WO2021250729A1 - Corrosiveness estimation device and method - Google Patents

Corrosiveness estimation device and method Download PDF

Info

Publication number
WO2021250729A1
WO2021250729A1 PCT/JP2020/022480 JP2020022480W WO2021250729A1 WO 2021250729 A1 WO2021250729 A1 WO 2021250729A1 JP 2020022480 W JP2020022480 W JP 2020022480W WO 2021250729 A1 WO2021250729 A1 WO 2021250729A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
oxygen concentration
corrosiveness
unit
estimation
Prior art date
Application number
PCT/JP2020/022480
Other languages
French (fr)
Japanese (ja)
Inventor
真悟 峯田
翔太 大木
守 水沼
貴志 三輪
宗一 岡
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/022480 priority Critical patent/WO2021250729A1/en
Priority to JP2022530355A priority patent/JPWO2021250729A1/ja
Publication of WO2021250729A1 publication Critical patent/WO2021250729A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Definitions

  • the present invention relates to a corrosiveness estimation device and a method for estimating soil corrosiveness.
  • infrastructure equipment There are many types of infrastructure equipment that support our lives, and the number is enormous. In addition, infrastructure equipment is exposed to various environments not only in urban areas but also in mountainous areas and coastal areas, hot spring areas and cold areas, and even in the sea and underground, and the form and speed of deterioration vary. .. In order to maintain infrastructure equipment with these characteristics, it is necessary to grasp the current state of deterioration through inspections and to operate efficiently based on the forecast results.
  • Non-Patent Documents 1 and 2 are examples of metal, such as steel pipe columns, support anchors, and underground steel pipes, which are used with all or part of them buried in the ground. These underground facilities corrode due to contact with the soil, and deterioration progresses at a different rate depending on the soil environment.
  • corrosiveness as used herein mainly refers to the degree of corrosion of metallic materials such as iron and steel.
  • environmental factors involved in corrosion such as resistance, pH, and water content are measured and scored for the soil for which corrosiveness is to be evaluated, and the total score of each factor is used to determine the soil corrosiveness. I am evaluating the size.
  • Non-Patent Document 3 described regarding the evaluation of soil corrosiveness points out as follows. Soil resistivity, pH, redox potential, etc. are often taken up as important items for corrosiveness evaluation, but these items alone are not in the range of estimating the possibility of corrosion.
  • ANSI adds water content and sulfide concentration to the above-mentioned factors, but it is limited to the conventional supplement.
  • DVGW further adds the types and conditions of soil, the types and amounts of salt contained in soil, the conditions of groundwater, etc.
  • the present invention has been made to solve the above problems, and an object of the present invention is to more easily and quantitatively estimate soil corrosiveness.
  • the corrosiveness estimation method is based on the first step of measuring the oxygen concentration in one process from wetting to drying of the target soil, and the oxygen concentration and rainfall information measured in the first step.
  • the corrosiveness estimation device has a measuring unit that measures the oxygen concentration of the target soil, and the oxygen concentration of the soil for a certain period of time based on the oxygen concentration and rainfall information measured by the measuring unit. Soil corrosiveness based on the calculation unit that calculates the change over time, the change over time in the oxygen concentration calculated by the calculation unit, and the relationship between the oxygen concentration measured by the measurement unit and the corrosiveness of the soil. It is provided with an estimation unit for estimating.
  • the change over time in the oxygen concentration of the soil over a certain period is calculated based on the oxygen concentration and the rainfall information in one process from the wetness to the dryness of the soil. Since soil corrosiveness is estimated based on changes and the relationship between oxygen concentration and soil corrosiveness, soil corrosiveness can be estimated more easily and quantitatively.
  • FIG. 1 is a flowchart illustrating a corrosiveness estimation method according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing a configuration of a corrosiveness estimation device according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing the configuration of another corrosiveness estimation device according to the embodiment of the present invention.
  • FIG. 4 is a configuration diagram showing a partial configuration of a corrosiveness estimation device according to an embodiment of the present invention.
  • FIG. 5 is an explanatory diagram for explaining an example in which the measurement in the corrosiveness estimation is performed.
  • FIG. 6 is a characteristic diagram showing the results of measurement in corrosiveness estimation.
  • FIG. 1 is a flowchart illustrating a corrosiveness estimation method according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing a configuration of a corrosiveness estimation device according to an embodiment of the present invention.
  • FIG. 3 is a block diagram
  • FIG. 7 is an explanatory diagram showing an example of calculating the change over time in the oxygen concentration of the target soil for a certain period based on the measured oxygen concentration and the rainfall information.
  • FIG. 8 is a characteristic diagram showing an example of the relationship between oxygen concentration and soil corrosiveness.
  • step S101 the oxygen concentration in one process from wetness to dryness of the target soil is measured (first step).
  • step S101 first step
  • one process from wet to dry soil is reproduced, and the oxygen concentration of the soil is measured in the reproduced dry and wet process of the soil.
  • step S102 the change over time in the oxygen concentration of the soil for a certain period is calculated based on the oxygen concentration obtained by the above measurement and the rainfall information (second step).
  • step S103 based on the change over time of the oxygen concentration calculated in step S102 (second step) and the relationship between the oxygen concentration measured in step S101 and the corrosiveness of the soil.
  • step S104 the estimated corrosiveness is output. For example, the estimated corrosiveness information is output and displayed on the monitor.
  • This device includes a measurement unit 101, a calculation unit 102, and an estimation unit 103.
  • the measuring unit 101 measures the oxygen concentration of the target soil.
  • the oxygen concentration is the dissolved oxygen amount of water existing in the soil or the oxygen concentration (oxygen partial pressure) of the gas phase existing in the soil.
  • the measuring unit 101 can be composed of a battery-powered or fluorescent oxygen concentration meter. When estimating the corrosiveness of the soil as it is in the natural environment, the measuring unit 101 is directly buried in the target soil to measure the oxygen concentration of the soil.
  • the calculation unit 102 calculates the change over time in the oxygen concentration of the soil based on the oxygen concentration measured by the measurement unit 101 and the rainfall information.
  • the oxygen concentration measured by the measuring unit 101 is input to the calculation unit 102.
  • the measured oxygen concentration value can be directly input to the calculation unit 102.
  • a value corresponding to the measured oxygen concentration value can be input to the calculation unit 102.
  • a voltage value proportional to the oxygen concentration can be input to the calculation unit 102.
  • the measuring unit 101 converts the voltage value into the oxygen concentration value.
  • the measurement unit 101 may also have a function of acquiring rainfall information and storing the acquired rainfall information.
  • the rainfall information the rainfall information of the soil environment to be estimated can be used.
  • the source of rainfall information and the accuracy of time are not limited.
  • hourly rainfall data published by the Japan Meteorological Agency can be used.
  • the period of the rainfall information used by the calculation unit 102 is set so that there is no difference between the comparison targets. The length of this period is not limited.
  • the rainfall information information created arbitrarily can be used. This makes it possible to compare corrosiveness with any rainfall pattern.
  • the estimation unit 103 estimates the corrosiveness of the soil based on the change over time of the oxygen concentration calculated by the calculation unit 102 and the relationship between the oxygen concentration measured by the measurement unit 101 and the corrosiveness of the soil. do.
  • the relationship between the oxygen concentration and the information related to soil corrosiveness is stored in advance in the estimation unit 103.
  • the calculation unit 102 and the estimation unit 103 described above can be configured by a computer device including a CPU (Central Processing Unit), a main storage device, an external storage device, a network connection device, and the like. It is also possible to realize each of the above-mentioned functions by operating the CPU (execution of the program) by the program expanded in the main storage device by the computer device.
  • the above program is a program for a computer to execute the second step and the third step of the above-mentioned corrosiveness estimation method.
  • the network connection device connects to the network.
  • each function can be distributed to a plurality of computer devices.
  • the corrosiveness estimated by the estimation unit 103 is output from the output unit 104, and for example, the corrosiveness information can be visually recognized by the measurer.
  • the corrosiveness information estimated by the estimation unit 103 can be output and displayed on a monitor of a computer device.
  • the corrosiveness estimation device can also be provided with a reproduction unit 105 that reproduces the dry and wet process of soil.
  • the reproduction unit 105 the measurement unit 101 measures the oxygen concentration of the soil in which the drying and wetting process is reproduced by the reproduction unit 105.
  • the reproduction unit 105 is used.
  • the reproduction unit 105 includes a storage unit 151 that houses the target soil 152 and the measurement unit 101, and the storage unit 151 has a function of reproducing the drying and wetting process of the soil 152.
  • the accommodating section 151 is provided with a water supply mechanism 153 that increases the water content of the soil 152 and a drainage mechanism 154 that decreases the water content of the soil 152, so that the environment of the soil 152 that repeatedly dries and dries with rainfall can be reproduced. It is possible.
  • the accommodating portion 151 may be capable of accommodating the target soil 152, and is not particularly limited with respect to the container shape, the accommodating amount, and the form at the time of accommodating. However, it is preferable that the soil 152 having a capacity that can be measured by the measuring unit 101 can be accommodated.
  • the target soil is a target soil for which corrosiveness is estimated, and the type, type, collection method, etc. of natural soil or artificial soil are not particularly limited.
  • the water supply mechanism 153 and the drainage mechanism 154 may each have a function of changing the water content of the soil 152 as intended, and the form or method for realizing this function does not matter.
  • a part of the accommodating portion 151 accommodating the soil 152 can be opened, and water can be manually supplied from this open portion.
  • an opening may be provided in a part of the accommodating portion 151 so that drainage can be performed from the opening.
  • water can be supplied directly from the opening at the upper part of the accommodating portion 151.
  • a filter 155 is provided on the bottom surface of the soil 152 in order to realize the drainage mechanism 154.
  • the filter 155 is porous and can be, for example, a membrane filter.
  • the oxygen concentration is measured, and no other factor or electrochemical measurement is required. Therefore, it has the advantage that it can be measured more easily than before.
  • the measuring unit is directly embedded in the soil in the natural environment for measurement, it is preferable to measure the oxygen concentration during a period in which at least one rainfall can be observed.
  • An example of the implementation is shown in FIG. In this example, rainfall is observed twice from the start to the end of the measurement.
  • the information necessary for calculating the change over time in the oxygen concentration of the soil in the calculation unit 102 is one process from the wetness to the dryness of the soil, that is, the change in the oxygen concentration for one rainfall.
  • This change is preferably used in the calculation by fitting the change in oxygen concentration for one rainfall with the function f (t).
  • the function f (t) is not particularly limited, but for example, when a measurement result is obtained as shown in FIG. 6, four straight lines (proportional) of straight line 201, straight line 202, straight line 203, and straight line 204 are simply obtained. It can be described by a combination of functions).
  • the measuring unit 101 measures the oxygen concentration in the dry and wet process of the soil reproduced by the reproducing unit 105.
  • the target soil and the measuring unit 101 are accommodated in the accommodating unit 151 of the reproducing unit 105, and the oxygen concentration in one process from the wetness to the drying of the soil is measured.
  • the soil contained in the storage section 151 of the reproduction section 105 is supplied with water to make it moist, and the change in oxygen concentration from this state to drying by drainage is measured.
  • Moisture refers to a situation in which the gaps in the soil are almost filled with water.
  • the reproduction unit 105 It is also possible to provide the reproduction unit 105 with a function of measuring the water content, and to determine that the water content is constant with respect to the amount of water supplied as a wet state. However, since the volume porosity of the soil is almost 70% or less, it is simply made wet by supplying water with a volume of 1.5 times or more the volume of the contained soil. be able to.
  • the standard for the dry state is that the oxygen concentration should be constant to some extent, and it is not necessary to completely dry it. This is because if the oxygen concentration value becomes constant to some extent, it can be extended to an arbitrary period by the time change function f (t) of the oxygen concentration obtained by fitting this measurement result.
  • the drainage rate differs depending on the type of soil, it is necessary to continue draining until the above-mentioned conditions are met while draining naturally. Further, for example, the time from the start to the end of drainage can be fixed for each target soil, or the end condition can be determined by the amount of drainage.
  • the calculation unit 102 calculates the change over time in the oxygen concentration of the target soil based on the oxygen concentration measured by the measurement unit 101 and the rainfall information.
  • the calculation when the hourly rainfall data for one year is used will be described.
  • the time-varying function f (t) of the oxygen concentration obtained by measuring the oxygen concentration with the measuring unit 101 the oxygen concentration during the same period is obtained from the hourly rainfall data for one year. Calculate changes over time.
  • the estimation unit 103 estimates the corrosiveness of the target soil based on the change over time of the oxygen concentration calculated by the calculation unit 102 and the relationship between the oxygen concentration and the corrosiveness of the soil. First, the estimation unit 103 obtains the average value or the integrated value of the oxygen concentration from the change over time of the oxygen concentration for a certain period.
  • the average value for one year or the integrated value of the oxygen concentration for one year is obtained from the change with time of the oxygen concentration calculated by the calculation unit 102.
  • the difference between the area where the rainfall frequency is very high and the area where it hardly rains can be incorporated into the estimation result of corrosiveness, and the estimation of corrosiveness with higher accuracy than before can be performed. It will be possible.
  • the estimation unit 103 estimates the corrosiveness of the target soil based on the relationship between the oxygen concentration stored in advance and the corrosiveness of the soil.
  • An example of the relationship between oxygen concentration and soil corrosiveness is shown in FIG.
  • FIG. 8 is an example of the research results of the inventors, in which the horizontal axis represents the average oxygen concentration for one year and the vertical axis represents the amount of metal corrosion for one year. This relationship is based on the direct measurement of the amount of corrosion by burying metal in multiple types of soil for one year, and arranging this by the average value of oxygen concentration. It is known that the same relationship can be described regardless of the type of soil.
  • the relationship between the oxygen concentration and the corrosiveness of the soil is converted into a function g ([O]).
  • the function is not limited, but it can also be expressed by, for example, a normal distribution function or a combination of straight lines. By doing so, it becomes possible to easily estimate the corrosiveness of the soil from the oxygen concentration.
  • the corrosiveness does not have to be limited to the amount of corrosion for one year.
  • the corrosion rate (g / year) can be made corrosive.
  • the corrosiveness can be defined as the one in which the corrosion rate and the amount of corrosion are changed to the evaluation values based on any standard.
  • the amount of corrosion per year is 0.005 mm or less as corrosive: small, 0.005 to 0.02 mm as corrosive: medium, and 0.02 mm or more as corrosive: large. It can be considered as a form.
  • the change over time in the oxygen concentration of the soil is calculated based on the oxygen concentration and the rainfall information in one process from the wetness to the dryness of the soil. Since soil corrosiveness is estimated based on changes over time and the relationship between oxygen concentration and soil corrosiveness, soil corrosiveness can be estimated more easily and quantitatively.

Abstract

In a step S101, the oxygen concentration of given soil is measured across a single transition from damp to dry (first step). In a step S102 , the change over time in the oxygen concentration of the soil in a fixed period is calculated on the basis of the measured oxygen concentration and rainfall information (second step). The corrosiveness of the soil is estimated on the basis of the change over time in the oxygen concentration in the fixed period calculated in the step S102 (second step) and the relationship between the oxygen concentration measured in the step S101 and the corrosiveness of the soil (third step).

Description

腐食性推定装置および方法Corrosion estimation device and method
 本発明は、土壌腐食性を推定する腐食性推定装置および方法に関する。 The present invention relates to a corrosiveness estimation device and a method for estimating soil corrosiveness.
 我々の生活を支えるインフラ設備は種類も多く、数も膨大である。また、インフラ設備は、市街地だけでなく、山岳地や海岸付近、温泉地や寒冷地、さらに海中や地中に至るまで多様な環境に晒されており、劣化の形態や進行速度も様々である。こうした特徴を持つインフラ設備の保全には、点検による劣化の現状把握や、予測結果を踏まえた効率的な運用が必要になる。 There are many types of infrastructure equipment that support our lives, and the number is enormous. In addition, infrastructure equipment is exposed to various environments not only in urban areas but also in mountainous areas and coastal areas, hot spring areas and cold areas, and even in the sea and underground, and the form and speed of deterioration vary. .. In order to maintain infrastructure equipment with these characteristics, it is necessary to grasp the current state of deterioration through inspections and to operate efficiently based on the forecast results.
 例えば、インフラ設備には、鋼管柱、支持アンカ、および地中鋼配管などに代表されるように、全体またはその一部を地中に埋設した状態で使用する金属製の地中設備も多い。これら地中設備は、土壌に接するために腐食し、土壌環境に応じて異なる速さで劣化が進行する(非特許文献1,非特許文献2) 。 For example, many infrastructure facilities are made of metal, such as steel pipe columns, support anchors, and underground steel pipes, which are used with all or part of them buried in the ground. These underground facilities corrode due to contact with the soil, and deterioration progresses at a different rate depending on the soil environment (Non-Patent Documents 1 and 2).
 しかしながら、地中設備の劣化状態を直接目視で確認することはできないため、劣化状態に応じて適切にメンテナンスを行うことが困難となっている。また、地中設備は、土壌に触れる部分の劣化状態を直接目視点検して確認することができないため、土壌環境に応じて腐食を予測することもまた困難である。 However, since it is not possible to directly visually confirm the deterioration state of underground equipment, it is difficult to perform appropriate maintenance according to the deterioration state. In addition, since it is not possible to directly visually inspect and confirm the deterioration state of the portion of the underground equipment that comes into contact with the soil, it is also difficult to predict corrosion according to the soil environment.
 これらのため、設備の運用・管理面においては、土壌環境の腐食性に着目し、これに応じて保守運用する「ANSI」や「DVGW」などに評価規格が存在する。ここでいう腐食性とは、主に鉄や鋼などの金属材料を腐食させる度合いの大きさを指す。いずれの評価規格においても、腐食性を評価したい土壌について抵抗率や、pH、水分量など、腐食に関与する環境因子をそれぞれ測定して点数化し、各因子の点数の合算値によって土壌腐食性の大小を評価している。 For these reasons, in terms of equipment operation and management, there are evaluation standards for "ANSI" and "DVGW" that focus on the corrosiveness of the soil environment and maintain and operate according to this. The term "corrosiveness" as used herein mainly refers to the degree of corrosion of metallic materials such as iron and steel. In each evaluation standard, the environmental factors involved in corrosion such as resistance, pH, and water content are measured and scored for the soil for which corrosiveness is to be evaluated, and the total score of each factor is used to determine the soil corrosiveness. I am evaluating the size.
 しかしながら、いずれの規格も、定性的評価にとどまり、例えば劣化予測などに利用可能な程度の定量性は有しておらず、得られた評価が必ずしも実態と合っていないことも指摘されている(非特許文献3参照)。これは、土壌腐食に関与する環境因子が多様であり、また、これら環境因子の相互関係が複雑であり、適切な評価方法が確立されていないためと言われている。 However, it has been pointed out that none of the standards is limited to qualitative evaluation and does not have the quantitativeness that can be used for, for example, deterioration prediction, and the obtained evaluation does not always match the actual situation (). See Non-Patent Document 3). It is said that this is because the environmental factors involved in soil corrosion are diverse, the interrelationships between these environmental factors are complicated, and an appropriate evaluation method has not been established.
 土壌の腐食性評価に関して述べた非特許文献3では、次のように指摘している。腐食性評価の重要な項目として、土壌の抵抗率やpH、酸化還元電位などがとりあげられることが多いが、この項目だけでは、腐食の可能性を推定する域をでない。また、「ANSI」は、上述した因子に、含水率と硫化物濃度を加えているが、従来の補足程度にとどまる。また「DVGW」は、さらに土壌の種類と条件、土壌に含まれる塩分の種類と量、地下水の条件などを加えているが、項目の重複評価と配点の仕方が問題視され、さらに各評価項目と腐食の定性的関係は周知のこととしても、定量的取り扱い方に問題があると指摘している。このような理由で、既存の土壌腐食性評価方法では、腐食性を定量的に評価することは難しいのが現状である。 Non-Patent Document 3 described regarding the evaluation of soil corrosiveness points out as follows. Soil resistivity, pH, redox potential, etc. are often taken up as important items for corrosiveness evaluation, but these items alone are not in the range of estimating the possibility of corrosion. In addition, "ANSI" adds water content and sulfide concentration to the above-mentioned factors, but it is limited to the conventional supplement. In addition, "DVGW" further adds the types and conditions of soil, the types and amounts of salt contained in soil, the conditions of groundwater, etc. Although the qualitative relationship between corrosion and corrosion is well known, it points out that there is a problem with quantitative handling. For this reason, it is currently difficult to quantitatively evaluate corrosiveness with existing soil corrosiveness evaluation methods.
 上述した通り、従来の技術では、土壌腐食性を実態にあった精度で定量的に評価することが困難であるという課題があった。 As mentioned above, with the conventional technology, there is a problem that it is difficult to quantitatively evaluate soil corrosiveness with an accuracy that matches the actual situation.
 本発明は、以上のような問題点を解消するためになされたものであり、より簡便に、土壌腐食性を定量的に推定することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to more easily and quantitatively estimate soil corrosiveness.
 本発明に係る腐食性推定方法は、対象とする土壌が湿潤から乾燥に至る一過程での酸素濃度を測定する第1ステップと、第1ステップで測定された酸素濃度と降雨情報とをもとに、土壌の酸素濃度の一定期間の経時変化を算出する第2ステップと、第2ステップで算出された酸素濃度の一定期間の経時変化と、第1ステップで測定された酸素濃度と土壌の腐食性との関係性とをもとに土壌の腐食性を推定する第3ステップとを備える。 The corrosiveness estimation method according to the present invention is based on the first step of measuring the oxygen concentration in one process from wetting to drying of the target soil, and the oxygen concentration and rainfall information measured in the first step. In addition, the second step of calculating the change over time in the oxygen concentration of the soil, the change over time of the oxygen concentration calculated in the second step, and the oxygen concentration and the corrosion of the soil measured in the first step. It is provided with a third step of estimating the corrosiveness of soil based on the relationship with sex.
 また、本発明に係る腐食性推定装置は、対象とする土壌の酸素濃度を測定する測定部と、測定部で測定した酸素濃度と降雨情報とをもとに、土壌の酸素濃度の一定期間の経時変化を算出する算出部と、算出部で算出された酸素濃度の一定期間の経時変化、および測定部で測定した酸素濃度と土壌の腐食性との関係性をもとに、土壌の腐食性を推定する推定部とを備える。 Further, the corrosiveness estimation device according to the present invention has a measuring unit that measures the oxygen concentration of the target soil, and the oxygen concentration of the soil for a certain period of time based on the oxygen concentration and rainfall information measured by the measuring unit. Soil corrosiveness based on the calculation unit that calculates the change over time, the change over time in the oxygen concentration calculated by the calculation unit, and the relationship between the oxygen concentration measured by the measurement unit and the corrosiveness of the soil. It is provided with an estimation unit for estimating.
 以上説明したように、本発明によれば、土壌が湿潤から乾燥に至る一過程での酸素濃度と降雨情報とをもとに、土壌の酸素濃度の一定期間の経時変化を算出し、この経時変化、および酸素濃度と土壌の腐食性との関係性とをもとに土壌の腐食性を推定するので、より簡便に、土壌腐食性を定量的に推定できる。 As described above, according to the present invention, the change over time in the oxygen concentration of the soil over a certain period is calculated based on the oxygen concentration and the rainfall information in one process from the wetness to the dryness of the soil. Since soil corrosiveness is estimated based on changes and the relationship between oxygen concentration and soil corrosiveness, soil corrosiveness can be estimated more easily and quantitatively.
図1は、本発明の実施の形態に係る腐食性推定方法を説明するフローチャートである。FIG. 1 is a flowchart illustrating a corrosiveness estimation method according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る腐食性推定装置の構成を示す構成図である。FIG. 2 is a configuration diagram showing a configuration of a corrosiveness estimation device according to an embodiment of the present invention. 図3は、本発明の実施の形態に係る他の腐食性推定装置の構成を示す構成図である。FIG. 3 is a block diagram showing the configuration of another corrosiveness estimation device according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る腐食性推定装置の一部構成を示す構成図である。FIG. 4 is a configuration diagram showing a partial configuration of a corrosiveness estimation device according to an embodiment of the present invention. 図5は、腐食性推定における測定を実施した例を説明するための説明図である。FIG. 5 is an explanatory diagram for explaining an example in which the measurement in the corrosiveness estimation is performed. 図6は、腐食性推定における測定を実施した結果を示す特性図である。FIG. 6 is a characteristic diagram showing the results of measurement in corrosiveness estimation. 図7は、測定した酸素濃度と、降雨情報とをもとに、対象とする土壌の酸素濃度の一定期間の経時変化を算出する一例を示す説明図である。FIG. 7 is an explanatory diagram showing an example of calculating the change over time in the oxygen concentration of the target soil for a certain period based on the measured oxygen concentration and the rainfall information. 図8は、酸素濃度と土壌の腐食性の関係性の一例を示す特性図である。FIG. 8 is a characteristic diagram showing an example of the relationship between oxygen concentration and soil corrosiveness.
 以下、本発明の実施の形態に係る腐食性推定方法について図1を参照して説明する。 Hereinafter, the corrosiveness estimation method according to the embodiment of the present invention will be described with reference to FIG.
 まず、ステップS101で、対象とする土壌が湿潤から乾燥に至る一過程での酸素濃度を測定する(第1ステップ)。ステップS101(第1ステップ)では、土壌が湿潤から乾燥に至る一過程を再現し、再現した土壌の乾湿過程において、土壌の酸素濃度を測定する。 First, in step S101, the oxygen concentration in one process from wetness to dryness of the target soil is measured (first step). In step S101 (first step), one process from wet to dry soil is reproduced, and the oxygen concentration of the soil is measured in the reproduced dry and wet process of the soil.
 次に、ステップS102で、上述の測定で得られた酸素濃度と降雨情報とをもとに、土壌の酸素濃度の一定期間の経時変化を算出する(第2ステップ)。次に、ステップS103で、ステップS102(第2ステップ)で算出された酸素濃度の一定期間の経時変化、およびステップS101で測定された酸素濃度と土壌の腐食性との関係性をもとに、土壌の腐食性を推定する(第3ステップ)。この後、ステップS104で、推定された腐食性を出力する。例えば、モニタに推定された腐食性の情報を出力表示する。 Next, in step S102, the change over time in the oxygen concentration of the soil for a certain period is calculated based on the oxygen concentration obtained by the above measurement and the rainfall information (second step). Next, in step S103, based on the change over time of the oxygen concentration calculated in step S102 (second step) and the relationship between the oxygen concentration measured in step S101 and the corrosiveness of the soil. Estimate soil corrosiveness (third step). After that, in step S104, the estimated corrosiveness is output. For example, the estimated corrosiveness information is output and displayed on the monitor.
 次に、上述した腐食性推定方法を実施するための、本発明の実施の形態に係る腐食性推定装置について、図2を参照して説明する。この装置は、測定部101、算出部102、推定部103を備える。 Next, a corrosiveness estimation device according to an embodiment of the present invention for carrying out the above-mentioned corrosiveness estimation method will be described with reference to FIG. This device includes a measurement unit 101, a calculation unit 102, and an estimation unit 103.
 測定部101は、対象とする土壌の酸素濃度を測定する。酸素濃度とは土壌中に存在する水の溶存酸素量もしくは土壌中に存在する気相の酸素濃度(酸素分圧)である。測定部101は、電池式や蛍光式の酸素濃度計から構成することができる。自然環境にあるままの土壌の腐食性を推定する場合は、測定部101を対象とする土壌へと直接埋設して土壌の酸素濃度を測定する。 The measuring unit 101 measures the oxygen concentration of the target soil. The oxygen concentration is the dissolved oxygen amount of water existing in the soil or the oxygen concentration (oxygen partial pressure) of the gas phase existing in the soil. The measuring unit 101 can be composed of a battery-powered or fluorescent oxygen concentration meter. When estimating the corrosiveness of the soil as it is in the natural environment, the measuring unit 101 is directly buried in the target soil to measure the oxygen concentration of the soil.
 算出部102は、測定部101で測定した酸素濃度と降雨情報とをもとに、土壌の酸素濃度の一定期間の経時変化を算出する。測定部101で測定された酸素濃度が、算出部102へと入力される。測定された酸素濃度の値を、算出部102に直接入力することができる。また、測定された酸素濃度の値に相当する値を、算出部102に入力することもできる。例えば酸素濃度に比例する電圧値が、算出部102へと入力される構成とすることができる。この場合、測定部101において、電圧値を酸素濃度の値に変換する。また、測定部101は、降雨情報を取得し、取得した降雨情報を記憶する機能を有することもできる。 The calculation unit 102 calculates the change over time in the oxygen concentration of the soil based on the oxygen concentration measured by the measurement unit 101 and the rainfall information. The oxygen concentration measured by the measuring unit 101 is input to the calculation unit 102. The measured oxygen concentration value can be directly input to the calculation unit 102. Further, a value corresponding to the measured oxygen concentration value can be input to the calculation unit 102. For example, a voltage value proportional to the oxygen concentration can be input to the calculation unit 102. In this case, the measuring unit 101 converts the voltage value into the oxygen concentration value. Further, the measurement unit 101 may also have a function of acquiring rainfall information and storing the acquired rainfall information.
 降雨情報は、推定したい土壌環境の降雨情報を用いることができる。降雨情報の情報源や時間的精度などは、制限されない。例えば、気象庁の公開する時間雨量データを用いることができる。なお、算出部102で用いる降雨情報の期間は、比較対象間で差がないようにする。この期間の長さは、制限されるものではない。ただし、土壌環境は、1年間を通して周期的に変化することから、1年間分の降雨情報を用いることが好ましい。また、降雨情報は、任意に作成した情報を用いることもできる。これにより、任意の降雨パターンで腐食性を比較することが可能となる。 As the rainfall information, the rainfall information of the soil environment to be estimated can be used. The source of rainfall information and the accuracy of time are not limited. For example, hourly rainfall data published by the Japan Meteorological Agency can be used. The period of the rainfall information used by the calculation unit 102 is set so that there is no difference between the comparison targets. The length of this period is not limited. However, since the soil environment changes periodically throughout the year, it is preferable to use the rainfall information for one year. Further, as the rainfall information, information created arbitrarily can be used. This makes it possible to compare corrosiveness with any rainfall pattern.
 推定部103は、算出部102で算出された酸素濃度の一定期間の経時変化、および測定部101で測定した酸素濃度と土壌の腐食性との関係性をもとに、土壌の腐食性を推定する。酸素濃度と土壌腐食性に関わる情報との関係性は、推定部103において、予め記憶されている。 The estimation unit 103 estimates the corrosiveness of the soil based on the change over time of the oxygen concentration calculated by the calculation unit 102 and the relationship between the oxygen concentration measured by the measurement unit 101 and the corrosiveness of the soil. do. The relationship between the oxygen concentration and the information related to soil corrosiveness is stored in advance in the estimation unit 103.
 上述した算出部102および推定部103は、CPU(Central Processing Unit;中央演算処理装置)と主記憶装置と外部記憶装置とネットワーク接続装置となどを備えたコンピュータ機器から構成することができる。コンピュータ機器により、主記憶装置に展開されたプログラムによりCPUが動作する(プログラムを実行する)ことで、上述した各機能が実現されるようにすることもできる。上記プログラムは、上述した腐食性推定方法の、第2ステップと第3ステップとをコンピュータが実行するためのプログラムである。ネットワーク接続装置は、ネットワークに接続する。また、各機能は、複数のコンピュータ機器に分散させることもできる。 The calculation unit 102 and the estimation unit 103 described above can be configured by a computer device including a CPU (Central Processing Unit), a main storage device, an external storage device, a network connection device, and the like. It is also possible to realize each of the above-mentioned functions by operating the CPU (execution of the program) by the program expanded in the main storage device by the computer device. The above program is a program for a computer to execute the second step and the third step of the above-mentioned corrosiveness estimation method. The network connection device connects to the network. In addition, each function can be distributed to a plurality of computer devices.
 推定部103で推定された腐食性は、出力部104より出力され、例えば、測定者に腐食性の情報が視認可能となる。例えば、コンピュータ機器のモニタに、推定部103で推定された腐食性の情報を出力表示することができる。 The corrosiveness estimated by the estimation unit 103 is output from the output unit 104, and for example, the corrosiveness information can be visually recognized by the measurer. For example, the corrosiveness information estimated by the estimation unit 103 can be output and displayed on a monitor of a computer device.
 また、腐食性推定装置は、図3に示すように、土壌の乾湿過程を再現する再現部105備えることもできる。再現部105を備える場合、測定部101は、再現部105により乾湿過程を再現された土壌の酸素濃度を測定する。対象とする土壌を現地からサンプリングしても腐食性を推定する場合、再現部105を用いる。 Further, as shown in FIG. 3, the corrosiveness estimation device can also be provided with a reproduction unit 105 that reproduces the dry and wet process of soil. When the reproduction unit 105 is provided, the measurement unit 101 measures the oxygen concentration of the soil in which the drying and wetting process is reproduced by the reproduction unit 105. When the corrosiveness is estimated even if the target soil is sampled from the field, the reproduction unit 105 is used.
 再現部105は、図4に示すように、対象とする土壌152および測定部101を収容する収容部151を備え、収容部151が土壌152の乾湿過程を再現する機能を備える。収容部151は、土壌152の含水率を上昇させる給水機構153と、土壌152の含水率を減少させる排水機構154とを備えることで降雨に伴って乾湿を繰り返す土壌152の環境を再現することが可能である。収容部151は対象とする土壌152を収容できればよく、容器形状や収容量および収容時の形態に関して特に制限しない。ただし、測定部101による計測が可能となる容量の土壌152を収容できることが好ましい。 As shown in FIG. 4, the reproduction unit 105 includes a storage unit 151 that houses the target soil 152 and the measurement unit 101, and the storage unit 151 has a function of reproducing the drying and wetting process of the soil 152. The accommodating section 151 is provided with a water supply mechanism 153 that increases the water content of the soil 152 and a drainage mechanism 154 that decreases the water content of the soil 152, so that the environment of the soil 152 that repeatedly dries and dries with rainfall can be reproduced. It is possible. The accommodating portion 151 may be capable of accommodating the target soil 152, and is not particularly limited with respect to the container shape, the accommodating amount, and the form at the time of accommodating. However, it is preferable that the soil 152 having a capacity that can be measured by the measuring unit 101 can be accommodated.
 また、酸素濃度は、土壌152が大気に解放された上面からの深さによっても変化するため、収容部151における測定部101の設置位置は、深さを一定にして評価することが好ましい。この深さは、土壌152が実際に存在した深さと同等になるように定めることが好ましい。なお、対象とする土壌とは、腐食性を推定する対象の土壌であり、自然の土壌か人工の土壌か、またその種類や採集方法などを特に制限するものではない。 Further, since the oxygen concentration changes depending on the depth from the upper surface where the soil 152 is released to the atmosphere, it is preferable to evaluate the installation position of the measuring unit 101 in the accommodating unit 151 at a constant depth. It is preferable to set this depth to be equal to the depth at which the soil 152 actually existed. The target soil is a target soil for which corrosiveness is estimated, and the type, type, collection method, etc. of natural soil or artificial soil are not particularly limited.
 また、給水機構153と排水機構154は、それぞれ土壌152の含水率を目的の通りに変化させる機能を備えていればよく、この機能を実現する形態や方法は問わない。例えば、土壌152を収容する収容部151の一部を開放し、この開放部から手動で給水することができる。また、収容部151の一部に開口部を設け、ここから排水できる構成とすることができる。例えば、図4に示すように収容部151の上部の開口部から、直接給水することができる。この例では、排水機構154を実現するために土壌152の底面にフィルタ155を設けている。フィルタ155は多孔質であり、例えばメンブレンフィルタとすることができる。 Further, the water supply mechanism 153 and the drainage mechanism 154 may each have a function of changing the water content of the soil 152 as intended, and the form or method for realizing this function does not matter. For example, a part of the accommodating portion 151 accommodating the soil 152 can be opened, and water can be manually supplied from this open portion. Further, an opening may be provided in a part of the accommodating portion 151 so that drainage can be performed from the opening. For example, as shown in FIG. 4, water can be supplied directly from the opening at the upper part of the accommodating portion 151. In this example, a filter 155 is provided on the bottom surface of the soil 152 in order to realize the drainage mechanism 154. The filter 155 is porous and can be, for example, a membrane filter.
 上述した実施の形態によれば、測定するものは、酸素濃度のみであり、他の因子や電気化学的な測定は必要ない。このため、従来よりも簡易に測定できる利点をもつ。なお、自然環境にある土壌に測定部を直接埋設して測定する場合は、少なくとも1回の降雨を観測できる期間で酸素濃度を測定することが好ましい。実施した例を図5に示す。この例では、測定開始から終了まで降雨を2回観測している。 According to the above-described embodiment, only the oxygen concentration is measured, and no other factor or electrochemical measurement is required. Therefore, it has the advantage that it can be measured more easily than before. When the measuring unit is directly embedded in the soil in the natural environment for measurement, it is preferable to measure the oxygen concentration during a period in which at least one rainfall can be observed. An example of the implementation is shown in FIG. In this example, rainfall is observed twice from the start to the end of the measurement.
 算出部102における土壌の酸素濃度の一定期間の経時変化の算出に必要な情報は、土壌が湿潤から乾燥に至る一過程、すなわち降雨1回分の酸素濃度の変化である。この変化は、降雨1回分の酸素濃度の変化を、関数f(t)でフィッティングして計算に用いることが好ましい。こうすることで、土壌の酸素濃度の一定期間の経時変化の算出が容易になる。関数f(t)は、特に制限しないが、例えば、図6に示すように測定結果が得られた場合には、簡単には直線201,直線202,直線203,直線204の4つの直線(比例関数)の組み合わせで記述することができる。 The information necessary for calculating the change over time in the oxygen concentration of the soil in the calculation unit 102 is one process from the wetness to the dryness of the soil, that is, the change in the oxygen concentration for one rainfall. This change is preferably used in the calculation by fitting the change in oxygen concentration for one rainfall with the function f (t). This facilitates the calculation of changes over time in the oxygen concentration of the soil over a period of time. The function f (t) is not particularly limited, but for example, when a measurement result is obtained as shown in FIG. 6, four straight lines (proportional) of straight line 201, straight line 202, straight line 203, and straight line 204 are simply obtained. It can be described by a combination of functions).
 一方、土壌をサンプリングして腐食性を推定する際には、測定部101は、再現部105で再現された土壌の乾湿過程において酸素濃度を測定する。再現部105の収容部151に、対象とする土壌および測定部101を収容し、土壌が湿潤から乾燥に至る一過程での酸素濃度を測定する。この測定において、再現部105の収容部151に収容した土壌に対して給水することで湿潤状態とし、この状態から水はけによって乾燥に至るまでの酸素濃度の変化を測定する。湿潤状態とは、土壌の間隙をほぼ水が満たしている状況を指している。 On the other hand, when the soil is sampled and the corrosiveness is estimated, the measuring unit 101 measures the oxygen concentration in the dry and wet process of the soil reproduced by the reproducing unit 105. The target soil and the measuring unit 101 are accommodated in the accommodating unit 151 of the reproducing unit 105, and the oxygen concentration in one process from the wetness to the drying of the soil is measured. In this measurement, the soil contained in the storage section 151 of the reproduction section 105 is supplied with water to make it moist, and the change in oxygen concentration from this state to drying by drainage is measured. Moisture refers to a situation in which the gaps in the soil are almost filled with water.
 再現部105に含水率を測定する機能を設け、給水量に対して含水率が一定になることを湿潤状態と定めることもできる。ただし、土壌の体積間隙率は約70%以下であることがほとんどであるため、簡単には、収容した土壌の体積の1.5倍以上の体積の水を給水することで、湿潤状態とすることができる。 It is also possible to provide the reproduction unit 105 with a function of measuring the water content, and to determine that the water content is constant with respect to the amount of water supplied as a wet state. However, since the volume porosity of the soil is almost 70% or less, it is simply made wet by supplying water with a volume of 1.5 times or more the volume of the contained soil. be able to.
 また、乾燥状態の基準は、酸素濃度がある程度一定になればよく、完全に乾燥する必要はない。ある程度、酸素濃度の値が一定になれば、この測定結果をフィッティングすることで得た酸素濃度の時間変化関数f(t)によって、任意期間に拡張することができるためである。ただし、排水速度は、土壌の種類によって異なるため、自然に排水させながら前述の条件を満たす乾燥状態に至るまで排水を継続する必要がある。また例えば、各対象土壌について排水開始から終了時までの時間を一定にするか、または排水量で終了条件を定めることもできる。 In addition, the standard for the dry state is that the oxygen concentration should be constant to some extent, and it is not necessary to completely dry it. This is because if the oxygen concentration value becomes constant to some extent, it can be extended to an arbitrary period by the time change function f (t) of the oxygen concentration obtained by fitting this measurement result. However, since the drainage rate differs depending on the type of soil, it is necessary to continue draining until the above-mentioned conditions are met while draining naturally. Further, for example, the time from the start to the end of drainage can be fixed for each target soil, or the end condition can be determined by the amount of drainage.
 算出部102では、測定部101が測定した酸素濃度と、降雨情報とをもとに、対象とする土壌の酸素濃度の一定期間の経時変化を算出する。以下、一例として、1年間分の時間雨量データを用いた場合の算出について説明する。図7に示すように、測定部101で酸素濃度を測定することで得た酸素濃度の時間変化関数f(t)をもとに、1年間分の時間雨量データから、同期間の酸素濃度の経時変化を算出する。 The calculation unit 102 calculates the change over time in the oxygen concentration of the target soil based on the oxygen concentration measured by the measurement unit 101 and the rainfall information. Hereinafter, as an example, the calculation when the hourly rainfall data for one year is used will be described. As shown in FIG. 7, based on the time-varying function f (t) of the oxygen concentration obtained by measuring the oxygen concentration with the measuring unit 101, the oxygen concentration during the same period is obtained from the hourly rainfall data for one year. Calculate changes over time.
 時間雨量データの期間中で初めて降雨があった時間に、土壌中の酸素濃度が、測定された湿潤状態の酸素濃度値f(0)になるとして、この時点から次の降雨までの時間T1だけf(t)に従って変化すると仮定する。次の降雨でも同様にf(0)に戻り、次の降雨までの時間T2だけf(t)に従って変化する。これを、1年間分拡張計算することにより、1年間分の酸素濃度の経時変化を算出することができる。 Assuming that the oxygen concentration in the soil becomes the measured oxygen concentration value f (0) in the wet state at the time of the first rainfall during the period of the hourly rainfall data, only the time T1 from this point to the next rainfall. It is assumed that it changes according to f (t). In the next rainfall, it returns to f (0) in the same manner, and changes according to f (t) only by the time T2 until the next rainfall. By expanding this for one year, it is possible to calculate the change over time in the oxygen concentration for one year.
 推定部103は、算出部102が算出した酸素濃度の一定期間の経時変化、および酸素濃度と土壌の腐食性との関係性をもとに、対象とする土壌の腐食性を推定する。推定部103は、まず、酸素濃度の一定期間の経時変化から酸素濃度の平均値もしくは積算値を求める。 The estimation unit 103 estimates the corrosiveness of the target soil based on the change over time of the oxygen concentration calculated by the calculation unit 102 and the relationship between the oxygen concentration and the corrosiveness of the soil. First, the estimation unit 103 obtains the average value or the integrated value of the oxygen concentration from the change over time of the oxygen concentration for a certain period.
 例えば、上述した1年間分の時間雨量データを用いた例においては、算出部102で算出した酸素濃度の経時変化から、1年間の平均値もしくは1年間分の酸素濃度の積算値を求める。これにより、例えば、降雨頻度が非常に大きい地域と、ほとんど雨が降らない地域との差を腐食性の推定結果に取り込むことができ、従来よりも精度が高く実態にあった腐食性の推定が可能となる。 For example, in the above-mentioned example using the hourly rainfall data for one year, the average value for one year or the integrated value of the oxygen concentration for one year is obtained from the change with time of the oxygen concentration calculated by the calculation unit 102. As a result, for example, the difference between the area where the rainfall frequency is very high and the area where it hardly rains can be incorporated into the estimation result of corrosiveness, and the estimation of corrosiveness with higher accuracy than before can be performed. It will be possible.
 次に、推定部103は、予め記憶している酸素濃度と土壌の腐食性との関係性とをもとに、対象とする土壌の腐食性を推定する。酸素濃度と土壌の腐食性の関係性の例を、図8に示す。図8は、発明者らの調査結果の一例であり、横軸は1年間の平均酸素濃度、縦軸は1年間の金属の腐食量である。この関係性は、複数種類の土壌に1年間金属を埋設することで腐食量を直接計測し、これを酸素濃度の平均値で整理したものである。土壌の種類によらず、およそ同一の関係性で記述できることが分かっている。 Next, the estimation unit 103 estimates the corrosiveness of the target soil based on the relationship between the oxygen concentration stored in advance and the corrosiveness of the soil. An example of the relationship between oxygen concentration and soil corrosiveness is shown in FIG. FIG. 8 is an example of the research results of the inventors, in which the horizontal axis represents the average oxygen concentration for one year and the vertical axis represents the amount of metal corrosion for one year. This relationship is based on the direct measurement of the amount of corrosion by burying metal in multiple types of soil for one year, and arranging this by the average value of oxygen concentration. It is known that the same relationship can be described regardless of the type of soil.
 なお、酸素濃度と土壌の腐食性(図8の例では1年間の腐食量)との関係は、関数g([O])に化しておくことが好ましい。関数は限定しないが、例えば正規分布関数や直線の組み合わせで表現することもできる。こうすることで、酸素濃度から容易に土壌の腐食性を推定することが可能となる。また腐食性は、1年間の腐食量に限定する必要はない。例えば、腐食速度(g/year)を腐食性とすることもできる。また、腐食速度や腐食量を任意の基準で評価値に変化させたものを腐食性とすることもできる。例えば、1年間の腐食量が0.005mm以下を腐食性:小、0.005~0.02mmを腐食性:中、0.02mm以上を腐食性:大とすることも、本発明の利用の一形態として考え得る。 It is preferable that the relationship between the oxygen concentration and the corrosiveness of the soil (corrosion amount for one year in the example of FIG. 8) is converted into a function g ([O]). The function is not limited, but it can also be expressed by, for example, a normal distribution function or a combination of straight lines. By doing so, it becomes possible to easily estimate the corrosiveness of the soil from the oxygen concentration. Further, the corrosiveness does not have to be limited to the amount of corrosion for one year. For example, the corrosion rate (g / year) can be made corrosive. Further, the corrosiveness can be defined as the one in which the corrosion rate and the amount of corrosion are changed to the evaluation values based on any standard. For example, it is also possible to use the present invention that the amount of corrosion per year is 0.005 mm or less as corrosive: small, 0.005 to 0.02 mm as corrosive: medium, and 0.02 mm or more as corrosive: large. It can be considered as a form.
 以上に説明したように、本発明によれば、土壌が湿潤から乾燥に至る一過程での酸素濃度と降雨情報とをもとに、土壌の酸素濃度の一定期間の経時変化を算出し、この経時変化、および酸素濃度と土壌の腐食性との関係性とをもとに土壌の腐食性を推定するので、より簡便に、土壌腐食性を定量的に推定できるようになる。 As described above, according to the present invention, the change over time in the oxygen concentration of the soil is calculated based on the oxygen concentration and the rainfall information in one process from the wetness to the dryness of the soil. Since soil corrosiveness is estimated based on changes over time and the relationship between oxygen concentration and soil corrosiveness, soil corrosiveness can be estimated more easily and quantitatively.
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。 It should be noted that the present invention is not limited to the embodiments described above, and many modifications and combinations can be carried out by a person having ordinary knowledge in the art within the technical idea of the present invention. That is clear.
 101…測定部、102…算出部、103…推定部、104…出力部。 101 ... measurement unit, 102 ... calculation unit, 103 ... estimation unit, 104 ... output unit.

Claims (5)

  1.  対象とする土壌が湿潤から乾燥に至る一過程での酸素濃度を測定する第1ステップと、
     前記第1ステップで測定された酸素濃度と降雨情報とをもとに、前記土壌の酸素濃度の一定期間の経時変化を算出する第2ステップと、
     前記第2ステップで算出された酸素濃度の一定期間の経時変化と、前記第1ステップで測定された酸素濃度と前記土壌の腐食性との関係性とをもとに前記土壌の腐食性を推定する第3ステップと
     を備える腐食性推定方法。
    The first step to measure the oxygen concentration in the process from wetting to drying of the target soil,
    Based on the oxygen concentration measured in the first step and the rainfall information, the second step of calculating the change over time in the oxygen concentration of the soil for a certain period, and
    The corrosiveness of the soil is estimated based on the time course of the oxygen concentration calculated in the second step and the relationship between the oxygen concentration measured in the first step and the corrosiveness of the soil. A corrosiveness estimation method comprising a third step.
  2.  請求項1記載の腐食性推定方法において、
     前記第1ステップは、前記土壌が湿潤から乾燥に至る一過程を再現し、再現した前記土壌の乾湿過程において、前記土壌の酸素濃度を測定することを特徴とする腐食性推定方法。
    In the corrosiveness estimation method according to claim 1,
    The first step is a corrosiveness estimation method, which reproduces one process from wetness to dryness of the soil, and measures the oxygen concentration of the soil in the reproduced dryness / wetness process of the soil.
  3.  対象とする土壌の酸素濃度を測定する測定部と、
     前記測定部で測定した酸素濃度と降雨情報とをもとに、前記土壌の酸素濃度の一定期間の経時変化を算出する算出部と、
     前記算出部で算出された酸素濃度の一定期間の経時変化、および前記測定部で測定した酸素濃度と前記土壌の腐食性との関係性をもとに、前記土壌の腐食性を推定する推定部と
     を備える腐食性推定装置。
    A measuring unit that measures the oxygen concentration of the target soil,
    A calculation unit that calculates the change over time in the oxygen concentration of the soil based on the oxygen concentration measured by the measurement unit and rainfall information, and a calculation unit.
    An estimation unit that estimates the corrosiveness of the soil based on the change over time of the oxygen concentration calculated by the calculation unit and the relationship between the oxygen concentration measured by the measurement unit and the corrosiveness of the soil. Corrosiveness estimator equipped with.
  4.  請求項3記載の腐食性推定装置において、
     前記土壌の乾湿過程を再現する再現部をさらに備え、
     前記測定部は、前記再現部に乾湿過程を再現された前記土壌の酸素濃度を測定する
     ことを特徴とする腐食性推定装置。
    In the corrosiveness estimation device according to claim 3,
    Further equipped with a reproduction part that reproduces the drying and wetting process of the soil,
    The measuring unit is a corrosiveness estimation device characterized by measuring the oxygen concentration of the soil in which the drying and wetting process is reproduced in the reproducing unit.
  5.  請求項3または4記載の腐食性推定装置において、
     前記推定部で推定された腐食性を出力する出力部をさらに備えることを特徴とする腐食性推定装置。
    In the corrosiveness estimation device according to claim 3 or 4.
    A corrosiveness estimation device, further comprising an output unit that outputs the corrosiveness estimated by the estimation unit.
PCT/JP2020/022480 2020-06-08 2020-06-08 Corrosiveness estimation device and method WO2021250729A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/022480 WO2021250729A1 (en) 2020-06-08 2020-06-08 Corrosiveness estimation device and method
JP2022530355A JPWO2021250729A1 (en) 2020-06-08 2020-06-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/022480 WO2021250729A1 (en) 2020-06-08 2020-06-08 Corrosiveness estimation device and method

Publications (1)

Publication Number Publication Date
WO2021250729A1 true WO2021250729A1 (en) 2021-12-16

Family

ID=78847019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022480 WO2021250729A1 (en) 2020-06-08 2020-06-08 Corrosiveness estimation device and method

Country Status (2)

Country Link
JP (1) JPWO2021250729A1 (en)
WO (1) WO2021250729A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150185133A1 (en) * 2013-12-30 2015-07-02 Electric Power Research Institute, Inc. Apparatus and method for assessing subgrade corrosion
JP2017072592A (en) * 2015-10-06 2017-04-13 新日鐵住金株式会社 Test tank, test device and test method
JP2017215300A (en) * 2016-06-02 2017-12-07 日本電信電話株式会社 Soil corrosion test apparatus and test method thereof
WO2019225727A1 (en) * 2018-05-24 2019-11-28 日本電信電話株式会社 Corrosion rate estimating device and method
WO2020066715A1 (en) * 2018-09-27 2020-04-02 日本電信電話株式会社 Corrosivity evaluation device and method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150185133A1 (en) * 2013-12-30 2015-07-02 Electric Power Research Institute, Inc. Apparatus and method for assessing subgrade corrosion
JP2017072592A (en) * 2015-10-06 2017-04-13 新日鐵住金株式会社 Test tank, test device and test method
JP2017215300A (en) * 2016-06-02 2017-12-07 日本電信電話株式会社 Soil corrosion test apparatus and test method thereof
WO2019225727A1 (en) * 2018-05-24 2019-11-28 日本電信電話株式会社 Corrosion rate estimating device and method
WO2020066715A1 (en) * 2018-09-27 2020-04-02 日本電信電話株式会社 Corrosivity evaluation device and method thereof

Also Published As

Publication number Publication date
JPWO2021250729A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
Liu et al. Modeling the dynamic corrosion process in chloride contaminated concrete structures
Rodell et al. An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE)
JP5066955B2 (en) Corrosion rate evaluation method
Sims et al. Mechanisms controlling green roof peak flow rate attenuation
JP6712543B2 (en) Corrosion amount estimation device and method
JP6850766B2 (en) Corrosion amount estimation device and corrosion amount estimation method
JP7104326B2 (en) Corrosion assessment device and its method
Koren et al. Use of soil moisture observations to improve parameter consistency in watershed calibration
Lund et al. Assimilating flow and level data into an urban drainage surrogate model for forecasting flows and overflows
Longobardi et al. On the relationship between runoff coefficient and catchment initial conditions
Tang et al. Interaction between soil moisture and air temperature in the Mississippi river basin
CN109983329B (en) Corrosion evaluation method
CN106709168B (en) River-based flow prediction method
JP7239859B2 (en) Prediction formula derivation method and prediction formula derivation device
Mannina et al. Uncertainty in sewer sediment deposit modelling: Detailed vs simplified modelling approaches
WO2021250729A1 (en) Corrosiveness estimation device and method
Cresswell et al. The transferability of Australian pedotransfer functions for predicting water retention characteristics of French soils
Lazzarotto et al. A parsimonious soil-type based rainfall-runoff model simultaneously tested in four small agricultural catchments
Karamouz et al. Analysis of hydrologic and agricultural droughts in central part of Iran
Gizzi et al. Geological and hydrogeological characterization of springs in a DSGSD context (Rodoretto Valley–NW Italian Alps)
JP6812305B2 (en) Corrosion rate measuring device and corrosion rate measuring method
Mourad et al. Stormwater quality models: sensitivity to calibration data
Cresswell et al. Functional evaluation of methods for predicting the soil water characteristic
WO2022038699A1 (en) Corrosiveness prediction method and device
US11906419B2 (en) Corrosiveness prediction device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530355

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939888

Country of ref document: EP

Kind code of ref document: A1