6, and the bright pupil image is acquired by combining the luminance values. Then, the luminance value corresponding to the light of the second center wavelength is calculated from the luminance values of the adjacent pixels detected by the image pickup element 6, and the dark pupil image is acquired by combining the luminance values with the bright pupil image. The position of the pupil image is calculated based on the dark pupil image. As a result, there is no difference in the acquisition timing of the bright pupil image and the dark pupil image, so that the detection accuracy of the pupil image can be easily obtained regardless of the state of the observer (for example, even if the eyeball rotation occurs in the observer). Can be enhanced.
 特に、本実施形態では、第1の分割素子9Aの透過する光の偏光方向と、第2の分割素子9Bの透過する光の偏光方向とは、略直交している。この場合、撮像素子6の各画素に入射する第1の中心波長の光と第2の中心波長の光との間の偏光方向が明確に分かれているので、明瞳孔画像及び暗瞳孔画像の輝度計算の精度が向上し、結果としての瞳孔像の位置の検出精度も向上する。 In particular, in the present embodiment, the polarization direction of the light transmitted by the first dividing element 9A and the polarization direction of the transmitted light of the second dividing element 9B are substantially orthogonal to each other. In this case, since the polarization directions between the light having the first center wavelength and the light having the second center wavelength incident on each pixel of the image pickup element 6 are clearly separated, the brightness of the bright pupil image and the dark pupil image The accuracy of the calculation is improved, and the detection accuracy of the position of the resulting pupil image is also improved.
 また、撮像素子6は、互いに異なる4種類の角度の直線偏光の光を透過する偏光子22A,22B,22C,22Dが、隣り合う4つの画素毎に取り付けられており、制御装置4は、眼画像データのうちの隣り合う4つの画素の輝度値を基に、第1及び第2の中心波長のそれぞれの光に対応する輝度値を計算している。この場合、受光面20上において、第1及び第2の中心波長の光の様々な偏光方向成分を検出する複数の画素の配置バランスの均一化を図ることができる。これにより、明瞳孔画像及び暗瞳孔画像の像の均一化を図ることができ、検出する瞳孔像の位置の精度を安定化することができる。 Further, in the image pickup device 6, the transducers 22A, 22B, 22C, and 22D that transmit linearly polarized light having four different angles are attached to each of the four adjacent pixels, and the control device 4 is an eye. Based on the luminance values of the four adjacent pixels in the image data, the luminance values corresponding to the respective lights of the first and second central wavelengths are calculated. In this case, it is possible to make the arrangement balance of a plurality of pixels for detecting various polarization direction components of the light having the first and second center wavelengths uniform on the light receiving surface 20. As a result, the images of the bright pupil image and the image of the dark pupil can be made uniform, and the accuracy of the position of the detected pupil image can be stabilized.
 また、光源3Aのカメラ2の開口部8中心からの距離が、光源3Bの開口部8中心からの距離よりも小さくされている。このような構造により、第1の中心波長の光で照らされた瞳孔の像と、第2の中心波長の光で照らされた瞳孔の像との間の輝度差をより大きくすることができる。その結果、比較画像を用いた瞳孔像位置の検出精度をさらに向上させることができる。 Further, the distance from the center of the opening 8 of the camera 2 of the light source 3A is smaller than the distance from the center of the opening 8 of the light source 3B. With such a structure, it is possible to increase the luminance difference between the image of the pupil illuminated by the light of the first center wavelength and the image of the pupil illuminated by the light of the second center wavelength. As a result, the accuracy of detecting the position of the pupil image using the comparative image can be further improved.
 また、光学素子9は、第1の分割素子9A及び第2の分割素子9Bが開口部8を中心に点対称あるいは線対称となるように構成され、光源3A及び光源3Bは、開口部8を中心に点対称あるいは線対称となるように構成されている。こうすれば、明瞳孔画像及び暗瞳孔画像中において瞳孔像及びその周辺部の輝度のムラを防ぐことができ、比較画像において瞳孔像のみを目立たせることができ、比較画像を用いた瞳孔像位置の検出精度を向上させることができる。 Further, the optical element 9 is configured such that the first dividing element 9A and the second dividing element 9B are point-symmetrical or line-symmetrical with respect to the opening 8, and the light source 3A and the light source 3B have the opening 8. It is configured to be point-symmetrical or line-symmetrical at the center. By doing so, it is possible to prevent uneven brightness of the pupil image and its peripheral portion in the bright pupil image and the dark pupil image, and it is possible to make only the pupil image stand out in the comparison image, and the pupil image position using the comparison image can be prevented. It is possible to improve the detection accuracy of.
 特に、光学素子9が図3に示すような構造を有する場合には、明瞳孔画像及び暗瞳孔画像中において瞳孔像及びその周辺部の輝度の上下方向のムラを防ぐことができ、比較画像を用いた瞳孔像位置の検出精度を向上させることができる。
また、光学素子9が図4に示すような構造を有する場合には、明瞳孔画像及び暗瞳孔画像中において瞳孔像及びその周辺部の輝度の二次元方向のムラを防ぐことができ、比較画像を用いた瞳孔像位置の検出精度を一層向上させることができる。
In particular, when the optical element 9 has a structure as shown in FIG. 3, it is possible to prevent the brightness of the pupil image and its peripheral portion from being uneven in the vertical direction in the bright pupil image and the dark pupil image, and the comparative image can be displayed. It is possible to improve the detection accuracy of the used pupil image position.
Further, when the optical element 9 has a structure as shown in FIG. 4, it is possible to prevent unevenness in the brightness of the pupil image and its peripheral portion in the two-dimensional direction in the bright pupil image and the dark pupil image, and the comparative image. It is possible to further improve the detection accuracy of the pupil image position using.
 またさらに、制御装置4は、明瞳孔画像あるいは暗瞳孔画像を基に光源3Aあるいは光源3Bの点灯によって生じた観察対象者の角膜反射像の位置を算出している。かかる構成によれば、角膜反射像の位置を安定して検出することができる。 Furthermore, the control device 4 calculates the position of the corneal reflex image of the observer generated by lighting the light source 3A or the light source 3B based on the bright pupil image or the dark pupil image. According to such a configuration, the position of the corneal reflex image can be stably detected.
 本実施形態における照明装置3及び光学素子9の構成の利点について説明する。 The advantages of the configuration of the lighting device 3 and the optical element 9 in the present embodiment will be described.
 差分画像等の比較画像を基にした瞳孔検出においては、明瞳孔画像と暗瞳孔画像との間で瞳孔像における輝度差が大きいほうが瞳孔の検出精度が高まる。また、光学系(カメラ2と照明装置3)に対して瞳孔位置が変化せず、かつ、光学系に対する視線方向も変化せず、さらには、照明装置3の光量、カメラ2の感度等が変化しなければ(「瞳孔検出条件」と呼ぶ)、瞳孔が大きいほど、明瞳孔画像における瞳孔も暗瞳孔画像における瞳孔も輝度が高くなる。図8は、瞳孔面積Aと明瞳孔画像における瞳孔輝度L及び暗瞳孔画像における瞳孔輝度Lとの関係を示すグラフであり、図9は、瞳孔面積Aと差分画像における瞳孔輝度Lとの関係を示すグラフである。このように、理想的には、次の関係式が成立する。
=k・A,
=k・A,
=k・A=(k-k)・A
上記関係式中、k、k、kは、それぞれ比例定数であり、上記「瞳孔検出条件」が成立する場合には一定値である。この関係式からも分かるように、瞳孔が大きいときは明瞳孔画像の瞳孔輝度が高くなり、差分画像においても瞳孔輝度が高くなる。よって、瞳孔部以外の輝度がゼロに近くなっているので、差分画像から瞳孔を検出するのが容易となる。一方で、瞳孔が小さいときには瞳孔に入射する光も瞳孔面積に応じて減るため、瞳孔の輝度が低くなる。その結果、瞳孔が小さいとき(例えば、直径2.5mm程度)には、より強い光を顔に照射する必要がある。光源の光量を挙げるためには、光源に供給する電流を増やしたり、光源の数を増やす必要があり、消費電力あるいはコストが増加する。また、明瞳孔画像における瞳孔輝度を高くするためには、カメラの開口部にできるだけ近い位置に光源を配置する必要があるが、その場合は物理的に光源を配置するスペースがないといった問題が生ずる可能性がある。
In pupil detection based on a comparative image such as a difference image, the larger the luminance difference in the pupil image between the bright pupil image and the dark pupil image, the higher the pupil detection accuracy. Further, the pupil position does not change with respect to the optical system (camera 2 and the lighting device 3), the line-of-sight direction with respect to the optical system does not change, and the light amount of the lighting device 3, the sensitivity of the camera 2 and the like change. Otherwise (referred to as the "pupil detection condition"), the larger the pupil, the higher the brightness of both the pupil in the bright pupil image and the pupil in the dark pupil image. Figure 8 is a graph showing the relationship between the pupil luminance L D at the pupil luminance L B and the dark pupil image of the pupil area A and the bright pupil image, FIG. 9, a pupil luminance L S in pupil area A and the difference image It is a graph which shows the relationship of. In this way, ideally, the following relational expression holds.
L B = k B · A,
L D = k D · A,
L S = k S · A = (k B − k D ) · A
In the above relational expression, k B , k D , and k S are proportional constants, respectively, and are constant values when the above "pupil detection condition" is satisfied. As can be seen from this relational expression, when the pupil is large, the pupil brightness of the bright pupil image is high, and the pupil brightness of the difference image is also high. Therefore, since the brightness other than the pupil portion is close to zero, it becomes easy to detect the pupil from the difference image. On the other hand, when the pupil is small, the light incident on the pupil also decreases according to the pupil area, so that the brightness of the pupil is lowered. As a result, when the pupil is small (for example, about 2.5 mm in diameter), it is necessary to irradiate the face with stronger light. In order to increase the amount of light from the light source, it is necessary to increase the current supplied to the light source or increase the number of light sources, which increases power consumption or cost. Further, in order to increase the pupil brightness in the bright pupil image, it is necessary to arrange the light source as close as possible to the opening of the camera, but in that case, there arises a problem that there is no space for physically arranging the light source. there is a possibility.
 図10には、カメラの開口部中心から光源までの距離(観察対象者の眼部と光源及び開口部中心と結ぶ直線の角度差)と、瞳孔輝度との関係を示すグラフであり、グラフGは瞳孔が大きい場合の関係、グラフGは瞳孔が小さい場合の関係を示す。このように、瞳孔輝度は、開口部と光源との距離が大きい値から小さくなるに従って急激に上昇する。上述したように、明瞳孔画像の瞳孔輝度と暗瞳孔画像の瞳孔輝度の差を大きくするためには、光源3Aは開口部にできるだけ近づけて配置し、光源3Bは開口部から離して配置することが好ましい。このとき、瞳孔が大きいときは明瞳孔画像と暗瞳孔画像とで輝度差が大きくなりやすいので問題は生じにくい。問題になりやすいのは、瞳孔が極端に小さくなったときである。このようなときでも、より確実に差分画像から瞳孔を検出しやすくするためには、明瞳孔画像の瞳孔輝度を高くすることが望ましい。なぜならば、瞳孔が小さい場合には、グラフGに示すように、光源3Bを開口部から少し離せば十分に瞳孔輝度は低くなり(距離D)、必要以上に離してもほとんど瞳孔輝度は低くならない。それに対して、光源3Aを開口部に近づければ(例えば、距離Dから距離Dに)、明瞳孔画像の瞳孔輝度は急激に高くなり、差分画像からの瞳孔検出の精度が高くなる。 FIG. 10 is a graph showing the relationship between the distance from the center of the opening of the camera to the light source (the angle difference of the straight line connecting the eye of the observer with the light source and the center of the opening) and the pupil brightness. B is the relationship when the pupil is large, the graph G S indicates the relationship when the pupil is small. In this way, the pupil brightness increases sharply as the distance between the opening and the light source decreases from a large value. As described above, in order to increase the difference between the pupil brightness of the bright pupil image and the pupil brightness of the dark pupil image, the light source 3A should be arranged as close to the opening as possible, and the light source 3B should be arranged away from the opening. Is preferable. At this time, when the pupil is large, the difference in luminance between the bright pupil image and the dark pupil image tends to be large, so that the problem is unlikely to occur. The problem is most likely when the pupil becomes extremely small. Even in such a case, it is desirable to increase the pupil brightness of the bright pupil image in order to make it easier to detect the pupil from the difference image more reliably. This is because, if the pupil is small, as shown in the graph G S, if slightly release the light source 3B from opening fully pupil luminance is low (a distance D A), almost pupil luminance away than necessary It doesn't go down. In contrast, if brought close to the light source 3A in the opening (e.g., from a distance D B to the distance D C), the pupil luminance of the bright pupil image becomes abruptly high, the accuracy of the pupil detection from the difference image is high.
 一方で、瞳孔が大きいときには、グラフGに示すように、光源3Bが開口部からかなり離れるまでは瞳孔は明るくなる傾向がある。明瞳孔画像の瞳孔輝度は暗瞳孔画像のそれよりもはるかに高いので、輝度値が飽和レベルに達していない限りは、明瞳孔画像と暗瞳孔画像との間で輝度差があるので瞳孔検出に問題は生じない。なんらかの理由、例えば、消費電力削減の理由で、光源の光量を抑制したい場合には、瞳孔が大きいときと小さいときとで瞳孔輝度を一定に保つために光源3A,3Bの光量を下げることもできる。それにより、グラフGとグラフGにおいて、瞳孔の大きい場合の輝度レベルが瞳孔の小さい場合の輝度レベルに近づくこととなる。 On the other hand, when the pupil is large, as shown in the graph G B, until the light source 3B leaves considerable from the opening tends to pupil becomes brighter. Since the pupil brightness of the bright pupil image is much higher than that of the dark pupil image, unless the brightness value reaches the saturation level, there is a brightness difference between the bright pupil image and the dark pupil image, so that the pupil can be detected. No problem arises. If you want to suppress the amount of light from the light source for some reason, for example, to reduce power consumption, you can reduce the amount of light from the light sources 3A and 3B in order to keep the pupil brightness constant when the pupil is large and when it is small. .. Thus, in the graph G B and graph G S, so that the luminance level in the case of the pupil large approaches the brightness level when small pupil.
 以上の知見を踏まえて、本実施形態では、図2及び図3に示すような照明装置3及び光学素子9の構成が採用されている。このような構成の採用により、光源3Aをできるだけ開口部8に近づけて配置することができ、観察対象者からの瞳孔像のうち、第1の中心波長の光成分も第2の中心波長の光成分もバランスよく開口部8内の撮像素子6に導くことができる。 Based on the above findings, in this embodiment, the configurations of the lighting device 3 and the optical element 9 as shown in FIGS. 2 and 3 are adopted. By adopting such a configuration, the light source 3A can be arranged as close to the opening 8 as possible, and the light component of the first center wavelength in the pupil image from the observer is also the light of the second center wavelength. The components can also be guided to the image pickup element 6 in the opening 8 in a well-balanced manner.
 また、本実施形態では、図2及び図4に示すような照明装置3及び光学素子9の構成を採用した場合には、観察対象者からの瞳孔像のうち、第1の中心波長の光成分も第2の中心波長の光成分も二次元方向においてバランスよく開口部8内の撮像素子6に導くことができる。また、この構成により、光源3Aを開口部8に近づけて配置することができる。分割素子9Aはリング状の形状を有しているため、分割素子9Aの任意の一点を基準にすると一部の光源3Aは距離が遠くなってしまうが、その一点に近い光源3Aが1つでもあれば瞳孔を明るくする効果が非常に高いので、光源3A全体としては瞳孔を明るくする効果を十分に有する。また、光源3Bを開口部8内の分割素子9Bに対して十分に離すことができており、暗瞳孔画像の瞳孔輝度を十分に低くすることができる。 Further, in the present embodiment, when the configurations of the lighting device 3 and the optical element 9 as shown in FIGS. 2 and 4 are adopted, the optical component of the first center wavelength in the pupil image from the observer is observed. Also, the optical component of the second center wavelength can be guided to the image sensor 6 in the opening 8 in a well-balanced manner in the two-dimensional direction. Further, with this configuration, the light source 3A can be arranged close to the opening 8. Since the dividing element 9A has a ring shape, some light sources 3A will be far away when an arbitrary point of the dividing element 9A is used as a reference, but even one light source 3A close to that one point is available. If there is, the effect of brightening the pupil is very high, so that the light source 3A as a whole has a sufficient effect of brightening the pupil. Further, the light source 3B can be sufficiently separated from the dividing element 9B in the opening 8, and the pupil luminance of the dark pupil image can be sufficiently lowered.
 本発明は、上述した実施形態に限定されるものではない。上記実施形態の構成は様々変更されうる。 The present invention is not limited to the above-described embodiment. The configuration of the above embodiment can be changed in various ways.
 上述した実施形態では、差分画像生成部17が、明瞳孔画像と暗瞳孔画像とを比較した比較画像として差分画像を生成していたが、特開2008-246004号公報に記載されたように、比較画像として除算画像を用いるようにしてもよい。さらには、比較画像として、他の演算により明瞳孔画像と暗瞳孔画像とを比較した画像が生成されてもよい。 In the above-described embodiment, the difference image generation unit 17 generates a difference image as a comparison image comparing the bright pupil image and the dark pupil image, but as described in Japanese Patent Application Laid-Open No. 2008-246004, A divided image may be used as the comparison image. Further, as a comparison image, an image comparing the bright pupil image and the dark pupil image may be generated by another calculation.
 また、上述した実施形態では、制御装置4が、瞳孔検出部18によって差分画像を基に検出された瞳孔像の位置と、角膜反射検出部19によって暗瞳孔画像及び明瞳孔画像のそれぞれを対象に検出された角膜反射像の位置とを基に、観察対象者の視線方向及び注視点を検出してもよい。視線方向および注視点の算出手法は、本発明者らによって開発された手法(国際公開WO2012/020760号公報参照)を採用することができる。本実施形態の制御装置4で検出された瞳孔像の位置を用いることで、観察対象者の視線方向および注視点を安定して検出することができる。 Further, in the above-described embodiment, the control device 4 targets the position of the pupil image detected by the pupil detection unit 18 based on the difference image, and the dark pupil image and the bright pupil image by the corneal reflex detection unit 19. The gaze direction and gaze point of the observer may be detected based on the position of the detected corneal reflex image. As a method for calculating the line-of-sight direction and the gaze point, the method developed by the present inventors (see International Publication WO2012 / 020760) can be adopted. By using the position of the pupil image detected by the control device 4 of the present embodiment, the line-of-sight direction and the gazing point of the observer can be stably detected.
 また、上述した実施形態にかかる照明装置3における各光源の構成、及び光学素子9の構成は、様々変更してもよい。 Further, the configuration of each light source and the configuration of the optical element 9 in the lighting device 3 according to the above-described embodiment may be variously changed.
 図11には、光源3A,3B及び分割素子9A,9Bの配置の変形例を示している。この例においては、光源3A,3B及び分割素子9A,9Bは、開口部8の開口面に沿ってその中心を上下に貫く中心軸(線)の両側に配置されるように、より具体的には、中心軸を基準にして線対称となるように配置されている。分割素子9Aは、開口部8の中心を上下に貫く中心軸の両側に設けられた、開口部8の縁の形状に対応した2つの分割形状である弓形の形状を左右に有する。なお、分割素子9Aは、2つ以上(例えば、4つ)の分割形状を有していてもよい。また、分割素子9Bは、その弓形の形状に挟まれて開口部8の中心に配置されている。光源3Aは、開口部8の近傍の分割素子9Aの外側に左右に分離して配置され、光源3Bは、光源3Aの外側に左右に分離して配置されている。この構成によっても、左右に対称な構成を有するので、明瞳孔画像及び暗瞳孔画像において顔領域で輝度差が小さく保たれ、照明装置3の上下方向のサイズを小さくしたい場合に有効な構成である。 FIG. 11 shows a modified example of the arrangement of the light sources 3A and 3B and the dividing elements 9A and 9B. In this example, the light sources 3A and 3B and the dividing elements 9A and 9B are more specifically arranged on both sides of a central axis (line) that vertically runs through the center of the opening surface of the opening 8. Are arranged so as to be line symmetric with respect to the central axis. The dividing element 9A has a bow-shaped shape, which is two divided shapes corresponding to the shape of the edge of the opening 8, provided on both sides of the central axis that vertically penetrates the center of the opening 8. The dividing element 9A may have two or more (for example, four) divided shapes. Further, the dividing element 9B is sandwiched between the arcuate shapes and arranged at the center of the opening 8. The light source 3A is separately arranged on the left and right outside the dividing element 9A in the vicinity of the opening 8, and the light source 3B is separately arranged on the left and right outside the light source 3A. Since this configuration also has a symmetrical configuration to the left and right, the luminance difference is kept small in the face region in the bright pupil image and the dark pupil image, and it is an effective configuration when it is desired to reduce the size of the lighting device 3 in the vertical direction. ..
 図12には、光源3A,3B及び分割素子9A,9Bの配置の他の変形例を示している。分割素子9A,9Bの構成は、図3の構成と同一とされ、光源3Aは分割素子9A側(左側)の開口部8の近傍にのみ配置され、光源3Bも開口部8の左側に分離して配置される。このような構成においては、分割素子9A側の開口部8と光源3Aとの距離が近くされ、分割素子9A側の開口部8から遠い光源3Aは存在しないため、明瞳孔画像における瞳孔輝度が高く保たれる。さらに、光源3Bを、分割素子9B側の開口部8からの距離をある程度保ちつつ、光源3Aとの距離及び開口部8の中心からの距離を小さくすることができる。その結果、光学系全体のサイズを小さくすることができる。仮に、明瞳孔画像及び暗瞳孔画像において顔又は瞳孔内の輝度傾斜が生じたとしても、光源3Aと光源3Bの位置が近いため、輝度傾斜の傾向が両画像で大きく異なることは無いため、差分画像において瞳孔以外の部分が目立ちにくく、瞳孔の検出精度を保つことができる。 FIG. 12 shows another modification of the arrangement of the light sources 3A and 3B and the dividing elements 9A and 9B. The configurations of the dividing elements 9A and 9B are the same as those of FIG. 3, the light source 3A is arranged only in the vicinity of the opening 8 on the dividing element 9A side (left side), and the light source 3B is also separated on the left side of the opening 8. Is placed. In such a configuration, the distance between the opening 8 on the dividing element 9A side and the light source 3A is short, and there is no light source 3A far from the opening 8 on the dividing element 9A side, so that the pupil brightness in the bright pupil image is high. Be kept. Further, the distance of the light source 3B from the opening 8 on the side of the dividing element 9B can be maintained to some extent, and the distance from the light source 3A and the distance from the center of the opening 8 can be reduced. As a result, the size of the entire optical system can be reduced. Even if a luminance gradient occurs in the face or pupil in the bright pupil image and the dark pupil image, the tendency of the luminance gradient does not differ significantly between the two images because the positions of the light source 3A and the light source 3B are close to each other. In the image, the part other than the pupil is inconspicuous, and the detection accuracy of the pupil can be maintained.
 ここで、上述した実施形態、及び図11に示す形態においては、点対称及び線対称の構成には限定されず、開口部8の中心あるいは中心軸を基準にした点対称あるいは線対称な配置及び形状からずれた配置及び形状とされてもよい。例えば、明瞳孔画像及び暗瞳孔画像の輝度を調整するために、点対称あるいは線対称な配置及び形状から調整された配置及び形状とされてもよい。 Here, in the above-described embodiment and the embodiment shown in FIG. 11, the configuration is not limited to the point symmetry and the line symmetry, and the point symmetry or the line symmetry arrangement with respect to the center or the central axis of the opening 8 and the arrangement. The arrangement and shape may be deviated from the shape. For example, in order to adjust the brightness of the bright pupil image and the dark pupil image, the arrangement and shape may be adjusted from the point-symmetrical or line-symmetrical arrangement and shape.
 また、光学素子9は、任意の形状で複数に分割された複数の分割部によって構成されてもよい。例えば、四角形状の複数の分割部によって構成されてもよい。このような構成では、分割素子9A,9Bは、それぞれ、複数の分割部に適宜(例えば、交互に)割り当てられる。 Further, the optical element 9 may be composed of a plurality of divided portions divided into a plurality of parts having an arbitrary shape. For example, it may be composed of a plurality of rectangular divisions. In such a configuration, the dividing elements 9A and 9B are appropriately (for example, alternately) assigned to the plurality of dividing portions, respectively.
 また、光学素子9は、対物レンズ7の内側(撮像素子6側)に配置されている必要はなく、対物レンズ7の外側(観察対象者側)に配置されていてもよい。あるいは、カメラ2に備えられるカメラレンズが複数枚の光学レンズを含んで構成される場合には、光学素子9は、その複数の光学レンズのいずれか2枚の間で配置されていてもよく、カメラレンズ全体の前後(観察対象者側もしくは撮像素子6側)に配置されていてもよい。 Further, the optical element 9 does not have to be arranged inside the objective lens 7 (on the side of the image pickup element 6), and may be arranged on the outside of the objective lens 7 (on the side of the observer). Alternatively, when the camera lens provided in the camera 2 includes a plurality of optical lenses, the optical element 9 may be arranged between any two of the plurality of optical lenses. It may be arranged in front of and behind the entire camera lens (on the observation target side or the image pickup element 6 side).
 また、特許第4528980号公報に記載されたように、光源3A,3Bをカメラ2の開口部8の内側に配置してもよい。また、光源3Aを開口部8の内側に配置し、光源3Bを開口部8の外側に配置してもよい。 Further, as described in Japanese Patent No. 4528980, the light sources 3A and 3B may be arranged inside the opening 8 of the camera 2. Further, the light source 3A may be arranged inside the opening 8 and the light source 3B may be arranged outside the opening 8.
 また、上記実施形態においては、撮像素子6が4画素群毎に4種類の偏光子が設けられた構造を有していたが、少なくとも2種類以上の偏光子が設けられた構造であればいい。例えば、隣り合う2つの画素21毎に2種類の偏光子が設けられていてもよいし、隣り合う3つの画素21毎に3種類の偏光子が設けられていてもよい。このような変形例においても、制御装置4が、隣り合う2つの画素、あるいは、隣り合う3つの画素の画素値を基に、第1の中心波長の光成分の輝度値と第2の中心波長の光成分の輝度値を計算することができる。 Further, in the above embodiment, the image pickup device 6 has a structure in which four types of polarizing elements are provided for each four pixel group, but a structure in which at least two or more types of polarizing elements are provided may be sufficient. .. For example, two types of polarizing elements may be provided for each of two adjacent pixels 21, or three types of polarizing elements may be provided for each of three adjacent pixels 21. Even in such a modification, the control device 4 determines the luminance value of the light component of the first center wavelength and the second center wavelength based on the pixel values of two adjacent pixels or three adjacent pixels. It is possible to calculate the brightness value of the light component of.
 また、上記実施形態においては、制御装置4が、隣り合う4つの画素の画素値を基に、第1の中心波長の光成分の輝度値と第2の中心波長の光成分の輝度値を計算していたが、隣り合う4つの画素の中の少なくとも2つの画素(2つの画素、あるいは3つの画素)の画素値を基に、第1の中心波長の光成分の輝度値と第2の中心波長の光成分の輝度値を計算することもできる。 Further, in the above embodiment, the control device 4 calculates the brightness value of the light component of the first center wavelength and the brightness value of the light component of the second center wavelength based on the pixel values of the four adjacent pixels. However, based on the pixel values of at least two pixels (two pixels or three pixels) among the four adjacent pixels, the luminance value of the light component of the first center wavelength and the second center It is also possible to calculate the luminance value of the optical component of the wavelength.
 ここで、上記実施形態では、第1の偏光子の透過する光の偏光方向と、第2の偏光子の透過する光の偏光方向とは、略直交する、こととしてもよい。この場合、イメージセンサの各画素に入射する第1の中心波長の光と第2の中心波長の光との間の偏光方向が明確に分かれているので、明瞳孔画像及び暗瞳孔画像の輝度計算の精度が向上し、結果としての瞳孔像の位置の検出精度も向上する。 Here, in the above embodiment, the polarization direction of the light transmitted by the first polarizing element and the polarization direction of the light transmitted by the second polarizing element may be substantially orthogonal to each other. In this case, since the polarization directions between the light having the first center wavelength and the light having the second center wavelength incident on each pixel of the image sensor are clearly separated, the luminance calculation of the bright pupil image and the dark pupil image is performed. The accuracy of the pupil image is improved, and the detection accuracy of the position of the resulting pupil image is also improved.
 また、イメージセンサにおいては、互いに異なる4種類の角度の直線偏光の光を透過する偏光子が、隣り合う4つの画素毎に取り付けられており、演算装置は、眼画像における隣り合う4つの画素のうちの少なくとも2つの画素の輝度を基に、第1及び第2の中心波長のそれぞれの光に対応する輝度を計算する、こととしてもよい。この場合、イメージセンサ上において、第1及び第2の中心波長の光の様々な偏光方向成分を検出する複数の画素の配置バランスの均一化を図ることができる。これにより、明瞳孔画像及び暗瞳孔画像の像の均一化を図ることができ、検出する瞳孔像の位置の精度を安定化することができる。 Further, in the image sensor, a transducer that transmits light of linearly polarized light having four different angles is attached to each of the four adjacent pixels, and the arithmetic unit is used for the four adjacent pixels in the ocular image. The brightness corresponding to the light of the first and second center wavelengths may be calculated based on the brightness of at least two of the pixels. In this case, it is possible to make the arrangement balance of a plurality of pixels for detecting various polarization direction components of the light having the first and second center wavelengths uniform on the image sensor. As a result, the images of the bright pupil image and the image of the dark pupil can be made uniform, and the accuracy of the position of the detected pupil image can be stabilized.
 また、第1の光源は、カメラの開口部中心からの距離が第1の距離の位置に配置され、第2の光源は、開口部中心からの距離が第1の距離よりも大きい第2の距離の位置に配置されている、こととしてもよい。この場合、第1の中心波長の光で照らされた瞳孔の像と、第2の中心波長の光で照らされた瞳孔の像との間の輝度差をより大きくすることができる。その結果、比較画像を用いた瞳孔像位置の検出精度をさらに向上させることができる。 Further, the first light source is arranged at a position where the distance from the center of the opening of the camera is the first distance, and the second light source is the second light source whose distance from the center of the opening is larger than the first distance. It may be located at a distance. In this case, the luminance difference between the image of the pupil illuminated by the light of the first center wavelength and the image of the pupil illuminated by the light of the second center wavelength can be further increased. As a result, the accuracy of detecting the position of the pupil image using the comparative image can be further improved.
 また、第2の分割素子は、第1の分割素子の内側に配置されている、こととしてもよい。こうすれば、明瞳孔画像及び暗瞳孔画像中において瞳孔像及びその周辺部の輝度のムラを防ぐことができ、比較画像において瞳孔像のみを目立たせることができ、比較画像を用いた瞳孔像位置の検出精度を向上させることができる。 Further, the second dividing element may be arranged inside the first dividing element. By doing so, it is possible to prevent uneven brightness of the pupil image and its peripheral portion in the bright pupil image and the dark pupil image, and it is possible to make only the pupil image stand out in the comparison image, and the pupil image position using the comparison image can be prevented. It is possible to improve the detection accuracy of.
 また、第2の分割素子が、開口部の中心に配置された円形形状を有し、第1の分割素子が、第2の分割素子の外側に配置されたリング形状を有する、こととしてもよい。この場合には、明瞳孔画像及び暗瞳孔画像中において瞳孔像及びその周辺部の輝度のムラを防ぐことができるとともに、瞳孔像における輝度差を際立たせることができる。その結果、比較画像において瞳孔像のみを一層目立たせることができ、比較画像を用いた瞳孔像位置の検出精度を一層向上させることができる。 Further, the second dividing element may have a circular shape arranged at the center of the opening, and the first dividing element may have a ring shape arranged outside the second dividing element. .. In this case, it is possible to prevent uneven brightness of the pupil image and its peripheral portion in the bright pupil image and the dark pupil image, and it is possible to make the difference in brightness in the pupil image stand out. As a result, only the pupil image can be made more conspicuous in the comparison image, and the detection accuracy of the pupil image position using the comparison image can be further improved.
 また、第1の分割素子及び第2の分割素子が光学素子上の線の両側に配置されるように構成され、第1の光源及び第2の光源は、開口部を両側から挟むように配置されて構成されている、こととしてもよい。この場合には、明瞳孔画像及び暗瞳孔画像中において瞳孔像及びその周辺部の輝度のムラを防ぐことができ、比較画像において瞳孔像のみを目立たせることができ、比較画像を用いた瞳孔像位置の検出精度を向上させることができる。 Further, the first dividing element and the second dividing element are arranged so as to be arranged on both sides of the line on the optical element, and the first light source and the second light source are arranged so as to sandwich the opening from both sides. It may be configured to be. In this case, uneven brightness of the pupil image and its peripheral portion can be prevented in the bright pupil image and the dark pupil image, and only the pupil image can be conspicuous in the comparison image, and the pupil image using the comparison image can be prevented. The position detection accuracy can be improved.
 さらに、第1の分割素子が、光学素子上の線の両側に設けられた所定形状の2つ以上の分割形状を有し、第2の分割素子が、2つ以上の分割形状に挟まれて配置される、こととしてもよい。この場合にも、明瞳孔画像及び暗瞳孔画像中において瞳孔像及びその周辺部の輝度のムラを防ぐことができるとともに、瞳孔像における輝度差を際立たせることができる。その結果、比較画像において瞳孔像のみを一層目立たせることができ、比較画像を用いた瞳孔像位置の検出精度を一層向上させることができる。 Further, the first dividing element has two or more divided shapes having a predetermined shape provided on both sides of the line on the optical element, and the second divided element is sandwiched between the two or more divided shapes. It may be arranged. Also in this case, it is possible to prevent uneven brightness of the pupil image and its peripheral portion in the bright pupil image and the dark pupil image, and it is possible to make the difference in brightness in the pupil image stand out. As a result, only the pupil image can be made more conspicuous in the comparison image, and the detection accuracy of the pupil image position using the comparison image can be further improved.
 また、光学素子は、所定形状で複数に分割された複数の分割部を有し、第1の分割素子及び第2の分割素子は、複数の分割部に割り当てられている、こととしてもよい。この場合にも、明瞳孔画像及び暗瞳孔画像中において瞳孔像及びその周辺部の輝度のムラを防ぐことができるとともに、瞳孔像における輝度差を際立たせることができる。その結果、比較画像において瞳孔像のみを一層目立たせることができ、比較画像を用いた瞳孔像位置の検出精度を一層向上させることができる。 Further, the optical element may have a plurality of divided portions having a predetermined shape and the first divided element and the second divided element may be assigned to the plurality of divided portions. Also in this case, it is possible to prevent uneven brightness of the pupil image and its peripheral portion in the bright pupil image and the dark pupil image, and it is possible to make the difference in brightness in the pupil image stand out. As a result, only the pupil image can be made more conspicuous in the comparison image, and the detection accuracy of the pupil image position using the comparison image can be further improved.
 またさらに、演算装置は、明瞳孔画像あるいは暗瞳孔画像を基に第1の光源あるいは第2の光源の点灯によって生じた対象者の角膜反射像の位置を算出する、こととしてもよい。かかる構成によれば、角膜反射像の位置を安定して検出することができる。 Furthermore, the arithmetic unit may calculate the position of the corneal reflex image of the subject generated by the lighting of the first light source or the second light source based on the bright pupil image or the dark pupil image. According to such a configuration, the position of the corneal reflex image can be stably detected.
 さらにまた、演算装置は、比較画像を基に算出した瞳孔像の位置と、明瞳孔画像あるいは暗瞳孔画像を基に算出した角膜反射像の位置とを基に、対象者の視線方向を検出する、こととしてもよい。こうすれば、対象者の視線方向を安定して検出することができる。 Furthermore, the arithmetic unit detects the line-of-sight direction of the subject based on the position of the pupil image calculated based on the comparative image and the position of the corneal reflex image calculated based on the bright pupil image or the dark pupil image. , May be. By doing so, the line-of-sight direction of the subject can be stably detected.
 本開示の一側面は、人の画像から瞳孔を検出する瞳孔検出装置を使用用途とし、対象者の状態に関わらず瞳孔の検出精度を容易に高めることができるものである。 One aspect of the present disclosure is to use a pupil detection device that detects a pupil from a human image, and to easily improve the detection accuracy of the pupil regardless of the state of the subject.
 A…眼球、3A,3B…光源、1…瞳孔検出装置、2…カメラ、3…照明装置、4…制御装置(演算装置)、6…撮像素子(イメージセンサ)、8…開口部、9…光学素子、9A,9B…分割素子、21…画素、22A,22B,22C,22D…偏光子。 A ... eyeball, 3A, 3B ... light source, 1 ... pupil detection device, 2 ... camera, 3 ... lighting device, 4 ... control device (arithmetic device), 6 ... image pickup element (image sensor), 8 ... opening, 9 ... Optical element, 9A, 9B ... Split element, 21 ... Pixel, 22A, 22B, 22C, 22D ... Polarizer.

Claims (11)

  1.  対象者の眼を撮像することにより眼画像を取得するカメラと、
     前記カメラの開口部の外側あるいは内側に設けられて前記カメラに対して前記対象者の瞳孔を第1の中心波長の光で照らす第1の光源と、
     前記カメラの開口部の外側あるいは内側に設けられて前記カメラに対して前記対象者の瞳孔を第1の中心波長と異なる第2の中心波長で照らす第2の光源と、
     前記眼画像を処理する演算装置とを備え、
     前記カメラは、
     互いに異なる少なくとも2種類の角度の直線偏光の光を透過する偏光子が、隣り合う画素毎に取り付けられたイメージセンサと、
     前記第1の中心波長の光を通過させるバンドパスフィルタと所定角度の直線偏光を透過する第1の偏光子とが組み合わされた第1の分割素子と、前記第2の中心波長の光を通過させるバンドパスフィルタと前記所定角度と異なる角度の直線偏光を透過する第2の偏光子とが組み合わされた第2の分割素子とが、前記開口部と前記イメージセンサとの間において前記開口部に沿って分割して設けられた光学素子と、
    を有し、
     前記演算装置は、
    前記眼画像のうちの前記隣り合う画素の輝度を基に、前記第1の中心波長の光に対応する輝度を計算し、計算した前記輝度を組み合わせて前記対象者の瞳孔が比較的明るく写った明瞳孔画像を取得し、
    前記眼画像のうちの前記隣り合う画素の輝度を基に、前記第2の中心波長の光に対応する輝度を計算し、計算した前記輝度を組み合わせて前記対象者の瞳孔が比較的暗く写った暗瞳孔画像を取得し、
    前記明瞳孔画像と前記暗瞳孔画像とを比較した比較画像を基に前記対象者の瞳孔像の位置を算出する、
    瞳孔検出装置。
    A camera that acquires an eye image by taking an image of the subject's eye,
    A first light source provided outside or inside the opening of the camera to illuminate the subject's pupil with light of a first center wavelength with respect to the camera.
    A second light source provided outside or inside the opening of the camera to illuminate the subject's pupil with a second center wavelength different from the first center wavelength with respect to the camera.
    It is equipped with an arithmetic unit that processes the eye image.
    The camera
    An image sensor in which a polarizing element that transmits light of linearly polarized light of at least two different angles is attached to each adjacent pixel, and
    It passes through a first dividing element in which a bandpass filter that passes light of the first center wavelength and a first polarizing element that transmits linearly polarized light at a predetermined angle are combined, and light of the second center wavelength. A second dividing element, which is a combination of a bandpass filter to be generated and a second polarizing element that transmits linearly polarized light at an angle different from the predetermined angle, is formed in the opening between the opening and the image sensor. Optical elements divided along the line and
    Have,
    The arithmetic unit is
    Based on the brightness of the adjacent pixels in the eye image, the brightness corresponding to the light of the first center wavelength was calculated, and the calculated brightness was combined to make the pupil of the subject appear relatively bright. Obtain a bright pupil image and
    Based on the brightness of the adjacent pixels in the eye image, the brightness corresponding to the light of the second center wavelength is calculated, and the calculated brightness is combined to make the pupil of the subject appear relatively dark. Get a dark pupil image,
    The position of the pupil image of the subject is calculated based on the comparative image comparing the bright pupil image and the dark pupil image.
    Pupil detector.
  2.  前記第1の偏光子の透過する光の偏光方向と、前記第2の偏光子の透過する光の偏光方向とは、略直交する、
    請求項1記載の瞳孔検出装置。
    The polarization direction of the light transmitted by the first polarizing element and the polarization direction of the light transmitted by the second polarizing element are substantially orthogonal to each other.
    The pupil detection device according to claim 1.
  3.  前記イメージセンサにおいては、互いに異なる4種類の角度の直線偏光の光を透過する偏光子が、隣り合う4つの画素毎に取り付けられており、
     前記演算装置は、
    前記眼画像における前記隣り合う4つの画素のうちの少なくとも2つの画素の輝度を基に、前記第1及び第2の中心波長のそれぞれの光に対応する輝度を計算する、
    請求項1又は2記載の瞳孔検出装置。
    In the image sensor, a polarizing element that transmits light of linearly polarized light having four different angles is attached to each of four adjacent pixels.
    The arithmetic unit is
    Based on the brightness of at least two of the four adjacent pixels in the eye image, the brightness corresponding to the light of the first and second center wavelengths is calculated.
    The pupil detection device according to claim 1 or 2.
  4.  前記第1の光源は、前記カメラの開口部中心からの距離が第1の距離の位置に配置され、
     前記第2の光源は、前記開口部中心からの距離が第1の距離よりも大きい第2の距離の位置に配置されている、
    請求項1~3のいずれか1項に記載の瞳孔検出装置。
    The first light source is arranged at a position where the distance from the center of the opening of the camera is the first distance.
    The second light source is arranged at a position of a second distance where the distance from the center of the opening is larger than the first distance.
    The pupil detection device according to any one of claims 1 to 3.
  5.  前記第2の分割素子は、前記第1の分割素子の内側に配置されている、
    請求項1~4のいずれか1項に記載の瞳孔検出装置。
    The second dividing element is arranged inside the first dividing element.
    The pupil detection device according to any one of claims 1 to 4.
  6.  前記第2の分割素子が、前記開口部の中心に配置された円形形状を有し、
     前記第1の分割素子が、前記第2の分割素子の外側に配置されたリング形状を有する、
    請求項5に記載の瞳孔検出装置。
    The second dividing element has a circular shape arranged in the center of the opening.
    The first dividing element has a ring shape arranged outside the second dividing element.
    The pupil detection device according to claim 5.
  7.  前記第1の分割素子及び前記第2の分割素子は、前記光学素子上の線の両側に配置されるように構成され、
     前記第1の光源及び前記第2の光源は、前記開口部を両側から挟むように配置されて構成されている、
    請求項1~4のいずれか1項に記載の瞳孔検出装置。
    The first dividing element and the second dividing element are configured to be arranged on both sides of a line on the optical element.
    The first light source and the second light source are arranged so as to sandwich the opening from both sides.
    The pupil detection device according to any one of claims 1 to 4.
  8.  前記第1の分割素子が、前記光学素子上の線の両側に設けられた所定形状の2つ以上の分割形状を有し、
     前記第2の分割素子が、前記2つ以上の分割形状に挟まれて配置される、
    請求項7に記載の瞳孔検出装置。
    The first dividing element has two or more divided shapes having a predetermined shape provided on both sides of a line on the optical element.
    The second dividing element is arranged so as to be sandwiched between the two or more divided shapes.
    The pupil detection device according to claim 7.
  9.  前記光学素子は、所定形状で複数に分割された複数の分割部を有し、
     前記第1の分割素子及び前記第2の分割素子は、前記複数の分割部に割り当てられている、
    請求項1~4のいずれか1項に記載の瞳孔検出装置。
    The optical element has a plurality of divided portions divided into a plurality of parts having a predetermined shape.
    The first dividing element and the second dividing element are assigned to the plurality of dividing portions.
    The pupil detection device according to any one of claims 1 to 4.
  10.  前記演算装置は、前記明瞳孔画像あるいは前記暗瞳孔画像を基に前記第1の光源あるいは第2の光源の点灯によって生じた前記対象者の角膜反射像の位置を算出する、
    請求項1~9のいずれか1項に記載の瞳孔検出装置。
    The arithmetic unit calculates the position of the corneal reflex image of the subject generated by lighting the first light source or the second light source based on the bright pupil image or the dark pupil image.
    The pupil detection device according to any one of claims 1 to 9.
  11.  前記演算装置は、前記比較画像を基に算出した前記瞳孔像の位置と、前記明瞳孔画像あるいは前記暗瞳孔画像を基に算出した前記角膜反射像の位置とを基に、前記対象者の視線方向を検出する、
    請求項10に記載の瞳孔検出装置。
    The arithmetic unit is based on the position of the pupil image calculated based on the comparative image and the position of the corneal reflex image calculated based on the bright pupil image or the dark pupil image, and the line of sight of the subject. Detect the direction,
    The pupil detection device according to claim 10.
PCT/JP2021/020053 2020-06-09 2021-05-26 Pupil detection device WO2021251146A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022530121A JPWO2021251146A1 (en) 2020-06-09 2021-05-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-100416 2020-06-09
JP2020100416 2020-06-09

Publications (1)

Publication Number Publication Date
WO2021251146A1 true WO2021251146A1 (en) 2021-12-16

Family

ID=78846017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020053 WO2021251146A1 (en) 2020-06-09 2021-05-26 Pupil detection device

Country Status (2)

Country Link
JP (1) JPWO2021251146A1 (en)
WO (1) WO2021251146A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189793A1 (en) * 2022-03-29 2023-10-05 ソニーグループ株式会社 Medical observation device and information processing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138673A (en) * 1988-07-14 1990-05-28 A T R Tsushin Syst Kenkyusho:Kk Image pickup device
JPH11169345A (en) * 1997-12-15 1999-06-29 Sukara Kk Pupillometer
JP2014151025A (en) * 2013-02-08 2014-08-25 Scalar Corp Eyeball imaging apparatus
WO2017013913A1 (en) * 2015-07-17 2017-01-26 ソニー株式会社 Gaze detection device, eyewear terminal, gaze detection method, and program
WO2017077676A1 (en) * 2015-11-05 2017-05-11 パナソニックIpマネジメント株式会社 Camera system, feeding system, imaging method, and imaging device
JP2018126492A (en) * 2017-02-07 2018-08-16 パナソニックIpマネジメント株式会社 Eyeball imaging apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138673A (en) * 1988-07-14 1990-05-28 A T R Tsushin Syst Kenkyusho:Kk Image pickup device
JPH11169345A (en) * 1997-12-15 1999-06-29 Sukara Kk Pupillometer
JP2014151025A (en) * 2013-02-08 2014-08-25 Scalar Corp Eyeball imaging apparatus
WO2017013913A1 (en) * 2015-07-17 2017-01-26 ソニー株式会社 Gaze detection device, eyewear terminal, gaze detection method, and program
WO2017077676A1 (en) * 2015-11-05 2017-05-11 パナソニックIpマネジメント株式会社 Camera system, feeding system, imaging method, and imaging device
JP2018126492A (en) * 2017-02-07 2018-08-16 パナソニックIpマネジメント株式会社 Eyeball imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189793A1 (en) * 2022-03-29 2023-10-05 ソニーグループ株式会社 Medical observation device and information processing device

Also Published As

Publication number Publication date
JPWO2021251146A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
US10108261B1 (en) Eye tracking based on light polarization
US10257507B1 (en) Time-of-flight depth sensing for eye tracking
US11238598B1 (en) Estimation of absolute depth from polarization measurements
US8014571B2 (en) Multimodal ocular biometric system
US20170249509A1 (en) Adaptive camera and illuminator eyetracker
JP6159263B2 (en) Optical measurement apparatus and method for adjusting illumination characteristics and capturing at least one parameter in at least one eye
CN108073016B (en) Image forming apparatus with a toner supply device
US20110170060A1 (en) Gaze Tracking Using Polarized Light
US10307057B2 (en) Eye imaging apparatus
JP6631951B2 (en) Eye gaze detection device and eye gaze detection method
US20220148218A1 (en) System and method for eye tracking
JP2917953B2 (en) View point position detection device
US10448820B2 (en) Eye imaging apparatus with sequential illumination and a syntactic image analyzing method
WO2018164104A1 (en) Eye image processing device
WO2021251146A1 (en) Pupil detection device
US11871990B2 (en) Retinal camera with dynamic illuminator for expanding eyebox
JP2016095584A (en) Pupil detection device, pupil detection method, and pupil detection program
JP6687195B2 (en) Eye image processing device
JPH08322797A (en) Visual axis detector
JP2020140637A (en) Pupil detection device
WO2022196650A1 (en) Line-of-sight tracking system and virtual image display device
JP4679123B2 (en) Photorefractor
US20240013688A1 (en) Image processing apparatus, display apparatus, image processing method, and storage medium
KR20230070931A (en) Illumination and image forming apparatus for fundus image and method thereof
JP2023032223A (en) Biological information analysis device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821771

Country of ref document: EP

Kind code of ref document: A1