WO2021249076A1 - 异构立体分层网络中的控制方法、装置及通信系统 - Google Patents

异构立体分层网络中的控制方法、装置及通信系统 Download PDF

Info

Publication number
WO2021249076A1
WO2021249076A1 PCT/CN2021/092382 CN2021092382W WO2021249076A1 WO 2021249076 A1 WO2021249076 A1 WO 2021249076A1 CN 2021092382 W CN2021092382 W CN 2021092382W WO 2021249076 A1 WO2021249076 A1 WO 2021249076A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
mobile communication
sub
terrestrial mobile
communication sub
Prior art date
Application number
PCT/CN2021/092382
Other languages
English (en)
French (fr)
Inventor
康绍莉
缪德山
毕海
孙韶辉
王映民
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US17/928,245 priority Critical patent/US20230224023A1/en
Priority to EP21821932.7A priority patent/EP4167617A4/en
Priority to JP2022575363A priority patent/JP7476360B2/ja
Priority to KR1020237000956A priority patent/KR20230022992A/ko
Publication of WO2021249076A1 publication Critical patent/WO2021249076A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18515Transmission equipment in satellites or space-based relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18517Transmission equipment in earth stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • H04B7/18541Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for handover of resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18563Arrangements for interconnecting multiple systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18569Arrangements for system physical machines management, i.e. for construction operations control, administration, maintenance
    • H04B7/18571Arrangements for system physical machines management, i.e. for construction operations control, administration, maintenance for satellites; for fixed or mobile stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18569Arrangements for system physical machines management, i.e. for construction operations control, administration, maintenance
    • H04B7/18573Arrangements for system physical machines management, i.e. for construction operations control, administration, maintenance for operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/195Non-synchronous stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures

Definitions

  • the embodiments of the present disclosure relate to the field of communication technology, and in particular to a control method, device, and communication system in a heterogeneous three-dimensional hierarchical network.
  • Non-terrestrial communication systems and terrestrial mobile communication systems represented by satellite mobile communications have been processed as separate networks and systems, and the interaction between systems mainly considers interconnection and intercommunication. For example, for a certain terminal, if it can support satellite mobile communication and terrestrial mobile communication at the same time, these two communication methods will exist as two independent modes. At a certain time, the terminal only works in one mode. According to the needs, The terminal switches between the two modes.
  • One purpose of the embodiments of the present disclosure is to provide a control method, device, and communication system in a heterogeneous three-dimensional hierarchical network to solve the "dual system" working mode in the related technologies of non-terrestrial communication systems and terrestrial mobile communication systems, resulting in The problem of waste of resources.
  • the embodiments of the present disclosure provide a control method in a heterogeneous three-dimensional layered network, which is applied to a network control unit.
  • the heterogeneous three-dimensional layered network includes: a terrestrial mobile communication sub-network and a non-terrestrial mobile communication sub-network ,
  • the method includes:
  • the coverage mode is a single-layer sub-network coverage
  • the coverage mode is multi-layer sub-network coverage
  • the multi-layer sub-network will cover the corresponding non-terrestrial mobile communication sub-network, or the multi-layer sub-network will cover the corresponding non-terrestrial mobile communication sub-network.
  • the network and the terrestrial mobile communication sub-network are set to cross-layer carrier aggregation mode;
  • the terrestrial mobile communication sub-network and the non-terrestrial mobile communication sub-network adopt the same or unified wireless access technology.
  • the method further includes:
  • the signal of the sub-network with the largest coverage area is used as the main carrier.
  • the method further includes:
  • the primary carrier is used for the terminal's access, synchronization, control, or first rate data transmission
  • the secondary carrier corresponding to the primary carrier is used for the terminal's second rate data transmission
  • the first rate is less than the second rate.
  • the method further includes:
  • the method further includes:
  • the first information indicates one or more of the following combinations:
  • the beam angle of the non-terrestrial mobile communication sub-network is the beam angle of the non-terrestrial mobile communication sub-network.
  • the method further includes:
  • second information is sent, and the second information instructs the terminal to perform sub-network switching.
  • the method further includes:
  • the embodiments of the present disclosure provide a control method in a heterogeneous three-dimensional layered network, which is applied to a terminal.
  • the heterogeneous three-dimensional layered network includes: a terrestrial mobile communication sub-network and a non-terrestrial mobile communication sub-network, so The methods include:
  • the terrestrial mobile communication sub-network and the non-terrestrial mobile communication sub-network adopt the same or unified wireless access technology.
  • the method further includes:
  • the working mode of the terminal is an independent working mode, control and/or data transmission are performed on the corresponding sub-network;
  • the working mode of the terminal is the intra-layer carrier aggregation mode
  • access, synchronization, control, and/or data transmission at the first rate are performed on the primary carrier
  • the second rate is performed on the secondary carrier corresponding to the primary carrier.
  • the first rate is less than the second rate
  • the working mode of the terminal is a cross-layer carrier aggregation mode
  • access, synchronization, control, and/or data transmission at the first rate are performed on the sub-network where the primary carrier is located, and the secondary carrier corresponding to the primary carrier is located.
  • the sub-network of performs data transmission at a second rate, and the first rate is less than the second rate.
  • embodiments of the present disclosure provide a communication system, including: a heterogeneous three-dimensional hierarchical network, a terminal, and a network control unit.
  • the heterogeneous three-dimensional hierarchical network includes: a terrestrial mobile communication sub-network and a non-terrestrial mobile communication sub-network. Network; where,
  • the terminal is respectively communicatively connected with the terrestrial mobile communication sub-network and the non-terrestrial mobile communication sub-network;
  • the network control unit is respectively communicatively connected with the ground mobile communication sub-network and the non-ground mobile communication sub-network;
  • the terrestrial mobile communication sub-network and the non-terrestrial mobile communication sub-network adopt the same or unified wireless access technology.
  • the network control unit is independent of the network side device settings of the terrestrial mobile communication sub-network and the network side equipment of the non-terrestrial mobile communication sub-network;
  • the network control unit is set on a network side device of the terrestrial mobile communication sub-network or a network side device of the non-terrestrial mobile communication sub-network.
  • the cell coverage area formed by the non-terrestrial mobile communication sub-network is larger than the cell coverage area formed by the terrestrial mobile communication sub-network;
  • the cell coverage area formed by the terrestrial mobile communication sub-network partially overlaps with the cell coverage area formed by the non-terrestrial mobile communication sub-network;
  • the cell coverage area formed by the terrestrial mobile communication sub-network does not overlap with the cell coverage area formed by the non-terrestrial mobile communication sub-network.
  • the network type of the terrestrial mobile communication sub-network includes one or more combinations of the following: a macro-cellular network, a micro-cellular network, and a direct terminal network.
  • the non-terrestrial mobile communication sub-network includes: aerospace equipment; or,
  • the non-terrestrial mobile communication sub-network includes: aerospace equipment and a ground customs station; wherein, the aerospace equipment is a combination of one or more of the following: a satellite constellation, a high-altitude platform, and an aircraft.
  • the network coverage mode of the satellite constellation includes one of the following:
  • Multi-layer sub-network coverage of satellite constellations of different orbital heights are Multi-layer sub-network coverage of satellite constellations of different orbital heights.
  • the single-layer sub-network coverage of the satellite constellation at the same orbital altitude includes one of the following: single-layer sub-network coverage of the GEO constellation;
  • the multi-layer sub-network coverage of the satellite constellation with the same orbital altitude includes: the sub-network coverage of the control beam and the spot beam of the satellite constellation with the same orbital altitude.
  • the multi-layer sub-network coverage of the satellite constellations of different orbital heights includes one of the following:
  • the LEO constellation and the LEO constellation have two layers of sub-network coverage.
  • the network control unit dynamically configures or statically configures the operating bandwidth of the non-terrestrial mobile communication sub-network and the operating bandwidth of the terrestrial mobile communication sub-network.
  • the working bandwidth of the non-terrestrial mobile communication sub-network and/or the bandwidth actually occupied by the working bandwidth of the terrestrial mobile communication sub-network is integrated less than or equal to the operating bandwidth of the communication system.
  • the non-terrestrial mobile communication sub-network and the terrestrial mobile communication sub-network provide services for the terminals in the coverage area in an independent operation mode or a carrier aggregation mode.
  • a signal provided by the non-terrestrial mobile communication sub-network or the terrestrial mobile communication sub-network is used as the main carrier.
  • the primary carrier is used for the terminal's access, synchronization, control, or first rate data transmission
  • the secondary carrier corresponding to the primary carrier is used for the terminal's second rate data transmission
  • the first rate is less than the second rate.
  • embodiments of the present disclosure provide a control device in a heterogeneous three-dimensional hierarchical network, which is applied to a network control unit.
  • the heterogeneous three-dimensional hierarchical network includes: a terrestrial mobile communication sub-network and a non-terrestrial mobile communication sub-network ,
  • the control device includes:
  • the first obtaining module is used to obtain the coverage mode of the terminal
  • the first processing module is configured to, if the coverage mode is a single-layer sub-network coverage, set the ground mobile communication sub-network or non-terrestrial mobile communication sub-network corresponding to the single-layer sub-network coverage to an independent working mode or In-layer carrier aggregation mode;
  • the coverage mode is multi-layer sub-network coverage
  • the multi-layer sub-network will cover the corresponding non-terrestrial mobile communication sub-network, or the multi-layer sub-network will cover the corresponding non-terrestrial mobile communication sub-network.
  • the network and the terrestrial mobile communication sub-network are set to cross-layer carrier aggregation mode;
  • the terrestrial mobile communication sub-network and the non-terrestrial mobile communication sub-network adopt the same or unified wireless access technology.
  • control device further includes:
  • the second acquisition module is used to acquire the coverage of the terrestrial mobile communication sub-network and/or the non-terrestrial mobile communication sub-network;
  • the second processing module is used to use the signal of the sub-network with the largest coverage area as the main carrier.
  • control device further includes:
  • the first configuration module is used to configure one or more primary carriers for the terrestrial mobile communication sub-network and/or the non-terrestrial mobile communication sub-network.
  • control device further includes:
  • the first sending module is configured to notify the terminal of the working mode and/or working bandwidth of the cell where the terminal is located.
  • control device further includes:
  • the second sending module is configured to send first information, where the first information indicates one or more of the following combinations:
  • the beam angle of the non-terrestrial mobile communication sub-network is the beam angle of the non-terrestrial mobile communication sub-network.
  • control device further includes:
  • the third acquisition module is used to acquire the working status of the terrestrial mobile communication sub-network and/or the non-terrestrial mobile communication sub-network;
  • the third sending module is configured to send second information according to the working status, and the second information instructs the terminal to perform sub-network switching.
  • control device further includes:
  • the second configuration module is used to dynamically configure or statically configure the working bandwidth of the non-terrestrial mobile communication sub-network and/or the terrestrial mobile communication sub-network.
  • the embodiments of the present disclosure also provide a network control unit, which is suitable for a heterogeneous three-dimensional layered network.
  • the heterogeneous three-dimensional layered network includes: a terrestrial mobile communication sub-network and a non-terrestrial mobile communication sub-network.
  • the network control unit includes: a first transceiver and a first processor;
  • the first transceiver sends and receives data under the control of the first processor
  • the first processor reads the program in the memory to perform the following operations: obtain the coverage mode of the terminal; if the coverage mode is a single-layer sub-network coverage, cover the single-layer sub-network to the corresponding terrestrial mobile communication
  • the sub-network or non-terrestrial mobile communication sub-network is set to independent working mode or intra-layer carrier aggregation mode;
  • the coverage mode is multi-layer sub-network coverage
  • the multi-layer sub-network will cover the corresponding non-terrestrial mobile communication sub-network, or the multi-layer sub-network will cover the corresponding non-terrestrial mobile communication sub-network.
  • the network and the terrestrial mobile communication sub-network are set to cross-layer carrier aggregation mode;
  • the terrestrial mobile communication sub-network and the non-terrestrial mobile communication sub-network adopt the same or unified wireless access technology.
  • the first processor reads the program in the memory and performs the following operations: obtain the coverage of the land mobile communication sub-network and/or the non-land mobile communication sub-network;
  • the signal serves as the main carrier.
  • the first processor reads the program in the memory and further executes the following operations: configure one or more main carriers for the terrestrial mobile communication sub-network and/or the non-terrestrial mobile communication sub-network.
  • the first processor reads the program in the memory and further executes the following operation: Notify the terminal of the working mode and/or working bandwidth of the cell where the terminal is located.
  • the first processor reads the program in the memory and further performs the following operations: sending first information, where the first information indicates one or more of the following combinations:
  • the beam angle of the non-terrestrial mobile communication sub-network is the beam angle of the non-terrestrial mobile communication sub-network.
  • the first processor reads the program in the memory and further performs the following operations: obtain the working status of the land mobile communication sub-network and/or the non-terrestrial mobile communication sub-network; Second information, the second information instructs the terminal to perform sub-network switching.
  • the first processor reads the program in the memory and performs the following operations: dynamically configuring or statically configuring the working bandwidth of the non-terrestrial mobile communication sub-network and/or the terrestrial mobile communication sub-network.
  • embodiments of the present disclosure provide a control device in a heterogeneous three-dimensional hierarchical network, which is applied to a terminal.
  • the heterogeneous three-dimensional hierarchical network includes: a terrestrial mobile communication sub-network and a non-terrestrial mobile communication sub-network, so
  • the control device includes:
  • the fourth obtaining module is used to obtain the working mode and/or working bandwidth of the cell where the terminal is located;
  • the third processing module is configured to obtain the working mode and/or sub-network of the terminal according to the working mode and/or working bandwidth of the cell where the terminal is located;
  • the terrestrial mobile communication sub-network and the non-terrestrial mobile communication sub-network adopt the same or unified wireless access technology.
  • control device further includes:
  • the fourth processing module is configured to perform control and/or data transmission in the corresponding sub-network if the working mode of the terminal is the independent working mode; or, if the working mode of the terminal is the intra-layer carrier aggregation mode, then Performing access, synchronization, control, and/or data transmission at a first rate on a primary carrier, and performing data transmission at a second rate on a secondary carrier corresponding to the primary carrier, where the first rate is less than the second rate; Or, if the working mode of the terminal is a cross-layer carrier aggregation mode, access, synchronization, control and/or data transmission at the first rate are performed on the sub-network where the primary carrier is located, and the secondary carrier corresponding to the primary carrier is used for access, synchronization, control, and/or data transmission.
  • the sub-network where the carrier is located performs data transmission at a second rate, and the first rate is less than the second rate.
  • embodiments of the present disclosure provide a terminal suitable for a heterogeneous three-dimensional layered network, the heterogeneous three-dimensional layered network including: a terrestrial mobile communication sub-network and a non-terrestrial mobile communication sub-network, and the terminal includes: A second transceiver and a second processor;
  • the second transceiver sends and receives data under the control of the second processor
  • the second processor reads the program in the memory to perform the following operations: obtain the working mode and/or working bandwidth of the cell where the terminal is located; obtain the terminal according to the working mode and/or working bandwidth of the cell where the terminal is located The working mode and/or sub-network where it is located;
  • the terrestrial mobile communication sub-network and the non-terrestrial mobile communication sub-network adopt the same or unified wireless access technology.
  • the second processor reads the program in the memory and performs the following operations: if the working mode of the terminal is an independent working mode, control and/or data transmission is performed on the corresponding sub-network; or, if The working mode of the terminal is the intra-layer carrier aggregation mode, and then access, synchronization, control, and/or data transmission at the first rate are performed on the primary carrier, and data at the second rate is performed on the secondary carrier corresponding to the primary carrier.
  • the first rate is less than the second rate; or, if the working mode of the terminal is a cross-layer carrier aggregation mode, access, synchronize, control, and/or perform first
  • data transmission at a second rate is performed on a sub-network where a secondary carrier corresponding to the primary carrier is located, and the first rate is less than the second rate.
  • an embodiment of the present disclosure provides a readable storage medium having a computer program stored on the readable storage medium, and when the program is executed by a processor, the steps of the method described above are implemented.
  • the "dual system" working mode in the related technologies of non-terrestrial communication systems and terrestrial mobile communication systems has brought about the waste of wireless resources, system construction, and equipment implementation.
  • FIG. 1 is one of the flowcharts of the control method in the heterogeneous three-dimensional hierarchical network in an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of a communication system in an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of a 3-layer heterogeneous stereo network of GEO constellation + LEO constellation + ground cellular base station in an embodiment of the disclosure
  • FIG. 5 is a schematic diagram of a 3-layer heterogeneous stereo network of LEO constellation + ground cellular base station in an embodiment of the disclosure
  • FIG. 6 is one of the schematic diagrams of the control device in the heterogeneous three-dimensional hierarchical network according to an embodiment of the disclosure
  • FIG. 7 is a schematic diagram of a network control unit according to an embodiment of the disclosure.
  • FIG. 8 is a second schematic diagram of a control device in a heterogeneous three-dimensional hierarchical network according to an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of a terminal according to an embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of a communication device according to an embodiment of the disclosure.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more optional or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • LTE Long Time Evolution
  • LTE-A Long Time Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • the terms “system” and “network” are often used interchangeably.
  • the CDMA system can implement radio technologies such as CDMA2000 and Universal Terrestrial Radio Access (UTRA).
  • UTRA includes Wideband Code Division Multiple Access (WCDMA) and other CDMA variants.
  • the TDMA system can implement radio technologies such as the Global System for Mobile Communication (GSM).
  • OFDMA system can realize such as Ultra Mobile Broadband (UMB), Evolved UTRA (Evolution-UTRA, E-UTRA), IEEE 802.11 (Wireless Fidelity, Wi-Fi), IEEE 802.16 (Global Microwave) Access interoperability (Worldwide Interoperability for Microwave Access, WiMAX), IEEE 802.20, Flash-OFDM and other radio technologies.
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS).
  • LTE and more advanced LTE (such as LTE-A) are new UMTS versions that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3GPP).
  • CDMA2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2).
  • the technology described in this article can be used for the systems and radio technologies mentioned above as well as other systems and radio technologies.
  • the heterogeneous three-dimensional hierarchical network in this article may include: a terrestrial mobile communication sub-network and a non-terrestrial mobile communication sub-network.
  • the terminal in this article supports not only the communication with the non-terrestrial mobile communication sub-network, but also the communication with the terrestrial mobile communication sub-network.
  • the cell coverage area formed by the non-terrestrial mobile communications sub-network is larger than the cell coverage area formed by the terrestrial mobile communications sub-network;
  • the coverage formed by the network; or, the coverage of the cell formed by the non-terrestrial mobile communication sub-network may not be the coverage formed by the terrestrial mobile communication sub-network.
  • the terrestrial mobile communication sub-network uses cellular base stations (such as macro cell base stations or micro cell base stations) or through terminals to transmit and receive terminal signals.
  • the non-ground mobile communications sub-network can use aerospace equipment such as satellites, high-altitude platforms, unmanned aerial vehicles, and civil aviation aircraft to send and receive terminal signals, and use ground gateways to send and receive feed signals from aerospace equipment.
  • an embodiment of the present disclosure provides a control method in a heterogeneous three-dimensional hierarchical network.
  • the execution body of the method may be a network control unit, and the specific steps include: step 101, step 102, and step 103.
  • Step 101 Obtain the coverage mode of the terminal
  • the network control unit is used to coordinate the communication between the non-terrestrial mobile communication sub-network and the terrestrial mobile communication sub-network and the terminal.
  • the network control unit may include: network units of various layers of sub-networks, such as The network control unit of each layer of sub-network, further, the network control unit can be a separate device, or its functions can be integrated in each layer of sub-network.
  • the coverage mode of the terminal refers to the mode in which the terminal is covered by a heterogeneous three-dimensional hierarchical network, which may include: single-layer sub-network coverage and multi-layer sub-network coverage, where single-layer sub-network coverage may refer to ground movement Coverage of communication sub-networks or non-terrestrial mobile communication sub-networks.
  • Multi-layer sub-network coverage may refer to coverage of non-terrestrial mobile communication sub-networks, or coverage of terrestrial mobile communication sub-networks and non-terrestrial mobile communication sub-networks.
  • the non-ground mobile communication sub-network may be a satellite communication sub-network
  • the network side equipment in the satellite communication sub-network may include: satellite constellations and ground gateways.
  • the satellite constellation carries out the receiving and sending of terminal signals and ground gateway signals
  • the ground gateway carries out the sending and receiving of satellite feed signals.
  • the communication link transmission mode of the satellite communication sub-network is "terminal-satellite constellation-gateway”. Or, for the on-board processing satellite constellation, the communication link transmission mode of the satellite communication sub-network is "terminal-satellite constellation”.
  • the satellite constellation can form multiple forms such as single-layer coverage with the same orbital height, multi-layer coverage with the same orbital height, and multi-layer coverage with different orbital heights.
  • the satellite communication sub-network can include: The multi-layer sub-network of the satellite constellation, where the multi-layer sub-network can include one of the following: (1) Geostationary Earth Orbit (GEO) constellation, Medium Earth Orbit (Medium Earth Orbit, MEO) constellation, and Low Earth Orbit (Low Earth Orbit, LEO) three-layer sub-network of constellation; (2) two-layer sub-network of GEO constellation and MEO constellation; (3) two-layer sub-network of GEO constellation and LEO constellation; (4) MEO constellation and LEO constellation (5) Two-layer sub-network of LEO constellation and LEO constellation.
  • GEO Geostationary Earth Orbit
  • MEO Medium Earth Orbit
  • LEO Low Earth Orbit
  • satellite constellations of different orbital heights can be processed by the same or different ground gateways.
  • the terminal supports independent working mode, intra-layer carrier aggregation mode, and cross-layer carrier aggregation mode.
  • the intra-layer carrier aggregation mode can also be referred to as the single-layer sub-network carrier aggregation mode
  • the cross-layer carrier aggregation mode is Refers to the carrier aggregation mode between different layers, for example, the carrier aggregation mode between multi-layer non-terrestrial mobile communication sub-networks, or the carrier aggregation mode between terrestrial mobile communication sub-networks and non-terrestrial mobile communication sub-networks.
  • Step 102 If the coverage mode is single-layer sub-network coverage, set the land mobile communication sub-network or non-terrestrial mobile communication sub-network corresponding to the single-layer sub-network coverage to an independent working mode or intra-layer carrier aggregation model;
  • the independent working mode refers to the single-layer sub-network to provide services for the terminal
  • the intra-layer carrier aggregation mode refers to the single-layer sub-network's intra-layer carrier aggregation mode to provide services to the terminal
  • Step 103 If the coverage mode is multi-layer sub-network coverage, cover the corresponding non-terrestrial mobile communication sub-network with the multi-layer sub-network, or cover the corresponding non-terrestrial sub-network with the multi-layer sub-network
  • the mobile communication sub-network and the terrestrial mobile communication sub-network are set to a cross-layer carrier aggregation mode.
  • the non-terrestrial mobile communication sub-network and the terrestrial mobile communication sub-network adopt the same or unified wireless access technology.
  • cross-layer carrier aggregation mode may also be referred to as an inter-layer carrier aggregation mode.
  • step 103 it is set to use the signal of the sub-network with the largest coverage area as the main carrier in the cross-layer carrier aggregation mode.
  • the network control unit may determine whether to perform inter-layer carrier aggregation according to whether the sub-network corresponding to the current operation of the terminal is single-layer coverage or multi-layer coverage. If there is only a single-layer coverage, the sub-network corresponding to the coverage is set to independent working mode or intra-layer carrier aggregation mode. If there are multiple layers of coverage, set the sub-networks corresponding to each layer of coverage to inter-layer carrier aggregation mode.
  • the method shown in FIG. 1 may further include: obtaining the coverage of the terrestrial mobile communication sub-network and/or the non-terrestrial mobile communication sub-network; The signal of the sub-network with the largest range is used as the main carrier.
  • the method shown in FIG. 1 may further include: configuring one or more primary carriers for the terrestrial mobile communication sub-network and/or the non-terrestrial mobile communication sub-network. It can be understood that, in the embodiments of the present disclosure, the manner of configuring the primary carrier and the order of execution are not specifically limited.
  • the primary carrier is used for the terminal's access, synchronization, control, or data transmission at a first rate (such as a low rate), and the secondary carrier corresponding to the primary carrier is used for the terminal's For data transmission at a second rate (for example, a high rate), the first rate is less than the second rate.
  • the method shown in FIG. 1 may further include: notifying the terminal of the working mode and/or working bandwidth of the cell where the terminal is located. It is understandable that in the embodiments of the present disclosure, the notification manner and execution order of the network control unit are not specifically limited.
  • the method shown in FIG. 1 may further include: sending first information, where the first information indicates one or more of the following combinations:
  • the network control unit can coordinate multiple sub-networks based on the working frequency, service time, and non-terrestrial network beam angles, and determine the allocation of the working frequency, service time, and non-terrestrial network beam angles of the sub-networks, so as to avoid inter-sub-networks. interference.
  • the first information notified by the network control unit and the execution order are not specifically limited.
  • the method shown in FIG. 1 may further include: acquiring the working status of the terrestrial mobile communication sub-network and/or the non-terrestrial mobile communication sub-network; sending second information according to the working status, the The second information instructs the terminal to perform sub-network switching.
  • the network control unit can detect the status of the sub-networks of each layer in communication. When an abnormal situation occurs, the network control unit can send coordination information in advance, close the signal transmission of the sub-network of this layer or prohibit users from accessing the sub-network of this layer. The network informs the user to switch to other layer sub-networks.
  • the manner and execution order of the second information notified by the network control unit are not specifically limited.
  • the method shown in FIG. 1 may further include: dynamically configuring or statically configuring the working bandwidth of the non-terrestrial mobile communication sub-network and/or the terrestrial mobile communication sub-network. It is understandable that, in the embodiments of the present disclosure, there is no specific limitation on the manner in which the network control unit configures the working bandwidth of each layer of sub-network and the execution sequence.
  • each layer of subnet only works on the allocated working bandwidth; for dynamic configuration, each layer of subnet can work on the entire system bandwidth, but the actual occupied bandwidth can be in line with the system capacity and/or rate requirements, etc.
  • the factor is related, the total actual occupied bandwidth of all sub-networks is less than or equal to the bandwidth of the entire system; optionally, different sub-networks can be configured as different carriers or different bandwidth parts (Bandwidth Part, BWP).
  • the frequency band used by the wireless signals of the non-terrestrial mobile communication sub-network and the terrestrial mobile communication sub-network that provide cell coverage in the same area is obtained by dividing the bandwidth of the communication system.
  • the non-terrestrial mobile communication sub-network uses a lower frequency band in the system bandwidth.
  • the bandwidth division may be a pre-allocated static division, that is, the wireless signals of the non-terrestrial mobile communication sub-network and the wireless signals of the terrestrial mobile communication sub-network work in fixed bandwidths respectively.
  • the bandwidth division may be a dynamic division that changes at any time, that is, the working bandwidth of the wireless signal of the non-ground mobile communication sub-network and the wireless signal of the ground mobile communication sub-network may change.
  • the network control unit calculates the working bandwidth required by the non-terrestrial mobile communication sub-network and the terrestrial mobile communication sub-network according to the capacity and/or data transmission rate requirements; and exemplary, the network control unit dynamically adjusts the non-terrestrial mobile communication sub-network. The working bandwidth of the communication sub-network and the terrestrial mobile communication sub-network.
  • the total actual occupied bandwidth of all sub-networks is less than or equal to the entire system bandwidth.
  • the non-terrestrial mobile communication sub-network and the terrestrial mobile communication sub-network use the same or unified wireless access technology, for example, 4G, 5G, 6G and other wireless access technologies, that is, to enable non-terrestrial mobile communication
  • the heterogeneous three-dimensional coverage formed by terrestrial mobile communication is regarded as a unified network system for communication, avoiding the "dual system" working mode in the related technologies of non-terrestrial communication systems and terrestrial mobile communication systems, bringing wireless resources, The problem of waste in many aspects such as system construction and equipment realization.
  • an embodiment of the present disclosure provides a control method in a heterogeneous three-dimensional layered network.
  • the execution subject of the method may be a terminal.
  • the heterogeneous three-dimensional layered network includes: a terrestrial mobile communication sub-network and a non-terrestrial mobile communication sub-network.
  • specific steps may include: step 201 and step 202.
  • Step 201 Obtain the working mode and/or working bandwidth of the cell where the terminal is located;
  • the working modes of the cell where the terminal is located include: independent working mode, intra-layer carrier aggregation mode, and cross-layer carrier aggregation mode.
  • Step 202 Obtain the working mode and/or the subnet of the terminal according to the working mode and/or working bandwidth of the cell where the terminal is located;
  • the non-terrestrial mobile communication sub-network and the terrestrial mobile communication sub-network adopt the same or unified wireless access technology.
  • the method shown in FIG. 2 may further include:
  • the working mode of the terminal is the independent working mode, control and/or data transmission are performed on the corresponding sub-network.
  • the method shown in FIG. 2 may further include:
  • the working mode of the terminal is the intra-layer carrier aggregation mode
  • access, synchronization, control, and/or data transmission at the first rate are performed on the primary carrier
  • the second rate is performed on the secondary carrier corresponding to the primary carrier.
  • the first rate is less than the second rate
  • the method shown in FIG. 2 may further include:
  • the working mode of the terminal is the cross-layer carrier aggregation mode
  • access, synchronization, control, and/or data transmission at the first rate are performed on the sub-network where the main carrier is located
  • the main carrier is The sub-network where the corresponding secondary carrier is located performs data transmission at a second rate (for example, a high rate), and the first rate is less than the second rate.
  • the non-terrestrial mobile communication sub-network and the terrestrial mobile communication sub-network use the same or unified wireless access technology, for example, 4G, 5G, 6G and other wireless access technologies, that is, to enable non-terrestrial mobile communication
  • the heterogeneous three-dimensional coverage formed by terrestrial mobile communication is regarded as a unified network system for communication, avoiding the "dual system" working mode in the related technologies of non-terrestrial communication systems and terrestrial mobile communication systems, bringing wireless resources, The problem of waste in many aspects such as system construction and equipment realization.
  • an embodiment of the present disclosure provides a communication system, the communication system includes: a heterogeneous three-dimensional layered network, a terminal 301 and a network control unit 302, the heterogeneous three-dimensional layered network includes: a terrestrial mobile communication sub-network 303 And non-terrestrial mobile communication sub-network 304; among them,
  • the terminal 301 is respectively communicatively connected with the terrestrial mobile communication sub-network 303 and the non-terrestrial mobile communication sub-network 304;
  • the network control unit 302 is respectively communicatively connected with the ground mobile communication sub-network 303 and the non-ground mobile communication sub-network 304;
  • the non-terrestrial mobile communication sub-network and the terrestrial mobile communication sub-network adopt the same or unified wireless access technology.
  • the network control unit 302 is independent of the network side equipment of the ground mobile communication sub-network and the network side equipment of the non-ground mobile communication sub-network; or, the network control unit is set on the ground On the network side equipment of the mobile communication sub-network or the network side equipment of the non-terrestrial mobile communication sub-network.
  • the cell coverage area formed by the non-terrestrial mobile communication sub-network is larger than the cell coverage area formed by the terrestrial mobile communication sub-network;
  • the cell coverage area formed by the terrestrial mobile communication sub-network partially overlaps with the cell coverage area formed by the non-terrestrial mobile communication sub-network;
  • the cell coverage area formed by the terrestrial mobile communication sub-network does not overlap with the cell coverage area formed by the non-terrestrial mobile communication sub-network.
  • the network type of the terrestrial mobile communication sub-network includes one or more of the following combinations: a macro cellular network, a micro cellular network, and a direct terminal network.
  • the non-terrestrial mobile communication sub-network includes: aerospace equipment; or,
  • the non-terrestrial mobile communication sub-network includes: aerospace equipment and a ground customs station; wherein, the aerospace equipment is a combination of one or more of the following: a satellite constellation, a high-altitude platform, and an aircraft.
  • the network coverage mode of the satellite constellation includes one of the following:
  • the single-layer sub-network coverage of the satellite constellation at the same orbital altitude includes one of the following:
  • the multi-layer sub-network coverage of the satellite constellation at the same orbital altitude includes: the control beam and spot beam sub-network coverage of the satellite constellation at the same orbital altitude.
  • the multi-layer sub-network of satellite constellations of different orbital heights may include one of the following: (1) the three-layer sub-network of the GEO constellation, the MEO constellation, and the LEO constellation; (2) Two-layer sub-network of GEO constellation and MEO constellation; (3) Two-layer sub-network of GEO constellation and LEO constellation; (4) Two-layer sub-network of MEO constellation and LEO constellation; (5) Two layers of LEO constellation and LEO constellation Subnet.
  • the network control unit dynamically configures or statically configures the operating bandwidth of the non-terrestrial mobile communication sub-network and the operating bandwidth of the terrestrial mobile communication sub-network.
  • the operating bandwidth of the non-terrestrial mobile communication sub-network or the operating bandwidth of the terrestrial mobile communication sub-network is at least part of the operating bandwidth of the communication system, that is, the non-terrestrial mobile communication sub-network
  • the working bandwidth of the network and/or the bandwidth actually occupied by the working bandwidth of the terrestrial mobile communication sub-network is generally less than or equal to the working bandwidth of the communication system.
  • the non-terrestrial mobile communication sub-network and the terrestrial mobile communication sub-network provide services for terminals in the coverage area in an independent operation mode or a carrier aggregation mode.
  • the signal provided by the non-terrestrial mobile communication sub-network or the terrestrial mobile communication sub-network is used as the main carrier.
  • the primary carrier is used for the terminal's access, synchronization, control, or data transmission at a first rate (such as a low rate), and the secondary carrier corresponding to the primary carrier is used for the terminal's For data transmission at a second rate (for example, a high rate), the first rate is less than the second rate.
  • the non-terrestrial mobile communication sub-network and the terrestrial mobile communication sub-network use the same or unified wireless access technology, for example, 4G, 5G, 6G and other wireless access technologies, that is, to enable non-terrestrial mobile communication
  • the heterogeneous three-dimensional coverage formed by terrestrial mobile communication is regarded as a unified network system for communication, avoiding the "dual system" working mode in the related technologies of non-terrestrial communication systems and terrestrial mobile communication systems, bringing wireless resources, The problem of waste in many aspects such as system construction and equipment realization.
  • Example 1 The following describes the implementation of the present disclosure in combination with Example 1 and Example 2.
  • Embodiment 1 A 3-layer heterogeneous stereo network of GEO constellation + LEO constellation + ground cellular base station.
  • the non-terrestrial mobile communication sub-network includes: a GEO constellation, an LEO constellation, and a ground gateway station communicatively connected to the GEO constellation and LEO constellation;
  • the ground mobile communication sub-network includes: ground base stations;
  • the network control unit is respectively connected to the ground gateway station and ground base station in communication.
  • the sub-network composed of the GEO constellation and ground gateways forms the first layer of coverage with the largest coverage area
  • the sub-network composed of the LEO constellation and ground gateways forms the second largest coverage area.
  • Layer coverage the ground cellular base station forms the smallest layer 3 coverage in the area. That is, for the area covered by the ground cellular base station where the terminal is located, there are also fixed GEO satellites and fast-moving LEO satellites.
  • the occupied bandwidth of the sub-network formed by the coverage of each layer has a static or dynamic division method.
  • the total bandwidth B MHz is fixedly divided into 3 non-overlapping segments, and if they are recorded as B 1 , B 2 , B 3 , then B 1 +B 2 +B 3 ⁇ B.
  • the three bandwidths are allocated to the sub-networks of the three-layer coverage, so that the sub-networks of the three-layer coverage are designed only according to the given bandwidth.
  • the GEO constellation sub-network only works in the bandwidth B 1
  • the LEO constellation sub-network only works in the bandwidth B 2
  • the ground base station sub-network only works in bandwidth B 3 .
  • the sub-networks covered by the three-layer are designed according to the entire working bandwidth B, but the actual working bandwidth is dynamically changing, which is different from the system capacity and the system capacity in a specific area and at a specific time. Factors such as rate requirements are related.
  • the working bandwidths of the corresponding 3-layer coverage sub-networks are B 1,i , B 2,i , B 3,i , then B 1,i +B 2,i +B 3,i ⁇ B;
  • the working bandwidths of the corresponding 3-layer sub-networks are B 1,j , B 2,j , B 3,j , then there is B 1,j +B 2,j +B 3,j ⁇ B; because the system capacity and rate requirements of the i-th area and the j-th area are different, there exists B 1,i ⁇ B 1,j , B 2,i ⁇ B 2,j , B 3,i ⁇ B 3,j .
  • the sub-networks covered by each layer provide services for the terminals through carrier aggregation.
  • the first layer of coverage formed by GEO satellites can be used as the main carrier for terminal access, synchronization, control, and low-rate data transmission;
  • the second layer of coverage formed by LEO satellites can be formed by ground base stations.
  • Layer 3 coverage is used as a secondary carrier for high-rate data transmission of the terminal.
  • the network will monitor the changes in its own working status in real time, and the terminal will also notify the network of its own information in real time, so that the network can better judge and process the current working status. For example, if the network detects that the multi-layer constellation sub-network connected to the terminal has the unavailable satellites of the layer 1 constellation sub-network, the network informs the terminal to disconnect from the unavailable satellite and transfer to other constellation sub-networks and/or terrestrial sub-networks. Communication.
  • terminal in Fig. 4 can be directly connected to the GEO constellation for communication, and the ground gateway GW2 can be connected to one or more satellites in the second LEO satellite constellation.
  • the second embodiment a 3-layer heterogeneous stereo network of LEO constellation + ground cellular base station.
  • the non-terrestrial mobile communication sub-network includes: a LEO constellation and a ground gateway station communicatively connected with the LEO constellation;
  • the ground mobile communication sub-network includes: ground base stations;
  • the network control unit is respectively connected to the ground gateway station and the ground base station in communication.
  • the sub-network composed of LEO constellation and ground gateways forms a two-layer coverage of control beams and spot beams.
  • the control beam is the first layer with the largest coverage area
  • the spot beam is the second coverage area.
  • the second layer of coverage, the ground cellular base station forms the smallest third layer of coverage in the area. That is, for the area covered by the ground cellular base station where the terminal is located, there is also the control beam coverage and spot beam coverage of the fast-moving LEO satellite.
  • the occupied bandwidth of the sub-network formed by the coverage of each layer has a static or dynamic division method.
  • the total bandwidth B MHz is fixedly divided into 3 non-overlapping segments, and if they are recorded as B 1 , B 2 , B 3 , then B 1 +B 2 +B 3 ⁇ B.
  • the three bandwidths are allocated to the three-layer coverage sub-networks, so that the three-layer coverage sub-networks are designed only according to the given bandwidth.
  • the control beam sub-network of the LEO constellation only works in the bandwidth B 1
  • the spot beam of the LEO constellation The sub-network only works in the bandwidth B 2
  • the ground base station sub-network only works in the bandwidth B 3 .
  • the sub-networks covered by the three-layer are designed according to the entire working bandwidth B, but the actual working bandwidth is dynamically changing, which is different from the system capacity and the system capacity in a specific area and at a specific time. Factors such as rate requirements are related.
  • the working bandwidths of the corresponding 3-layer coverage sub-networks are B 1,i , B 2,i , B 3,i , then B 1,i +B 2,i +B 3,i ⁇ B;
  • the working bandwidths of the corresponding 3-layer sub-networks are B 1,j , B 2,j , B 3,j , then there is B 1,j +B 2,j +B 3,j ⁇ B; because the system capacity and rate requirements of the i-th area and the j-th area are different, there exists B 1,i ⁇ B 1,j , B 2,i ⁇ B 2,j , B 3,i ⁇ B 3,j .
  • the sub-networks covered by each layer provide services for the terminals through carrier aggregation.
  • the first layer of control beamforming of LEO satellites can be used as the main carrier for terminal access, synchronization, control and low-rate data transmission; the second layer of LEO satellite spot beams can be formed The coverage and the third layer of coverage formed by the ground base station are used as auxiliary carriers for high-rate data transmission of the terminal.
  • the network will monitor the changes in its own working status in real time, and the terminal will also notify the network of its own information in real time, so that the network can better judge and process the current working status. For example, if the network detects that the terrestrial sub-network to which the terminal is connected is unavailable, the network informs the terminal to disconnect from the terrestrial sub-network and switch to communicating with each satellite sub-network.
  • an embodiment of the present disclosure provides a control device in a heterogeneous three-dimensional layered network.
  • the control device is applied to a network control unit.
  • the heterogeneous three-dimensional layered network includes: a terrestrial mobile communication sub-network and a non-terrestrial mobile communication sub-network.
  • the control device 600 includes:
  • the first obtaining module 601 is configured to obtain the coverage mode of the terminal
  • the first processing module 602 is configured to, if the coverage mode is a single-layer sub-network coverage, set the ground mobile communication sub-network or non-terrestrial mobile communication sub-network corresponding to the single-layer sub-network coverage into an independent working mode Or intra-layer carrier aggregation mode;
  • the coverage mode is multi-layer sub-network coverage
  • the multi-layer sub-network will cover the corresponding non-terrestrial mobile communication sub-network, or the multi-layer sub-network will cover the corresponding non-terrestrial mobile communication sub-network.
  • the network and the terrestrial mobile communication sub-network are set to cross-layer carrier aggregation mode;
  • the terrestrial mobile communication sub-network and the non-terrestrial mobile communication sub-network adopt the same or unified wireless access technology.
  • control device 600 further includes:
  • the second acquisition module is used to acquire the coverage of the terrestrial mobile communication sub-network and/or the non-terrestrial mobile communication sub-network;
  • the second processing module is used to use the signal of the sub-network with the largest coverage area as the main carrier.
  • control device 600 further includes:
  • the first configuration module is used to configure one or more primary carriers for the terrestrial mobile communication sub-network and/or the non-terrestrial mobile communication sub-network.
  • the primary carrier is used for the terminal's access, synchronization, control, or first rate data transmission
  • the secondary carrier corresponding to the primary carrier is used for the terminal's second rate data
  • the first rate is less than the second rate
  • control device 600 further includes:
  • the first sending module is configured to notify the terminal of the working mode and/or working bandwidth of the cell where the terminal is located.
  • control device 600 further includes:
  • the second sending module is configured to send first information, where the first information indicates one or more of the following combinations:
  • the beam angle of the non-terrestrial mobile communication sub-network is the beam angle of the non-terrestrial mobile communication sub-network.
  • control device 600 further includes:
  • the third acquisition module is used to acquire the working status of the terrestrial mobile communication sub-network and/or the non-terrestrial mobile communication sub-network;
  • the third sending module is configured to send second information according to the working status, and the second information instructs the terminal to perform sub-network switching.
  • control device 600 further includes:
  • the second configuration module is used to dynamically configure or statically configure the working bandwidth of the non-terrestrial mobile communication sub-network and/or the terrestrial mobile communication sub-network.
  • the control device provided by the embodiment of the present disclosure can execute the method embodiment shown in FIG.
  • an embodiment of the present disclosure provides a network control unit suitable for a heterogeneous three-dimensional layered network.
  • the heterogeneous three-dimensional layered network includes: a terrestrial mobile communication sub-network and a non-terrestrial mobile communication sub-network.
  • the control unit 700 includes: a first transceiver 701 and a first processor 702;
  • the first transceiver 701 sends and receives data under the control of the first processor 702;
  • the first processor 702 reads the program in the memory to perform the following operations: obtain the coverage mode of the terminal; if the coverage mode is single-layer sub-network coverage, move the ground corresponding to the single-layer sub-network coverage
  • the communication sub-network or the non-terrestrial mobile communication sub-network is set to independent working mode or intra-layer carrier aggregation mode;
  • the coverage mode is multi-layer sub-network coverage
  • the multi-layer sub-network will cover the corresponding non-terrestrial mobile communication sub-network, or the multi-layer sub-network will cover the corresponding non-terrestrial mobile communication sub-network.
  • the network and the terrestrial mobile communication sub-network are set to cross-layer carrier aggregation mode;
  • the terrestrial mobile communication sub-network and the non-terrestrial mobile communication sub-network adopt the same or unified wireless access technology.
  • the first processor 702 reads the program in the memory to perform the following operations: obtain the coverage of the terrestrial mobile communication sub-network and/or the non-terrestrial mobile communication sub-network;
  • the signal of the network serves as the main carrier.
  • the first processor 702 reads a program in the memory to perform the following operations: configure one or more primary carriers for the terrestrial mobile communication sub-network and/or the non-terrestrial mobile communication sub-network.
  • the primary carrier is used for the terminal's access, synchronization, control, or first rate data transmission
  • the secondary carrier corresponding to the primary carrier is used for the terminal's second rate data
  • the first rate is less than the second rate
  • the first processor 702 reads a program in a memory to perform the following operations: Notify the terminal of the working mode and/or working bandwidth of the cell where the terminal is located.
  • the first processor 702 reads a program in the memory to perform the following operations: send first information, where the first information indicates one or more of the following combinations:
  • the beam angle of the non-terrestrial mobile communication sub-network is the beam angle of the non-terrestrial mobile communication sub-network.
  • the first processor 702 reads the program in the memory to perform the following operations: obtain the working status of the ground mobile communication sub-network and/or the non-ground mobile communication sub-network; according to the working status, Sending second information, the second information instructing the terminal to perform sub-network switching.
  • the first processor 702 reads a program in a memory to perform the following operations: dynamically configure or statically configure the working bandwidth of the non-terrestrial mobile communication sub-network and/or the terrestrial mobile communication sub-network.
  • the network control unit provided in the embodiment of the present disclosure can execute the method embodiment shown in FIG.
  • an embodiment of the present disclosure provides a control device in a heterogeneous three-dimensional layered network, which is applied to a terminal.
  • the heterogeneous three-dimensional layered network includes a terrestrial mobile communication sub-network and a non-terrestrial mobile communication sub-network.
  • the control device 800 includes:
  • the fourth obtaining module 801 is configured to obtain the working mode and/or working bandwidth of the cell where the terminal is located;
  • the third processing module 802 is configured to obtain the working mode and/or sub-network of the terminal according to the working mode and/or working bandwidth of the cell where the terminal is located;
  • the terrestrial mobile communication sub-network and the non-terrestrial mobile communication sub-network adopt the same or unified wireless access technology.
  • control device 800 further includes:
  • the fourth processing module is configured to perform control and/or data transmission in the corresponding sub-network if the working mode of the terminal is the independent working mode; or, if the working mode of the terminal is the intra-layer carrier aggregation mode, then Performing access, synchronization, control, and/or data transmission at a first rate on a primary carrier, and performing data transmission at a second rate on a secondary carrier corresponding to the primary carrier, where the first rate is less than the second rate; Or, if the working mode of the terminal is a cross-layer carrier aggregation mode, access, synchronization, control and/or data transmission at the first rate are performed on the sub-network where the primary carrier is located, and the secondary carrier corresponding to the primary carrier is used for access, synchronization, control, and/or data transmission.
  • the sub-network where the carrier is located performs data transmission at a second rate, and the first rate is less than the second rate.
  • control device provided by the embodiment of the present disclosure can execute the method embodiment shown in FIG. 2 above, and its implementation principles and technical effects are similar, and details are not described in this embodiment here.
  • an embodiment of the present disclosure provides a terminal suitable for a heterogeneous three-dimensional layered network.
  • the heterogeneous three-dimensional layered network includes: a terrestrial mobile communication sub-network and a non-terrestrial mobile communication sub-network.
  • the terminal 900 includes : The second transceiver 901 and the second processor 902;
  • the second transceiver 901 sends and receives data under the control of the second processor 902;
  • the second processor 902 reads the program in the memory to perform the following operations: obtain the working mode and/or working bandwidth of the cell where the terminal is located; obtain the working mode and/or working bandwidth of the cell where the terminal is located The working mode and/or sub-network of the terminal;
  • the terrestrial mobile communication sub-network and the non-terrestrial mobile communication sub-network adopt the same or unified wireless access technology.
  • the second processor 902 reads the program in the memory to perform the following operations: if the working mode of the terminal is the independent working mode, control and/or data transmission are performed on the corresponding sub-network; or If the working mode of the terminal is the intra-layer carrier aggregation mode, the access, synchronization, control, and/or first rate data transmission is performed on the primary carrier, and the second rate is performed on the secondary carrier corresponding to the primary carrier.
  • the first rate is lower than the second rate; or, if the working mode of the terminal is a cross-layer carrier aggregation mode, access, synchronization, control and/or are performed in the sub-network where the main carrier is located
  • For data transmission at the first rate data transmission at a second rate is performed on the sub-network where the secondary carrier corresponding to the primary carrier is located, and the first rate is less than the second rate.
  • the terminal provided by the embodiment of the present disclosure can execute the method embodiment shown in FIG. 2 above, and its implementation principles and technical effects are similar, and details are not described herein again in this embodiment.
  • FIG. 10 is a structural diagram of a communication device applied in an embodiment of the present disclosure.
  • a communication device 1000 includes: a processor 1001, a transceiver 1002, a memory 1003, and a bus interface, where:
  • the communication device 1000 further includes: a program that is stored in the memory 1003 and can run on the processor 1001. When the program is executed by the processor 1001, the step.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1001 and various circuits of the memory represented by the memory 1003 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 1002 may be multiple elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium. It is understood that the transceiver 1002 is an optional component.
  • the processor 1001 is responsible for managing the bus architecture and general processing, and the memory 1003 can store data used by the processor 1001 when performing operations.
  • the communication device provided in the embodiment of the present disclosure can execute the method embodiments shown in FIG. 1 to FIG. 2 above, and the implementation principles and technical effects are similar, and details are not described in this embodiment here.
  • the steps of the method or algorithm described in conjunction with the disclosure of the present disclosure may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), erasable programmable read-only memory ( Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), register, hard disk, mobile hard disk, CD-ROM, or any other form of storage known in the art Medium.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in an application specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the functions described in the present disclosure can be implemented by hardware, software, firmware, or any combination thereof.
  • these functions can be stored in a readable medium or transmitted as one or more instructions or codes on the readable medium.
  • the readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.
  • the embodiments of the present disclosure can be provided as a method, a system, or a computer program product. Therefore, the embodiments of the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the embodiments of the present disclosure may use one or more computer-usable storage media containing computer-usable program codes (including but not limited to disk storage, CD-ROM (Compact Disc Read-Only Memory, CD-ROM), Optical storage, etc.) in the form of a computer program product implemented on it.
  • computer-usable storage media including but not limited to disk storage, CD-ROM (Compact Disc Read-Only Memory, CD-ROM), Optical storage, etc.
  • These computer program instructions can be provided to the processor of a general-purpose computer, a special-purpose computer, an embedded processor, or other programmable data processing equipment to generate a machine, so that the instructions executed by the processor of the computer or other programmable data processing equipment are used to generate It is a device that realizes the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种异构立体分层网络中的控制方法、装置及通信系统,方法包括:获取终端的覆盖模式;如果覆盖模式为单层子网络覆盖,则将单层子网络覆盖对应的地面移动通信子网络或非地面移动通信子网络设置成独立工作模式或者层内载波聚合模式;如果覆盖模式为多层子网络覆盖,则将多层子网络覆盖对应的非地面移动通信子网络,或者将多层子网络覆盖对应的非地面移动通信子网络和地面移动通信子网络,设置成跨层载波聚合模式;其中,地面移动通信子网络和非地面移动通信子网络采用相同或统一的无线接入技术。

Description

异构立体分层网络中的控制方法、装置及通信系统
相关申请的交叉引用
本申请主张在2020年6月10日在中国提交的中国专利申请号No.202010524153.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,具体涉及一种异构立体分层网络中的控制方法、装置及通信系统。
背景技术
以卫星移动通信为代表的非地面通信系统和地面移动通信系统一直在作为单独的网络和系统在进行处理,系统间的交互主要考虑互联互通。例如,对于某个终端而言,如果能同时支持卫星移动通信和地面移动通信,这两种通信方式会作为两种独立的模式而存在,某个时刻终端只工作在一种模式,依据需要,终端在两种模式之间进行转换。
发明内容
本公开实施例的一个目的在于提供一种异构立体分层网络中的控制方法、装置及通信系统,解决非地面通信系统和地面移动通信系统的相关技术中的“双系统”工作方式,造成的资源浪费的问题。
第一方面,本公开实施例提供一种异构立体分层网络中的控制方法,应用于网络控制单元,所述异构立体分层网络包括:地面移动通信子网络和非地面移动通信子网络,所述方法包括:
获取终端的覆盖模式;
如果所述覆盖模式为单层子网络覆盖,则将所述单层子网络覆盖对应的所述地面移动通信子网络或非地面移动通信子网络设置成独立工作模式或者层内载波聚合模式;
如果所述覆盖模式为多层子网络覆盖,则将所述多层子网络覆盖对应的 所述非地面移动通信子网络,或者将所述多层子网络覆盖对应的所述非地面移动通信子网络和地面移动通信子网络,设置成跨层载波聚合模式;
其中,所述地面移动通信子网络和非地面移动通信子网络采用相同或统一的无线接入技术。
可选地,所述方法还包括:
获取所述地面移动通信子网络和/或非地面移动通信子网络的覆盖范围;
将覆盖范围最大的子网络的信号作为主载波。
可选地,所述方法还包括:
对地面移动通信子网络和/或非地面移动通信子网络配置一个或多个主载波。
可选地,所述主载波用于所述终端的接入、同步、控制或第一速率的数据传输,与所述主载波对应的辅载波用于所述终端的第二速率的数据传输,所述第一速率小于所述第二速率。
可选地,所述方法还包括:
将所述终端所在小区的工作模式和/或工作带宽通知给所述终端。
可选地,所述方法还包括:
发送第一信息,所述第一信息指示以下一项或多项组合:
所述地面移动通信子网络和/或非地面移动通信子网络的工作频率;
所述非地面移动通信子网络的服务时间;
所述非地面移动通信子网络的波束角度。
可选地,所述方法还包括:
获取所述地面移动通信子网络和/或非地面移动通信子网络的工作状态;
根据所述工作状态,发送第二信息,所述第二信息指示终端进行子网络切换。
可选地,所述方法还包括:
动态配置或静态配置所述非地面移动通信子网络和/或所述地面移动通信子网络的工作带宽。
第二方面,本公开实施例提供一种异构立体分层网络中的控制方法,应用于终端,所述异构立体分层网络包括:地面移动通信子网络和非地面移动 通信子网络,所述方法包括:
获取所述终端所在小区的工作模式和/或工作带宽;
根据所述终端所在小区的工作模式和/或工作带宽,得到所述终端的工作模式和/或所在子网络;
其中,所述地面移动通信子网络和非地面移动通信子网络采用相同或统一的无线接入技术。
可选地,所述方法还包括:
如果所述终端的工作模式是独立工作模式,则在对应的子网络进行控制和/或数据传输;
或者,
如果所述终端的工作模式是层内载波聚合模式,则在主载波进行接入、同步、控制和/或第一速率的数据传输,在与所述主载波对应的辅载波进行第二速率的数据传输,所述第一速率小于所述第二速率;
或者,
如果所述终端的工作模式是跨层载波聚合模式,则在主载波所在的子网络进行接入、同步、控制和/或第一速率的数据传输,在与所述主载波对应的辅载波所在的子网络进行第二速率的数据传输,所述第一速率小于所述第二速率。
第三方面,本公开实施例提供一种通信系统,包括:异构立体分层网络、终端和网络控制单元,所述异构立体分层网络包括:地面移动通信子网络和非地面移动通信子网络;其中,
所述终端分别与所述地面移动通信子网络和非地面移动通信子网络通信连接;
所述网络控制单元分别与所述地面移动通信子网络和非地面移动通信子网络通信连接;
其中,所述地面移动通信子网络和非地面移动通信子网络采用相同或统一的无线接入技术。
可选地,所述网络控制单元独立于所述地面移动通信子网络的网络侧设备和非地面移动通信子网络的网络侧设备设置;
或者,所述网络控制单元设置在所述地面移动通信子网络的网络侧设备或者非地面移动通信子网络的网络侧设备上。
可选地,所述非地面移动通信子网络形成的小区覆盖区域大于所述地面移动通信子网络形成的小区覆盖区域;
或者,
所述地面移动通信子网络形成的小区覆盖区域与所述非地面移动通信子网络形成的小区覆盖区域部分重叠;
或者,
所述地面移动通信子网络形成的小区覆盖区域与所述非地面移动通信子网络形成的小区覆盖区域不重叠。
可选地,所述地面移动通信子网络的网络类型包括以下一项或多项组合:宏蜂窝网络、微蜂窝网络和终端直通网络。
可选地,所述非地面移动通信子网络包括:空天设备;或者,
所述非地面移动通信子网络包括:空天设备和地面信关站;其中,所述空天设备以下一项或多项组合:卫星星座、高空平台和飞行器。
可选地,所述卫星星座的网络覆盖方式包括以下之一:
同轨道高度的卫星星座的单层子网络覆盖;
同轨道高度的卫星星座的多层子网络覆盖;
不同轨道高度的卫星星座的多层子网络覆盖。
可选地,所述同轨道高度的卫星星座的单层子网络覆盖包括以下之一:GEO星座的单层子网络覆盖;
MEO星座的单层子网络覆盖;
LEO星座的单层子网络覆盖。
可选地,所述同轨道高度的卫星星座的多层子网络覆盖,包括:同轨道高度的卫星星座的控制波束和点波束的子网络覆盖。
可选地,所述不同轨道高度的卫星星座的多层子网络覆盖,包括以下之一:
GEO星座、MEO星座和LEO星座的三层子网络覆盖;
GEO星座和MEO星座的两层子网络覆盖;
GEO星座和LEO星座的两层子网络覆盖;
MEO星座和LEO星座的两层子网络覆盖;
LEO星座和LEO星座的两层子网络覆盖。
可选地,所述网络控制单元动态配置或静态配置所述非地面移动通信子网络的工作带宽和所述地面移动通信子网络的工作带宽。
可选地,所述非地面移动通信子网络的工作带宽和/或所述地面移动通信子网络的工作带宽实际占用的带宽综合小于或等于所述通信系统的工作带宽。
可选地,所述非地面移动通信子网络和所述地面移动通信子网络以独立工作方式或者载波聚合方式为覆盖区域内的终端提供服务。
可选地,所述非地面移动通信子网络或所述地面移动通信子网络提供的信号作为主载波。
可选地,所述主载波用于所述终端的接入、同步、控制或第一速率的数据传输,与所述主载波对应的辅载波用于所述终端的第二速率的数据传输,所述第一速率小于所述第二速率。
第四方面,本公开实施例提供一种异构立体分层网络中的控制装置,应用于网络控制单元,所述异构立体分层网络包括:地面移动通信子网络和非地面移动通信子网络,所述控制装置包括:
第一获取模块,用于获取终端的覆盖模式;
第一处理模块,用于如果所述覆盖模式为单层子网络覆盖,则将所述单层子网络覆盖对应的所述地面移动通信子网络或非地面移动通信子网络设置成独立工作模式或者层内载波聚合模式;
如果所述覆盖模式为多层子网络覆盖,则将所述多层子网络覆盖对应的所述非地面移动通信子网络,或者将所述多层子网络覆盖对应的所述非地面移动通信子网络和地面移动通信子网络,设置成跨层载波聚合模式;
其中,所述地面移动通信子网络和非地面移动通信子网络采用相同或统一的无线接入技术。
可选地,所述控制装置还包括:
第二获取模块,用于获取所述地面移动通信子网络和/或非地面移动通信子网络的覆盖范围;
第二处理模块,用于将覆盖范围最大的子网络的信号作为主载波。
可选地,所述控制装置还包括:
第一配置模块,用于对地面移动通信子网络和/或非地面移动通信子网络配置一个或多个主载波。
可选地,所述控制装置还包括:
第一发送模块,用于将所述终端所在小区的工作模式和/或工作带宽通知给所述终端。
可选地,所述控制装置还包括:
第二发送模块,用于发送第一信息,所述第一信息指示以下一项或多项组合:
所述地面移动通信子网络和/或非地面移动通信子网络的工作频率;
非地面移动通信子网络的服务时间;
所述非地面移动通信子网络的波束角度。
可选地,所述控制装置还包括:
第三获取模块,用于获取所述地面移动通信子网络和/或非地面移动通信子网络的工作状态;
第三发送模块,用于根据所述工作状态,发送第二信息,所述第二信息指示终端进行子网络切换。
可选地,所述控制装置还包括:
第二配置模块,用于动态配置或静态配置所述非地面移动通信子网络和/或所述地面移动通信子网络的工作带宽。
第五方面,本公开实施例还提供一种网络控制单元,适用于异构立体分层网络,所述异构立体分层网络包括:地面移动通信子网络和非地面移动通信子网络,所述网络控制单元包括:第一收发机和第一处理器;
所述第一收发机在所述第一处理器的控制下发送和接收数据;
所述第一处理器读取存储器中的程序执行以下操作:获取终端的覆盖模式;如果所述覆盖模式为单层子网络覆盖,则将所述单层子网络覆盖对应的所述地面移动通信子网络或非地面移动通信子网络设置成独立工作模式或者层内载波聚合模式;
如果所述覆盖模式为多层子网络覆盖,则将所述多层子网络覆盖对应的所述非地面移动通信子网络,或者将所述多层子网络覆盖对应的所述非地面移动通信子网络和地面移动通信子网络,设置成跨层载波聚合模式;
其中,所述地面移动通信子网络和非地面移动通信子网络采用相同或统一的无线接入技术。
可选地,所述第一处理器读取存储器中的程序还执行以下操作:获取所述地面移动通信子网络和/或非地面移动通信子网络的覆盖范围;将覆盖范围最大的子网络的信号作为主载波。
可选地,所述第一处理器读取存储器中的程序还执行以下操作:对地面移动通信子网络和/或非地面移动通信子网络配置一个或多个主载波。
可选地,所述第一处理器读取存储器中的程序还执行以下操作:将所述终端所在小区的工作模式和/或工作带宽通知给所述终端。
可选地,所述第一处理器读取存储器中的程序还执行以下操作:发送第一信息,所述第一信息指示以下一项或多项组合:
所述地面移动通信子网络和/或非地面移动通信子网络的工作频率;
非地面移动通信子网络的服务时间;
所述非地面移动通信子网络的波束角度。
可选地,所述第一处理器读取存储器中的程序还执行以下操作:获取所述地面移动通信子网络和/或非地面移动通信子网络的工作状态;根据所述工作状态,发送第二信息,所述第二信息指示终端进行子网络切换。
可选地,所述第一处理器读取存储器中的程序还执行以下操作:动态配置或静态配置所述非地面移动通信子网络和/或所述地面移动通信子网络的工作带宽。
第六方面,本公开实施例提供一种异构立体分层网络中的控制装置,应用于终端,所述异构立体分层网络包括:地面移动通信子网络和非地面移动通信子网络,所述控制装置包括:
第四获取模块,用于获取所述终端所在小区的工作模式和/或工作带宽;
第三处理模块,用于根据所述终端所在小区的工作模式和/或工作带宽,得到所述终端的工作模式和/或所在子网络;
其中,所述地面移动通信子网络和非地面移动通信子网络采用相同的或统一的无线接入技术。
可选地,所述控制装置还包括:
第四处理模块,用于如果所述终端的工作模式是独立工作模式,则在对应的子网络进行控制和/或数据传输;或者,如果所述终端的工作模式是层内载波聚合模式,则在主载波进行接入、同步、控制和/或第一速率的数据传输,在与所述主载波对应的辅载波进行第二速率的数据传输,所述第一速率小于所述第二速率;或者,如果所述终端的工作模式是跨层载波聚合模式,则在主载波所在的子网络进行接入、同步、控制和/或第一速率的数据传输,在与所述主载波对应的辅载波所在的子网络进行第二速率的数据传输,所述第一速率小于所述第二速率。
第七方面,本公开实施例提供一种终端,适用于异构立体分层网络,所述异构立体分层网络包括:地面移动通信子网络和非地面移动通信子网络,所述终端包括:第二收发机和第二处理器;
所述第二收发机在所述第二处理器的控制下发送和接收数据;
所述第二处理器读取存储器中的程序执行以下操作:获取所述终端所在小区的工作模式和/或工作带宽;根据所述终端所在小区的工作模式和/或工作带宽,得到所述终端的工作模式和/或所在子网络;
其中,所述地面移动通信子网络和非地面移动通信子网络采用相同的或统一的无线接入技术。
可选地,所述第二处理器读取存储器中的程序还执行以下操作:如果所述终端的工作模式是独立工作模式,则在对应的子网络进行控制和/或数据传输;或者,如果所述终端的工作模式是层内载波聚合模式,则在主载波进行接入、同步、控制和/或第一速率的数据传输,在与所述主载波对应的辅载波进行第二速率的数据传输,所述第一速率小于所述第二速率;或者,如果所述终端的工作模式是跨层载波聚合模式,则在主载波所在的子网络进行接入、同步、控制和/或第一速率的数据传输,在与所述主载波对应的辅载波所在的子网络进行第二速率的数据传输,所述第一速率小于所述第二速率。
第八方面,本公开实施例提供一种可读存储介质,所述可读存储介质上 存储有计算机程序,所述程序被处理器执行时实现如上述所述的方法的步骤。
在本公开实施例中,非地面移动通信子网络和地面移动通信子网络采用相同或者统一的无线接入技术,比如,第四代(4 th Generation,4G)、第五代(5 th Generation,5G)、第六代(6 th Generation,6G)等无线接入技术,也就是能够让非地面移动通信和地面移动通信形成的异构立体覆盖被当作一个统一的网络系统来进行通信,避免非地面通信系统和地面移动通信系统的相关技术中的“双系统”工作方式,带来了无线资源、系统建设与设备实现等多个方面的浪费的问题。
附图说明
通过阅读下文可选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本公开实施例中的异构立体分层网络中的控制方法的流程图之一;
图2为本公开实施例中的异构立体分层网络中的控制方法的流程图之二;
图3为本公开实施例中的通信系统的示意图;
图4为本公开实施例中GEO星座+LEO星座+地面蜂窝基站的3层异构立体网络的示意图;
图5为本公开实施例中LEO星座+地面蜂窝基站的3层异构立体网络的示意图;
图6为本公开实施例的异构立体分层网络中的控制装置的示意图之一;
图7为本公开实施例的网络控制单元的示意图;
图8为本公开实施例的异构立体分层网络中的控制装置的示意图之二;
图9为本公开实施例的终端的示意图;
图10为本公开实施例的通信设备的示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行 清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更可选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本文所描述的技术不限于5G新空口(New Radio,NR),并且也可用于各种无线通信系统,诸如长期演进型(Long Time Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统、码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。
术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(Ultra Mobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE 802.11(无线保真(Wireless Fidelity,Wi-Fi))、IEEE 802.16(全球微波接入互操作性(Worldwide Interoperability for Microwave Access,WiMAX))、IEEE 802.20、Flash-OFDM 等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。
本文中的异构立体分层网络可以包括:地面移动通信子网络和非地面移动通信子网络。
本文中的终端既支持和非地面移动通信子网络之间的通信,也支持和地面移动通信子网络之间的通信。
可选地,非地面移动通信子网络所形成的小区覆盖区域大于地面移动通信子网络形成的小区覆盖区域;或者,地面移动通信子网络形成的小区覆盖区域范围内,同时具有非地面移动通信子网络形成的覆盖;或者,非地面移动通信子网络形成的小区覆盖范围内,可能没有地面移动通信子网络形成的覆盖。
其中,地面移动通信子网络使用蜂窝基站(比如宏蜂窝基站,或者微蜂窝基站)或者直通终端进行终端信号的收发。或者,非地面移动通信子网络可以使用卫星、高空平台、无人机、民航飞机等空天设备进行终端信号的收发,使用地面信关站进行空天设备的馈电信号的收发。
参见图1,本公开实施例提供一种异构立体分层网络中的控制方法,该方法的执行主体可以为网络控制单元,具体步骤包括:步骤101、步骤102和步骤103。
步骤101:获取终端的覆盖模式;
在本公开实施中,网络控制单元用于非地面移动通信子网络和地面移动通信子网络与终端的通信进行协调处理,可选地,网络控制单元可以包括:各层子网络的网络单元,比如各层子网络的网络控制单元,进一步地,网络控制单元可以是单独的设备,也可以将其功能集成在各层子网络中。
在本公开实施中,终端的覆盖模式是指终端被异构立体分层网络覆盖的 模式,可以包括:单层子网络覆盖和多层子网络覆盖,其中单层子网络覆盖可以是指地面移动通信子网络或非地面移动通信子网络的覆盖,多层子网络覆盖可以是指非地面移动通信子网络的覆盖,或者地面移动通信子网络和非地面移动通信子网络的覆盖。
比如,非地面移动通信子网络可以是卫星通信子网络,卫星通信子网络中的网络侧设备可以包括:卫星星座和地面信关站。其中,卫星星座进行终端信号和地面信关站信号的收发,地面信关站进行卫星的馈电信号的收发。
针对透明转发卫星星座,卫星通信子网络的通信链路传输方式为“终端-卫星星座-信关站”。或者,针对星上处理卫星星座,卫星通信子网络的通信链路传输方式为“终端-卫星星座”。
可以理解的是,卫星星座可以形成同轨道高度的单层覆盖、同轨道高度的多层覆盖、不同轨道高度的多层覆盖等多种形式,也就是卫星通信子网络可以包括:不同轨道高度的卫星星座的多层子网络,其中,多层子网络可以包括以下之一:(1)地球静止轨道(Geostationary Earth Orbit,GEO)星座、中地球轨道(Medium Earth Orbit,MEO)星座和低地球轨道(Low Earth Orbit,LEO)星座的三层子网络;(2)GEO星座和MEO星座的两层子网络;(3)GEO星座和LEO星座的两层子网络;(4)MEO星座和LEO星座的两层子网络;(5)LEO星座和LEO星座的两层子网络。
可以理解的是,不同轨道高度的卫星星座,可以使用相同或者不同的地面信关站来处理。
在本公开实施中,终端支持独立工作模式、层内载波聚合模式、跨层载波聚合模式,其中,层内载波聚合模式也可以称为单层子网络内载波聚合模式,跨层载波聚合模式是指在不同层之间的载波聚合模式,比如,多层的非地面移动通信子网络之间的载波聚合模式,或者地面移动通信子网络和非地面移动通信子网络之间的载波聚合模式。
步骤102:如果所述覆盖模式为单层子网络覆盖,则将所述单层子网络覆盖对应的所述地面移动通信子网络或非地面移动通信子网络设置成独立工作模式或者层内载波聚合模式;
其中,独立工作模式是指由单层子网络为终端提供服务,层内载波聚合 模式是指通过单层子网络的层内载波聚合模式为终端提供服务
步骤103:如果所述覆盖模式为多层子网络覆盖,则将所述多层子网络覆盖对应的所述非地面移动通信子网络,或者将所述多层子网络覆盖对应的所述非地面移动通信子网络和地面移动通信子网络,设置成跨层载波聚合模式。
其中,非地面移动通信子网络和地面移动通信子网络采用相同或者统一的无线接入技术。
上述跨层载波聚合模式也可以称为层间载波聚合模式。
可选地,在步骤103中设置成跨层载波聚合模式中将覆盖范围最大的子网络的信号作为主载波。
也就是,网络控制单元可以依据终端当前工作对应的子网络是单层覆盖还是多层覆盖来决定是否进行层间载波聚合。如果只有单层覆盖,则该覆盖对应的子网络设置成独立工作模式或者层内载波聚合模式。如果有多层覆盖,则将各层覆盖对应的子网络设置成层间载波聚合模式。
在一些实施方式中,在步骤101之后,或者在步骤103之后,图1所示的方法还可以包括:获取所述地面移动通信子网络和/或非地面移动通信子网络的覆盖范围;将覆盖范围最大的子网络的信号作为主载波。
在一些实施方式中,图1所示的方法还可以包括:对地面移动通信子网络和/或非地面移动通信子网络配置一个或多个主载波。可以理解的是,在本公开实施例中对于配置主载波的方式和执行的顺序不做具体限定。
在一些实施方式中,所述主载波用于所述终端的接入、同步、控制或第一速率(比如低速率)的数据传输,与所述主载波对应的辅载波用于所述终端的第二速率(比如高速率)的数据传输,所述第一速率小于所述第二速率。
在一些实施方式中,图1所示的方法还可以包括:将所述终端所在小区的工作模式和/或工作带宽通知给所述终端。可以理解的是,在本公开实施例中对于网络控制单元通知的方式和执行的顺序不做具体限定。
在一些实施方式中,图1所示的方法还可以包括:发送第一信息,所述第一信息指示以下一项或多项组合:
(1)所述地面移动通信子网络和/或非地面移动通信子网络的工作频率;
(2)所述非地面移动通信子网络的服务时间;
(3)所述非地面移动通信子网络的波束角度。
也就是,网络控制单元可以对多个子网络基于工作频率、服务时间、非地面网络波束角度进行协调,确定子网络的工作频率、服务时间、非地面网络波束角度的分配方式,避免子网络间的干扰。
可以理解的是,在本公开实施例中对于网络控制单元通知的第一信息和执行的顺序不做具体限定。
在一些实施方式中,图1所示的方法还可以包括:获取所述地面移动通信子网络和/或非地面移动通信子网络的工作状态;根据所述工作状态,发送第二信息,所述第二信息指示终端进行子网络切换。
也就是,网络控制单元可以对正在通信的各层子网络的状态进行检测,出现异常情况时,网络控制单元可以提前发送协调信息,关闭该层子网络的信号发送或禁止用户接入该层子网络,通知用户切换到其他层子网络。
可以理解的是,在本公开实施例中对于网络控制单元通知的第二信息的方式和执行的顺序不做具体限定。
在一些实施方式中,图1所示的方法还可以包括:动态配置或静态配置所述非地面移动通信子网络和/或所述地面移动通信子网络的工作带宽。可以理解的是,在本公开实施例中对于网络控制单元配置各层子网络的工作带宽的方式和执行的顺序不做具体限定。
比如,针对静态配置,各层子网络只工作在分配的工作带宽;针对动态配置,各层子网络均能工作在整个系统带宽,但实际占用的带宽可以与系统的容量和/或速率需求等因素有关,所有子网络的实际占用带宽总和小于等于整个系统带宽;可选地,不同的子网络可以配置为不同的载波或者不同的部分带宽(Bandwidth Part,BWP)。
可选地,对同一地区提供小区覆盖的非地面移动通信子网络和地面移动通信子网络的无线信号所使用的频段是通过对通信系统的带宽划分获得的。
比如,非地面移动通信子网络使用系统带宽中较低的频段。
可选地,带宽划分可以是预先分配好的静态划分,即非地面移动通信子网络的无线信号和地面移动通信子网络的无线信号分别工作在固定的带宽。
可选地,带宽划分可以是随时变化的动态划分,即非地面移动通信子网络的无线信号和地面移动通信子网络的无线信号的工作带宽可以发生变化。示例性地,网络控制单元依据容量和/或数据传输的速率需求来计算非地面移动通信子网络和地面移动通信子网络各自需要的工作带宽;又示例性地,网络控制单元动态调整非地面移动通信子网络和地面移动通信子网络的工作带宽。
可以理解的是,所有子网络的实际占用带宽总和小于等于整个系统带宽。
在本公开实施例中,非地面移动通信子网络和地面移动通信子网络采用相同或者统一的无线接入技术,比如,4G、5G、6G等无线接入技术,也就是能够让非地面移动通信和地面移动通信形成的异构立体覆盖被当作一个统一的网络系统来进行通信,避免非地面通信系统和地面移动通信系统的相关技术中的“双系统”工作方式,带来了无线资源、系统建设与设备实现等多个方面的浪费的问题。
参见图2,本公开实施例提供一种异构立体分层网络中的控制方法,该方法的执行主体可以为终端,所述异构立体分层网络包括:地面移动通信子网络和非地面移动通信子网络,具体步骤可以包括:步骤201和步骤202。
步骤201:获取所述终端所在小区的工作模式和/或工作带宽;
上述终端所在小区的工作模式包括:独立工作模式、层内载波聚合模式、跨层载波聚合模式。
步骤202:根据所述终端所在小区的工作模式和/或工作带宽,得到所述终端的工作模式和/或所在子网络;
其中,非地面移动通信子网络和地面移动通信子网络采用相同或者统一的无线接入技术。
在一些实施方式中,图2所示的方法还可以包括:
如果所述终端的工作模式是独立工作模式,则在对应的子网络进行控制和/或数据传输。
在一些实施方式中,图2所示的方法还可以包括:
如果所述终端的工作模式是层内载波聚合模式,则在主载波进行接入、同步、控制和/或第一速率的数据传输,在与所述主载波对应的辅载波进行第 二速率的数据传输,所述第一速率小于所述第二速率;
在一些实施方式中,图2所示的方法还可以包括:
如果所述终端的工作模式是跨层载波聚合模式,则在主载波所在的子网络进行接入、同步、控制和/或第一速率(比如低速率)的数据传输,在与所述主载波对应的辅载波所在的子网络进行第二速率(比如高速率)的数据传输,所述第一速率小于所述第二速率。
在本公开实施例中,非地面移动通信子网络和地面移动通信子网络采用相同或者统一的无线接入技术,比如,4G、5G、6G等无线接入技术,也就是能够让非地面移动通信和地面移动通信形成的异构立体覆盖被当作一个统一的网络系统来进行通信,避免非地面通信系统和地面移动通信系统的相关技术中的“双系统”工作方式,带来了无线资源、系统建设与设备实现等多个方面的浪费的问题。
参见图3,本公开实施例提供一种通信系统,该通信系统包括:异构立体分层网络、终端301和网络控制单元302,所述异构立体分层网络包括:地面移动通信子网络303和非地面移动通信子网络304;其中,
所述终端301分别与所述地面移动通信子网络303和非地面移动通信子网络304通信连接;
所述网络控制单元302分别与所述地面移动通信子网络303和非地面移动通信子网络304通信连接;
其中,非地面移动通信子网络和地面移动通信子网络采用相同或者统一的无线接入技术。
在一些实施方式中,所述网络控制单元302独立于所述地面移动通信子网络的网络侧设备和非地面移动通信子网络的网络侧设备设置;或者,所述网络控制单元设置在所述地面移动通信子网络的网络侧设备或者非地面移动通信子网络的网络侧设备上。
在一些实施方式中,所述非地面移动通信子网络形成的小区覆盖区域大于所述地面移动通信子网络形成的小区覆盖区域;
或者,
所述地面移动通信子网络形成的小区覆盖区域与所述非地面移动通信子 网络形成的小区覆盖区域部分重叠;
或者,
所述地面移动通信子网络形成的小区覆盖区域与所述非地面移动通信子网络形成的小区覆盖区域不重叠。
在一些实施方式中,所述地面移动通信子网络的网络类型包括以下一项或多项组合:宏蜂窝网络、微蜂窝网络和终端直通网络。
在一些实施方式中,所述非地面移动通信子网络包括:空天设备;或者,
所述非地面移动通信子网络包括:空天设备和地面信关站;其中,所述空天设备以下一项或多项组合:卫星星座、高空平台和飞行器。
在一些实施方式中,所述卫星星座的网络覆盖方式包括以下之一:
(1)同轨道高度的卫星星座的单层子网络覆盖;
(2)同轨道高度的卫星星座的多层子网络覆盖;
(3)不同轨道高度的卫星星座的多层子网络覆盖。
在一些实施方式中,所述同轨道高度的卫星星座的单层子网络覆盖包括以下之一:
(1)GEO星座的单层子网络覆盖;
(2)MEO星座的单层子网络覆盖;
(3)LEO星座的单层子网络覆盖。
在一些实施方式中,所述同轨道高度的卫星星座的多层子网络覆盖,包括:同轨道高度的卫星星座的控制波束和点波束的子网络覆盖。
在一些实施方式中,不同轨道高度的卫星星座的多层子网络,其中,多层子网络可以包括以下之一:(1)GEO星座、MEO星座和LEO星座的三层子网络;(2)GEO星座和MEO星座的两层子网络;(3)GEO星座和LEO星座的两层子网络;(4)MEO星座和LEO星座的两层子网络;(5)LEO星座和LEO星座的两层子网络。
在一些实施方式中,所述网络控制单元动态配置或静态配置所述非地面移动通信子网络的工作带宽和所述地面移动通信子网络的工作带宽。
在一些实施方式中,所述非地面移动通信子网络的工作带宽或所述地面移动通信子网络的工作带宽为所述通信系统的工作带宽的至少部分,也就是, 所述非地面移动通信子网络的工作带宽和/或所述地面移动通信子网络的工作带宽实际占用的带宽综合小于或等于为所述通信系统的工作带宽。
在一些实施方式中,所述非地面移动通信子网络和所述地面移动通信子网络以独立工作方式或者载波聚合方式为覆盖区域内的终端提供服务。
在一些实施方式中,所述非地面移动通信子网络或所述地面移动通信子网络提供的信号作为主载波。
在一些实施方式中,所述主载波用于所述终端的接入、同步、控制或第一速率(比如低速率)的数据传输,与所述主载波对应的辅载波用于所述终端的第二速率(比如高速率)的数据传输,所述第一速率小于所述第二速率。
在本公开实施例中,非地面移动通信子网络和地面移动通信子网络采用相同或者统一的无线接入技术,比如,4G、5G、6G等无线接入技术,也就是能够让非地面移动通信和地面移动通信形成的异构立体覆盖被当作一个统一的网络系统来进行通信,避免非地面通信系统和地面移动通信系统的相关技术中的“双系统”工作方式,带来了无线资源、系统建设与设备实现等多个方面的浪费的问题。
下面结合实施例一和实施例二介绍本公开的实施方式。
实施例一:GEO星座+LEO星座+地面蜂窝基站的3层异构立体网络。
所述非地面移动通信子网络包括:GEO星座、LEO星座和与所述GEO星座、LEO星座通信连接的地面信关站;
所述地面移动通信子网络包括:地面基站;
所述网络控制单元分别与所述地面信关站、地面基站通信连接。
如图4所示,假设某个通信系统由GEO星座、LEO星座、地面信关站、地面蜂窝基站、网络控制单元和终端组成,形成了3层异构立体分层覆盖。
从终端角度来看,由GEO星座和地面信关站组成的子网络形成了覆盖区域最大的第1层覆盖,由LEO星座和地面信关站组成的子网络形成了覆盖区域次之的第2层覆盖,地面蜂窝基站形成了区域最小的第3层覆盖。即,针对终端所在的地面蜂窝基站覆盖的区域,还有着固定不动的GEO卫星和快速运动的LEO卫星的覆盖。
在网络控制单元的统一协调处理下,各层覆盖所形成的子网络的占用带 宽有着静态或者动态的划分方式。
假设系统的工作带宽为B MHz,在静态方式下,将总带宽B MHz固定地划分为不重叠的3段,假设记为B 1,B 2,B 3,则满足B 1+B 2+B 3≤B。3段带宽分别分配给三层覆盖的子网络,使得三层覆盖的子网络只按照给定的带宽去进行设计,如GEO星座子网络只工作在带宽B 1,LEO星座子网络只工作在带宽B 2,地面基站子网络只工作在带宽B 3
假设系统的工作带宽为B MHz,在动态方式下,三层覆盖的子网络均按照整个工作带宽B去进行设计,但实际工作的带宽是动态变化的,与特定区域、特定时间的系统容量和速率需求等因素有关。不失一般性,假设终端处于第i个区域,其对应的3层覆盖的子网络的工作带宽分别为B 1,i,B 2,i,B 3,i,则有B 1,i+B 2,i+B 3,i≤B;假设终端处于第j个区域,其对应的3层覆盖的子网络的工作带宽分别为B 1,j,B 2,j,B 3,j,则有B 1,j+B 2,j+B 3,j≤B;因为第i个区域和第j个区域的系统容量和速率需求不同,存在B 1,i≠B 1,j,B 2,i≠B 2,j,B 3,i≠B 3,j
在网络控制单元的统一协调处理下,各层覆盖的子网络通过载波聚合的方式来为终端提供服务。
可以理解的是,可以将GEO卫星形成的第1层覆盖作为主载波,用于终端的接入、同步、控制和低速率数据传输;可以将LEO卫星形成的第2层覆盖和地面基站形成的第3层覆盖均作为辅载波,用于终端的高速率数据传输。
终端与网络通信过程中,网络会实时监测自身工作状态的变化,终端也会实时地将自身信息通知给网络,便于网络对当前工作状态做更好地判断和处理。例如,假如网络检测到终端连接的多层星座子网络有1层星座子网络的卫星不可用时,网络通知终端断开与不可用卫星的连接,转入其他星座子网络和/或地面子网络进行通信。
需要说明的是,图4中的终端,可以直接与GEO星座通信连接,地面信关站GW2可以与一个或多个第2个LEO卫星星座中的卫星通信连接。
实施例二:LEO星座+地面蜂窝基站的3层异构立体网络。
如图5所示,假设某个通信系统由LEO星座、地面信关站、地面蜂窝基站、网络控制单元和终端组成,形成了3层异构立体分层覆盖。
所述非地面移动通信子网络包括:LEO星座和与所述LEO星座通信连接 的地面信关站;
所述地面移动通信子网络包括:地面基站;
所述网络控制单元分别与所述地面信关站、所述地面基站通信连接。
从终端角度来看,由LEO星座和地面信关站组成的子网络形成了控制波束和点波束的2层覆盖,其中控制波束为覆盖区域最大的第1层覆盖,点波束为覆盖区域次之的第2层覆盖,地面蜂窝基站形成了区域最小的第3层覆盖。即,针对终端所在的地面蜂窝基站覆盖的区域,还有着快速运动的LEO卫星的控制波束覆盖和点波束覆盖。
在网络控制单元的统一协调处理下,各层覆盖所形成的子网络的占用带宽有着静态或者动态的划分方式。
假设系统的工作带宽为B MHz,在静态方式下,将总带宽B MHz固定地划分为不重叠的3段,假设记为B 1,B 2,B 3,则满足B 1+B 2+B 3≤B。3段带宽分别分配给三层覆盖的子网络,使得三层覆盖的子网络只按照给定的带宽去进行设计,如LEO星座的控制波束子网络只工作在带宽B 1,LEO星座的点波束子网络只工作在带宽B 2,地面基站子网络只工作在带宽B 3
假设系统的工作带宽为B MHz,在动态方式下,三层覆盖的子网络均按照整个工作带宽B去进行设计,但实际工作的带宽是动态变化的,与特定区域、特定时间的系统容量和速率需求等因素有关。不失一般性,假设终端处于第i个区域,其对应的3层覆盖的子网络的工作带宽分别为B 1,i,B 2,i,B 3,i,则有B 1,i+B 2,i+B 3,i≤B;假设终端处于第j个区域,其对应的3层覆盖的子网络的工作带宽分别为B 1,j,B 2,j,B 3,j,则有B 1,j+B 2,j+B 3,j≤B;因为第i个区域和第j个区域的系统容量和速率需求不同,存在B 1,i≠B 1,j,B 2,i≠B 2,j,B 3,i≠B 3,j
在网络控制单元的统一协调处理下,各层覆盖的子网络通过载波聚合的方式来为终端提供服务。
可以理解的是,可以将LEO卫星的控制波束形成的第1层覆盖作为主载波,用于终端的接入、同步、控制和低速率数据传输;可以将LEO卫星的点波束形成的第2层覆盖和地面基站形成的第3层覆盖均作为辅载波,用于终端的高速率数据传输。
终端与网络通信过程中,网络会实时监测自身工作状态的变化,终端也 会实时地将自身信息通知给网络,便于网络对当前工作状态做更好地判断和处理。例如,假如网络检测到终端连接的地面子网络不可用时,网络通知终端断开与地面子网络的连接,转入与各卫星子网络进行通信。
参见图6,本公开实施例提供一种异构立体分层网络中的控制装置,该控制装置应用于网络控制单元,所述异构立体分层网络包括:地面移动通信子网络和非地面移动通信子网络,所述控制装置600包括:
第一获取模块601,用于获取终端的覆盖模式;
第一处理模块602,用于如果所述覆盖模式为单层子网络覆盖,则将所述单层子网络覆盖对应的所述地面移动通信子网络或非地面移动通信子网络设置成独立工作模式或者层内载波聚合模式;
如果所述覆盖模式为多层子网络覆盖,则将所述多层子网络覆盖对应的所述非地面移动通信子网络,或者将所述多层子网络覆盖对应的所述非地面移动通信子网络和地面移动通信子网络,设置成跨层载波聚合模式;
其中,所述地面移动通信子网络和非地面移动通信子网络采用相同或统一的无线接入技术。
在一些实施方式中,控制装置600还包括:
第二获取模块,用于获取所述地面移动通信子网络和/或非地面移动通信子网络的覆盖范围;
第二处理模块,用于将覆盖范围最大的子网络的信号作为主载波。
在一些实施方式中,控制装置600还包括:
第一配置模块,用于对地面移动通信子网络和/或非地面移动通信子网络配置一个或多个主载波。
在一些实施方式中,所述主载波用于所述终端的接入、同步、控制或第一速率的数据传输,与所述主载波对应的辅载波用于所述终端的第二速率的数据传输,所述第一速率小于所述第二速率。
在一些实施方式中,控制装置600还包括:
第一发送模块,用于将所述终端所在小区的工作模式和/或工作带宽通知给所述终端。
在一些实施方式中,控制装置600还包括:
第二发送模块,用于发送第一信息,所述第一信息指示以下一项或多项组合:
(1)所述地面移动通信子网络和/或非地面移动通信子网络的工作频率;
(2)非地面移动通信子网络的服务时间;
所述非地面移动通信子网络的波束角度。
在一些实施方式中,控制装置600还包括:
第三获取模块,用于获取所述地面移动通信子网络和/或非地面移动通信子网络的工作状态;
第三发送模块,用于根据所述工作状态,发送第二信息,所述第二信息指示终端进行子网络切换。
在一些实施方式中,控制装置600还包括:
第二配置模块,用于动态配置或静态配置所述非地面移动通信子网络和/或所述地面移动通信子网络的工作带宽。
本公开实施例提供的控制装置,可以执行上述图1所示方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
参见图7,本公开实施例提供一种网络控制单元,适用于异构立体分层网络,所述异构立体分层网络包括:地面移动通信子网络和非地面移动通信子网络,所述网络控制单元700包括:第一收发机701和第一处理器702;
所述第一收发机701在所述第一处理器702的控制下发送和接收数据;
所述第一处理器702读取存储器中的程序执行以下操作:获取终端的覆盖模式;如果所述覆盖模式为单层子网络覆盖,则将所述单层子网络覆盖对应的所述地面移动通信子网络或非地面移动通信子网络设置成独立工作模式或者层内载波聚合模式;
如果所述覆盖模式为多层子网络覆盖,则将所述多层子网络覆盖对应的所述非地面移动通信子网络,或者将所述多层子网络覆盖对应的所述非地面移动通信子网络和地面移动通信子网络,设置成跨层载波聚合模式;
其中,所述地面移动通信子网络和非地面移动通信子网络采用相同或统一的无线接入技术。
在一些实施方式中,所述第一处理器702读取存储器中的程序执行以下 操作:获取所述地面移动通信子网络和/或非地面移动通信子网络的覆盖范围;将覆盖范围最大的子网络的信号作为主载波。
在一些实施方式中,所述第一处理器702读取存储器中的程序执行以下操作:对地面移动通信子网络和/或非地面移动通信子网络配置一个或多个主载波。
在一些实施方式中,所述主载波用于所述终端的接入、同步、控制或第一速率的数据传输,与所述主载波对应的辅载波用于所述终端的第二速率的数据传输,所述第一速率小于所述第二速率。
在一些实施方式中,所述第一处理器702读取存储器中的程序执行以下操作:将所述终端所在小区的工作模式和/或工作带宽通知给所述终端。
在一些实施方式中,所述第一处理器702读取存储器中的程序执行以下操作:发送第一信息,所述第一信息指示以下一项或多项组合:
(1)所述地面移动通信子网络和/或非地面移动通信子网络的工作频率;
(2)非地面移动通信子网络的服务时间;
所述非地面移动通信子网络的波束角度。
在一些实施方式中,所述第一处理器702读取存储器中的程序执行以下操作:获取所述地面移动通信子网络和/或非地面移动通信子网络的工作状态;根据所述工作状态,发送第二信息,所述第二信息指示终端进行子网络切换。
在一些实施方式中,所述第一处理器702读取存储器中的程序执行以下操作:动态配置或静态配置所述非地面移动通信子网络和/或所述地面移动通信子网络的工作带宽。
本公开实施例提供的网络控制单元,可以执行上述图1所示方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
参见图8,本公开实施例提供一种异构立体分层网络中的控制装置,应用于终端,所述异构立体分层网络包括:地面移动通信子网络和非地面移动通信子网络,所述控制装置800包括:
第四获取模块801,用于获取所述终端所在小区的工作模式和/或工作带宽;
第三处理模块802,用于根据所述终端所在小区的工作模式和/或工作带 宽,得到所述终端的工作模式和/或所在子网络;
其中,所述地面移动通信子网络和非地面移动通信子网络采用相同或统一的无线接入技术。
在一些实施方式中,所述控制装置800还包括:
第四处理模块,用于如果所述终端的工作模式是独立工作模式,则在对应的子网络进行控制和/或数据传输;或者,如果所述终端的工作模式是层内载波聚合模式,则在主载波进行接入、同步、控制和/或第一速率的数据传输,在与所述主载波对应的辅载波进行第二速率的数据传输,所述第一速率小于所述第二速率;或者,如果所述终端的工作模式是跨层载波聚合模式,则在主载波所在的子网络进行接入、同步、控制和/或第一速率的数据传输,在与所述主载波对应的辅载波所在的子网络进行第二速率的数据传输,所述第一速率小于所述第二速率。
本公开实施例提供的控制装置,可以执行上述图2所示方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
参见图9,本公开实施例提供一种终端,适用于异构立体分层网络,所述异构立体分层网络包括:地面移动通信子网络和非地面移动通信子网络,所述终端900包括:第二收发机901和第二处理器902;
所述第二收发机901在所述第二处理器902的控制下发送和接收数据;
所述第二处理器902读取存储器中的程序执行以下操作:获取所述终端所在小区的工作模式和/或工作带宽;根据所述终端所在小区的工作模式和/或工作带宽,得到所述终端的工作模式和/或所在子网络;
其中,所述地面移动通信子网络和非地面移动通信子网络采用相同或统一的无线接入技术。
在一些实施方式中,所述第二处理器902读取存储器中的程序执行以下操作:如果所述终端的工作模式是独立工作模式,则在对应的子网络进行控制和/或数据传输;或者,如果所述终端的工作模式是层内载波聚合模式,则在主载波进行接入、同步、控制和/或第一速率的数据传输,在与所述主载波对应的辅载波进行第二速率的数据传输,所述第一速率小于所述第二速率;或者,如果所述终端的工作模式是跨层载波聚合模式,则在主载波所在的子 网络进行接入、同步、控制和/或第一速率的数据传输,在与所述主载波对应的辅载波所在的子网络进行第二速率的数据传输,所述第一速率小于所述第二速率。
本公开实施例提供的终端,可以执行上述图2所示方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
请参阅图10,图10是本公开实施例应用的通信设备的结构图,如图10所示,通信设备1000包括:处理器1001、收发机1002、存储器1003和总线接口,其中:
在本公开的一个实施例中,通信设备1000还包括:存储在存储器上1003并可在处理器1001上运行的程序,程序被处理器1001执行时实现图1~图2所示实施例中的步骤。
在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1001代表的一个或多个处理器和存储器1003代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1002可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,可以理解的是,收发机1002为可选部件。
处理器1001负责管理总线架构和通常的处理,存储器1003可以存储处理器1001在执行操作时所使用的数据。
本公开实施例提供的通信设备,可以执行上述图1~图2所示方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
结合本公开公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可擦可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘或者本领域熟知 的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于专用集成电路(Application Specific Integrated Circuit,ASIC)中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在可读介质中或者作为可读介质上的一个或多个指令或代码进行传输。可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能存取的任何可用介质。
以上所述的具体实施方式,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施方式而已,并不用于限定本公开的保护范围,凡在本公开的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本公开的保护范围之内。
本领域内的技术人员应明白,本公开实施例可提供为方法、系统、或计算机程序产品。因此,本公开实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、只读光盘存储器(Compact Disc Read-Only Memory,CD-ROM)、光学存储器等)上实施的计算机程序产品的形式。
本公开实施例是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指 定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (43)

  1. 一种异构立体分层网络中的控制方法,应用于网络控制单元,所述异构立体分层网络包括:地面移动通信子网络和非地面移动通信子网络,所述方法包括:
    获取终端的覆盖模式;
    如果所述覆盖模式为单层子网络覆盖,则将所述单层子网络覆盖对应的所述地面移动通信子网络或非地面移动通信子网络设置成独立工作模式或者层内载波聚合模式;
    如果所述覆盖模式为多层子网络覆盖,则将所述多层子网络覆盖对应的所述非地面移动通信子网络,或者将所述多层子网络覆盖对应的所述非地面移动通信子网络和地面移动通信子网络,设置成跨层载波聚合模式;
    其中,所述地面移动通信子网络和非地面移动通信子网络采用相同或统一的无线接入技术。
  2. 根据权利要求1所述的方法,还包括:
    获取所述地面移动通信子网络和/或非地面移动通信子网络的覆盖范围;
    将覆盖范围最大的子网络的信号作为主载波。
  3. 根据权利要求1所述的方法,还包括:
    对地面移动通信子网络和/或非地面移动通信子网络配置一个或多个主载波。
  4. 根据权利要求2或3所述的方法,其中,所述主载波用于所述终端的接入、同步、控制或第一速率的数据传输,与所述主载波对应的辅载波用于所述终端的第二速率的数据传输,所述第一速率小于所述第二速率。
  5. 根据权利要求1所述的方法,还包括:
    将所述终端所在小区的工作模式和/或工作带宽通知给所述终端。
  6. 根据权利要求1所述的方法,还包括:
    发送第一信息,所述第一信息指示以下一项或多项组合:
    所述地面移动通信子网络和/或非地面移动通信子网络的工作频率;
    所述非地面移动通信子网络的服务时间;
    所述非地面移动通信子网络的波束角度。
  7. 根据权利要求1所述的方法,还包括:
    获取所述地面移动通信子网络和/或非地面移动通信子网络的工作状态;
    根据所述工作状态,发送第二信息,所述第二信息指示终端进行子网络切换。
  8. 根据权利要求1所述的方法,还包括:
    动态配置或静态配置所述非地面移动通信子网络和/或所述地面移动通信子网络的工作带宽。
  9. 一种异构立体分层网络中的控制方法,应用于终端,所述异构立体分层网络包括:地面移动通信子网络和非地面移动通信子网络,所述方法包括:
    获取所述终端所在小区的工作模式和/或工作带宽;
    根据所述终端所在小区的工作模式和/或工作带宽,得到所述终端的工作模式和/或所在子网络;
    其中,所述地面移动通信子网络和非地面移动通信子网络采用相同或统一的无线接入技术。
  10. 根据权利要求9所述的方法,还包括:
    如果所述终端的工作模式是独立工作模式,则在对应的子网络进行控制和/或数据传输;
    或者,
    如果所述终端的工作模式是层内载波聚合模式,则在主载波进行接入、同步、控制和/或第一速率的数据传输,在与所述主载波对应的辅载波进行第二速率的数据传输,所述第一速率小于所述第二速率;
    或者,
    如果所述终端的工作模式是跨层载波聚合模式,则在主载波所在的子网络进行接入、同步、控制和/或第一速率的数据传输,在与所述主载波对应的辅载波所在的子网络进行第二速率的数据传输,所述第一速率小于所述第二速率。
  11. 一种通信系统,包括:异构立体分层网络、终端和网络控制单元,所述异构立体分层网络包括:地面移动通信子网络和非地面移动通信子网络; 其中,
    所述终端分别与所述地面移动通信子网络和非地面移动通信子网络通信连接;
    所述网络控制单元分别与所述地面移动通信子网络和非地面移动通信子网络通信连接;
    其中,所述地面移动通信子网络和非地面移动通信子网络采用相同或统一的无线接入技术。
  12. 根据权利要求11所述的通信系统,其中,所述网络控制单元独立于所述地面移动通信子网络的网络侧设备和非地面移动通信子网络的网络侧设备设置;
    或者,所述网络控制单元设置在所述地面移动通信子网络的网络侧设备或者非地面移动通信子网络的网络侧设备上。
  13. 根据权利要求11所述的通信系统,其中,所述非地面移动通信子网络形成的小区覆盖区域大于所述地面移动通信子网络形成的小区覆盖区域;
    或者,
    所述地面移动通信子网络形成的小区覆盖区域与所述非地面移动通信子网络形成的小区覆盖区域部分重叠;
    或者,
    所述地面移动通信子网络形成的小区覆盖区域与所述非地面移动通信子网络形成的小区覆盖区域不重叠。
  14. 根据权利要求11所述的通信系统,其中,所述地面移动通信子网络的网络类型包括以下一项或多项组合:宏蜂窝网络、微蜂窝网络和终端直通网络。
  15. 根据权利要求11所述的通信系统,其中,所述非地面移动通信子网络包括:空天设备;或者,
    所述非地面移动通信子网络包括:空天设备和地面信关站;其中,所述空天设备以下一项或多项组合:卫星星座、高空平台和飞行器。
  16. 根据权利要求15所述的通信系统,其中,所述卫星星座的网络覆盖方式包括以下之一:
    同轨道高度的卫星星座的单层子网络覆盖;
    同轨道高度的卫星星座的多层子网络覆盖;
    不同轨道高度的卫星星座的多层子网络覆盖。
  17. 根据权利要求16所述的通信系统,其中,所述同轨道高度的卫星星座的单层子网络覆盖包括以下之一:地球静止轨道GEO星座的单层子网络覆盖;
    中地球轨道MEO星座的单层子网络覆盖;
    低地球轨道LEO星座的单层子网络覆盖。
  18. 根据权利要求16所述的通信系统,其中,所述同轨道高度的卫星星座的多层子网络覆盖,包括:同轨道高度的卫星星座的控制波束和点波束的子网络覆盖。
  19. 根据权利要求16所述的通信系统,其中,所述不同轨道高度的卫星星座的多层子网络覆盖,包括以下之一:
    GEO星座、MEO星座和LEO星座的三层子网络覆盖;
    GEO星座和MEO星座的两层子网络覆盖;
    GEO星座和LEO星座的两层子网络覆盖;
    MEO星座和LEO星座的两层子网络覆盖;
    LEO星座和LEO星座的两层子网络覆盖。
  20. 根据权利要求11所述的通信系统,其中,所述网络控制单元动态配置或静态配置所述非地面移动通信子网络的工作带宽和所述地面移动通信子网络的工作带宽。
  21. 根据权利要求20所述的通信系统,其中,所述非地面移动通信子网络的工作带宽和/或所述地面移动通信子网络的工作带宽实际占用的带宽综合小于或等于所述通信系统的工作带宽。
  22. 根据权利要求11所述的通信系统,其中,所述非地面移动通信子网络和所述地面移动通信子网络以独立工作方式或者载波聚合方式为覆盖区域内的终端提供服务。
  23. 根据权利要求22所述的通信系统,其中,所述非地面移动通信子网络或所述地面移动通信子网络提供的信号作为主载波。
  24. 根据权利要求23所述的通信系统,其中,所述主载波用于所述终端的接入、同步、控制或第一速率的数据传输,与所述主载波对应的辅载波用于所述终端的第二速率的数据传输,所述第一速率小于所述第二速率。
  25. 一种异构立体分层网络中的控制装置,应用于网络控制单元,所述异构立体分层网络包括:地面移动通信子网络和非地面移动通信子网络,所述控制装置包括:
    第一获取模块,用于获取终端的覆盖模式;
    第一处理模块,用于如果所述覆盖模式为单层子网络覆盖,则将所述单层子网络覆盖对应的所述地面移动通信子网络或非地面移动通信子网络设置成独立工作模式或者层内载波聚合模式;
    如果所述覆盖模式为多层子网络覆盖,则将所述多层子网络覆盖对应的所述非地面移动通信子网络,或者将所述多层子网络覆盖对应的所述非地面移动通信子网络和地面移动通信子网络,设置成跨层载波聚合模式;
    其中,所述地面移动通信子网络和非地面移动通信子网络采用相同或统一的无线接入技术。
  26. 根据权利要求25所述的控制装置,还包括:
    第二获取模块,用于获取所述地面移动通信子网络和/或非地面移动通信子网络的覆盖范围;
    第二处理模块,用于将覆盖范围最大的子网络的信号作为主载波。
  27. 根据权利要求25所述的控制装置,还包括:
    第一配置模块,用于对地面移动通信子网络和/或非地面移动通信子网络配置一个或多个主载波。
  28. 根据权利要求25所述的控制装置,还包括:
    第一发送模块,用于将所述终端所在小区的工作模式和/或工作带宽通知给所述终端。
  29. 根据权利要求25所述的控制装置,还包括:
    第二发送模块,用于发送第一信息,所述第一信息指示以下一项或多项组合:
    所述地面移动通信子网络和/或非地面移动通信子网络的工作频率;
    非地面移动通信子网络的服务时间;
    所述非地面移动通信子网络的波束角度。
  30. 根据权利要求25所述的控制装置,还包括:
    第三获取模块,用于获取所述地面移动通信子网络和/或非地面移动通信子网络的工作状态;
    第三发送模块,用于根据所述工作状态,发送第二信息,所述第二信息指示终端进行子网络切换。
  31. 根据权利要求25所述的控制装置,还包括:
    第二配置模块,用于动态配置或静态配置所述非地面移动通信子网络和/或所述地面移动通信子网络的工作带宽。
  32. 一种网络控制单元,适用于异构立体分层网络,所述异构立体分层网络包括:地面移动通信子网络和非地面移动通信子网络,所述网络控制单元包括:第一收发机和第一处理器;
    所述第一收发机在所述第一处理器的控制下发送和接收数据;
    所述第一处理器读取存储器中的程序执行以下操作:获取终端的覆盖模式;如果所述覆盖模式为单层子网络覆盖,则将所述单层子网络覆盖对应的所述地面移动通信子网络或非地面移动通信子网络设置成独立工作模式或者层内载波聚合模式;
    如果所述覆盖模式为多层子网络覆盖,则将所述多层子网络覆盖对应的所述非地面移动通信子网络,或者将所述多层子网络覆盖对应的所述非地面移动通信子网络和地面移动通信子网络,设置成跨层载波聚合模式;
    其中,所述地面移动通信子网络和非地面移动通信子网络采用相同或统一的无线接入技术。
  33. 根据权利要求32所述的网络控制单元,其中,所述第一处理器读取存储器中的程序还执行以下操作:获取所述地面移动通信子网络和/或非地面移动通信子网络的覆盖范围;将覆盖范围最大的子网络的信号作为主载波。
  34. 根据权利要求32所述的网络控制单元,其中,所述第一处理器读取存储器中的程序还执行以下操作:对地面移动通信子网络和/或非地面移动通信子网络配置一个或多个主载波。
  35. 根据权利要求32所述的网络控制单元,其中,所述第一处理器读取存储器中的程序还执行以下操作:将所述终端所在小区的工作模式和/或工作带宽通知给所述终端。
  36. 根据权利要求32所述的网络控制单元,其中,所述第一处理器读取存储器中的程序还执行以下操作:发送第一信息,所述第一信息指示以下一项或多项组合:
    所述地面移动通信子网络和/或非地面移动通信子网络的工作频率;
    非地面移动通信子网络的服务时间;
    所述非地面移动通信子网络的波束角度。
  37. 根据权利要求32所述的网络控制单元,其中,所述第一处理器读取存储器中的程序还执行以下操作:获取所述地面移动通信子网络和/或非地面移动通信子网络的工作状态;根据所述工作状态,发送第二信息,所述第二信息指示终端进行子网络切换。
  38. 根据权利要求32所述的网络控制单元,其中,所述第一处理器读取存储器中的程序还执行以下操作:动态配置或静态配置所述非地面移动通信子网络和/或所述地面移动通信子网络的工作带宽。
  39. 一种异构立体分层网络中的控制装置,应用于终端,所述异构立体分层网络包括:地面移动通信子网络和非地面移动通信子网络,所述控制装置包括:
    第四获取模块,用于获取所述终端所在小区的工作模式和/或工作带宽;
    第三处理模块,用于根据所述终端所在小区的工作模式和/或工作带宽,得到所述终端的工作模式和/或所在子网络;
    其中,所述地面移动通信子网络和非地面移动通信子网络采用相同的或统一的无线接入技术。
  40. 根据权利要求39所述的控制装置,还包括:
    第四处理模块,用于如果所述终端的工作模式是独立工作模式,则在对应的子网络进行控制和/或数据传输;或者,如果所述终端的工作模式是层内载波聚合模式,则在主载波进行接入、同步、控制和/或第一速率的数据传输,在与所述主载波对应的辅载波进行第二速率的数据传输,所述第一速率小于 所述第二速率;或者,如果所述终端的工作模式是跨层载波聚合模式,则在主载波所在的子网络进行接入、同步、控制和/或第一速率的数据传输,在与所述主载波对应的辅载波所在的子网络进行第二速率的数据传输,所述第一速率小于所述第二速率。
  41. 一种终端,适用于异构立体分层网络,所述异构立体分层网络包括:地面移动通信子网络和非地面移动通信子网络,所述终端包括:第二收发机和第二处理器;
    所述第二收发机在所述第二处理器的控制下发送和接收数据;
    所述第二处理器读取存储器中的程序执行以下操作:获取所述终端所在小区的工作模式和/或工作带宽;根据所述终端所在小区的工作模式和/或工作带宽,得到所述终端的工作模式和/或所在子网络;
    其中,所述地面移动通信子网络和非地面移动通信子网络采用相同的或统一的无线接入技术。
  42. 根据权利要求41所述的终端,其中,所述第二处理器读取存储器中的程序还执行以下操作:如果所述终端的工作模式是独立工作模式,则在对应的子网络进行控制和/或数据传输;或者,如果所述终端的工作模式是层内载波聚合模式,则在主载波进行接入、同步、控制和/或第一速率的数据传输,在与所述主载波对应的辅载波进行第二速率的数据传输,所述第一速率小于所述第二速率;或者,如果所述终端的工作模式是跨层载波聚合模式,则在主载波所在的子网络进行接入、同步、控制和/或第一速率的数据传输,在与所述主载波对应的辅载波所在的子网络进行第二速率的数据传输,所述第一速率小于所述第二速率。
  43. 一种可读存储介质,所述可读存储介质上存储有计算机程序,所述程序被处理器执行时实现如权利要求1至10中任一项所述的方法的步骤。
PCT/CN2021/092382 2020-06-10 2021-05-08 异构立体分层网络中的控制方法、装置及通信系统 WO2021249076A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/928,245 US20230224023A1 (en) 2020-06-10 2021-05-08 Control method and control device in heterogeneous three-dimensional hierarchical network, and communication system
EP21821932.7A EP4167617A4 (en) 2020-06-10 2021-05-08 CONTROL METHOD IN A HETEROGENEOUS THREE-DIMENSIONAL LAMINATED NETWORK, COMMUNICATION APPARATUS AND SYSTEM
JP2022575363A JP7476360B2 (ja) 2020-06-10 2021-05-08 異種三次元階層型ネットワークにおける制御方法、装置及び通信システム
KR1020237000956A KR20230022992A (ko) 2020-06-10 2021-05-08 이종 입체 분층 네트워크에서의 제어 방법, 장치 및 통신 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010524153.1A CN113784360A (zh) 2020-06-10 2020-06-10 异构立体分层网络中的控制方法、装置及通信系统
CN202010524153.1 2020-06-10

Publications (1)

Publication Number Publication Date
WO2021249076A1 true WO2021249076A1 (zh) 2021-12-16

Family

ID=78834706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092382 WO2021249076A1 (zh) 2020-06-10 2021-05-08 异构立体分层网络中的控制方法、装置及通信系统

Country Status (6)

Country Link
US (1) US20230224023A1 (zh)
EP (1) EP4167617A4 (zh)
JP (1) JP7476360B2 (zh)
KR (1) KR20230022992A (zh)
CN (1) CN113784360A (zh)
WO (1) WO2021249076A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220284009A1 (en) * 2021-03-03 2022-09-08 The Toronto-Dominion Bank System and Method for Processing Hierarchical Data

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193891A1 (ja) * 2018-04-04 2019-10-10 ソニー株式会社 通信装置、基地局装置、通信方法、通信プログラム及び通信システム
WO2020026734A1 (ja) * 2018-08-03 2020-02-06 ソニー株式会社 通信装置、通信方法及び通信プログラム
WO2020068149A1 (en) * 2018-09-25 2020-04-02 Hughes Network Systems, Llc Efficient transport of internet of things (iot) traffic in terrestrial wireless and satellite networks
CN111010708A (zh) * 2018-10-08 2020-04-14 电信科学技术研究院有限公司 移动性管理的方法、无线接入网、终端及计算机存储介质
CN212393010U (zh) * 2020-06-10 2021-01-22 大唐移动通信设备有限公司 通信系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238552B (zh) 2010-04-30 2015-08-05 索尼公司 选择成份载波的方法、基站、终端和通信系统
US8805390B2 (en) * 2011-10-18 2014-08-12 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic radio capabilities based upon available transport bandwidth
FR3007917B1 (fr) * 2013-06-27 2015-07-31 Airbus Operations Sas Reseau de telecommunication embarque partitionne a acces sans fil
EP3395093B1 (de) * 2015-12-23 2021-06-30 Deutsche Telekom AG Vorrichtung und verfahren zum betreiben eines kommunikationsnetzwerkes
FR3048150B1 (fr) 2016-02-22 2018-11-09 Thales Systeme integre de radiocommunication a couverture cellulaire hierarchique ordonnee
EP3293891B1 (en) * 2016-09-13 2019-02-27 Mitsubishi Electric R & D Centre Europe B.V. Method for managing an integrated satellite-terrestrial network and device for implementing the same
FR3064856B1 (fr) * 2017-04-04 2020-03-20 Thales Procede de communication spatiale pour des services iot et systemes spatial de telecommunications correspondant
US20230188204A1 (en) * 2021-12-10 2023-06-15 Parallel Wireless, Inc. Minimizing Fronthaul Data Load and Beam Management realization in Cellular Non terrestrial Networks Using Satellite Networks
US20240022318A1 (en) * 2022-07-13 2024-01-18 Ast & Science, Llc Satellite communication system with gateway diversity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193891A1 (ja) * 2018-04-04 2019-10-10 ソニー株式会社 通信装置、基地局装置、通信方法、通信プログラム及び通信システム
WO2020026734A1 (ja) * 2018-08-03 2020-02-06 ソニー株式会社 通信装置、通信方法及び通信プログラム
WO2020068149A1 (en) * 2018-09-25 2020-04-02 Hughes Network Systems, Llc Efficient transport of internet of things (iot) traffic in terrestrial wireless and satellite networks
CN111010708A (zh) * 2018-10-08 2020-04-14 电信科学技术研究院有限公司 移动性管理的方法、无线接入网、终端及计算机存储介质
CN212393010U (zh) * 2020-06-10 2021-01-22 大唐移动通信设备有限公司 通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4167617A4 *

Also Published As

Publication number Publication date
EP4167617A1 (en) 2023-04-19
KR20230022992A (ko) 2023-02-16
JP7476360B2 (ja) 2024-04-30
JP2023528652A (ja) 2023-07-05
EP4167617A4 (en) 2023-11-29
CN113784360A (zh) 2021-12-10
US20230224023A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
US9967801B2 (en) Method and apparatus for receiving authorization information on network slice
CN108141742B (zh) 用于第五代蜂窝架构的用户平面
CN108781371B (zh) 一种无线资源管理方法和装置
WO2020244563A1 (zh) 用于切换的方法和装置
US20220225208A1 (en) Neighboring cell relationship configuration method and apparatus applicable to satellite network
KR20200035062A (ko) 무선 통신 네트워크에서 통신 방법 및 이를 위한 시스템
CN111866928A (zh) 一种邻区信息配置的方法和装置
EP4142179A1 (en) Non-terrestrial network communication method and apparatus
CN115462130A (zh) 非地面网络中的信令效率的改进
CN116250277A (zh) 一种通信方法及装置
EP4178265A1 (en) Terminal device access control method and apparatus
WO2021249076A1 (zh) 异构立体分层网络中的控制方法、装置及通信系统
CN113747570A (zh) 一种通信方法及装置
EP3857951B1 (en) Logical channel cell restriction
CN112106417B (zh) 一种通信方法及装置
EP3927100A1 (en) Communication of user terminal having multiple subscription identities
CN212393010U (zh) 通信系统
CN113810996A (zh) 一种用于非地面通信网络的信息指示方法及装置
EP4329417A1 (en) Method for managing redundant pdu session for redundant transmission
EP4020016A1 (en) Communication method and apparatus
JP2022133820A (ja) リレーノード及び方法
CN116250279A (zh) 通信方法及装置
WO2022137473A1 (ja) ネットワークノード、基地局及び通信方法
WO2024070677A1 (ja) 端末装置、及び通信方法
WO2024135331A1 (ja) 通信装置、及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575363

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237000956

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021821932

Country of ref document: EP

Effective date: 20230110