WO2021250979A1 - Power supply system, mobile object, and power supply system control method - Google Patents

Power supply system, mobile object, and power supply system control method Download PDF

Info

Publication number
WO2021250979A1
WO2021250979A1 PCT/JP2021/012634 JP2021012634W WO2021250979A1 WO 2021250979 A1 WO2021250979 A1 WO 2021250979A1 JP 2021012634 W JP2021012634 W JP 2021012634W WO 2021250979 A1 WO2021250979 A1 WO 2021250979A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
power supply
control mode
supply system
motor
Prior art date
Application number
PCT/JP2021/012634
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 佐藤
猛 戸神
孝 吉田
慶紀 成岡
Original Assignee
株式会社スリーダム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020099813A external-priority patent/JP2021193871A/en
Priority claimed from JP2020099815A external-priority patent/JP2021193872A/en
Application filed by 株式会社スリーダム filed Critical 株式会社スリーダム
Publication of WO2021250979A1 publication Critical patent/WO2021250979A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/31Supply or distribution of electrical power generated by photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a power supply system, a mobile body provided with the power supply system, and a control method for the power supply system.
  • the electric power output from the solar cell is once charged to the first electric storage device, and then the second electric power storage device is charged by using the electric power of the first electric storage device to charge the electric power of the second electric storage device. It is configured to be used to generate driving force for the vehicle. Therefore, a loss occurs in the charge / discharge between the solar cell and the first power storage device and the charge / discharge between the first power storage device and the second power storage device, and the electric power generated by the solar cell can be effectively used. Not. Therefore, an object of the present invention is to make it possible to effectively utilize the electric power generated by the solar cell as compared with the conventional case.
  • One aspect of the present invention is a power supply system that supplies electric power to a load, comprising a first storage battery, a second storage battery, and a solar battery, wherein the solar battery is the first storage battery or the second storage battery. It is a power supply system configured to be electrically connectable to any one of the above and to be electrically connectable to the other of the first storage battery and the second storage battery.
  • the electric power generated by the solar cell can be used more effectively than before.
  • the power supply system 1 of the present embodiment is a system that supplies power to a load by using a solar cell.
  • the electric power generated by the solar cell is directly supplied to the storage battery, which is a secondary battery that supplies electric power to the load so that the electric power loss does not occur.
  • the load is not limited and varies depending on the device on which the power supply system 1 is mounted.
  • the load is a power source of the moving object, for example, rotating a wheel or a propeller. It is a motor (electric machine) to drive.
  • the load is, for example, an inverter (sometimes referred to as a power conditioner).
  • the load is a motor that is a power source of an unmanned aerial vehicle.
  • the power supply system 1 of the present embodiment is mounted on an unmanned aerial vehicle.
  • the power supply system 1 of the present embodiment has at least two storage batteries (first) from the viewpoint of efficiently utilizing the power generated by the solar cells and extending the cruising range of the unmanned aircraft. It has one storage battery, a second storage battery), and at least two storage batteries are connected in parallel with a solar cell and a motor (load).
  • the solar cell can be electrically connected to either the first storage battery or the second storage battery
  • the load can be electrically connected to either the first storage battery or the second storage battery. ing. That is, while any storage battery is used as electric power for the motor, the other storage battery is charged by the solar cell.
  • the storage battery used as the electric power of the motor and the storage battery charged by the electric power generated by the solar cell are controlled to be selectively switched.
  • the power supply system 1 of the present embodiment preferably includes a BMS (Battery Management System) as a control device for controlling charging / discharging of at least two storage batteries.
  • BMS Battery Management System
  • FIG. 1 shows a schematic diagram of an exemplary aircraft AV in which the power supply system 1 of the present embodiment is mounted.
  • the aircraft AV is an electric flying object that obtains propulsive force by driving a motor with electric power generated by a solar panel.
  • the aircraft AV includes a wing portion 2, a drive portion 3 attached to the wing portion 2, a propeller 4 connected to the drive portion 3, and a fuselage portion 6.
  • the number of propellers 4 mounted on the aircraft AV may be arbitrary.
  • the drive unit 3 includes a motor that rotationally drives the propeller 4. In the example of FIG.
  • storage batteries BT1 and BT2 (an example of a first storage battery and a second storage battery, respectively) for supplying electric power to the drive unit 3 are provided on both wings of the wing portion 2, but this is not the case.
  • the storage batteries BT1 and BT2 can be arranged at any position on the aircraft AV.
  • the storage batteries BT1 and BT2 are wired so as to be electrically connectable to the solar panel 51 and the drive unit 3. This wiring mode will be described later.
  • the solar panel 51 is provided on the wing portion 2 in order to receive a large amount of sunlight and increase the amount of power generation.
  • the BMS 10 and the ECU (Electrical Control Unit) 20 are provided, for example, in the body portion 6.
  • the BMS 10 is a control device that controls charging / discharging of the storage batteries BT1 and BT2.
  • the ECU 20 is a control device that controls the entire aircraft AV.
  • FIG. 2 a hardware configuration example of the power supply system 1 of the present embodiment will be described with reference to FIG.
  • the power supply system 1 includes two storage batteries BT1 and BT2 is shown.
  • the BMS 10 and the upper ECU 20 are configured to appropriately communicate with each other for controlling the aircraft AV.
  • the storage batteries BT1 and BT2 are configured to be connectable to the solar panel 51 or the motor 31 via the power supply circuit 15, respectively.
  • the specific configuration of the power supply circuit 15 will be described later.
  • the power supply system 1 includes a voltage sensor 101 and a current sensor 102.
  • the voltage sensor 101 is configured to detect the charging voltage (voltage across) of the storage battery BT1.
  • the current sensor 102 is configured to detect the current flowing through the wiring connected to the storage battery BT1.
  • the detection signals of the voltage sensor 101 and the current sensor 102 are sequentially transmitted to the BMS 10.
  • the power supply system 1 includes a voltage sensor 201 and a current sensor 202.
  • the voltage sensor 201 is configured to detect the charging voltage (voltage across) of the storage battery BT2.
  • the current sensor 202 is configured to detect the current flowing through the wiring connected to the storage battery BT2.
  • the detection signals of the voltage sensor 201 and the current sensor 202 are sequentially transmitted to the BMS 10.
  • the BMS 10 has a processor and a memory (RAM (Random Access Memory) and ROM (Read Only Memory)), and controls the operation of the power supply system 1 by executing a predetermined program.
  • the BMS 10 has an A / D converter that receives detection signals from each of the voltage sensors 101, 201 and the current sensors 102, 202 and converts each detection signal into a digital signal. The digital signal of each detection signal is taken into the processor.
  • the BMS 10 is connected to the power supply circuit 15.
  • the BMS 10 controls the power supply circuit 15 by transmitting a control signal to the power supply circuit 15.
  • the processor executes the above program to perform, for example, the following processing.
  • SOC State of Charge; hereinafter, sometimes referred to as “SOC1”
  • SOC2 SOC of the storage battery BT2
  • the power supply circuit 15 is controlled based on the SOC1 of the storage battery BT1 and / or the SOC2 of the storage battery BT2, thereby determining the electrical connection state between the storage batteries BT1 and BT2, the motor 31 and the solar panel 51. ..
  • FIG. 3 illustrates a specific configuration of the power supply circuit 15.
  • the power supply circuit 15 includes a switch drive unit (SW) 151, switches S1 to S4, a circuit breaker (CB) 152, and contacts P1 to P4.
  • the power supply circuit 15 is configured to connect the storage batteries BT1 and BT2 in parallel to the motor 31 and the solar panel 51, respectively. Whether the switch S1 opens the contact on the line L1a connecting the positive electrode of the storage battery BT1 and the positive electrode of the solar panel 51, and short-circuits the contact on the line L1b connecting the positive electrode of the storage battery BT2 and the positive electrode of the solar panel 51.
  • the contacts on the line L1a are short-circuited and the contacts on the line L1b are opened.
  • the switch S2 opens the contact on the line L2a connecting the positive electrode of the storage battery BT2 and one end of the motor 31, and short-circuits the contact on the line L2b connecting the positive electrode of the storage battery BT1 and one end of the motor 31.
  • the contacts on the line L2a are short-circuited and the contacts on the line L2b are opened.
  • the switch S3 opens the contact on the line L3a connecting the negative electrode of the storage battery BT2 and the other end of the motor 31, and short-circuits the contact on the line L3b connecting the negative electrode of the storage battery BT1 and the other end of the motor 31. Or conversely, the contacts on the line L3a are short-circuited and the contacts on the line L3b are opened.
  • the switch S4 opens the contact on the line L4a connecting the negative electrode of the storage battery BT1 and the negative electrode of the solar panel 51, and short-circuits the contact on the line L4b connecting the negative electrode of the storage battery BT2 and the negative electrode of the solar panel 51. Or, conversely, the contacts on the line L4a are short-circuited and the contacts on the line L4b are opened.
  • the power supply circuit 15 is provided with contacts P1 to P4.
  • the contact P1 is provided on a line connected to the positive electrode terminal of the storage battery BT1.
  • the contact P2 is provided on a line connected to the positive electrode terminal of the storage battery BT2.
  • the contact P3 is provided on a line connected to the negative electrode terminal of the storage battery BT1.
  • the contact P4 is provided on a line connected to the negative electrode terminal of the storage battery BT2.
  • the BMS 10 transmits a control signal to the switch drive unit 151, and the switch drive unit 151 drives the switches S1 to S4 based on the control signal.
  • the switch drive unit 151 corresponds to a first switching unit that connects the solar panel 51 to either the storage battery BT1 or the storage battery BT2 and switches the electrical connection state so as not to connect to the other. Further, the switch drive unit 151 corresponds to a second switching unit that connects the motor 31 to either the storage battery BT1 or the storage battery BT2 and switches the electrical connection state so as not to connect to the other.
  • the BMS 10 transmits a control signal to the circuit breaker 152, and the circuit breaker 152 opens the contacts P1 to P4 based on the control signal (that is, the circuit is cut off). To trip).
  • An example of an event for detecting an abnormality in the BMS 10 is, for example, when the overvoltage, overcurrent, or a temperature sensor (not shown) of any of the storage batteries detects that the temperature exceeds a predetermined range.
  • the BMS 10 executes either a first control mode or a second control mode.
  • the first control mode is a mode in which the electric power of the storage battery BT1 is discharged to the motor 31 and the electric power of the solar panel 51 is used to charge the storage battery BT2.
  • the switches S1 to S4 are controlled as shown in the first control mode of FIG. That is, the switch S1 opens the contact on the line L1a connecting the positive electrode of the storage battery BT1 and the positive electrode of the solar panel 51, and short-circuits the contact on the line L1b connecting the positive electrode of the storage battery BT2 and the positive electrode of the solar panel 51.
  • the switch S2 opens the contact on the line L2a connecting the positive electrode of the storage battery BT2 and one end of the motor 31, and short-circuits the contact on the line L2b connecting the positive electrode of the storage battery BT1 and one end of the motor 31.
  • the switch S3 opens the contact on the line L3a connecting the negative electrode of the storage battery BT2 and the other end of the motor 31, and short-circuits the contact on the line L3b connecting the negative electrode of the storage battery BT1 and the other end of the motor 31. ..
  • the switch S4 opens the contact on the line L4a connecting the negative electrode of the storage battery BT1 and the negative electrode of the solar panel 51, and short-circuits the contact on the line L4b connecting the negative electrode of the storage battery BT2 and the negative electrode of the solar panel 51.
  • the second control mode is a mode in which the electric power of the storage battery BT2 is discharged to the motor 31 and the electric power of the solar panel 51 is used to charge the storage battery BT1.
  • the switches S1 to S4 are controlled as shown in the second control mode of FIG. That is, the switch S1 short-circuits the contacts on the line L1a and opens the contacts on the line L1b.
  • the switch S2 short-circuits the contacts on the line L2a and opens the contacts on the line L2b.
  • the switch S3 short-circuits the contacts on the line L3a and opens the contacts on the line L3b.
  • the switch S4 short-circuits the contacts on the line L4a and opens the contacts on the line L4b.
  • FIG. 4 shows a state when the power supply circuit 15 is cut off in the first control mode and the second control mode.
  • the states of the switches S1 to S4 are the same as those in FIG. 3 in any of the control modes, but the contacts P1 to P4 are all opened when the switch is shut off. As a result, the power supply circuit 15 is protected when an abnormality in the power supply system 1 is detected.
  • the two storage batteries BT1 and BT2 are provided, and either the first control mode or the second control mode is executed.
  • the first control mode the electric power of the storage battery BT1 is discharged to the motor 31 to drive the motor 31, and the electric power of the solar panel 51 charges the storage battery BT2.
  • the second control mode the electric power of the storage battery BT2 is discharged to the motor 31 to drive the motor 31, and the electric power of the solar panel 51 charges the storage battery BT1.
  • the motor 31 is directly driven by the storage battery BT1 or BT2 charged with the electric power generated by the solar panel 51, the electric power loss is small and the electric power generated by the solar panel 51 can be effectively utilized as compared with the conventional case.
  • the power supply system 1 of the present embodiment while one of the two storage batteries BT1 and BT2 is being charged by the electric power of the solar panel 51, the other storage battery is discharged and the motor is used.
  • Drive 31 Therefore, by alternately executing the first control mode and the second control mode, the capacities of the two storage batteries BT1 and BT2 can be efficiently used to drive the motor 31. As a result, the cruising range of the aircraft AV powered by the motor 31 can be extended.
  • Control example 1 (FIG. 5)
  • the SOC of one of the two storage batteries BT1 and BT2 that is discharged to the motor 31 is monitored, and when the SOC drops below a predetermined threshold value, the other storage battery is used as the motor 31.
  • the storage battery connected to the motor 31 is switched so as to discharge.
  • the BMS 10 when the BMS 10 is in the state of executing the first control mode, that is, when the motor 31 is operated by the electric power of the storage battery BT1, the BMS 10 is sequentially operated.
  • the SOC1 SOC of the storage battery BT1
  • Th1 an example of the first threshold value
  • the execution state of the first control mode is maintained.
  • the storage battery BT2 is charged by the electric power generated by the solar panel 51.
  • the BMS10 switches from the first control mode to the second control mode.
  • the BMS 10 operates the motor 31 by the electric power of the storage battery BT2, and controls the storage battery BT1 to be charged by the electric power generated by the solar panel 51.
  • the SOC2 SOC of the storage battery BT2
  • Th2 an example of the second threshold value
  • the SOC of one of the two storage batteries BT1 and BT2 discharged to the motor 31 is monitored, the other storage battery is charged, and the SOC of the one storage battery is lowered. If this happens, the storage battery that discharges to the motor 31 is switched. Therefore, the state of charge of the storage battery that supplies electric power to the motor 31 can be continuously maintained in a good state.
  • Control example 2 (Fig. 6)
  • the electric power of one of the two storage batteries BT1 and BT2 is discharged to the motor 31, and the other storage battery is charged by the electric power of the solar panel 51.
  • the SOC of the other charging battery becomes equal to or higher than a predetermined threshold value
  • the storage battery connected to the motor 31 is switched so as to discharge the other storage battery to the motor 31.
  • the BMS 10 is in the state of executing the first control mode, that is, when the motor 31 is operated by the electric power of the storage battery BT1, the BMS 10 is sequentially operated.
  • the SOC2 SOC of the storage battery BT2
  • Th3 an example of the third threshold
  • the BMS10 switches from the first control mode to the second control mode.
  • the BMS 10 operates the motor 31 by the electric power of the storage battery BT2, and controls the storage battery BT1 to be charged by the electric power generated by the solar panel 51.
  • the SOC 1 SOC of the storage battery BT1
  • Th4 an example of the fourth threshold value
  • the SOC of one of the two storage batteries BT1 and BT2 charged by the power generated by the solar panel 51 is monitored, and the power of the other storage battery is discharged to the motor 31. Then, when the SOC of the one storage battery increases to a certain extent, the storage battery to be discharged to the motor 31 is switched. Therefore, the state of charge of the storage battery that supplies electric power to the motor 31 can be continuously maintained in a good state.
  • Control example 3 is a control example in which the above-mentioned control example 1 and control example 2 are combined. Specifically, as shown in FIG. 7, when the BMS 10 is in the state of executing the first control mode, that is, when the motor 31 is operated by the electric power of the storage battery BT1, the BMS 10 is sequentially operated. Monitor SOC1 and SOC2. When the SOC1 exceeds the threshold value Th1 and the SOC2 is less than the threshold value Th3, the execution state of the first control mode is maintained. In the execution state of the first control mode, the storage battery BT2 is charged by the electric power generated by the solar panel 51.
  • the BMS 10 switches from the first control mode to the second control mode.
  • the BMS 10 operates the motor 31 by the electric power of the storage battery BT2, and controls the storage battery BT1 to be charged by the electric power generated by the solar panel 51.
  • the BMS 10 sequentially monitors SOC1 and SOC2.
  • the SOC2 exceeds the threshold value Th2 and the SOC1 is less than the threshold value Th4, the execution state of the second control mode is maintained.
  • the BMS 10 switches from the second control mode to the first control mode.
  • the SOC of one of the two storage batteries BT1 and BT2 charged by the electric power generated by the solar panel 51 is monitored, and the other storage battery discharged to the motor 31 is used. Monitor the SOC. Then, when both SOCs satisfy the predetermined conditions, the storage battery to be charged and the storage battery to be discharged are switched. Therefore, the state of charge of the storage battery that supplies electric power to the motor 31 can be continuously maintained in a good state.
  • control examples 1 to 3 (i) the first control step of discharging the electric power of the storage battery BT1 to the motor 31 and charging the storage battery BT2 with the electric power of the solar panel 51, and (ii) the electric power of the storage battery BT2 are motorized.
  • a second control step of discharging to 31 and charging the storage battery BT1 with the electric power of the solar panel 51, and a control method of the power supply system 1 having the second control step are disclosed.
  • FIGS. 8 to 10 When three storage batteries are connected in parallel (FIGS. 8 to 10) In each of FIGS. 8 to 10, instead of the power supply circuit 15, two storage batteries out of the three storage batteries BT1, BT2, and BT3 are connected in parallel to the motor 31 and the solar panel 51, respectively. Circuit 16 is shown. As shown in FIG. 8, the power supply circuit 16 includes switch drive units 161, 162, switches S1 to S8, a circuit breaker 163, and contacts P1 to P6.
  • the BMS 10 transmits a control signal to the switch drive units 161, 162, and the switch drive unit 161 drives the switches S1 to S4 based on the control signal, and the switch drive unit 162. Drives switches S5 to S8.
  • the BMS 10 transmits a control signal to the circuit breaker 163, and the circuit breaker 163 opens the contacts P1 to P6 based on the control signal (that is, the circuit is cut off). To trip).
  • the positive electrode terminal of the storage battery BT1 is connected to the positive electrode terminal of the solar panel 51, and the storage battery
  • the negative electrode terminal of the BT1 is connected to the negative electrode terminal of the solar panel 51, whereby the switches S1, S4, S5 and S7 are controlled so as to form a closed circuit.
  • the switches S2, S3, S6, S8 are connected so that the positive electrode terminal of the storage battery BT3 is connected to one end of the motor 31 and the negative electrode terminal of the storage battery BT3 is connected to the other terminal of the motor 31 to form a closed circuit. Be controlled.
  • the positive electrode terminal of the storage battery BT2 is connected to one end of the motor 31 and the storage battery BT2
  • the negative electrode terminal is connected to the other end of the motor 31, whereby the switches S2, S3, S5, and S7 are controlled so as to form a closed circuit.
  • the positive terminal of the storage battery BT3 is connected to the positive terminal of the solar panel 51, and the negative terminal of the storage battery BT3 is connected to the negative terminal of the solar panel 51, whereby the switches S1, S4, S6 form a closed circuit. , S8 is controlled. As shown in FIG.
  • the positive electrode terminal of the storage battery BT2 is connected to the positive electrode terminal of the solar panel 51, and the storage battery
  • the negative electrode terminal of the BT2 is connected to the negative electrode terminal of the solar panel 51, whereby the switches S1, S4, S5 and S7 are controlled so as to form a closed circuit.
  • the switches S2, S3, S6, S8 are connected so that the positive electrode terminal of the storage battery BT3 is connected to one end of the motor 31 and the negative electrode terminal of the storage battery BT3 is connected to the other terminal of the motor 31 to form a closed circuit. Be controlled.
  • FIG. 10 shows the state when the power supply circuit 16 is cut off. At the time of shutting off, all the contacts P1 to P6 are opened regardless of the state of the switches S1 to S8. As a result, the power supply circuit 16 is protected when an abnormality in the power supply system 1 is detected.
  • FIGS. 8 and 9 are merely examples, and which of the storage batteries BT1, BT2, and BT3 should be charged and which storage battery should be discharged can be arbitrarily set.
  • the storage battery BT1 may be discharged to the motor 31 and the storage battery BT2 may be charged by the electric power of the solar panel 51, or the storage battery BT2 may be discharged to the motor 31 and the storage battery BT1 may be charged by the electric power of the solar panel 51. ..
  • the BMS 10 controls the power supply circuit 16 based on the SOC of each of the storage batteries BT1, BT2, and BT3, whereby the electrical connection state between the storage batteries BT1, BT2, BT3, the motor 31, and the solar panel 51. May be determined.
  • the BMS 10 may execute the following first to third control modes based on the SOCs of the storage batteries BT1, BT2, and BT3.
  • First control mode A control mode in which the storage battery BT1 is discharged to the motor 31 to drive the motor 31 and the storage battery BT2 or the storage battery BT3 is charged by the power of the solar panel 51 (second control mode)
  • the storage battery BT2 is discharged to the motor 31. Then, the motor 31 is driven, and the storage battery BT1 or the storage battery BT3 is charged by the power of the solar panel 51.
  • the storage battery BT3 is discharged to the motor 31 to drive the motor 31, and the storage battery BT1 or the storage battery BT2 Control mode for charging with the power of the solar panel 51
  • the control mode is switched so as to execute the second control mode or the third control mode when the SOC of the storage battery BT1 becomes equal to or less than a predetermined threshold value.
  • the control mode is switched so as to execute the first control mode or the third control mode when the SOC of the storage battery BT2 becomes equal to or less than a predetermined threshold value.
  • the control mode is switched so as to execute the first control mode or the second control mode.
  • the power supply circuit 17 includes switch drive units 171 and 172, switches S1 to S8, circuit breakers 173, and contacts P1 to P8.
  • the BMS 10 transmits a control signal to the switch drive units 171 and 172, the switch drive unit 171 drives the switches S1 to S4 based on the control signal, and the switch drive unit 172. Drives switches S5 to S8.
  • the BMS 10 transmits a control signal to the circuit breaker 173, and the circuit breaker 173 opens the contacts P1 to P8 based on the control signal (that is, the circuit is cut off). To trip).
  • the positive electrode terminal of the storage battery BT1 is connected to the positive electrode terminal of the solar panel 51, and the storage battery The negative electrode terminal of the BT1 is connected to the negative electrode terminal of the solar panel 51, whereby the switches S1, S4, S5 and S7 are controlled so as to form a closed circuit. Further, the switches S2, S3, S6, S8 are connected so that the positive electrode terminal of the storage battery BT3 is connected to one end of the motor 31 and the negative electrode terminal of the storage battery BT3 is connected to the other end of the motor 31 to form a closed circuit. Be controlled. As shown in FIG.
  • the positive electrode terminal of the storage battery BT1 is connected to one end of the motor 31 and the storage battery BT1
  • the negative electrode terminal is connected to the other end of the motor 31, whereby the switches S2, S3, S5, and S7 are controlled so as to form a closed circuit.
  • the positive terminal of the storage battery BT3 is connected to the positive terminal of the solar panel 51, and the negative terminal of the storage battery BT3 is connected to the negative terminal of the solar panel 51, whereby the switches S1, S4, S6 form a closed circuit. , S8 is controlled.
  • the positive electrode terminal of the storage battery BT2 is connected to the positive electrode terminal of the solar panel 51 and the storage battery.
  • the negative electrode terminal of the BT2 is connected to the negative electrode terminal of the solar panel 51, whereby the switches S1, S4, S5 and S7 are controlled so as to form a closed circuit.
  • the switches S2, S3, S6, S8 are connected so that the positive electrode terminal of the storage battery BT4 is connected to one end of the motor 31 and the negative electrode terminal of the storage battery BT4 is connected to the other end of the motor 31 to form a closed circuit. Be controlled. As shown in FIG.
  • the positive electrode terminal of the storage battery BT2 is connected to one end of the motor 31 and the storage battery BT2
  • the negative electrode terminal is connected to the other end of the motor 31, whereby the switches S2, S3, S5, and S7 are controlled so as to form a closed circuit.
  • the positive terminal of the storage battery BT4 is connected to the positive terminal of the solar panel 51, and the negative terminal of the storage battery BT4 is connected to the negative terminal of the solar panel 51, whereby the switches S1, S4, S6 form a closed circuit. , S8 is controlled.
  • FIG. 13 shows the state when the power supply circuit 17 is cut off. At the time of shutting off, all the contacts P1 to P8 are opened regardless of the state of the switches S1 to S8. As a result, the power supply circuit 17 is protected when an abnormality in the power supply system 1 is detected.
  • FIGS. 11 and 12 are merely examples, and which of the storage batteries BT1 to BT4 should be charged and which storage battery should be discharged can be arbitrarily set.
  • the storage battery BT1 may be discharged to the motor 31 and the storage battery BT2 may be charged by the electric power of the solar panel 51, or the storage battery BT2 may be discharged to the motor 31 and the storage battery BT1 may be charged by the electric power of the solar panel 51. ..
  • the BMS 10 controls the power supply circuit 17 based on the SOCs of the storage batteries BT1 to BT4, thereby determining the electrical connection state between the storage batteries BT1 to BT4, the motor 31 and the solar panel 51. May be good.
  • the BMS 10 may execute the following first to fourth control modes based on the SOCs of the storage batteries BT1 to BT4.
  • First control mode A control mode in which the storage battery BT1 is discharged to the motor 31 to drive the motor 31 and one of the storage batteries BT2 to BT4 is charged by the electric power of the solar panel 51 (second control mode)
  • the storage battery BT2 is charged to the motor 31.
  • Control mode third control mode in which the storage battery BT1, BT3, or BT4 is charged by the electric power of the solar panel 51 by discharging the storage battery BT3 to the motor 31 to drive the motor 31.
  • Control mode in which any of the storage batteries BT1, BT2, and BT4 is charged by the electric power of the solar panel 51 (fourth control mode)
  • the storage battery BT4 is discharged to the motor 31 to drive the motor 31, and any of the storage batteries BT1 to BT3 is pressed.
  • Control mode for charging with the power of the solar panel 51 for example, when the above control example 1 is applied, the following may be applied.
  • the SOC of the storage battery BT1 becomes equal to or less than a predetermined threshold value control is performed so as to execute one of the second, third, and fourth control modes. Switch modes.
  • the present invention is not limited to the above-described embodiment. Further, the above-described embodiment can be variously improved or modified without departing from the gist of the present invention.
  • the case where the SOC is calculated from the detection values of the voltage sensor and the current sensor for the storage battery has been exemplified, but the present invention is not limited to this. For example, by providing a temperature sensor around the storage battery and calculating the SOC in consideration of the detection value of the temperature sensor, the accuracy of the SOC calculation can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

An aspect of the present invention is a power supply system for supplying power to a load, the power supply system comprising a first storage battery, a second storage battery, and a photovoltaic cell. The system is configured such that the photovoltaic cell is electrically connectible to one of the first storage battery or the second storage battery, while the load is electrically connectible to the other of the first storage battery or the second storage battery.

Description

電力供給システム、移動体、電力供給システムの制御方法Power supply system, mobile, control method of power supply system
 本発明は、電力供給システム、および、電力供給システムを備えた移動体、並びに電力供給システムの制御方法に関する。 The present invention relates to a power supply system, a mobile body provided with the power supply system, and a control method for the power supply system.
 従来から、太陽電池によって発電した電力を移動体の動力源として利用する技術が知られている。例えば特許6583294号には、回転電機と、太陽電池と、太陽電池から出力される電力を用いて充電される第1蓄電装置と、車両の駆動力を発生させるための電源である第2蓄電装置と、を備え、第1蓄電装置の電力を用いて第2蓄電装置を充電する第1充電制御を実行するようにしたものが記載されている。 Conventionally, a technology that uses the electric power generated by a solar cell as a power source for a mobile body has been known. For example, in Japanese Patent No. 6583294, a rotary electric machine, a solar cell, a first power storage device charged by using the electric power output from the solar cell, and a second power storage device which is a power source for generating a driving force of a vehicle are provided. , And the first charge control for charging the second power storage device by using the electric power of the first power storage device is described.
 しかし、上述した従来技術では、太陽電池から出力した電力を一旦第1蓄電装置に充電し、その後に第1蓄電装置の電力を用いて第2蓄電装置を充電し、第2蓄電装置の電力を用いて車両の駆動力を発生させるように構成されている。そのため、太陽電池と第1蓄電装置の間の充放電、および、第1蓄電装置と第2蓄電装置の間の充放電において損失が発生しており、太陽電池によって発電した電力を有効に活用できていない。
 そこで、本発明の目的は、太陽電池によって発電した電力を従来よりも有効に活用できるようにすることである。
However, in the above-mentioned conventional technique, the electric power output from the solar cell is once charged to the first electric storage device, and then the second electric power storage device is charged by using the electric power of the first electric storage device to charge the electric power of the second electric storage device. It is configured to be used to generate driving force for the vehicle. Therefore, a loss occurs in the charge / discharge between the solar cell and the first power storage device and the charge / discharge between the first power storage device and the second power storage device, and the electric power generated by the solar cell can be effectively used. Not.
Therefore, an object of the present invention is to make it possible to effectively utilize the electric power generated by the solar cell as compared with the conventional case.
 本発明のある態様は、負荷に電力を供給する電力供給システムであって、第1蓄電池と、第2蓄電池と、太陽電池と、を備え、前記太陽電池が前記第1蓄電池又は前記第2蓄電池のいずれか一方と電気的に接続可能となり、前記負荷が前記第1蓄電池又は前記第2蓄電池のいずれか他方と電気的に接続可能となるように構成されている、電力供給システムである。 One aspect of the present invention is a power supply system that supplies electric power to a load, comprising a first storage battery, a second storage battery, and a solar battery, wherein the solar battery is the first storage battery or the second storage battery. It is a power supply system configured to be electrically connectable to any one of the above and to be electrically connectable to the other of the first storage battery and the second storage battery.
 本発明のある態様によれば、太陽電池によって発電した電力を従来よりも有効に活用できる。 According to an aspect of the present invention, the electric power generated by the solar cell can be used more effectively than before.
実施形態の電力供給システムが実装される飛行体の概略図である。It is a schematic diagram of the air vehicle in which the power supply system of an embodiment is mounted. 実施形態に係る電力供給システムのハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware composition of the power supply system which concerns on embodiment. 実施形態の電力供給システムにおいて蓄電池が2個の場合の回路構成(正常時)を示す図である。It is a figure which shows the circuit structure (normal state) in the case of two storage batteries in the power supply system of an embodiment. 実施形態の電力供給システムにおいて蓄電池が2個の場合の回路構成(遮断時)を示す図である。It is a figure which shows the circuit structure (when cut off) in the case of two storage batteries in the power supply system of an embodiment. 実施形態の電力供給システムにおいて各制御モードの実行状態の第1例の状態遷移図である。It is a state transition diagram of the first example of the execution state of each control mode in the power supply system of embodiment. 実施形態の電力供給システムにおいて各制御モードの実行状態の第2例の状態遷移図である。It is a state transition diagram of the 2nd example of the execution state of each control mode in the power supply system of embodiment. 実施形態の電力供給システムにおいて各制御モードの実行状態の第3例の状態遷移図である。It is a state transition diagram of the 3rd example of the execution state of each control mode in the power supply system of embodiment. 実施形態の電力供給システムにおいて蓄電池が3個の場合の回路構成(正常時)を示す図である。It is a figure which shows the circuit structure (normal state) in the case of three storage batteries in the power supply system of an embodiment. 実施形態の電力供給システムにおいて蓄電池が3個の場合の回路構成(正常時)を示す図である。It is a figure which shows the circuit structure (normal state) in the case of three storage batteries in the power supply system of an embodiment. 実施形態の電力供給システムにおいて蓄電池が3個の場合の回路構成(遮断時)を示す図である。It is a figure which shows the circuit structure (when cut off) in the case of three storage batteries in the power supply system of an embodiment. 実施形態の電力供給システムにおいて蓄電池が4個の場合の回路構成(正常時)を示す図である。It is a figure which shows the circuit structure (normal state) in the case of four storage batteries in the power supply system of an embodiment. 実施形態の電力供給システムにおいて蓄電池が4個の場合の回路構成(正常時)を示す図である。It is a figure which shows the circuit structure (normal state) in the case of four storage batteries in the power supply system of an embodiment. 実施形態の電力供給システムにおいて蓄電池が4個の場合の回路構成(遮断時)を示す図である。It is a figure which shows the circuit structure (when cut off) in the case of four storage batteries in the power supply system of an embodiment.
 本出願は、2020年6月9日に日本国特許庁に出願された特願2020-99813及び特願2020-99815の2件の特許出願に関連しており、これらの出願のすべての内容がこの明細書に参照によって組み込まれる。 This application is related to two patent applications, Japanese Patent Application No. 2020-99813 and Japanese Patent Application No. 2020-99815, filed with the Japan Patent Office on June 9, 2020, and all the contents of these applications are included. Incorporated by reference in this specification.
 本実施形態の電力供給システム1は、太陽電池を利用して負荷に電力を供給するシステムである。太陽電池で発電される電力は、電力損失が発生しないように、負荷に電力を供給する二次電池である蓄電池に直接供給される。
 負荷は限定せず、電力供給システム1が実装される機器に応じて異なる。例えば、電力供給システム1が例えば電気自動車、無人航空機(ドローンともいう。)若しくは有人航空機等の移動体に適用される場合には、負荷は移動体の動力源であり、例えば車輪又はプロペラを回転駆動させるモータ(電動機)である。電力供給システム1が例えば家屋の配電装置に適用される場合には、負荷は、例えばインバータ(パワーコンディショナということもある。)である。以下では、負荷が無人航空機の動力源であるモータである場合を例にして説明する。この場合、本実施形態の電力供給システム1が無人航空機に実装される。
The power supply system 1 of the present embodiment is a system that supplies power to a load by using a solar cell. The electric power generated by the solar cell is directly supplied to the storage battery, which is a secondary battery that supplies electric power to the load so that the electric power loss does not occur.
The load is not limited and varies depending on the device on which the power supply system 1 is mounted. For example, when the power supply system 1 is applied to a moving object such as an electric vehicle, an unmanned aerial vehicle (also referred to as a drone) or a manned aircraft, the load is a power source of the moving object, for example, rotating a wheel or a propeller. It is a motor (electric machine) to drive. When the power supply system 1 is applied, for example, to a power distribution device in a house, the load is, for example, an inverter (sometimes referred to as a power conditioner). In the following, a case where the load is a motor that is a power source of an unmanned aerial vehicle will be described as an example. In this case, the power supply system 1 of the present embodiment is mounted on an unmanned aerial vehicle.
 (1)電力供給システム1のシステム構成
 本実施形態の電力供給システム1は、太陽電池によって発電する電力を効率良く活用し、かつ無人航空機の航続距離を延ばす観点から、少なくとも2個の蓄電池(第1蓄電池、第2蓄電池)を有し、少なくとも2個の蓄電池は、太陽電池およびモータ(負荷)と並列に接続される。それにより、太陽電池が第1蓄電池又は第2蓄電池のいずれか一方と電気的に接続可能となり、負荷が第1蓄電池又は第2蓄電池のいずれか他方と電気的に接続可能となるように構成されている。すなわち、いずれの蓄電池をモータの電力として利用する間に、他の蓄電池が太陽電池によって充電される。
 好ましくは、少なくとも2個の蓄電池のうちモータの電力として利用される蓄電池と、太陽電池によって発電される電力によって充電される蓄電池とが、選択的に切り替えられるように制御される。すなわち、本実施形態の電力供給システム1は、好ましくは、少なくとも2個の蓄電池の充放電を制御する制御装置としてのBMS(Battery Management System)を備える。
(1) System Configuration of Power Supply System 1 The power supply system 1 of the present embodiment has at least two storage batteries (first) from the viewpoint of efficiently utilizing the power generated by the solar cells and extending the cruising range of the unmanned aircraft. It has one storage battery, a second storage battery), and at least two storage batteries are connected in parallel with a solar cell and a motor (load). As a result, the solar cell can be electrically connected to either the first storage battery or the second storage battery, and the load can be electrically connected to either the first storage battery or the second storage battery. ing. That is, while any storage battery is used as electric power for the motor, the other storage battery is charged by the solar cell.
Preferably, of the at least two storage batteries, the storage battery used as the electric power of the motor and the storage battery charged by the electric power generated by the solar cell are controlled to be selectively switched. That is, the power supply system 1 of the present embodiment preferably includes a BMS (Battery Management System) as a control device for controlling charging / discharging of at least two storage batteries.
 図1に、本実施形態の電力供給システム1が実装された例示的な航空機AVの概略的な図を示す。航空機AVは、ソーラーパネルが発電する電力によってモータを駆動することで推進力を得る電動飛行体である。
 航空機AVは、翼部2と、翼部2に取り付けられた駆動部3と、駆動部3に連結されたプロペラ4と、胴体部6とを備える。なお、航空機AVに搭載されるプロペラ4の数は任意でよい。駆動部3は、プロペラ4を回転駆動するモータを含む。
 図1の例では、駆動部3に電力を供給する蓄電池BT1,BT2(それぞれ、第1蓄電池、第2蓄電池の一例)が翼部2の両翼に設けられているが、その限りではない。蓄電池BT1,BT2は、航空機AVの任意の位置に配置可能である。図1には図示していないが、蓄電池BT1,BT2は、ソーラーパネル51および駆動部3に電気的に接続可能となるように配線されている。この配線態様については後述する。
 多くの太陽光を受光して発電量を高めるべく、図1に示すように、ソーラーパネル51は、翼部2に設けられていることが好ましい。すなわち、ソーラーパネル51を翼部2に設けることで、ソーラーパネル51の設置面積を極力広くとることができる。
 BMS10およびECU(Electrical Control Unit)20が、例えば胴体部6に設けられる。BMS10は、前述したように、蓄電池BT1,BT2の充放電を制御する制御装置である。ECU20は、航空機AVの全体を制御する制御装置である。
FIG. 1 shows a schematic diagram of an exemplary aircraft AV in which the power supply system 1 of the present embodiment is mounted. The aircraft AV is an electric flying object that obtains propulsive force by driving a motor with electric power generated by a solar panel.
The aircraft AV includes a wing portion 2, a drive portion 3 attached to the wing portion 2, a propeller 4 connected to the drive portion 3, and a fuselage portion 6. The number of propellers 4 mounted on the aircraft AV may be arbitrary. The drive unit 3 includes a motor that rotationally drives the propeller 4.
In the example of FIG. 1, storage batteries BT1 and BT2 (an example of a first storage battery and a second storage battery, respectively) for supplying electric power to the drive unit 3 are provided on both wings of the wing portion 2, but this is not the case. The storage batteries BT1 and BT2 can be arranged at any position on the aircraft AV. Although not shown in FIG. 1, the storage batteries BT1 and BT2 are wired so as to be electrically connectable to the solar panel 51 and the drive unit 3. This wiring mode will be described later.
As shown in FIG. 1, it is preferable that the solar panel 51 is provided on the wing portion 2 in order to receive a large amount of sunlight and increase the amount of power generation. That is, by providing the solar panel 51 on the wing portion 2, the installation area of the solar panel 51 can be made as wide as possible.
The BMS 10 and the ECU (Electrical Control Unit) 20 are provided, for example, in the body portion 6. As described above, the BMS 10 is a control device that controls charging / discharging of the storage batteries BT1 and BT2. The ECU 20 is a control device that controls the entire aircraft AV.
 (2)電力供給システム1のハードウェア構成
 次に、図2を参照して、本実施形態の電力供給システム1のハードウェア構成例について説明する。この例では、電力供給システム1が2個の蓄電池BT1,BT2を備える場合について示している。
 図2において、BMS10と上位のECU20は、航空機AVの制御のために適宜通信を行うように構成される。
 蓄電池BT1,BT2は、それぞれソーラーパネル51又はモータ31と電源回路15を介して接続可能となるように構成されている。電源回路15の具体的な構成については後述する。
(2) Hardware Configuration of Power Supply System 1 Next, a hardware configuration example of the power supply system 1 of the present embodiment will be described with reference to FIG. In this example, the case where the power supply system 1 includes two storage batteries BT1 and BT2 is shown.
In FIG. 2, the BMS 10 and the upper ECU 20 are configured to appropriately communicate with each other for controlling the aircraft AV.
The storage batteries BT1 and BT2 are configured to be connectable to the solar panel 51 or the motor 31 via the power supply circuit 15, respectively. The specific configuration of the power supply circuit 15 will be described later.
 電力供給システム1は、電圧センサ101および電流センサ102を備える。電圧センサ101は、蓄電池BT1の充電電圧(両端電圧)を検出するように構成される。電流センサ102は、蓄電池BT1に接続される配線を流れる電流を検出するように構成される。電圧センサ101および電流センサ102の検出信号は、逐次BMS10に送信される。
 電力供給システム1は、電圧センサ201および電流センサ202を備える。電圧センサ201は、蓄電池BT2の充電電圧(両端電圧)を検出するように構成される。電流センサ202は、蓄電池BT2に接続される配線を流れる電流を検出するように構成される。電圧センサ201および電流センサ202の検出信号は、逐次BMS10に送信される。
The power supply system 1 includes a voltage sensor 101 and a current sensor 102. The voltage sensor 101 is configured to detect the charging voltage (voltage across) of the storage battery BT1. The current sensor 102 is configured to detect the current flowing through the wiring connected to the storage battery BT1. The detection signals of the voltage sensor 101 and the current sensor 102 are sequentially transmitted to the BMS 10.
The power supply system 1 includes a voltage sensor 201 and a current sensor 202. The voltage sensor 201 is configured to detect the charging voltage (voltage across) of the storage battery BT2. The current sensor 202 is configured to detect the current flowing through the wiring connected to the storage battery BT2. The detection signals of the voltage sensor 201 and the current sensor 202 are sequentially transmitted to the BMS 10.
 BMS10は、プロセッサおよびメモリ(RAM(Random Access Memory)およびROM(Read Only Memory))を有し、所定のプログラムを実行することで、電力供給システム1の動作を制御する。
 BMS10は、電圧センサ101,201および電流センサ102,202の各々からの検出信号を受信し、各検出信号をデジタル信号に変換するA/D変換器を有する。各検出信号のデジタル信号がプロセッサに取り込まれる。
 BMS10は、電源回路15と接続されている。BMS10は、電源回路15に対して制御信号を送信して電源回路15を制御する。
The BMS 10 has a processor and a memory (RAM (Random Access Memory) and ROM (Read Only Memory)), and controls the operation of the power supply system 1 by executing a predetermined program.
The BMS 10 has an A / D converter that receives detection signals from each of the voltage sensors 101, 201 and the current sensors 102, 202 and converts each detection signal into a digital signal. The digital signal of each detection signal is taken into the processor.
The BMS 10 is connected to the power supply circuit 15. The BMS 10 controls the power supply circuit 15 by transmitting a control signal to the power supply circuit 15.
 BMS10では、プロセッサが上記プログラムを実行することで例えば以下の処理を行う。
 (i) 電圧センサ101および電流センサ102の検出信号(デジタル値)を基に、蓄電池BT1のSOC(State of Charge;以下、「SOC1」ということがある。)を算出する。
 (ii) 電圧センサ201および電流センサ202の検出信号(デジタル値)を基に、蓄電池BT2のSOC(以下、「SOC2」ということがある。)を算出する。
 (iii) 蓄電池BT1のSOC1及び/又は蓄電池BT2のSOC2に基づいて電源回路15を制御し、それによって、蓄電池BT1,BT2と、モータ31およびソーラーパネル51との間の電気的接続状態を決定する。
In the BMS 10, the processor executes the above program to perform, for example, the following processing.
(i) Based on the detection signals (digital values) of the voltage sensor 101 and the current sensor 102, the SOC (State of Charge; hereinafter, sometimes referred to as “SOC1”) of the storage battery BT1 is calculated.
(ii) Based on the detection signals (digital values) of the voltage sensor 201 and the current sensor 202, the SOC of the storage battery BT2 (hereinafter, may be referred to as “SOC2”) is calculated.
(iii) The power supply circuit 15 is controlled based on the SOC1 of the storage battery BT1 and / or the SOC2 of the storage battery BT2, thereby determining the electrical connection state between the storage batteries BT1 and BT2, the motor 31 and the solar panel 51. ..
 図3に、電源回路15の具体的な構成を例示する。図3に示すように、電源回路15は、スイッチ駆動部(SW)151、スイッチS1~S4、遮断器(CB)152、および、接点P1~P4を含む。電源回路15は、蓄電池BT1,BT2をそれぞれモータ31およびソーラーパネル51に並列接続するように構成される。
 スイッチS1は、蓄電池BT1の正極とソーラーパネル51の正極とを接続するラインL1a上の接点を開放させるとともに、蓄電池BT2の正極とソーラーパネル51の正極を接続するラインL1b上の接点を短絡させるか、又は、逆に、ラインL1a上の接点を短絡させるとともに、ラインL1b上の接点を開放させる。
 スイッチS2は、蓄電池BT2の正極とモータ31の一端とを接続するラインL2a上の接点を開放させるとともに、蓄電池BT1の正極とモータ31の一端とを接続するラインL2b上の接点を短絡させるか、又は、逆に、ラインL2a上の接点を短絡させるとともに、ラインL2b上の接点を開放させる。
 スイッチS3は、蓄電池BT2の負極とモータ31の他端とを接続するラインL3a上の接点を開放させるとともに、蓄電池BT1の負極とモータ31の他端とを接続するラインL3b上の接点を短絡させるか、又は、逆に、ラインL3a上の接点を短絡させるとともに、ラインL3b上の接点を開放させる。
 スイッチS4は、蓄電池BT1の負極とソーラーパネル51の負極とを接続するラインL4a上の接点を開放させるとともに、蓄電池BT2の負極とソーラーパネル51の負極を接続するラインL4b上の接点を短絡させるか、又は、逆に、ラインL4a上の接点を短絡させるとともに、ラインL4b上の接点を開放させる。
FIG. 3 illustrates a specific configuration of the power supply circuit 15. As shown in FIG. 3, the power supply circuit 15 includes a switch drive unit (SW) 151, switches S1 to S4, a circuit breaker (CB) 152, and contacts P1 to P4. The power supply circuit 15 is configured to connect the storage batteries BT1 and BT2 in parallel to the motor 31 and the solar panel 51, respectively.
Whether the switch S1 opens the contact on the line L1a connecting the positive electrode of the storage battery BT1 and the positive electrode of the solar panel 51, and short-circuits the contact on the line L1b connecting the positive electrode of the storage battery BT2 and the positive electrode of the solar panel 51. Or, conversely, the contacts on the line L1a are short-circuited and the contacts on the line L1b are opened.
The switch S2 opens the contact on the line L2a connecting the positive electrode of the storage battery BT2 and one end of the motor 31, and short-circuits the contact on the line L2b connecting the positive electrode of the storage battery BT1 and one end of the motor 31. Or, conversely, the contacts on the line L2a are short-circuited and the contacts on the line L2b are opened.
The switch S3 opens the contact on the line L3a connecting the negative electrode of the storage battery BT2 and the other end of the motor 31, and short-circuits the contact on the line L3b connecting the negative electrode of the storage battery BT1 and the other end of the motor 31. Or conversely, the contacts on the line L3a are short-circuited and the contacts on the line L3b are opened.
Whether the switch S4 opens the contact on the line L4a connecting the negative electrode of the storage battery BT1 and the negative electrode of the solar panel 51, and short-circuits the contact on the line L4b connecting the negative electrode of the storage battery BT2 and the negative electrode of the solar panel 51. Or, conversely, the contacts on the line L4a are short-circuited and the contacts on the line L4b are opened.
 図3に示すように、電源回路15には接点P1~P4が設けられる。接点P1は、蓄電池BT1の正極端子に接続されるライン上に設けられている。接点P2は、蓄電池BT2の正極端子に接続されるライン上に設けられている。接点P3は、蓄電池BT1の負極端子に接続されるライン上に設けられている。接点P4は、蓄電池BT2の負極端子に接続されるライン上に設けられている。
 電力供給システム1が正常に稼働しているときには、接点P1~P4は短絡している。
As shown in FIG. 3, the power supply circuit 15 is provided with contacts P1 to P4. The contact P1 is provided on a line connected to the positive electrode terminal of the storage battery BT1. The contact P2 is provided on a line connected to the positive electrode terminal of the storage battery BT2. The contact P3 is provided on a line connected to the negative electrode terminal of the storage battery BT1. The contact P4 is provided on a line connected to the negative electrode terminal of the storage battery BT2.
When the power supply system 1 is operating normally, the contacts P1 to P4 are short-circuited.
 電力供給システム1が正常である場合、BMS10がスイッチ駆動部151に対して制御信号を送信し、当該制御信号に基づいてスイッチ駆動部151がスイッチS1~S4を駆動する。スイッチ駆動部151は、ソーラーパネル51を蓄電池BT1又は蓄電池BT2のいずれか一方と接続させ、他方とは接続させないように電気的接続状態を切り替える第1切替部に相当する。また、スイッチ駆動部151は、モータ31を蓄電池BT1又は蓄電池BT2のいずれか一方と接続させ、他方とは接続させないように電気的接続状態を切り替える第2切替部に相当する。
 電力供給システム1の異常を検知した場合、BMS10が遮断器152に対して制御信号を送信し、当該制御信号に基づいて遮断器152が接点P1~P4を開放する(つまり、回路を遮断してトリップさせる)。BMS10において異常を検知するイベントの例は、例えば、いずれかの蓄電池の過電圧、過電流、若しくは、図示しない温度センサによって温度が所定の範囲を超えたことが検出された場合等である。
When the power supply system 1 is normal, the BMS 10 transmits a control signal to the switch drive unit 151, and the switch drive unit 151 drives the switches S1 to S4 based on the control signal. The switch drive unit 151 corresponds to a first switching unit that connects the solar panel 51 to either the storage battery BT1 or the storage battery BT2 and switches the electrical connection state so as not to connect to the other. Further, the switch drive unit 151 corresponds to a second switching unit that connects the motor 31 to either the storage battery BT1 or the storage battery BT2 and switches the electrical connection state so as not to connect to the other.
When an abnormality in the power supply system 1 is detected, the BMS 10 transmits a control signal to the circuit breaker 152, and the circuit breaker 152 opens the contacts P1 to P4 based on the control signal (that is, the circuit is cut off). To trip). An example of an event for detecting an abnormality in the BMS 10 is, for example, when the overvoltage, overcurrent, or a temperature sensor (not shown) of any of the storage batteries detects that the temperature exceeds a predetermined range.
 電力供給システム1が正常である場合、BMS10は、第1制御モード又は第2制御モードのいずれかを実行する。
 第1制御モードは、蓄電池BT1の電力をモータ31に放電し、ソーラーパネル51の電力により蓄電池BT2を充電するモードである。
 第1制御モードでは、図3の第1制御モードに示すように、スイッチS1~S4が制御される。すなわち、スイッチS1は、蓄電池BT1の正極とソーラーパネル51の正極とを接続するラインL1a上の接点を開放させるとともに、蓄電池BT2の正極とソーラーパネル51の正極を接続するラインL1b上の接点を短絡させる。スイッチS2は、蓄電池BT2の正極とモータ31の一端とを接続するラインL2a上の接点を開放させるとともに、蓄電池BT1の正極とモータ31の一端とを接続するラインL2b上の接点を短絡させる。スイッチS3は、蓄電池BT2の負極とモータ31の他端とを接続するラインL3a上の接点を開放させるとともに、蓄電池BT1の負極とモータ31の他端とを接続するラインL3b上の接点を短絡させる。スイッチS4は、蓄電池BT1の負極とソーラーパネル51の負極とを接続するラインL4a上の接点を開放させるとともに、蓄電池BT2の負極とソーラーパネル51の負極を接続するラインL4b上の接点を短絡させる。
If the power supply system 1 is normal, the BMS 10 executes either a first control mode or a second control mode.
The first control mode is a mode in which the electric power of the storage battery BT1 is discharged to the motor 31 and the electric power of the solar panel 51 is used to charge the storage battery BT2.
In the first control mode, the switches S1 to S4 are controlled as shown in the first control mode of FIG. That is, the switch S1 opens the contact on the line L1a connecting the positive electrode of the storage battery BT1 and the positive electrode of the solar panel 51, and short-circuits the contact on the line L1b connecting the positive electrode of the storage battery BT2 and the positive electrode of the solar panel 51. Let me. The switch S2 opens the contact on the line L2a connecting the positive electrode of the storage battery BT2 and one end of the motor 31, and short-circuits the contact on the line L2b connecting the positive electrode of the storage battery BT1 and one end of the motor 31. The switch S3 opens the contact on the line L3a connecting the negative electrode of the storage battery BT2 and the other end of the motor 31, and short-circuits the contact on the line L3b connecting the negative electrode of the storage battery BT1 and the other end of the motor 31. .. The switch S4 opens the contact on the line L4a connecting the negative electrode of the storage battery BT1 and the negative electrode of the solar panel 51, and short-circuits the contact on the line L4b connecting the negative electrode of the storage battery BT2 and the negative electrode of the solar panel 51.
 第2制御モードは、蓄電池BT2の電力をモータ31に放電し、ソーラーパネル51の電力により蓄電池BT1を充電するモードである。
 第2制御モードでは、図3の第2制御モードに示すように、スイッチS1~S4が制御される。すなわち、スイッチS1は、ラインL1a上の接点を短絡させるとともにラインL1b上の接点を開放させる。スイッチS2は、ラインL2a上の接点を短絡させるとともにラインL2b上の接点を開放させる。スイッチS3は、ラインL3a上の接点を短絡させるとともにラインL3b上の接点を開放させる。スイッチS4は、ラインL4a上の接点を短絡させるとともにラインL4b上の接点を開放させる。
The second control mode is a mode in which the electric power of the storage battery BT2 is discharged to the motor 31 and the electric power of the solar panel 51 is used to charge the storage battery BT1.
In the second control mode, the switches S1 to S4 are controlled as shown in the second control mode of FIG. That is, the switch S1 short-circuits the contacts on the line L1a and opens the contacts on the line L1b. The switch S2 short-circuits the contacts on the line L2a and opens the contacts on the line L2b. The switch S3 short-circuits the contacts on the line L3a and opens the contacts on the line L3b. The switch S4 short-circuits the contacts on the line L4a and opens the contacts on the line L4b.
 図4に、第1制御モードおよび第2制御モードにおける電源回路15の遮断時の状態を示す。いずれの制御モードにおいてもスイッチS1~S4の状態は図3と同じであるが、遮断時には、接点P1~P4がいずれも開放される。それによって、電力供給システム1の異常を検知した場合に、電源回路15が保護される。 FIG. 4 shows a state when the power supply circuit 15 is cut off in the first control mode and the second control mode. The states of the switches S1 to S4 are the same as those in FIG. 3 in any of the control modes, but the contacts P1 to P4 are all opened when the switch is shut off. As a result, the power supply circuit 15 is protected when an abnormality in the power supply system 1 is detected.
 以上説明したように、本実施形態の電力供給システム1によれば、2個の蓄電池BT1,BT2を備え、第1制御モード又は第2制御モードのいずれかの制御モードが実行される。第1制御モードでは、蓄電池BT1の電力がモータ31に放電されてモータ31が駆動され、ソーラーパネル51の電力により蓄電池BT2が充電される。他方、第2制御モードでは、蓄電池BT2の電力がモータ31に放電されてモータ31が駆動され、ソーラーパネル51の電力により蓄電池BT1が充電される。そのため、ソーラーパネル51によって発電した電力で充電した蓄電池BT1又はBT2によってモータ31が直接駆動されるため、電力損失が少なく、ソーラーパネル51によって発電した電力を従来よりも有効に活用できる。
 また、本実施形態の電力供給システム1によれば、2個の蓄電池BT1,BT2のうちいずれか一方の蓄電池をソーラーパネル51の電力により充電している期間に、他方の蓄電池を放電してモータ31を駆動する。そのため、第1制御モードと第2制御モードを交互に実行することで、2個の蓄電池BT1,BT2の容量を、モータ31を駆動するために効率良く利用することができる。結果として、モータ31を動力源とする航空機AVの航続距離を延ばすことができる。
As described above, according to the power supply system 1 of the present embodiment, the two storage batteries BT1 and BT2 are provided, and either the first control mode or the second control mode is executed. In the first control mode, the electric power of the storage battery BT1 is discharged to the motor 31 to drive the motor 31, and the electric power of the solar panel 51 charges the storage battery BT2. On the other hand, in the second control mode, the electric power of the storage battery BT2 is discharged to the motor 31 to drive the motor 31, and the electric power of the solar panel 51 charges the storage battery BT1. Therefore, since the motor 31 is directly driven by the storage battery BT1 or BT2 charged with the electric power generated by the solar panel 51, the electric power loss is small and the electric power generated by the solar panel 51 can be effectively utilized as compared with the conventional case.
Further, according to the power supply system 1 of the present embodiment, while one of the two storage batteries BT1 and BT2 is being charged by the electric power of the solar panel 51, the other storage battery is discharged and the motor is used. Drive 31. Therefore, by alternately executing the first control mode and the second control mode, the capacities of the two storage batteries BT1 and BT2 can be efficiently used to drive the motor 31. As a result, the cruising range of the aircraft AV powered by the motor 31 can be extended.
 (3)BMS10による制御例
 次に、第1制御モードと第2制御モードを切り替える場合のBMS10による好ましい制御例について、図5~図7の状態遷移図を参照して説明する。
(3) Example of Control by BMS10 Next, a preferable example of control by BMS10 when switching between the first control mode and the second control mode will be described with reference to the state transition diagrams of FIGS. 5 to 7.
 (3-1)制御例1(図5)
 制御例1では、2個の蓄電池BT1,BT2のうちモータ31に放電している一方の蓄電池のSOCを監視し、当該SOCが所定の閾値以下まで低下した場合に、他方の蓄電池をモータ31に放電するように、モータ31に接続する蓄電池が切り替えられる。
 具体的には、図5に示すように、BMS10が第1制御モードを実行している状態である場合、つまり、蓄電池BT1の電力によってモータ31を動作させている場合には、BMS10は逐次、SOC1(蓄電池BT1のSOC)が所定の閾値Th1(第1閾値の一例)を超えているか監視し、SOC1が閾値Th1を超えている場合には第1制御モードの実行状態を維持する。第1制御モードの実行状態では、蓄電池BT2は、ソーラーパネル51が発電する電力によって充電されている。
(3-1) Control example 1 (FIG. 5)
In control example 1, the SOC of one of the two storage batteries BT1 and BT2 that is discharged to the motor 31 is monitored, and when the SOC drops below a predetermined threshold value, the other storage battery is used as the motor 31. The storage battery connected to the motor 31 is switched so as to discharge.
Specifically, as shown in FIG. 5, when the BMS 10 is in the state of executing the first control mode, that is, when the motor 31 is operated by the electric power of the storage battery BT1, the BMS 10 is sequentially operated. It monitors whether the SOC1 (SOC of the storage battery BT1) exceeds a predetermined threshold value Th1 (an example of the first threshold value), and if the SOC1 exceeds the threshold value Th1, the execution state of the first control mode is maintained. In the execution state of the first control mode, the storage battery BT2 is charged by the electric power generated by the solar panel 51.
 SOC1が閾値Th1以下となった場合には、BMS10は、第1制御モードから第2制御モードに切り替える。第2制御モードでは、BMS10は、蓄電池BT2の電力によってモータ31を動作させ、ソーラーパネル51が発電する電力によって蓄電池BT1が充電されるように制御する。そして、図5に示すように、BMS10が第2制御モードを実行している状態である場合、BMS10は逐次、SOC2(蓄電池BT2のSOC)が所定の閾値Th2(第2閾値の一例)を超えているか監視し、SOC2が閾値Th2を超えている場合には第2制御モードの実行状態を維持する。SOC2が閾値Th2以下となった場合には、BMS10は、第2制御モードから第1制御モードに切り替える。 When the SOC1 becomes the threshold value Th1 or less, the BMS10 switches from the first control mode to the second control mode. In the second control mode, the BMS 10 operates the motor 31 by the electric power of the storage battery BT2, and controls the storage battery BT1 to be charged by the electric power generated by the solar panel 51. Then, as shown in FIG. 5, when the BMS 10 is in the state of executing the second control mode, the SOC2 (SOC of the storage battery BT2) of the BMS 10 sequentially exceeds a predetermined threshold value Th2 (an example of the second threshold value). If the SOC2 exceeds the threshold value Th2, the execution state of the second control mode is maintained. When the SOC2 becomes the threshold value Th2 or less, the BMS 10 switches from the second control mode to the first control mode.
 上述したように、制御例1では、2個の蓄電池BT1,BT2のうちモータ31に放電している一方の蓄電池のSOCを監視し、他方の蓄電池を充電し、当該一方の蓄電池のSOCが低下した場合にモータ31に放電する蓄電池を切り替える。そのため、モータ31に電力を供給する蓄電池の充電状態を継続的に良好な状態に維持することができる。 As described above, in the control example 1, the SOC of one of the two storage batteries BT1 and BT2 discharged to the motor 31 is monitored, the other storage battery is charged, and the SOC of the one storage battery is lowered. If this happens, the storage battery that discharges to the motor 31 is switched. Therefore, the state of charge of the storage battery that supplies electric power to the motor 31 can be continuously maintained in a good state.
 (3-2)制御例2(図6)
 制御例2では、2個の蓄電池BT1,BT2のうち一方の蓄電池の電力をモータ31に放電し、かつ他方の蓄電池をソーラーパネル51の電力により充電する。そして、充電している他方の蓄電池のSOCが所定の閾値以上となった場合に、当該他方の蓄電池をモータ31に放電するように、モータ31に接続する蓄電池が切り替えられる。
 具体的には、図6に示すように、BMS10が第1制御モードを実行している状態である場合、つまり、蓄電池BT1の電力によってモータ31を動作させている場合には、BMS10は逐次、SOC2(蓄電池BT2のSOC)が所定の閾値Th3(第3閾値の一例)以上となったか監視し、SOC2が閾値Th3未満である場合には第1制御モードの実行状態を維持する。第1制御モードの実行状態では、蓄電池BT2は、ソーラーパネル51が発電する電力によって充電されている。
(3-2) Control example 2 (Fig. 6)
In control example 2, the electric power of one of the two storage batteries BT1 and BT2 is discharged to the motor 31, and the other storage battery is charged by the electric power of the solar panel 51. Then, when the SOC of the other charging battery becomes equal to or higher than a predetermined threshold value, the storage battery connected to the motor 31 is switched so as to discharge the other storage battery to the motor 31.
Specifically, as shown in FIG. 6, when the BMS 10 is in the state of executing the first control mode, that is, when the motor 31 is operated by the electric power of the storage battery BT1, the BMS 10 is sequentially operated. It monitors whether the SOC2 (SOC of the storage battery BT2) is equal to or higher than the predetermined threshold Th3 (an example of the third threshold), and if the SOC2 is less than the threshold Th3, the execution state of the first control mode is maintained. In the execution state of the first control mode, the storage battery BT2 is charged by the electric power generated by the solar panel 51.
 SOC2が閾値Th3以上となった場合には、BMS10は、第1制御モードから第2制御モードに切り替える。第2制御モードでは、BMS10は、蓄電池BT2の電力によってモータ31を動作させ、ソーラーパネル51が発電する電力によって蓄電池BT1が充電されるように制御する。そして、図6に示すように、BMS10が第2制御モードを実行している状態である場合、BMS10は逐次、SOC1(蓄電池BT1のSOC)が所定の閾値Th4(第4閾値の一例)以上となったか監視し、SOC1が閾値Th4未満である場合には第2制御モードの実行状態を維持する。SOC1が閾値Th4以上となった場合には、BMS10は、第2制御モードから第1制御モードに切り替える。 When the SOC2 becomes the threshold value Th3 or more, the BMS10 switches from the first control mode to the second control mode. In the second control mode, the BMS 10 operates the motor 31 by the electric power of the storage battery BT2, and controls the storage battery BT1 to be charged by the electric power generated by the solar panel 51. Then, as shown in FIG. 6, when the BMS 10 is in the state of executing the second control mode, the SOC 1 (SOC of the storage battery BT1) of the BMS 10 is sequentially set to a predetermined threshold value Th4 (an example of the fourth threshold value) or higher. If the SOC1 is less than the threshold value Th4, the execution state of the second control mode is maintained. When the SOC1 becomes the threshold value Th4 or more, the BMS10 switches from the second control mode to the first control mode.
 上述したように、制御例2では、2個の蓄電池BT1,BT2のうちソーラーパネル51が発電する電力によって充電している一方の蓄電池のSOCを監視し、他方の蓄電池の電力をモータ31に放電し、当該一方の蓄電池のSOCがある程度まで増加した場合にモータ31に放電する蓄電池を切り替える。そのため、モータ31に電力を供給する蓄電池の充電状態を継続的に良好な状態に維持することができる。 As described above, in the control example 2, the SOC of one of the two storage batteries BT1 and BT2 charged by the power generated by the solar panel 51 is monitored, and the power of the other storage battery is discharged to the motor 31. Then, when the SOC of the one storage battery increases to a certain extent, the storage battery to be discharged to the motor 31 is switched. Therefore, the state of charge of the storage battery that supplies electric power to the motor 31 can be continuously maintained in a good state.
 (3-3)制御例3(図7)
 制御例3は、上述した制御例1と制御例2を組み合わせた制御例である。
 具体的には、図7に示すように、BMS10が第1制御モードを実行している状態である場合、つまり、蓄電池BT1の電力によってモータ31を動作させている場合には、BMS10は逐次、SOC1とSOC2を監視する。SOC1が閾値Th1を超えており、かつSOC2が閾値Th3未満である場合には第1制御モードの実行状態を維持する。第1制御モードの実行状態では、蓄電池BT2は、ソーラーパネル51が発電する電力によって充電されている。
(3-3) Control example 3 (FIG. 7)
Control example 3 is a control example in which the above-mentioned control example 1 and control example 2 are combined.
Specifically, as shown in FIG. 7, when the BMS 10 is in the state of executing the first control mode, that is, when the motor 31 is operated by the electric power of the storage battery BT1, the BMS 10 is sequentially operated. Monitor SOC1 and SOC2. When the SOC1 exceeds the threshold value Th1 and the SOC2 is less than the threshold value Th3, the execution state of the first control mode is maintained. In the execution state of the first control mode, the storage battery BT2 is charged by the electric power generated by the solar panel 51.
 SOC1が閾値Th1以下となり、かつSOC2が閾値Th3以上となった場合には、BMS10は、第1制御モードから第2制御モードに切り替える。第2制御モードでは、BMS10は、蓄電池BT2の電力によってモータ31を動作させ、ソーラーパネル51が発電する電力によって蓄電池BT1が充電されるように制御する。そして、図7に示すように、BMS10が第2制御モードを実行している状態である場合、BMS10は逐次、SOC1とSOC2を監視する。SOC2が閾値Th2を超えており、かつSOC1が閾値Th4未満である場合には第2制御モードの実行状態を維持する。SOC2が閾値Th2以下となり、かつSOC1が閾値Th4以上となった場合には、BMS10は、第2制御モードから第1制御モードに切り替える。 When the SOC1 becomes the threshold value Th1 or less and the SOC2 becomes the threshold value Th3 or more, the BMS 10 switches from the first control mode to the second control mode. In the second control mode, the BMS 10 operates the motor 31 by the electric power of the storage battery BT2, and controls the storage battery BT1 to be charged by the electric power generated by the solar panel 51. Then, as shown in FIG. 7, when the BMS 10 is in the state of executing the second control mode, the BMS 10 sequentially monitors SOC1 and SOC2. When the SOC2 exceeds the threshold value Th2 and the SOC1 is less than the threshold value Th4, the execution state of the second control mode is maintained. When the SOC2 becomes the threshold value Th2 or less and the SOC1 becomes the threshold value Th4 or more, the BMS 10 switches from the second control mode to the first control mode.
 上述したように、制御例3では、2個の蓄電池BT1,BT2のうちソーラーパネル51が発電する電力によって充電している一方の蓄電池のSOCを監視するとともに、モータ31に放電する他方の蓄電池のSOCを監視する。そして、両方のSOCが所定の条件を満たしたときに、充電対象の蓄電池と放電対象の蓄電池とを切り替える。そのため、モータ31に電力を供給する蓄電池の充電状態を継続的に良好な状態に維持することができる。 As described above, in the control example 3, the SOC of one of the two storage batteries BT1 and BT2 charged by the electric power generated by the solar panel 51 is monitored, and the other storage battery discharged to the motor 31 is used. Monitor the SOC. Then, when both SOCs satisfy the predetermined conditions, the storage battery to be charged and the storage battery to be discharged are switched. Therefore, the state of charge of the storage battery that supplies electric power to the motor 31 can be continuously maintained in a good state.
 なお、上記制御例1~3は、(i) 蓄電池BT1の電力をモータ31に放電し、ソーラーパネル51の電力により蓄電池BT2を充電する第1制御工程と、(ii) 蓄電池BT2の電力をモータ31に放電し、ソーラーパネル51の電力により蓄電池BT1を充電する第2制御工程と、を有する電力供給システム1の制御方法を開示する。 In the control examples 1 to 3, (i) the first control step of discharging the electric power of the storage battery BT1 to the motor 31 and charging the storage battery BT2 with the electric power of the solar panel 51, and (ii) the electric power of the storage battery BT2 are motorized. A second control step of discharging to 31 and charging the storage battery BT1 with the electric power of the solar panel 51, and a control method of the power supply system 1 having the second control step are disclosed.
 (4)変形例
 次に、上述した本実施形態の電力供給システム1について、蓄電池の個数が異なる場合の変形例を、図8~図13を参照して説明する。
 前述したように、本実施形態の電力供給システム1には、2個の蓄電池に限られず、3個以上の任意の数の蓄電池を適用することができる。
(4) Modification Example Next, a modification of the power supply system 1 of the present embodiment described above when the number of storage batteries is different will be described with reference to FIGS. 8 to 13.
As described above, the power supply system 1 of the present embodiment is not limited to the two storage batteries, and any number of three or more storage batteries can be applied.
 (4-1)3個の蓄電池を並列接続させる場合(図8~図10)
 図8~図10の各々には、電源回路15に代えて、3個の蓄電池BT1,BT2,BT3のうちの2個の蓄電池をそれぞれモータ31およびソーラーパネル51に並列接続するように構成した電源回路16が示される。図8に示すように、電源回路16は、スイッチ駆動部161,162と、スイッチS1~S8と、遮断器163、および、接点P1~P6を含む。
(4-1) When three storage batteries are connected in parallel (FIGS. 8 to 10)
In each of FIGS. 8 to 10, instead of the power supply circuit 15, two storage batteries out of the three storage batteries BT1, BT2, and BT3 are connected in parallel to the motor 31 and the solar panel 51, respectively. Circuit 16 is shown. As shown in FIG. 8, the power supply circuit 16 includes switch drive units 161, 162, switches S1 to S8, a circuit breaker 163, and contacts P1 to P6.
 電力供給システム1が正常である場合、BMS10がスイッチ駆動部161,162に対して制御信号を送信し、当該制御信号に基づいてスイッチ駆動部161がスイッチS1~S4を駆動し、スイッチ駆動部162がスイッチS5~S8を駆動する。
 電力供給システム1の異常を検知した場合、BMS10が遮断器163に対して制御信号を送信し、当該制御信号に基づいて遮断器163が接点P1~P6を開放する(つまり、回路を遮断してトリップさせる)。
When the power supply system 1 is normal, the BMS 10 transmits a control signal to the switch drive units 161, 162, and the switch drive unit 161 drives the switches S1 to S4 based on the control signal, and the switch drive unit 162. Drives switches S5 to S8.
When an abnormality in the power supply system 1 is detected, the BMS 10 transmits a control signal to the circuit breaker 163, and the circuit breaker 163 opens the contacts P1 to P6 based on the control signal (that is, the circuit is cut off). To trip).
 図8に示すように、電力供給システム1が正常である場合、蓄電池BT1を放電させ、蓄電池BT3を充電させるためには、蓄電池BT1の正極端子がモータ31の一端に接続され、かつ蓄電池BT1の負極端子がモータ31の他端に接続され、それによって閉回路を構成するように、スイッチS2,S3,S5,S7が制御される。さらに、蓄電池BT3の正極端子がソーラーパネル51の正極端子に接続され、蓄電池BT3の負極端子がソーラーパネル51の負極端子に接続され、それによって閉回路を構成するように、スイッチS1,S4,S6,S8が制御される。
 図8に示すように、電力供給システム1が正常である場合、蓄電池BT1を充電させ、蓄電池BT3を放電させるためには、蓄電池BT1の正極端子がソーラーパネル51の正極端子に接続され、かつ蓄電池BT1の負極端子がソーラーパネル51の負極端子に接続され、それによって閉回路を構成するように、スイッチS1,S4,S5,S7が制御される。さらに、蓄電池BT3の正極端子がモータ31の一端に接続され、蓄電池BT3の負極端子がモータ31の他端子に接続され、それによって閉回路を構成するように、スイッチS2,S3,S6,S8が制御される。
As shown in FIG. 8, when the power supply system 1 is normal, in order to discharge the storage battery BT1 and charge the storage battery BT3, the positive electrode terminal of the storage battery BT1 is connected to one end of the motor 31 and the storage battery BT1 The negative electrode terminal is connected to the other end of the motor 31, whereby the switches S2, S3, S5, and S7 are controlled so as to form a closed circuit. Further, the positive terminal of the storage battery BT3 is connected to the positive terminal of the solar panel 51, and the negative terminal of the storage battery BT3 is connected to the negative terminal of the solar panel 51, whereby the switches S1, S4, S6 form a closed circuit. , S8 is controlled.
As shown in FIG. 8, when the power supply system 1 is normal, in order to charge the storage battery BT1 and discharge the storage battery BT3, the positive electrode terminal of the storage battery BT1 is connected to the positive electrode terminal of the solar panel 51, and the storage battery The negative electrode terminal of the BT1 is connected to the negative electrode terminal of the solar panel 51, whereby the switches S1, S4, S5 and S7 are controlled so as to form a closed circuit. Further, the switches S2, S3, S6, S8 are connected so that the positive electrode terminal of the storage battery BT3 is connected to one end of the motor 31 and the negative electrode terminal of the storage battery BT3 is connected to the other terminal of the motor 31 to form a closed circuit. Be controlled.
 図9に示すように、電力供給システム1が正常である場合、蓄電池BT2を放電させ、蓄電池BT3を充電させるためには、蓄電池BT2の正極端子がモータ31の一端に接続され、かつ蓄電池BT2の負極端子がモータ31の他端に接続され、それによって閉回路を構成するように、スイッチS2,S3,S5,S7が制御される。さらに、蓄電池BT3の正極端子がソーラーパネル51の正極端子に接続され、蓄電池BT3の負極端子がソーラーパネル51の負極端子に接続され、それによって閉回路を構成するように、スイッチS1,S4,S6,S8が制御される。
 図9に示すように、電力供給システム1が正常である場合、蓄電池BT2を充電させ、蓄電池BT3を放電させるためには、蓄電池BT2の正極端子がソーラーパネル51の正極端子に接続され、かつ蓄電池BT2の負極端子がソーラーパネル51の負極端子に接続され、それによって閉回路を構成するように、スイッチS1,S4,S5,S7が制御される。さらに、蓄電池BT3の正極端子がモータ31の一端に接続され、蓄電池BT3の負極端子がモータ31の他端子に接続され、それによって閉回路を構成するように、スイッチS2,S3,S6,S8が制御される。
As shown in FIG. 9, when the power supply system 1 is normal, in order to discharge the storage battery BT2 and charge the storage battery BT3, the positive electrode terminal of the storage battery BT2 is connected to one end of the motor 31 and the storage battery BT2 The negative electrode terminal is connected to the other end of the motor 31, whereby the switches S2, S3, S5, and S7 are controlled so as to form a closed circuit. Further, the positive terminal of the storage battery BT3 is connected to the positive terminal of the solar panel 51, and the negative terminal of the storage battery BT3 is connected to the negative terminal of the solar panel 51, whereby the switches S1, S4, S6 form a closed circuit. , S8 is controlled.
As shown in FIG. 9, when the power supply system 1 is normal, in order to charge the storage battery BT2 and discharge the storage battery BT3, the positive electrode terminal of the storage battery BT2 is connected to the positive electrode terminal of the solar panel 51, and the storage battery The negative electrode terminal of the BT2 is connected to the negative electrode terminal of the solar panel 51, whereby the switches S1, S4, S5 and S7 are controlled so as to form a closed circuit. Further, the switches S2, S3, S6, S8 are connected so that the positive electrode terminal of the storage battery BT3 is connected to one end of the motor 31 and the negative electrode terminal of the storage battery BT3 is connected to the other terminal of the motor 31 to form a closed circuit. Be controlled.
 図10に、電源回路16の遮断時の状態を示す。遮断時には、スイッチS1~S8の状態に関わらず、接点P1~P6がいずれも開放される。それによって、電力供給システム1の異常を検知した場合に、電源回路16が保護される。 FIG. 10 shows the state when the power supply circuit 16 is cut off. At the time of shutting off, all the contacts P1 to P6 are opened regardless of the state of the switches S1 to S8. As a result, the power supply circuit 16 is protected when an abnormality in the power supply system 1 is detected.
 なお、図8および図9は例示に過ぎず、蓄電池BT1,BT2,BT3のうちいずれの蓄電池を充電させ、いずれの蓄電池を放電させるかについては、任意に設定可能である。例えば、蓄電池BT1をモータ31に放電させ、蓄電池BT2をソーラーパネル51の電力によって充電させてもよいし、蓄電池BT2をモータ31に放電させ、蓄電池BT1をソーラーパネル51の電力によって充電させてもよい。 Note that FIGS. 8 and 9 are merely examples, and which of the storage batteries BT1, BT2, and BT3 should be charged and which storage battery should be discharged can be arbitrarily set. For example, the storage battery BT1 may be discharged to the motor 31 and the storage battery BT2 may be charged by the electric power of the solar panel 51, or the storage battery BT2 may be discharged to the motor 31 and the storage battery BT1 may be charged by the electric power of the solar panel 51. ..
 3個の蓄電池を使用する場合でも、上述した制御例1~3(図5~図7)と同様の制御を適用してもよい。すなわち、BMS10は、蓄電池BT1,BT2,BT3の各々のSOCに基づいて電源回路16を制御し、それによって、蓄電池BT1,BT2,BT3と、モータ31およびソーラーパネル51との間の電気的接続状態を決定してもよい。 Even when three storage batteries are used, the same control as in the above-mentioned control examples 1 to 3 (FIGS. 5 to 7) may be applied. That is, the BMS 10 controls the power supply circuit 16 based on the SOC of each of the storage batteries BT1, BT2, and BT3, whereby the electrical connection state between the storage batteries BT1, BT2, BT3, the motor 31, and the solar panel 51. May be determined.
 例えば、BMS10は、以下の第1~第3制御モードを蓄電池BT1,BT2,BT3の各々のSOCに基づいて実行してもよい。
 (第1制御モード)蓄電池BT1をモータ31に放電してモータ31を駆動し、蓄電池BT2又は蓄電池BT3をソーラーパネル51の電力によって充電する制御モード
 (第2制御モード)蓄電池BT2をモータ31に放電してモータ31を駆動し、蓄電池BT1又は蓄電池BT3をソーラーパネル51の電力によって充電する制御モード
 (第3制御モード)蓄電池BT3をモータ31に放電してモータ31を駆動し、蓄電池BT1又は蓄電池BT2をソーラーパネル51の電力によって充電する制御モード
 ここで、例えば上記制御例1を適用する場合、以下のようにすればよい。第1制御モードを実行している状態では、蓄電池BT1のSOCが所定の閾値以下となった場合に、第2制御モード又は第3制御モードを実行するように制御モードを切り替える。同様に、第2制御モードを実行している状態では、蓄電池BT2のSOCが所定の閾値以下となった場合に、第1制御モード又は第3制御モードを実行するように制御モードを切り替える。第3制御モードを実行している状態では、蓄電池BT3のSOCが所定の閾値以下となった場合に、第1制御モード又は第2制御モードを実行するように制御モードを切り替える。
For example, the BMS 10 may execute the following first to third control modes based on the SOCs of the storage batteries BT1, BT2, and BT3.
(First control mode) A control mode in which the storage battery BT1 is discharged to the motor 31 to drive the motor 31 and the storage battery BT2 or the storage battery BT3 is charged by the power of the solar panel 51 (second control mode) The storage battery BT2 is discharged to the motor 31. Then, the motor 31 is driven, and the storage battery BT1 or the storage battery BT3 is charged by the power of the solar panel 51. (Third control mode) The storage battery BT3 is discharged to the motor 31 to drive the motor 31, and the storage battery BT1 or the storage battery BT2 Control mode for charging with the power of the solar panel 51 Here, for example, when the above control example 1 is applied, the following may be applied. In the state where the first control mode is being executed, the control mode is switched so as to execute the second control mode or the third control mode when the SOC of the storage battery BT1 becomes equal to or less than a predetermined threshold value. Similarly, in the state where the second control mode is being executed, the control mode is switched so as to execute the first control mode or the third control mode when the SOC of the storage battery BT2 becomes equal to or less than a predetermined threshold value. In the state where the third control mode is being executed, when the SOC of the storage battery BT3 becomes equal to or less than a predetermined threshold value, the control mode is switched so as to execute the first control mode or the second control mode.
 (4-2)4個の蓄電池を並列接続させる場合(図11~図13)
 図11~図13の各々には、電源回路15に代えて、4個の蓄電池BT1~BT4のうちの2個の蓄電池をそれぞれモータ31およびソーラーパネル51に並列接続するように構成した電源回路17が示される。図11に示すように、電源回路17は、スイッチ駆動部171,172と、スイッチS1~S8と、遮断器173、および、接点P1~P8を含む。
(4-2) When four storage batteries are connected in parallel (FIGS. 11 to 13)
In each of FIGS. 11 to 13, instead of the power supply circuit 15, two storage batteries out of the four storage batteries BT1 to BT4 are connected in parallel to the motor 31 and the solar panel 51, respectively. Is shown. As shown in FIG. 11, the power supply circuit 17 includes switch drive units 171 and 172, switches S1 to S8, circuit breakers 173, and contacts P1 to P8.
 電力供給システム1が正常である場合、BMS10がスイッチ駆動部171,172に対して制御信号を送信し、当該制御信号に基づいてスイッチ駆動部171がスイッチS1~S4を駆動し、スイッチ駆動部172がスイッチS5~S8を駆動する。
 電力供給システム1の異常を検知した場合、BMS10が遮断器173に対して制御信号を送信し、当該制御信号に基づいて遮断器173が接点P1~P8を開放する(つまり、回路を遮断してトリップさせる)。
When the power supply system 1 is normal, the BMS 10 transmits a control signal to the switch drive units 171 and 172, the switch drive unit 171 drives the switches S1 to S4 based on the control signal, and the switch drive unit 172. Drives switches S5 to S8.
When an abnormality in the power supply system 1 is detected, the BMS 10 transmits a control signal to the circuit breaker 173, and the circuit breaker 173 opens the contacts P1 to P8 based on the control signal (that is, the circuit is cut off). To trip).
 図11に示すように、電力供給システム1が正常である場合、蓄電池BT1を充電させ、蓄電池BT3を放電させるためには、蓄電池BT1の正極端子がソーラーパネル51の正極端子に接続され、かつ蓄電池BT1の負極端子がソーラーパネル51の負極端子に接続され、それによって閉回路を構成するように、スイッチS1,S4,S5,S7が制御される。さらに、蓄電池BT3の正極端子がモータ31の一端に接続され、蓄電池BT3の負極端子がモータ31の他端に接続され、それによって閉回路を構成するように、スイッチS2,S3,S6,S8が制御される。
 図11に示すように、電力供給システム1が正常である場合、蓄電池BT1を放電させ、蓄電池BT3を充電させるためには、蓄電池BT1の正極端子がモータ31の一端に接続され、かつ蓄電池BT1の負極端子がモータ31の他端に接続され、それによって閉回路を構成するように、スイッチS2,S3,S5,S7が制御される。さらに、蓄電池BT3の正極端子がソーラーパネル51の正極端子に接続され、蓄電池BT3の負極端子がソーラーパネル51の負極端子に接続され、それによって閉回路を構成するように、スイッチS1,S4,S6,S8が制御される。
As shown in FIG. 11, when the power supply system 1 is normal, in order to charge the storage battery BT1 and discharge the storage battery BT3, the positive electrode terminal of the storage battery BT1 is connected to the positive electrode terminal of the solar panel 51, and the storage battery The negative electrode terminal of the BT1 is connected to the negative electrode terminal of the solar panel 51, whereby the switches S1, S4, S5 and S7 are controlled so as to form a closed circuit. Further, the switches S2, S3, S6, S8 are connected so that the positive electrode terminal of the storage battery BT3 is connected to one end of the motor 31 and the negative electrode terminal of the storage battery BT3 is connected to the other end of the motor 31 to form a closed circuit. Be controlled.
As shown in FIG. 11, when the power supply system 1 is normal, in order to discharge the storage battery BT1 and charge the storage battery BT3, the positive electrode terminal of the storage battery BT1 is connected to one end of the motor 31 and the storage battery BT1 The negative electrode terminal is connected to the other end of the motor 31, whereby the switches S2, S3, S5, and S7 are controlled so as to form a closed circuit. Further, the positive terminal of the storage battery BT3 is connected to the positive terminal of the solar panel 51, and the negative terminal of the storage battery BT3 is connected to the negative terminal of the solar panel 51, whereby the switches S1, S4, S6 form a closed circuit. , S8 is controlled.
 図12に示すように、電力供給システム1が正常である場合、蓄電池BT2を充電させ、蓄電池BT4を放電させるためには、蓄電池BT2の正極端子がソーラーパネル51の正極端子に接続され、かつ蓄電池BT2の負極端子がソーラーパネル51の負極端子に接続され、それによって閉回路を構成するように、スイッチS1,S4,S5,S7が制御される。さらに、蓄電池BT4の正極端子がモータ31の一端に接続され、蓄電池BT4の負極端子がモータ31の他端に接続され、それによって閉回路を構成するように、スイッチS2,S3,S6,S8が制御される。
 図12に示すように、電力供給システム1が正常である場合、蓄電池BT2を放電させ、蓄電池BT4を充電させるためには、蓄電池BT2の正極端子がモータ31の一端に接続され、かつ蓄電池BT2の負極端子がモータ31の他端に接続され、それによって閉回路を構成するように、スイッチS2,S3,S5,S7が制御される。さらに、蓄電池BT4の正極端子がソーラーパネル51の正極端子に接続され、蓄電池BT4の負極端子がソーラーパネル51の負極端子に接続され、それによって閉回路を構成するように、スイッチS1,S4,S6,S8が制御される。
As shown in FIG. 12, when the power supply system 1 is normal, in order to charge the storage battery BT2 and discharge the storage battery BT4, the positive electrode terminal of the storage battery BT2 is connected to the positive electrode terminal of the solar panel 51 and the storage battery. The negative electrode terminal of the BT2 is connected to the negative electrode terminal of the solar panel 51, whereby the switches S1, S4, S5 and S7 are controlled so as to form a closed circuit. Further, the switches S2, S3, S6, S8 are connected so that the positive electrode terminal of the storage battery BT4 is connected to one end of the motor 31 and the negative electrode terminal of the storage battery BT4 is connected to the other end of the motor 31 to form a closed circuit. Be controlled.
As shown in FIG. 12, when the power supply system 1 is normal, in order to discharge the storage battery BT2 and charge the storage battery BT4, the positive electrode terminal of the storage battery BT2 is connected to one end of the motor 31 and the storage battery BT2 The negative electrode terminal is connected to the other end of the motor 31, whereby the switches S2, S3, S5, and S7 are controlled so as to form a closed circuit. Further, the positive terminal of the storage battery BT4 is connected to the positive terminal of the solar panel 51, and the negative terminal of the storage battery BT4 is connected to the negative terminal of the solar panel 51, whereby the switches S1, S4, S6 form a closed circuit. , S8 is controlled.
 図13に、電源回路17の遮断時の状態を示す。遮断時には、スイッチS1~S8の状態に関わらず、接点P1~P8がいずれも開放される。それによって、電力供給システム1の異常を検知した場合に、電源回路17が保護される。 FIG. 13 shows the state when the power supply circuit 17 is cut off. At the time of shutting off, all the contacts P1 to P8 are opened regardless of the state of the switches S1 to S8. As a result, the power supply circuit 17 is protected when an abnormality in the power supply system 1 is detected.
 なお、図11および図12は例示に過ぎず、蓄電池BT1~BT4のうちいずれの蓄電池を充電させ、いずれの蓄電池を放電させるかについては、任意に設定可能である。例えば、蓄電池BT1をモータ31に放電させ、蓄電池BT2をソーラーパネル51の電力によって充電させてもよいし、蓄電池BT2をモータ31に放電させ、蓄電池BT1をソーラーパネル51の電力によって充電させてもよい。 Note that FIGS. 11 and 12 are merely examples, and which of the storage batteries BT1 to BT4 should be charged and which storage battery should be discharged can be arbitrarily set. For example, the storage battery BT1 may be discharged to the motor 31 and the storage battery BT2 may be charged by the electric power of the solar panel 51, or the storage battery BT2 may be discharged to the motor 31 and the storage battery BT1 may be charged by the electric power of the solar panel 51. ..
 4個の蓄電池を使用する場合でも、上述した制御例1~3(図5~図7)と同様の制御を適用してもよい。すなわち、BMS10は、蓄電池BT1~BT4の各々のSOCに基づいて電源回路17を制御し、それによって、蓄電池BT1~BT4と、モータ31およびソーラーパネル51との間の電気的接続状態を決定してもよい。 Even when four storage batteries are used, the same control as in the above-mentioned control examples 1 to 3 (FIGS. 5 to 7) may be applied. That is, the BMS 10 controls the power supply circuit 17 based on the SOCs of the storage batteries BT1 to BT4, thereby determining the electrical connection state between the storage batteries BT1 to BT4, the motor 31 and the solar panel 51. May be good.
 例えば、BMS10は、以下の第1~第4制御モードを蓄電池BT1~BT4の各々のSOCに基づいて実行してもよい。
 (第1制御モード)蓄電池BT1をモータ31に放電してモータ31を駆動し、蓄電池BT2~BT4のいずれかをソーラーパネル51の電力によって充電する制御モード
 (第2制御モード)蓄電池BT2をモータ31に放電してモータ31を駆動し、蓄電池BT1,BT3,BT4のいずれかをソーラーパネル51の電力によって充電する制御モード
 (第3制御モード)蓄電池BT3をモータ31に放電してモータ31を駆動し、蓄電池BT1,BT2,BT4のいずれかをソーラーパネル51の電力によって充電する制御モード
 (第4制御モード)蓄電池BT4をモータ31に放電してモータ31を駆動し、蓄電池BT1~BT3のいずれかをソーラーパネル51の電力によって充電する制御モード
 ここで、例えば上記制御例1を適用する場合、以下のようにすればよい。第1制御モードを実行している状態では、蓄電池BT1のSOCが所定の閾値以下となった場合に、第2,第3,又は第4制御モードのいずれかの制御モードを実行するように制御モードを切り替える。同様に、第2制御モードを実行している状態では、蓄電池BT2のSOCが所定の閾値以下となった場合に、第1,第3,又は第4制御モードのいずれかの制御モードを実行するように制御モードを切り替える。第3制御モードを実行している状態では、蓄電池BT3のSOCが所定の閾値以下となった場合に、第1,第2,又は第4制御モードのいずれかの制御モードを実行するように制御モードを切り替える。第4制御モードを実行している状態では、蓄電池BT4のSOCが所定の閾値以下となった場合に、第1,第2,又は第3制御モードのいずれかの制御モードを実行するように制御モードを切り替える。
For example, the BMS 10 may execute the following first to fourth control modes based on the SOCs of the storage batteries BT1 to BT4.
(First control mode) A control mode in which the storage battery BT1 is discharged to the motor 31 to drive the motor 31 and one of the storage batteries BT2 to BT4 is charged by the electric power of the solar panel 51 (second control mode) The storage battery BT2 is charged to the motor 31. Control mode (third control mode) in which the storage battery BT1, BT3, or BT4 is charged by the electric power of the solar panel 51 by discharging the storage battery BT3 to the motor 31 to drive the motor 31. , Control mode in which any of the storage batteries BT1, BT2, and BT4 is charged by the electric power of the solar panel 51 (fourth control mode) The storage battery BT4 is discharged to the motor 31 to drive the motor 31, and any of the storage batteries BT1 to BT3 is pressed. Control mode for charging with the power of the solar panel 51 Here, for example, when the above control example 1 is applied, the following may be applied. In the state where the first control mode is being executed, when the SOC of the storage battery BT1 becomes equal to or less than a predetermined threshold value, control is performed so as to execute one of the second, third, and fourth control modes. Switch modes. Similarly, in the state where the second control mode is being executed, when the SOC of the storage battery BT2 becomes equal to or less than a predetermined threshold value, one of the first, third, and fourth control modes is executed. Switch the control mode so that. In the state where the third control mode is being executed, when the SOC of the storage battery BT3 becomes equal to or less than a predetermined threshold value, control is performed so as to execute one of the first, second, and fourth control modes. Switch modes. In the state where the fourth control mode is being executed, when the SOC of the storage battery BT4 becomes equal to or less than a predetermined threshold value, control is performed so as to execute one of the first, second, and third control modes. Switch modes.
 以上、本発明の電力供給システムおよび移動体の実施形態について詳細に説明したが、本発明は上記の実施形態に限定されない。また、上記の実施形態は、本発明の主旨を逸脱しない範囲において、種々の改良や変更が可能である。
 例えば、上述した実施形態では、蓄電池に対する電圧センサおよび電流センサの検出値からSOCを算出する場合を例示したが、その限りではない。例えば蓄電池の周囲に温度センサを設け、温度センサの検出値をも加味してSOCを算出することで、SOCの算出精度を向上させることができる。
Although the power supply system and the embodiment of the mobile body of the present invention have been described in detail above, the present invention is not limited to the above-described embodiment. Further, the above-described embodiment can be variously improved or modified without departing from the gist of the present invention.
For example, in the above-described embodiment, the case where the SOC is calculated from the detection values of the voltage sensor and the current sensor for the storage battery has been exemplified, but the present invention is not limited to this. For example, by providing a temperature sensor around the storage battery and calculating the SOC in consideration of the detection value of the temperature sensor, the accuracy of the SOC calculation can be improved.

Claims (9)

  1.  負荷に電力を供給する電力供給システムであって、
     第1蓄電池と、
     第2蓄電池と、
     太陽電池と、を備え、
     前記太陽電池が前記第1蓄電池又は前記第2蓄電池のいずれか一方と電気的に接続可能となり、前記負荷が前記第1蓄電池又は前記第2蓄電池のいずれか他方と電気的に接続可能となるように構成されている、
     電力供給システム。
    A power supply system that supplies power to the load
    With the first storage battery
    With the second storage battery
    Equipped with solar cells,
    The solar cell can be electrically connected to either the first storage battery or the second storage battery, and the load can be electrically connected to either the first storage battery or the second storage battery. Is configured in,
    Power supply system.
  2.  前記太陽電池を前記第1蓄電池又は前記第2蓄電池のいずれか一方と接続させ、他方とは接続させないように電気的接続状態を切り替える第1切替部と、
     前記負荷を前記第1蓄電池又は前記第2蓄電池のいずれか一方と接続させ、他方とは接続させないように電気的接続状態を切り替える第2切替部と、をさらに備えた、
     請求項1に記載された電力供給システム。
    A first switching unit that connects the solar cell to either the first storage battery or the second storage battery and switches the electrical connection state so as not to connect to the other.
    A second switching unit for connecting the load to either the first storage battery or the second storage battery and switching the electrical connection state so as not to connect to the other is further provided.
    The power supply system according to claim 1.
  3.  前記第1蓄電池および前記第2蓄電池の充放電を制御する制御装置と、をさらに備え、
     前記制御装置は、
      前記第1蓄電池の電力を前記負荷に放電し、前記太陽電池の電力により前記第2蓄電池を充電する第1制御モード、及び
      前記第2蓄電池の電力を前記負荷に放電し、前記太陽電池の電力により前記第1蓄電池を充電する第2制御モードを実行する、
     請求項1又は2に記載された電力供給システム。
    A control device for controlling the charging / discharging of the first storage battery and the second storage battery is further provided.
    The control device is
    The first control mode in which the electric power of the first storage battery is discharged to the load and the second storage battery is charged by the electric power of the solar battery, and the electric power of the second storage battery is discharged to the load, and the electric power of the solar cell is used. The second control mode for charging the first storage battery is executed.
    The power supply system according to claim 1 or 2.
  4.  前記制御装置は、
     前記第1制御モードを実行中において前記第1蓄電池の充電率が第1閾値以下となった場合には、前記第1制御モードから前記第2制御モードに切り替え、
     前記第2制御モードを実行中において前記第2蓄電池の充電率が第2閾値以下となった場合には、前記第2制御モードから前記第1制御モードに切り替える、
     請求項3に記載された電力供給システム。
    The control device is
    When the charge rate of the first storage battery becomes equal to or less than the first threshold value while the first control mode is being executed, the first control mode is switched to the second control mode.
    When the charge rate of the second storage battery becomes equal to or less than the second threshold value while the second control mode is being executed, the second control mode is switched to the first control mode.
    The power supply system according to claim 3.
  5.  前記制御装置は、
     前記第1制御モードを実行中において前記第2蓄電池の充電率が第3閾値以上となった場合には、前記第1制御モードから前記第2制御モードに切り替え、
     前記第2制御モードを実行中において前記第1蓄電池の充電率が第4閾値以上となった場合には、前記第2制御モードから前記第1制御モードに切り替える、
     請求項3に記載された電力供給システム。
    The control device is
    When the charge rate of the second storage battery becomes equal to or higher than the third threshold value while the first control mode is being executed, the first control mode is switched to the second control mode.
    When the charge rate of the first storage battery becomes equal to or higher than the fourth threshold value while the second control mode is being executed, the second control mode is switched to the first control mode.
    The power supply system according to claim 3.
  6.  請求項1から5のいずれか一項に記載された電力供給システムと、
     動力源として前記負荷であるモータと、を備えた、
     移動体。
    The power supply system according to any one of claims 1 to 5.
    A motor, which is the load, is provided as a power source.
    Mobile body.
  7.  前記モータに連結されたプロペラをさらに備え、
     前記移動体は、飛行体である、
     請求項6に記載された移動体。
    Further equipped with a propeller connected to the motor,
    The moving body is a flying body,
    The mobile body according to claim 6.
  8.  前記プロペラが取り付けられる翼部をさらに備え、
     前記太陽電池は、前記翼部に設けられている、
     請求項7に記載された移動体。
    Further equipped with a wing to which the propeller is attached,
    The solar cell is provided on the wing portion.
    The mobile body according to claim 7.
  9.  負荷に電力を供給する電力供給システムの制御方法であって、
     第1蓄電池の電力を前記負荷に放電し、太陽電池の電力により第2蓄電池を充電する第1制御工程と、
     前記第2蓄電池の電力を前記負荷に放電し、前記太陽電池の電力により前記第1蓄電池を充電する第2制御工程と、を有する、
     電力供給システムの制御方法。
    It is a control method of a power supply system that supplies power to a load.
    The first control step of discharging the electric power of the first storage battery to the load and charging the second storage battery with the electric power of the solar cell,
    It has a second control step of discharging the electric power of the second storage battery to the load and charging the first storage battery with the electric power of the solar cell.
    How to control the power supply system.
PCT/JP2021/012634 2020-06-09 2021-03-25 Power supply system, mobile object, and power supply system control method WO2021250979A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020099813A JP2021193871A (en) 2020-06-09 2020-06-09 Power supply system, mobile body and control method for power supply system
JP2020-099815 2020-06-09
JP2020099815A JP2021193872A (en) 2020-06-09 2020-06-09 Power supply system and mobile body
JP2020-099813 2020-06-09

Publications (1)

Publication Number Publication Date
WO2021250979A1 true WO2021250979A1 (en) 2021-12-16

Family

ID=78845482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012634 WO2021250979A1 (en) 2020-06-09 2021-03-25 Power supply system, mobile object, and power supply system control method

Country Status (1)

Country Link
WO (1) WO2021250979A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344096A (en) * 2002-05-23 2003-12-03 Hioki Ee Corp Electric measuring apparatus
JP2010098874A (en) * 2008-10-17 2010-04-30 Willcom Inc Mobile communication terminal
JP2019220833A (en) * 2018-06-19 2019-12-26 Hapsモバイル株式会社 Flight feedback control based on gust detection around HAPS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344096A (en) * 2002-05-23 2003-12-03 Hioki Ee Corp Electric measuring apparatus
JP2010098874A (en) * 2008-10-17 2010-04-30 Willcom Inc Mobile communication terminal
JP2019220833A (en) * 2018-06-19 2019-12-26 Hapsモバイル株式会社 Flight feedback control based on gust detection around HAPS

Similar Documents

Publication Publication Date Title
EP3599653B1 (en) Li-ion battery high voltage distribution system architecture
JP5964814B2 (en) Battery system, electric vehicle, moving object, power storage device, and power supply device
KR101199102B1 (en) Battery system, electric vehicle, movable body, power storage device, and power supply device
JP4287077B2 (en) Charge state detection device
US8471529B2 (en) Battery fault tolerant architecture for cell failure modes parallel bypass circuit
JP5735098B2 (en) Battery system, electric vehicle, moving object, power storage device, and power supply device
EP3743974A1 (en) Electrical powering or drive system for a motor in an electrically driven aircraft
EP4044394A1 (en) Systems and methods for fail-safe battery protection independent from battery management system
KR101456552B1 (en) Battery with cell balancing
US20210206499A1 (en) Electric propulsion system
JP2008099538A (en) Vehicle battery managing system
JP6549306B2 (en) vehicle
KR20170097481A (en) Charging or discharging system and method for diagnosing state of contactor
US10406932B2 (en) Energy storage apparatus, vehicle apparatus, and control method
JP2014107979A (en) Battery monitoring device
CN110466364B (en) Battery pack for vehicle
US9634500B2 (en) Storage battery system
US20210078442A1 (en) Charging architecture for reconfigurable battery pack using solid-state and contactor switches
JP2023082160A5 (en)
US11555863B2 (en) Ground fault detection device
US9013839B1 (en) Vehicle high voltage wiring protection using contactor control
JP2021193871A (en) Power supply system, mobile body and control method for power supply system
WO2017043237A1 (en) Battery management device
WO2012132177A1 (en) Battery module, battery system, electric vehicle, mobile body, power storage device, and power source device
WO2021250979A1 (en) Power supply system, mobile object, and power supply system control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821845

Country of ref document: EP

Kind code of ref document: A1