WO2021249393A1 - 光传送网络告警处理方法、装置、网络管理系统及介质 - Google Patents
光传送网络告警处理方法、装置、网络管理系统及介质 Download PDFInfo
- Publication number
- WO2021249393A1 WO2021249393A1 PCT/CN2021/098894 CN2021098894W WO2021249393A1 WO 2021249393 A1 WO2021249393 A1 WO 2021249393A1 CN 2021098894 W CN2021098894 W CN 2021098894W WO 2021249393 A1 WO2021249393 A1 WO 2021249393A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- alarm
- alarms
- service
- intra
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 43
- 230000003287 optical effect Effects 0.000 title claims description 112
- 238000000034 method Methods 0.000 claims abstract description 37
- 238000001514 detection method Methods 0.000 claims description 65
- 238000012545 processing Methods 0.000 claims description 48
- 238000004458 analytical method Methods 0.000 claims description 45
- 230000005540 biological transmission Effects 0.000 claims description 11
- 239000010410 layer Substances 0.000 description 595
- 238000012423 maintenance Methods 0.000 description 25
- 230000008569 process Effects 0.000 description 13
- 238000007726 management method Methods 0.000 description 11
- 239000000284 extract Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0791—Fault location on the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/077—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
- H04B10/0771—Fault location on the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/077—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
- H04B10/0773—Network aspects, e.g. central monitoring of transmission parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/077—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
- H04B10/0779—Monitoring line transmitter or line receiver equipment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/06—Management of faults, events, alarms or notifications
- H04L41/0631—Management of faults, events, alarms or notifications using root cause analysis; using analysis of correlation between notifications, alarms or events based on decision criteria, e.g. hierarchy, tree or time analysis
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/06—Management of faults, events, alarms or notifications
- H04L41/0677—Localisation of faults
Definitions
- the present disclosure relates to, but is not limited to, the technical field of optical transport network failure alarms.
- Optical Transport Network is a transport network based on wavelength division multiplexing technology and organized at the optical layer. It is currently used in a wide range of networks, involving multiple networks such as access, convergence, and backbone. A single wavelength can It supports service bandwidth from 10G to 400G, and the service rate of access also ranges from 100M to 100G.
- the present disclosure provides an optical transport network alarm processing method, the method includes: obtaining intra-layer alarms of each layer of the service layer by layer; obtaining the root-cause alarm of the associated layer corresponding to the current layer based on the intra-layer alarm; Determine the service failure point based on the root cause alarm.
- the present disclosure also proposes an optical transport network alarm processing device.
- the device includes: an intra-layer alarm acquisition module configured to obtain intra-layer alarms of each layer layer by layer; and an associated alarm acquisition module configured to be based on all The alarm within the layer obtains the root cause alarm of the associated layer corresponding to the current layer; the alarm analysis module is configured to determine the business failure point based on the root cause alarm.
- the present disclosure also proposes a network management system, which includes the optical transport network alarm processing device as described above.
- the present disclosure also proposes a storage medium that stores one or more programs, and the one or more programs can be executed by one or more processors to realize optical transmission as described above. Steps of the network alarm processing method.
- Fig. 1 is a flowchart of an optical transport network alarm processing method provided by the present disclosure.
- Fig. 2 is a flowchart of an optical transport network alarm processing method provided by the present disclosure.
- Fig. 3 is a flowchart of an optical transport network alarm processing method provided by the present disclosure.
- Fig. 4 is a flowchart of an optical transport network alarm processing method provided by the present disclosure.
- Fig. 5 is a flowchart of an optical transport network alarm processing method provided by the present disclosure.
- Fig. 6 is a flowchart of an optical transport network alarm processing method provided by the present disclosure.
- Fig. 7 is a flowchart of an optical transport network alarm processing method provided by the present disclosure.
- Fig. 8 is a schematic structural diagram of an optical transport network alarm processing device provided by the present disclosure.
- Fig. 9 is a schematic structural diagram of an optical transport network alarm processing device provided by the present disclosure.
- Fig. 10 is a schematic structural diagram of a network management system provided by the present disclosure.
- Fig. 11 is a schematic diagram of a display interface of an alarm display module in an optical transport network alarm processing device provided by the present disclosure.
- One of the objectives of one or more implementations of this specification is to provide an optical transmission network alarm processing method, device, network management system, and medium, which can accurately find the point of failure and the cause of the failure, and reduce the work intensity of operation and maintenance personnel.
- the optical transport network alarm processing method provided by the present disclosure obtains the intra-layer alarms from each layer of the service layer by layer, and uses the relationship between the influence and the affected relationship and the alarm association relationship between each layer to find the association corresponding to the intra-layer alarm of the current layer.
- the key alarms of the layer and then locate the business failure point, improve the accuracy of the business failure point location, and reduce the work intensity of the operation and maintenance personnel.
- optical transport network alarm processing method provided in the present disclosure is applicable to optical transport networks. Of course, it is also applicable to situations where other similar communication networks can perform hierarchical processing of services, and it also falls within the scope of protection of the present disclosure.
- Figure 1 shows a flowchart of an optical transport network alarm processing method provided by the present disclosure. It is understandable that the optical transport network alarm processing method provided in the present disclosure does not require manual operation, completes the location of the service failure point by itself, can provide analysis results, and does not require operation and maintenance personnel to intervene in the intermediate work. As shown in Figure 1, the optical transport network alarm processing method may include the following steps S10 to S30.
- step S10 the intra-layer alarms of each layer of the service are obtained layer by layer.
- the intra-layer alarms of each layer are obtained layer by layer.
- Each layer can be based on the current layered structure of the optical transport network.
- the current optical transport network is generally divided into client signal layer, optical channel layer, and optical recovery Use the section layer and the optical transmission section layer; it can also be the layered processing of services according to the characteristics of the optical transport network and the attributes of the service.
- the client signal is processed according to the attributes of the specific service. Layers are layered.
- each layer has the relationship between influence and being affected, and the correlation of alarms between the layers can be realized.
- the internal alarm retrieval method searches for the internal alarms, which include at least the root cause alarms, and obtains the internal alarms of each layer.
- the purpose of obtaining the intra-layer alarms of each layer is to further obtain the key alarms of the correlation layer based on the intra-layer alarms, that is, to find the key alarms on the corresponding correlation layer that cause the intra-layer alarms of each layer, and finally find the business failure point.
- the alarm data can be divided into three levels, Type A: Root cause alarms, which can trigger other alarms; Type B: Derivative alarms, alarms that cannot be independently generated by themselves, can be divided into forward derived alarms and reverse derived alarms; Type C: Independent alarms, alarms that have nothing to do with other alarms. If the alarm data does not have a root cause alarm (of course, this situation will not generate derivative alarms), then the business failure point will not occur at this layer. Similarly, if the alarm data does not have an independent alarm, then the business failure point will not occur at The layer.
- Critical alarms can include root-cause alarms or not root-cause alarms in the intra-layer alarms. They are related alarms generated by business failure points. Based on key alarms, the business failure points can be reversed.
- step S20 the root cause alarm of the associated layer corresponding to the current layer is obtained based on the intra-layer alarm.
- the adjacent layer between the various business layers can be the correlation layer, which has the relationship between influence and impact, or the relationship between service and service. Therefore, the key of the corresponding correlation layer can be obtained layer by layer according to the alarms in the layer in a certain order and direction. Alarms, for example, the alarms of the uppermost client signal layer will be affected by the optical channel layer below the client signal layer, the alarms of the optical channel layer will be affected by the optical multiplex section layer, and so on.
- Root cause alarms determine the point of business failure.
- the business is processed hierarchically into the relationship between the impact and the affected, the service and the service, the alarm retrieval and the key alarm search of the correlation layer are performed layer by layer, and the alarm analysis is reduced.
- the amount of alarm data that needs to be analyzed to accurately find the location of the business failure point and the root cause is not limited to the operation of alarm processing at a single failure detection point or failure segment, and improves the accuracy of finding the business failure point And efficiency, reducing the work intensity of operation and maintenance personnel.
- the optical transport network alarm processing device can successively obtain the intra-layer alarms of each layer and the key alarms of the corresponding associated layer. , Directly analyze the business failure points, and can also issue corresponding handling opinions based on the business failure points.
- step S30 the service failure point is determined based on the root cause alarm.
- Critical alarms can cause corresponding alarms in the correlation layer in addition to the intra-layer alarms in this layer. Therefore, finding key alarms is the most important task for determining the business failure point.
- searching the key alarms of the correlation layer in reverse one step Step by step to find the final point of business failure that generates critical alarms.
- the optical transport network alarm processing method provided by the present disclosure performs hierarchical alarm processing on the service according to the characteristics of the optical transport network and the attributes of the service when the service fails, and from the top layer according to the influence and the affected relationship between each layer And the correlation between alarms began to collect, process and analyze alarms (including intra-layer alarms and key alarms in the correlation layer) layer by layer, intelligent alarm analysis of the business that failed, and accurately locate the fault point of the business
- the subordinate layer can then give solutions, freeing the source of operation and maintenance personnel from the complex and numerous alarm analysis work.
- the following is a detailed description of using the optical transport network alarm processing method provided by the present disclosure to perform intelligent alarm analysis.
- the prerequisite is that the service layering has been completed according to the characteristics of the optical transport network and the attributes of the service, and the alarm detection points are extracted and stored in the service data.
- the alarm acquisition module in the layer calls the business data module and the alarm data module to query the alarm data at each detection point of the current layer;
- the intra-layer alarm acquisition module analyzes at least the root cause alarms of the current layer
- the associated alarm acquisition module calls the business data module and the alarm data module to query the alarm data at each detection point of the corresponding correlation layer;
- the correlation alarm acquisition module analyzes the key alarms of the corresponding correlation layer according to the inter-layer alarm search method
- the associated alarm acquisition module searches in the order of layers. When the bottom-level root-cause alarm is analyzed, the analysis request is ended, and the relevant information of the business failure point and processing suggestions are output; when the associated layer with no alarm is found, the associated layer The directly corresponding current layer is the layer where the business failure point occurs. The analysis request is ended, and the relevant information and handling suggestions of the business failure point are output.
- step S10 before obtaining the intra-layer alarms of each layer of the service layer by layer, the optical transport network alarm processing method provided in the present disclosure may further include: Step S40: layering the service deal with.
- the hierarchical processing of services can be based on the layer structure of the current optical transmission network, or based on the characteristics of the optical transmission network and the attributes of the service, as long as the service is guaranteed There is a relationship between impact and affected, or a relationship between service and service.
- the correlation layer can be an adjacent layer. Therefore, the key alarms of the corresponding correlation layer can be obtained layer by layer according to the alarms within the layer in a certain order and direction.
- step S40 hierarchical processing of the service may include: dividing the service from top to bottom according to the characteristics of the optical transport network and the attributes of the service. Layer 1, layer 2,..., layer n-1, layer n, where layer n-1 is the client layer, layer n is the service layer of layer n-1, and n is greater than or equal to 2.
- the top layer it can only be the customer layer.
- the service layer which is the association layer of the customer layer
- the service layer below the service layer is its corresponding service layer, which is its corresponding association layer. It can be seen that the name of the service layer is relative.
- this layer is used to obtain the alarm in the layer. It is the customer layer. When the key alarms of this layer are obtained as the correlation layer, this layer acts as the service layer of the upper layer.
- the intelligent alarm analysis process is as follows, the following root cause alarms are at least extracted from the Class A alarm database:
- B1 The user initiates a request for intelligent alarm analysis, and the alarm acquisition module in the layer executes the following steps from the top layer;
- the alarm acquisition module in the layer queries the alarm data on the alarm detection points of the current layer of the client layer;
- the intra-layer alarm acquisition module finds out the intra-layer alarms and alarm detection points of the current layer of the client layer according to the intra-layer alarm retrieval method;
- the associated alarm acquisition module judges whether there is a service layer in the current layer of the client layer
- step B4 If there is no service layer, the alarm detection point where the root cause alarm of the current layer of the client layer is located is the business failure point, and step B5 is executed;
- the associated alarm acquisition module queries the alarm data of the corresponding service layer to determine whether there is a root cause alarm in the service layer;
- step B421 If there is no root cause alarm, the alarm detection point where the root cause alarm of the current layer of the customer layer is located is the business failure point, and step B5 is performed;
- step B422 If there is a root cause alarm, the associated alarm acquisition module finds the root cause alarm of the service layer according to the inter-layer alarm retrieval method, sets the service layer as the current layer of the client layer, and then repeats step B4;
- the above-mentioned intra-layer alarm acquisition module and associated alarm acquisition module can be integrated into one service processing module.
- step S10: obtaining the intra-layer alarms of each layer layer by layer may include step S100 to step S120.
- step S100 find the root cause alarms of the customer layer that occurred in the customer layer in chronological order
- Type A Root-cause alarms, which can trigger other alarms
- Type B Derivative alarms, which cannot be independently generated by themselves. They are divided into forward-derived alarms and reverse-derived alarms
- Type C Independent alarms, alarms that have nothing to do with other alarms.
- step S110 client-level derived alarms of the client-level root-cause alarms are obtained based on the customer-level root-cause alarms.
- step S110 until all alarm detection points are searched.
- a customer-level root-cause alarm fault sequence and a customer-level root-cause alarm list are formed based on the customer-level root-cause alarms and customer-level derived alarms.
- the customer-level root-cause alarm list includes all the customer-level root-cause alarms at the customer level.
- the intra-layer alarms found based on step S100 and step S110 are customer layer alarm failure sequences [alarm failure sequence 1-1, alarm failure sequence 1-2, alarm failure sequence 1-3,...]. Use the above method to perform the same processing on the remaining root cause alarms of the customer layer until all the alarm detection points are retrieved. All independent alarms are grouped into one failure sequence.
- the acquired intra-layer alarms can include:
- the alarms in the layer are classified according to the fault sequence.
- the customer layer alarm fault sequence of the first layer from top to bottom is [alarm fault sequence 1-1, alarm fault sequence 1-2, alarm fault sequence 1-3,... ...,]
- the customer layer alarm fault sequence of the second layer is [alarm fault sequence 2-1, alarm fault sequence 2-2, alarm fault sequence 2-3, ...], ..., the customer layer alarm of the nth layer
- the fault sequence is [alarm fault sequence n-1, alarm fault sequence n-2, alarm fault sequence n-3, ...]
- each customer layer alarm fault sequence includes all alarms related to this fault, customer layer alarm fault sequence
- the purpose of formation is to make it easy to find the root-cause alarm of the corresponding service layer from the key alarms of the corresponding service layer later, and to display it graphically to the operation and maintenance personnel to grasp the fault information of each layer of the business in time;
- the customer-level root-cause alarm is the key alarm of the customer-level failure sequence. All the key alarms of the current layer can constitute the customer layer of the current layer.
- Critical alarm list the customer-level critical alarm list of the first layer is [alarm 1-1, alarm 1-2, alarm 1-3,...];
- the customer-level critical alarm list of the second layer is [alarm 2-1 ,Alarm 2-2,Alarm 2-3,...];
- the customer-level critical alarm list of the nth layer is [Alarm n-1, Alarm n-2, Alarm n-3,...].
- the customer-level root cause alarm of the current layer is the customer-level critical alarm in the customer-level critical alarm list of the current layer;
- step S20: obtaining the root cause alarm of the associated layer corresponding to the current layer based on the intra-layer alarm may include steps S200 to S230.
- step S200 the critical alarms of the service layer corresponding to the alarm detection points on the service layer are found according to the alarm detection points at which the root-cause alarms occurred at the customer layer.
- the key alarm search steps corresponding to the correlation layer are as follows: perform the search of the alarms in the customer layer to obtain the customer layer root cause alarm list [Alarm 1-1, Alarm 1 -2, Alarm 1-3, ...]; According to the location of the alarm detection point that occurred in the customer layer root cause alarm [Alarm 1-1], find the key alarm corresponding to the alarm detection point on the service layer.
- the key alarm sequence number is [ Alarm 2'-1].
- step S210 the intra-layer alarm retrieval is performed on the service layer to obtain the service layer alarm failure sequence of the service layer.
- step S220 search for the target service layer alarm failure sequence where the service layer critical alarm is located.
- step S200 for the root cause alarm [alarm 2@-1] until the lowest service layer root cause alarm is found, and the alarm detection point where the lowest service layer root cause alarm is located is the final business failure point.
- step S230 the service layer root cause alarm of the target service layer alarm failure sequence is obtained.
- all customer-level root-cause alarms at the customer level can find the service-level root-cause alarms corresponding to the lowest-level service layer from the top-level root-cause alarms of the business.
- the service-level root-cause alarms at the lowest level are the original alarms.
- the location of the alarm detection point where the root source alarm of the underlying service layer is located is the business failure point.
- step S30: determining the service failure point based on the root cause alarm may include steps S300 to S320.
- step S300 the service layer alarm failure sequence is obtained layer by layer based on the service layer root cause alarms to the lowest layer.
- the steps for obtaining the root-cause alarms at the associated layer are as follows: perform intra-layer alarm retrieval on the client layer to obtain the client-layer root-cause alarm list [Alarm 1-1, Alarm 1-2, Alarm 1 -3,...]; According to the location of the alarm detection point of the customer layer root cause alarm [Alarm 1-1], find the key alarm on the corresponding alarm detection point of the corresponding service layer, and the service layer corresponds to the customer layer root cause alarm [ The key alarm sequence number of Alarm 1-1] is [Alarm 2'-1].
- step S310 the root cause alarm of the lowest service layer is obtained based on the alarm failure sequence of the lowest service layer.
- step S300 for the root cause alarm [alarm 2@-1] until the lowest service layer root cause alarm is found, and the alarm detection point where the lowest service layer root cause alarm is located is the final business failure point.
- step S320 the alarm detection point where the root source alarm of the lowest service layer is located is determined as the service failure point.
- all customer-level root-cause alarms at the customer level can find the service-level root-cause alarms corresponding to the lowest-level service layer from the top-level root-cause alarms of the business.
- the service-level root-cause alarms at the lowest level are the original alarms.
- the location of the alarm detection point where the root source alarm of the underlying service layer is located is the business failure point.
- step S10 after acquiring the intra-layer alarms of each layer layer by layer, the optical transport network alarm processing method provided by the present disclosure further includes: step S50: at least graphically displaying the intra-layer alarms of each layer.
- At least the intra-layer alarms of each layer can be presented graphically, and the corresponding intra-layer alarms in each layer can be displayed.
- a business When a business fails, it can be hierarchical for this business, by extracting the alarm detection points of each layer, and then graphically displaying at least the intra-layer alarms of each layer according to the result of the business layering, and it can also include business failures Click and wait for information. Operation and maintenance personnel can intuitively see the alarm data of each layer from the source node, intermediate node and end node of the business.
- the business can include one-way business and two-way business.
- the exemplary processing process of using the optical transport network alarm processing method provided by the implementation of this specification to perform service end-to-end hierarchical alarm graphical display is as follows, provided that the service has been layered and the service layer information is stored in the service data module :
- the user initiates an end-to-end alarm request for query services
- the alarm acquisition module in the layer extracts the alarm detection point information of each layer according to the service layer information, and stores the service alarm detection point information in the service data module;
- the alarm acquisition module in the layer collects the alarm information on the alarm detection points of each layer according to the business data module, and stores the alarm information in the alarm data module;
- the intra-layer alarm acquisition module analyzes and processes the alarm information of each layer according to the intra-layer alarm search method, and obtains the customer layer alarm failure sequence of each layer;
- the alarm acquisition module in the layer queries the alarm data module data, obtains the customer layer alarm fault sequence on each layer, and outputs it to the alarm display module;
- the alarm display module displays the alarm information graphically according to the end-to-end of the business layer. For the layers with alarms, they are displayed according to the customer alarm failure sequence; for the layers without alarms, only the alarm detection points of the layer are displayed.
- the above steps store the business layer information in the business data module, and then perform the following steps from the top layer:
- A2 Extract the relevant alarm detection points of the current layer, establish the current layer alarm detection point table, and store the alarm detection point information in the business database;
- A3 Collect alarm data on all alarm detection points of the current layer, and store the alarm data in the alarm data module;
- A4 Determine whether there is a root cause alarm in the current layer
- step A41 If there is no root cause alarm, go to step A6;
- the intra-layer alarm acquisition module searches for the intra-layer alarm at least including the root-cause alarm according to the intra-layer alarm retrieval method, and obtains the intra-layer alarm of the layer;
- A5 Determine whether there is a service layer in the current layer
- step A51 If there is no service layer, go to step A6;
- step A52 If there is a service layer, repeat step A2 for its service layer;
- A6 For the layer with alarms, from the first node of the business to the last node of the business, at least graphically display the alarms within the layer according to the fault sequence end-to-end; for the layers without alarms, only the alarm detection points of this layer are displayed , See Figure 11.
- the intra-layer alarm acquisition module in the service processing module extracts the alarm detection point information of each layer according to the hierarchical information, and sets the service alarm detection point
- the information is stored in the business data module; the alarm information on each detection point of each layer is collected, and the result is stored in the alarm data module; the alarm information of each layer is analyzed and processed according to the alarm search method in the layer, and the alarm fault of each layer is obtained Sequence; output the alarm fault sequence results of each layer to the alarm display module; the alarm display module displays the alarm information end-to-end graphically according to the business layer, and displays the alarm information according to the fault sequence for the layers with alarms; for the layers without alarms, only Display the alarm detection points of this layer.
- the optical transport network alarm processing method obtaineds intra-layer alarms for each layer layer by layer after layering services, and then based on the intra-layer alarms of the current layer according to the correlation between the layers Find the key alarms corresponding to the correlation layer, and then use the key alarms to determine the business failure point, so the business failure point is accurately located through the correlation of the alarms between the different layers of the business, and solutions are given, without the need for operation and maintenance personnel to analyze and process these alarms Reduce the work intensity of operation and maintenance personnel.
- optical transport network alarm processing method provided by the present disclosure can at least graphically display the intra-layer alarms of each layer, which can facilitate the operation and maintenance personnel to intuitively grasp the intra-layer alarms of each business layer, so that the operation and maintenance personnel can make preparations in time.
- an intelligent alarm processing device for example, an optical transmission network alarm processing device 10 provided for the present disclosure includes: an intra-layer alarm acquisition module 100, an associated alarm acquisition module 110, and an alarm analysis module 120 .
- the intra-layer alarm acquisition module 100 is configured to obtain the intra-layer alarms of each layer layer by layer.
- the intra-layer alarms of each layer are obtained layer by layer.
- Each layer can be based on the current layered structure of the optical transport network.
- the current optical transport network is generally divided into client signal layer, optical channel layer, and optical recovery Use the section layer and the optical transmission section layer; it can also be the layered processing of services according to the characteristics of the optical transport network and the attributes of the service.
- the client signal is processed according to the attributes of the specific service. Layers are layered.
- each layer has the relationship between influence and being affected, and the correlation of alarms between the layers can be realized.
- Obtaining the intra-layer alarms of each layer of the business first extract the alarm detection points of each layer, and then obtain the alarm data on all alarm detection points of each layer, and determine whether there are alarms in each layer based on these alarm data, and if there are alarms, follow the alarm detection points in the layer
- the retrieval method searches for intra-layer alarms, obtains intra-layer alarms of each layer, and intra-layer alarms include at least root cause alarms, and obtains the retrieval result of intra-layer alarms.
- the purpose of obtaining the intra-layer alarms of each layer is to further obtain the key alarms of the correlation layer based on the intra-layer alarms, that is, to find the key alarms on the corresponding correlation layer that cause the intra-layer alarms of each layer, and finally find the business failure point.
- the alarm data can be divided into three levels, Type A: Root cause alarms, which can trigger other alarms; Type B: Derivative alarms, alarms that cannot be independently generated by themselves, can be divided into forward derived alarms and reverse derived alarms; Type C: Independent alarms, alarms that have nothing to do with other alarms. If the alarm data does not have a root cause alarm (of course, this situation will not generate derivative alarms), then the business failure point will not occur at this layer. Similarly, if the alarm data does not have an independent alarm, then the business failure point will not occur at The layer.
- Critical alarms can include root-cause alarms in the intra-layer alarms, which are related alarms generated by failure points. Based on key alarms, business failure points can be reversed.
- the associated alarm obtaining module 110 is configured to obtain the root cause alarm of the associated layer corresponding to the current layer based on the intra-layer alarm.
- the adjacent layer between the various business layers can be the correlation layer, which has the relationship between influence and impact, or the relationship between service and service. Therefore, the key of the corresponding correlation layer can be obtained layer by layer according to the alarms in the layer in a certain order and direction. Alarms, for example, the alarms of the uppermost client signal layer will be affected by the optical channel layer below the client signal layer, the alarms of the optical channel layer will be affected by the optical multiplex section layer, and so on.
- Root cause alarms determine the point of business failure.
- the business is processed hierarchically into the relationship between the impact and the affected, the service and the service, and the alarm retrieval and the key alarm search of the correlation layer are performed layer by layer, which reduces the alarm analysis.
- the amount of alarm data that needs to be analyzed to accurately find the location of the business failure point and the root cause is not limited to the operation of alarm processing at a single failure detection point or failure segment, and improves the accuracy of finding the business failure point And efficiency, reducing the work intensity of operation and maintenance personnel.
- the optical transport network alarm processing device can successively obtain the intra-layer alarms of each layer and the key alarms of the corresponding associated layer. , Analyze the business failure points, and issue corresponding handling opinions based on the business failure points.
- the alarm analysis module 120 is configured to determine the business failure point based on the root cause alarm.
- Critical alarms can cause corresponding alarms in the correlation layer in addition to the intra-layer alarms in this layer. Therefore, finding key alarms is the most important task for determining the business failure point.
- searching the key alarms of the correlation layer in reverse one step Step by step to find the final point of business failure that generates critical alarms.
- the optical transport network alarm processing device performs hierarchical alarm processing on the service according to the characteristics of the optical transport network and the attributes of the service when the service fails, and from the top layer according to the influence and the affected relationship between the layers
- the correlation between alarms began to collect, process and analyze alarms (including intra-layer alarms and key alarms in the correlation layer) layer by layer, perform alarm analysis on the business that has failed, and accurately locate the layer of the business failure point , And then can give solutions, free the source of operation and maintenance personnel from the complex and numerous alarm analysis work.
- the following is a detailed description of using the optical transport network alarm processing device provided by the present disclosure to perform intelligent alarm analysis.
- the prerequisite is that the service layering has been completed according to the characteristics of the optical transport network and the attributes of the service, and the alarm detection points are extracted and stored in the service.
- Data module, and collect all layers of alarm data and store it in the alarm data module, the steps are as follows:
- the alarm acquisition module in the layer calls the business data module and the alarm data module to query the alarm data at each detection point of the current layer;
- the intra-layer alarm acquisition module analyzes at least the root cause alarms of the current layer
- the associated alarm acquisition module calls the business data module and the alarm data module to query the alarm data at each detection point of the corresponding correlation layer;
- the correlation alarm acquisition module analyzes the key alarms of the corresponding correlation layer according to the inter-layer alarm search method
- the associated alarm acquisition module searches in the order of layers. When the bottom-level root-cause alarm is analyzed, the analysis request is ended, and the relevant information of the business failure point and processing suggestions are output; when the associated layer with no alarm is found, the associated layer The directly corresponding current layer is the layer where the business failure point occurs. The analysis request is ended, and the relevant information and handling suggestions of the business failure point are output.
- optical transport network alarm processing device 10 may also include the following modules:
- Business processing module hierarchical business, business alarm detection point information processing
- Business data module store business data, including business basic data, business hierarchical data, and business alarm detection point data;
- the alarm analysis module can be used for querying alarm data, processing alarm classification, retrieving and analyzing alarms in the layer, and retrieving and analyzing key alarms of the associated layer;
- Alarm data module Store alarm data at each alarm detection point of each layer, store alarm classification information, and store alarm failure sequence information;
- Alarm display module Graphical or tabular display of alarm information at all current levels of the business.
- the optical transport network alarm processing device 10 further includes an alarm display module 130 configured to: graphically display at least intra-layer alarms of each layer.
- the intra-layer alarm acquisition module in the service processing module extracts the alarm detection point information of each layer according to the layered information, and sets the service alarm detection point
- the information is stored in the business data module; the alarm information on each detection point of each layer is collected, and the result is stored in the alarm data module; the alarm information of each layer is analyzed and processed according to the alarm search method in the layer, and the alarm fault of each layer is obtained Sequence; output the alarm fault sequence results of each layer to the alarm display module; the alarm display module displays the alarm information end-to-end graphically according to the business layer, and displays the alarm information according to the fault sequence for the layers with alarms; for the layers without alarms, only Display the alarm detection points of this layer.
- the optical transport network alarm processing device obtains intra-layer alarms for each layer layer by layer after layering services, and then based on the intra-layer alarms of the current layer according to the correlation between the layers Find the key alarms of the corresponding correlation layer, and then use the key alarms to determine the business failure point, so the business failure point can be accurately located through the correlation of the alarms between the different layers of the business, and solutions are given, without the need for operation and maintenance personnel to analyze and process these alarms Reduce the work intensity of operation and maintenance personnel.
- optical transport network alarm processing device provided by the present disclosure can at least graphically display the intra-layer alarms of each layer, which can facilitate the operation and maintenance personnel to intuitively grasp the intra-layer alarms of each layer of the business, so that the operation and maintenance personnel can make preparations in time.
- a network management system 1 provided for the present disclosure includes an optical transport network alarm processing device 10 as described above, and the optical transport network alarm processing device 10 may include intra-layer alarm acquisition Module 100, associated alarm acquisition module 110, and alarm analysis module 120.
- the intra-layer alarm acquisition module 100 is configured to obtain the intra-layer alarms of each layer layer by layer.
- the intra-layer alarms of each layer are obtained layer by layer.
- Each layer can be based on the current layered structure of the optical transport network.
- the current optical transport network is generally divided into client signal layer, optical channel layer, and optical recovery Use the section layer and the optical transmission section layer; it can also be the layered processing of services according to the characteristics of the optical transport network and the attributes of the service.
- the client signal is processed according to the attributes of the specific service. Layers are layered.
- each layer has the relationship between influence and being affected, and the correlation of alarms between the layers can be realized.
- the internal alarm retrieval method searches for the internal alarms of each layer, obtains the internal alarms of each layer, the internal alarms include at least the root cause alarms, and obtains the retrieval result of the internal alarms.
- the purpose of obtaining the intra-layer alarms of each layer is to further obtain the key alarms of the correlation layer based on the intra-layer alarms, that is, to find the key alarms on the corresponding correlation layer that cause the intra-layer alarms of each layer, and finally find the business failure point.
- the alarm data can be divided into three levels, Type A: Root cause alarms, which can trigger other alarms; Type B: Derivative alarms, alarms that cannot be independently generated by themselves, can be divided into forward derived alarms and reverse derived alarms; Type C: Independent alarms, alarms that have nothing to do with other alarms. If the alarm data does not have a root cause alarm (of course, this situation will not generate derivative alarms), then the business failure point will not occur at this layer. Similarly, if the alarm data does not have an independent alarm, then the business failure point will not occur at The layer.
- Critical alarms can include root-cause alarms or not root-cause alarms in the intra-layer alarms. They are related alarms generated by business failure points. Based on key alarms, the business failure points can be reversed.
- the associated alarm obtaining module 110 is configured to obtain the root cause alarm of the associated layer corresponding to the current layer based on the intra-layer alarm.
- the adjacent layer between the various business layers can be the correlation layer, which has the relationship between influence and impact, or the relationship between service and service. Therefore, the key of the corresponding correlation layer can be obtained layer by layer according to the alarms in the layer in a certain order and direction. Alarms, for example, the alarms of the uppermost client signal layer will be affected by the optical channel layer below the client signal layer, the alarms of the optical channel layer will be affected by the optical multiplex section layer, and so on.
- Root cause alarms determine the point of business failure.
- the business is processed hierarchically into the relationship between the influence and the affected, the service and the served, the alarm retrieval and the key alarm search of the correlation layer are performed layer by layer, which reduces the analysis required for alarm analysis.
- the amount of alarm data can accurately find the location and root cause of the business failure point. It is not only limited to the operation of alarm processing at a single failure detection point or failure segment, but also improves the accuracy and efficiency of finding the business failure point. Reduce the work intensity of operation and maintenance personnel.
- the network management system can successively obtain the intra-layer alarms of each layer and the key alarms of the corresponding associated layer, and directly analyze the business failure Point, you can also issue corresponding handling opinions based on the business failure point.
- the alarm analysis module 120 is configured to determine the business failure point based on the root cause alarm.
- Critical alarms can cause corresponding alarms in the correlation layer in addition to the intra-layer alarms in this layer. Therefore, finding key alarms is the most important task for determining the business failure point.
- searching the key alarms of the correlation layer in reverse one step Step by step to find the final point of business failure that generates critical alarms. Therefore, when the service fails, the network management system provided by the present disclosure performs hierarchical alarm processing on the service according to the characteristics of the optical transport network and the attributes of the service.
- the prerequisite is that the service layering has been completed according to the characteristics of the optical transport network and the attributes of the service, and the alarm detection points are extracted and stored in the service data module. And to collect the alarm data of each layer and store it in the alarm data module, the steps are as follows:
- the alarm acquisition module in the layer calls the business data module and the alarm data module to query the alarm data at each detection point of the current layer;
- the intra-layer alarm acquisition module analyzes at least the root cause alarms of the current layer
- the associated alarm acquisition module calls the business data module and the alarm data module to query the alarm data at each detection point of the corresponding correlation layer;
- the correlation alarm acquisition module analyzes the key alarms of the corresponding correlation layer according to the inter-layer alarm search method
- the associated alarm acquisition module searches in the order of layers. When the bottom-level root-cause alarm is analyzed, the analysis request is terminated, and the relevant information of the business failure point and processing suggestions are output; when the associated layer without alarms is found, the associated layer The directly corresponding current layer is the layer where the business failure point occurs. The analysis request is ended, and the relevant information and handling suggestions of the business failure point are output.
- the network management system obtaineds intra-layer alarms for each layer layer by layer after layering services, and then finds the corresponding association based on the intra-layer alarms of the current layer according to the association relationship between the layers.
- the key alarms of the layer, and then the key alarms are used to determine the business failure point, so the business failure point is accurately located through the correlation between the alarms between the different layers of the business, and solutions are given. There is no need for operation and maintenance personnel to analyze and process these alarms. Reduce the work intensity of operation and maintenance personnel.
- the network management system provided by the present disclosure can at least graphically display the intra-layer alarms of each layer, which can facilitate the operation and maintenance personnel to intuitively grasp the intra-layer alarms of each layer of the business, so that the operation and maintenance personnel can make preparations in time.
- the present disclosure provides a computer-readable storage medium, the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors, so as to realize the The steps of the optical transport network alarm processing method are shown, and the corresponding technical effects are achieved.
- a typical implementation device is a computer.
- the computer may be, for example, a personal computer, a laptop computer, a cell phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or Any combination of these devices.
- Computer-readable storage media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
- the information can be computer-readable instructions, data structures, program modules, or other data.
- Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage, Magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices. According to the definition in this article, computer-readable media does not include transitory media, such as modulated data signals and carrier waves.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本申请提供了一种传送网络告警处理方法、装置、网络管理系统及介质。所述方法包括以下步骤:逐层获取业务各层的层内告警;基于所述层内告警获取当前层对应的关联层的根源告警;基于所述根源告警确定业务故障点。
Description
相关申请的交叉引用
本申请要求2020年6月12日提交给中国专利局的第202010533023.4号专利申请的优先权,其全部内容通过引用合并于此。
本公开涉及但不限于光传送网络故障告警技术领域。
光传送网络OTN(Optical Transport Network)是以波分复用技术为基础、在光层组织网络的传送网,目前使用范围非常广泛,涉及到接入、汇聚和骨干等多种网络,单个波长可以支持从10G到400G的业务带宽,接入的业务速率也从100M到100G不等。
由于这种网络调度非常灵活,以及接入的业务种类呈现多样性,导致现网中发生故障出现告警时的告警数据量非常庞大,需要专业的运维人员进行大量的分析和排除工作才能最终找到具体的故障点,给维护工作带来非常大的不便。
发明内容
第一方面,本公开提供了一种光传送网络告警处理方法,所述方法包括:逐层获取业务各层的层内告警;基于所述层内告警获取当前层对应的关联层的根源告警;基于所述根源告警确定业务故障点。
第二方面,本公开还提出了一种光传送网络告警处理装置,所述装置包括:层内告警获取模块,配置为逐层获取各层的层内告警;关联告警获取模块,配置为基于所述层内告警获取当前层对应的关联层的根源告警;告警分析模块,配置为基于所述根源告警确定业务故障点。
第三方面,本公开还提出了一种网络管理系统,所述网络管理系统包括如上文所述光传送网络告警处理装置。
第四方面,本公开还提出了一种存储介质,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,实现如上文所述光传送网络告警处理方法的步骤。
图1是本公开提供的一种光传送网络告警处理方法的流程图。
图2是本公开提供的一种光传送网络告警处理方法的流程图。
图3是本公开提供的一种光传送网络告警处理方法的流程图。
图4是本公开提供的一种光传送网络告警处理方法的流程图。
图5是本公开提供的一种光传送网络告警处理方法的流程图。
图6是本公开提供的一种光传送网络告警处理方法的流程图。
图7是本公开提供的一种光传送网络告警处理方法的流程图。
图8是本公开提供的一种光传送网络告警处理装置的结构示意图。
图9是本公开提供的一种光传送网络告警处理装置的结构示意图。
图10是本公开提供的一种网路管理系统的结构示意图。
图11是本公开提供的一种光传送网络告警处理装置中告警显示模块的显示界面的示意图。
为了使本技术领域的人员更好地理解本说明书中的技术方案,下面将结合本说明书一个或多个实施方式中的附图,对本说明书一个或多个实施方式中的技术方案进行清楚、完整地描述,显然,所描述的一个或多个实施方式仅仅是本说明书一部分实施方式,而不是全部的实施方式。基于本说明书中的一个或多个实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都应当属于本文件的保护范围。
本说明书一个或多个实施方式的目的之一是提供一种光传送网络告警处理方法、装置、网络管理系统及介质,可以准确找到故障点和故障原因,降低运维人员的工作强度。
本公开提供的光传送网络告警处理方法通过对业务各层逐层获取 层内告警后,利用各层之间影响与被影响的关系和告警的关联关系查找到当前层的层内告警对应的关联层的关键告警,进而定位业务故障点,提高了业务故障点定位的准确性,降低了运维人员的工作强度。下面将详细地描述本说明书提供的光传送网络告警处理方法及其各个步骤。
需要说明的是,本公开提供的光传送网络告警处理方法适用于光传送网络,当然对于其他相近的通信网络可以对业务进行分层处理的情况同样适用,亦属于本公开所保护的范围。
图1所示为本公开提供的一种光传送网络告警处理方法的流程图。可以理解的是,本公开提供的光传送网络告警处理方法不需要人工操作,完全自行完成业务故障点的定位,可以给出分析结果,不需要运维人员介入中间的工作。如图1所示,该光传送网络告警处理方法,可以包括以下步骤S10至步骤S30。
在步骤S10,逐层获取业务各层的层内告警。
对光传送网络业务逐层获取各层的层内告警,各层可以是基于目前光传送网络的分层结构,比如目前光传送网络一般自上而下分为客户信号层、光通道层、光复用段层、光传输段层;也可以是根据光传送网络的特性和业务的属性对业务进行的分层处理,比如在目前光传送网络分层基础上再根据具体业务的属性再对客户信号层进行分层。
需要说明的是,各层之间具有影响与被影响的关系,可以实现层之间告警的相互关联。
获取业务各层的层内告警首先提取各层的告警检测点,然后获取各层的所有告警检测点上的告警数据,基于这些告警数据判断各层是否有根源告警,如果有根源告警则按照层内告警检索方法查找层内告警,层内告警至少包括根源告警,获取各层的层内告警。
获取各层的层内告警的目的是基于层内告警进一步获取关联层的关键告警,也就是查找引起各层的层内告警的对应关联层上的关键告警,最终找到业务故障点。
可以将告警数据分为三个等级,A类:根源告警,能引发其他告警的告警;B类:衍生类告警,无法自己独立产生的告警,可以分为 正向衍生告警和反向衍生告警;C类:独立告警,与其他告警无任何关系的告警。如果告警数据没有根源告警(当然这种情况也不会产生衍生类告警),那么业务故障点不会发生在该层,同样地,如果告警数据没有独立告警,那么业务故障点也不会发生在该层。关键告警在层内告警中可以包括根源告警,也可以不是根源告警,是业务故障点产生的相关告警,基于关键告警可以反向查找业务故障点。
在步骤S20,基于层内告警获取当前层对应的关联层的根源告警。
业务各层之间的相邻层可以是关联层,存在影响与被影响的关系,或者服务与被服务的关系,因此可以按照一定的顺序和方向逐层根据层内告警获取对应关联层的关键告警,比如最上层的客户信号层的告警会受到客户信号层下方的光通道层的影响,光通道层的告警会受到光复用段层的影响,以此类推。
根据对应关联层的关键告警找到该关联层的根源告警,该关联层的根源告警可以引起关联层本层的层内告警之外还可以引起与关联层相邻的处于上层的当前层的层内告警,因此从当前层的层内告警反向查找对应关联层的关键告警,逐层查找对应关联层的根源告警,直到找到最终的关联层的根源告警,那么可以基于该最终的关联层上的根源告警确定业务故障点。
本公开提供的光传送网络告警处理方法中,将业务分层处理为具有影响与被影响,服务与被服务的关系,逐层进行告警检索以及关联层的关键告警的查找,降低了告警分析所需要分析的告警数据量,准确找到业务故障点真正发生的位置和产生的根本原因,并不只是局限在单个故障检测点或者故障段落上进行告警处理的操作,提高了业务故障点查找的准确性和效率,降低运维人员的工作强度。
因此,在使用本公开提供的光传送网络告警处理方法进行告警分析时,只需要执行告警智能化分析菜单,光传送网络告警处理装置可以先后获取各层的层内告警以及对应关联层的关键告警,直接分析出业务故障点,还可以根据业务故障点出具相应的处理意见。
在步骤S30,基于根源告警确定业务故障点。
关键告警是引起本层的层内告警之外还可以引起关联层产生相应 的告警,因此查找关键告警对于确定业务故障点是重中之重的工作,通过反向查找关联层的关键告警,一步步找到产生关键告警的最终的业务故障点。因此,本公开提供的光传送网络告警处理方法在业务出现故障时,根据光传送网络的特性和业务的属性对业务进行分层告警处理,从最上层根据各层之间的影响与被影响关系以及告警之间的关联关系开始逐层对告警(包括层内告警和关联层的关键告警)进行收集、处理和分析,对出现故障的业务进行智能化告警分析,准确定位出该业务故障点的所属层,进而可以给出解决意见,使运维人源从复杂和繁多的告警分析工作中解放出来。
下面来详细描述采用本公开提供的光传送网络告警处理方法进行告警智能化分析,前提条件是已经根据光传送网络的特性和业务的属性完成对业务的分层,提取告警检测点存入业务数据模块,以及收集各层告警数据存入告警数据模块,步骤如下:
1、用户发起告警智能化分析请求;
2、层内告警获取模块调用业务数据模块和告警数据模块,查询当前层各检测点上的告警数据;
3、层内告警获取模块分析当前层的至少根源告警;
4、关联告警获取模块调用业务数据模块和告警数据模块,查询对应关联层各检测点上的告警数据;
5、关联告警获取模块根据层间告警查找方法分析对应的关联层的关键告警;
6、关联告警获取模块按层的顺序依次查找,当分析到最底层的根源告警时结束分析请求,输出业务故障点的相关信息及处理建议;当查找到无告警的关联层时,该关联层直接对应的当前层即为业务故障点发生的层,结束分析请求,输出业务故障点的相关信息及处理建议。
参见图2所示,在一些实施方式中,步骤S10:逐层获取业务各层的层内告警之前,本公开提供的光传送网络告警处理方法,还可以包括:步骤S40:对业务进行分层处理。
正如上文所述,对业务进行分层处理可以基于目前光传输网络所 具有的层结构对业务进行分层处理,还可以基于光传输网络的特性和业务的属性进行分层处理,只要保证业务各层之间存在影响与被影响的关系,或者服务与被服务的关系,关联层可以是相邻层,因此可以按照一定的顺序和方向逐层根据层内告警获取对应关联层的关键告警。
在一些实施方式中,本公开提供的光传送网络告警处理方法中,步骤S40:对业务进行分层处理,可以包括:按照光传送网络的特性和业务的属性将业务自上而下分为第1层,第2层,……,第n-1层,第n层,其中第n-1层是客户层,第n层是第n-1层的服务层,n大于等于2。
作为最上层的只能是客户层,客户层的下方是服务层,也就是该客户层的关联层,服务层的下方是其对应的服务层,也就是其对应的关联层。可以看出,服务层的称谓是相对的,对于同一个层(非顶层和非底层)可以是上一层的服务层,还可以是下一层的客户层,因此获取层内告警时该层是客户层,当作为关联层获取该层的关键告警时该层作为上一层的服务层。
基于本公开给出的光传送网络告警处理方法,告警智能化分析过程如下,下文中的根源告警至少从A类告警库中提取:
B1:用户发起告警智能化分析请求,层内告警获取模块从最上层开始执行下面的步骤;
B2:层内告警获取模块查询客户层当前层各告警检测点上的告警数据;
B3:根据告警数据判断客户层当前层是否存在根源告警;
B31:如果没有根源告警,则当前业务无故障,结束退出;
B32:如果有根源告警,则层内告警获取模块根据层内告警检索方法找出客户层当前层的层内告警以及告警检测点;
B4:关联告警获取模块判断客户层当前层是否存在服务层;
B41:如果不存在服务层,本客户层当前层的根源告警所处的告警检测点即为业务故障点,执行步骤B5;
B42:如果存在服务层,关联告警获取模块查询对应服务层的告警数据,判断该服务层是否存在根源告警;
B421:如果没有根源告警,本客户层当前层的根源告警所在的告警检测点即为业务故障点,执行步骤B5;
B422:如果有根源告警,关联告警获取模块根据层间告警检索方法找到该服务层的根源告警,将该服务层置为客户层当前层,然后重复执行步骤B4;
B5:输出业务故障点的相关信息及处理建议,然后退出。
上述的层内告警获取模块和关联告警获取模块可以集成为一个业务处理模块中。
参见图3所示,在一些实施方式中,本公开提供的光传送网络告警处理方法中,步骤S10:逐层获取各层的层内告警,可以包括步骤S100至步骤S120。
在步骤S100,按照时间顺序找到客户层内发生的客户层根源告警;
将告警分为三个等级,A类:根源告警,能引发其它告警的告警;B类:衍生类告警,无法自己独立产生的告警,分为正向衍生告警和反向衍生告警;C类:独立告警,跟其它告警无任何关系的告警。
在获取层内告警时,对A类告警按告警发生时间的时间顺序进行排序,将客户层根源告警按发生时间由早到晚的顺序依次排序为【告警1-1,告警1-2,告警1-3,……】。
在步骤S110,基于客户层根源告警获取客户层根源告警的客户层衍生告警。
找到根源告警【告警1-1】发生的告警检测点位置,根据业务流向上的告警检测点顺序,查找下一个告警检测点上根源告警【告警1-1】发生的时间节点后的所有告警,以此找到根源告警【告警1-1】在当前客户层的所有客户层衍生告警,根据查找结果更新A类告警库和B类告警库。A类告警库和B类告警库的设置目的是便于各层告警分析处理时A类告警和B类告警的提取。
重复执行步骤S110,直到查找完所有的告警检测点。
在步骤S120,基于客户层根源告警和客户层衍生告警形成客户层根源告警的客户层告警故障序列以及客户层根源告警列表,客户层根源告警列表包括该客户层所有的客户层根源告警。
基于步骤S100和步骤S110查找到的层内告警为客户层告警故障序列【告警故障序列1-1,告警故障序列1-2,告警故障序列1-3,……,】。采用上述方式对剩余的该客户层的根源告警进行同样的处理,直到检索完所有告警检测点。所有独立告警归为一个故障序列。
获取的层内告警可以包括:
1、层内告警按故障序列进行了分类,自上往下的第1层的客户层告警故障序列为【告警故障序列1-1,告警故障序列1-2,告警故障序列1-3,……,】,第2层的客户层告警故障序列为【告警故障序列2-1,告警故障序列2-2,告警故障序列2-3,……】,……,第n层的客户层告警故障序列为【告警故障序列n-1,告警故障序列n-2,告警故障序列n-3,……】,每个客户层告警故障序列包含与这个故障相关的所有告警,客户层告警故障序列的形成目的是便于后面由对应服务层的关键告警查找到该对应服务层的根源告警,以及后面用于图形化显示给运维人员及时掌握业务各层的故障信息;
2、每个客户层故障序列中只有唯一一个A类告警即客户层根源告警,该客户层根源告警为该客户层故障序列的关键告警,当前层的所有关键告警可以构成该当前层的客户层关键告警列表,第1层的客户层关键告警列表为【告警1-1,告警1-2,告警1-3,……,】;第2层的客户层关键告警列表为【告警2-1,告警2-2,告警2-3,……】;第n层的客户层关键告警列表为【告警n-1,告警n-2,告警n-3,……】。并且当前层的客户层根源告警为该当前层的客户层关键告警列表中的客户层关键告警;
3、所有独立告警归为一个故障序列,这类告警对业务并无影响。
参见图4所示,在一些实施方式中,本公开提供的光传送网络告警处理方法,步骤S20:基于层内告警获取当前层对应的关联层的根源告警,可以包括步骤S200至S230。
在步骤S200,根据客户层根源告警发生的告警检测点找到服务层上对应该告警检测点的服务层关键告警。
在已经完成第一层客户层的层内根源告警的查找后,对应关联层的关键告警查找步骤如下:对客户层执行层内告警检索,得到客户层 根源告警列表【告警1-1,告警1-2,告警1-3,……】;根据客户层根源告警【告警1-1】发生的告警检测点位置,找到对应服务层上对应该告警检测点的关键告警,此关键告警序号为【告警2’-1】。
在步骤S210,对服务层执行层内告警检索,得到服务层的服务层告警故障序列。
对服务层执行层内告警检索,得到服务层告警故障序列【告警故障序列2-1,告警故障序列2-2,告警故障序列2-3,……】以及服务层根源告警列表【告警2-1,告警2-2,告警2-3,……】。
在步骤S220,查找服务层关键告警所在的目标服务层告警故障序列。
对服务层执行层内告警检索,得到服务层告警故障序列【告警故障序列2-1,告警故障序列2-2,告警故障序列2-3,……】以及服务层关键告警列表【告警2-1,告警2-2,告警2-3,……】。
查询服务层中的关键告警【告警2’-1】所在的服务层告警故障序列,得到该服务层告警故障序列的根源告警【告警2@-1】。
对根源告警【告警2@-1】重复执行步骤S200,直到找到最底层的服务层根源告警,该最底层的服务层根源告警所在的告警检测点即为最终业务故障点。
在步骤S230,获取目标服务层告警故障序列的服务层根源告警。
重复执行步骤S200和步骤S210,依次检索客户层根源告警列表中的客户层根源告警【告警1-2,告警1-3,……】。
完成上述步骤后,客户层所有的客户层根源告警从业务的最上层的根源告警都能够找到最底层的服务层对应的服务层根源告警,处于最底层的服务层根源告警即为原始告警,最底层的服务层根源告警所在的告警检测点的位置为业务故障点。
参见图5所示,在一些实施方式中,本公开提供的光传送网络告警处理方法中,步骤S30:基于根源告警确定业务故障点,可以包括步骤S300至S320。
在步骤S300,基于服务层根源告警逐层获取服务层告警故障序列直至最底层。
在层内告警中完成根源告警的查找后,获取关联层根源告警的查找步骤如下:对客户层执行层内告警检索,得到客户层根源告警列表【告警1-1,告警1-2,告警1-3,……】;根据客户层根源告警【告警1-1】发生的告警检测点的位置,找到对应服务层对应的告警检测点上的关键告警,该服务层上对应客户层根源告警【告警1-1】的关键告警序号为【告警2’-1】。
在步骤S310,基于最底层的服务层告警故障序列获取最底层的服务层根源告警。
对服务层执行层内告警检索,得到服务层告警故障序列【告警故障序列2-1,告警故障序列2-2,告警故障序列2-3,……】以及服务层根源告警列表【告警2-1,告警2-2,告警2-3,……】。
查询服务层中的关键告警【告警2’-1】所在的服务层告警故障序列,得到该服务层告警故障序列的根源告警【告警2@-1】。
对根源告警【告警2@-1】重复执行步骤S300,直到找到最底层的服务层根源告警,该最底层的服务层根源告警所在的告警检测点即为最终业务故障点。
在步骤S320,将最底层的服务层根源告警所在的告警检测点确定为业务故障点。
重复执行步骤S300和步骤S310,依次检索客户层根源告警列表中的客户层根源告警【告警1-2,告警1-3,……】;
完成上述步骤后,客户层所有的客户层根源告警从业务的最上层的根源告警都能够找到最底层的服务层对应的服务层根源告警,处于最底层的服务层根源告警即为原始告警,最底层的服务层根源告警所在的告警检测点的位置为业务故障点。
参见图6所示,步骤S10:逐层获取各层的层内告警之后,本公开提供的光传送网络告警处理方法,还包括:步骤S50:至少图形化显示各层的层内告警。
可以至少对各层的层内告警分别进行图形化呈现,展示各个层内对应的层内告警。
当某条业务发生故障时,可以针对这条业务进行分层,通过提取 出各层的告警检测点,然后按照业务分层的结果图形化显示至少各个层的层内告警,还可以包括业务故障点等信息。运维人员可以很直观地从业务的源节点、中间节点以及业务尾节点上看到各层的告警数据,业务可以包括单向业务和双向业务。
采用本说明书实施方式提供的光传送网络告警处理方法进行业务端到端分层告警图形化显示的示例性处理过程如下,前提是已经对业务进行分层并将业务分层信息存入业务数据模块:
1、用户发起查询业务端到端告警请求;
2、层内告警获取模块根据业务分层信息分别提取各层的告警检测点信息,并将业务告警检测点信息存入业务数据模块;
3、层内告警获取模块根据业务数据模块收集各层告警检测点上的告警信息,并将告警信息存入告警数据模块;
4、层内告警获取模块按照层内告警查找方法对各层的告警信息进行分析处理,得到各层的客户层告警故障序列;
5、层内告警获取模块查询告警数据模块数据,得到各层上的客户层告警故障序列,并输出至告警显示模块;
6、告警显示模块按业务层的端到端图形化显示告警信息,对于有告警的层,按照客户告警故障序列分别显示;对于没有告警的层,只显示该层的告警检测点。
参见图7所示,在一些实施方式中,本公开提供的光传送网络告警处理方法中,步骤S50:至少图形化显示各层的层内告警,可以包括:步骤S500:按照端到端的形式至少图形化显示各层内告警检测点对应的客户层告警故障序列和服务层告警故障序列。
上述步骤将业务层信息存入业务数据模块,然后从最上层开始执行下面的步骤:
A2:提取当前层相关告警检测点,建立当前层告警检测点表,将告警检测点信息存入业务数据库;
A3:收集当前层所有告警检测点上的告警数据,并将告警数据存入告警数据模块;
A4:判断当前层是否有根源告警;
A41:如果没有根源告警,则执行步骤A6;
A42:如果有根源告警,层内告警获取模块按照层内告警检索方法查找层内告警至少包括根源告警,获取该层的层内告警;
A5:判断当前层是否存在服务层;
A51:如果不存在服务层,则执行步骤A6;
A52:如果存在服务层,则对其服务层重复执行步骤A2;
A6:对于有告警的层,从业务的首节点到业务的尾节点,按照故障序列端到端至少图形化显示该层的层内告警;对于没有告警的层,只显示该层的告警检测点,参见图11所示。
采用本公开提供的光传送网络告警处理方法时,用户发起业务告警分析请求后,业务处理模块中的层内告警获取模块根据分层信息分别提取各层告警检测点信息,并将业务告警检测点信息存入业务数据模块;收集的各层各检测点上的告警信息,并将结果存入告警数据模块;按照层内告警查找方法对各层的告警信息进行分析处理,得到各层的告警故障序列;将各层的告警故障序列结果输出到告警显示模块;告警显示模块按业务层端到端图形化显示告警信息,对于有告警的层,按照故障序列分别显示;对于没有告警的层,只显示该层的告警检测点。
通过以上分析可以看出,本公开提供的光传送网络告警处理方法,通过对业务分层后针对各层分别逐层获取层内告警,然后根据层之间的关联关系基于当前层的层内告警找到对应关联层的关键告警,进而通过关键告警确定业务故障点,因此通过业务不同层之间告警的关联性准确定位业务故障点,给出解决意见,不需要运维人员对这些告警进行分析处理的工作,降低运维人员的工作强度。另外本公开提供的光传送网络告警处理方法可以至少图像化显示各层的层内告警,可以方便运维人员直观掌握业务各层的层内告警,以便运维人员及时做出准备工作。
参照图8所示,为本公开提供的一种智能化告警处理装置(例如光传送网络告警处理装置)10,该装置包括:层内告警获取模块100、关联告警获取模块110和告警分析模块120。
层内告警获取模块100,配置为逐层获取各层的层内告警。
对光传送网络业务逐层获取各层的层内告警,各层可以是基于目前光传送网络的分层结构,比如目前光传送网络一般自上而下分为客户信号层、光通道层、光复用段层、光传输段层;也可以是根据光传送网络的特性和业务的属性对业务进行的分层处理,比如在目前光传送网络分层基础上再根据具体业务的属性再对客户信号层进行分层。
需要说明的是,各层之间具有影响与被影响的关系,可以实现层之间告警的相互关联。
获取业务各层的层内告警首先提取各层的告警检测点,然后获取各层的所有告警检测点上的告警数据,基于这些告警数据判断各层是否有告警,如果有告警则按照层内告警检索方法查找层内告警,获取各层的层内告警,层内告警至少包括根源告警,获取层内告警的检索结果。
获取各层的层内告警的目的是基于层内告警进一步获取关联层的关键告警,也就是查找引起各层的层内告警的对应关联层上的关键告警,最终找到业务故障点。
可以将告警数据分为三个等级,A类:根源告警,能引发其他告警的告警;B类:衍生类告警,无法自己独立产生的告警,可以分为正向衍生告警和反向衍生告警;C类:独立告警,与其他告警无任何关系的告警。如果告警数据没有根源告警(当然这种情况也不会产生衍生类告警),那么业务故障点不会发生在该层,同样地,如果告警数据没有独立告警,那么业务故障点也不会发生在该层。关键告警在层内告警中可以包括根源告警,是故障点产生的相关告警,基于关键告警可以反向查找业务故障点。
关联告警获取模块110,配置为基于层内告警获取当前层对应的关联层的根源告警。
业务各层之间的相邻层可以是关联层,存在影响与被影响的关系,或者服务与被服务的关系,因此可以按照一定的顺序和方向逐层根据层内告警获取对应关联层的关键告警,比如最上层的客户信号层的告警会受到客户信号层下方的光通道层的影响,光通道层的告警会受到 光复用段层的影响,以此类推。
根据对应关联层的关键告警找到该关联层的根源告警,该关联层的根源告警可以引起关联层本层的层内告警之外还可以引起与关联层相邻的处于上层的当前层的层内告警,因此从当前层的层内告警反向查找对应关联层的关键告警,逐层查找对应关联层的根源告警,直到找到最终的关联层的根源告警,那么可以基于该最终的关联层上的根源告警确定业务故障点。
本公开提供的光传送网络告警处理装置中,将业务分层处理为具有影响与被影响,服务与被服务的关系,逐层进行告警检索以及关联层的关键告警的查找,降低了告警分析所需要分析的告警数据量,准确找到业务故障点真正发生的位置和产生的根本原因,并不只是局限在单个故障检测点或者故障段落上进行告警处理的操作,提高了业务故障点查找的准确性和效率,降低运维人员的工作强度。
因此,在使用本公开提供的光传送网络告警处理装置进行告警分析时,只需要执行告警智能化分析菜单,光传送网络告警处理装置可以先后获取各层的层内告警以及对应关联层的关键告警,分析出业务故障点,还可以根据业务故障点出具相应的处理意见。
告警分析模块120,配置为基于根源告警确定业务故障点。
关键告警是引起本层的层内告警之外还可以引起关联层产生相应的告警,因此查找关键告警对于确定业务故障点是重中之重的工作,通过反向查找关联层的关键告警,一步步找到产生关键告警的最终的业务故障点。因此,本公开提供的光传送网络告警处理装置在业务出现故障时,根据光传送网络的特性和业务的属性对业务进行分层告警处理,从最上层根据各层之间的影响与被影响关系以及告警之间的关联关系开始逐层对告警(包括层内告警和关联层的关键告警)进行收集、处理和分析,对出现故障的业务进行告警分析,准确定位出该业务故障点的所属层,进而可以给出解决意见,使运维人源从复杂和繁多的告警分析工作中解放出来。
下面来详细描述一下采用本公开提供的光传送网络告警处理装置进行告警智能化分析,前提条件是已经根据光传送网络的特性和业务 的属性完成对业务的分层,提取告警检测点存入业务数据模块,以及收集各层告警数据存入告警数据模块,步骤如下:
1、用户发起告警智能化分析请求;
2、层内告警获取模块调用业务数据模块和告警数据模块,查询当前层各检测点上的告警数据;
3、层内告警获取模块分析当前层的至少根源告警;
4、关联告警获取模块调用业务数据模块和告警数据模块,查询对应关联层各检测点上的告警数据;
5、关联告警获取模块根据层间告警查找方法分析对应的关联层的关键告警;
6、关联告警获取模块按层的顺序依次查找,当分析到最底层的根源告警时结束分析请求,输出业务故障点的相关信息及处理建议;当查找到无告警的关联层时,该关联层直接对应的当前层即为业务故障点发生的层,结束分析请求,输出业务故障点的相关信息及处理建议。
本公开提供的光传送网络告警处理装置10还可以包括以下模块:
业务处理模块:对业务进行分层,业务告警检测点信息处理;
业务数据模块:存储业务数据,包括业务基础数据,业务分层数据,以及业务告警检测点数据;
告警分析模块可以用于告警数据的查询,告警分类的处理,对层内告警进行检索分析,关联层的关键告警的检索分析;
告警数据模块:存储各个层的各告警检测点上的告警数据,存储告警分类信息,存储告警故障序列信息;
告警显示模块:图形化或者列表化显示业务当前各层的告警信息。
参见图9所示,光传送网络告警处理装置10还包括告警显示模块130,配置为:至少图形化显示各层的层内告警。
采用本公开提供的光传送网络告警处理装置时,用户发起业务告警分析请求后,业务处理模块中的层内告警获取模块根据分层信息分别提取各层告警检测点信息,并将业务告警检测点信息存入业务数据模块;收集的各层各检测点上的告警信息,并将结果存入告警数据模 块;按照层内告警查找方法对各层的告警信息进行分析处理,得到各层的告警故障序列;将各层的告警故障序列结果输出到告警显示模块;告警显示模块按业务层端到端图形化显示告警信息,对于有告警的层,按照故障序列分别显示;对于没有告警的层,只显示该层的告警检测点。
通过以上分析可以看出,本公开提供的光传送网络告警处理装置,通过对业务分层后针对各层分别逐层获取层内告警,然后根据层之间的关联关系基于当前层的层内告警找到对应关联层的关键告警,进而通过关键告警确定业务故障点,因此通过业务不同层之间告警的关联性准确定位业务故障点,给出解决意见,不需要运维人员对这些告警进行分析处理的工作,降低运维人员的工作强度。另外本公开提供的光传送网络告警处理装置可以至少图像化显示各层的层内告警,可以方便运维人员直观掌握业务各层的层内告警,以便运维人员及时做出准备工作。
参见图10所示,为本公开提供的一种网络管理系统1,该网络管理系统1包括如上文所述光传送网络告警处理装置10,该光传送网络告警处理装置10可以包括层内告警获取模块100、关联告警获取模块110和告警分析模块120。
层内告警获取模块100,配置为逐层获取各层的层内告警。
对光传送网络业务逐层获取各层的层内告警,各层可以是基于目前光传送网络的分层结构,比如目前光传送网络一般自上而下分为客户信号层、光通道层、光复用段层、光传输段层;也可以是根据光传送网络的特性和业务的属性对业务进行的分层处理,比如在目前光传送网络分层基础上再根据具体业务的属性再对客户信号层进行分层。
需要说明的是,各层之间具有影响与被影响的关系,可以实现层之间告警的相互关联。
获取业务各层的层内告警首先提取各层的告警检测点,然后获取各层的所有告警检测点上的告警数据,基于这些告警数据判断各层是否有根源告警,如果有根源告警则按照层内告警检索方法查找层内告警,获取各层的层内告警,层内告警至少包括根源告警,获取层内告 警的检索结果。
获取各层的层内告警的目的是基于层内告警进一步获取关联层的关键告警,也就是查找引起各层的层内告警的对应关联层上的关键告警,最终找到业务故障点。
可以将告警数据分为三个等级,A类:根源告警,能引发其他告警的告警;B类:衍生类告警,无法自己独立产生的告警,可以分为正向衍生告警和反向衍生告警;C类:独立告警,与其他告警无任何关系的告警。如果告警数据没有根源告警(当然这种情况也不会产生衍生类告警),那么业务故障点不会发生在该层,同样地,如果告警数据没有独立告警,那么业务故障点也不会发生在该层。关键告警在层内告警中可以包括根源告警,也可以不是根源告警,是业务故障点产生的相关告警,基于关键告警可以反向查找业务故障点。
关联告警获取模块110,配置为基于层内告警获取当前层对应的关联层的根源告警。
业务各层之间的相邻层可以是关联层,存在影响与被影响的关系,或者服务与被服务的关系,因此可以按照一定的顺序和方向逐层根据层内告警获取对应关联层的关键告警,比如最上层的客户信号层的告警会受到客户信号层下方的光通道层的影响,光通道层的告警会受到光复用段层的影响,以此类推。
根据对应关联层的关键告警找到该关联层的根源告警,该关联层的根源告警可以引起关联层本层的层内告警之外还可以引起与关联层相邻的处于上层的当前层的层内告警,因此从当前层的层内告警反向查找对应关联层的关键告警,逐层查找对应关联层的根源告警,直到找到最终的关联层的根源告警,那么可以基于该最终的关联层上的根源告警确定业务故障点。
本公开提供的网络管理系统中,将业务分层处理为具有影响与被影响,服务与被服务的关系,逐层进行告警检索以及关联层的关键告警的查找,降低了告警分析所需要分析的告警数据量,准确找到业务故障点真正发生的位置和产生的根本原因,并不只是局限在单个故障检测点或者故障段落上进行告警处理的操作,提高了业务故障点查找 的准确性和效率,降低运维人员的工作强度。
因此,在使用本公开提供的网络管理系统进行告警分析时,只需要执行告警智能化分析菜单,网络管理系统可以先后获取各层的层内告警以及对应关联层的关键告警,直接分析出业务故障点,还可以根据业务故障点出具相应的处理意见。
告警分析模块120,配置为基于根源告警确定业务故障点。
关键告警是引起本层的层内告警之外还可以引起关联层产生相应的告警,因此查找关键告警对于确定业务故障点是重中之重的工作,通过反向查找关联层的关键告警,一步步找到产生关键告警的最终的业务故障点。因此,本公开提供的网络管理系统在业务出现故障时,根据光传送网络的特性和业务的属性对业务进行分层告警处理,从最上层根据各层之间的影响与被影响关系以及告警之间的关联关系开始逐层对告警(包括层内告警和关联层的关键告警)进行收集、处理和分析,对出现故障的业务进行告警分析,准确定位出该业务故障点的所属层,进而可以给出解决意见,使运维人源从复杂和繁多的告警分析工作中解放出来。
下面来详细描述一下采用本公开提供的网络管理系统进行告警智能化分析,前提条件是已经根据光传送网络的特性和业务的属性完成对业务的分层,提取告警检测点存入业务数据模块,以及收集各层告警数据存入告警数据模块,步骤如下:
1、用户发起告警智能化分析请求;
2、层内告警获取模块调用业务数据模块和告警数据模块,查询当前层各检测点上的告警数据;
3、层内告警获取模块分析当前层的至少根源告警;
4、关联告警获取模块调用业务数据模块和告警数据模块,查询对应关联层各检测点上的告警数据;
5、关联告警获取模块根据层间告警查找方法分析对应的关联层的关键告警;
6、关联告警获取模块按层的顺序依次查找,当分析到最底层的根源告警时结束分析请求,输出业务故障点的相关信息及处理建议; 当查找到无告警的关联层时,该关联层直接对应的当前层即为业务故障点发生的层,结束分析请求,输出业务故障点的相关信息及处理建议。
通过以上分析可以看出,本公开提供的网络管理系统,通过对业务分层后针对各层分别逐层获取层内告警,然后根据层之间的关联关系基于当前层的层内告警找到对应关联层的关键告警,进而通过关键告警确定业务故障点,因此通过业务不同层之间告警的关联性准确定位业务故障点,给出解决意见,不需要运维人员对这些告警进行分析处理的工作,降低运维人员的工作强度。另外本公开提供的网络管理系统可以至少图像化显示各层的层内告警,可以方便运维人员直观掌握业务各层的层内告警,以便运维人员及时做出准备工作。
本公开提供的一种计算机可读存储介质,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如图1至图7所示的光传送网络告警处理方法的步骤,并实现相应的技术效果。
总之,以上所述仅为本说明书的示例性实施方式而已,并非用于限定本说明书的保护范围。凡在本说明书的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本说明书的保护范围之内。
上述一个或多个实施方式阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
计算机可读存储介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆 体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本说明书中的各个实施方式均采用递进的方式描述,各个实施方式之间相同相似的部分互相参见即可,每个实施方式重点说明的都是与其他实施方式的不同之处。尤其,对于系统实施方式而言,由于其基本相似于方法实施方式,所以描述的比较简单,相关之处参见方法实施方式的部分说明即可。
上述对本说明书特定实施方式进行了描述。其它实施方式在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施方式中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
Claims (11)
- 一种光传送网络告警处理方法,包括:逐层获取业务各层的层内告警;基于所述层内告警获取当前层对应的关联层的根源告警;基于所述根源告警确定业务故障点。
- 如权利要求1所述的光传送网络告警处理方法,所述逐层获取业务各层的层内告警之前,还包括:对业务进行分层处理:按照光传送网络的特性和所述业务的属性将所述业务自上而下分为第1层,第2层,……,第n-1层,第n层,其中所述第n-1层是客户层,所述第n层是第n-1层的服务层,n大于等于2。
- 如权利要求2所述的光传送网络告警处理方法,所述逐层获取各层的层内告警,包括:按照时间顺序找到所述客户层内发生的客户层根源告警;基于所述客户层根源告警获取所述客户层根源告警的客户层衍生告警;基于所述客户层根源告警和所述客户层衍生告警形成所述客户层根源告警的客户层告警故障序列以及客户层根源告警列表。
- 如权利要求3所述的光传送网络告警处理方法,其中,基于所述层内告警获取当前层对应的关联层的根源告警,包括:根据所述客户层根源告警发生的告警检测点找到所述服务层上对应所述告警检测点的服务层关键告警;对所述服务层执行层内告警检索,得到所述服务层的服务层告警故障序列;查找所述服务层关键告警所在的目标服务层告警故障序列;获取所述目标服务层告警故障序列的服务层根源告警。
- 如权利要求4所述的光传送网络告警处理方法,其中,基于所述根源告警确定业务故障点,包括:基于所述服务层根源告警逐层获取所述服务层告警故障序列直至 最底层;基于所述最底层的所述服务层告警故障序列获取所述最底层的所述服务层根源告警;将所述最底层的所述服务层根源告警所在的告警检测点确定为所述业务故障点。
- 如权利要求1至5中任一项所述的光传送网络告警处理方法,所述逐层获取各层的层内告警之后,还包括:至少图形化显示所述各层的所述层内告警。
- 如权利要求6所述的光传送网络告警处理方法,其中,所述至少图形化显示所述各层的所述层内告警,包括:按照端到端的形式至少图形化显示所述各层内所述告警检测点对应的所述客户层告警故障序列和所述服务层告警故障序列。
- 一种光传送网络告警处理装置,包括:层内告警获取模块,配置为逐层获取各层的层内告警;关联告警获取模块,配置为基于所述层内告警获取当前层对应的关联层的根源告警;告警分析模块,配置为基于所述根源告警确定业务故障点。
- 如权利要求8所述的光传送网络告警处理装置,还包括:告警显示模块,配置为至少图形化显示所述各层的所述层内告警。
- 一种网络管理系统,所述网络管理系统包括如权利要求8或9所述光传送网络告警处理装置。
- 一种存储介质,存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行时,实现如权利要求1至7中任一项所述光传送网络告警处理方法的步骤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/785,636 US20230047670A1 (en) | 2020-06-12 | 2021-06-08 | Optical transport network alarm processing method and apparatus, and network management system and medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010533023.4 | 2020-06-12 | ||
CN202010533023.4A CN113810101A (zh) | 2020-06-12 | 2020-06-12 | 光传送网络告警处理方法、装置、网络管理系统及介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021249393A1 true WO2021249393A1 (zh) | 2021-12-16 |
Family
ID=78845354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/098894 WO2021249393A1 (zh) | 2020-06-12 | 2021-06-08 | 光传送网络告警处理方法、装置、网络管理系统及介质 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230047670A1 (zh) |
CN (1) | CN113810101A (zh) |
WO (1) | WO2021249393A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114285726A (zh) * | 2021-12-27 | 2022-04-05 | 中国联合网络通信集团有限公司 | 故障定位方法、装置及计算机存储介质 |
CN114338367A (zh) * | 2021-12-27 | 2022-04-12 | 中国联合网络通信集团有限公司 | 故障定位方法、装置及计算机存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1713591A (zh) * | 2004-06-22 | 2005-12-28 | 中兴通讯股份有限公司 | 光同步传送网告警相关性分析方法 |
CN103152212A (zh) * | 2013-03-29 | 2013-06-12 | 华为技术有限公司 | 一种告警相关性分析方法、装置及网络管理系统 |
CN103378980A (zh) * | 2012-04-16 | 2013-10-30 | 中兴通讯股份有限公司 | 一种层网络告警与业务相关性分析方法和装置 |
US20150206407A1 (en) * | 2014-01-21 | 2015-07-23 | Fujitsu Limited | Transmission device and method of controlling transmission device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6414595B1 (en) * | 2000-06-16 | 2002-07-02 | Ciena Corporation | Method and system for processing alarm objects in a communications network |
CN101183989B (zh) * | 2007-12-03 | 2010-09-01 | 中兴通讯股份有限公司 | 光同步传送网告警相关性的增量分析方法 |
-
2020
- 2020-06-12 CN CN202010533023.4A patent/CN113810101A/zh active Pending
-
2021
- 2021-06-08 WO PCT/CN2021/098894 patent/WO2021249393A1/zh active Application Filing
- 2021-06-08 US US17/785,636 patent/US20230047670A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1713591A (zh) * | 2004-06-22 | 2005-12-28 | 中兴通讯股份有限公司 | 光同步传送网告警相关性分析方法 |
CN103378980A (zh) * | 2012-04-16 | 2013-10-30 | 中兴通讯股份有限公司 | 一种层网络告警与业务相关性分析方法和装置 |
CN103152212A (zh) * | 2013-03-29 | 2013-06-12 | 华为技术有限公司 | 一种告警相关性分析方法、装置及网络管理系统 |
US20150206407A1 (en) * | 2014-01-21 | 2015-07-23 | Fujitsu Limited | Transmission device and method of controlling transmission device |
Also Published As
Publication number | Publication date |
---|---|
CN113810101A (zh) | 2021-12-17 |
US20230047670A1 (en) | 2023-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10469344B2 (en) | Systems and methods for monitoring and analyzing performance in a computer system with state distribution ring | |
WO2021249393A1 (zh) | 光传送网络告警处理方法、装置、网络管理系统及介质 | |
US10515469B2 (en) | Proactive monitoring tree providing pinned performance information associated with a selected node | |
US20190377463A1 (en) | User interface that facilitates node pinning for a proactive monitoring tree | |
US10523538B2 (en) | User interface that provides a proactive monitoring tree with severity state sorting | |
US11636160B2 (en) | Related content identification for different types of machine-generated data | |
US20170185468A1 (en) | Creating A Correlation Rule Defining A Relationship Between Event Types | |
US8516112B2 (en) | Performance monitoring of a computer resource | |
US11388211B1 (en) | Filter generation for real-time data stream | |
CN110532309B (zh) | 一种高校图书馆用户画像系统的生成方法 | |
CN107220310A (zh) | 一种数据库数据管理系统、方法及装置 | |
CN106407244A (zh) | 基于多数据库的数据查询方法、系统和装置 | |
JP2018506775A (ja) | トランザクションアクセスパターンに基づいた結合関係の識別 | |
CN112445889A (zh) | 存储数据、检索数据的方法及相关设备 | |
US20140337274A1 (en) | System and method for analyzing big data in a network environment | |
CN106202108A (zh) | 网络爬虫抓取任务分配方法与装置及数据抓取方法与装置 | |
CN111382155A (zh) | 一种数据仓库的数据处理方法、电子设备及介质 | |
JP2004094425A (ja) | データベース構築処理変更方法 | |
CN110134511A (zh) | 一种OpenTSDB共享存储优化方法 | |
Wachowicz et al. | Developing a streaming data processing workflow for querying space–time activities from geotagged tweets | |
US7899776B2 (en) | Explaining changes in measures thru data mining | |
CN106846021A (zh) | 一种指标统计方法和装置 | |
US12052134B2 (en) | Identification of clusters of elements causing network performance degradation or outage | |
CN116934556B (zh) | 一种基于大数据融合的目标人员精准化管控方法 | |
CN112732841B (zh) | 一种数据处理的方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21821280 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/05/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21821280 Country of ref document: EP Kind code of ref document: A1 |