WO2021250920A1 - Polymer production method - Google Patents

Polymer production method Download PDF

Info

Publication number
WO2021250920A1
WO2021250920A1 PCT/JP2021/000559 JP2021000559W WO2021250920A1 WO 2021250920 A1 WO2021250920 A1 WO 2021250920A1 JP 2021000559 W JP2021000559 W JP 2021000559W WO 2021250920 A1 WO2021250920 A1 WO 2021250920A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
monomer
solvent
frequency
mixed solution
Prior art date
Application number
PCT/JP2021/000559
Other languages
French (fr)
Japanese (ja)
Inventor
直人 羽石
巧 葛尾
宏 坂部
雄二 和田
俊太郎 椿
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to JP2022530015A priority Critical patent/JP7357163B2/en
Publication of WO2021250920A1 publication Critical patent/WO2021250920A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00

Definitions

  • the present invention relates to a method for producing a polymer.
  • polyoxazoline is prepared by living cation polymerization of an oxazoline monomer.
  • the living cationic polymerization is generally carried out while heating a solution containing an oxazoline monomer, a polymerization initiator and a solvent with a heater or the like.
  • Non-Patent Document 1 a method of irradiating a solution containing a monomer, a polymerization initiator, a solvent, etc. with microwaves to polymerize the monomer in a shorter time has also been proposed.
  • Non-Patent Document 1 In general microwave irradiation as described in Non-Patent Document 1, energy is easily transmitted to the solvent instead of the cation site which is the reaction point of the oxazoline monomer. Therefore, even in this method, heat is indirectly transferred from the solvent to the cation site, and the reaction proceeds. Therefore, it was difficult to increase the reaction efficiency by the method of Non-Patent Document 1.
  • the present invention has been made in view of the above problems. That is, it is an object of the present invention to provide a novel production method capable of efficiently reacting various monomers.
  • the method for producing a polymer according to one aspect of the present invention comprises a step of irradiating a mixed solution containing a monomer, a polymerization initiator, and a solvent with an electromagnetic wave to ion-polymerize the monomer, and the method of producing the polymer of the electromagnetic wave.
  • the frequency is 1 MHz or more and 1000 MHz or less and the electromagnetic wave is irradiated only to the solvent, the dielectric adrectity measured by the probe method becomes less than 0.05, and the electromagnetic wave is irradiated to the mixed solution.
  • the frequency is such that the dielectric tangent measured by the probe method is 0.05 or more.
  • FIG. 1A is a schematic diagram showing an example of a reaction apparatus that can be used in the method for producing a polymer according to one aspect of the present invention.
  • FIG. 1B is a schematic cross-sectional view of an electromagnetic wave irradiation unit of the reactor shown in FIG. 1A.
  • FIG. 2A is a graph showing the relationship between the frequency of an electromagnetic wave when acetonitrile is irradiated with an electromagnetic wave, the relative permittivity measured by the probe method, and the dielectric loss tangent (also referred to as tan ⁇ ).
  • FIG. 1A is a schematic diagram showing an example of a reaction apparatus that can be used in the method for producing a polymer according to one aspect of the present invention.
  • FIG. 1B is a schematic cross-sectional view of an electromagnetic wave irradiation unit of the reactor shown in FIG. 1A.
  • FIG. 2A is a graph showing the relationship between the frequency of an electromagnetic wave when acetonitrile is irradiated with an
  • FIG. 2B is a graph showing the relationship between the frequency of an electromagnetic wave when an electromagnetic wave is applied to a mixed solution containing acetonitrile and 2-ethyl-2-oxazoline, and the relative permittivity and dielectric loss tangent measured by the probe method.
  • FIG. 3 shows the frequency of an electromagnetic wave when an electromagnetic wave is applied to a mixed solution containing acetonitrile, 2-ethyl-2-oxazoline, and methyl p-toluenesulfonic acid, and the relative permittivity and dielectric loss tangent measured by the probe method. It is a graph which shows the relationship with.
  • FIG. 4A is a graph showing the relationship between the frequency of an electromagnetic wave when chloroform is irradiated with an electromagnetic wave, the relative permittivity measured by the probe method, and the dielectric loss tangent.
  • FIG. 4B shows the frequency of an electromagnetic wave when a mixed solution containing chloroform, 2-ethyl-2-oxazoline, and methyl p-toluenesulfonic acid is irradiated with an electromagnetic wave, and the relative permittivity and dielectric loss tangent measured by the probe method. It is a graph which shows the relationship with.
  • FIG. 4B shows the frequency of an electromagnetic wave when a mixed solution containing chloroform, 2-ethyl-2-oxazoline, and methyl p-toluenesulfonic acid is irradiated with an electromagnetic wave, and the relative permittivity and dielectric loss tangent measured by the probe method. It is a graph which shows the relationship with.
  • FIG. 4B shows the frequency of an electromagnetic wave when
  • FIG. 5A is a graph showing the relationship between the frequency of an electromagnetic wave when dimethyl sulfoxide is irradiated with an electromagnetic wave, the relative permittivity measured by the probe method, and the dielectric loss tangent.
  • FIG. 5B shows the frequency of an electromagnetic wave when a mixed solution containing dimethylsulfoxide, 2-ethyl-2-oxazoline, and methyl p-toluenesulfonate is irradiated with an electromagnetic wave, and the relative permittivity and dielectric measured by the probe method. It is a graph which shows the relationship with the orthogonal contact.
  • the method for producing a polymer according to one aspect of the present invention includes a step of irradiating a mixed solution containing a monomer, a polymerization initiator, and a solvent with an electromagnetic wave to ionic polymerize the monomer.
  • the step of ionic polymerization of the monomer may be referred to as an ionic polymerization step.
  • the frequency of the electromagnetic wave irradiating the mixed solution in the ion polymerization step is 1 MHz or more and 1000 MHz or less.
  • the frequency of the electromagnetic wave irradiated in the ion polymerization step is a frequency at which the dielectric loss tangent measured by the probe method is less than 0.05 when the electromagnetic wave is irradiated only to the above solvent, and the electromagnetic wave is used.
  • the frequency is such that the dielectric loss tangent measured by the probe method is 0.05 or more.
  • the frequency of the electromagnetic wave irradiated in the ion polymerization step of the present invention is very low as compared with the frequency of the electromagnetic wave used for the living cationic polymerization of the conventional oxazoline monomer, for example, 2.45 GHz.
  • conventional high-frequency electromagnetic waves it is difficult to heat only the reaction site of the monomer, and energy is transmitted to the solvent and the like. Further, at such a high frequency, the distance through which the electromagnetic wave permeates is short, and there is also a problem that it is difficult to sufficiently cause a reaction when the reaction vessel is scaled up.
  • the frequency of the irradiating electromagnetic wave is set to a relatively low frequency of 1 MHz or more and 1000 MHz or less. Further, the frequency is set to a frequency at which the solvent is difficult to absorb, that is, a frequency at which the dielectric loss tangent measured by the probe method is less than 0.05 when an electromagnetic wave is applied only to the solvent. Further, when the reaction site of the polymerization initiator and the monomer easily absorbs the frequency, that is, when the mixed solution is irradiated with an electromagnetic wave, the dielectric loss tangent measured by the probe method is 0.05 or more. The frequency is.
  • the electromagnetic wave having such a frequency is irradiated, energy can be locally absorbed in the reaction site of the monomer, and ion polymerization can be efficiently performed with a small amount of energy.
  • low-frequency electromagnetic waves have a long penetration distance. Therefore, there is an advantage that it is easy to scale up the polymerization apparatus.
  • the method for producing a polymer of the present invention is applicable as long as it is a method for producing a polymer including a reaction of polymerizing a monomer by ionic polymerization, and can be used for both cationic polymerization and anionic polymerization. In particular, among these, it is particularly suitable for living cationic polymerization.
  • the ionic polymerization step of the method for producing a polymer of the present invention and the reaction apparatus applicable thereto will be described in detail.
  • the mixed solution may contain components other than these components as long as the object and effect of the present invention are not impaired.
  • the mixing order of each component is not particularly limited, and all the components may be mixed at once, or some components may be mixed first and the remaining components may be mixed later.
  • the monomer used in the production method of the present invention may be a monomer capable of cationic polymerization or anionic polymerization, preferably a monomer having a structure capable of living cationic polymerization or living anionic polymerization.
  • the monomer is usually a monomer, but may be an oligomer or the like. Further, the monomer may be a monomer that undergoes ring-opening polymerization.
  • the compounds include 2-ethyl-2-oxazoline, 2-methyl-2-oxazoline, 2-isopropyl-2-oxazoline, 2-cyclopropyl-2-oxazoline, 2-nonyl-2-oxazoline, and the like.
  • Oxazoline compounds such as 2-phenyl-2-oxazoline and 2- (m-difluorophenyl) -2-oxazoline; cyclic vinyl silazane; diisopropyl fumarate; ⁇ -caprolactone; L-lactide; trimethylene carbonate; p-dioxanone ; And may be a cationic ring-opening polymerization such as [2.2] paracyclophane, or a monomer which is cationically polymerized; a styrene compound such as styrene; methyl (meth) acrylate, ethyl (meth) acrylate, (Meta) acrylate compounds such as t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and fluoroalkyl (meth) acrylate; vinyl alcohol; vinyl ether; vinyl ester compounds such as vinyl acetate; N-isopropyl ( Nitrogen
  • oxazoline-based compounds are preferable because the reaction temperature can be set relatively high and heating by electromagnetic wave irradiation is easy to apply, and 2-ethyl-2-oxazoline, 2 is particularly important from the viewpoint of reactivity and the like.
  • Compounds that undergo cationic ring-opening polymerization such as -methyl-2-oxazoline and 2-isopropyl-2-oxazoline are preferred.
  • the polymerization initiator used when polymerizing the monomer may be any compound that can be activated by being irradiated with an electromagnetic wave and ion-polymerize the monomer, and is the type of the monomer. Or, it is appropriately selected according to the desired reactivity.
  • examples of polymerization initiators used for cationic polymerization include alkyl halides such as methyl iodide;, methyl trifurate, and methyl fluorosulfate; tosylate such as methyl p-toluenesulfonate and methyl p-nitrobenzene sulfonate and Includes derivatives thereof; acid halides such as benzyl chloride and benzyl bromide; sulfonic acids such as perchloric acid, sulfuric acid, and hydrogen bromide; and Lewis acids such as boron trifluoride and aluminum chloride. Is done.
  • alkyl halides such as methyl iodide;, methyl trifurate, and methyl fluorosulfate
  • tosylate such as methyl p-toluenesulfonate and methyl p-nitrobenzene sulfonate and Includes derivatives thereof
  • acid halides such as benzyl chloride and benzy
  • prenyltetramethylenesulfonium hexafluoroantimonate, N-methyl-ethyloxazoline-methylsulfate, 3,3-diethoxy-1-propanol, perfluorobutylethylene trifurate, and / or iodine may be contained.
  • polymerization initiators used for anionic polymerization include Li, n-butyllithium, Grignard reagents, NaOH, and / or water.
  • the mixed solution may contain only one kind of polymerization initiator, or may contain two or more kinds of polymerization initiators.
  • the molar ratio of the monomer in the mixed solution to the polymerization initiator which is represented by the molar amount of the monomer / the molar amount of the polymerization initiator, is preferably 10 to 500, more preferably 15 to 200. preferable.
  • the molar ratio of the monomer to the polymerization initiator is in the above range, the polymerization reaction is sufficiently likely to occur when irradiated with electromagnetic waves.
  • the solvent is not particularly limited as long as the above-mentioned monomer and the polymerization initiator can be sufficiently dissolved or dispersed, and is appropriately selected according to the type of the above-mentioned monomer and the type of the polymerization initiator.
  • solvents include water; protic organic solvents such as ethanol; non-polar solvents such as xylene, toluene, benzene, and cyclohexane;, diethyl ether, nonafluorobutyl ethyl ether, chlorobenzene, 1,2-dichloroethane, chloroform, etc.
  • aprotic polar solvents such as 1,3-dioxane, 1,4-dioxane, acetonitrile, N, N-dimethylformamide, N-methylpyrrolidone and dimethylsulfoxide.
  • the amount of the solvent is preferably 10 to 90% by mass, more preferably 40 to 70% by mass, based on the total amount of the mixed solution. When the amount of the solvent is in the above range, the ionic polymerization reaction can be efficiently performed.
  • the device for irradiating the mixed solution with electromagnetic waves is not particularly limited as long as the mixed solution can be irradiated with desired electromagnetic waves at a desired intensity, and may be a known electromagnetic wave irradiating device. Is particularly preferable to use.
  • the frequency of the electromagnetic wave with respect to the mixed solution is 1 MHz or more and 1000 MHz or less, and when the electromagnetic wave is applied only to the solvent, the dielectric loss tangent measured by the probe method is 0. It is not particularly limited as long as it is less than 05 and the frequency is such that the dielectric loss tangent measured by the probe method is 0.05 or more when the mixed liquid is irradiated with the electromagnetic wave.
  • the frequency can be determined as follows. Before performing the ion polymerization step, the solvent used for the above-mentioned mixed solution and the mixed solution are prepared respectively. Then, the solvent and the mixed solution are irradiated with electromagnetic waves while changing the frequency from 1 MHz to 1000 MHz, preferably from 1 MHz to 500 MHz, and more preferably from 10 to 400 MHz for ease of measurement. Then, the dielectric loss tangent at this time is measured by the probe method. Then, when the electromagnetic wave is applied only to the solvent, the dielectric loss tangent is 0.05 or less, and when the mixed solution is irradiated with the electromagnetic wave, the frequency region where the dielectric loss tangent is 0.05 or more is specified. .. Then, from the region of the specified frequency, a frequency can be appropriately selected from which the dielectric loss tangent of the mixed solution shows a preferable value.
  • the temperature of the solvent and the mixed solution when measuring the dielectric loss tangent by the probe method is preferably substantially the same as the temperature of the mixed solution in the ion polymerization step.
  • the dielectric loss tangent of both the solvent and the mixed solution may be measured at a temperature lower than the temperature of the mixed solution at the time of ionic polymerization, for example, room temperature at 20 ° C.
  • the solvent when the solvent is irradiated with electromagnetic waves, the solvent is heated at a temperature equal to or lower than the boiling point of the solvent, and when the mixed solution is irradiated with electromagnetic waves, the reaction heat at the time of polymerization is taken into consideration, and the temperature is equal to or higher than the boiling point of the solvent.
  • the conditions for irradiating the solvent and the mixed solution with electromagnetic waves may be set so that the solvent and the mixed solution can be heated under the above conditions.
  • the dielectric loss tangent when the electromagnetic wave is applied only to the solvent is proportional to the amount of the electromagnetic wave absorbed by the solvent. That is, the smaller the dielectric loss tangent when the solvent is irradiated with an electromagnetic wave, the more difficult it is for the solvent to absorb the electromagnetic wave. Therefore, as for the frequency of the electromagnetic wave, when the solvent is irradiated with the electromagnetic wave, the dielectric loss tangent is less than 0.05, the frequency of 0.03 or less is more preferable, and the frequency of 0.01 or less is further preferable.
  • the dielectric loss tangent when the mixed liquid is irradiated with electromagnetic waves has a new contribution of absorption by ions generated by the reaction between the monomer and the polymerization initiator, in addition to the action of the monomer and the solvent alone. It will be the reflected value. That is, the larger the dielectric loss tangent due to the contribution of absorption by ions when the mixed liquid is irradiated with electromagnetic waves, the more the reaction site of the monomer absorbs the electromagnetic waves, and the reaction proceeds efficiently.
  • the dielectric loss tangent when the mixed solution containing the solvent and the monomer is irradiated with electromagnetic waves is significantly different from the dielectric loss tangent when the solvent alone is irradiated with electromagnetic waves.
  • the dielectric loss tangent changes significantly only after the solvent, the monomer, and the polymerization initiator are mixed. Therefore, from the viewpoint of reaction efficiency, it is preferable that the dielectric loss tangent when the mixed solution is irradiated with an electromagnetic wave is large, the dielectric loss tangent is 0.05 or more, and a frequency of 0.08 or more is more preferable, and 0.1 or more. The frequency is more preferable, and the frequency of 0.2 or more is most preferable.
  • the dielectric loss tangent when the mixed liquid is irradiated with an electromagnetic wave is 3.0 or less from the viewpoint of avoiding a discharge due to the mixed liquid showing remarkable properties as a conductor. Is preferable.
  • the dielectric loss tangent exceeds 1.0 because the apparent dielectric loss tangent in the mixed liquid has a value that reflects the flow of electricity.
  • the temperature of the mixed solution heated by irradiation with electromagnetic waves in the ion polymerization step is not particularly limited, and may be lower than the boiling point of the solvent, preferably 40 to 80 ° C., or higher than the boiling point of the solvent. ..
  • the temperature of the mixed solution becomes higher than the boiling point of the solvent due to the irradiation of the electromagnetic wave, it is preferable to irradiate the mixed solution with the electromagnetic wave while refluxing the solvent. Even if the solvent is boiled by irradiation with electromagnetic waves, it is possible to supply more energy to the ions, so it is more preferable to carry out the process at the boiling point or higher of the solvent.
  • the temperature at the time of heating by electromagnetic wave irradiation may be adjusted by adjusting the difference between the input power and the reflected power in the irradiated electromagnetic wave and the reflected power / input power.
  • the pressure of the atmosphere when irradiating with electromagnetic waves in the ion polymerization step is not particularly limited, and may be normal pressure, reduced pressure, or pressurized pressure.
  • normal pressure is particularly preferable in that there are few restrictions on the container that holds the mixed solution.
  • the irradiation time of the electromagnetic wave that is, the polymerization time of the monomer is appropriately selected according to the type and amount of the monomer and the degree of polymerization, but is preferably 1 to 600 minutes, more preferably 1 to 300 minutes.
  • the atmosphere in the ionic polymerization step is not particularly limited, and may be carried out in an inert gas environment such as nitrogen or argon, or may be carried out in air. It is appropriately selected according to the type of monomer and polymerization initiator.
  • quenching may be performed or the obtained polymer may be purified as necessary.
  • the device for irradiating the mixed solution with electromagnetic waves to ion-polymerize the monomer may be a known reaction device, but it is more preferable to use the following reaction device. .. According to the following apparatus, the above-mentioned ion polymerization step can be efficiently performed.
  • FIG. 1A shows a schematic diagram of the reaction apparatus used in the ion polymerization step.
  • the reaction device 10 is incident on the electromagnetic wave oscillating unit 1 for oscillating an electromagnetic wave, the reaction unit 2 for holding the above-mentioned mixed solution and reacting the monomer, and the reaction unit 2.
  • An impedance adjusting unit 3 including a monitor 3a for monitoring the input power of the electromagnetic wave and the reflected power of the electromagnetic wave reflected from the reaction unit 2 and an LC resonance circuit (not shown) for adjusting the reflected power.
  • a monitor 3a for monitoring the input power of the electromagnetic wave and the reflected power of the electromagnetic wave reflected from the reaction unit 2
  • an LC resonance circuit not shown
  • the electromagnetic wave oscillator 1 includes a signal generator 1a and an amplifier 1b.
  • the signal generator 1a is a member for generating an electromagnetic wave having a frequency of 1 MHz to 1000 MHz, and the type thereof is not particularly limited as long as it can oscillate an electromagnetic wave having a desired frequency.
  • the amplifier 1b is a member for amplifying the electromagnetic wave oscillated from the signal generator 1a to a desired electric power, and a known amplifier can be used.
  • the reaction unit 2 is an electromagnetic wave irradiation connected to the above-mentioned mixed liquid holding unit 2a for holding the mixed liquid, a reflux unit (not shown) connected to the mixed liquid holding unit 2, an electromagnetic wave oscillating unit 1 and a waveguide or the like. It is composed of parts 2b and the like. Further, if necessary, the reaction unit 2 may further have a thermometer (not shown) for measuring the temperature of the mixed solution.
  • the mixed liquid holding portion 2a is preferably made of a material that can hold the above-mentioned mixed liquid and is not easily affected by electromagnetic wave irradiation. For example, it can be a glass mixed liquid holding portion or the like. Further, in FIG. 1A, the mixed liquid holding portion 2a is a cylindrical member in which one side is closed, but the structure of the mixed liquid holding portion 2a is not limited to the structure.
  • the electromagnetic wave irradiation unit 2b has, inside, at least a part of the mixed liquid holding unit 2a, in other words, a fixing unit (not shown) for fixing a region in which the mixed liquid is held, and an electromagnetic wave generating unit 1. It has a structure (not shown) for injecting an electromagnetic wave oscillated from the above into the inside and irradiating the mixed liquid in the mixed liquid holding portion 2a with the electromagnetic wave.
  • FIG. 1B shows a schematic cross-sectional view when the electromagnetic wave irradiation unit 2b is cut so as to be orthogonal to the length direction of the mixed liquid holding unit 2a. As shown in FIG. 1B, a parallel flat plate 3b of the impedance adjusting unit 3 described later is also arranged in the electromagnetic wave irradiation unit 2b so as to sandwich the mixed liquid holding unit 2a.
  • the impedance adjusting unit 3 includes a monitor 3a that monitors the power of the electromagnetic wave incident on the reaction unit 2 from the electromagnetic wave oscillating unit 1 (input power) and the power of the electromagnetic wave reflected from the reaction unit 2 (reflected power), and a variable capacitor (variable capacitor).
  • a monitor 3a that monitors the power of the electromagnetic wave incident on the reaction unit 2 from the electromagnetic wave oscillating unit 1 (input power) and the power of the electromagnetic wave reflected from the reaction unit 2 (reflected power), and a variable capacitor (variable capacitor).
  • a monitor 3a that monitors the power of the electromagnetic wave incident on the reaction unit 2 from the electromagnetic wave oscillating unit 1 (input power) and the power of the electromagnetic wave reflected from the reaction unit 2 (reflected power), and a variable capacitor (variable capacitor).
  • FIG. 1A which has at least an LC resonant circuit (not shown) in which a coil (not shown) and a coil (not shown) are combined, an electric charge is further stored and an alternating electric field is
  • the variable capacitor of the LC resonance circuit has two sets of fan-shaped plates (not shown), and in each of the two sets of fan-shaped plates, one of the two plates is used. Is rotated according to the knob of each of the two handles 2c to change the electric capacity between the two electrode plates.
  • the two parallel flat plates 3b are arranged so as to face each other in the electromagnetic wave irradiation unit 2b of the reaction unit 2 and sandwich the mixed liquid holding unit 2a. Further, when the impedance adjusting unit 3 has a calculation unit, the calculation unit can calculate and output the amount of reflected power with respect to the input power measured by the monitor 3a.
  • an electromagnetic wave having a frequency desirable for the ion polymerization reaction from the signal generator 1a of the electromagnetic wave generation unit 1, in other words, a frequency determined by the method described in the ion polymerization step.
  • the electromagnetic wave of is oscillated and transmitted to the amplifier 1b.
  • the amplifier 1b amplifies the signal and adjusts it to a desired power.
  • the electromagnetic wave is emitted to the electromagnetic wave irradiation unit 2b side of the reaction unit 2.
  • the monitor 3a of the impedance adjusting unit 3 monitors the electric power of the electromagnetic wave from the electromagnetic wave generating unit 1 toward the reaction unit 2, more specifically, from the amplifier 1b toward the electromagnetic wave irradiation unit 2b.
  • the electromagnetic wave is irradiated to the mixed liquid in the mixed liquid holding unit 2a arranged in the electromagnetic wave irradiation unit 2b.
  • the reaction unit 2 reflux or the like may be performed as necessary, and the pressure in the mixed liquid holding unit 2a may be adjusted.
  • the monitor 3a of the impedance adjusting unit 3 monitors the reflected power emitted from the electromagnetic wave irradiation unit 2b.
  • the calculation unit (not shown) connected to the monitor 3a calculates the amount of reflected power with respect to the input power as reflected power / input power. If the value is less than 0.4, the electromagnetic wave irradiation is continued under the same conditions. On the other hand, when the value of reflected power / input power is 0.4 or more, the handle 2c attached to the outside of the electromagnetic wave irradiation unit 2b is automatically operated or manually, and two sets of poles provided in the variable capacitor are provided. Adjust the board position. As a result, the capacitance of the variable capacitor changes, and the impedance and thus the reflected power / input power value are adjusted.
  • the electromagnetic wave generation unit 1 When the value of the reflected power / input power becomes 0.4 or more, the electromagnetic wave is not efficiently transmitted to the mixed liquid of the reaction unit 2, and the power returning to the electromagnetic wave generating unit 1 side (reflected power) becomes dominant. That is, an efficient reaction is hindered. Further, in this case, there is a risk that the electromagnetic wave generation unit 1 (particularly the signal generator 1a) is damaged.
  • the capacitance of the circuit changes as the polymerization reaction progresses, it is preferable to adjust the capacitance appropriately with a variable capacitor and always maintain the value of reflected power / input power to be less than 0.4.
  • the electromagnetic wave does not reach sufficiently in the mixed solution because the distance through which the electromagnetic wave permeates is short at a general microwave frequency of 2.45 GHz, for example, and the reaction speed is increased.
  • the problem of difficulty can be solved.
  • a mixed solution containing a monomer, a polymerization initiator, and a solvent is irradiated with electromagnetic waves to ionically polymerize the monomer.
  • the frequency of the electromagnetic wave is 1 MHz or more and 1000 MHz or less, and when the electromagnetic wave is irradiated only to the solvent, the dielectric adjacency measured by the probe method becomes less than 0.05, and the above-mentioned
  • the frequency is such that the dielectric tangent measured by the probe method is 0.05 or more.
  • the method for producing the polymer according to the third aspect of the present application it is preferable to carry out the living cation polymerization of the monomer in the step of ion-polymerizing the monomer in the above aspect 1 or 2.
  • the step of ion-polymerizing the monomer may be performed under normal pressure.
  • the step of ion-polymerizing the monomer may be performed under reflux.
  • the reaction section for holding the mixed solution and ion-polymerizing the monomer and the above-mentioned The electromagnetic wave oscillating unit for oscillating the electromagnetic wave in the reaction unit, the monitor that monitors the input power of the electromagnetic wave incident on the reaction unit and the reflected power of the electromagnetic wave reflected from the reaction unit, and the reflected power are adjusted. Further, it has a step of preparing a reaction device having an impedance adjusting section including an LC resonance circuit, and in a step of ion-polymerizing the monomer, the mixed solution held in the reaction section has a step of preparing the reaction device. It is preferable to irradiate the electromagnetic wave oscillated from the electromagnetic wave oscillating unit and adjust the impedance adjusting unit so that the value of the reflected power with respect to the input power is less than 0.4.
  • the irradiation of the electromagnetic wave was performed by the reaction device 10 shown in FIG. 1A.
  • the obtained results are shown in FIG. 2A (acetonitrile only), FIG. 2B (mixture A), and FIG. 3 (mixture B).
  • the relative permittivity and the dielectric loss tangent were measured using water at 20 ° C. as a standard sample and using a relative permittivity / dielectric loss tangent measuring device (manufactured by Keycom) under the respective conditions of room temperature and 60 ° C.
  • the dielectric loss tangent When electromagnetic waves were applied only to the solvent, the dielectric loss tangent was low at 10 MHz to 1000 MHz (Fig. 4A). On the other hand, when the mixed solution containing the solvent, the monomer, and the polymerization initiator was irradiated with electromagnetic waves, the value of the dielectric loss tangent increased significantly at some frequencies (FIG. 4B).
  • the dielectric loss tangent When electromagnetic waves were applied only to the solvent, the dielectric loss tangent was low at 10 MHz to 1000 MHz (Fig. 5A). On the other hand, when the mixed solution containing the solvent, the monomer, and the polymerization initiator was irradiated with electromagnetic waves, the value of the dielectric loss tangent increased at some frequencies.
  • Example 1 4.00 g of 2-ethyl-2-oxazoline (EtOx) as a monomer, 0.24 g of methyl p-toluenesulfonate (TsOME) as a polymerization initiator, and 4.76 g of acetonitrile as a polymerization solvent are mixed and removed. It was introduced into a quartz test tube (mixture holding portion 2a) having a diameter of 16 mm and a height of 194 mm.
  • EtOx 2-ethyl-2-oxazoline
  • TsOME methyl p-toluenesulfonate
  • acetonitrile as a polymerization solvent
  • the quartz test tube (mixture holding portion 2a) was fixed to a fixed portion (not shown) in the electromagnetic wave irradiation portion 2b of the reaction device 10 shown in FIG. 1A. Then, an electromagnetic wave having a frequency of 26 to 28 MHz was oscillated while adjusting the frequency appropriately by the signal generator 1a.
  • a range in which the dielectric loss tangent is less than 0.05 when the electromagnetic wave is irradiated to the solvent at 60 ° C. is extracted from the graph of FIG. 2A, and the mixed solution at 60 ° C. is obtained from the graph of FIG.
  • the frequencies at which the dielectric loss tangent is 0.05 or more when irradiated with electromagnetic waves were extracted. Furthermore, an area satisfying both of these was identified and selected from them.
  • the electromagnetic wave of the above frequency oscillated from the signal generator 1a was amplified to 30 W by the amplifier 1b and emitted to the electromagnetic wave irradiation unit 2b side.
  • the input power of the electromagnetic wave from the electromagnetic wave oscillating unit 1 to the reaction unit 2 and the reflected power emitted from the reaction unit 2 are measured, and the value of the reflected power / input power is 0 to 0.15.
  • the area between the fan-shaped plates in the variable capacitor of the impedance adjustment unit 3 was adjusted, thereby adjusting the capacitance.
  • the difference between the input power and the reflected power is always 30 W, that is, the energy supplied to the reaction unit 2 is 30 W.
  • the oscillation frequency of the electromagnetic wave was 26.67 MHz
  • the input power was 30.05 W
  • the reflected power was 0.05 W.
  • the temperature of the mixed solution indicated by the optical fiber thermometer reached 90 ° C., and the mixed solution boiled.
  • the oscillation frequency at that time was 26.82 MHz
  • the input power was 35 W
  • the reflected power was 5 W.
  • the thermometer showed 90 ° C., the reaction was carried out for 30 minutes, 60 minutes, and 90 minutes, respectively.
  • Example 2 The mixed liquid was irradiated with the electromagnetic wave in the same manner as in Example 1 except that the electromagnetic wave having a frequency of 198 to 202 MHz was oscillated from the signal generator 1a.
  • the frequency was also selected from the range in which the dielectric loss tangent is less than 0.05 in the graph of FIG. 2A and the frequency in which the dielectric loss tangent is 0.05 or more in the graph of FIG. 3A.
  • the capacitance was appropriately adjusted with a variable capacitor so that the value of the reflected power / input power was 0.15 or less. The difference between the input power and the reflected power is always 30 W.
  • the oscillation frequency of the electromagnetic wave was 198.9 MHz, the input power was 30.1 W, and the reflected power was 0.1 W.
  • the temperature indicated by the optical fiber thermometer reached 90 ° C., and the mixed solution boiled.
  • the oscillation frequency at that time was 199.2 MHz, the input power was 35 W, and the reflected power was 5 W.
  • the thermometer showed 90 ° C., the reaction was carried out for 30 minutes, 60 minutes, and 90 minutes, respectively.
  • the yield at each reaction time is shown in Table 1.
  • a reflux condenser was attached to the test tube, and the entire system was replaced with argon.
  • the quartz test tube was heated by an oil bath having a temperature of 90 ° C. measured by a thermocouple. After 2 minutes, the mixture boiled. Reactions were carried out for 30 minutes, 60 minutes, and 150 minutes, respectively, after the state was reached. The yield at each reaction time is shown in Table 1.
  • a reflux condenser was attached to the above quartz test tube, and the entire system was replaced with argon. The temperature was measured using an infrared radiation thermometer. Then, the quartz test tube was installed at the maximum electric field of a semiconductor electromagnetic wave oscillator (rectangular waveguide type resonator) manufactured by Fuji Denpa Koki Co., Ltd., and an electromagnetic wave of 2.45 GHz was irradiated. The TE103 single mode was adopted in the semiconductor electromagnetic wave oscillator.
  • the semiconductor electromagnetic wave oscillator consists of a resonator equipped with a three-stub tuner, an iris, and a plunger, a semiconductor electromagnetic wave oscillator, and a monitor for monitoring input power and reflected power.
  • the reflected power was suppressed to less than 0.1 W by adjusting the three-stub tuner and the plunger while oscillating an electromagnetic wave of 30 W and 2.45 GHz from the semiconductor electromagnetic wave oscillator.
  • the temperature indicated by the infrared radiation thermometer reached 90 ° C., and the mixed solution boiled.
  • the reaction was carried out for 30 minutes, 60 minutes, and 90 minutes, respectively.
  • the yield at each reaction time is shown in Table 1.
  • the dielectric loss tangent at 2.45 GHz was obtained from the graphs (60 ° C.) of FIGS. 2A and 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Provided is a novel polymer production method by which various monomers can be efficiently reacted. This polymer production method comprises a step for irradiating, with electromagnetic waves, a mixed liquid containing a monomer, a polymerization initiator, and a solvent to ion-polymerize the monomer. The frequency of the electromagnetic waves is 1-1,000 MHz, and is a frequency at which: the dielectric loss tangent measured by a probe method is less than 0.05 when only the solvent is irradiated with the electromagnetic waves; and the dielectric loss tangent measured by the probe method is at least 0.05 when the mixed liquid is irradiated with the electromagnetic waves.

Description

重合体の製造方法Method for producing polymer
 本発明は、重合体の製造方法に関する。 The present invention relates to a method for producing a polymer.
 ポリオキサゾリン等、種々の重合体を製造する方法として、単量体を様々な方法で重合させる技術が知られている。例えば、ポリオキサゾリンは、オキサゾリンモノマーをリビングカチオン重合することによって調製される。当該リビングカチオン重合は、オキサゾリンモノマー、重合開始剤、および溶媒を含む溶液を、ヒータ等により加熱しながら行うことが一般的である。 As a method for producing various polymers such as polyoxazoline, a technique for polymerizing a monomer by various methods is known. For example, polyoxazoline is prepared by living cation polymerization of an oxazoline monomer. The living cationic polymerization is generally carried out while heating a solution containing an oxazoline monomer, a polymerization initiator and a solvent with a heater or the like.
 しかしながら、当該方法では、混合液全体の温度が高まることで、重合開始剤やオキサゾリンモノマーの反応点の温度が高まり、反応が進行する。つまり、当該方法では、反応に寄与しない溶媒の温度も高める必要がある。したがって、熱効率が悪く、所望の反応に時間がかかる、等の課題があった。 However, in this method, the temperature of the entire mixture rises, so that the temperature of the reaction point of the polymerization initiator and the oxazoline monomer rises, and the reaction proceeds. That is, in this method, it is also necessary to raise the temperature of the solvent that does not contribute to the reaction. Therefore, there are problems such as poor thermal efficiency and a long time for a desired reaction.
 これに対し、単量体や重合開始剤、溶媒等を含む溶液に、マイクロ波を照射し、より短時間で単量体を重合させる方法も提案されている(非特許文献1)。 On the other hand, a method of irradiating a solution containing a monomer, a polymerization initiator, a solvent, etc. with microwaves to polymerize the monomer in a shorter time has also been proposed (Non-Patent Document 1).
 しかしながら、非特許文献1に記載されているような、一般的なマイクロ波の照射では、オキサゾリンモノマーの反応点であるカチオン部位ではなく、溶媒にエネルギーが伝わりやすい。そのため、当該方法においても、溶媒から間接的にカチオン部位に熱が伝わって、反応が進行する。したがって、非特許文献1の方法では、反応効率を高めることが難しかった。 However, in general microwave irradiation as described in Non-Patent Document 1, energy is easily transmitted to the solvent instead of the cation site which is the reaction point of the oxazoline monomer. Therefore, even in this method, heat is indirectly transferred from the solvent to the cation site, and the reaction proceeds. Therefore, it was difficult to increase the reaction efficiency by the method of Non-Patent Document 1.
 本発明は、上記課題を鑑みてなされたものである。すなわち、各種単量体を効率よく反応させることが可能である、新規な製造方法の提供を目的とする。 The present invention has been made in view of the above problems. That is, it is an object of the present invention to provide a novel production method capable of efficiently reacting various monomers.
 本発明の一態様に係る重合体の製造方法は、単量体、重合開始剤、および溶媒を含む混合液に電磁波を照射して、前記単量体をイオン重合させる工程を含み、前記電磁波の周波数は、1MHz以上1000MHz以下であり、かつ前記電磁波を前記溶媒のみに対して照射したとき、プローブ法にて測定される誘電正接が0.05未満となり、前記電磁波を前記混合液に対して照射したとき、プローブ法にて測定される誘電正接が0.05以上となる周波数である。 The method for producing a polymer according to one aspect of the present invention comprises a step of irradiating a mixed solution containing a monomer, a polymerization initiator, and a solvent with an electromagnetic wave to ion-polymerize the monomer, and the method of producing the polymer of the electromagnetic wave. When the frequency is 1 MHz or more and 1000 MHz or less and the electromagnetic wave is irradiated only to the solvent, the dielectric adrectity measured by the probe method becomes less than 0.05, and the electromagnetic wave is irradiated to the mixed solution. When this is done, the frequency is such that the dielectric tangent measured by the probe method is 0.05 or more.
 本発明の重合体の製造方法によれば、各種単量体を効率よく反応させることが可能である、新規な製造方法を提供できる。 According to the method for producing a polymer of the present invention, it is possible to provide a novel production method capable of efficiently reacting various monomers.
図1Aは、本発明の一態様に係る重合体の製造方法に使用可能な反応装置の一例を示す模式図である。FIG. 1A is a schematic diagram showing an example of a reaction apparatus that can be used in the method for producing a polymer according to one aspect of the present invention. 図1Bは、図1Aに示す反応装置の電磁波照射部の断面の模式図である。FIG. 1B is a schematic cross-sectional view of an electromagnetic wave irradiation unit of the reactor shown in FIG. 1A. 図2Aは、アセトニトリルに電磁波を照射したときの電磁波の周波数と、プローブ法にて測定される比誘電率および誘電正接(tanδともいう)との関係を示すグラフである。FIG. 2A is a graph showing the relationship between the frequency of an electromagnetic wave when acetonitrile is irradiated with an electromagnetic wave, the relative permittivity measured by the probe method, and the dielectric loss tangent (also referred to as tan δ). 図2Bは、アセトニトリルおよび2-エチル-2-オキサゾリンを含む混合液に電磁波を照射したときの電磁波の周波数と、プローブ法にて測定される比誘電率および誘電正接との関係を示すグラフである。FIG. 2B is a graph showing the relationship between the frequency of an electromagnetic wave when an electromagnetic wave is applied to a mixed solution containing acetonitrile and 2-ethyl-2-oxazoline, and the relative permittivity and dielectric loss tangent measured by the probe method. .. 図3は、アセトニトリル、2-エチル-2-オキサゾリン、およびp-トルエンスルホン酸メチルを含む混合液に電磁波を照射したときの電磁波の周波数と、プローブ法にて測定される比誘電率および誘電正接との関係を示すグラフである。FIG. 3 shows the frequency of an electromagnetic wave when an electromagnetic wave is applied to a mixed solution containing acetonitrile, 2-ethyl-2-oxazoline, and methyl p-toluenesulfonic acid, and the relative permittivity and dielectric loss tangent measured by the probe method. It is a graph which shows the relationship with. 図4Aは、クロロホルムに電磁波を照射したときの電磁波の周波数と、プローブ法にて測定される比誘電率および誘電正接との関係を示すグラフである。FIG. 4A is a graph showing the relationship between the frequency of an electromagnetic wave when chloroform is irradiated with an electromagnetic wave, the relative permittivity measured by the probe method, and the dielectric loss tangent. 図4Bは、クロロホルム、2-エチル-2-オキサゾリン、およびp-トルエンスルホン酸メチルを含む混合液に電磁波を照射したときの電磁波の周波数と、プローブ法にて測定される比誘電率および誘電正接との関係を示すグラフである。FIG. 4B shows the frequency of an electromagnetic wave when a mixed solution containing chloroform, 2-ethyl-2-oxazoline, and methyl p-toluenesulfonic acid is irradiated with an electromagnetic wave, and the relative permittivity and dielectric loss tangent measured by the probe method. It is a graph which shows the relationship with. 図5Aは、ジメチルスルホキシドに電磁波を照射したときの電磁波の周波数と、プローブ法にて測定される比誘電率および誘電正接との関係を示すグラフである。FIG. 5A is a graph showing the relationship between the frequency of an electromagnetic wave when dimethyl sulfoxide is irradiated with an electromagnetic wave, the relative permittivity measured by the probe method, and the dielectric loss tangent. 図5Bは、ジメチルスルホキシド、2-エチル-2-オキサゾリン、およびp-トルエンスルホン酸メチルを含む混合液に電磁波を照射したときの電磁波の周波数と、プローブ法にて測定される比誘電率および誘電正接との関係を示すグラフである。FIG. 5B shows the frequency of an electromagnetic wave when a mixed solution containing dimethylsulfoxide, 2-ethyl-2-oxazoline, and methyl p-toluenesulfonate is irradiated with an electromagnetic wave, and the relative permittivity and dielectric measured by the probe method. It is a graph which shows the relationship with the orthogonal contact.
 本発明の一態様に係る重合体の製造方法は、単量体、重合開始剤、および溶媒を含む混合液に電磁波を照射して、単量体をイオン重合させる工程を含む。以下では、単量体をイオン重合させる工程をイオン重合工程と称することもある。イオン重合工程で混合液に照射する電磁波の周波数は、1MHz以上1000MHz以下である。また、イオン重合工程で照射する電磁波の周波数は、当該電磁波を上記溶媒のみに対して照射したときには、プローブ法にて測定される誘電正接が0.05未満となる周波数であって、当該電磁波を混合液に対して照射したときには、プローブ法にて測定される誘電正接が0.05以上となる周波数である。 The method for producing a polymer according to one aspect of the present invention includes a step of irradiating a mixed solution containing a monomer, a polymerization initiator, and a solvent with an electromagnetic wave to ionic polymerize the monomer. Hereinafter, the step of ionic polymerization of the monomer may be referred to as an ionic polymerization step. The frequency of the electromagnetic wave irradiating the mixed solution in the ion polymerization step is 1 MHz or more and 1000 MHz or less. Further, the frequency of the electromagnetic wave irradiated in the ion polymerization step is a frequency at which the dielectric loss tangent measured by the probe method is less than 0.05 when the electromagnetic wave is irradiated only to the above solvent, and the electromagnetic wave is used. When the mixed solution is irradiated, the frequency is such that the dielectric loss tangent measured by the probe method is 0.05 or more.
 本発明のイオン重合工程で照射する電磁波の周波数は、従来のオキサゾリンモノマーのリビングカチオン重合等に使用されてきた電磁波の周波数である、例えば2.45GHzと比較して非常に低い。従来の高周波数の電磁波では、単量体の反応部位のみを加熱することが難しく、溶媒等にもエネルギーが伝わってしまっていた。また、このような高周波数では、電磁波が浸透する距離が短く、反応容器をスケールアップした場合に、反応を十分に生じさせ難い、という課題もあった。 The frequency of the electromagnetic wave irradiated in the ion polymerization step of the present invention is very low as compared with the frequency of the electromagnetic wave used for the living cationic polymerization of the conventional oxazoline monomer, for example, 2.45 GHz. With conventional high-frequency electromagnetic waves, it is difficult to heat only the reaction site of the monomer, and energy is transmitted to the solvent and the like. Further, at such a high frequency, the distance through which the electromagnetic wave permeates is short, and there is also a problem that it is difficult to sufficiently cause a reaction when the reaction vessel is scaled up.
 これに対し、本発明では、照射する電磁波の周波数を比較的低周波数である1MHz以上1000MHz以下とする。また、当該周波数を、溶媒が吸収し難い周波数、すなわち溶媒のみに対して電磁波を照射したとき、プローブ法にて測定される誘電正接が0.05未満となる周波数とする。そしてさらに、当該周波数を、重合開始剤および単量体の反応部位が吸収しやすい周波数、すなわち混合液に対して電磁波を照射したとき、プローブ法にて測定される誘電正接が0.05以上となる周波数とする。本発明では、このような周波数の電磁波を照射するため、単量体の反応部位に局所的にエネルギーを吸収させることができ、少ないエネルギー量で効率よくイオン重合させることが可能となる。また、低周波数の電磁波は、浸透距離が長い。したがって、重合装置のスケールアップをしやすい、という利点もある。 On the other hand, in the present invention, the frequency of the irradiating electromagnetic wave is set to a relatively low frequency of 1 MHz or more and 1000 MHz or less. Further, the frequency is set to a frequency at which the solvent is difficult to absorb, that is, a frequency at which the dielectric loss tangent measured by the probe method is less than 0.05 when an electromagnetic wave is applied only to the solvent. Further, when the reaction site of the polymerization initiator and the monomer easily absorbs the frequency, that is, when the mixed solution is irradiated with an electromagnetic wave, the dielectric loss tangent measured by the probe method is 0.05 or more. The frequency is. In the present invention, since the electromagnetic wave having such a frequency is irradiated, energy can be locally absorbed in the reaction site of the monomer, and ion polymerization can be efficiently performed with a small amount of energy. In addition, low-frequency electromagnetic waves have a long penetration distance. Therefore, there is an advantage that it is easy to scale up the polymerization apparatus.
 ここで、本発明の重合体の製造方法は、単量体をイオン重合によって重合する反応を含む重合体の製造方法であれば適用可能であり、カチオン重合およびアニオン重合のいずれにも使用できる。また特に、これらの中でもリビングカチオン重合に特に好適である。以下、本発明の重合体の製造方法のイオン重合工程、およびこれに適用可能な反応装置について、詳しく説明する。 Here, the method for producing a polymer of the present invention is applicable as long as it is a method for producing a polymer including a reaction of polymerizing a monomer by ionic polymerization, and can be used for both cationic polymerization and anionic polymerization. In particular, among these, it is particularly suitable for living cationic polymerization. Hereinafter, the ionic polymerization step of the method for producing a polymer of the present invention and the reaction apparatus applicable thereto will be described in detail.
 (1)イオン重合工程
 イオン重合工程に際し、まず、単量体と重合開始剤と、溶媒と、を含む混合液を準備する。混合液は、本発明の目的および効果を損なわない範囲において、これらの成分以外の成分を含んでいてもよい。各成分の混合順序は特に制限されず、全ての成分を一度に混合してもよく、一部の成分を先に混合し、後から残りの成分を混合してもよい。
(1) Ion Polymerization Step In the ion polymerization step, first, a mixed solution containing a monomer, a polymerization initiator, and a solvent is prepared. The mixed solution may contain components other than these components as long as the object and effect of the present invention are not impaired. The mixing order of each component is not particularly limited, and all the components may be mixed at once, or some components may be mixed first and the remaining components may be mixed later.
 本発明の製造方法に使用する単量体は、カチオン重合またはアニオン重合が可能であり、好ましくはリビングカチオン重合またはリビングアニオン重合が可能な構造を有する単量体であればよい。当該単量体は、通常モノマーであるが、オリゴマー等であってもよい。また、単量体は開環重合する単量体であってもよい。 The monomer used in the production method of the present invention may be a monomer capable of cationic polymerization or anionic polymerization, preferably a monomer having a structure capable of living cationic polymerization or living anionic polymerization. The monomer is usually a monomer, but may be an oligomer or the like. Further, the monomer may be a monomer that undergoes ring-opening polymerization.
 単量体の具体例には、2-エチル-2-オキサゾリン、2-メチル-2-オキサゾリン、2-イソプロピル-2-オキサゾリン、2-シクロプロピル-2-オキサゾリン、2-ノニル-2-オキサゾリン、2-フェニル-2-オキサゾリン、および2-(m-ジフルオロフェニル)-2-オキサゾリン等のオキサゾリン系化合物;環状ビニルシラザン;フマル酸ジイソプロピル;ε-カプロラクトン;L-ラクチド;トリメチレンカーボネート;p-ジオキサノン;、ならびに[2.2]パラシクロファン等のカチオン開環重合、またはカチオン重合する単量体であってもよく、スチレン等のスチレン系化合物;メチル(メタ)アクリレート、エチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、およびフルオロアルキル(メタ)アクリレート等の(メタ)アクリレート系化合物;ビニルアルコール;ビニルエーテル;ビニルアセテート等のビニルエステル系化合物;N-イソプロピル(メタ)アクリルアミド、(メタ)アクリルアミド、ジアルデヒドアンモニウムクロライド、N-ベンゼンスルホンアミドマレイミド、N-(メタ)アクリロイル-フェニルアミン等の含窒素系化合物;並びにシアノアクリレートなどのカチオン重合、またはアニオン重合する単量体であってもよい。なお、本明細書において(メタ)アクリレートとは、アクリレートまたはメタクリレート、もしくはこれらの両方を表す。混合液は、単量体を一種のみ含んでいてもよく、二種以上含んでいてもよい。 Specific examples of the compounds include 2-ethyl-2-oxazoline, 2-methyl-2-oxazoline, 2-isopropyl-2-oxazoline, 2-cyclopropyl-2-oxazoline, 2-nonyl-2-oxazoline, and the like. Oxazoline compounds such as 2-phenyl-2-oxazoline and 2- (m-difluorophenyl) -2-oxazoline; cyclic vinyl silazane; diisopropyl fumarate; ε-caprolactone; L-lactide; trimethylene carbonate; p-dioxanone ; And may be a cationic ring-opening polymerization such as [2.2] paracyclophane, or a monomer which is cationically polymerized; a styrene compound such as styrene; methyl (meth) acrylate, ethyl (meth) acrylate, (Meta) acrylate compounds such as t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and fluoroalkyl (meth) acrylate; vinyl alcohol; vinyl ether; vinyl ester compounds such as vinyl acetate; N-isopropyl ( Nitrogen-containing compounds such as meta) acrylamide, (meth) acrylamide, dialdehyde ammonium chloride, N-benzenesulfonamide maleimide, N- (meth) acryloyl-phenylamine; and cationic or anionic polymerization such as cyanoacrylate. It may be a metric. In addition, in this specification, (meth) acrylate means acrylate, methacrylate, or both. The mixed solution may contain only one kind of monomer, or may contain two or more kinds of monomers.
 上記単量体の中でも、反応温度を比較的高く設定でき、電磁波照射による加熱を適用しやすいという理由でオキサゾリン系化合物が好ましく、特に反応性等の観点で、2-エチル-2-オキサゾリン、2-メチル-2-オキサゾリン、および2-イソプロピル-2-オキサゾリンなどのカチオン開環重合する化合物が好ましい。 Among the above monomers, oxazoline-based compounds are preferable because the reaction temperature can be set relatively high and heating by electromagnetic wave irradiation is easy to apply, and 2-ethyl-2-oxazoline, 2 is particularly important from the viewpoint of reactivity and the like. Compounds that undergo cationic ring-opening polymerization such as -methyl-2-oxazoline and 2-isopropyl-2-oxazoline are preferred.
 一方、単量体を重合する際に使用する重合開始剤は、電磁波の照射を受けて活性化し、上記単量体をイオン重合させることが可能な化合物であればよく、上記単量体の種類や、所望の反応性に合わせて適宜選択される。例えば、カチオン重合に使用する重合開始剤の例にはヨウ化メチル等のハロゲン化アルキル;、メチルトリフラート、およびフルオロ硫酸メチル;p-トルエンスルホン酸メチル、およびp-ニトロベンゼンスルホン酸メチルなどのトシラートおよびその誘導体;、塩化ベンジル、および臭化ベンジルなどの酸ハロゲン化物;、過塩素酸、硫酸、および臭化水素等のプロトン酸;、並びに、三フッ化ホウ素、および塩化アルミニウム等のルイス酸が含まれる。また、プレニルテトラメチレンスルホニウムヘキサフルオロアンチモネート、N-メチル-エチルオキサゾリン-メチルスルフェート、3,3-ジエトキシ-1-プロパノール、パーフルオロブチルエチレントリフラート、および/またはヨウ素等が含まれていてもよい。アニオン重合に使用する重合開始剤の例には、Li、n-ブチルリチウム、Grignard試薬、NaOH、および/または水等が含まれる。混合液は、重合開始剤を一種のみ含んでいてもよく、二種以上含んでいてもよい。 On the other hand, the polymerization initiator used when polymerizing the monomer may be any compound that can be activated by being irradiated with an electromagnetic wave and ion-polymerize the monomer, and is the type of the monomer. Or, it is appropriately selected according to the desired reactivity. For example, examples of polymerization initiators used for cationic polymerization include alkyl halides such as methyl iodide;, methyl trifurate, and methyl fluorosulfate; tosylate such as methyl p-toluenesulfonate and methyl p-nitrobenzene sulfonate and Includes derivatives thereof; acid halides such as benzyl chloride and benzyl bromide; sulfonic acids such as perchloric acid, sulfuric acid, and hydrogen bromide; and Lewis acids such as boron trifluoride and aluminum chloride. Is done. Further, prenyltetramethylenesulfonium hexafluoroantimonate, N-methyl-ethyloxazoline-methylsulfate, 3,3-diethoxy-1-propanol, perfluorobutylethylene trifurate, and / or iodine may be contained. .. Examples of polymerization initiators used for anionic polymerization include Li, n-butyllithium, Grignard reagents, NaOH, and / or water. The mixed solution may contain only one kind of polymerization initiator, or may contain two or more kinds of polymerization initiators.
 ここで、単量体のモル量/重合開始剤のモル量で表される、混合液中の単量体と、重合開始剤とのモル比は、10~500が好ましく、15~200がより好ましい。単量体と重合開始剤とのモル比が当該範囲であると、電磁波を照射したときに、重合反応が十分に生じやすい。 Here, the molar ratio of the monomer in the mixed solution to the polymerization initiator, which is represented by the molar amount of the monomer / the molar amount of the polymerization initiator, is preferably 10 to 500, more preferably 15 to 200. preferable. When the molar ratio of the monomer to the polymerization initiator is in the above range, the polymerization reaction is sufficiently likely to occur when irradiated with electromagnetic waves.
 また、溶媒は、上記単量体および重合開始剤を十分に溶解もしくは分散可能であれば特に制限されず、上述の単量体の種類や、重合開始剤の種類に合わせて適宜選択される。溶媒の例には、水;エタノール等のプロトン性有機溶媒;キシレン、トルエン、ベンゼン、およびシクロヘキサンなどの非極性溶媒;、ジエチルエーテル、ノナフルオロブチルエチルエーテル、クロロベンゼン、1,2-ジクロロエタン、クロロホルム、1,3-ジオキサン、1,4-ジオキサン、アセトニトリル、N,N-ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド等の非プロトン性極性溶媒が含まれる。 Further, the solvent is not particularly limited as long as the above-mentioned monomer and the polymerization initiator can be sufficiently dissolved or dispersed, and is appropriately selected according to the type of the above-mentioned monomer and the type of the polymerization initiator. Examples of solvents include water; protic organic solvents such as ethanol; non-polar solvents such as xylene, toluene, benzene, and cyclohexane;, diethyl ether, nonafluorobutyl ethyl ether, chlorobenzene, 1,2-dichloroethane, chloroform, etc. It contains aprotic polar solvents such as 1,3-dioxane, 1,4-dioxane, acetonitrile, N, N-dimethylformamide, N-methylpyrrolidone and dimethylsulfoxide.
 溶媒の量は、混合液の総量に対して、10~90質量%が好ましく、40~70質量%がより好ましい。溶媒の量が当該範囲であると、イオン重合反応を効率よく行うことができる。 The amount of the solvent is preferably 10 to 90% by mass, more preferably 40 to 70% by mass, based on the total amount of the mixed solution. When the amount of the solvent is in the above range, the ionic polymerization reaction can be efficiently performed.
 また、上記混合液に電磁波を照射する装置は、混合液に所望の電磁波を所望の強度で照射可能であれば特に制限されず、公知の電磁波照射装置であってもよいが、後述の反応装置を用いることが特に好ましい。 The device for irradiating the mixed solution with electromagnetic waves is not particularly limited as long as the mixed solution can be irradiated with desired electromagnetic waves at a desired intensity, and may be a known electromagnetic wave irradiating device. Is particularly preferable to use.
 ここで、上記混合液に対する電磁波の周波数は、上述のように、1MHz以上1000MHz以下であって、当該電磁波を上記溶媒のみに対して照射したとき、プローブ法にて測定される誘電正接が0.05未満となり、当該電磁波を混合液に対して照射したとき、プローブ法にて測定される誘電正接が0.05以上となる周波数であれば特に制限されない。 Here, as described above, the frequency of the electromagnetic wave with respect to the mixed solution is 1 MHz or more and 1000 MHz or less, and when the electromagnetic wave is applied only to the solvent, the dielectric loss tangent measured by the probe method is 0. It is not particularly limited as long as it is less than 05 and the frequency is such that the dielectric loss tangent measured by the probe method is 0.05 or more when the mixed liquid is irradiated with the electromagnetic wave.
 当該周波数は、以下のように決定できる。イオン重合工程を行う前に、上記混合液に使用する溶媒、および混合液をそれぞれ準備する。そして、当該溶媒および混合液に、それぞれ周波数を1MHzから1000MHz、測定の容易さから、好ましくは1MHzから500MHz、さらに好ましくは、10~400MHzまで変更しながら電磁波を照射する。そして、プローブ法により、このときの誘電正接を測定する。そして、溶媒のみに電磁波を照射した場合には、誘電正接が0.05以下となり、混合液に対して電磁波を照射した場合には、誘電正接が0.05以上となる周波数の領域を特定する。そして、特定された周波数の領域の中から、さらに混合液の誘電正接が好ましい値を示す、適宜周波数を選択することができる。 The frequency can be determined as follows. Before performing the ion polymerization step, the solvent used for the above-mentioned mixed solution and the mixed solution are prepared respectively. Then, the solvent and the mixed solution are irradiated with electromagnetic waves while changing the frequency from 1 MHz to 1000 MHz, preferably from 1 MHz to 500 MHz, and more preferably from 10 to 400 MHz for ease of measurement. Then, the dielectric loss tangent at this time is measured by the probe method. Then, when the electromagnetic wave is applied only to the solvent, the dielectric loss tangent is 0.05 or less, and when the mixed solution is irradiated with the electromagnetic wave, the frequency region where the dielectric loss tangent is 0.05 or more is specified. .. Then, from the region of the specified frequency, a frequency can be appropriately selected from which the dielectric loss tangent of the mixed solution shows a preferable value.
 なお、上記誘電正接をプローブ法で測定する際の溶媒および混合液の温度は、イオン重合工程における混合液の温度と略同等が好ましい。ただし、イオン重合を還流しながら行う場合、すなわち溶媒の沸点以上の温度でイオン重合を行う場合には、当該温度で誘電正接を測定することが難しい。そこで、このような場合には、溶媒および混合液の両方の誘電正接を、イオン重合時の混合液の温度より低い温度、例えば室温等として20℃で測定してもよい。また、例えば、溶媒に電磁波照射するときにおいては、当該溶媒の沸点以下の温度で加熱し、かつ混合液に電磁波照射するときにおいては、重合時の反応熱を考慮し、溶媒の沸点以上の温度となる条件において加熱できるように、溶媒および混合液への電磁波の照射条件を設定してもよい。ここで、溶媒および混合液のそれぞれにおける、照射する電磁波における入力電力と反射電力との差と、反射電力/入力電力とは互いに等しくなるように設定するとよい。 The temperature of the solvent and the mixed solution when measuring the dielectric loss tangent by the probe method is preferably substantially the same as the temperature of the mixed solution in the ion polymerization step. However, when the ionic polymerization is carried out while refluxing, that is, when the ionic polymerization is carried out at a temperature equal to or higher than the boiling point of the solvent, it is difficult to measure the dielectric loss tangent at that temperature. Therefore, in such a case, the dielectric loss tangent of both the solvent and the mixed solution may be measured at a temperature lower than the temperature of the mixed solution at the time of ionic polymerization, for example, room temperature at 20 ° C. Further, for example, when the solvent is irradiated with electromagnetic waves, the solvent is heated at a temperature equal to or lower than the boiling point of the solvent, and when the mixed solution is irradiated with electromagnetic waves, the reaction heat at the time of polymerization is taken into consideration, and the temperature is equal to or higher than the boiling point of the solvent. The conditions for irradiating the solvent and the mixed solution with electromagnetic waves may be set so that the solvent and the mixed solution can be heated under the above conditions. Here, it is preferable to set the difference between the input power and the reflected power in the electromagnetic wave to be irradiated and the reflected power / input power to be equal to each other in each of the solvent and the mixed solution.
 ここで、溶媒のみに対して電磁波を照射したときの誘電正接は、溶媒が吸収する電磁波の量と比例する。つまり、溶媒に電磁波を照射したときの誘電正接が小さければ小さいほど、溶媒が電磁波を吸収し難くなる。そのため、電磁波の周波数は、溶媒のみに電磁波を照射したとき、誘電正接が0.05未満であり、0.03以下となる周波数がより好ましく、0.01以下となる周波数がさらに好ましい。 Here, the dielectric loss tangent when the electromagnetic wave is applied only to the solvent is proportional to the amount of the electromagnetic wave absorbed by the solvent. That is, the smaller the dielectric loss tangent when the solvent is irradiated with an electromagnetic wave, the more difficult it is for the solvent to absorb the electromagnetic wave. Therefore, as for the frequency of the electromagnetic wave, when the solvent is irradiated with the electromagnetic wave, the dielectric loss tangent is less than 0.05, the frequency of 0.03 or less is more preferable, and the frequency of 0.01 or less is further preferable.
 一方、混合液に対して電磁波を照射したときの誘電正接は、単量体および溶媒単独の作用に加えて、単量体と重合開始剤との反応によって生じたイオンによる吸収の寄与も新たに反映した値となる。つまり、混合液に電磁波を照射したときの、イオンによる吸収の寄与に起因する誘電正接が大きければ大きいほど、単量体の反応部位が電磁波を吸収し、反応が効率的に進む。このことは、後述の参考例1に示すように、溶媒と単量体とを含む混合液に、電磁波を照射した場合の誘電正接が、溶媒単体に電磁波を照射した場合の誘電正接と大きく変わらず、溶媒と単量体と重合開始剤とを混合して初めて誘電正接が大きく変化すること等から裏付けられる。したがって、反応効率の観点で、混合液に電磁波を照射したときの誘電正接は大きいことが好ましく、誘電正接が0.05以上であり、0.08以上となる周波数がより好ましく、0.1以上となる周波数がさらに好ましく、0.2以上となる周波数が最も好ましい。また、限定されるものではないが、混合液が導体としての性質を顕著に示すことによる放電を回避するという観点で、混合液に対して電磁波を照射したときの誘電正接は、3.0以下であることが好ましい。なお、誘電正接が1.0を超えるのは、混合液における見かけ上の誘電正接が電気の流れを反映した値になるためである。 On the other hand, the dielectric loss tangent when the mixed liquid is irradiated with electromagnetic waves has a new contribution of absorption by ions generated by the reaction between the monomer and the polymerization initiator, in addition to the action of the monomer and the solvent alone. It will be the reflected value. That is, the larger the dielectric loss tangent due to the contribution of absorption by ions when the mixed liquid is irradiated with electromagnetic waves, the more the reaction site of the monomer absorbs the electromagnetic waves, and the reaction proceeds efficiently. This means that, as shown in Reference Example 1 described later, the dielectric loss tangent when the mixed solution containing the solvent and the monomer is irradiated with electromagnetic waves is significantly different from the dielectric loss tangent when the solvent alone is irradiated with electromagnetic waves. This is supported by the fact that the dielectric loss tangent changes significantly only after the solvent, the monomer, and the polymerization initiator are mixed. Therefore, from the viewpoint of reaction efficiency, it is preferable that the dielectric loss tangent when the mixed solution is irradiated with an electromagnetic wave is large, the dielectric loss tangent is 0.05 or more, and a frequency of 0.08 or more is more preferable, and 0.1 or more. The frequency is more preferable, and the frequency of 0.2 or more is most preferable. Further, although not limited, the dielectric loss tangent when the mixed liquid is irradiated with an electromagnetic wave is 3.0 or less from the viewpoint of avoiding a discharge due to the mixed liquid showing remarkable properties as a conductor. Is preferable. The dielectric loss tangent exceeds 1.0 because the apparent dielectric loss tangent in the mixed liquid has a value that reflects the flow of electricity.
 また、イオン重合工程において電磁波照射することで加熱される混合液の温度は特に制限されず、溶媒の沸点未満、好ましくは40~80℃であってもよく、溶媒の沸点以上であってもよい。電磁波の照射によって、混合液の温度が溶媒の沸点以上となる場合には、溶媒を還流しながら電磁波照射することが好ましい。電磁波の照射によって、溶媒が沸騰していても、イオンにはそれ以上のエネルギー供給が可能であるため、溶媒の沸点以上で行うのがより好ましい。なお、電磁波照射による加熱のときにおける温度は、照射する電磁波における入力電力と反射電力との差、および反射電力/入力電力を調整することで調整すればよい。 Further, the temperature of the mixed solution heated by irradiation with electromagnetic waves in the ion polymerization step is not particularly limited, and may be lower than the boiling point of the solvent, preferably 40 to 80 ° C., or higher than the boiling point of the solvent. .. When the temperature of the mixed solution becomes higher than the boiling point of the solvent due to the irradiation of the electromagnetic wave, it is preferable to irradiate the mixed solution with the electromagnetic wave while refluxing the solvent. Even if the solvent is boiled by irradiation with electromagnetic waves, it is possible to supply more energy to the ions, so it is more preferable to carry out the process at the boiling point or higher of the solvent. The temperature at the time of heating by electromagnetic wave irradiation may be adjusted by adjusting the difference between the input power and the reflected power in the irradiated electromagnetic wave and the reflected power / input power.
 また、イオン重合工程において電磁波照射しているときにおける雰囲気の圧力は特に制限されず、常圧であってもよく、減圧下であってもよく、加圧下であってもよい。特に、混合液を保持する容器の制約が少ない、という点で常圧下が特に好ましい。 Further, the pressure of the atmosphere when irradiating with electromagnetic waves in the ion polymerization step is not particularly limited, and may be normal pressure, reduced pressure, or pressurized pressure. In particular, normal pressure is particularly preferable in that there are few restrictions on the container that holds the mixed solution.
 また、電磁波の照射時間、すなわち単量体の重合時間は、単量体の種類や量、重合度に応じて適宜選択されるが、1~600分が好ましく、1~300分がより好ましい。 Further, the irradiation time of the electromagnetic wave, that is, the polymerization time of the monomer is appropriately selected according to the type and amount of the monomer and the degree of polymerization, but is preferably 1 to 600 minutes, more preferably 1 to 300 minutes.
 また、イオン重合工程における雰囲気は特に制限されず、例えば窒素やアルゴン等、不活性ガス環境下で行ってもよく、空気中で行ってもよい。単量体や重合開始剤の種類等に合わせて適宜選択される。 Further, the atmosphere in the ionic polymerization step is not particularly limited, and may be carried out in an inert gas environment such as nitrogen or argon, or may be carried out in air. It is appropriately selected according to the type of monomer and polymerization initiator.
 さらにイオン重合工程後、必要に応じてクエンチしたり、得られた重合体を精製したりしてもよい。 Further, after the ion polymerization step, quenching may be performed or the obtained polymer may be purified as necessary.
 (2)反応装置
 上述のように、混合液に電磁波を照射して、単量体をイオン重合させる装置は、公知の反応装置であってもよいが、以下の反応装置を用いることがより好ましい。以下の装置によれば、上述のイオン重合工程を、効率よく行うことができる。
(2) Reaction device As described above, the device for irradiating the mixed solution with electromagnetic waves to ion-polymerize the monomer may be a known reaction device, but it is more preferable to use the following reaction device. .. According to the following apparatus, the above-mentioned ion polymerization step can be efficiently performed.
 上記イオン重合工程に用いる反応装置の模式図を図1Aに示す。図1Aに示すように、反応装置10は、電磁波を発振するための電磁波発振部1と、上述の混合液を保持し、単量体を反応させるための反応部2と、反応部2に入射する電磁波の入力電力、および反応部2から反射される電磁波の反射電力を監視するモニター3a、ならびに反射電力を調整するためのLC共振回路(図示せず)、を備えるインピーダンス調整部3と、を有する。 FIG. 1A shows a schematic diagram of the reaction apparatus used in the ion polymerization step. As shown in FIG. 1A, the reaction device 10 is incident on the electromagnetic wave oscillating unit 1 for oscillating an electromagnetic wave, the reaction unit 2 for holding the above-mentioned mixed solution and reacting the monomer, and the reaction unit 2. An impedance adjusting unit 3 including a monitor 3a for monitoring the input power of the electromagnetic wave and the reflected power of the electromagnetic wave reflected from the reaction unit 2 and an LC resonance circuit (not shown) for adjusting the reflected power. Have.
 電磁波発振部1は、シグナルジェネレーター1aおよび増幅器1bを備える。シグナルジェネレーター1aは、周波数1MHzから1000MHzの電磁波を発生させるための部材であり、所望の周波数の電磁波を発振可能であれば、その種類は特に制限されない。また、増幅器1bは、シグナルジェネレーター1aから発振された電磁波を、所望の電力まで増幅させるための部材であり、公知の増幅器を使用できる。 The electromagnetic wave oscillator 1 includes a signal generator 1a and an amplifier 1b. The signal generator 1a is a member for generating an electromagnetic wave having a frequency of 1 MHz to 1000 MHz, and the type thereof is not particularly limited as long as it can oscillate an electromagnetic wave having a desired frequency. Further, the amplifier 1b is a member for amplifying the electromagnetic wave oscillated from the signal generator 1a to a desired electric power, and a known amplifier can be used.
 一方、反応部2は、上述の混合液を保持するための混合液保持部2aやこれに接続された還流部(図示せず)、電磁波発振部1と導波管等によって接続された電磁波照射部2b等から構成される。また、必要に応じて、反応部2は、混合液の温度を測定するための温度計(図示せず)をさらに有していてもよい。混合液保持部2aは、上述の混合液を保持可能であり、かつ電磁波照射の影響を受け難い材料で構成されていることが好ましい。例えば、ガラス製の混合液保持部等とすることができる。また、図1Aでは、混合液保持部2aを一方が閉塞された円筒状の部材としているが、混合液保持部2aの構造は、当該構造に限定されない。 On the other hand, the reaction unit 2 is an electromagnetic wave irradiation connected to the above-mentioned mixed liquid holding unit 2a for holding the mixed liquid, a reflux unit (not shown) connected to the mixed liquid holding unit 2, an electromagnetic wave oscillating unit 1 and a waveguide or the like. It is composed of parts 2b and the like. Further, if necessary, the reaction unit 2 may further have a thermometer (not shown) for measuring the temperature of the mixed solution. The mixed liquid holding portion 2a is preferably made of a material that can hold the above-mentioned mixed liquid and is not easily affected by electromagnetic wave irradiation. For example, it can be a glass mixed liquid holding portion or the like. Further, in FIG. 1A, the mixed liquid holding portion 2a is a cylindrical member in which one side is closed, but the structure of the mixed liquid holding portion 2a is not limited to the structure.
 また、電磁波照射部2bは、その内部に、混合液保持部2aの少なくとも一部、言い換えれば、混合液が保持された領域を固定するための固定部(図示せず)と、電磁波発生部1から発振された電磁波を内部に入射させ、混合液保持部2a内の混合液に当該電磁波を照射するための構造(図示せず)と有する。図1Bに、電磁波照射部2bを、混合液保持部2aの長さ方向に直交するように切断した時の断面の模式図を示す。図1Bに示すように、電磁波照射部2b内には、混合液保持部2aを挟むように、後述のインピーダンス調整部3の平行平板3bも配置される。 Further, the electromagnetic wave irradiation unit 2b has, inside, at least a part of the mixed liquid holding unit 2a, in other words, a fixing unit (not shown) for fixing a region in which the mixed liquid is held, and an electromagnetic wave generating unit 1. It has a structure (not shown) for injecting an electromagnetic wave oscillated from the above into the inside and irradiating the mixed liquid in the mixed liquid holding portion 2a with the electromagnetic wave. FIG. 1B shows a schematic cross-sectional view when the electromagnetic wave irradiation unit 2b is cut so as to be orthogonal to the length direction of the mixed liquid holding unit 2a. As shown in FIG. 1B, a parallel flat plate 3b of the impedance adjusting unit 3 described later is also arranged in the electromagnetic wave irradiation unit 2b so as to sandwich the mixed liquid holding unit 2a.
 インピーダンス調整部3は、電磁波発振部1から反応部2に入射する電磁波の電力(入力電力)、および反応部2から反射される電磁波の電力(反射電力)を監視するモニター3aと、可変コンデンサ(図示せず)およびコイル(図示せず)が組み合わされたLC共振回路(図示せず)と、を少なくとも有し、図1Aに示す反応装置では、さらに、電荷を蓄え、交番電場をその平板間に発生させるための平行平板3bを有する。インピーダンス調整部3は、モニター3aに接続された演算部(図示せず)をさらに有していてもよい。LC共振回路の可変コンデンサは、二枚で一組の扇形の極板(図示せず)を二組有し、当該二組の扇形の極板のそれぞれにおいて、二枚の内の片方の極板を、2つのハンドル2cそれぞれのつまみに合わせて回転させることで、両極板間の電気容量を変化させる。二枚で一組の平行平板3bは、上述のように、反応部2の電磁波照射部2b内にて互いに対向するように配置され、混合液保持部2aを挟持する。また、インピーダンス調整部3が演算部を有する場合、演算部によって、モニター3aで計測された入力電力に対する反射電力の量を演算し、出力することができる。 The impedance adjusting unit 3 includes a monitor 3a that monitors the power of the electromagnetic wave incident on the reaction unit 2 from the electromagnetic wave oscillating unit 1 (input power) and the power of the electromagnetic wave reflected from the reaction unit 2 (reflected power), and a variable capacitor (variable capacitor). In the reactor shown in FIG. 1A, which has at least an LC resonant circuit (not shown) in which a coil (not shown) and a coil (not shown) are combined, an electric charge is further stored and an alternating electric field is generated between the flat plates. It has a parallel flat plate 3b for generating electricity. The impedance adjusting unit 3 may further have an arithmetic unit (not shown) connected to the monitor 3a. The variable capacitor of the LC resonance circuit has two sets of fan-shaped plates (not shown), and in each of the two sets of fan-shaped plates, one of the two plates is used. Is rotated according to the knob of each of the two handles 2c to change the electric capacity between the two electrode plates. As described above, the two parallel flat plates 3b are arranged so as to face each other in the electromagnetic wave irradiation unit 2b of the reaction unit 2 and sandwich the mixed liquid holding unit 2a. Further, when the impedance adjusting unit 3 has a calculation unit, the calculation unit can calculate and output the amount of reflected power with respect to the input power measured by the monitor 3a.
 このような反応装置10で上述のイオン重合を行う場合、まず、電磁波発生部1のシグナルジェネレーター1aから、イオン重合反応に望ましい周波数の電磁波、言い換えればイオン重合工程で説明した方法によって決定される周波数の電磁波を発振し、増幅器1bに伝える。そして、当該増幅器1bは、当該信号を増幅させて、所望の電力に調整する。そして、当該電磁波を、反応部2の電磁波照射部2b側に出射させる。このとき、インピーダンス調整部3のモニター3aが、電磁波発生部1から反応部2に向かう、より具体的には、増幅器1bから電磁波照射部2bに向かう、電磁波の電力を監視する。 When the above-mentioned ion polymerization is performed by such a reaction device 10, first, an electromagnetic wave having a frequency desirable for the ion polymerization reaction from the signal generator 1a of the electromagnetic wave generation unit 1, in other words, a frequency determined by the method described in the ion polymerization step. The electromagnetic wave of is oscillated and transmitted to the amplifier 1b. Then, the amplifier 1b amplifies the signal and adjusts it to a desired power. Then, the electromagnetic wave is emitted to the electromagnetic wave irradiation unit 2b side of the reaction unit 2. At this time, the monitor 3a of the impedance adjusting unit 3 monitors the electric power of the electromagnetic wave from the electromagnetic wave generating unit 1 toward the reaction unit 2, more specifically, from the amplifier 1b toward the electromagnetic wave irradiation unit 2b.
 そして、電磁波照射部2bに配置された混合液保持部2a内の混合液に、電磁波が照射される。このとき、反応部2では、必要に応じて還流等を行ってもよく、さらに混合液保持部2a内の圧力を調整したりしてもよい。上記電磁波照射中、インピーダンス調整部3のモニター3aが、電磁波照射部2bから出射する反射電力を監視する。 Then, the electromagnetic wave is irradiated to the mixed liquid in the mixed liquid holding unit 2a arranged in the electromagnetic wave irradiation unit 2b. At this time, in the reaction unit 2, reflux or the like may be performed as necessary, and the pressure in the mixed liquid holding unit 2a may be adjusted. During the electromagnetic wave irradiation, the monitor 3a of the impedance adjusting unit 3 monitors the reflected power emitted from the electromagnetic wave irradiation unit 2b.
 そして、モニター3aに接続された演算部(図示せず)が、入力電力に対する反射電力の量を反射電力/入力電力として算出する。そして、当該値が0.4未満である場合には、そのままの条件で、電磁波の照射を続ける。一方で、反射電力/入力電力の値が0.4以上である場合には、自動もしくは手動で、電磁波照射部2bの外部に取り付けられたハンドル2cを操作し、可変コンデンサが備える二組の極板位置を調整する。これにより、可変コンデンサの静電容量が変化し、インピーダンス、ひいては反射電力/入力電力の値が調整される。 Then, the calculation unit (not shown) connected to the monitor 3a calculates the amount of reflected power with respect to the input power as reflected power / input power. If the value is less than 0.4, the electromagnetic wave irradiation is continued under the same conditions. On the other hand, when the value of reflected power / input power is 0.4 or more, the handle 2c attached to the outside of the electromagnetic wave irradiation unit 2b is automatically operated or manually, and two sets of poles provided in the variable capacitor are provided. Adjust the board position. As a result, the capacitance of the variable capacitor changes, and the impedance and thus the reflected power / input power value are adjusted.
 反射電力/入力電力の値が0.4以上になると、電磁波は効率よく反応部2の混合液に伝わらず、電磁波発生部1側に戻る電力(反射電力)が支配的になってしまう。つまり、効率的な反応が阻害される。またこの場合、電磁波発生部1(特にシグナルジェネレーター1a)が損傷する危険性がある。 When the value of the reflected power / input power becomes 0.4 or more, the electromagnetic wave is not efficiently transmitted to the mixed liquid of the reaction unit 2, and the power returning to the electromagnetic wave generating unit 1 side (reflected power) becomes dominant. That is, an efficient reaction is hindered. Further, in this case, there is a risk that the electromagnetic wave generation unit 1 (particularly the signal generator 1a) is damaged.
 なお、重合反応の進行とともに回路のインピーダンスは変化するため、可変コンデンサで静電容量を適宜調整して、反射電力/入力電力の値が0.4未満になるように常に維持することが好ましい。これらの機構を備えることにより、反応容器の内径が、センチメートルオーダーという大容量のスケールにおいても、1~1000MHzの電磁波の照射が可能となる。 Since the impedance of the circuit changes as the polymerization reaction progresses, it is preferable to adjust the capacitance appropriately with a variable capacitor and always maintain the value of reflected power / input power to be less than 0.4. By providing these mechanisms, it is possible to irradiate electromagnetic waves of 1 to 1000 MHz even on a large-capacity scale with an inner diameter of the reaction vessel on the order of centimeters.
 このため、反応容器をスケールアップしても、例えば2.45GHzという一般的なマイクロ波の周波数では電磁波が浸透する距離が短いために、混合液内で電磁波が十分に届かず、反応速度を高め難い、という課題も解決できる。 Therefore, even if the reaction vessel is scaled up, the electromagnetic wave does not reach sufficiently in the mixed solution because the distance through which the electromagnetic wave permeates is short at a general microwave frequency of 2.45 GHz, for example, and the reaction speed is increased. The problem of difficulty can be solved.
 〔まとめ〕
 以上のように、本願の一態様(態様1)に係る重合体の製造方法は、単量体、重合開始剤、および溶媒を含む混合液に電磁波を照射して、前記単量体をイオン重合させる工程を含み、前記電磁波の周波数は、1MHz以上1000MHz以下であり、かつ、前記電磁波を前記溶媒のみに対して照射したとき、プローブ法にて測定される誘電正接が0.05未満となり、前記電磁波を前記混合液に対して照射したとき、プローブ法にて測定される誘電正接が0.05以上となる周波数である。
〔summary〕
As described above, in the method for producing a polymer according to one aspect (aspect 1) of the present application, a mixed solution containing a monomer, a polymerization initiator, and a solvent is irradiated with electromagnetic waves to ionically polymerize the monomer. The frequency of the electromagnetic wave is 1 MHz or more and 1000 MHz or less, and when the electromagnetic wave is irradiated only to the solvent, the dielectric adjacency measured by the probe method becomes less than 0.05, and the above-mentioned When the mixed solution is irradiated with an electromagnetic wave, the frequency is such that the dielectric tangent measured by the probe method is 0.05 or more.
 また、本願の態様2に係る重合体の製造方法は、上記態様1において、前記単量体をイオン重合させる工程で、前記単量体を、アニオン重合またはカチオン重合させるとよい。 Further, in the method for producing a polymer according to the second aspect of the present application, it is preferable to carry out anionic polymerization or cationic polymerization of the monomer in the step of ion-polymerizing the monomer in the above aspect 1.
 また、本願の態様3に係る重合体の製造方法は、上記態様1または態様2において、前記単量体をイオン重合させる工程で、前記単量体を、リビングカチオン重合させるとよい。 Further, in the method for producing the polymer according to the third aspect of the present application, it is preferable to carry out the living cation polymerization of the monomer in the step of ion-polymerizing the monomer in the above aspect 1 or 2.
 また、本願の態様4に係る重合体の製造方法は、上記態様1~3のいずれか1つの態様において、前記単量体をイオン重合させる工程を、常圧下で行うとよい。 Further, in the method for producing a polymer according to the fourth aspect of the present application, in any one of the above aspects 1 to 3, the step of ion-polymerizing the monomer may be performed under normal pressure.
 また、本願の態様5に係る重合体の製造方法は、上記態様1~4のいずれか1つの態様において、前記単量体をイオン重合させる工程を、還流下で行うとよい。 Further, in the method for producing a polymer according to the fifth aspect of the present application, in any one of the above aspects 1 to 4, the step of ion-polymerizing the monomer may be performed under reflux.
 また、本願の態様6に係る重合体の製造方法は、上記態様1~5のいずれか1つの態様において、前記混合液を保持し、前記単量体をイオン重合させるための反応部と、前記反応部に前記電磁波を発振するための電磁波発振部と、前記反応部に入射する前記電磁波の入力電力および前記反応部から反射される前記電磁波の反射電力を監視するモニター、ならびに前記反射電力を調整するためのLC共振回路、を備えるインピーダンス調整部と、を有する反応装置を準備する工程をさらに有し、前記単量体をイオン重合させる工程において、前記反応部に保持された前記混合液に、前記電磁波発振部から発振された前記電磁波を照射すると共に、前記インピーダンス調整部で前記入力電力に対する前記反射電力の値が0.4未満になるように調整するとよい。 Further, in the method for producing a polymer according to the sixth aspect of the present application, in any one of the above aspects 1 to 5, the reaction section for holding the mixed solution and ion-polymerizing the monomer and the above-mentioned The electromagnetic wave oscillating unit for oscillating the electromagnetic wave in the reaction unit, the monitor that monitors the input power of the electromagnetic wave incident on the reaction unit and the reflected power of the electromagnetic wave reflected from the reaction unit, and the reflected power are adjusted. Further, it has a step of preparing a reaction device having an impedance adjusting section including an LC resonance circuit, and in a step of ion-polymerizing the monomer, the mixed solution held in the reaction section has a step of preparing the reaction device. It is preferable to irradiate the electromagnetic wave oscillated from the electromagnetic wave oscillating unit and adjust the impedance adjusting unit so that the value of the reflected power with respect to the input power is less than 0.4.
 以下において、実施例を参照して本発明をより詳細に説明する。これらの実施例によって、本発明の範囲は限定して解釈されない。 Hereinafter, the present invention will be described in more detail with reference to examples. These examples do not limit the scope of the invention to be construed.
 [参考例1]
 アセトニトリル(溶媒)のみと、アセトニトリル(溶媒)および2-エチル-2-オキサゾリン(単量体)を含む混合液Aと、アセトニトリル(溶媒)、2-エチル-2-オキサゾリン(単量体)、およびp-トルエンスルホン酸メチル(重合開始剤)を含む混合液Bとをそれぞれ試験管に準備した。そして、室温および60℃において、これらに電磁波を照射し、プローブ法にて比誘電率(ε’)および誘電正接(tanδ)をそれぞれ測定した。電磁波の照射は、図1Aに示す反応装置10にて行った。得られた結果を図2A(アセトニトリルのみ)、図2B(混合液A)、および図3(混合液B)に示す。なお、比誘電率および誘電正接は、標準試料として、20℃の水を用い、室温および60℃のそれぞれの条件において比誘電率・誘電正接測定装置(キーコム社製)を用いて測定した。
[Reference Example 1]
Mixture A containing only acetonitrile (solvent), acetonitrile (solvent) and 2-ethyl-2-oxazoline (monomer), acetonitrile (solvent), 2-ethyl-2-oxazoline (monomer), and A mixed solution B containing methyl p-tonitrile sulfonate (polymerization initiator) was prepared in a test tube. Then, at room temperature and 60 ° C., these were irradiated with electromagnetic waves, and the relative permittivity (ε r ') and the dielectric loss tangent (tan δ) were measured by the probe method, respectively. The irradiation of the electromagnetic wave was performed by the reaction device 10 shown in FIG. 1A. The obtained results are shown in FIG. 2A (acetonitrile only), FIG. 2B (mixture A), and FIG. 3 (mixture B). The relative permittivity and the dielectric loss tangent were measured using water at 20 ° C. as a standard sample and using a relative permittivity / dielectric loss tangent measuring device (manufactured by Keycom) under the respective conditions of room temperature and 60 ° C.
 溶媒のみに電磁波を照射した場合((図2A)と、溶媒および単量体のみを含む混合液Aに電磁波を照射した場合(図2B)とのグラフを比較すると、これらは同様の挙動を示した。具体的には、10MHz~1000MHzにおいて、いずれも誘電正接が非常に小さい値であった。これに対し、溶媒、単量体、および重合開始剤を含む混合液Bに電磁波を照射した場合、誘電正接の値が非常に高まった(図3)。当該結果から、単量体にカチオンが生じると、誘電正接の値が高まるといえる。 Comparing the graphs of the case where only the solvent is irradiated with the electromagnetic wave ((FIG. 2A)) and the case where the mixed solution A containing only the solvent and the monomer is irradiated with the electromagnetic wave (FIG. 2B), these show the same behavior. Specifically, the dielectric adjacency was a very small value at 10 MHz to 1000 MHz. On the other hand, when the mixed liquid B containing the solvent, the monomer, and the polymerization initiator was irradiated with an electromagnetic wave. , The value of the dielectric tangent increased significantly (FIG. 3). From the result, it can be said that the value of the dielectric tangent increases when a cation is generated in the monomer.
 [参考例2]
 クロロホルム(溶媒)のみと、クロロホルム(溶媒)、2-エチル-2-オキサゾリン(単量体)、およびp-トルエンスルホン酸メチル(重合開始剤)を含む混合液とを準備した。そして、室温(20℃)において、これら溶媒と混合液とのそれぞれに電磁波を照射し、プローブ法にて比誘電率および誘電正接(tanδ)をそれぞれ測定した。電磁波の照射は、図1Aに示す反応装置10にて行った。得られた結果を図4A(クロロホルムのみ)および図4B(混合液)に示す。
[Reference Example 2]
A mixed solution containing only chloroform (solvent) and chloroform (solvent), 2-ethyl-2-oxazoline (monomer), and methyl p-toluenesulfonate (polymerization initiator) was prepared. Then, at room temperature (20 ° C.), electromagnetic waves were applied to each of these solvents and the mixed solution, and the relative permittivity and the dielectric loss tangent (tan δ) were measured by the probe method, respectively. The irradiation of the electromagnetic wave was performed by the reaction device 10 shown in FIG. 1A. The obtained results are shown in FIG. 4A (chloroform only) and FIG. 4B (mixture).
 溶媒のみに電磁波を照射した場合、10MHz~1000MHzにおいて、誘電正接が低かった(図4A)。これに対し、溶媒、単量体、および重合開始剤を含む混合液に電磁波を照射した場合、一部の周波数では誘電正接の値が非常に高まった(図4B)。 When electromagnetic waves were applied only to the solvent, the dielectric loss tangent was low at 10 MHz to 1000 MHz (Fig. 4A). On the other hand, when the mixed solution containing the solvent, the monomer, and the polymerization initiator was irradiated with electromagnetic waves, the value of the dielectric loss tangent increased significantly at some frequencies (FIG. 4B).
 [参考例3]
 ジメチルスルホキシド(溶媒)のみと、ジメチルスルホキシド(溶媒)、2-エチル-2-オキサゾリン(単量体)、およびp-トルエンスルホン酸メチル(重合開始剤)を含む混合液とを準備した。そして、20℃の室温において、これらに電磁波を照射し、プローブ法にて比誘電率および誘電正接をそれぞれ測定した。電磁波の照射は、図1Aに示す反応装置10にて行った。結果を図5A(クロロホルムのみ)および図5B(混合液)に示す。
[Reference Example 3]
A mixed solution containing only dimethyl sulfoxide (solvent) and dimethyl sulfoxide (solvent), 2-ethyl-2-oxazoline (monomer), and methyl p-toluenesulfonate (polymerization initiator) was prepared. Then, at room temperature of 20 ° C., these were irradiated with electromagnetic waves, and the relative permittivity and the dielectric loss tangent were measured by the probe method, respectively. The irradiation of the electromagnetic wave was performed by the reaction device 10 shown in FIG. 1A. The results are shown in FIG. 5A (chloroform only) and FIG. 5B (mixture).
 溶媒のみに電磁波を照射した場合、10MHz~1000MHzにおいて、誘電正接が低かった(図5A)。これに対し、溶媒、単量体、および重合開始剤を含む混合液に電磁波を照射した場合、一部の周波数では、誘電正接の値が高まった。 When electromagnetic waves were applied only to the solvent, the dielectric loss tangent was low at 10 MHz to 1000 MHz (Fig. 5A). On the other hand, when the mixed solution containing the solvent, the monomer, and the polymerization initiator was irradiated with electromagnetic waves, the value of the dielectric loss tangent increased at some frequencies.
 [実施例1]
 単量体である2-エチル-2-オキサゾリン(EtOx)4.00g、重合開始剤であるp-トルエンスルホン酸メチル(TsOMe)0.24g、重合溶媒であるアセトニトリル4.76gを混合し、外径16mm、高さ194mmの石英試験管(混合液保持部2a)に導入した。2-エチル-2-オキサゾリンのp-トルエンスルホン酸メチルに対するモル比([EtOx]/[TsOMe])は30であり、2-エチル-2-オキサゾリンの濃度[EtOx]は6.7mol/Lであった。上記試験管に還流冷却器をつけ、光ファイバー温度計を溶液に挿入し、系全体をアルゴン置換した。
[Example 1]
4.00 g of 2-ethyl-2-oxazoline (EtOx) as a monomer, 0.24 g of methyl p-toluenesulfonate (TsOME) as a polymerization initiator, and 4.76 g of acetonitrile as a polymerization solvent are mixed and removed. It was introduced into a quartz test tube (mixture holding portion 2a) having a diameter of 16 mm and a height of 194 mm. The molar ratio of 2-ethyl-2-oxazoline to methyl p-toluenesulfonate ([EtOx] / [TsOMe]) was 30, and the concentration of 2-ethyl-2-oxazoline [EtOx] was 6.7 mol / L. there were. A reflux condenser was attached to the above test tube, an optical fiber thermometer was inserted into the solution, and the entire system was replaced with argon.
 当該石英試験管(混合液保持部2a)を、図1Aに示す反応装置10の電磁波照射部2b内の固定部(図示せず)に固定した。そして、シグナルジェネレーター1aにより適宜周波数を調整しつつ26~28MHzの周波数の電磁波を発振した。照射する電磁波の周波数は、図2Aのグラフから、60℃の溶媒に電磁波を照射した場合に誘電正接が0.05未満となる範囲を抽出し、図3のグラフから、60℃の混合液に電磁波を照射した場合に誘電正接が0.05以上となる周波数を抽出した。さらに、これらの両方を満たす領域を特定し、その中から選択した。 The quartz test tube (mixture holding portion 2a) was fixed to a fixed portion (not shown) in the electromagnetic wave irradiation portion 2b of the reaction device 10 shown in FIG. 1A. Then, an electromagnetic wave having a frequency of 26 to 28 MHz was oscillated while adjusting the frequency appropriately by the signal generator 1a. For the frequency of the electromagnetic wave to be irradiated, a range in which the dielectric loss tangent is less than 0.05 when the electromagnetic wave is irradiated to the solvent at 60 ° C. is extracted from the graph of FIG. 2A, and the mixed solution at 60 ° C. is obtained from the graph of FIG. The frequencies at which the dielectric loss tangent is 0.05 or more when irradiated with electromagnetic waves were extracted. Furthermore, an area satisfying both of these was identified and selected from them.
 そして、シグナルジェネレーター1aから発振された上記周波数の電磁波を、増幅器1bにより30Wまで増幅させて、電磁波照射部2b側に出射させた。そして、モニター3aにて、電磁波発振部1から反応部2に向かう電磁波の入力電力と、反応部2から出射する反射電力とを測定し、反射電力/入力電力の値が0~0.15の範囲を維持するように、インピーダンス調整部3の可変コンデンサにおける扇形の極板間の面積を調整し、これにより静電容量を調整した。 Then, the electromagnetic wave of the above frequency oscillated from the signal generator 1a was amplified to 30 W by the amplifier 1b and emitted to the electromagnetic wave irradiation unit 2b side. Then, on the monitor 3a, the input power of the electromagnetic wave from the electromagnetic wave oscillating unit 1 to the reaction unit 2 and the reflected power emitted from the reaction unit 2 are measured, and the value of the reflected power / input power is 0 to 0.15. In order to maintain the range, the area between the fan-shaped plates in the variable capacitor of the impedance adjustment unit 3 was adjusted, thereby adjusting the capacitance.
 そして、常に入力電力と反射電力との差が30Wとなるように、つまり反応部2に供給されるエネルギーが30Wとなるようにした。電磁波照射開始時点において、電磁波の発振周波数は26.67MHzであり、入力電力は30.05Wであり、反射電力は0.05Wであった。2分後に光ファイバー温度計が示す混合液の温度は90℃となり、混合液が沸騰した。その時点における発振周波数は26.82MHzであり、入力電力は35Wであり、反射電力は5Wであった。そして、温度計が90℃を示してから30分間、60分間、および90分間それぞれ反応を行った。 Then, the difference between the input power and the reflected power is always 30 W, that is, the energy supplied to the reaction unit 2 is 30 W. At the start of electromagnetic wave irradiation, the oscillation frequency of the electromagnetic wave was 26.67 MHz, the input power was 30.05 W, and the reflected power was 0.05 W. After 2 minutes, the temperature of the mixed solution indicated by the optical fiber thermometer reached 90 ° C., and the mixed solution boiled. The oscillation frequency at that time was 26.82 MHz, the input power was 35 W, and the reflected power was 5 W. Then, after the thermometer showed 90 ° C., the reaction was carried out for 30 minutes, 60 minutes, and 90 minutes, respectively.
 反応終了後、室温まで空冷し、NaOHの1%メタノール溶液でクエンチし、ジエチルエーテル、水による抽出操作を行い、水層に移動する生成物を回収した。そして、真空乾燥により回収物中の水分を飛ばした。その後、重量を測定し、収率を計算した。各反応時間としたときの収率を表1に示す。 After completion of the reaction, the mixture was air-cooled to room temperature, quenched with 1% methanol solution of NaOH, extracted with diethyl ether and water, and the product transferred to the aqueous layer was recovered. Then, the moisture in the recovered material was removed by vacuum drying. Then, the weight was measured and the yield was calculated. Table 1 shows the yields at each reaction time.
 [実施例2]
 シグナルジェネレーター1aより、198~202MHzの周波数の電磁波を発振した以外は実施例1と同様に混合液に電磁波を照射した。当該周波数も、図2Aのグラフにおいて、誘電正接が0.05未満となる範囲、かつ図3Aのグラフにおいて、誘電正接が0.05以上となる周波数から選択した。また、この場合も、可変コンデンサで静電容量を適宜調整し、反射電力/入力電力の値が0.15以下になるように調整した。また、入力電力と反射電力との差は、常に30Wとした。
[Example 2]
The mixed liquid was irradiated with the electromagnetic wave in the same manner as in Example 1 except that the electromagnetic wave having a frequency of 198 to 202 MHz was oscillated from the signal generator 1a. The frequency was also selected from the range in which the dielectric loss tangent is less than 0.05 in the graph of FIG. 2A and the frequency in which the dielectric loss tangent is 0.05 or more in the graph of FIG. 3A. Further, in this case as well, the capacitance was appropriately adjusted with a variable capacitor so that the value of the reflected power / input power was 0.15 or less. The difference between the input power and the reflected power is always 30 W.
 電磁波照射開始時点において、電磁波の発振周波数は198.9MHzであり、入力電力は30.1Wであり、反射電力は0.1Wであった。電磁波照射開始から2分後、光ファイバー温度計が示す温度が90℃となり、混合液が沸騰した。その時点における発振周波数は199.2MHzであり、入力電力は35Wであり、反射電力は5Wであった。そして、温度計が90℃を示してから30分間、60分間、および90分間それぞれ反応を行った。各反応時間における収率を表1に示す。 At the start of electromagnetic wave irradiation, the oscillation frequency of the electromagnetic wave was 198.9 MHz, the input power was 30.1 W, and the reflected power was 0.1 W. Two minutes after the start of electromagnetic wave irradiation, the temperature indicated by the optical fiber thermometer reached 90 ° C., and the mixed solution boiled. The oscillation frequency at that time was 199.2 MHz, the input power was 35 W, and the reflected power was 5 W. Then, after the thermometer showed 90 ° C., the reaction was carried out for 30 minutes, 60 minutes, and 90 minutes, respectively. The yield at each reaction time is shown in Table 1.
 [比較例1]
 単量体である2-エチル-2-オキサゾリン(EtOx)2.64g、重合開始剤であるp-トルエンスルホン酸メチル(TsOMe)0.16g、重合溶媒であるアセトニトリル3.12gを混合し、外径16mm、高さ194mmの石英試験管に導入した。前記2-エチル-2-オキサゾリンのp-トルエンスルホン酸メチルに対するモル比([EtOx]/[TsOMe])は30であり、2-エチル-2-オキサゾリンの濃度[EtOx]は6.7mol/Lであった。
[Comparative Example 1]
2.64 g of 2-ethyl-2-oxazoline (EtOx) as a monomer, 0.16 g of methyl p-toluenesulfonate (TsOME) as a polymerization initiator, and 3.12 g of acetonitrile as a polymerization solvent are mixed and removed. It was introduced into a quartz test tube having a diameter of 16 mm and a height of 194 mm. The molar ratio of 2-ethyl-2-oxazoline to methyl p-toluenesulfonate ([EtOx] / [TsOME]) is 30, and the concentration of 2-ethyl-2-oxazoline [EtOx] is 6.7 mol / L. Met.
 試験管に還流冷却器をつけ、系全体をアルゴン置換した。熱電対で測定した温度が90℃であるオイルバスにより、上記石英試験管を加熱した。2分後には混合液が沸騰した。当該状態になってから30分間、60分間、および150分間それぞれ反応を行った。各反応時間における収率を表1に示す。 A reflux condenser was attached to the test tube, and the entire system was replaced with argon. The quartz test tube was heated by an oil bath having a temperature of 90 ° C. measured by a thermocouple. After 2 minutes, the mixture boiled. Reactions were carried out for 30 minutes, 60 minutes, and 150 minutes, respectively, after the state was reached. The yield at each reaction time is shown in Table 1.
 [比較例2]
 単量体である2-エチル-2-オキサゾリン(EtOx)4.00g、重合開始剤であるp-トルエンスルホン酸メチル(TsOMe)0.24g、重合溶媒であるアセトニトリル4.76gを混合し、外径16mm、高さ194mmの石英試験管に導入した。前記2-エチル-2-オキサゾリンのp-トルエンスルホン酸メチルに対するモル比([EtOx]/[TsOMe])は30であり、2-エチル-2-オキサゾリンの濃度[EtOx]は6.7mol/Lであった。
[Comparative Example 2]
4.00 g of 2-ethyl-2-oxazoline (EtOx) as a monomer, 0.24 g of methyl p-toluenesulfonate (TsOME) as a polymerization initiator, and 4.76 g of acetonitrile as a polymerization solvent are mixed and removed. It was introduced into a quartz test tube having a diameter of 16 mm and a height of 194 mm. The molar ratio of 2-ethyl-2-oxazoline to methyl p-toluenesulfonate ([EtOx] / [TsOME]) is 30, and the concentration of 2-ethyl-2-oxazoline [EtOx] is 6.7 mol / L. Met.
 上記石英試験管に還流冷却器をつけ、系全体をアルゴン置換した。温度は赤外放射温度計を用いて測定した。そして、富士電波工機社製の半導体式電磁波発振器(矩形導波管型共振器)の電場最大点に上記石英試験管を設置して、2.45GHzの電磁波を照射した。なお、当該半導体式電磁波発振器において、TE103シングルモードを採用した。当該半導体式電磁波発振器は、スリースタブチューナー、アイリス、およびプランジャーを備えた共振器、半導体式電磁波発振器、ならびに入力電力および反射電力を監視するモニターから構成される。 A reflux condenser was attached to the above quartz test tube, and the entire system was replaced with argon. The temperature was measured using an infrared radiation thermometer. Then, the quartz test tube was installed at the maximum electric field of a semiconductor electromagnetic wave oscillator (rectangular waveguide type resonator) manufactured by Fuji Denpa Koki Co., Ltd., and an electromagnetic wave of 2.45 GHz was irradiated. The TE103 single mode was adopted in the semiconductor electromagnetic wave oscillator. The semiconductor electromagnetic wave oscillator consists of a resonator equipped with a three-stub tuner, an iris, and a plunger, a semiconductor electromagnetic wave oscillator, and a monitor for monitoring input power and reflected power.
 そして、当該半導体式電磁波発振器より30W、2.45GHzの電磁波を発振しつつ、スリースタブチューナーおよびプランジャーを調節することで、反射電力を0.1W未満に抑えた。電磁波照射2分後に、赤外放射温度計が示す温度が90℃となり、混合液が沸騰した。そして、温度計が90℃を示してから30分間、60分間、および90分間それぞれ反応を行った。各反応時間における収率を表1に示す。なお、2.45GHzにおける、誘電正接は図2Aおよび図3のグラフ(60℃)から求めた。 Then, the reflected power was suppressed to less than 0.1 W by adjusting the three-stub tuner and the plunger while oscillating an electromagnetic wave of 30 W and 2.45 GHz from the semiconductor electromagnetic wave oscillator. Two minutes after the electromagnetic wave irradiation, the temperature indicated by the infrared radiation thermometer reached 90 ° C., and the mixed solution boiled. Then, after the thermometer showed 90 ° C., the reaction was carried out for 30 minutes, 60 minutes, and 90 minutes, respectively. The yield at each reaction time is shown in Table 1. The dielectric loss tangent at 2.45 GHz was obtained from the graphs (60 ° C.) of FIGS. 2A and 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1に示されるように、単量体、重合開始剤、および溶媒を含む混合液に1MHz以上1000MHz以下であり、かつ電磁波を前記溶媒のみに対して照射したとき、プローブ法にて測定される誘電正接が0.05未満となり、電磁波を前記混合液に対して照射したとき、プローブ法にて測定される誘電正接が0.05以上となる周波数の電磁波を照射した場合(実施例1および2)、オイルバスを用いて加熱してイオン重合した場合(比較例1)と比較して、収率が格段に高かった。 As shown in Table 1 above, when the mixed solution containing the monomer, the polymerization initiator, and the solvent is 1 MHz or more and 1000 MHz or less and the electromagnetic wave is applied only to the solvent, it is measured by the probe method. When the dielectric positive contact is less than 0.05 and the electromagnetic wave is irradiated to the mixed liquid, the electromagnetic wave having a frequency at which the dielectric positive contact measured by the probe method is 0.05 or more is irradiated (Example 1 and). 2) The yield was significantly higher than that in the case of ion polymerization by heating using an oil bath (Comparative Example 1).
 また、たとえ電磁波を照射した場合であっても、その周波数が2.45GHzである場合(比較例2)には、オイルバスを用いた場合の収率と大きな差がなかった。 Further, even when the electromagnetic wave was irradiated, when the frequency was 2.45 GHz (Comparative Example 2), there was no big difference from the yield when the oil bath was used.
 本発明の一態様に係る重合体の製造方法によれば、各種単量体を効率よく反応させることが可能である。したがって、各種重合体の製造方法に非常に有用である。 According to the method for producing a polymer according to one aspect of the present invention, various monomers can be efficiently reacted. Therefore, it is very useful for manufacturing methods of various polymers.
 1 電磁波発生部
 1a シグナルジェネレーター
 1b 増幅器
 2 反応部
 2a 混合液保持部
 2b 電磁波照射部
 2c ハンドル
 3 インピーダンス調整部
 3a モニター
 3b 平行平板
 10 反応装置
1 Electromagnetic wave generator 1a Signal generator 1b Amplifier 2 Reaction unit 2a Mixing liquid holding unit 2b Electromagnetic wave irradiation unit 2c Handle 3 Impedance adjustment unit 3a Monitor 3b Parallel plate 10 Reaction device

Claims (6)

  1.  単量体、重合開始剤、および溶媒を含む混合液に電磁波を照射して、前記単量体をイオン重合させる工程を含み、
     前記電磁波の周波数は、
     1MHz以上1000MHz以下であり、かつ
     前記電磁波を前記溶媒のみに対して照射したとき、プローブ法にて測定される誘電正接が0.05未満となり、前記電磁波を前記混合液に対して照射したとき、プローブ法にて測定される誘電正接が0.05以上となる周波数である、
     重合体の製造方法。
    A step of irradiating a mixed solution containing a monomer, a polymerization initiator, and a solvent with an electromagnetic wave to ion-polymerize the monomer is included.
    The frequency of the electromagnetic wave is
    When the frequency is 1 MHz or more and 1000 MHz or less and the electromagnetic wave is applied only to the solvent, the dielectric loss tangent measured by the probe method is less than 0.05, and the electromagnetic wave is applied to the mixed solution. The frequency at which the dielectric loss tangent measured by the probe method is 0.05 or more.
    Method for producing polymer.
  2.  前記単量体をイオン重合させる工程で、前記単量体を、アニオン重合またはカチオン重合させる、
     請求項1に記載の重合体の製造方法。
    In the step of ion-polymerizing the monomer, the monomer is anionicly polymerized or cationically polymerized.
    The method for producing a polymer according to claim 1.
  3.  前記単量体をイオン重合させる工程で、前記単量体を、リビングカチオン重合させる、
     請求項2に記載の重合体の製造方法。
    In the step of ion-polymerizing the monomer, the monomer is subjected to living-cationic polymerization.
    The method for producing a polymer according to claim 2.
  4.  前記単量体をイオン重合させる工程を、常圧下で行う、
     請求項1~3のいずれか一項に記載の重合体の製造方法。
    The step of ion-polymerizing the monomer is performed under normal pressure.
    The method for producing a polymer according to any one of claims 1 to 3.
  5.  前記単量体をイオン重合させる工程を、還流下で行う、
     請求項1~4のいずれか一項に記載の重合体の製造方法。
    The step of ion-polymerizing the monomer is performed under reflux.
    The method for producing a polymer according to any one of claims 1 to 4.
  6.  前記混合液を保持し、前記単量体をイオン重合させるための反応部と、
     前記反応部に前記電磁波を発振するための電磁波発振部と、
     前記反応部に入射する前記電磁波の入力電力および前記反応部から反射される前記電磁波の反射電力を監視するモニター、ならびに前記反射電力を調整するためのLC共振回路、を備えるインピーダンス調整部と、
     を有する反応装置を準備する工程をさらに有し、
     前記単量体をイオン重合させる工程において、前記反応部に保持された前記混合液に、前記電磁波発振部から発振された前記電磁波を照射すると共に、前記インピーダンス調整部で前記入力電力に対する前記反射電力の値が0.4未満になるように調整する、
     請求項1~5のいずれか一項に記載の重合体の製造方法。
    A reaction unit for holding the mixed solution and ion-polymerizing the monomer, and
    An electromagnetic wave oscillating unit for oscillating the electromagnetic wave in the reaction unit,
    An impedance adjusting unit including an input power of the electromagnetic wave incident on the reaction unit, a monitor for monitoring the reflected power of the electromagnetic wave reflected from the reaction unit, and an LC resonance circuit for adjusting the reflected power.
    Further has a step of preparing a reactor having a
    In the step of ion-polymerizing the monomer, the mixed liquid held in the reaction section is irradiated with the electromagnetic wave oscillated from the electromagnetic wave oscillating section, and the reflected power with respect to the input power in the impedance adjusting section. Adjust so that the value of is less than 0.4,
    The method for producing a polymer according to any one of claims 1 to 5.
PCT/JP2021/000559 2020-06-10 2021-01-08 Polymer production method WO2021250920A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022530015A JP7357163B2 (en) 2020-06-10 2021-01-08 Polymer manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020100819 2020-06-10
JP2020-100819 2020-06-10

Publications (1)

Publication Number Publication Date
WO2021250920A1 true WO2021250920A1 (en) 2021-12-16

Family

ID=78847189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000559 WO2021250920A1 (en) 2020-06-10 2021-01-08 Polymer production method

Country Status (2)

Country Link
JP (1) JP7357163B2 (en)
WO (1) WO2021250920A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104725574A (en) * 2015-04-08 2015-06-24 武汉理工大学 Method for synthesizing solid polyacrylic-series water reducing agents by aid of microwaves at one step
CN105199044A (en) * 2015-11-11 2015-12-30 重庆城市管理职业学院 Method for preparing cationic polyacrylamide employing microwave-induced template polymerization
CN108660813A (en) * 2018-07-07 2018-10-16 曾文华 A kind of formaldehyde-free color fixing agent and preparation method thereof
CN110563866A (en) * 2019-09-20 2019-12-13 江苏富淼科技股份有限公司 Method for producing low-residual-monomer acrylamide polymer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2391811C (en) 1999-09-17 2009-12-22 Borje Sellergren New molecularly imprinted polymers grafted on solid supports
JP4826366B2 (en) 2006-06-30 2011-11-30 住友ベークライト株式会社 Method for producing cyclic olefin polymer
US20180126603A1 (en) 2015-04-17 2018-05-10 Jsr Corporation Method for producing three-dimensional object
JP6862650B2 (en) 2018-03-09 2021-04-21 エルジー・ケム・リミテッド Composition for organic material layer of organic solar cell and manufacturing method of organic solar cell using this

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104725574A (en) * 2015-04-08 2015-06-24 武汉理工大学 Method for synthesizing solid polyacrylic-series water reducing agents by aid of microwaves at one step
CN105199044A (en) * 2015-11-11 2015-12-30 重庆城市管理职业学院 Method for preparing cationic polyacrylamide employing microwave-induced template polymerization
CN108660813A (en) * 2018-07-07 2018-10-16 曾文华 A kind of formaldehyde-free color fixing agent and preparation method thereof
CN110563866A (en) * 2019-09-20 2019-12-13 江苏富淼科技股份有限公司 Method for producing low-residual-monomer acrylamide polymer

Also Published As

Publication number Publication date
JPWO2021250920A1 (en) 2021-12-16
JP7357163B2 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
US6097019A (en) Radiation control system
Jacob et al. Microwave polymerization of poly (methyl acrylate): Conversion studies at variable power
IS6482A (en) microwave heating devices
US20020040095A1 (en) Water-absorbent resin, hydropolymer, process for producing them, and uses of them
WO2021250920A1 (en) Polymer production method
WO2014077263A1 (en) Information processing device, information processing method, and program
JP4455794B2 (en) System for controlling a plasma generator
Jow et al. Microwave processing and diagnosis of chemically reacting materials in a single-mode cavity applicator
Wang et al. Non-perturbing THz generation at the Tsinghua university accelerator laboratory 31 MeV electron beamline
Hasegawa et al. Decoding the state distribution in a nonadiabatic rotational excitation by a nonresonant intense laser field
CN1156868C (en) Stabilized oscillator circuit for plasma density measurement
CN112782280B (en) Linear polarization microwave thermoacoustic imaging method and device
JP6813175B2 (en) Microwave device and heat treatment system equipped with it
JP4422375B2 (en) Electron density measurement system and method using change in resonance frequency of open resonator containing plasma
JP2010027587A (en) High frequency application device
JP2017217203A (en) Device and method for measuring constituent concentration
CN101078700A (en) Method and device for measuring material for absorbing microwave energy
Posin The microwave spark
Rogers et al. Kinetic study of epoxy-amine microwave cure reactions. Part I: design and operation of a single-mode resonant microwave cavity
Forysth et al. Polymerization of diglycidyl ether of bisphenol A/diaminodiphenyl sulfone epoxy resins using radio frequency fields
Oberti et al. Polymerization of p-nitrobenzyl acrylate under microwave irradiation and their optical properties
JP2005265271A (en) Sheet-form compound drying device with microwaves
Guha et al. New radiating mode in a cylindrical DRA to produce broadside high gain radiation
KR20120121436A (en) Bio-samples fixing apparatus and fixing method
RU2787650C1 (en) Method for determining the relative permittivity of materials with losses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530015

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821843

Country of ref document: EP

Kind code of ref document: A1