WO2021251094A1 - Sputtering target, method for producing sputtering target and optical functional film - Google Patents

Sputtering target, method for producing sputtering target and optical functional film Download PDF

Info

Publication number
WO2021251094A1
WO2021251094A1 PCT/JP2021/019116 JP2021019116W WO2021251094A1 WO 2021251094 A1 WO2021251094 A1 WO 2021251094A1 JP 2021019116 W JP2021019116 W JP 2021019116W WO 2021251094 A1 WO2021251094 A1 WO 2021251094A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
sputtering target
less
mass
powder
Prior art date
Application number
PCT/JP2021/019116
Other languages
French (fr)
Japanese (ja)
Inventor
啓太 梅本
大亮 金子
幸也 杉内
晋 岡野
健志 大友
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2021251094A1 publication Critical patent/WO2021251094A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only

Definitions

  • the present invention relates to a sputtering target used for forming an optical functional film that is laminated on, for example, a metal thin film to reduce reflection of light from the metal thin film, a method for manufacturing the sputtering target, and an optical functional film. It is about.
  • This application claims priority based on Japanese Patent Application No. 2020-099577 filed in Japan on June 8, 2020, the contents of which are incorporated herein by reference.
  • a projection type capacitive touch panel has been adopted as an input means for a mobile terminal device or the like.
  • a sensing electrode is formed for touch position detection.
  • the electrode for sensing is usually formed by patterning, and an X electrode extending in the X direction and a Y electrode extending in the Y direction orthogonal to the X direction are formed on one surface of the transparent substrate. These are provided and arranged in a grid pattern.
  • the pattern of the electrodes is visually recognized from the outside because the metal film has a metallic luster. Therefore, it is conceivable to reduce the visibility of the electrodes by forming a low-reflectance film having a low reflectance of visible light on the metal thin film.
  • a color filter for color display is adopted.
  • a black member called a black matrix is formed for the purpose of improving contrast and color purity and improving visibility.
  • the above-mentioned low reflectance film can also be used as this black matrix (hereinafter referred to as “BM”).
  • a back electrode of the solar cell when sunlight is incident through a glass substrate or the like, a back electrode of the solar cell is formed on the opposite side thereof.
  • a metal film such as molybdenum (Mo) or silver (Ag) is used.
  • Mo molybdenum
  • Ag silver
  • Patent Document 1 proposes a sputtering target containing an oxide and an oxynitride as a sputtering target for forming the above-mentioned low reflectance film (optical functional film).
  • sintering is performed at a temperature of 1000 ° C. or higher, but when zinc oxide (ZnO) is contained as an oxide, zinc oxide (ZnO) is contained.
  • zinc oxide is reduced to sublimate Zn, which causes a problem of composition deviation or a decrease in density.
  • the above-mentioned optical functional film is required to have durability so that the optical characteristics do not change significantly during manufacturing and use.
  • heat resistance is required.
  • alkali resistance is required because alkali is used when developing or peeling the resist film.
  • the present invention has been made in view of the above-mentioned circumstances, and efficiently stabilizes an optical functional film having excellent heat resistance and alkali resistance and capable of sufficiently suppressing reflection of light from a metal thin film or the like. It is an object of the present invention to provide a sputtering target capable of forming a film, a method for manufacturing the sputtering target, and an optical functional film.
  • the sputtering target according to one aspect of the present invention contains one or more metal phases selected from Nb, W, Ti and a zinc oxide phase, and has a density ratio of 80. % Or more, and the standard deviation of the content of each of one or two or more kinds of metal elements selected from Nb, W, Ti measured at a plurality of points on the sputtered surface is 5 mass% or less. It is a feature.
  • the sputtering target having this configuration since it contains one or more kinds of metal phases selected from Nb, W, and Ti and a zinc oxide phase, it has excellent optical properties, heat resistance, and resistance. It is possible to form an optical functional film having excellent alkalinity. Since the density ratio is 80% or more, it is possible to suppress the occurrence of abnormal discharge during sputtering. Further, since the standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti measured at a plurality of points on the spatter surface is 5 mass% or less, the reflectance is increased. It is possible to form an optical functional film with little variation.
  • the average particle area of the pores is 5 ⁇ m 2 or less.
  • the average particle area of the pores is limited to 5 ⁇ m 2 or less, it is possible to suppress the occurrence of abnormal discharge due to the pores during sputtering, and it is possible to form an optical functional film more stably. Become.
  • one or more kinds of metal M selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W and Y. It is preferable that the total content of the metal M containing an oxide is in the range of 0.1 mass% or more and 40 mass% or less, with 100 mass% of all metal elements. In this case, since the above-mentioned oxide of the metal M is contained in the range of 0.1 mass% or more and 40 mass% or less with the total metal element as 100 mass%, the heat resistance and alkali resistance of the formed optical functional film can be improved. It can be further improved.
  • the ratio of the standard deviation of the specific resistance values measured at a plurality of points on the sputtering surface divided by the average value is preferably 100% or less. In this case, since the variation in the specific resistance value on the sputtered surface is suppressed, the occurrence of abnormal discharge during sputtering can be suppressed, and the optical functional film can be more stably formed.
  • the total content of Nb, W, and Ti is preferably 50 mass% or more with respect to the whole including O and C.
  • the specific resistance is sufficiently low and the occurrence of abnormal discharge can be further suppressed.
  • the heat resistance and alkali resistance of the formed optical functional film can be further improved.
  • C is further contained in the range of 1 mass% or more and 10 mass% or less with respect to the whole.
  • the heat resistance and alkali resistance of the formed optical functional film can be further improved.
  • the C content is limited to 10 mass% or less with respect to the whole, it is possible to secure the etching property of the formed optical functional film.
  • the method for producing a sputtering target according to one aspect of the present invention is a method for producing a sputtering target containing one or more metal phases selected from Nb, W, Ti and a zinc oxide phase, and is an average.
  • a metal powder consisting of one or more kinds selected from Nb, W, Ti having a particle size of 5 ⁇ m or more and zinc oxide powder having an average particle size of 1 ⁇ m or less are used in a solvent having a water concentration of 30 vol% or more. Baking to obtain granulated powder by mixing and drying to obtain granulated powder, and heating and pressurizing the obtained granulated powder at a temperature of 1000 ° C. or lower and a pressure of 145 MPa or higher. It is characterized by having a binding process.
  • one or more metal powders selected from Nb, W, and Ti having an average particle size of 5 ⁇ m or more and zinc oxide powder having an average particle size of 1 ⁇ m or less are used.
  • Nb, W, and Ti having an average particle size of 5 ⁇ m or more and zinc oxide powder having an average particle size of 1 ⁇ m or less are used.
  • a metal powder having a large particle size and a zinc oxide powder having a small particle size are provided. It is possible to obtain a granulated powder in which and is uniformly mixed.
  • the sublimation of zinc oxide and the reduction reaction of zinc oxide can be suppressed, the generation of gas can be suppressed, the density can be improved, and the occurrence of composition deviation can be suppressed.
  • the obtained granulated powder is provided with a sintering step of heating and pressurizing the obtained granulated powder at a temperature of 1000 ° C. or lower and a pressure of 145 MPa or higher, the density can be sufficiently improved.
  • a molding step of pressurizing the granulated powder at room temperature to form the granulated powder may be provided before the sintering step.
  • the molding step of pressurizing and molding the granulated powder at room temperature is provided, a sintered body having a further improved density can be obtained.
  • the average particle size is within the range of 0.1 ⁇ m or more and 12 ⁇ m or less.
  • metal M oxide powders selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y may be mixed.
  • it is possible to produce a sputtering target containing an oxide of one or more kinds of metal M selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W and Y. can.
  • the average particle size of the oxide powder of the metal M is within the range of 0.1 ⁇ m or more and 12 ⁇ m or less, the density can be sufficiently improved and the oxide of the metal M is caused at the time of sputtering. The occurrence of abnormal discharge can be suppressed.
  • the average particle size of the zinc oxide powder is 100 nm or less. In this case, it is possible to further improve the density.
  • the average particle size of the metal powder is 10 ⁇ m or more. In this case, it is possible to further improve the density.
  • the optical functional film according to one aspect of the present invention is an optical functional film containing one or more metals selected from Nb, W, Ti and zinc oxide, and is selected from Nb, W, Ti. It is characterized in that the standard deviation of the content of each of one or more kinds of metal elements is 5 mass% or less.
  • the optical functional film having this configuration since it contains one or more metals selected from Nb, W, and Ti and zinc oxide, it has excellent optical properties and excellent heat resistance and alkali resistance. ing. Since the standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti is 5 mass% or less, the variation in reflectance becomes small.
  • one or more kinds of metals selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, Y may contain an oxide of M.
  • metal M selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y, it has heat resistance. And it becomes possible to further improve the alkali resistance.
  • a sputtering target capable of efficiently and stably forming an optical functional film having excellent heat resistance and alkali resistance and capable of sufficiently suppressing reflection of light from a metal thin film or the like. It becomes possible to provide a method for manufacturing a sputtering target and an optical functional film.
  • the optical functional film 12 according to the present embodiment is formed so as to be laminated on the metal wiring film 11 formed on the surface of the substrate 1.
  • the metal wiring film 11 is made of aluminum, which is a metal having excellent conductivity, an aluminum alloy, copper, a copper alloy, or the like, and in the present embodiment, it is made of copper. Since the metal wiring film 11 has a metallic luster, it reflects visible light and is visually recognized from the outside.
  • the optical functional film 12 of the present embodiment is provided to suppress the reflection of visible light in the laminated metal wiring film 11.
  • the optical functional film 12 of the present embodiment contains one or more metals selected from Nb, W, and Ti and zinc oxide.
  • the standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti is 5 mass% or less.
  • the optical functional film 12 of the present embodiment is used to oxidize one or more metals M selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y. It may contain objects.
  • the optical functional film 12 of the present embodiment contains one or more selected from Nb, W, and Ti in a total amount of 50 mass% or more and 80 mass% or less, Zn in an amount of 10 mass% or more and 30 mass% or less, and the balance is oxygen. And unavoidable impurities, and if necessary, one or more metals M selected from Al, Si, Ga, In, Sn, Zr, Mo, Ta, and Y are added in a total of 40 mass% or less, C. May be included within the range of 10 mass% or less.
  • the content of one or more metal elements selected from Nb, W, and Ti is measured at five points on the film surface.
  • the standard deviation of the contents of these metal elements is calculated.
  • the measurement points are one point of intersection where diagonal lines connecting the opposite corners of the film surface intersect, and diagonal lines from the corners on each diagonal line. There are 5 points at 4 points within 10% of the total length of the.
  • the measurement point is within 10% of the total length of the diagonal line from the outer peripheral portion on two straight lines passing through the center of the film surface and the center of the film surface and orthogonal to each other.
  • the respective contents of Nb, W, and Ti measured to obtain the standard deviation also include Nb, W, and Ti contained in the oxide of the metal M.
  • the standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti in the optical functional film 12 is preferably 3 mass% or less, and preferably 1 mass% or less. More preferred.
  • the above-mentioned optical functional film 12 is formed into a film using the sputtering target of the present embodiment.
  • the sputtering target according to the present embodiment will be described below.
  • the sputtering target of the present embodiment includes one or more metal phases selected from Nb, W, Ti and a zinc oxide phase. Further, the sputtering target of the present embodiment has a density ratio of 80% or more. Further, in the sputtering target of the present embodiment, the standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti measured at a plurality of points on the sputtering surface is 5 mass% or less. It is said that.
  • the total content of Nb, W, and Ti is preferably 50 mass% or more.
  • one or more metal M oxides selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y are used.
  • the total content of the metal M may be in the range of 0.1 mass% or more and 40 mass% or less, where 100 mass% is the total metal element.
  • the total content of Nb, W, and Ti described above also includes Nb, W, and Ti contained in the oxide of the metal M.
  • the total content of the metal M is the total content of the metal M in the oxide of the metal M, and does not include the amounts of Nb, W, and Ti in the metal phase. Further, in the sputtering target of the present embodiment, C may be contained in the range of 1 mass% or more and 10 mass% or less.
  • one or more selected from Nb, W, and Ti are contained in a total amount of 50 mass% or more and 80 mass% or less, Zn is contained in an amount of 10 mass% or more and 30 mass% or less, and the balance is oxygen and It is preferably composed of unavoidable impurities, and if necessary, one or more metals M selected from Al, Si, Ga, In, Sn, Zr, Mo, Ta, and Y are added in a total of 40 mass% or less, C. It may be contained within the range of 10 mass% or less.
  • the average particle area of the pores is 5 ⁇ m 2 or less. Further, in the sputtering target of the present embodiment, the ratio of the standard deviation of the specific resistance values measured at a plurality of points on the sputtering surface divided by the average value is preferably 100% or less.
  • the phase composition the density ratio, the standard deviation of the content of each metal element in the sputtered surface, the average particle area of pores, the composition, and the variation in the specific resistance value in the sputtered surface are described. , The reasons specified above are shown.
  • the sputtering target of the present embodiment contains one or more metal phases selected from Nb, W, and Ti, and a zinc oxide phase. This makes it possible to form the optical functional film 12 of the present embodiment by sputtering.
  • the optical functional film 12 is excellent in optical characteristics, heat resistance and alkali resistance.
  • the area ratio (percentage) of the metal phase / (metal phase + zinc oxide phase) is preferably 10 to 95%, more preferably 20 to 80%, still more preferably 30 to 70%. The area of each phase is measured by the following method.
  • the composition image (COMPO image) of the sample collected from the sputtering target is photographed using an electron probe microanalyzer (EPMA) device, and element mapping is performed.
  • EPMA electron probe microanalyzer
  • the element mapping image of zinc is binarized by Brightness using the image processing software ImageJ. Calculate the area of the zinc-containing region.
  • the area of the zinc-containing region is defined as the area of the zinc oxide phase.
  • a binarized image of the content region of Nb, W, Ti, O is obtained.
  • the Nb, W, and Ti-containing regions are made black, the O-containing regions are made white, and the surroundings are transparently image-processed.
  • a region containing Nb, W, Ti as a metal component is obtained.
  • the area of the region containing Nb, W, and Ti as metal components is calculated. That is, the area of the region containing Nb, W, and Ti that does not contain O is defined as the area of the metal phase.
  • the density ratio is 80% or more. As a result, the occurrence of abnormal discharge during sputtering can be suppressed, and the optical functional film 12 of the present embodiment can be stably formed.
  • the density ratio is preferably 85% or more, and more preferably 90% or more.
  • the upper limit of the density ratio is preferably 100% or less.
  • the standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti measured at a plurality of points on the sputtering surface is 5 mass% or less.
  • the standard deviation of the contained metal element is an index showing the magnitude of variation in the content of the metal element, and is set to 5 mass% or less.
  • the respective contents of Nb, W, and Ti measured to obtain the standard deviation also include Nb, W, and Ti contained in the oxide of the metal M. This makes it possible to form an optical functional film 12 having little variation in reflectance.
  • the standard deviation of the reflectance measured at a plurality of points is preferably 3.0% or less, and preferably 2.5% or less.
  • the standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti on the sputtered surface is preferably 4 mass% or less, and more preferably 3 mass% or less. ..
  • the standard deviation of the content of each metal element in the sputtered surface is, for example, the angle at which the sputtered surfaces face each other when the sputtered surface of the sputtering target is rectangular as shown in FIG. At the intersection (1) where the diagonal lines connecting the parts intersect, and at the five points (2), (3), (4), and (5) located within 10% of the total length of the diagonal line from the corners on each diagonal line. , It is preferable to measure the content of each metal element and calculate the standard deviation.
  • the center of the sputtering surface (1) and the outer peripheral portions on two straight lines passing through the center of the sputtering surface and orthogonal to each other when the sputtering surface of the sputtering target is circular, the center of the sputtering surface (1) and the outer peripheral portions on two straight lines passing through the center of the sputtering surface and orthogonal to each other.
  • the content of each metal element can be measured and the standard deviation can be calculated at the five points (2), (3), (4), and (5) located within 10% of the total length of the diagonal line. preferable.
  • the sputtered surfaces are spaced 90 ° in the circumferential direction at both ends A and B in the axis O direction and the central portion C. It is preferable to measure the content of each metal element at a total of 12 points (1), (2), (3), and (4) and calculate the standard deviation.
  • the average particle area of the pores is more preferably 4 ⁇ m 2 or less, and further preferably 3 ⁇ m 2 or less.
  • the optical functional film 12 can be stably formed. Further, the heat resistance and alkali resistance of the formed optical functional film 12 can be further improved.
  • the lower limit of the total content of Nb, W, and Ti is more preferably 55 mass% or more, and further preferably 60 mass% or more.
  • the upper limit of the total content of Nb, W, and Ti is preferably 90 mass% or less, and more preferably 80 mass% or less.
  • one or more kinds of metal M oxides selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y are used.
  • the total content of the metal M is within the range of 0.1 mass% or more and 40 mass% or less with 100 mass% of all metal elements, the heat resistance and resistance of the formed optical functional film 12 It is possible to further improve the alkalinity and suppress the occurrence of abnormal discharge due to the oxide of the metal M at the time of sputtering.
  • one or more kinds of metal M oxides selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y are contained, all metal elements are used.
  • the lower limit of the total content of the metal M as 100 mass% is more preferably 1 mass% or more, and further preferably 5 mass% or more. Further, the upper limit of the total content of the metal M is more preferably 35 mass% or less, and further preferably 30 mass% or less.
  • the heat resistance and alkali resistance of the film-formed optical functional film 12 can be further improved. ..
  • the lower limit of the content of C is more preferably 2 mass% or more, and further preferably 3 mass% or more.
  • the upper limit of the C content is preferably 7 mass% or less, and more preferably 5 mass% or less.
  • the ratio obtained by dividing the standard deviation of the specific resistance values measured at a plurality of points on the sputtering surface by the average value is 100% or less, an abnormal discharge occurs during sputtering. Can be suppressed, and a more stable optical functional film can be formed.
  • the ratio of the standard deviation of the specific resistance values measured at a plurality of points on the spatter surface divided by the average value is more preferably 100% or less, and more preferably 50% or less.
  • the points where the specific resistance value is measured are the same as the points where the content of the metal element in FIGS. 3, 4, 5A and 5B is measured.
  • a metal powder composed of one or more kinds selected from Nb, W, and Ti and zinc oxide powder are mixed using a solvent to obtain a granulated powder. It includes a grain powder producing step S01, a sintering step S02 in which the obtained granulated powder is pressurized and heated to be sintered, and a machining step S03 in which the obtained sintered body is machined.
  • granulation powder production step S01 In this granulation powder preparation step S01, one or more metal powders selected from Nb, W, Ti having an average particle diameter of 5 ⁇ m or more and zinc oxide powder having an average particle diameter of 1 ⁇ m or less are used. prepare. Then, these metal powders and zinc oxide powders are mixed using a solvent having a water concentration of 30 vol% or more and dried to obtain granulated powder. Examples of the solvent include pure water, a mixed solution of pure water and ethanol, and the like.
  • the average particle size of one or more metal powders selected from Nb, W, and Ti is 5 ⁇ m or more, and the average particle size of zinc oxide powder is 1 ⁇ m or less. Occasionally, it is possible to suppress the generation of gas due to the sublimation of zinc oxide and metallic zinc, and it is possible to improve the density of the sintered body. Further, by mixing the metal powder and the zinc oxide powder with a solvent having a water concentration of 30 vol% or more, the metal powder and the zinc oxide after drying are produced by the aggregation effect of the powder due to the surface tension of the solvent during slurry drying. Separation from powder can be suppressed, and variation in composition can be suppressed.
  • the lower limit of the average particle size of one or more metal powders selected from Nb, W, and Ti is preferably 7 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the upper limit of the average particle size of the metal powder is preferably 20 ⁇ m or less, and more preferably 18 ⁇ m or less.
  • the upper limit of the average particle size of the zinc oxide powder is preferably 500 nm or less, more preferably 100 nm or less.
  • the lower limit of the average particle size of the zinc oxide powder is preferably 30 nm or more, more preferably 50 nm or more.
  • the concentration of water in the solvent is preferably 50 vol% or more, more preferably 80 vol% or more.
  • the sputtering target contains an oxide of one or more kinds of metal M selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y.
  • metal M selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y.
  • Oxide powder of one or more kinds of metal M selected from Nb, Zr, Mo, Ta, W and Y is mixed with a solvent having a water concentration of 30 vol% or more to prepare a granulated powder. Is preferable.
  • the average particle size of the oxide powder of the metal M By setting the average particle size of the oxide powder of the metal M to 0.1 ⁇ m or more, it is possible to improve the density of the sintered body. On the other hand, by setting the average particle size of the oxide powder of the metal M to 12 ⁇ m or less, it is possible to suppress the occurrence of abnormal discharge due to the oxide of the metal M during sputtering.
  • the lower limit of the average particle size of the oxide powder of the metal M is preferably 0.3 ⁇ m or more, and more preferably 0.5 ⁇ m or more.
  • the upper limit of the average particle size of the oxide powder of the metal M is preferably 10 ⁇ m or less, and more preferably 7 ⁇ m or less.
  • the sputtering target contains C
  • the average particle size of the C powder is preferably 2 to 10 ⁇ m.
  • the mixing ratio of the metal powder, the zinc oxide powder, the oxide powder of the metal M, and the C powder is adjusted so as to obtain the composition of the target sputtering target.
  • the amount of the solvent added is preferably 1 to 10 times or less with respect to the amount of the raw material powder (metal powder, zinc oxide powder, metal M oxide powder, and C powder).
  • the sintering temperature in the sintering step S02 is 1000 ° C. or lower, and the pressurizing pressure is 145 MPa or higher.
  • the upper limit of the sintering temperature is preferably 950 ° C or lower, more preferably 900 ° C or lower.
  • the lower limit of the sintering temperature is preferably 600 ° C.
  • the lower limit of the pressurizing pressure is preferably 150 MPa or more, and more preferably 155 MPa or more.
  • the upper limit of the pressurizing pressure is preferably 200 MPa or less, more preferably 170 MPa or less.
  • the sputtering target of the present embodiment since it contains one or more kinds of metal phases selected from Nb, W, Ti and a zinc oxide phase, it is optical. It is possible to form an optical functional film 12 having excellent characteristics and excellent heat resistance and alkali resistance. Since the density ratio is 80% or more, it is possible to suppress the occurrence of abnormal discharge during sputtering. Further, since the standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti measured at a plurality of points on the spatter surface is 5 mass% or less, the reflectance is increased. It is possible to form an optical functional film 12 with little variation.
  • the average particle area of the pores is 5 ⁇ m 2 or less, the generation of abnormal discharge due to the pores during sputtering can be suppressed, and the optical functional film 12 is formed more stably. It becomes possible to make a film.
  • one or more kinds of metal M oxides selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y are used.
  • the total content of the metal M is within the range of 0.1 mass% or more and 40 mass% or less with 100 mass% of all metal elements, the heat resistance and alkali resistance of the formed optical functional film 12 Can be further improved.
  • the ratio obtained by dividing the standard deviation of the specific resistance values measured at a plurality of points on the sputtering surface by the average value is 100% or less, an abnormal discharge occurs during sputtering. Can be suppressed, and a more stable optical functional film can be formed.
  • the specific resistance is sufficiently low, and the occurrence of abnormal discharge during sputtering can be further suppressed. Further, the heat resistance and alkali resistance of the formed optical functional film 12 can be further improved.
  • the heat resistance and alkali resistance of the formed optical functional film 12 can be further improved, and the heat resistance and alkali resistance of the film-formed optical functional film 12 can be further improved. It is possible to secure the etching property of the formed optical functional film 12.
  • one or more metal powders selected from Nb, W, and Ti having an average particle size of 5 ⁇ m or more and zinc oxide having an average particle size of 1 ⁇ m or less are used. Since the granulated powder manufacturing step S01 is provided in which the powder and the powder are mixed with a solvent having a water concentration of 30 vol% or more and the solvent is dried to obtain a granulated powder, the metal powder having a large particle size and the particle size are provided. It is possible to obtain a granulated powder in which a small amount of zinc oxide powder is uniformly mixed.
  • the sintering step S02 for heating and pressurizing the obtained granulated powder at a temperature of 1000 ° C. or lower and a pressure of 145 MPa or higher is provided, the density can be sufficiently improved.
  • the granulation powder preparation step S01 in addition to the metal powder and zinc oxide powder, Al, Si, whose average particle size is within the range of 0.1 ⁇ m or more and 12 ⁇ m or less.
  • metal M oxide powders selected from Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y are mixed, Al, Si, Ga, In,
  • a sputtering target containing an oxide of one or more kinds of metal M selected from Sn, Ti, Nb, Zr, Mo, Ta, W, and Y can be produced.
  • the average particle size of the oxide powder of the metal M is within the range of 0.1 ⁇ m or more and 12 ⁇ m or less, the density can be sufficiently improved and the oxide of the metal M is caused at the time of sputtering. The occurrence of abnormal discharge can be suppressed.
  • the average particle size of zinc oxide powder is 100 nm or less, or the average particle size of one or more metal powders selected from Nb, W, and Ti is 10 ⁇ m or more. If this is the case, it is possible to further improve the density.
  • optical functional film 12 of the present embodiment since it contains one or more metals selected from Nb, W, and Ti and zinc oxide, it has excellent optical properties, heat resistance, and resistance. Has excellent alkalinity. Since the standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti is 5 mass% or less, the variation in reflectance is reduced.
  • an oxide of one or more kinds of metal M selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y is used. If it is contained, heat resistance and alkali resistance can be further improved.
  • the present invention is not limited to this, and can be appropriately changed without departing from the technical requirements of the invention.
  • the sintering step is carried out after the granulation powder preparation step, but the present invention is not limited to this, and the granulation is performed between the granulation powder preparation step and the sintering step.
  • a molding step of pressurizing the powder at room temperature to form the powder may be carried out, and the obtained molded body may be sintered.
  • the pressurizing pressure in the molding step is preferably 100 MPa or more and 175 MPa or less.
  • the optical functional film 12 according to the present embodiment is formed so as to be laminated on the metal wiring film 11 formed on the surface of the substrate 1.
  • the present invention is not limited to this, and the optical functional film 12 may be formed on the surface of the substrate 1 and the metal wiring film 11 may be laminated on the optical functional film 12. In this case, the reflection from the substrate 1 can be reduced at the same time.
  • the metal powders, zinc oxide powders, various metal oxide powders, and C powders shown in Tables 5 to 8 were weighed to a total of 1 kg at the ratios shown in Tables 1 to 4.
  • 1 kg of the weighed raw material powder, 3 kg of zirconia balls having a diameter of 5 mm, and 1 L of a solvent having a water concentration shown in Tables 5 to 8 were placed in a pot having a capacity of 10 L and mixed for 16 hours with a ball mill device.
  • the mixed powder was then dried and sieved through a 250 ⁇ m sieve to give granulated powder.
  • the solvent is a mixed solution of pure water and ethanol, and in the water concentration column of Tables 5 to 8, the water concentration is 100% when the solvent 1 L is only pure water, and the mixed solution of pure water and ethanol is used. The value of water concentration is described.
  • the dry mixing is described as "dry".
  • the obtained granulated powder was filled in a rubber mold having a diameter of 250 mm. Then, CIP (Cold Isostatic Pressing) was performed at a pressure of 150 MPa to obtain a molded product. The obtained molded product was placed in a steel can having a diameter of 220 mm and evacuated at 300 ° C. Next, the molded product was sealed in a can and subjected to HIP (Hot Isostatic Pressing) under the conditions of holding at the temperatures and pressures shown in Tables 5 to 8 for 3 hours to obtain a sintered body. .. The obtained sintered body was machined to ⁇ 125 mm ⁇ thickness t5 mm and bonded to a backing plate made of Cu with In solder to obtain a sputtering target.
  • HIP Hot Isostatic Pressing
  • the average particle size of the raw material powder 100 mL of an aqueous solution having a sodium hexametaphosphate concentration of 0.2% was prepared, 10 mg of the raw material powder was added to this aqueous solution, and a laser diffraction scattering method (measuring device: Microtrac MT3000 manufactured by Nikkiso Co., Ltd.) was added. The particle size distribution was measured using. The arithmetic average diameter (volume average diameter) was calculated from the obtained particle size distribution, and is shown in Tables 5 to 8 as the average particle size.
  • the obtained sputtering target and the optical functional film formed by using this sputtering target were evaluated for the following items.
  • composition of sputtering target A sample was taken from the obtained sputtering target, dissolved with an acid or an alkali, and then the metal element was quantified by ICP-AES. As for C, C was quantified by a gas analyzer manufactured by LECO. The content of each element with respect to the whole including C and O is shown in the column of "Sputtering target composition" in Tables 9 to 12. Further, when the oxide of the metal M is contained, the content of the metal M is shown in the column of "Ratio of the metal element M to the total metal elements" in Tables 9 to 12, with the total metal element as 100 mass%.
  • the metal Nb and the Nb oxide are contained, in the example 37 of the present invention, the metal W and the W oxide are contained, and in the example 50 of the present invention, the metal Ti and the Ti oxide are contained.
  • the amount of the metal component of the metal oxide will also be added to the content of the metal element in the column of "blasting target composition" (indicated by "*" in Tables 9, 10 and 11). Therefore, the amount of the metal component of the metal oxide is counted in both the column of "sputtering target composition" and the column of "ratio of metal element M to all metal elements".
  • the amount of Nb, W, Ti in the column of "sputtering target composition” includes the amount of Nb, W, Ti in the metal oxide.
  • the metal component of the metal oxide the quantitative values of the metal components of Nb, W, and Ti derived from the oxide were adopted from the semi-quantitative analysis result of the XPS apparatus. That is, the amount of Nb, W, Ti in the column of "ratio of metal element M in all metal elements” is the amount of Nb, W, Ti in the metal oxide.
  • the volume was calculated from the dimensions of the obtained target, and the density was calculated by dividing the weight by the volume. Furthermore, the density ratio (%) was calculated by dividing the measured density by the ideal calculated density obtained from the charged composition. The evaluation results are shown in Tables 13-16.
  • Target pieces were collected from 5 points on the sputtered surface of the obtained sputtering target, metal elements were quantified by the above method, and the standard deviation ⁇ of the results of the 5 points is shown in the table.
  • the evaluation results are shown in Tables 13-16.
  • the sample collected from the obtained sputtering target is embedded with resin, then polished, and a composition image of 60 ⁇ m in length and 76 ⁇ m in width at a magnification of 1500 times using an electron probe microanalyzer (EPMA) device (manufactured by JEOL Ltd.). (COMPO image) was photographed.
  • the obtained image was binarized by Brightness using the image processing software ImageJ. At this time, the threshold value of Brightness was set to 120. That is, only the region of the pores with low brightness was detected. Binarization was performed, and then the average particle area of the obtained image was determined using the Particle measurement function. The obtained values are shown in Tables 13 to 16 as the average particle area of the pores.
  • composition of optical functional film Using the sputtering target of the above-mentioned example of the present invention, a film having a thickness of 50 nm was formed on a Si substrate under the conditions of Ar50sccm, 0.4Pa, and DC615W. A substrate size of ⁇ 5 inch was used, and the substrate after film formation was cut into a size of about 20 mm ⁇ 20 mm centered on the positions directly above the coordinates of the five locations evaluated for the composition variation of the target, and each was cut out. A total of 5 samples were taken, one for each. Nb, W and Ti were quantified in the obtained film by quantitative analysis of EPMA, and the standard deviation ⁇ of the results of 5 sheets is shown in Tables 17 to 20.
  • the substrate was a glass substrate having a size of 20 mm ⁇ 20 mm (EAGLE XG manufactured by Corning Inc.).
  • a Cu film having a thickness of 200 nm was formed on a glass substrate under the conditions of Ar50sccm, 0.4Pa, and DC615W.
  • the copper target was replaced with the target of the above-mentioned example of the present invention, and the position of the glass substrate was kept as it was, and under the conditions of Ar50sccm, 0.4Pa, DC615W, optics were applied on the Cu film by the film thickness shown in Tables 17 to 20.
  • a functional film was formed.
  • the average value of the reflectance from 380 nm to 780 nm is shown in Tables 17 to 20.
  • the above-mentioned reflectance was measured for a total of 5 sheets, and the standard deviation ⁇ as a result of the reflectance of 5 sheets is shown in the table.
  • the standard deviation is preferably 3% or less, more preferably 2% or less, and even more preferably 1% or less.
  • the sample whose reflectance was measured was heated to 400 ° C. at a rate of 10 ° C./sec in a nitrogen atmosphere using a lamp heating furnace and maintained for 10 minutes. Then, after cooling to room temperature, it was taken out, and the reflectance was measured in the same manner.
  • the difference in reflectance before and after the treatment is shown in Tables 17 to 20. This difference is preferably 10% or less, more preferably 5% or less, and even more preferably 3% or less.
  • Comparative Example 1 the average particle size of the metal Nb powder was 1.1 ⁇ m, and the density ratio of the sputtering target was 70.5%. Therefore, the number of abnormal discharges increased to 234 times / hour, and the optical functional film could not be stably formed.
  • the average particle size of the zinc oxide powder was 1300 nm, and the density ratio of the sputtering target was 76.4%. Therefore, the number of abnormal discharges increased to 175 times / hour, and the optical functional film could not be stably formed.
  • Comparative Example 3 the sintering temperature was 1100 ° C., and the density ratio of the sputtering target was 78.3%. Therefore, the number of abnormal discharges increased to 142 times / hour, and the optical functional film could not be stably formed.
  • the density ratio is 80% or more, and the standard deviation of the content of the metal element on the sputter surface is 5 mass% or less.
  • the standard deviation of the content of metal elements was small, and the variation in reflectance (standard deviation) was also kept small.
  • the occurrence of abnormal discharge was suppressed, and the optical functional film could be stably formed.
  • the sputtering target of the present embodiment is suitably applied to a step of forming a low reflectance film provided on an electrode (metal film) for sensing in a projected capacitive touch panel and a black matrix in a flat panel display. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Powder Metallurgy (AREA)

Abstract

This sputtering target comprises a zinc oxide phase and one or more metal phases that are selected from among Nb, W and Ti, while having a density ratio of 80% or more; and the standard deviation of the respective contents of the one or more metal elements selected from among Nb, W and Ti, said contents being measured at a plurality of sites in the sputtering surface, is 5 mass% or less.

Description

スパッタリングターゲット、スパッタリングターゲットの製造方法、および、光学機能膜Sputtering target, manufacturing method of sputtering target, and optical functional film
 本発明は、例えば金属薄膜等に積層されて、金属薄膜等からの光の反射を低減する光学機能膜を成膜するために用いられるスパッタリングターゲット、このスパッタリングターゲットの製造方法、および、光学機能膜に関するものである。
 本願は、2020年6月8日に、日本に出願された特願2020-099577号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a sputtering target used for forming an optical functional film that is laminated on, for example, a metal thin film to reduce reflection of light from the metal thin film, a method for manufacturing the sputtering target, and an optical functional film. It is about.
This application claims priority based on Japanese Patent Application No. 2020-099577 filed in Japan on June 8, 2020, the contents of which are incorporated herein by reference.
 近年、携帯端末装置などの入力手段として、投影型静電容量方式のタッチパネルが採用されている。この方式のタッチパネルでは、タッチ位置検出のために、センシング用の電極が形成されている。このセンシング用の電極は、パターニングによって形成するのが通常であり、透明基板の一方の面に、X方向に延びたX電極と、X方向に対して直交するY方向に延びたY電極とを設け、これらを格子状に配置している。
 ここで、タッチパネルの電極に金属膜を用いた場合には、金属膜が金属光沢を有することから、電極のパターンが外部から視認されてしまう。このため、金属薄膜の上に、可視光の反射率の低い低反射率膜を成膜することで、電極の視認性を低下させることが考えられる。
In recent years, a projection type capacitive touch panel has been adopted as an input means for a mobile terminal device or the like. In this type of touch panel, a sensing electrode is formed for touch position detection. The electrode for sensing is usually formed by patterning, and an X electrode extending in the X direction and a Y electrode extending in the Y direction orthogonal to the X direction are formed on one surface of the transparent substrate. These are provided and arranged in a grid pattern.
Here, when a metal film is used for the electrodes of the touch panel, the pattern of the electrodes is visually recognized from the outside because the metal film has a metallic luster. Therefore, it is conceivable to reduce the visibility of the electrodes by forming a low-reflectance film having a low reflectance of visible light on the metal thin film.
 また、液晶表示装置やプラズマディスプレイに代表されるフラットパネルディスプレイでは、カラー表示を目的としたカラーフィルタが採用されている。このカラーフィルタでは、コントラストや色純度を良くし、視認性を向上させることを目的として、ブラックマトリクスと称される黒色の部材が形成されている。
 上述の低反射率膜は、このブラックマトリクス(以下“BM”と記す)としても利用可能である。
Further, in a flat panel display represented by a liquid crystal display device or a plasma display, a color filter for color display is adopted. In this color filter, a black member called a black matrix is formed for the purpose of improving contrast and color purity and improving visibility.
The above-mentioned low reflectance film can also be used as this black matrix (hereinafter referred to as “BM”).
 さらに、太陽電池パネルにおいて、ガラス基板等を介して太陽光が入射される場合、その反対側には、太陽電池の裏面電極が形成されている。この裏面電極としては、モリブデン(Mo)、銀(Ag)などの金属膜が用いられている。このような態様の太陽電池パネルを裏面側から見たとき、その裏面電極である金属膜が視認されてしまう。
 このため、裏面電極の上に、上述の低反射率膜を成膜することで、裏面電極の視認性を低下させることが考えられる。
Further, in the solar cell panel, when sunlight is incident through a glass substrate or the like, a back electrode of the solar cell is formed on the opposite side thereof. As the back surface electrode, a metal film such as molybdenum (Mo) or silver (Ag) is used. When the solar cell panel of such an aspect is viewed from the back surface side, the metal film which is the back surface electrode thereof is visually recognized.
Therefore, it is conceivable to reduce the visibility of the back surface electrode by forming the above-mentioned low reflectance film on the back surface electrode.
 ここで、例えば特許文献1には、上述の低反射率膜(光学機能膜)を成膜するためのスパッタリングターゲットとして、酸化物と酸窒化物を含有するものが提案されている。 Here, for example, Patent Document 1 proposes a sputtering target containing an oxide and an oxynitride as a sputtering target for forming the above-mentioned low reflectance film (optical functional film).
 ここで、特許文献1に記載されたスパッタリングターゲットにおいては、1000℃以上の温度で焼結を実施しているが、酸化物として酸化亜鉛(ZnO)を含有する場合には、酸化亜鉛(ZnO)が昇華するか、あるいは、含有する金属元素によっては酸化亜鉛が還元されて生じたZnが昇華してしまい、組成ずれが生じたり、密度が低下したりするといった問題があった。 Here, in the sputtering target described in Patent Document 1, sintering is performed at a temperature of 1000 ° C. or higher, but when zinc oxide (ZnO) is contained as an oxide, zinc oxide (ZnO) is contained. However, depending on the contained metal element, zinc oxide is reduced to sublimate Zn, which causes a problem of composition deviation or a decrease in density.
 さらに、上述の光学機能膜には、製造時および使用時において光学特性が大きく変化しないように、耐久性が求められる。例えば、成膜後に加熱工程が実施される場合には、耐熱性が要求される。また、エッチングで配線パターンを形成する場合には、レジスト膜の現像や剥離を行う際にアルカリが使用されるため、耐アルカリ性が要求される。 Furthermore, the above-mentioned optical functional film is required to have durability so that the optical characteristics do not change significantly during manufacturing and use. For example, when the heating step is carried out after the film formation, heat resistance is required. Further, when a wiring pattern is formed by etching, alkali resistance is required because alkali is used when developing or peeling the resist film.
日本国特許第6161095号公報Japanese Patent No. 6161095
 この発明は、前述した事情に鑑みてなされたものであって、耐熱性および耐アルカリ性に優れ、金属薄膜等からの光の反射を十分に抑制することが可能な光学機能膜を効率良く安定して成膜可能なスパッタリングターゲット、このスパッタリングターゲットの製造方法、および、光学機能膜を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and efficiently stabilizes an optical functional film having excellent heat resistance and alkali resistance and capable of sufficiently suppressing reflection of light from a metal thin film or the like. It is an object of the present invention to provide a sputtering target capable of forming a film, a method for manufacturing the sputtering target, and an optical functional film.
 上記課題を解決するために、本発明の一態様に係るスパッタリングターゲットは、Nb,W,Tiから選択される一種又は二種以上の金属相と、酸化亜鉛相と、を含み、密度比が80%以上であり、スパッタ面の複数の箇所で測定したNb,W,Tiから選択される一種又は二種以上からなる金属元素のそれぞれの含有量の標準偏差が5mass%以下とされていることを特徴としている。 In order to solve the above problems, the sputtering target according to one aspect of the present invention contains one or more metal phases selected from Nb, W, Ti and a zinc oxide phase, and has a density ratio of 80. % Or more, and the standard deviation of the content of each of one or two or more kinds of metal elements selected from Nb, W, Ti measured at a plurality of points on the sputtered surface is 5 mass% or less. It is a feature.
 この構成のスパッタリングターゲットによれば、Nb,W,Tiから選択される一種又は二種以上の金属相と、酸化亜鉛相と、を含んでいるので、光学特性に優れ、かつ、耐熱性および耐アルカリ性に優れた光学機能膜を成膜することができる。
 そして、密度比が80%以上とされているので、スパッタ時における異常放電の発生を抑制することができる。
 さらに、スパッタ面の複数の箇所で測定したNb,W,Tiから選択される一種又は二種以上からなる金属元素のそれぞれの含有量の標準偏差が5mass%以下とされているので、反射率のばらつきの少ない光学機能膜を成膜することが可能となる。
According to the sputtering target having this configuration, since it contains one or more kinds of metal phases selected from Nb, W, and Ti and a zinc oxide phase, it has excellent optical properties, heat resistance, and resistance. It is possible to form an optical functional film having excellent alkalinity.
Since the density ratio is 80% or more, it is possible to suppress the occurrence of abnormal discharge during sputtering.
Further, since the standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti measured at a plurality of points on the spatter surface is 5 mass% or less, the reflectance is increased. It is possible to form an optical functional film with little variation.
 ここで、本発明の一態様に係るスパッタリングターゲットにおいては、空孔の平均粒子面積が5μm以下であることが好ましい。
 この場合、空孔の平均粒子面積が5μm以下に制限されているので、スパッタ時に空孔に起因した異常放電の発生を抑制でき、さらに安定して光学機能膜を成膜することが可能となる。
Here, in the sputtering target according to one aspect of the present invention, it is preferable that the average particle area of the pores is 5 μm 2 or less.
In this case, since the average particle area of the pores is limited to 5 μm 2 or less, it is possible to suppress the occurrence of abnormal discharge due to the pores during sputtering, and it is possible to form an optical functional film more stably. Become.
 また、本発明の一態様に係るスパッタリングターゲットにおいては、Al,Si,Ga,In,Sn,Ti,Nb,Zr,Mo,Ta,W,Yから選択される一種又は二種以上の金属Mの酸化物を含み、前記金属Mの合計含有量が、全金属元素を100mass%として、0.1mass%以上40mass%以下の範囲内とされていることが好ましい。
 この場合、上述の金属Mの酸化物を、全金属元素を100mass%として0.1mass%以上40mass%以下の範囲内で含有しているので、成膜した光学機能膜の耐熱性および耐アルカリ性をさらに向上させることが可能となる。
Further, in the sputtering target according to one aspect of the present invention, one or more kinds of metal M selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W and Y. It is preferable that the total content of the metal M containing an oxide is in the range of 0.1 mass% or more and 40 mass% or less, with 100 mass% of all metal elements.
In this case, since the above-mentioned oxide of the metal M is contained in the range of 0.1 mass% or more and 40 mass% or less with the total metal element as 100 mass%, the heat resistance and alkali resistance of the formed optical functional film can be improved. It can be further improved.
 さらに、本発明の一態様に係るスパッタリングターゲットにおいては、スパッタ面の複数の箇所で測定した比抵抗値の標準偏差を平均値で割った割合が100%以下であることが好ましい。
 この場合、スパッタ面における比抵抗値のばらつきが抑えられているので、スパッタ時における異常放電の発生を抑制でき、さらに安定して光学機能膜を成膜することが可能となる。
Further, in the sputtering target according to one aspect of the present invention, the ratio of the standard deviation of the specific resistance values measured at a plurality of points on the sputtering surface divided by the average value is preferably 100% or less.
In this case, since the variation in the specific resistance value on the sputtered surface is suppressed, the occurrence of abnormal discharge during sputtering can be suppressed, and the optical functional film can be more stably formed.
 また、本発明の一態様に係るスパッタリングターゲットにおいては、Nb,W,Tiの合計含有量がO、Cを含めた全体に対して50mass%以上であることが好ましい。
 この場合、Nb,W,Tiの合計含有量がO、Cを含めた全体に対して50mass%以上とされているので、比抵抗が十分に低くなり、異常放電の発生をさらに抑制できる。
また、成膜した光学機能膜の耐熱性および耐アルカリ性をさらに向上させることができる。
Further, in the sputtering target according to one aspect of the present invention, the total content of Nb, W, and Ti is preferably 50 mass% or more with respect to the whole including O and C.
In this case, since the total content of Nb, W, and Ti is 50 mass% or more with respect to the whole including O and C, the specific resistance is sufficiently low and the occurrence of abnormal discharge can be further suppressed.
Further, the heat resistance and alkali resistance of the formed optical functional film can be further improved.
 さらに、本発明の一態様に係るスパッタリングターゲットにおいては、さらに、Cを全体に対して1mass%以上10mass%以下の範囲内で含むことが好ましい。
 この場合、Cを全体に対して1mass%以上含有することにより、成膜した光学機能膜の耐熱性および耐アルカリ性をさらに向上させることができる。また、Cの含有量が全体に対して10mass%以下に制限されているので、成膜した光学機能膜のエッチング性を確保することが可能となる。
Further, in the sputtering target according to one aspect of the present invention, it is preferable that C is further contained in the range of 1 mass% or more and 10 mass% or less with respect to the whole.
In this case, by containing 1 mass% or more of C with respect to the whole, the heat resistance and alkali resistance of the formed optical functional film can be further improved. Further, since the C content is limited to 10 mass% or less with respect to the whole, it is possible to secure the etching property of the formed optical functional film.
 本発明の一態様に係るスパッタリングターゲットの製造方法は、Nb,W,Tiから選択される一種又は二種以上の金属相と、酸化亜鉛相と、を含むスパッタリングターゲットの製造方法であって、平均粒子径が5μm以上のNb,W,Tiから選択される一種又は二種以上からなる金属粉と、平均粒子径が1μm以下の酸化亜鉛粉と、を水の濃度が30vol%以上の溶媒を用いて混合し、乾燥させて造粒粉を得る造粒粉作製工程と、得られた造粒粉を、1000℃以下の温度、かつ、145MPa以上の圧力で、加熱および加圧して焼結する焼結工程と、を備えていることを特徴としている。 The method for producing a sputtering target according to one aspect of the present invention is a method for producing a sputtering target containing one or more metal phases selected from Nb, W, Ti and a zinc oxide phase, and is an average. A metal powder consisting of one or more kinds selected from Nb, W, Ti having a particle size of 5 μm or more and zinc oxide powder having an average particle size of 1 μm or less are used in a solvent having a water concentration of 30 vol% or more. Baking to obtain granulated powder by mixing and drying to obtain granulated powder, and heating and pressurizing the obtained granulated powder at a temperature of 1000 ° C. or lower and a pressure of 145 MPa or higher. It is characterized by having a binding process.
 この構成のスパッタリングターゲットの製造方法によれば、平均粒子径が5μm以上のNb,W,Tiから選択される一種又は二種以上からなる金属粉と、平均粒子径が1μm以下の酸化亜鉛粉と、を水の濃度が30vol%以上の溶媒を用いて混合し、乾燥させて造粒粉を得る造粒粉作製工程を備えているので、粒径が大きい金属粉と粒径が小さい酸化亜鉛粉とが均一に混合された造粒粉を得ることができる。よって、その後の焼結工程において酸化亜鉛の昇華や酸化亜鉛の還元反応を抑制でき、ガスの発生を抑制でき、密度を向上させることができるとともに、組成ずれの発生を抑制できる。
 また、得られた造粒粉を1000℃以下の温度かつ145MPa以上の圧力で加熱および加圧して焼結する焼結工程を備えているので、密度を十分に向上させることが可能となる。
According to the method for producing a sputtering target having this configuration, one or more metal powders selected from Nb, W, and Ti having an average particle size of 5 μm or more and zinc oxide powder having an average particle size of 1 μm or less are used. , Are mixed with a solvent having a water concentration of 30 vol% or more and dried to obtain a granulated powder. Therefore, a metal powder having a large particle size and a zinc oxide powder having a small particle size are provided. It is possible to obtain a granulated powder in which and is uniformly mixed. Therefore, in the subsequent sintering step, the sublimation of zinc oxide and the reduction reaction of zinc oxide can be suppressed, the generation of gas can be suppressed, the density can be improved, and the occurrence of composition deviation can be suppressed.
Further, since the obtained granulated powder is provided with a sintering step of heating and pressurizing the obtained granulated powder at a temperature of 1000 ° C. or lower and a pressure of 145 MPa or higher, the density can be sufficiently improved.
 ここで、本発明の一態様に係るスパッタリングターゲットの製造方法においては、前記焼結工程の前に、前記造粒粉を常温で加圧して成形する成形工程を備えていてもよい。
 この場合、前記造粒粉を常温で加圧して成形する成形工程を備えているので、密度をさらに向上させた焼結体を得ることができる。
Here, in the method for manufacturing a sputtering target according to one aspect of the present invention, a molding step of pressurizing the granulated powder at room temperature to form the granulated powder may be provided before the sintering step.
In this case, since the molding step of pressurizing and molding the granulated powder at room temperature is provided, a sintered body having a further improved density can be obtained.
 また、本発明の一態様に係るスパッタリングターゲットの製造方法においては、前記造粒粉作製工程において、前記金属粉および前記酸化亜鉛粉に加えて、平均粒子径が0.1μm以上12μm以下の範囲内とされたAl,Si,Ga,In,Sn,Ti,Nb,Zr,Mo,Ta,W,Yから選択される一種又は二種以上の金属Mの酸化物粉を混合してもよい。
 この場合、Al,Si,Ga,In,Sn,Ti,Nb,Zr,Mo,Ta,W,Yから選択される一種又は二種以上の金属Mの酸化物を含むスパッタリングターゲットを製造することができる。
 そして、金属Mの酸化物粉の平均粒子径が0.1μm以上12μm以下の範囲内とされているので、密度を十分に向上させることができるとともに、スパッタ時にこの金属Mの酸化物に起因した異常放電の発生を抑制することができる。
Further, in the method for producing a sputtering target according to one aspect of the present invention, in the granulation powder production step, in addition to the metal powder and the zinc oxide powder, the average particle size is within the range of 0.1 μm or more and 12 μm or less. One or more kinds of metal M oxide powders selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y may be mixed.
In this case, it is possible to produce a sputtering target containing an oxide of one or more kinds of metal M selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W and Y. can.
Since the average particle size of the oxide powder of the metal M is within the range of 0.1 μm or more and 12 μm or less, the density can be sufficiently improved and the oxide of the metal M is caused at the time of sputtering. The occurrence of abnormal discharge can be suppressed.
 さらに、本発明の一態様に係るスパッタリングターゲットの製造方法においては、前記酸化亜鉛粉の平均粒子径が100nm以下であることが好ましい。
 この場合、さらに密度の向上を図ることが可能となる。
Further, in the method for producing a sputtering target according to one aspect of the present invention, it is preferable that the average particle size of the zinc oxide powder is 100 nm or less.
In this case, it is possible to further improve the density.
 また、本発明の一態様に係るスパッタリングターゲットの製造方法においては、前記金属粉の平均粒子径が10μm以上であることが好ましい。
 この場合、さらに密度の向上を図ることが可能となる。
Further, in the method for producing a sputtering target according to one aspect of the present invention, it is preferable that the average particle size of the metal powder is 10 μm or more.
In this case, it is possible to further improve the density.
 本発明の一態様に係る光学機能膜は、Nb,W,Tiから選択される一種又は二種以上からなる金属と酸化亜鉛を含む光学機能膜であって、Nb,W,Tiから選択される一種又は二種以上からなる金属元素のそれぞれの含有量の標準偏差が5mass%以下とされていることを特徴としている。 The optical functional film according to one aspect of the present invention is an optical functional film containing one or more metals selected from Nb, W, Ti and zinc oxide, and is selected from Nb, W, Ti. It is characterized in that the standard deviation of the content of each of one or more kinds of metal elements is 5 mass% or less.
 この構成の光学機能膜によれば、Nb,W,Tiから選択される一種又は二種以上からなる金属と酸化亜鉛を含んでいるので、光学特性に優れ、かつ、耐熱性および耐アルカリ性に優れている。
 そして、Nb,W,Tiから選択される一種又は二種以上からなる金属元素のそれぞれの含有量の標準偏差が5mass%以下とされているので、反射率のばらつきが小さくなる。
According to the optical functional film having this configuration, since it contains one or more metals selected from Nb, W, and Ti and zinc oxide, it has excellent optical properties and excellent heat resistance and alkali resistance. ing.
Since the standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti is 5 mass% or less, the variation in reflectance becomes small.
 ここで、本発明の一態様に係る光学機能膜においては、Al,Si,Ga,In,Sn,Ti,Nb,Zr,Mo,Ta,W,Yから選択される一種又は二種以上の金属Mの酸化物を含んでいてもよい。
 この場合、Al,Si,Ga,In,Sn,Ti,Nb,Zr,Mo,Ta,W,Yから選択される一種又は二種以上の金属Mの酸化物を含有しているので、耐熱性および耐アルカリ性をさらに向上させることが可能となる。
Here, in the optical functional film according to one aspect of the present invention, one or more kinds of metals selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, Y. It may contain an oxide of M.
In this case, since it contains an oxide of one or more kinds of metal M selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y, it has heat resistance. And it becomes possible to further improve the alkali resistance.
 本発明一態様によれば、耐熱性および耐アルカリ性に優れ、金属薄膜等からの光の反射を十分に抑制することが可能な光学機能膜を効率良く安定して成膜可能なスパッタリングターゲット、このスパッタリングターゲットの製造方法、および、光学機能膜を提供することが可能となる。 According to one aspect of the present invention, a sputtering target capable of efficiently and stably forming an optical functional film having excellent heat resistance and alkali resistance and capable of sufficiently suppressing reflection of light from a metal thin film or the like. It becomes possible to provide a method for manufacturing a sputtering target and an optical functional film.
本発明の一実施形態に係る光学機能膜を備えた積層膜の断面説明図である。It is sectional drawing explanatory drawing of the laminated film provided with the optical functional film which concerns on one Embodiment of this invention. 図1の光学機能膜の平面図である。It is a top view of the optical functional film of FIG. 本発明の一実施形態に係るスパッタリングターゲットであって、平板形状をなすスパッタリングターゲットの概略説明図である。It is a schematic explanatory drawing of the sputtering target which is the sputtering target which concerns on one Embodiment of this invention, and has the shape of a flat plate. 本発明の一実施形態に係るスパッタリングターゲットであって、円板形状をなすスパッタリングターゲットの概略説明図である。It is a schematic explanatory drawing of the sputtering target which is the sputtering target which concerns on one Embodiment of this invention, and has a disk shape. 本発明の一実施形態に係るスパッタリングターゲットであって、円筒形状をなすスパッタリングターゲットの概略説明図のうち、上面図である。It is a top view of the schematic explanatory view of the sputtering target which is the sputtering target which concerns on one Embodiment of this invention and has a cylindrical shape. 本発明の一実施形態に係るスパッタリングターゲットであって、円筒形状をなすスパッタリングターゲットの概略説明図のうち、軸線に沿った断面図である。It is sectional drawing along the axis of the schematic explanatory view of the sputtering target which is the sputtering target which concerns on one Embodiment of this invention and has a cylindrical shape. 本発明の一実施形態に係るスパッタリングターゲットの製造方法を示すフロー図である。It is a flow figure which shows the manufacturing method of the sputtering target which concerns on one Embodiment of this invention.
 以下に、本発明の実施形態であるスパッタリングターゲット、スパッタリングターゲットの製造方法、および、光学機能膜について、添付した図面を参照して説明する。 Hereinafter, the sputtering target, the method for manufacturing the sputtering target, and the optical functional film according to the embodiment of the present invention will be described with reference to the attached drawings.
 本実施形態に係る光学機能膜12は、図1に示すように、基板1の表面に成膜された金属配線膜11の上に積層するように成膜されている。
 ここで、金属配線膜11は、導電性に優れた金属であるアルミニウム及びアルミニウム合金、銅又は銅合金等で構成されており、本実施形態では、銅によって構成されている。この金属配線膜11は、金属光沢を有することから、可視光を反射し、外部から視認されてしまう。
As shown in FIG. 1, the optical functional film 12 according to the present embodiment is formed so as to be laminated on the metal wiring film 11 formed on the surface of the substrate 1.
Here, the metal wiring film 11 is made of aluminum, which is a metal having excellent conductivity, an aluminum alloy, copper, a copper alloy, or the like, and in the present embodiment, it is made of copper. Since the metal wiring film 11 has a metallic luster, it reflects visible light and is visually recognized from the outside.
 本実施形態である光学機能膜12は、積層した金属配線膜11における可視光の反射を抑えるために設けられたものである。
 本実施形態である光学機能膜12は、Nb,W,Tiから選択される一種又は二種以上からなる金属と酸化亜鉛を含んでいる。
 そして、Nb,W,Tiから選択される一種又は二種以上からなる金属元素のそれぞれの含有量の標準偏差が5mass%以下とされている。
 また、本実施形態である光学機能膜12は、Al,Si,Ga,In,Sn,Ti,Nb,Zr,Mo,Ta,W,Yから選択される一種又は二種以上の金属Mの酸化物を含んでいてもよい。
 さらに、本実施形態である光学機能膜12は、Nb,W,Tiから選択される一種以上を合計で50mass%以上80mass%以下、Znを10mass%以上30mass%以下の量で含み、残部が酸素及び不可避不純物からなることが好ましく、必要に応じてさらにAl,Si,Ga,In,Sn,Zr,Mo,Ta,Yから選択される一種又は二種以上の金属Mを合計40mass%以下、Cを10mass%以下の範囲内で含んでいてもよい。
The optical functional film 12 of the present embodiment is provided to suppress the reflection of visible light in the laminated metal wiring film 11.
The optical functional film 12 of the present embodiment contains one or more metals selected from Nb, W, and Ti and zinc oxide.
The standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti is 5 mass% or less.
Further, the optical functional film 12 of the present embodiment is used to oxidize one or more metals M selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y. It may contain objects.
Further, the optical functional film 12 of the present embodiment contains one or more selected from Nb, W, and Ti in a total amount of 50 mass% or more and 80 mass% or less, Zn in an amount of 10 mass% or more and 30 mass% or less, and the balance is oxygen. And unavoidable impurities, and if necessary, one or more metals M selected from Al, Si, Ga, In, Sn, Zr, Mo, Ta, and Y are added in a total of 40 mass% or less, C. May be included within the range of 10 mass% or less.
 ここで、上述の光学機能膜12においては、図2に示すように、膜表面の5箇所でNb,W,Tiから選択される一種又は二種以上からなる金属元素の含有量を測定し、これらの金属元素の含有量の標準偏差を算出している。
 詳細には、図2のように光学機能膜12の膜表面が矩形の場合、測定箇所は、膜表面の向かい合う角部を結ぶ対角線が交差する交点1点と、各対角線上の角部から対角線の全長の10%以内の位置の4点の5箇所である。光学機能膜12の膜表面が円形の場合、測定箇所は、膜表面の中心と、膜表面の中心を通過するとともに互いに直交する2本の直線上の外周部分から対角線の全長の10%以内の位置にある4点の5箇所である。
 標準偏差を求めるために測定されるNb,W,Tiのそれぞれの含有量は、金属Mの酸化物に含まれるNb,W,Tiも含む。
 なお、光学機能膜12におけるNb,W,Tiから選択される一種又は二種以上からなる金属元素のそれぞれの含有量の標準偏差が3mass%以下であることが好ましく、1mass%以下であることがより好ましい。
Here, in the above-mentioned optical functional film 12, as shown in FIG. 2, the content of one or more metal elements selected from Nb, W, and Ti is measured at five points on the film surface. The standard deviation of the contents of these metal elements is calculated.
Specifically, when the film surface of the optical functional film 12 is rectangular as shown in FIG. 2, the measurement points are one point of intersection where diagonal lines connecting the opposite corners of the film surface intersect, and diagonal lines from the corners on each diagonal line. There are 5 points at 4 points within 10% of the total length of the. When the film surface of the optical functional film 12 is circular, the measurement point is within 10% of the total length of the diagonal line from the outer peripheral portion on two straight lines passing through the center of the film surface and the center of the film surface and orthogonal to each other. There are 5 points of 4 points at the position.
The respective contents of Nb, W, and Ti measured to obtain the standard deviation also include Nb, W, and Ti contained in the oxide of the metal M.
The standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti in the optical functional film 12 is preferably 3 mass% or less, and preferably 1 mass% or less. More preferred.
 そして、上述の光学機能膜12は、本実施形態であるスパッタリングターゲットを用いて成膜される。
 以下に、本実施形態であるスパッタリングターゲットについて説明する。
Then, the above-mentioned optical functional film 12 is formed into a film using the sputtering target of the present embodiment.
The sputtering target according to the present embodiment will be described below.
 本実施形態であるスパッタリングターゲットは、Nb,W,Tiから選択される一種又は二種以上の金属相と、酸化亜鉛相と、を含んでいる。
 また、本実施形態であるスパッタリングターゲットは、密度比が80%以上とされている。
 さらに、本実施形態であるスパッタリングターゲットは、スパッタ面の複数の箇所で測定したNb,W,Tiから選択される一種又は二種以上からなる金属元素のそれぞれの含有量の標準偏差が5mass%以下とされている。
The sputtering target of the present embodiment includes one or more metal phases selected from Nb, W, Ti and a zinc oxide phase.
Further, the sputtering target of the present embodiment has a density ratio of 80% or more.
Further, in the sputtering target of the present embodiment, the standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti measured at a plurality of points on the sputtering surface is 5 mass% or less. It is said that.
 ここで、本実施形態であるスパッタリングターゲットにおいては、Nb,W,Tiの合計含有量が50mass%以上であることが好ましい。
 また、本実施形態であるスパッタリングターゲットにおいては、Al,Si,Ga,In,Sn,Ti,Nb,Zr,Mo,Ta,W,Yから選択される一種又は二種以上の金属Mの酸化物を含み、前記金属Mの合計含有量が、全金属元素を100mass%として、0.1mass%以上40mass%以下の範囲内とされていてもよい。
 上記のNb,W,Tiの合計含有量は、金属Mの酸化物に含まれるNb,W,Tiも含む。上記の金属Mの合計含有量は、金属Mの酸化物中の金属Mの合計含有量であり、金属相中のNb,W,Tiの量は含まれない。
 さらに、本実施形態であるスパッタリングターゲットにおいては、Cを1mass%以上10mass%以下の範囲内で含んでいてもよい。
 また、本実施形態であるスパッタリングターゲットにおいては、Nb,W,Tiから選択される一種以上を合計で50mass%以上80mass%以下、Znを10mass%以上30mass%以下の量で含み、残部が酸素及び不可避不純物からなることが好ましく、必要に応じてさらにAl,Si,Ga,In,Sn,Zr,Mo,Ta,Yから選択される一種又は二種以上の金属Mを合計40mass%以下、Cを10mass%以下の範囲内で含んでいてもよい。
Here, in the sputtering target of the present embodiment, the total content of Nb, W, and Ti is preferably 50 mass% or more.
Further, in the sputtering target of the present embodiment, one or more metal M oxides selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y are used. The total content of the metal M may be in the range of 0.1 mass% or more and 40 mass% or less, where 100 mass% is the total metal element.
The total content of Nb, W, and Ti described above also includes Nb, W, and Ti contained in the oxide of the metal M. The total content of the metal M is the total content of the metal M in the oxide of the metal M, and does not include the amounts of Nb, W, and Ti in the metal phase.
Further, in the sputtering target of the present embodiment, C may be contained in the range of 1 mass% or more and 10 mass% or less.
Further, in the sputtering target of the present embodiment, one or more selected from Nb, W, and Ti are contained in a total amount of 50 mass% or more and 80 mass% or less, Zn is contained in an amount of 10 mass% or more and 30 mass% or less, and the balance is oxygen and It is preferably composed of unavoidable impurities, and if necessary, one or more metals M selected from Al, Si, Ga, In, Sn, Zr, Mo, Ta, and Y are added in a total of 40 mass% or less, C. It may be contained within the range of 10 mass% or less.
 また、本実施形態であるスパッタリングターゲットにおいては、空孔の平均粒子面積が5μm以下であることが好ましい。
 さらに、本実施形態であるスパッタリングターゲットにおいては、スパッタ面の複数の箇所で測定した比抵抗値の標準偏差を平均値で割った割合が100%以下であることが好ましい。
Further, in the sputtering target of the present embodiment, it is preferable that the average particle area of the pores is 5 μm 2 or less.
Further, in the sputtering target of the present embodiment, the ratio of the standard deviation of the specific resistance values measured at a plurality of points on the sputtering surface divided by the average value is preferably 100% or less.
 以下に、本実施形態のスパッタリングターゲットにおいて、相構成、密度比、スパッタ面内における各金属元素の含有量の標準偏差、空孔の平均粒子面積、組成、スパッタ面内における比抵抗値のばらつきを、上述のように規定した理由を示す。 Below, in the sputtering target of the present embodiment, the phase composition, the density ratio, the standard deviation of the content of each metal element in the sputtered surface, the average particle area of pores, the composition, and the variation in the specific resistance value in the sputtered surface are described. , The reasons specified above are shown.
(相構成)
 本実施形態であるスパッタリングターゲットにおいては、Nb,W,Tiから選択される一種又は二種以上の金属相と、酸化亜鉛相と、を含んでいる。
 これにより、スパッタによって本実施形態である光学機能膜12を成膜することが可能となる。この光学機能膜12においては、光学特性に優れ、かつ、耐熱性および耐アルカリ性に優れている。
 金属相/(金属相+酸化亜鉛相)の面積比(百分率)は、好ましくは10~95%であり、より好ましくは20~80%であり、さらに好ましくは30~70%である。
 各相の面積は、以下の方法で測定される。スパッタリングターゲットから採取した試料について、電子プローブマイクロアナライザー(EPMA)装置を用いて組成像(COMPO像)を撮影し、元素マッピングを行う。亜鉛の元素マッピング像について、画像処理ソフトImageJを用いて、Brightnessによる二値化を行う。亜鉛含有領域の面積を算出する。亜鉛含有領域の面積を酸化亜鉛相の面積とする。次いでNb,W,Ti,Oの元素マッピング像において、Nb,W,Ti,Oの含有領域の二値化画像を得る。Nb,W,Tiの含有領域を黒色にし、Oの含有領域を白色にし、周囲を透明にそれぞれ画像処理する。Nb,W,Tiの含有領域の二値化画像図にOの含有領域の二値化画像図を重ねることで、Nb,W,Tiが金属成分として含有している領域を得る。得られた画像のうち、Nb,W,Tiが金属成分として含有している領域の面積を算出する。すなわちNb,W,Tiの含有領域のうち、Oが含まれない領域の面積を金属相の面積とする。
(Phase composition)
The sputtering target of the present embodiment contains one or more metal phases selected from Nb, W, and Ti, and a zinc oxide phase.
This makes it possible to form the optical functional film 12 of the present embodiment by sputtering. The optical functional film 12 is excellent in optical characteristics, heat resistance and alkali resistance.
The area ratio (percentage) of the metal phase / (metal phase + zinc oxide phase) is preferably 10 to 95%, more preferably 20 to 80%, still more preferably 30 to 70%.
The area of each phase is measured by the following method. The composition image (COMPO image) of the sample collected from the sputtering target is photographed using an electron probe microanalyzer (EPMA) device, and element mapping is performed. The element mapping image of zinc is binarized by Brightness using the image processing software ImageJ. Calculate the area of the zinc-containing region. The area of the zinc-containing region is defined as the area of the zinc oxide phase. Next, in the element mapping image of Nb, W, Ti, O, a binarized image of the content region of Nb, W, Ti, O is obtained. The Nb, W, and Ti-containing regions are made black, the O-containing regions are made white, and the surroundings are transparently image-processed. By superimposing the binarized image of the O-containing region on the binarized image of the Nb, W, Ti-containing region, a region containing Nb, W, Ti as a metal component is obtained. In the obtained image, the area of the region containing Nb, W, and Ti as metal components is calculated. That is, the area of the region containing Nb, W, and Ti that does not contain O is defined as the area of the metal phase.
(密度比)
 本実施形態であるスパッタリングターゲットにおいては、密度比が80%以上とされている。これにより、スパッタ時の異常放電の発生を抑制でき、本実施形態である光学機能膜12を安定して成膜することが可能となる。
 なお、密度比は85%以上であることが好ましく、90%以上であることがさらに好ましい。密度比の上限は、100%以下であることが好ましい。
(Density ratio)
In the sputtering target of this embodiment, the density ratio is 80% or more. As a result, the occurrence of abnormal discharge during sputtering can be suppressed, and the optical functional film 12 of the present embodiment can be stably formed.
The density ratio is preferably 85% or more, and more preferably 90% or more. The upper limit of the density ratio is preferably 100% or less.
(スパッタ面内における各金属元素の含有量の標準偏差)
 本実施形態であるスパッタリングターゲットにおいては、スパッタ面の複数の箇所で測定したNb,W,Tiから選択される一種又は二種以上からなる金属元素のそれぞれの含有量の標準偏差が5mass%以下とされている。なお、Nb,W,Tiのうち少なくとも1つの金属元素を含む場合、含まれる金属元素の標準偏差は、その金属元素の含有量のばらつきの大きさを表す指標であり、5mass%以下とされている。
 標準偏差を求めるために測定されるNb,W,Tiのそれぞれの含有量は、金属Mの酸化物に含まれるNb,W,Tiも含む。
 これにより、反射率のばらつきの少ない光学機能膜12を成膜することが可能となる。光学機能膜12の反射率のばらつきとして、複数の箇所で測定した反射率の標準偏差が3.0%以下であることが好ましく、2.5%以下であることが好ましい。
 なお、スパッタ面におけるNb,W,Tiから選択される一種又は二種以上からなる金属元素のそれぞれの含有量の標準偏差は4mass%以下であることが好ましく、3mass%以下であることがより好ましい。
(Standard deviation of the content of each metal element in the sputtered surface)
In the sputtering target of the present embodiment, the standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti measured at a plurality of points on the sputtering surface is 5 mass% or less. Has been done. When at least one metal element among Nb, W, and Ti is contained, the standard deviation of the contained metal element is an index showing the magnitude of variation in the content of the metal element, and is set to 5 mass% or less. There is.
The respective contents of Nb, W, and Ti measured to obtain the standard deviation also include Nb, W, and Ti contained in the oxide of the metal M.
This makes it possible to form an optical functional film 12 having little variation in reflectance. As the variation in the reflectance of the optical functional film 12, the standard deviation of the reflectance measured at a plurality of points is preferably 3.0% or less, and preferably 2.5% or less.
The standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti on the sputtered surface is preferably 4 mass% or less, and more preferably 3 mass% or less. ..
 ここで、本実施形態において、スパッタ面内における各金属元素の含有量の標準偏差は、例えば、スパッタリングターゲットのスパッタ面が、図3に示すように、矩形の場合には、スパッタ面の向かい合う角部を結ぶ対角線が交差する交点(1)と、各対角線上の角部から対角線の全長の10%以内の位置にある(2)、(3)、(4)、(5)の5点で、それぞれの金属元素の含有量を測定し、標準偏差を算出することが好ましい。 Here, in the present embodiment, the standard deviation of the content of each metal element in the sputtered surface is, for example, the angle at which the sputtered surfaces face each other when the sputtered surface of the sputtering target is rectangular as shown in FIG. At the intersection (1) where the diagonal lines connecting the parts intersect, and at the five points (2), (3), (4), and (5) located within 10% of the total length of the diagonal line from the corners on each diagonal line. , It is preferable to measure the content of each metal element and calculate the standard deviation.
 また、スパッタリングターゲットのスパッタ面が、図4に示すように、円形の場合には、スパッタ面の中心(1)と、スパッタ面の中心を通過するとともに互いに直交する2本の直線上の外周部分から対角線の全長の10%以内の位置にある(2)、(3)、(4)、(5)の5点で、それぞれの金属元素の含有量を測定し、標準偏差を算出することが好ましい。 Further, as shown in FIG. 4, when the sputtering surface of the sputtering target is circular, the center of the sputtering surface (1) and the outer peripheral portions on two straight lines passing through the center of the sputtering surface and orthogonal to each other. The content of each metal element can be measured and the standard deviation can be calculated at the five points (2), (3), (4), and (5) located within 10% of the total length of the diagonal line. preferable.
 さらに、スパッタリングターゲットのスパッタ面が、図5A,図5Bに示すように、円筒面をなす場合には、軸線O方向の両端部A,Bと中心部Cにおいて、円周方向に90°間隔の(1)、(2)、(3)、(4)の計12点で、それぞれの金属元素の含有量を測定し、標準偏差を算出することが好ましい。 Further, when the sputtering surface of the sputtering target forms a cylindrical surface as shown in FIGS. 5A and 5B, the sputtered surfaces are spaced 90 ° in the circumferential direction at both ends A and B in the axis O direction and the central portion C. It is preferable to measure the content of each metal element at a total of 12 points (1), (2), (3), and (4) and calculate the standard deviation.
(空孔の平均粒子面積)
 本実施形態であるスパッタリングターゲットにおいて、空孔の平均粒子面積が5μm以下である場合には、スパッタ時に空孔に起因した異常放電の発生を抑制でき、さらに安定して光学機能膜12を成膜することが可能となる。
 なお、空孔の平均粒子面積は4μm以下であることがより好ましく、3μm以下であることがさらに好ましい。
(Average particle area of pores)
In the sputtering target of the present embodiment, when the average particle area of the pores is 5 μm 2 or less, the generation of abnormal discharge due to the pores during sputtering can be suppressed, and the optical functional film 12 is formed more stably. It becomes possible to make a film.
The average particle area of the pores is more preferably 4 μm 2 or less, and further preferably 3 μm 2 or less.
(組成)
 本実施形態であるスパッタリングターゲットにおいて、Nb,W,Tiの合計含有量が50mass%以上とされている場合には、スパッタリングターゲットにおける比抵抗が十分に低くなり、スパッタ時における異常放電の発生を抑制し、光学機能膜12を安定して成膜することが可能となる。また、成膜した光学機能膜12の耐熱性および耐アルカリ性をさらに向上させることができる。
 なお、Nb,W,Tiの合計含有量の下限は55mass%以上であることがより好ましく、60mass%以上であることがさらに好ましい。また、Nb,W,Tiの合計含有量の上限は90mass%以下であることが好ましく、80mass%以下であることがより好ましい。
(composition)
In the sputtering target of the present embodiment, when the total content of Nb, W, and Ti is 50 mass% or more, the specific resistance of the sputtering target becomes sufficiently low, and the occurrence of abnormal discharge during sputtering is suppressed. Therefore, the optical functional film 12 can be stably formed. Further, the heat resistance and alkali resistance of the formed optical functional film 12 can be further improved.
The lower limit of the total content of Nb, W, and Ti is more preferably 55 mass% or more, and further preferably 60 mass% or more. Further, the upper limit of the total content of Nb, W, and Ti is preferably 90 mass% or less, and more preferably 80 mass% or less.
 また、本実施形態であるスパッタリングターゲットにおいて、Al,Si,Ga,In,Sn,Ti,Nb,Zr,Mo,Ta,W,Yから選択される一種又は二種以上の金属Mの酸化物を含み、前記金属Mの合計含有量が、全金属元素を100mass%として、0.1mass%以上40mass%以下の範囲内とされている場合には、成膜した光学機能膜12の耐熱性および耐アルカリ性をさらに向上させることが可能となるとともに、スパッタ時において金属Mの酸化物に起因した異常放電の発生を抑制することが可能となる。
 なお、Al,Si,Ga,In,Sn,Ti,Nb,Zr,Mo,Ta,W,Yから選択される一種又は二種以上の金属Mの酸化物を含む場合には、全金属元素を100mass%として前記金属Mの合計含有量の下限は1mass%以上であることがより好ましく、5mass%以上であることがさらに好ましい。また、前記金属Mの合計含有量の上限は35mass%以下であることがより好ましく、30mass%以下であることがさらに好ましい。
Further, in the sputtering target of the present embodiment, one or more kinds of metal M oxides selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y are used. When the total content of the metal M is within the range of 0.1 mass% or more and 40 mass% or less with 100 mass% of all metal elements, the heat resistance and resistance of the formed optical functional film 12 It is possible to further improve the alkalinity and suppress the occurrence of abnormal discharge due to the oxide of the metal M at the time of sputtering.
When one or more kinds of metal M oxides selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y are contained, all metal elements are used. The lower limit of the total content of the metal M as 100 mass% is more preferably 1 mass% or more, and further preferably 5 mass% or more. Further, the upper limit of the total content of the metal M is more preferably 35 mass% or less, and further preferably 30 mass% or less.
 さらに、本実施形態であるスパッタリングターゲットにおいて、Cを1mass%以上10mass%以下の範囲内で含む場合には、成膜した光学機能膜12の耐熱性および耐アルカリ性をさらに向上させることが可能となる。
 なお、Cを含有させて上述の作用効果を奏するためには、Cの含有量の下限は2mass%以上であることがより好ましく、3mass%以上であることがさらに好ましい。また、金属積層時に低い反射率を維持するためには、Cの含有量の上限は7mass%以下であることが好ましく、5mass%以下であることがより好ましい。
Further, when the sputtering target of the present embodiment contains C in the range of 1 mass% or more and 10 mass% or less, the heat resistance and alkali resistance of the film-formed optical functional film 12 can be further improved. ..
In addition, in order to obtain the above-mentioned action and effect by containing C, the lower limit of the content of C is more preferably 2 mass% or more, and further preferably 3 mass% or more. Further, in order to maintain low reflectance during metal lamination, the upper limit of the C content is preferably 7 mass% or less, and more preferably 5 mass% or less.
(比抵抗値)
 また、本実施形態であるスパッタリングターゲットにおいて、スパッタ面の複数の箇所で測定した比抵抗値の標準偏差を平均値で割った割合が100%以下である場合には、スパッタ時における異常放電の発生を抑制でき、さらに安定して光学機能膜を成膜することが可能となる。
 なお、スパッタ面の複数の箇所で測定した比抵抗値の標準偏差を平均値で割った割合は、100%以下であることがさらに好ましく、50%以下であることがより好ましい。
 比抵抗値の測定箇所は、図3、図4、図5A、図5Bの金属元素の含有量の測定箇所と同様である。
(Specific resistance value)
Further, in the sputtering target of the present embodiment, when the ratio obtained by dividing the standard deviation of the specific resistance values measured at a plurality of points on the sputtering surface by the average value is 100% or less, an abnormal discharge occurs during sputtering. Can be suppressed, and a more stable optical functional film can be formed.
The ratio of the standard deviation of the specific resistance values measured at a plurality of points on the spatter surface divided by the average value is more preferably 100% or less, and more preferably 50% or less.
The points where the specific resistance value is measured are the same as the points where the content of the metal element in FIGS. 3, 4, 5A and 5B is measured.
 次に、本実施形態に係るスパッタリングターゲットの製造方法について、図6を参照して説明する。 Next, a method for manufacturing a sputtering target according to the present embodiment will be described with reference to FIG.
 本実施形態においては、図6に示すように、Nb,W,Tiから選択される一種又は二種以上からなる金属粉と酸化亜鉛粉とを溶媒を用いて混合して造粒粉を得る造粒粉作製工程S01と、得られた造粒粉を加圧および加熱して焼結する焼結工程S02と、得られた焼結体を機械加工する機械加工工程S03と、を備えている。 In the present embodiment, as shown in FIG. 6, a metal powder composed of one or more kinds selected from Nb, W, and Ti and zinc oxide powder are mixed using a solvent to obtain a granulated powder. It includes a grain powder producing step S01, a sintering step S02 in which the obtained granulated powder is pressurized and heated to be sintered, and a machining step S03 in which the obtained sintered body is machined.
(造粒粉作製工程S01)
 この造粒粉作製工程S01においては、平均粒子径が5μm以上のNb,W,Tiから選択される一種又は二種以上からなる金属粉と、平均粒子径が1μm以下の酸化亜鉛粉と、を準備する。
 そして、これらの金属粉と酸化亜鉛粉とを、水の濃度が30vol%以上の溶媒を用いて混合し、乾燥させて造粒粉を得る。溶媒としては、純水、純水とエタノールの混合液などが挙げられる。
(Granulation powder production step S01)
In this granulation powder preparation step S01, one or more metal powders selected from Nb, W, Ti having an average particle diameter of 5 μm or more and zinc oxide powder having an average particle diameter of 1 μm or less are used. prepare.
Then, these metal powders and zinc oxide powders are mixed using a solvent having a water concentration of 30 vol% or more and dried to obtain granulated powder. Examples of the solvent include pure water, a mixed solution of pure water and ethanol, and the like.
 ここで、Nb,W,Tiから選択される一種又は二種以上からなる金属粉の平均粒子径が5μm以上とされ、酸化亜鉛粉の平均粒子径が1μm以下とされていることにより、焼結時に酸化亜鉛や金属亜鉛の昇華によるガスの発生を抑制でき、焼結体の密度向上を図ることが可能となる。
 また、金属粉と酸化亜鉛粉とを、水の濃度が30vol%以上の溶媒を用いて混合することにより、スラリー乾燥時の溶媒の表面張力による粉の凝集効果によって乾燥後の金属粉と酸化亜鉛粉との分離を抑制でき、組成のばらつきを抑えることが可能なる。
Here, the average particle size of one or more metal powders selected from Nb, W, and Ti is 5 μm or more, and the average particle size of zinc oxide powder is 1 μm or less. Occasionally, it is possible to suppress the generation of gas due to the sublimation of zinc oxide and metallic zinc, and it is possible to improve the density of the sintered body.
Further, by mixing the metal powder and the zinc oxide powder with a solvent having a water concentration of 30 vol% or more, the metal powder and the zinc oxide after drying are produced by the aggregation effect of the powder due to the surface tension of the solvent during slurry drying. Separation from powder can be suppressed, and variation in composition can be suppressed.
 なお、Nb,W,Tiから選択される一種又は二種以上からなる金属粉の平均粒子径の下限は7μm以上であることが好ましく、10μm以上であることがより好ましい。また、前記金属粉の平均粒子径の上限は、20μm以下であることが好ましく、18μm以下であることがより好ましい。
 また、酸化亜鉛粉の平均粒子径の上限は500nm以下であることが好ましく、100nm以下であることがより好ましい。さらに前記酸化亜鉛粉の平均粒子径の下限は、30nm以上であることが好ましく、50nm以上であることがより好ましい。
 さらに、溶媒中の水の濃度は50vol%以上であることが好ましく、80vol%以上であることがより好ましい。
The lower limit of the average particle size of one or more metal powders selected from Nb, W, and Ti is preferably 7 μm or more, and more preferably 10 μm or more. The upper limit of the average particle size of the metal powder is preferably 20 μm or less, and more preferably 18 μm or less.
Further, the upper limit of the average particle size of the zinc oxide powder is preferably 500 nm or less, more preferably 100 nm or less. Further, the lower limit of the average particle size of the zinc oxide powder is preferably 30 nm or more, more preferably 50 nm or more.
Further, the concentration of water in the solvent is preferably 50 vol% or more, more preferably 80 vol% or more.
 ここで、スパッタリングターゲットが、Al,Si,Ga,In,Sn,Ti,Nb,Zr,Mo,Ta,W,Yから選択される一種又は二種以上の金属Mの酸化物を含む場合には、この造粒粉作製工程S01において、上述の金属粉および酸化亜鉛粉に加えて、平均粒子径が0.1μm以上12μm以下の範囲内とされたAl,Si,Ga,In,Sn,Ti,Nb,Zr,Mo,Ta,W,Yから選択される一種又は二種以上の金属Mの酸化物粉を、水の濃度が30vol%以上の溶媒を用いて混合し、造粒粉を作製することが好ましい。
 金属Mの酸化物粉の平均粒子径を0.1μm以上とすることにより、焼結体の密度向上を図ることが可能となる。一方、金属Mの酸化物粉の平均粒子径を12μm以下とすることにより、スパッタ時に金属Mの酸化物に起因した異常放電の発生を抑制することが可能となる。
 なお、金属Mの酸化物粉の平均粒子径の下限は0.3μm以上とすることが好ましく、0.5μm以上とすることがより好ましい。また、金属Mの酸化物粉の平均粒子径の上限は10μm以下とすることが好ましく、7μm以下とすることがより好ましい。
 スパッタリングターゲットがCを含む場合には、造粒粉作製工程S01において、上述の金属粉、酸化亜鉛粉、及び金属Mの酸化物粉に加えて、C粉を混合することが好ましい。C粉の平均粒子径は、好ましくは2~10μmである。
 金属粉、酸化亜鉛粉、金属Mの酸化物粉、及びC粉の混合割合は、目標とするスパッタリングターゲットの組成が得られるように調整される。
 溶媒の添加量は、原料粉(金属粉、酸化亜鉛粉、金属Mの酸化物粉、及びC粉)の量に対して1倍以上10倍以下であることが好ましい。
Here, when the sputtering target contains an oxide of one or more kinds of metal M selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y. In this granulated powder manufacturing step S01, in addition to the above-mentioned metal powder and zinc oxide powder, Al, Si, Ga, In, Sn, Ti, whose average particle diameter is within the range of 0.1 μm or more and 12 μm or less. Oxide powder of one or more kinds of metal M selected from Nb, Zr, Mo, Ta, W and Y is mixed with a solvent having a water concentration of 30 vol% or more to prepare a granulated powder. Is preferable.
By setting the average particle size of the oxide powder of the metal M to 0.1 μm or more, it is possible to improve the density of the sintered body. On the other hand, by setting the average particle size of the oxide powder of the metal M to 12 μm or less, it is possible to suppress the occurrence of abnormal discharge due to the oxide of the metal M during sputtering.
The lower limit of the average particle size of the oxide powder of the metal M is preferably 0.3 μm or more, and more preferably 0.5 μm or more. Further, the upper limit of the average particle size of the oxide powder of the metal M is preferably 10 μm or less, and more preferably 7 μm or less.
When the sputtering target contains C, it is preferable to mix the C powder in addition to the above-mentioned metal powder, zinc oxide powder, and metal M oxide powder in the granulation powder production step S01. The average particle size of the C powder is preferably 2 to 10 μm.
The mixing ratio of the metal powder, the zinc oxide powder, the oxide powder of the metal M, and the C powder is adjusted so as to obtain the composition of the target sputtering target.
The amount of the solvent added is preferably 1 to 10 times or less with respect to the amount of the raw material powder (metal powder, zinc oxide powder, metal M oxide powder, and C powder).
(焼結工程S02)
 次に、上述の造粒粉を、加圧しながら加熱することで焼結し、焼結体を得る。
 この焼結工程S02における焼結温度は1000℃以下とし、加圧圧力は145MPa以上とする。
 ここで、焼結温度を1000℃以下とすることにより、酸化亜鉛および金属亜鉛の昇華を抑制することができる。また、加圧圧力を145MPa以上とすることにより、密度の向上を図ることが可能となる。
 なお、焼結温度の上限は950℃以下とすることが好ましく、900℃以下とすることがより好ましい。一方、焼結温度の下限は、600℃以上とすることが好ましく、700℃以上とすることがより好ましい。
 また、加圧圧力の下限は150MPa以上とすることが好ましく、155MPa以上とすることがより好ましい。一方、加圧圧力の上限は200MPa以下とすることが好ましく、170MPa以下とすることがより好ましい。
(Sintering step S02)
Next, the above-mentioned granulated powder is sintered by heating while pressurizing to obtain a sintered body.
The sintering temperature in the sintering step S02 is 1000 ° C. or lower, and the pressurizing pressure is 145 MPa or higher.
Here, by setting the sintering temperature to 1000 ° C. or lower, sublimation of zinc oxide and metallic zinc can be suppressed. Further, by setting the pressurizing pressure to 145 MPa or more, it is possible to improve the density.
The upper limit of the sintering temperature is preferably 950 ° C or lower, more preferably 900 ° C or lower. On the other hand, the lower limit of the sintering temperature is preferably 600 ° C. or higher, more preferably 700 ° C. or higher.
Further, the lower limit of the pressurizing pressure is preferably 150 MPa or more, and more preferably 155 MPa or more. On the other hand, the upper limit of the pressurizing pressure is preferably 200 MPa or less, more preferably 170 MPa or less.
(機械加工工程S03)
 次に、得られた焼結体を所定の寸法となるように機械加工する。これにより、本実施形態であるスパッタリングターゲットが製造される。
(Machining process S03)
Next, the obtained sintered body is machined to have a predetermined size. As a result, the sputtering target according to the present embodiment is manufactured.
 以上のような構成とされた本実施形態であるスパッタリングターゲットによれば、Nb,W,Tiから選択される一種又は二種以上の金属相と、酸化亜鉛相と、を含んでいるので、光学特性に優れ、かつ、耐熱性および耐アルカリ性に優れた光学機能膜12を成膜することができる。
 そして、密度比が80%以上とされているので、スパッタ時における異常放電の発生を抑制できる。
 さらに、スパッタ面の複数の箇所で測定したNb,W,Tiから選択される一種又は二種以上からなる金属元素のそれぞれの含有量の標準偏差が5mass%以下とされているので、反射率のばらつきの少ない光学機能膜12を成膜することが可能となる。
According to the sputtering target of the present embodiment having the above configuration, since it contains one or more kinds of metal phases selected from Nb, W, Ti and a zinc oxide phase, it is optical. It is possible to form an optical functional film 12 having excellent characteristics and excellent heat resistance and alkali resistance.
Since the density ratio is 80% or more, it is possible to suppress the occurrence of abnormal discharge during sputtering.
Further, since the standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti measured at a plurality of points on the spatter surface is 5 mass% or less, the reflectance is increased. It is possible to form an optical functional film 12 with little variation.
 本実施形態であるスパッタリングターゲットにおいて、空孔の平均粒子面積が5μm以下である場合には、スパッタ時に空孔に起因した異常放電の発生を抑制でき、さらに安定して光学機能膜12を成膜することが可能となる。 In the sputtering target of the present embodiment, when the average particle area of the pores is 5 μm 2 or less, the generation of abnormal discharge due to the pores during sputtering can be suppressed, and the optical functional film 12 is formed more stably. It becomes possible to make a film.
 また、本実施形態であるスパッタリングターゲットにおいて、Al,Si,Ga,In,Sn,Ti,Nb,Zr,Mo,Ta,W,Yから選択される一種又は二種以上の金属Mの酸化物を含み、金属Mの合計含有量が、全金属元素を100mass%として、0.1mass%以上40mass%以下の範囲内とされている場合には、成膜した光学機能膜12の耐熱性および耐アルカリ性をさらに向上させることが可能となる。 Further, in the sputtering target of the present embodiment, one or more kinds of metal M oxides selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y are used. When the total content of the metal M is within the range of 0.1 mass% or more and 40 mass% or less with 100 mass% of all metal elements, the heat resistance and alkali resistance of the formed optical functional film 12 Can be further improved.
 さらに、本実施形態であるスパッタリングターゲットにおいて、スパッタ面の複数の箇所で測定した比抵抗値の標準偏差を平均値で割った割合が100%以下である場合には、スパッタ時における異常放電の発生を抑制でき、さらに安定して光学機能膜を成膜することが可能となる。 Further, in the sputtering target of the present embodiment, when the ratio obtained by dividing the standard deviation of the specific resistance values measured at a plurality of points on the sputtering surface by the average value is 100% or less, an abnormal discharge occurs during sputtering. Can be suppressed, and a more stable optical functional film can be formed.
 また、本実施形態であるスパッタリングターゲットにおいて、Nb,W,Tiの合計含有量が50mass%以上である場合には、比抵抗が十分に低くなり、スパッタ時における異常放電の発生をさらに抑制できる。また、成膜した光学機能膜12の耐熱性および耐アルカリ性をさらに向上させることができる。 Further, in the sputtering target of the present embodiment, when the total content of Nb, W, and Ti is 50 mass% or more, the specific resistance is sufficiently low, and the occurrence of abnormal discharge during sputtering can be further suppressed. Further, the heat resistance and alkali resistance of the formed optical functional film 12 can be further improved.
 さらに、本実施形態であるスパッタリングターゲットにおいて、Cを1mass%以上10mass%以下の範囲内で含む場合には、成膜した光学機能膜12の耐熱性および耐アルカリ性をさらに向上させることができるとともに、成膜した光学機能膜12のエッチング性を確保することが可能となる。 Further, when the sputtering target of the present embodiment contains C in the range of 1 mass% or more and 10 mass% or less, the heat resistance and alkali resistance of the formed optical functional film 12 can be further improved, and the heat resistance and alkali resistance of the film-formed optical functional film 12 can be further improved. It is possible to secure the etching property of the formed optical functional film 12.
 本実施形態であるスパッタリングターゲットの製造方法によれば、平均粒子径が5μm以上のNb,W,Tiから選択される一種又は二種以上からなる金属粉と、平均粒子径が1μm以下の酸化亜鉛粉と、を水の濃度が30vol%以上の溶媒を用いて混合し、溶媒を乾燥させて造粒粉を得る造粒粉作製工程S01を備えているので、粒径が大きい金属粉と粒径が小さい酸化亜鉛粉とが均一に混合された造粒粉を得ることができる。よって、その後の焼結工程において酸化亜鉛の昇華や酸化亜鉛の還元反応を抑制でき、ガスの発生を抑制でき、密度を向上させることができるとともに、組成ずれの発生を抑制できる。
 また、得られた造粒粉を1000℃以下の温度かつ145MPa以上の圧力で加熱および加圧して焼結する焼結工程S02を備えているので、密度を十分に向上させることが可能となる。
According to the method for producing a sputtering target according to the present embodiment, one or more metal powders selected from Nb, W, and Ti having an average particle size of 5 μm or more and zinc oxide having an average particle size of 1 μm or less are used. Since the granulated powder manufacturing step S01 is provided in which the powder and the powder are mixed with a solvent having a water concentration of 30 vol% or more and the solvent is dried to obtain a granulated powder, the metal powder having a large particle size and the particle size are provided. It is possible to obtain a granulated powder in which a small amount of zinc oxide powder is uniformly mixed. Therefore, in the subsequent sintering step, the sublimation of zinc oxide and the reduction reaction of zinc oxide can be suppressed, the generation of gas can be suppressed, the density can be improved, and the occurrence of composition deviation can be suppressed.
Further, since the sintering step S02 for heating and pressurizing the obtained granulated powder at a temperature of 1000 ° C. or lower and a pressure of 145 MPa or higher is provided, the density can be sufficiently improved.
 本実施形態であるスパッタリングターゲットの製造方法において、造粒粉作製工程S01で、金属粉および酸化亜鉛粉に加えて、平均粒子径が0.1μm以上12μm以下の範囲内とされたAl,Si,Ga,In,Sn,Ti,Nb,Zr,Mo,Ta,W,Yから選択される一種又は二種以上の金属Mの酸化物粉を混合した場合には、Al,Si,Ga,In,Sn,Ti,Nb,Zr,Mo,Ta,W,Yから選択される一種又は二種以上の金属Mの酸化物を含むスパッタリングターゲットを製造することができる。また、金属Mの酸化物粉の均粒子径が0.1μm以上12μm以下の範囲内とされているので、密度を十分に向上させることができるとともに、スパッタ時にこの金属Mの酸化物に起因した異常放電の発生を抑制することができる。 In the method for producing a sputtering target according to the present embodiment, in the granulation powder preparation step S01, in addition to the metal powder and zinc oxide powder, Al, Si, whose average particle size is within the range of 0.1 μm or more and 12 μm or less. When one or more metal M oxide powders selected from Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y are mixed, Al, Si, Ga, In, A sputtering target containing an oxide of one or more kinds of metal M selected from Sn, Ti, Nb, Zr, Mo, Ta, W, and Y can be produced. Further, since the average particle size of the oxide powder of the metal M is within the range of 0.1 μm or more and 12 μm or less, the density can be sufficiently improved and the oxide of the metal M is caused at the time of sputtering. The occurrence of abnormal discharge can be suppressed.
 本実施形態であるスパッタリングターゲットの製造方法において、酸化亜鉛粉の平均粒子径が100nm以下、あるいは、Nb,W,Tiから選択される一種又は二種以上からなる金属粉の平均粒子径が10μm以上である場合には、さらに密度の向上を図ることが可能となる。 In the method for producing a sputtering target according to the present embodiment, the average particle size of zinc oxide powder is 100 nm or less, or the average particle size of one or more metal powders selected from Nb, W, and Ti is 10 μm or more. If this is the case, it is possible to further improve the density.
 本実施形態である光学機能膜12によれば、Nb,W,Tiから選択される一種又は二種以上からなる金属と酸化亜鉛を含んでいるので、光学特性に優れ、かつ、耐熱性および耐アルカリ性に優れている。
 そして、Nb,W,Tiから選択される一種又は二種以上からなる金属元素のそれぞれの含有量の標準偏差が5mass%以下とされているので、反射率のばらつきの少なくなる。
According to the optical functional film 12 of the present embodiment, since it contains one or more metals selected from Nb, W, and Ti and zinc oxide, it has excellent optical properties, heat resistance, and resistance. Has excellent alkalinity.
Since the standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti is 5 mass% or less, the variation in reflectance is reduced.
 本実施形態である光学機能膜12において、Al,Si,Ga,In,Sn,Ti,Nb,Zr,Mo,Ta,W,Yから選択される一種又は二種以上の金属Mの酸化物を含んでいる場合には、耐熱性および耐アルカリ性をさらに向上させることが可能となる。 In the optical functional film 12 of the present embodiment, an oxide of one or more kinds of metal M selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W, and Y is used. If it is contained, heat resistance and alkali resistance can be further improved.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的要件を逸脱しない範囲で適宜変更可能である。
 本実施形態では、造粒粉作製工程に続いて焼結工程を実施することとして説明したが、これに限定されることはなく、造粒粉作製工程と焼結工程との間に、造粒粉を常温で加圧して成形する成形工程を実施し、得られた成形体を焼結する構成としてもよい。成形工程での加圧圧力は、好ましくは100MPa以上175MPa以下である。
Although the embodiments of the present invention have been described above, the present invention is not limited to this, and can be appropriately changed without departing from the technical requirements of the invention.
In the present embodiment, it has been described that the sintering step is carried out after the granulation powder preparation step, but the present invention is not limited to this, and the granulation is performed between the granulation powder preparation step and the sintering step. A molding step of pressurizing the powder at room temperature to form the powder may be carried out, and the obtained molded body may be sintered. The pressurizing pressure in the molding step is preferably 100 MPa or more and 175 MPa or less.
 また、本実施形態では、図1に示すように、基板1の表面に成膜された金属配線膜11の上に積層するように本実施形態に係る光学機能膜12が成膜された構造として説明したが、これに限定されることはなく、基板1の表面に光学機能膜12を成膜し、この光学機能膜12の上に金属配線膜11が積層された構造であってもよい。この場合には、基板1からの反射も同時に低下させることが可能となる。 Further, in the present embodiment, as shown in FIG. 1, as a structure in which the optical functional film 12 according to the present embodiment is formed so as to be laminated on the metal wiring film 11 formed on the surface of the substrate 1. As described above, the present invention is not limited to this, and the optical functional film 12 may be formed on the surface of the substrate 1 and the metal wiring film 11 may be laminated on the optical functional film 12. In this case, the reflection from the substrate 1 can be reduced at the same time.
 以下に、本発明に係るスパッタリングターゲット、スパッタリングターゲットの製造方法、および、光学機能膜の作用効果について評価した評価試験の結果を説明する。 The results of the evaluation test for evaluating the sputtering target according to the present invention, the method for manufacturing the sputtering target, and the action and effect of the optical functional film will be described below.
 表5~8に記載の金属粉、酸化亜鉛粉、各種金属酸化物粉、C粉を、表1~4に記載の割合で合計1kgに秤量した。この秤量した原料粉1kgと、φ5mmのジルコニアボール3kgと、表5~8に記載の水濃度の溶媒1Lを容量10Lのポットに入れ、ボールミル装置で16h混合した。次いで混合した粉末を乾燥し、250μmの篩で篩って、造粒粉を得た。
 なお、溶媒は、純水とエタノールの混合液であり、表5~8の水濃度の欄には、溶媒1Lが純水のみの場合を水濃度100%とし、純水とエタノールの混合液における水濃度の値を記載した。乾式混合については「乾式」と記載した。
The metal powders, zinc oxide powders, various metal oxide powders, and C powders shown in Tables 5 to 8 were weighed to a total of 1 kg at the ratios shown in Tables 1 to 4. 1 kg of the weighed raw material powder, 3 kg of zirconia balls having a diameter of 5 mm, and 1 L of a solvent having a water concentration shown in Tables 5 to 8 were placed in a pot having a capacity of 10 L and mixed for 16 hours with a ball mill device. The mixed powder was then dried and sieved through a 250 μm sieve to give granulated powder.
The solvent is a mixed solution of pure water and ethanol, and in the water concentration column of Tables 5 to 8, the water concentration is 100% when the solvent 1 L is only pure water, and the mixed solution of pure water and ethanol is used. The value of water concentration is described. The dry mixing is described as "dry".
 得られた造粒粉をφ250mmのゴム型に充填した。次いで、150MPaの圧力でCIP(冷間等方圧加圧(Cold Isostatic Pressing))し、成形体を得た。
 得られた成形体をφ220mmの鋼製の缶に入れ、300℃で真空排気した。次いで、成形体を缶に封入し、表5~8に記載の温度と圧力で3時間保持の条件でHIP(熱間等方圧加圧(Hot Isostatic Pressing))し、焼結体を得た。
 得られた焼結体をφ125mm×厚さt5mmに機械加工し、InはんだでCu製のバッキングプレートにボンディングしスパッタリングターゲットを得た。
The obtained granulated powder was filled in a rubber mold having a diameter of 250 mm. Then, CIP (Cold Isostatic Pressing) was performed at a pressure of 150 MPa to obtain a molded product.
The obtained molded product was placed in a steel can having a diameter of 220 mm and evacuated at 300 ° C. Next, the molded product was sealed in a can and subjected to HIP (Hot Isostatic Pressing) under the conditions of holding at the temperatures and pressures shown in Tables 5 to 8 for 3 hours to obtain a sintered body. ..
The obtained sintered body was machined to φ125 mm × thickness t5 mm and bonded to a backing plate made of Cu with In solder to obtain a sputtering target.
 なお、原料粉の平均粒子径は、ヘキサメタリン酸ナトリウム濃度0.2%の水溶液を100mL調製し、この水溶液に原料粉末を10mg加え、レーザー回折散乱法(測定装置:日機装株式会社製、Microtrac MT3000)を用いて、粒子径分布を測定した。得られた粒子径分布から算術平均径(体積平均径)を算出し、平均粒子径として表5~8に記載した。 For the average particle size of the raw material powder, 100 mL of an aqueous solution having a sodium hexametaphosphate concentration of 0.2% was prepared, 10 mg of the raw material powder was added to this aqueous solution, and a laser diffraction scattering method (measuring device: Microtrac MT3000 manufactured by Nikkiso Co., Ltd.) was added. The particle size distribution was measured using. The arithmetic average diameter (volume average diameter) was calculated from the obtained particle size distribution, and is shown in Tables 5 to 8 as the average particle size.
 上述のようにして、得られたスパッタリングターゲット、および、このスパッタリングターゲットを用いて成膜された光学機能膜について、以下の項目について評価した。 As described above, the obtained sputtering target and the optical functional film formed by using this sputtering target were evaluated for the following items.
(金属相)
 得られたスパッタリングターゲットから試料を採取し、XRDによって分析した。Nb相ID:01-073-3816、W相ID:01-004-0806、Ti相:00-044-1294に帰属するピークが得られている場合をそれぞれの金属相があると判断した。また、ZnO相ID:00-036-1451に帰属するピークが得られている場合をZnO相があると判断した。その結果、本発明例1~61においては、すべてNb、W、Tiのいずれか一種以上の金属相(Nb相、W相、Ti相の1種以上)とZnO相が確認された。
 また、得られた膜については、XPSによって分析した。Nb:3d軌道、W:4f軌道、Ti:2p軌道、Zn:2p軌道のピークから、本発明例1~61においては、すべてNb、W、Tiのいずれか一種以上の金属相とZnO相に由来するピークが確認された。
(Metal phase)
Samples were taken from the resulting sputtering target and analyzed by XRD. When the peaks belonging to Nb phase ID: 01-073-3816, W phase ID: 01-004-0806, and Ti phase: 00-044-1294 were obtained, it was determined that each metal phase was present. Further, when the peak attributable to ZnO phase ID: 00-036-1451 was obtained, it was determined that there was a ZnO phase. As a result, in all of Examples 1 to 61 of the present invention, one or more metal phases of Nb, W, and Ti (one or more of Nb phase, W phase, and Ti phase) and ZnO phase were confirmed.
The obtained membrane was analyzed by XPS. From the peaks of Nb: 3d orbital, W: 4f orbital, Ti: 2p orbital, and Zn: 2p orbital, in Examples 1 to 61 of the present invention, all of them are changed to one or more of Nb, W, and Ti metal phase and ZnO phase. The derived peak was confirmed.
(スパッタリングターゲットの組成)
 得られたスパッタリングターゲットから試料を採取し、これを酸またはアルカリで溶解し、次いでICP-AESで金属元素の定量を行った。また、Cについては、LECO社のガス分析装置によってCの定量を行った。
 C,Oを含む全体に対する各元素の含有量を、表9~12の「スパッタリングターゲット組成」の欄に示す。
 さらに、金属Mの酸化物を含む場合には、全金属元素を100mass%として金属Mの含有量を表9~12の「全金属元素中の金属元素Mの割合」の欄に示す。
 なお、本発明例15では金属NbとNb酸化物を含有し、本発明例37では金属WとW酸化物を含有し、本発明例50では金属TiとTi酸化物を含有しているので、これらについては、金属酸化物の金属成分量も、「スパッタリングターゲット組成」の欄の金属元素の含有量に加えられることになる(表9、10、11において「*」で示した)。よって、金属酸化物の金属成分量については、「スパッタリングターゲット組成」の欄、および、「全金属元素中の金属元素Mの割合」の欄の両方にカウントされることになる。すなわち、「スパッタリングターゲット組成」の欄のNb,W,Tiの量は、金属酸化物中のNb,W,Tiの量を含む。また、金属酸化物の金属成分については、XPS装置の半定量分析結果から、酸化物由来のNb、W、Tiの金属成分の定量値を採用した。すなわち、「全金属元素中の金属元素Mの割合」の欄のNb,W,Tiの量は、金属酸化物中のNb,W,Tiの量である。
(Composition of sputtering target)
A sample was taken from the obtained sputtering target, dissolved with an acid or an alkali, and then the metal element was quantified by ICP-AES. As for C, C was quantified by a gas analyzer manufactured by LECO.
The content of each element with respect to the whole including C and O is shown in the column of "Sputtering target composition" in Tables 9 to 12.
Further, when the oxide of the metal M is contained, the content of the metal M is shown in the column of "Ratio of the metal element M to the total metal elements" in Tables 9 to 12, with the total metal element as 100 mass%.
In the example 15 of the present invention, the metal Nb and the Nb oxide are contained, in the example 37 of the present invention, the metal W and the W oxide are contained, and in the example 50 of the present invention, the metal Ti and the Ti oxide are contained. For these, the amount of the metal component of the metal oxide will also be added to the content of the metal element in the column of "blasting target composition" (indicated by "*" in Tables 9, 10 and 11). Therefore, the amount of the metal component of the metal oxide is counted in both the column of "sputtering target composition" and the column of "ratio of metal element M to all metal elements". That is, the amount of Nb, W, Ti in the column of "sputtering target composition" includes the amount of Nb, W, Ti in the metal oxide. As for the metal component of the metal oxide, the quantitative values of the metal components of Nb, W, and Ti derived from the oxide were adopted from the semi-quantitative analysis result of the XPS apparatus. That is, the amount of Nb, W, Ti in the column of "ratio of metal element M in all metal elements" is the amount of Nb, W, Ti in the metal oxide.
(スパッタリングターゲットの密度比)
 得られたターゲットの寸法から体積を算出し、重量を体積で割ることで密度を計算した。さらに、仕込み組成から得られる理想的な計算密度で実測密度を割ることで、密度比(%)を計算した。評価結果を表13~16に示す。
(Density ratio of sputtering target)
The volume was calculated from the dimensions of the obtained target, and the density was calculated by dividing the weight by the volume. Furthermore, the density ratio (%) was calculated by dividing the measured density by the ideal calculated density obtained from the charged composition. The evaluation results are shown in Tables 13-16.
(金属元素の標準偏差)
 得られたスパッタリングターゲットのスパッタ面の5点からターゲット片を採取し、上記の方法で金属元素を定量し、5点の結果の標準偏差σを表に示した。サンプル箇所については、φ125mmの面の中心座標を(x mm、y mm)=(0、0)とした際、(x、y)=(0、0)、(-60、0)、(+60、0)、(0、-60)、(0、+60)の5か所とした。評価結果を表13~16に示す。
(Standard deviation of metal elements)
Target pieces were collected from 5 points on the sputtered surface of the obtained sputtering target, metal elements were quantified by the above method, and the standard deviation σ of the results of the 5 points is shown in the table. Regarding the sample location, when the center coordinates of the surface of φ125 mm are (x mm, y mm) = (0, 0), (x, y) = (0, 0), (-60, 0), (+60) , 0), (0, -60), (0, +60). The evaluation results are shown in Tables 13-16.
(比抵抗値)
 得られたスパッタリングターゲットのスパッタ面を25±5℃(20~30℃)の雰囲気で三菱ガス化学製四探針抵抗測定計ロレスターを用いて測定した。
 そして、金属元素の標準偏差の欄で示した5箇所の位置で比抵抗値を測定し、標準偏差を平均値で割った割合を表に示した。評価結果を表13~16に示す。
 なお、表中では、比抵抗値“a×10-bΩ・cm”を“aE-b”と記載する。
(Specific resistance value)
The sputtered surface of the obtained sputtering target was measured in an atmosphere of 25 ± 5 ° C. (20 to 30 ° C.) using a Mitsubishi Gas Chemical Company's four-probe resistance measuring instrument Lorester.
Then, the resistivity values were measured at the five positions shown in the column of standard deviation of the metal element, and the ratio of the standard deviation divided by the average value is shown in the table. The evaluation results are shown in Tables 13-16.
In the table, the specific resistance value “a × 10 −b Ω · cm” is described as “aE−b”.
(空孔の平均粒子面積)
 得られたスパッタリングターゲットから採取した試料を樹脂埋めし、次いで研磨し、電子プローブマイクロアナライザ(EPMA)装置(日本電子株式会社製)を用いて、倍率1500倍で、縦60μm、横76μmの組成像(COMPO像)を撮影した。得られた画像について、画像処理ソフトImageJを用いて、Brightnessによる二値化を行った。このときBrightnessのしきい値を120と設定した。つまり輝度が低い空孔の領域のみを検出した。二値化し、次いで得られた画像についてParticle測定機能を用いて、平均粒子面積を求めた。得られた値を空孔の平均粒子面積として表13~16に示した。
(Average particle area of pores)
The sample collected from the obtained sputtering target is embedded with resin, then polished, and a composition image of 60 μm in length and 76 μm in width at a magnification of 1500 times using an electron probe microanalyzer (EPMA) device (manufactured by JEOL Ltd.). (COMPO image) was photographed. The obtained image was binarized by Brightness using the image processing software ImageJ. At this time, the threshold value of Brightness was set to 120. That is, only the region of the pores with low brightness was detected. Binarization was performed, and then the average particle area of the obtained image was determined using the Particle measurement function. The obtained values are shown in Tables 13 to 16 as the average particle area of the pores.
(異常放電測定)
 上述のスパッタリングターゲットをAr50sccm、0.4Pa、DC615W(mks社製RPG-50)でスパッタし、1時間スパッタした時の異常放電の回数を電源のカウント機能を用いて計測した。評価結果を表13~16に示す。
 なお、比較例1~3のスパッタリングターゲットにおいては、異常放電が多発し、さらにターゲットのスパッタ表面に異常放電による穴が開いてしまったため、成膜評価継続不可と判断した。
(Abnormal discharge measurement)
The above-mentioned sputtering target was sputtered with Ar50sccm, 0.4Pa, DC615W (RPG-50 manufactured by mks), and the number of abnormal discharges when sputtered for 1 hour was measured using the count function of the power supply. The evaluation results are shown in Tables 13-16.
In the sputtering targets of Comparative Examples 1 to 3, abnormal discharges occurred frequently, and holes were opened on the sputtering surface of the target due to the abnormal discharges. Therefore, it was judged that the film formation evaluation could not be continued.
(光学機能膜の組成)
 上記本発明例のスパッタリングターゲットを用いてAr50sccm、0.4Pa、DC615Wの条件でSi基板上に厚さ50nmの膜を成膜した。基板サイズはφ5インチのものを用い、成膜後の基板をターゲットの組成ばらつきの評価で行った5か所の座標の直上の位置を中心として20mm×20mm程度のサイズにカットして切出し、それぞれ1枚ずつ、計5枚サンプルを採取した。
 得られた膜をEPMAの定量分析によって、NbとWとTiの定量を行い、5枚の結果の標準偏差σを表17~20に記載した。
(Composition of optical functional film)
Using the sputtering target of the above-mentioned example of the present invention, a film having a thickness of 50 nm was formed on a Si substrate under the conditions of Ar50sccm, 0.4Pa, and DC615W. A substrate size of φ5 inch was used, and the substrate after film formation was cut into a size of about 20 mm × 20 mm centered on the positions directly above the coordinates of the five locations evaluated for the composition variation of the target, and each was cut out. A total of 5 samples were taken, one for each.
Nb, W and Ti were quantified in the obtained film by quantitative analysis of EPMA, and the standard deviation σ of the results of 5 sheets is shown in Tables 17 to 20.
(反射率)
 φ125mm×厚さt5mmの4Nの銅ターゲットを用い、基板をターゲットの組成ばらつきの評価で行った5か所の座標の直上にそれぞれ1枚ずつ、計5枚配置した。基板は、20mm×20mmサイズのガラス基板(Corning社製EAGLE XG)であった。Ar50sccm、0.4Pa、DC615Wの条件で厚さ200nmのCu膜をガラス基板に成膜した。
 その後、銅ターゲットを上記本発明例のターゲットに交換し、ガラス基板の位置はそのままで、Ar50sccm、0.4Pa、DC615Wの条件で、Cu膜上に表17~20に記載の膜厚分だけ光学機能膜を成膜した。得られた座標(x、y)=(0、0)の位置の基板の膜に対して、分光光度計(日立ハイテクノロジーズ社製U-4100)を用いて可視光領域の反射率を測定した。380nm~780nmの反射率の平均値を表17~20に示した。
 反射率のばらつきの評価として、上記反射率の測定を計5枚について行い、5枚の反射率の結果の標準偏差σを表に記載した。標準偏差は3%以下であることが好ましく、2%以下であることがより好ましく、1%以下であることがさらに好ましい。
(Reflectance)
Using a 4N copper target having a diameter of 125 mm and a thickness of t5 mm, a total of five substrates were placed, one each directly above the coordinates at the five locations evaluated in the evaluation of the composition variation of the target. The substrate was a glass substrate having a size of 20 mm × 20 mm (EAGLE XG manufactured by Corning Inc.). A Cu film having a thickness of 200 nm was formed on a glass substrate under the conditions of Ar50sccm, 0.4Pa, and DC615W.
After that, the copper target was replaced with the target of the above-mentioned example of the present invention, and the position of the glass substrate was kept as it was, and under the conditions of Ar50sccm, 0.4Pa, DC615W, optics were applied on the Cu film by the film thickness shown in Tables 17 to 20. A functional film was formed. The reflectance in the visible light region was measured using a spectrophotometer (U-4100 manufactured by Hitachi High-Technologies Corporation) for the substrate film at the obtained coordinates (x, y) = (0, 0). .. The average value of the reflectance from 380 nm to 780 nm is shown in Tables 17 to 20.
As an evaluation of the variation in reflectance, the above-mentioned reflectance was measured for a total of 5 sheets, and the standard deviation σ as a result of the reflectance of 5 sheets is shown in the table. The standard deviation is preferably 3% or less, more preferably 2% or less, and even more preferably 1% or less.
(耐熱性)
 反射率を測定したサンプルを、ランプ加熱炉を用いて、窒素雰囲気で400℃まで10℃/secの速度で昇温し、10min保持した。次いで室温まで冷却してから取り出し、同様に反射率を測定した。処理前と処理後の反射率の差を表17~20に記載した。この差は10%以下であることが好ましく、5%以下であることがより好ましく、3%以下であることがさらに好ましい。
(Heat-resistant)
The sample whose reflectance was measured was heated to 400 ° C. at a rate of 10 ° C./sec in a nitrogen atmosphere using a lamp heating furnace and maintained for 10 minutes. Then, after cooling to room temperature, it was taken out, and the reflectance was measured in the same manner. The difference in reflectance before and after the treatment is shown in Tables 17 to 20. This difference is preferably 10% or less, more preferably 5% or less, and even more preferably 3% or less.
(耐アルカリ性)
 反射率を測定したサンプルを、市販のTMAH(Tetramethylammonium hydroxide:水酸化テトラメチルアンモニウム)溶液(2.38wt%)に室温で10min間浸漬し、次いで純水ですすぎ、エアブローで乾燥した。その後、同様に反射率を測定した。処理前と処理後の反射率の差を表17~20に記載した。この差は10%以下であることが好ましく、5%以下であることがより好ましく、3%以下であることがさらに好ましい。
(Alkaline resistance)
The sample whose reflectance was measured was immersed in a commercially available TMAH (Tetramethylammonium hydroxide) solution (2.38 wt%) at room temperature for 10 min, then rinsed with pure water and dried by air blow. After that, the reflectance was measured in the same manner. The difference in reflectance before and after the treatment is shown in Tables 17 to 20. This difference is preferably 10% or less, more preferably 5% or less, and even more preferably 3% or less.
(エッチング性)
 金属がNbの場合においては、得られた50nmの膜を40℃に加熱したフッ硝酸水溶液に浸漬した。金属がTi,Wの場合においては、得られた50nmの膜を40℃に加熱した市販のH系エッチング液(関東化学社製 GHP-3)に浸漬した。本発明例1~61においては、すべて膜がエッチング可能なことを確認した。
(Etching property)
When the metal was Nb, the obtained 50 nm film was immersed in a fluorine aqueous solution heated to 40 ° C. Metals Ti, in the case of W was immersed in a commercially available H 2 O 2 etchant heating the film obtained 50nm to 40 ° C. (manufactured by Kanto Chemical Co., Inc. GHP-3). In Examples 1 to 61 of the present invention, it was confirmed that all the films could be etched.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 比較例1においては、金属Nb粉の平均粒子径が1.1μmであり、スパッタリングターゲットの密度比が70.5%であった。このため、異常放電回数が234回/時間と多くなり、光学機能膜を安定して成膜することができなかった。 In Comparative Example 1, the average particle size of the metal Nb powder was 1.1 μm, and the density ratio of the sputtering target was 70.5%. Therefore, the number of abnormal discharges increased to 234 times / hour, and the optical functional film could not be stably formed.
 比較例2においては、酸化亜鉛粉の平均粒子径が1300nmであり、スパッタリングターゲットの密度比が76.4%であった。このため、異常放電回数が175回/時間と多くなり、光学機能膜を安定して成膜することができなかった。 In Comparative Example 2, the average particle size of the zinc oxide powder was 1300 nm, and the density ratio of the sputtering target was 76.4%. Therefore, the number of abnormal discharges increased to 175 times / hour, and the optical functional film could not be stably formed.
 比較例3においては、焼結温度が1100℃であり、スパッタリングターゲットの密度比が78.3%であった。このため、異常放電回数が142回/時間と多くなり、光学機能膜を安定して成膜することができなかった。 In Comparative Example 3, the sintering temperature was 1100 ° C., and the density ratio of the sputtering target was 78.3%. Therefore, the number of abnormal discharges increased to 142 times / hour, and the optical functional film could not be stably formed.
 比較例4においては、金属Nb粉と酸化亜鉛粉とを乾式で混合したため、スパッタ面におけるNbの含有量の標準偏差が5.2mass%と大きくなった。このため、成膜した光学機能膜において、Nbの含有量の標準偏差が大きく、反射率のばらつき(標準偏差)も大きくなった。 In Comparative Example 4, since the metal Nb powder and the zinc oxide powder were mixed in a dry manner, the standard deviation of the Nb content on the sputtered surface was as large as 5.2 mass%. Therefore, in the formed optical functional film, the standard deviation of the Nb content is large, and the variation in reflectance (standard deviation) is also large.
 比較例5においては、焼結時の加圧圧力が130MPaであり、スパッタリングターゲットの密度比が77.7%であった。このため、異常放電回数が185回/時間と多くなり、光学機能膜を安定して成膜することができなかった。 In Comparative Example 5, the pressurizing pressure at the time of sintering was 130 MPa, and the density ratio of the sputtering target was 77.7%. Therefore, the number of abnormal discharges increased to 185 times / hour, and the optical functional film could not be stably formed.
 これに対して、本発明例1~61においては、密度比が80%以上、かつ、スパッタ面における金属元素の含有量の標準偏差が5mass%以下とされており、成膜した光学機能膜において、金属元素の含有量の標準偏差が小さく、反射率のばらつき(標準偏差)も小さく抑えられていた。また、異常放電の発生も抑えられており、安定して光学機能膜を成膜することができた。 On the other hand, in Examples 1 to 61 of the present invention, the density ratio is 80% or more, and the standard deviation of the content of the metal element on the sputter surface is 5 mass% or less. The standard deviation of the content of metal elements was small, and the variation in reflectance (standard deviation) was also kept small. In addition, the occurrence of abnormal discharge was suppressed, and the optical functional film could be stably formed.
 また、Cを添加した本発明例6~8,16,24~26,37,42~44,46,58においては、光学機能膜の耐熱性がさらに向上していることが確認された。
 さらに、金属Mの酸化物を添加した本発明例9~20,27~38,45~56,58~61においては、光学機能膜の耐アルカリ性がさらに向上していることが確認された。
Further, it was confirmed that the heat resistance of the optical functional film was further improved in Examples 6 to 8, 16, 24 to 26, 37, 42 to 44, 46, 58 to which C was added.
Further, it was confirmed that the alkali resistance of the optical functional film was further improved in Examples 9 to 20, 27 to 38, 45 to 56, 58 to 61 of the present invention to which the oxide of the metal M was added.
 以上のことから、本発明例によれば、耐熱性および耐アルカリ性に優れ、金属薄膜等からの光の反射を十分に抑制することが可能な光学機能膜を効率良く安定して成膜可能なスパッタリングターゲット、このスパッタリングターゲットの製造方法、および、光学機能膜を提供できることが確認された。 From the above, according to the example of the present invention, it is possible to efficiently and stably form an optical functional film which is excellent in heat resistance and alkali resistance and can sufficiently suppress the reflection of light from a metal thin film or the like. It was confirmed that a sputtering target, a method for manufacturing this sputtering target, and an optical functional film can be provided.
 本実施形態のスパッタリングターゲットは、投影型静電容量方式のタッチパネルにおけるセンシング用の電極(金属膜)に設けられる低反射率膜や、フラットパネルディスプレイにおけるブラックマトリクスを形成する工程に好適に適用される。 The sputtering target of the present embodiment is suitably applied to a step of forming a low reflectance film provided on an electrode (metal film) for sensing in a projected capacitive touch panel and a black matrix in a flat panel display. ..
12 光学機能膜 12 Optical functional film

Claims (13)

  1.  Nb,W,Tiから選択される一種又は二種以上の金属相と、酸化亜鉛相と、を含み、
     密度比が80%以上であり、
     スパッタ面の複数の箇所で測定したNb,W,Tiから選択される一種又は二種以上からなる金属元素のそれぞれの含有量の標準偏差が5mass%以下とされていることを特徴とするスパッタリングターゲット。
    It contains one or more metal phases selected from Nb, W, Ti and a zinc oxide phase.
    The density ratio is 80% or more,
    A sputtering target characterized in that the standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti measured at a plurality of points on the sputtering surface is 5 mass% or less. ..
  2.  空孔の平均粒子面積が5μm以下であることを特徴とする請求項1に記載のスパッタリングターゲット。 The sputtering target according to claim 1, wherein the average particle area of the pores is 5 μm 2 or less.
  3.  Al,Si,Ga,In,Sn,Ti,Nb,Zr,Mo,Ta,W,Yから選択される一種又は二種以上の金属Mの酸化物を含み、前記金属Mの合計含有量が、全金属元素を100mass%として、0.1mass%以上40mass%以下の範囲内とされていることを特徴とする請求項1又は請求項2に記載のスパッタリングターゲット。 It contains an oxide of one or more kinds of metal M selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W and Y, and the total content of the metal M is: The sputtering target according to claim 1 or 2, wherein the total metal element is 100 mass% and the range is 0.1 mass% or more and 40 mass% or less.
  4.  スパッタ面の複数の箇所で測定した比抵抗値の標準偏差を平均値で割った割合が100%以下であることを特徴とする請求項1から請求項3のいずれか一項に記載のスパッタリングターゲット。 The sputtering target according to any one of claims 1 to 3, wherein the ratio obtained by dividing the standard deviation of the specific resistance values measured at a plurality of points on the sputtering surface by the average value is 100% or less. ..
  5.  Nb,W,Tiの合計含有量がO、Cを含めた全体に対して50mass%以上であることを特徴とする請求項1から請求項4のいずれか一項に記載のスパッタリングターゲット。 The sputtering target according to any one of claims 1 to 4, wherein the total content of Nb, W, and Ti is 50 mass% or more with respect to the whole including O and C.
  6.  さらに、Cを全体に対して1mass%以上10mass%以下の範囲内で含むことを特徴とする請求項1から請求項5のいずれか一項に記載のスパッタリングターゲット。 The sputtering target according to any one of claims 1 to 5, further comprising C in a range of 1 mass% or more and 10 mass% or less with respect to the whole.
  7.  Nb,W,Tiから選択される一種又は二種以上の金属相と、酸化亜鉛相と、を含むスパッタリングターゲットの製造方法であって、
     平均粒子径が5μm以上のNb,W,Tiから選択される一種又は二種以上からなる金属粉と、平均粒子径が1μm以下の酸化亜鉛粉と、を水の濃度が30vol%以上の溶媒を用いて混合し、乾燥させて造粒粉を得る造粒粉作製工程と、
     得られた造粒粉を、1000℃以下の温度、かつ、145MPa以上の圧力で、加熱および加圧して焼結する焼結工程と、
     を備えていることを特徴とするスパッタリングターゲットの製造方法。
    A method for producing a sputtering target, which comprises one or more metal phases selected from Nb, W, and Ti, and a zinc oxide phase.
    A metal powder consisting of one or more kinds selected from Nb, W, Ti having an average particle diameter of 5 μm or more, and zinc oxide powder having an average particle diameter of 1 μm or less, and a solvent having a water concentration of 30 vol% or more. Granulation powder preparation process to obtain granulation powder by mixing and drying using
    A sintering step in which the obtained granulated powder is sintered by heating and pressurizing at a temperature of 1000 ° C. or lower and a pressure of 145 MPa or higher.
    A method of manufacturing a sputtering target, which comprises.
  8.  前記焼結工程の前に、前記造粒粉を常温で加圧して成形する成形工程を備えていることを特徴とする請求項7に記載のスパッタリングターゲットの製造方法。 The method for manufacturing a sputtering target according to claim 7, further comprising a molding step of pressurizing and molding the granulated powder at room temperature before the sintering step.
  9.  前記造粒粉作製工程において、前記金属粉および前記酸化亜鉛粉に加えて、平均粒子径が0.1μm以上12μm以下の範囲内とされたAl,Si,Ga,In,Sn,Ti,Nb,Zr,Mo,Ta,W,Yから選択される一種又は二種以上の金属Mの酸化物粉を混合することを特徴とする請求項7又は請求項8に記載のスパッタリングターゲットの製造方法。 In the granulation powder production step, in addition to the metal powder and the zinc oxide powder, Al, Si, Ga, In, Sn, Ti, Nb, whose average particle size is within the range of 0.1 μm or more and 12 μm or less. The method for producing a sputtering target according to claim 7 or 8, wherein the oxide powder of one or more kinds of metal M selected from Zr, Mo, Ta, W, and Y is mixed.
  10.  前記酸化亜鉛粉の平均粒子径が100nm以下であることを特徴とする請求項7から請求項9のいずれか一項に記載のスパッタリングターゲットの製造方法。 The method for producing a sputtering target according to any one of claims 7 to 9, wherein the zinc oxide powder has an average particle size of 100 nm or less.
  11.  前記金属粉の平均粒子径が10μm以上であることを特徴とする請求項7から請求項10のいずれか一項に記載のスパッタリングターゲットの製造方法。 The method for manufacturing a sputtering target according to any one of claims 7 to 10, wherein the average particle size of the metal powder is 10 μm or more.
  12.  Nb,W,Tiから選択される一種又は二種以上からなる金属と酸化亜鉛を含む光学機能膜であって、
     Nb,W,Tiから選択される一種又は二種以上からなる金属元素のそれぞれの含有量の標準偏差が5mass%以下とされていることを特徴とする光学機能膜。
    An optical functional film containing zinc oxide and one or more metals selected from Nb, W, and Ti.
    An optical functional film characterized in that the standard deviation of the content of each of one or more metal elements selected from Nb, W, and Ti is 5 mass% or less.
  13.  Al,Si,Ga,In,Sn,Ti,Nb,Zr,Mo,Ta,W,Yから選択される一種又は二種以上の金属Mの酸化物を含んでいることを特徴とする請求項12の光学機能膜。 12. Claim 12 comprising an oxide of one or more kinds of metal M selected from Al, Si, Ga, In, Sn, Ti, Nb, Zr, Mo, Ta, W and Y. Optical functional film.
PCT/JP2021/019116 2020-06-08 2021-05-20 Sputtering target, method for producing sputtering target and optical functional film WO2021251094A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020099577A JP2021193202A (en) 2020-06-08 2020-06-08 Sputtering target, manufacturing method of sputtering target, and optical function film
JP2020-099577 2020-06-08

Publications (1)

Publication Number Publication Date
WO2021251094A1 true WO2021251094A1 (en) 2021-12-16

Family

ID=78845977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019116 WO2021251094A1 (en) 2020-06-08 2021-05-20 Sputtering target, method for producing sputtering target and optical functional film

Country Status (3)

Country Link
JP (1) JP2021193202A (en)
TW (1) TW202208653A (en)
WO (1) WO2021251094A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237889A (en) * 2013-05-07 2014-12-18 三菱マテリアル株式会社 Sputtering target for thin film formation and manufacturing method of the same
WO2017141557A1 (en) * 2016-02-19 2017-08-24 Jx金属株式会社 Sputtering target for magnetic recording medium, and magnetic thin film
JP2020033583A (en) * 2018-08-28 2020-03-05 三菱マテリアル株式会社 Sputtering target and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237889A (en) * 2013-05-07 2014-12-18 三菱マテリアル株式会社 Sputtering target for thin film formation and manufacturing method of the same
WO2017141557A1 (en) * 2016-02-19 2017-08-24 Jx金属株式会社 Sputtering target for magnetic recording medium, and magnetic thin film
JP2020033583A (en) * 2018-08-28 2020-03-05 三菱マテリアル株式会社 Sputtering target and method for manufacturing the same

Also Published As

Publication number Publication date
JP2021193202A (en) 2021-12-23
TW202208653A (en) 2022-03-01

Similar Documents

Publication Publication Date Title
KR102065140B1 (en) Light-absorbing layer system, the production thereof and sputtering target suitable therefor
US20160070033A1 (en) Light-absorbing layer and layer system containing the layer, method for producing the layer system and a sputter target suited therefor
TWI700382B (en) Oxide thin film and oxide sintered body for sputtering target for manufacturing the thin film
WO2020044796A1 (en) Sputtering target and method for producing sputtering target
TWI654328B (en) Sputtering target, optical functional film and layered wiring film
KR101840109B1 (en) Laminated wiring film for electronic components and sputtering target material for forming coating layer
WO2021251094A1 (en) Sputtering target, method for producing sputtering target and optical functional film
JP5675896B2 (en) Light absorbing layer structure
JP2007314812A (en) Sputtering target and film-forming method
TWI778100B (en) Oxide sintered body and sputtering target
JP2022143917A (en) Sputtering target, method for manufacturing the same, and optical function film
TWI687523B (en) Sputtering target material, method of producing the same, and optical functional film
WO2022097635A1 (en) Sputtering target, method for producing sputtering target, and optical functional film
TW202018111A (en) Optical functional film, sputtering target and method of manufacturing sputtering target
WO2021241687A1 (en) Sputtering target and optical functional film
JP2022075552A (en) Sputtering target, manufacturing method of sputtering target, and optical film
WO2021090662A1 (en) Sputtering target, optical function film, and method for manufacturing sputtering target
JP2021188133A (en) Sputtering target and optical function film
WO2020050421A1 (en) Optical functional film, sputtering target, and method for manufacturing sputtering target
TW201734238A (en) Sputtering target
JP2022028300A (en) Sputtering target
KR100725964B1 (en) Alloy and a sintered body of metal for forming a thin film and a using method thereof
WO2017104802A1 (en) Sputtering target
JP2019137875A (en) Sputtering target, and manufacturing method of sputtering target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822785

Country of ref document: EP

Kind code of ref document: A1