WO2021249052A1 - 一种光圈及其控制方法、镜头及电子设备 - Google Patents

一种光圈及其控制方法、镜头及电子设备 Download PDF

Info

Publication number
WO2021249052A1
WO2021249052A1 PCT/CN2021/090338 CN2021090338W WO2021249052A1 WO 2021249052 A1 WO2021249052 A1 WO 2021249052A1 CN 2021090338 W CN2021090338 W CN 2021090338W WO 2021249052 A1 WO2021249052 A1 WO 2021249052A1
Authority
WO
WIPO (PCT)
Prior art keywords
aperture
fluid
area
driving
electrode array
Prior art date
Application number
PCT/CN2021/090338
Other languages
English (en)
French (fr)
Inventor
陈廷爱
王庆平
阮望超
陈晓雷
郑士胜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021249052A1 publication Critical patent/WO2021249052A1/zh
Priority to US18/063,166 priority Critical patent/US20230105861A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • G02B26/005Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time

Definitions

  • This application relates to the field of photography technology, in particular to an aperture and its control method, lens and electronic equipment.
  • the aperture has been an important part of the camera. And with the development of photography technology, photography is no longer limited to a small number of professional groups, and ordinary consumers can also take pictures. Consumers’ understanding of photography has been upgraded from the initial needs of photography, technical photography, to the current creativity and thinking of photography. Studies have shown that the optimal pattern (size, shape, offset, rotation, etc.) of the aperture varies greatly depending on the user's application scene, shooting conditions and shooting content. Therefore, according to the real-time changes in the shooting process, the user defines the aperture pattern by himself to achieve the gradual emergence of the user's autonomous shooting purpose, that is, the shooting device is configured with a programmable aperture. At present, the mainstream aperture can only adjust the size of the aperture; the programmable aperture technology is still immature, and the stability and transmittance of the aperture are limited.
  • the embodiments of the present application provide an aperture and its control method, lens and electronic equipment, and provide a new type of programmable aperture with higher stability and good transmittance.
  • an embodiment of the present application provides an aperture.
  • the aperture includes a first substrate and a second substrate that are opposed to each other; the area between the first substrate and the second substrate includes a first area and a second area, for example, the first area may be an area close to the optical axis of the aperture,
  • the second area is an area surrounding the first area; wherein the driving electrode array on the second substrate is located in the first area, the common electrode on the second substrate is located in the second area, and the common electrode is covered by the first fluid located in the second area;
  • the drive electrode array includes transparent drive electrodes arranged in an array; the aperture also includes a second fluid, wherein the second fluid wraps the first fluid and the drive electrode array, wherein the first fluid is an opaque electrolyte, and the second fluid is transparent Liquid, the first fluid and the second fluid are not compatible.
  • the driving electrodes and the common electrode form an electric field.
  • the first fluid is an electrolyte
  • it will flow to the driving electrode where the voltage is applied, and because the first fluid is Opaque electrolyte, so it can shield the area corresponding to the transparent drive electrode, while the area corresponding to the drive electrode without voltage applied still covers the second fluid, so the area corresponding to the drive electrode that is not blocked by the first fluid can transmit light Thereby forming an aperture pattern.
  • the light-transmissive position and the opaque position of the driving electrode array can be determined, and the corresponding driving electrode of the driving electrode array can be applied according to the opaque position.
  • the voltage causes the first fluid to block the driving electrode to which the voltage is applied, and the area corresponding to the driving electrode to which the voltage is not applied is not blocked by the first fluid to transmit light, so that the required aperture pattern can be formed. Therefore, when the required aperture patterns are different, the light-transmissive position and the non-transparent position determined on the drive electrode array are also different. Therefore, for different aperture patterns, it is necessary to apply voltage in the drive electrode array.
  • the driving electrodes are also different, so as to realize the editability of the aperture. In addition, since no mechanical parts are required, the stability of the aperture is higher, and the transmittance of the aperture only depends on the transmittance and reflection of each functional layer material, and the second fluid The transmittance can ensure a good transmittance.
  • the aperture further includes: a first hydrophobic layer and a second hydrophobic layer, wherein the first hydrophobic layer is disposed between the first substrate and the second fluid; the second hydrophobic layer is disposed between the second fluid and the driving electrode array.
  • the second hydrophobic layer is used to enclose the driving electrode array between the second hydrophobic layer and the second substrate.
  • the first hydrophobic layer and the second hydrophobic layer have hydrophobicity to the first fluid and the second fluid, thereby ensuring that the first fluid and the second fluid can flow well between the first substrate and the second substrate.
  • the aperture further includes: an insulating dielectric layer, which is disposed on Between the second hydrophobic layer and the driving electrode array.
  • the aperture further includes: a side wall frame, and the side wall frame is disposed between the first hydrophobic layer and the second substrate.
  • the side wall frame seals the first fluid and the second fluid in the space between the first hydrophobic layer and the second substrate.
  • the side wall frame mainly plays a supporting role, but also plays a sealing role for the first fluid and the second fluid.
  • the driving electrode includes an electrode block and a switching transistor, and the driving electrode array further includes a gate lead and a drain lead arranged in a crosswise arrangement, wherein the electrode block is connected to the source of the switching transistor, The gate of the switching transistor is connected to a gate lead, and the drain of the switching transistor is connected to a drain lead.
  • each electrode block of the driving electrode at the edge of the driving electrode array has a structure in which recesses and protrusions are arranged overlappingly.
  • the insulating dielectric layer inwardly in contact with the electrode blocks of the driving electrode array also has a structure in which recesses and protrusions are arranged overlappingly.
  • the second hydrophobic layer that is inwardly in contact with the insulating dielectric layer is also recessed. A structure that overlaps the protrusions.
  • This "hand-shaped" concave and convex overlapping arrangement makes the driving electrode and the first fluid have a certain cross, which helps the first fluid to flow quickly to the corresponding electrode block under the action of the electric field, and lose When the electric field is applied, it flows back to the original position smoothly. Improved the reliability and repeatability of aperture editing.
  • the structure in which the depressions and protrusions are arranged overlappingly in the legend is illustrated by using arc-shaped depressions or protrusions as an example.
  • the structure of such depressions or protrusions can also be zigzag, square, etc.
  • the gap between the electrode blocks is filled with an insulating coating, and the difference between the refractive index of the insulating coating and the refractive index of the electrode blocks is smaller than a preset value.
  • This can prevent the tiny periodic gap from causing diffraction halo on the final image of the lens.
  • the refractive index of the insulating coating is equal to the refractive index of the electrode block, the diffraction halo phenomenon caused by the periodic gap on the final image of the lens can be completely avoided.
  • it further includes: a microstructure column, wherein the microstructure column is disposed on the second substrate and is located between the common electrode and the second hydrophobic layer, and the microstructure column is hydrophilic to the second fluid. Due to the micro-column structure that is hydrophilic to the second fluid, when the electrode block is not applied with electric field voltage, the micro-column structure can absorb the second fluid to form a barrier to block the first fluid from entering the first area, ensuring the aperture editing Reliability and repeatability. In order to further improve the above-mentioned effect, the microstructure column also has a hydrophobic characteristic to the first fluid.
  • hydrophilicity and hydrophobicity refer to the wettability of the second fluid or the first fluid to the microstructure column.
  • hydrophilicity means that the wettability of the microstructured column by the second fluid is expressed as wetting
  • hydrophobicity means that the wettability of the first fluid to the microstructured column is expressed as non-wetting.
  • it further includes: a light-shielding layer, the light-shielding layer is provided in the second area, and the light-shielding layer is provided on the side of the first substrate away from the second substrate; or, the light-shielding layer is provided on the second substrate away from the One side of the first substrate. In this way, it can be prevented that the first fluid in the second area at the edge of the aperture cannot completely block the ambient stray light.
  • the second fluid is oil
  • the driving electrode array includes: driving electrodes arranged in an M ⁇ N array, where M is the number of rows of driving electrodes, N is the number of columns of driving electrodes, and M and N are positive integers.
  • a method for controlling the aperture as provided in the above-mentioned first aspect includes: applying an electric field voltage to part of the driving electrodes in the driving electrode array, moving the first fluid to the area corresponding to the part of the driving electrode, and covering the area corresponding to the part of the driving electrode; and removing part of the driving electrode in the driving electrode array The regions corresponding to the other driving electrodes form an aperture pattern.
  • the part of the drive electrode includes the aperture pattern corresponding to the aperture pattern in the drive electrode array
  • the driving electrodes at the periphery of the region; said applying electric field voltages to part of the driving electrodes in the driving electrode array includes: applying electric field voltages to the part of the driving electrodes sequentially from the periphery to the center of the driving electrode array.
  • the part of the drive electrode includes the aperture pattern in the drive electrode array
  • said applying an electric field voltage to part of the drive electrodes in the drive electrode array includes: determining in the drive electrode array according to the isolation area A channel, wherein the channel is connected to the isolation area and the first fluid; the drive electrodes on the channel are sequentially applied with electric field voltage from the periphery to the center of the drive electrode array; the drive corresponding to the isolation area is applied
  • the electrodes apply electric field voltages in sequence from close to the channel to far away from the channel; the electric field voltage of the drive electrodes on the channel is cancelled; the drive electrodes on the periphery of the area corresponding to the aperture pattern in the drive electrode array are applied from the The outer periphery of the driving electrode array sequentially applies electric field voltage to the center.
  • the channel is determined according to the distance between the first fluid and the isolation area, or the distance between the edge of the aperture pattern away from the isolation area and the isolation area is determined. aisle.
  • a lens which includes at least one lens with the aperture provided in the first aspect.
  • a protective glass, a lens group, and a sensor are included in sequence according to the incident direction of the light on the optical axis, and the aperture is arranged at one end of the lens group Or between any two adjacent lenses in the lens group.
  • any lens in the lens group is used as the first substrate or the second substrate of the aperture.
  • the lens includes the aperture, the lens group, and the sensor in order in the direction of the optical axis.
  • an iris control device for implementing the above-mentioned various methods.
  • the iris control device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be implemented by hardware, software, or hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • an electronic device which includes the aperture as described in the first aspect or the lens as described in the fourth aspect, as well as a processor and a memory, and the memory is used to store necessary program instructions and data; the processor is It is configured to call the program instructions stored in the memory to execute the method in any of the above-mentioned aspects.
  • a computer-readable storage medium stores program instructions.
  • the program instructions run on a computer or a processor, the computer or the processor can execute any of the above aspects. Methods.
  • a computer program product containing instructions is provided.
  • the instructions When the instructions are run on a computer or a processor, the computer or the processor can execute the method in any of the above aspects.
  • FIG. 1a is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • FIG. 1b is a software structure block diagram of an electronic device provided by an embodiment of the application.
  • FIG. 1c is a schematic structural diagram of an electronic device provided by another embodiment of this application.
  • FIG. 2 is a schematic diagram of a top view structure of an aperture provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a cross-sectional structure at the aperture AA' shown in FIG. 2 according to an embodiment of the application;
  • FIG. 4 is a schematic diagram of a cross-sectional structure of a driving electrode array provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of an equivalent circuit structure of a driving electrode array provided by an embodiment of the application.
  • Fig. 6 is a first schematic diagram of a state of an aperture provided by an embodiment of the application.
  • FIG. 7 is a second schematic diagram of a state of an aperture provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a top view structure of an aperture provided by another embodiment of the application.
  • FIG. 9 is a schematic diagram of a top view structure of an aperture provided by another embodiment of the application.
  • FIG. 10 is a schematic diagram of a cross-sectional structure at the aperture AA' shown in FIG. 2 according to another embodiment of the application;
  • FIG. 11 is a schematic diagram of a cross-sectional structure at the aperture AA' shown in FIG. 2 according to another embodiment of the application;
  • FIG. 12 is a voltage distribution of each electrode block in a driving electrode array with a 16 ⁇ 16 pixel arrangement corresponding to an aperture pattern according to an embodiment of the application;
  • FIG. 13 provides an aperture pattern formed by the voltage distribution of each electrode block in the driving electrode array shown in FIG. 12;
  • FIG. 14 is a voltage distribution of each electrode block in a driving electrode array with a 16 ⁇ 16 pixel arrangement corresponding to an aperture pattern according to another embodiment of the application;
  • FIG. 15 provides an aperture pattern formed by the voltage distribution of each electrode block in the driving electrode array shown in FIG. 14;
  • FIG. 16 is a voltage distribution of each electrode block in a driving electrode array in a 16 ⁇ 16 pixel arrangement corresponding to an aperture pattern according to another embodiment of the application;
  • FIG. 17 provides an aperture pattern formed by the voltage distribution of each electrode block in the driving electrode array shown in FIG. 16;
  • FIG. 18 is a voltage distribution of each electrode block in a driving electrode array with a 16 ⁇ 16 pixel arrangement corresponding to an aperture pattern provided by still another embodiment of the application;
  • FIG. 19 provides an aperture pattern formed by the voltage distribution of each electrode block in the driving electrode array shown in FIG. 18;
  • FIG. 20 is a voltage distribution of each electrode block in a driving electrode array with a 16 ⁇ 16 pixel arrangement corresponding to an aperture pattern according to another embodiment of the application;
  • FIG. 21 provides an aperture pattern formed by the voltage distribution of each electrode block in the driving electrode array shown in FIG. 20;
  • FIG. 22 is a voltage distribution of each electrode block in a driving electrode array with a 16 ⁇ 16 pixel arrangement corresponding to an aperture pattern according to another embodiment of the application;
  • FIG. 23 provides an aperture pattern formed by the voltage distribution of each electrode block in the driving electrode array shown in FIG. 22;
  • FIG. 24 is a voltage distribution of each electrode block in a driving electrode array in a 16 ⁇ 18 pixel arrangement corresponding to an aperture pattern provided by still another embodiment of the application;
  • FIG. 25 provides an aperture pattern formed by the voltage distribution of each electrode block in the driving electrode array shown in FIG. 24;
  • FIG. 26 is a schematic diagram 1 of voltage distribution of each electrode block in a driving electrode array in a method for controlling an aperture provided by an embodiment of the application;
  • FIG. 27 is a second schematic diagram of the voltage distribution of each electrode block in the driving electrode array in a method for controlling an aperture provided by an embodiment of the application;
  • FIG. 28 is a third schematic diagram of voltage distribution of each electrode block in the driving electrode array in a method for controlling an aperture provided by an embodiment of the application;
  • FIG. 29 is a schematic diagram 1 of the voltage distribution of each electrode block in the driving electrode array in a method for controlling an aperture provided by another embodiment of the application;
  • FIG. 30 is a second schematic diagram of the voltage distribution of each electrode block in the driving electrode array in a method for controlling an aperture provided by another embodiment of the application;
  • FIG. 31 is a third schematic diagram of voltage distribution of each electrode block in the driving electrode array in a method for controlling an aperture provided by an embodiment of the application;
  • FIG. 32 is a fourth schematic diagram of voltage distribution of each electrode block in the driving electrode array in a method for controlling an aperture provided by another embodiment of the application;
  • 33 is a schematic diagram 5 of voltage distribution of each electrode block in the driving electrode array in a method for controlling an aperture provided by another embodiment of the application;
  • FIG. 34 is a sixth schematic diagram of voltage distribution of each electrode block in the driving electrode array in a method for controlling an aperture provided by an embodiment of the application;
  • 35 is a schematic diagram 7 of the voltage distribution of each electrode block in the driving electrode array in a method for controlling an aperture provided by another embodiment of the application;
  • 36 is a schematic diagram eight of voltage distribution of each electrode block in the driving electrode array in a method for controlling an aperture provided by another embodiment of the application;
  • FIG. 37 is a schematic diagram 9 of the voltage distribution of each electrode block in the driving electrode array in a method for controlling an aperture provided by an embodiment of the application;
  • FIG. 38 is a schematic diagram 1 of a generation process of an aperture pattern provided by an embodiment of the application.
  • FIG. 39 is a second schematic diagram of a generation process of an aperture pattern provided by an embodiment of the application.
  • FIG. 40 is a third schematic diagram of a generation process of an aperture pattern provided by an embodiment of the application.
  • FIG. 41 is a fourth schematic diagram of a generation process of an aperture pattern provided by an embodiment of the application.
  • FIG. 42 is a schematic structural diagram of a lens provided by an embodiment of the application.
  • FIG. 43 is a schematic structural diagram of a lens provided by another embodiment of the application.
  • FIG. 44 is a schematic structural diagram of a lens provided by another embodiment of this application.
  • FIG. 45 is a schematic structural diagram of a lens provided by still another embodiment of this application.
  • FIG. 46 is a schematic structural diagram of an iris control device provided by an embodiment of the application.
  • FIG. 47 is a schematic structural diagram of an electronic device provided by another embodiment of this application.
  • the terms “first”, “second”, etc. are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first”, “second”, etc. may explicitly or implicitly include one or more of these features.
  • the azimuthal terms such as “upper” and “lower” are defined relative to the schematic placement of the components in the drawings. It should be understood that these directional terms are relative concepts, and they are used for relative For the description and clarification, it can be changed correspondingly according to the changes in the orientation of the components in the drawings.
  • connection should be understood in a broad sense.
  • “connected” can be a fixed connection, a detachable connection, or a whole; it can be a direct connection, or It can be connected indirectly through an intermediary.
  • Aperture is a device used to control the amount of light passing through the lens and entering the photosensitive surface of the body. It is usually inside the lens, or it can be set outside the lens and used with the lens. We use F/number to express the aperture size.
  • the lens is a component that uses the refraction principle of the lens to make the light from the scene pass through the lens to form a clear image on the focal plane.
  • a switching transistor also called a switch transistor (switch transistor) usually uses a thin film transistor (TFT) in the embodiments of the present application.
  • TFT thin film transistor
  • the embodiments of the present application are applied to electronic equipment with image capture functions such as photography and video recording.
  • the electronic equipment is usually equipped with a lens with an aperture, or an aperture used with the lens is independently set.
  • the electronic device can be a camera, a video camera, a mobile phone (mobile phone), a tablet computer (pad), a personal computer, a camera, a smart wearable product (for example, a smart watch, a smart bracelet), a virtual reality (VR) terminal device , Augmented reality (AR) terminal equipment, etc.
  • VR virtual reality
  • AR Augmented reality
  • the embodiments of the present application do not impose special restrictions on the specific form of the above-mentioned electronic equipment. For the convenience of description, the following description takes the electronic device as a mobile phone as an example.
  • Fig. 1a shows a hardware structure of the mobile phone.
  • the mobile phone may include a processor 110, an external memory interface I1, an internal memory 120, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, and an antenna.
  • Antenna 2 mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, button 190, motor 191, indicator 192, lens 193, display Screen 10, as well as subscriber identification module (subscriber identification module, SIM) card interface I2, etc.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and the environment Light sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the mobile phone.
  • the mobile phone may include more or fewer components than those shown in the figure, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) Wait.
  • AP application processor
  • modem processor modem processor
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the different processing units may be independent devices or integrated in one or more processors.
  • the controller can be the nerve center and command center of the mobile phone.
  • the controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 to store instructions and data.
  • the memory in the processor 110 is a cache memory.
  • the memory can store instructions or data that have just been used or recycled by the processor 110. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory. Repeated accesses are avoided, the waiting time of the processor 110 is reduced, and the efficiency of the system is improved.
  • the processor 110 may include one or more interfaces.
  • the interface can include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, and a universal asynchronous transmitter (universal asynchronous transmitter) interface.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB Universal Serial Bus
  • the I2C interface is a bidirectional synchronous serial bus, which includes a serial data line (SDA) and a serial clock line (SCL).
  • the I2S interface can be used for audio communication.
  • the PCM interface can also be used for audio communication to sample, quantize and encode analog signals.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a two-way communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • the MIPI interface can be used to connect the processor 110 with the display screen 10, the lens 193 and other peripheral devices. MIPI interfaces include lens serial interface (camera serial interface, CSI), display serial interface (display serial interface, DSI), etc.
  • the GPIO interface can be configured through software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the USB interface 130 is an interface that complies with the USB standard specification, and specifically may be a Mini USB interface, a Micro USB interface, a USB Type C interface, and so on.
  • the USB interface 130 can be used to connect a charger to charge the mobile phone, and can also be used to transfer data between the mobile phone and peripheral devices. It can also be used to connect earphones and play audio through earphones.
  • the interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiment of the present application is merely a schematic description, and does not constitute a structural limitation of the mobile phone.
  • the mobile phone may also adopt different interface connection modes in the foregoing embodiments, or a combination of multiple interface connection modes.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charge management module 140, and supplies power to the processor 110, the internal memory 120, the external memory, the display screen 10, the lens 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
  • the wireless communication function of the mobile phone can be realized by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor, and the baseband processor.
  • the antenna 1 and the antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the mobile phone can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G, etc., which are applied to mobile phones.
  • the mobile communication module 150 may include at least one filter, a switch, a power amplifier, a low noise amplifier (LNA), and the like.
  • the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic wave radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the modem processor may include a modulator and a demodulator.
  • the wireless communication module 160 can provide applications on mobile phones including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), Bluetooth (bluetooth, BT), GNSS, and frequency modulation (frequency modulation). Modulation, FM), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • WiFi wireless fidelity
  • BT Bluetooth
  • GNSS GNSS
  • frequency modulation frequency modulation
  • Modulation FM
  • NFC near field communication
  • infrared technology infrared, IR
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 may also receive the signal to be sent from the processor 110, perform frequency modulation, amplify, and convert it into electromagnetic waves to radiate through the antenna 2.
  • the GNSS in the embodiment of the present application may include: GPS, GLONASS, BDS, QZSS, SBAS, and/or GALILEO, etc.
  • the mobile phone realizes the display function through GPU, display screen 10, and application processor.
  • the GPU is an image processing microprocessor, which is connected to the display screen 10 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • the processor 110 may include one or more GPUs, which execute program instructions to generate or change display information.
  • the display screen 10 is used to display images, videos, and the like.
  • the display screen 10 includes a display panel.
  • the mobile phone can realize the shooting function through ISP, lens 193, video codec, GPU, display screen 10 and application processor.
  • the ISP is used to process the data fed back by the lens 193.
  • the lens 193 is used to obtain still images or videos.
  • the object generates an optical image through the lens and is projected to the photosensitive element.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals.
  • Video codecs are used to compress or decompress digital video.
  • NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • applications such as smart cognition of mobile phones can be realized, such as: image recognition, face recognition, speech recognition, text understanding, etc.
  • the external memory interface I1 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the mobile phone.
  • the external memory card communicates with the processor 110 through the external memory interface I1 to realize the data storage function. For example, save music, video and other files in an external memory card.
  • the internal memory 120 may be used to store computer executable program code, the executable program code including instructions.
  • the processor 110 executes various functional applications and data processing of the mobile phone by running instructions stored in the internal memory 120.
  • the mobile phone can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor. For example, music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into an analog audio signal for output, and is also used to convert an analog audio input into a digital audio signal.
  • the speaker 170A also called “speaker” is used to convert audio electrical signals into sound signals.
  • the receiver 170B also called a “handset”, is used to convert audio electrical signals into sound signals.
  • the microphone 170C also called “microphone”, “microphone”, is used to convert sound signals into electrical signals.
  • the earphone interface 170D is used to connect wired earphones.
  • the earphone interface 170D may be a USB interface 130, or a 3.2mm open mobile terminal platform (OMTP) standard interface, or a cellular telecommunications industry association (cellular telecommunications industry association of the USA, CTIA) standard interface.
  • OMTP open mobile terminal platform
  • the button 190 includes a power-on button, a volume button, and so on.
  • the button 190 may be a mechanical button. It can also be a touch button.
  • the mobile phone can receive key input, and generate key signal input related to the user settings and function control of the mobile phone.
  • the motor 191 can generate vibration prompts.
  • the motor 191 can be used for incoming call vibration notification, and can also be used for touch vibration feedback.
  • the indicator 192 can be an indicator light, which can be used to indicate the charging status, power change, or to indicate messages, missed calls, notifications, and so on.
  • the SIM card interface I2 is used to connect to the SIM card.
  • the SIM card can be inserted into the SIM card interface I2 or pulled out from the SIM card interface I2 to achieve contact and separation with the mobile phone.
  • the mobile phone can support 1 or N SIM card interfaces, and N is a positive integer greater than 1.
  • the SIM card interface I2 can support Nano SIM cards, Micro SIM cards, SIM cards, etc.
  • the mobile phone software system can adopt a layered architecture, event-driven architecture, micro-core architecture, micro-service architecture, or cloud architecture.
  • the embodiment of the present application takes an Android system with a layered architecture as an example to illustrate the software structure of a mobile phone.
  • Fig. 1b is a block diagram of the software structure of a mobile phone according to an embodiment of the present application.
  • the layered architecture divides the software into several layers, and each layer has a clear role and division of labor. Communication between layers through software interface.
  • the Android system is divided into four layers, from top to bottom: application layer, application framework layer, Android runtime and system library, and kernel layer.
  • the application layer can include a series of application packages.
  • the application package can include applications such as camera, gallery, calendar, call, map, navigation, WLAN, Bluetooth, music, video, short message, etc.
  • the application framework layer provides an application programming interface (application programming interface, API) and a programming framework for applications in the application layer.
  • API application programming interface
  • the application framework layer includes some predefined functions.
  • the application framework layer can include a window manager, a content provider, a view system, a phone manager, a resource manager, and a notification manager.
  • the window manager is used to manage window programs.
  • the window manager can obtain the size of the display screen, determine whether there is a status bar, lock the screen, take a screenshot, etc.
  • the content provider is used to store and retrieve data and make these data accessible to applications.
  • the data may include video, image, audio, phone calls made and received, browsing history and bookmarks, phone book, etc.
  • the view system includes visual controls, such as controls that display text, controls that display pictures, and so on.
  • the view system can be used to build applications.
  • the display interface can be composed of one or more views.
  • a display interface that includes a short message notification icon may include a view that displays text and a view that displays pictures.
  • the phone manager is used to provide the communication function of the mobile phone. For example, the management of the call status (including connecting, hanging up, etc.).
  • the resource manager provides various resources for the application, such as localized strings, icons, pictures, layout files, video files, and so on.
  • the notification manager enables the application to display notification information in the status bar, which can be used to convey notification-type messages, and it can automatically disappear after a short stay without user interaction.
  • the notification manager is used to notify download completion, message reminders, and so on.
  • the notification manager can also be a notification that appears in the status bar at the top of the system in the form of a chart or a scroll bar text, such as a notification of an application running in the background, or a notification that appears on the screen in the form of a dialog window.
  • prompt text information in the status bar sound a prompt sound, electronic device vibration, flashing indicator light, etc.
  • Android Runtime includes core libraries and virtual machines. Android runtime is responsible for the scheduling and management of the Android system.
  • the core library consists of two parts: one part is the function function that the java language needs to call, and the other part is the core library of Android.
  • the application layer and the application framework layer run in a virtual machine.
  • the virtual machine executes the java files of the application layer and the application framework layer as binary files.
  • the virtual machine is used to perform functions such as object life cycle management, stack management, thread management, security and exception management, and garbage collection.
  • the system library can include multiple functional modules. For example: surface manager (surface manager), media library (Media Libraries), three-dimensional graphics processing library (for example: OpenGL ES), 2D graphics engine (for example: SGL), etc.
  • the surface manager is used to manage the display subsystem and provides a combination of 2D and 3D layers for multiple applications.
  • the media library supports playback and recording of a variety of commonly used audio and video formats, as well as still image files.
  • the media library can support a variety of audio and video encoding formats, such as: MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, etc.
  • the 3D graphics processing library is used to realize 3D graphics drawing, image rendering, synthesis, and layer processing.
  • the 2D graphics engine is a drawing engine for 2D drawing.
  • the kernel layer is the layer between hardware and software.
  • the kernel layer contains at least display driver, lens driver, audio driver, and sensor driver.
  • the corresponding hardware interrupt is sent to the kernel layer.
  • the kernel layer processes the touch operation into the original input event (including touch coordinates, time stamp of the touch operation, etc.).
  • the original input events are stored in the kernel layer.
  • the application framework layer obtains the original input event from the kernel layer and identifies the control corresponding to the input event. Taking the touch operation as a touch click operation, and the control corresponding to the click operation is the control of the camera application icon as an example, the camera application calls the interface of the application framework layer to start the camera application, and then starts the lens driver by calling the kernel layer.
  • the lens 193 captures still images or video.
  • an electronic device 100 Taking a mobile phone as an example, it mainly includes a display panel (DP) 101.
  • the display screen 101 may be a liquid crystal display (LCD) screen or an organic light emitting diode (OLED) display screen. This application does not limit this.
  • the above-mentioned electronic device 100 further includes a middle frame 102 and a housing 103.
  • the display screen 101 and the housing 103 are respectively located on both sides of the middle frame 102, the back of the display screen 101 faces the housing 103, and the display screen 101 and the housing 103 are connected by the middle frame 102.
  • the middle frame 102 can be provided with the aforementioned processor, external memory interface, internal memory, USB interface, charging management module, power management module, battery, antenna, antenna, mobile communication module, wireless communication module, audio module, speaker, receiver, Microphones, earphone jacks, sensor modules, buttons, motors, indicators, lenses, display screens, SIM card interfaces and other components.
  • the electronic device 100 may also include more or less components than the foregoing.
  • the lens 193 when the middle frame 102 of the electronic device 100 is provided with a lens 193, the lens 193 usually includes an aperture, or the aperture is independently set to cooperate with the lens 193.
  • FIG. 1c only shows a lens 193 disposed on the back of the middle frame 102 and facing the housing 103.
  • a front lens facing the display screen 101 may also be included.
  • the embodiment of the present application provides an aperture 01, which is applied to the above-mentioned electronic device, as shown in FIGS. 2 and 3, wherein FIG. 2 provides a schematic diagram of the top structure of the aperture, and FIG. 3 provides a cross section at AA' of the aperture.
  • the aperture 01 includes a first substrate 1 and a second substrate 4, wherein the first substrate 1 and the second substrate 4 can be arranged opposite to each other; wherein the first area aa and the second area aa' between the first substrate 1 and the second substrate 4 2 and 3, the first area aa may be an area close to the optical axis of the aperture, and the second area aa' is an area surrounding the first area; the driving electrode array 11 on the second substrate 4 is located in the first area.
  • the driving electrode array 11 includes transparent driving electrodes arranged in an array, and the aperture is also It includes a second fluid 6, the second fluid 6 wraps the first fluid 5 and the driving electrode array 11, wherein the first fluid 5 is an opaque electrolyte, the second fluid 6 is a transparent liquid, the first fluid 5 and the second fluid 5 Incompatible.
  • transparency means that the material of the structure does not completely absorb (usually the material is absorbed by electrons outside the nucleus of the material) or does not completely reflect the light of a certain band, then the material is transparent to the light of the band; if the light of this band can be used by the material Absorbing or reflecting, the material is opaque to the light of this waveband; because the quantum mechanical effect considers the energy band structure and transition of electrons, different materials can only absorb or reflect light of certain wavebands. For example, if a certain wavelength of light is absorbed or reflected by a certain material, but the wavelength is not within the visible light wavelength range, the material is transparent to the visible light wavelength.
  • the transparency and opacity of materials are mainly considered to be within the range of visible light that can be recognized by the human eye (for example, the wavelength is 380nm-780nm).
  • the driving electrode, the first fluid, or the second fluid are usually composite materials, usually composed of multiple elements, the elements constituting the structure of the driving electrode, the first fluid, or the second fluid, etc. There may be multiple types, and different elements in the structure are transparent or opaque to light.
  • the transparent driving electrode in this application refers to the light transmittance of the driving electrode to the visible light band of 70%-99%, that is, the visible light band When light passes through the driving electrode, only 1%-30% of the light is absorbed or reflected.
  • the second fluid 6 in the present application is a transparent liquid, which means that the transmittance of the second fluid to light in the visible light band is 80%-99%; that is, when the light in the visible light band passes through the second fluid, only 1%-20 % Of light is absorbed or reflected.
  • the first fluid 5 is an opaque electrolyte, which means that the light transmittance of the first fluid to the visible light band is less than 1% (for example, the light transmittance of the first fluid to the visible light band can be 0.1%-1%), that is, the visible light band When the light passes through the first fluid, more than 99% of the viable light is absorbed or reflected by the first fluid.
  • the driving electrode includes electrode blocks 1111 (1112, 1113, 1114, 1115) and switching transistors connected to the electrode blocks 1111.
  • the gate lead 121 (122, 123, 124, 125) and the drain lead 131 (132, 133, 134, 135), wherein, referring to FIG. 5, the equivalent circuit of the driving electrode, the electrode block 1111 and the switching transistor A source (source, s) 112 is connected, a gate (gate, g) 113 of the switching transistor is connected to a gate lead 121, and a drain (drain, d) 115 of the switching transistor is connected to a drain lead 131.
  • the driving electrode array includes: driving electrodes arranged in an M ⁇ N array, where M is the number of rows of driving electrodes, N is the number of columns of driving electrodes, and the M and N are positive integers. 2 and 4 take a 5*5 drive electrode array as an example for description.
  • one electrode block in the driving electrode array is also referred to as a pixel. as shown in picture 2.
  • the 5 ⁇ 5 drive electrode array includes 1111, 1112, 1113, 1114, 1115; 1121, 1122, 1123, 1124, 1125; 1131, 1132, 1133, 1134, 1135; 1141, 1142, 1143, 1144, 1145; 1151 , 1152, 1153, 1154, 1155, a total of 25 electrode blocks.
  • the source of each switch transistor M is respectively connected to the corresponding electrode block (shown in small circles in Figures 2 and 5).
  • the first fluid and the second fluid are usually liquids with similar densities.
  • the above-mentioned fluid is also referred to as a liquid
  • the first fluid is also referred to as a polar fluid
  • the second fluid is also referred to as a non-polar fluid.
  • the first fluid can be: an aqueous solution with pigments or dyes added to absorb specific light bands; pigments or dyes can be carbon black, epilin 7527B, qcr solutions vod875s, hwsands sda8530, etc.; solutions such as water, or salt
  • the electrolyte can be doped with surfactants, such as sodium dodecyl sulfate (sds), Tween20, etc.
  • the second fluid 6 is oil, for example, the second fluid may be alkane, silicone oil, or the like.
  • the switching transistor usually includes a gate 113, a gate insulating layer 111 covering the gate 113, and a semiconductor channel activation layer 114 located on the gate insulating layer and covering the gate 113.
  • the aperture further includes a first hydrophobic layer 2 and a second hydrophobic layer 8, and the first hydrophobic layer 2 and the second hydrophobic layer 8 are hydrophobic to the first fluid and the second fluid, wherein the first hydrophobic layer 2 is provided between the first substrate 1 and the second fluid 6; the second hydrophobic layer 8 is provided on the second fluid 6 Between the driving electrode array 11 and the driving electrode array 11, the driving electrode array 11 is enclosed between the second hydrophobic layer 8 and the second substrate 4.
  • it also includes a side wall frame 3, which is arranged between the first hydrophobic layer 2 and the second substrate 4.
  • the side wall frame 3 seals the first fluid 5 and the second fluid 6 in the first hydrophobic layer 2 and The space between the second substrates 4. Since the first fluid 5 is an electrolyte, which has conductivity, in order to prevent the first fluid from affecting the driving electrode array 11, the aperture further includes an insulating dielectric layer 7, which is disposed on the second hydrophobic layer 8. Between and the driving electrode array 11.
  • the aforementioned gate insulating layer 111, passivation layer, and insulating dielectric layer 7 are usually made of transparent insulating materials, such as silicon oxide, silicon nitride, or organic resin materials.
  • the above-mentioned electrode blocks 1111 can be made of transparent conductive materials such as indium tin oxide (ITO), silver nanowires, carbon nanotubes, graphene and other transparent conductive materials, usually ITO
  • ITO indium tin oxide
  • the transmittance of light in the visible light band can be 85%-90%, or even more than 90%.
  • the aforementioned gate 113, source 112, drain 115, gate lead 121, and drain lead 131 generally use conductive materials, for example, metal or alloy materials, such as titanium nitride (TiN), tungsten (W), Nickel (Ni), platinum (Pt), titanium (Ti), tungsten nitride (WN), ruthenium (Ru), ruthenium oxide (RuO x ), iridium (Ir), iridium oxide (IrO x ), TaN (nitride Tantalum), cobalt (Co), aluminum (Al), copper (Cu), polysilicon (Si), copper-molybdenum alloy, silicon and metal compounds, etc.
  • metal or alloy materials such as titanium nitride (TiN), tungsten (W), Nickel (Ni), platinum (Pt), titanium (Ti), tungsten nitride (WN), ruthenium (Ru), ruthenium oxide (RuO x ), iridium (Ir), irid
  • the same transparent conductive material as the electrode block 1111 can also be used. Since the above-mentioned common electrode 10 is disposed in the second area, it can be made of an opaque conductive material.
  • the first hydrophobic layer and the second hydrophobic layer may be the same or different materials. Usually, the first hydrophobic layer and the second hydrophobic layer are made of fluorine-containing materials, such as Teflon AF, AF1600, Hyflon AD, AD40H, CYTOP, CTX809S, etc.
  • the first area close to the optical axis of the aperture is covered by the second fluid 6, and the second area at the edge of the aperture is covered by the first fluid 5 and the second fluid 6 at the same time.
  • the second fluid 6 in the first region is in contact with the first hydrophobic layer 2 at the top and the second hydrophobic layer 8 at the bottom; the second fluid 6 in the second region is in contact with the first hydrophobic layer 2 at the top and with the first fluid at the bottom 5 is in contact with the side wall frame 3 on the side, and the aperture opening is the largest at this time.
  • Figures 6 and 7 show the state when the aperture is edited.
  • the first fluid flows to the area corresponding to the part of the driving electrode, and covers the area corresponding to the part of the driving electrode;
  • the area forms an aperture pattern.
  • the electrode block 1115 and the common electrode 10 for example, the electrode block 1115 is loaded with a V+ voltage, and the other electrode blocks 1111, 1112, 1113, and 1114 are all grounded to the common electrode 10. Due to the wetting effect, the first fluid 5 will be driven to cover the area above the electrode block 1115. In contrast, the second fluid 6 will be squeezed away to cover the area where the first fluid 5 is removed.
  • the electrode blocks 1111, 1113, 1114, 1115 are loaded with V+ voltage, the electrode blocks 1112 and the common electrode 10 are both grounded, and also due to the electrowetting effect, the first fluid 5 will be driven to cover the electrode blocks The area above 1111, 1113, 1114, 1115. In contrast, the second fluid 6 will be squeezed away to cover the area where the first fluid 5 is removed. In this way, after the first fluid covers part of the electrode blocks, since the first fluid is an opaque electrolyte, the covered electrode blocks cannot transmit light; while other parts that are not covered by the first fluid can transmit light.
  • the electrode block covered by the first fluid forms an aperture pattern when light is transmitted.
  • the first fluid 5 wrapped by the second fluid 6 tends to shrink the surface area, so that the surface energy is minimized.
  • the second fluid 6 and the first fluid 5 form The contact angle ⁇ (refer to Figure 3) is the largest, showing non-wetting.
  • the three-phase contact surface tension is automatically balanced (the contact surface of the first fluid 5 and the second fluid 6, the contact surface of the first fluid 5 and the second hydrophobic layer 8, the second fluid 6 and the second fluid The contact surface of the hydrophobic layer 8), at this time, the first fluid 5 has a spherical crown.
  • the contact surface of the first fluid 5 and the second hydrophobic layer 8 will accumulate a large amount of charges, and the repulsion between the same-sex charges makes the surface tension of the first fluid 5 and the second hydrophobic layer 8 weaker , That is, the addition of the external electric field force breaks the originally balanced three-phase surface tension, the first fluid 5 tends to spread, and the contact angle ⁇ formed by the first fluid 5 and the second fluid 6 (refer to Figure 6) becomes smaller. Appears as wet. However, when the voltage difference between the common electrode 10 and the electrode block is cancelled, the first fluid 5 automatically restores the initial spherical crown due to its characteristic that it tends to shrink the surface area and minimize the surface energy.
  • the driving electrodes and the common electrode form an electric field.
  • the first fluid is an electrolyte, so it will flow to the driving electrodes that apply the voltage.
  • It is an opaque electrolyte, so it can shield the area corresponding to the transparent drive electrode, but the area corresponding to the drive electrode without voltage applied still covers the second fluid, so the area corresponding to the drive electrode that is not blocked by the first fluid can be penetrated
  • the light thus forms an aperture pattern.
  • the light-transmissive position and the opaque position of the driving electrode array can be determined, and the corresponding driving electrode of the driving electrode array can be applied according to the opaque position.
  • the voltage causes the first fluid to block the driving electrode to which the voltage is applied, and the area corresponding to the driving electrode to which the voltage is not applied is not blocked by the first fluid to transmit light, so that the required aperture pattern can be formed. Therefore, when the required aperture patterns are different, the light-transmissive position and the non-transparent position determined on the drive electrode array are also different. Therefore, for different aperture patterns, it is necessary to apply voltage in the drive electrode array.
  • the driving electrodes are also different, so as to realize the editability of the aperture. In addition, since no mechanical parts are required, the stability of the aperture is higher, and the transmittance of the aperture only depends on the transmittance and reflection of each functional layer material, and the second fluid The transmittance can ensure a good transmittance.
  • the outer edges of the electrode blocks of the driving electrodes of the driving electrode array 11 may be standard straight edges. As shown in FIG. 2, the electrode blocks 1111, 1112, 1113, 1114, 1115, 1121, 1131, 1141, 1151, 1152, The outer ring shape of 1153, 1154, 1155, 1125, 1135, 1145 can be a standard straight edge.
  • the insulating dielectric layer 10 and the second hydrophobic layer 8 are usually made by chemical vapor deposition CVD or coating process, The inner insulating dielectric layer in contact with the electrode blocks of the driving electrode array 11 is also a standard straight side. Similarly, the second hydrophobic layer in contact with the insulating dielectric layer inward is also a standard straight side.
  • the first fluid can quickly respond to the electric field generated by the electrode block and the common electrode, and flow to the top of the electrode block, thereby ensuring the aperture Reliability of editing; and when the voltage applied to the electrode block and the common electrode stops, the first fluid can quickly return to its original position to ensure the repeatability of aperture editing.
  • the outer edge of each electrode block of the driving electrode at the edge of the driving electrode array 11 has a structure in which recesses and protrusions are arranged overlappingly.
  • the outer ring shape can be a structure in which recesses and protrusions overlap, similar
  • the insulating dielectric layer inwardly in contact with the electrode blocks of the drive electrode array 11 also has a structure in which recesses and protrusions are arranged overlappingly.
  • the second hydrophobic layer that is inwardly in contact with the insulating dielectric layer is also recessed. A structure that overlaps the protrusions.
  • This "hand-shaped" concave and convex overlapping arrangement makes the driving electrode and the first fluid have a certain cross, which helps the first fluid to flow quickly to the corresponding electrode block under the action of the electric field, and lose When the electric field is applied, it flows back to the original position smoothly.
  • the structure in which the depressions and protrusions are arranged overlappingly in the illustration is illustrated by taking arc-shaped depressions or protrusions as an example.
  • the structure of such depressions or protrusions can also be zigzag, square, etc.
  • the electrode block in order to improve the reliability and repeatability of aperture editing, to prevent the first fluid from entering the first area when no electric field voltage is applied to the electrode block, as shown in FIG. It is arranged on the second substrate 4 between the common electrode 10 and the second hydrophobic layer 8, and the microstructure column 14 has hydrophilicity to the second fluid 8. In this way, along the area between the common electrode 10 and the second hydrophobic layer 8, a micro-column structure that is hydrophilic to the second fluid is provided. When the electrode block is not applied with an electric field voltage, the micro-structured column can adsorb the second fluid. A barrier is formed to block the first fluid from entering the first area, ensuring the reliability and repeatability of aperture editing.
  • the microstructure column has the characteristic of hydrophobicity to the first fluid.
  • the aforementioned hydrophilicity and hydrophobicity refer to the wettability of the second fluid or the first fluid to the microstructure column.
  • hydrophilicity means that the wettability of the microstructured column by the second fluid is expressed as wetting
  • hydrophobicity means that the wettability of the first fluid to the microstructured column is expressed as non-wetting.
  • the wettability of the fluid to the solid structure can be mainly measured by the contact angle between the fluid and the solid.
  • the contact surface between the fluid and the solid is an ideally smooth surface, and usually the contact angle (also called intrinsic When the contact angle is set to [0,90], the fluid appears to be wet to the solid, and when the contact angle is set to (90,180], the fluid appears to be non-wetting to the solid.
  • the contact surface between the solid and the fluid can be set to a rough state.
  • the micro-structure pillars provided in the embodiments of the present application are added. In the Wenzel model, the fluid can enter the gap between the micro-structure pillars to increase The contact area between the large fluid and the solid.
  • the contact angle increases with the roughness of the contact surface under the Wenzel model (for example, increasing the microstructure column Height, reduce the distance between the micro-structure pillars) and decrease, it is manifested as the hydrophilicity of the fluid to the solid increases;
  • the contact angle is (90,180)
  • the contact angle under the Wenzel model increases with the roughness of the contact surface (For example, increase the height of the micro-structure column and reduce the spacing of the micro-structure column), which means that the hydrophobicity of the fluid to the solid increases;
  • Bubbles are formed in the gaps between adjacent microstructure columns to reduce the contact area between the fluid and the solid, which is manifested by improving the hydrophobicity of the solid to the fluid.
  • the contact angle of the second fluid with the microstructure column can be 120°-160 °, it should be noted that the contact angle between the fluid and the solid under the rough contact surface is the apparent contact angle, and the apparent contact angle is the contact angle measured after considering the actual solid surface roughness.
  • the height of the microstructure column provided by the embodiment of the present application is 10-250um, and the spacing is 10-250um.
  • the gap h between the electrode blocks is filled with an insulating coating, and the difference between the refractive index of the insulating coating and the refractive index of the electrode blocks is smaller than a preset value.
  • the preset value has a value range of 0.1 ⁇ (1 ⁇ 20%).
  • the aperture further includes: a light-shielding layer 15 arranged in the second area aa', as shown in FIG. 10, the light-shielding layer 15 is provided on the side of the first substrate 1 away from the second substrate, or, as shown in FIG. 11, the light shielding layer 15 is provided on the side of the second substrate 4 away from the first substrate 1.
  • the arrangement of the drive electrode array 11 provided by the embodiment of the present application can be a square arrangement, that is, the shape of the electrode block of each drive electrode in the drive electrode array 11 can be a square.
  • Figure 13, Figure 15, Figure 17, Figure 19, Figure 21, Figure 23, Figure 25 provides an aperture pattern
  • Figure 12 provides the aperture pattern shown in Figure 13 corresponding to the 16 ⁇ 16 pixel arrangement
  • FIG. 14 provides the voltage distribution of each electrode block in the driving electrode array 11 corresponding to the 16 ⁇ 16 pixel arrangement of the aperture pattern shown in FIG. 15, and
  • FIG. 16 provides the 16 ⁇ 16 corresponding to the aperture pattern shown in FIG.
  • FIG. 18 provides the voltage of each electrode block in the driving electrode array 11 of the driving electrode array 11 of the 16 ⁇ 16 pixel arrangement corresponding to the aperture pattern shown in FIG. 19
  • Fig. 20 provides the voltage distribution of each electrode block in the driving electrode array 11 corresponding to the aperture pattern shown in Fig. 21 with the 16 ⁇ 16 pixel arrangement
  • Fig. 22 provides the 16 ⁇ 16 voltage distribution corresponding to the aperture pattern shown in Fig. 23
  • Fig. 24 provides the electrode blocks in the driving electrode array 11 with a pixel arrangement of 16 ⁇ 18 corresponding to the aperture pattern shown in Fig. 25 The voltage distribution.
  • the electrode blocks in Figure 12, Figure 14, Figure 15, Figure 16, Figure 18, Figure 20, Figure 22 are square; the electrode block in Figure 24 is a regular hexagon; where "1" indicates that there is an electric field voltage on the corresponding electrode block , "0" means that there is no electric field voltage on the corresponding electrode block.
  • Figure 13, Figure 15, Figure 17 show the size adjustment of the circular aperture pattern;
  • Figure 19, Figure 21, Figure 23, Figure 25 show the irregular aperture pattern;
  • Figure 19, Figure 21 show the rotation of the irregular aperture pattern;
  • Figure 23 shows an off-center shaped aperture pattern.
  • an embodiment of the present application provides an aperture control method, including: applying an electric field voltage to a part of the driving electrode in the driving electrode array, moving the first fluid to the area corresponding to the part of the driving electrode, and covering the part of the driving electrode.
  • the area corresponding to the electrode; the area corresponding to the other driving electrodes except part of the driving electrode in the driving electrode array forms an aperture pattern.
  • part of the above-mentioned driving electrodes may be determined according to the aperture pattern.
  • the aperture is mainly used to control the light entering the lens through the aperture. Therefore, in the aperture pattern shown in Figure 13, the white area is a transparent area, that is, light can pass through. This area enters the lens, so the white area is the aperture pattern; the black area represents the opaque area, that is, the light is absorbed or reflected when the area is irradiated. Then, when the aperture pattern shown in FIG. 13 is formed by the aperture provided by the embodiment of the present application, the voltage distribution of each electrode block in the driving electrode array 11 shown in FIG.
  • the voltage distribution on the driving electrode can be reconfigured according to the adjusted aperture pattern size.
  • the circular aperture pattern of FIG. 13 is gradually reduced in diameter to form the corresponding ones in FIG. 15 and FIG. Circular aperture pattern.
  • the control when forming the special-shaped aperture pattern shown in Fig. 19, Fig. 21, Fig. 23, and Fig. 25 is similar in principle to that of forming the aperture pattern shown in Fig. 13.
  • the isolation area is an opaque area surrounded by the aperture pattern; since the opaque area needs to be blocked by the first fluid, when there is an isolation area inside the aperture pattern, the first fluid needs to be separated to form the aperture pattern.
  • Different control methods need to be executed according to whether the first fluid needs to be separated. Specifically, in the aperture patterns shown in FIG. 13, FIG. 15, FIG. 17, FIG. 23, and FIG.
  • Example 1 For an aperture pattern without an isolation region in the aperture pattern, the above-mentioned part of the drive electrodes that need to be applied with electric field voltage include drive electrodes at the periphery of the region corresponding to the aperture pattern in the drive electrode array. At this time, the aperture pattern can be formed without the separation of the first fluid, and the electric field voltage can be applied sequentially from the periphery to the center of the driving electrode array for some of the driving electrodes.
  • the aperture pattern shown in FIG. 13 corresponds to the 16 ⁇ 16 pixel arrangement driving electrode array 11 as shown in FIG. 12.
  • the description is as follows with reference to Figures 26-28, where the diagonally lined electrode blocks (pixels) indicate that voltage is applied to the corresponding electrode block to form the potential difference between the electrode block and the common electrode, and "1" indicates that the voltage on the corresponding electrode block remains valid. , "0" means that no voltage is applied to the corresponding electrode block.
  • the contact surface between the first fluid and the second hydrophobic layer in the area where the outermost electrode block is located will accumulate a large amount of electric charge.
  • the surface tension is weakened, that is, the addition of the external electric field force breaks the originally balanced three-phase surface tension.
  • the first fluid tends to spread to the area corresponding to the outermost electrode block.
  • the contact angle between the first fluid and the second fluid changes (decreases), the three-phase contact surface tension is automatically balanced, and the first fluid is not flowing.
  • an electric field voltage is applied to the sub-peripheral electrode block (the M/2-th circle electrode block), and the electric field voltage on the outermost periphery electrode block (the M/2-th circle electrode block) is maintained (as shown in Figure 27).
  • the electric field voltage is applied to the sub-peripheral electrode block
  • the contact surface of the first fluid and the second hydrophobic layer in the area where the sub-peripheral electrode block is located will accumulate a large amount of electric charge.
  • the surface tension is weakened, that is, the addition of external electric field force breaks the originally balanced three-phase surface tension.
  • the first fluid tends to spread to the area corresponding to the sub-peripheral electrode block.
  • the contact surface of the first fluid and the second hydrophobic layer in the area where the electrode block of the M/2-2 circle is located will accumulate a large amount of charge, and the repulsion between the same-sex charges
  • the surface tension of the first fluid and the second hydrophobic layer is weakened, that is, the addition of the external electric field force breaks the originally balanced three-phase surface tension, and the first fluid tends to spread and flow to the area corresponding to the M/2-2th circle electrode block .
  • the contact angle between the first fluid and the second fluid changes (reduced again), the three-phase contact surface tension is automatically balanced, and the first fluid Not flowing.
  • the electric field voltage is maintained on the outermost peripheral electrode (M/2-th circle electrode block), the sub-peripheral electrode (M/2-th circle electrode block), and M/2-2th circle electrode block.
  • Example 2 For the isolation area in the aperture pattern, the aperture pattern can be formed only by the separation of the first fluid.
  • Part of the driving electrodes includes driving electrodes at the periphery of the area corresponding to the aperture pattern in the driving electrode array, and driving electrodes corresponding to the isolation area. Then, the first fluid can be moved to the corresponding electrode block in the isolation area and isolated. Then, the driving electrodes at the periphery of the area corresponding to the aperture pattern are sequentially applied with electric field voltages from the periphery to the center of the driving electrode array according to the method provided in Example 1.
  • the isolation area is the area that can be formed when the first fluid moves from the second area at the edge of the aperture to the first area at the center of the aperture.
  • the aperture pattern is a continuous area when the first fluid moves from the second area at the edge of the aperture to the first area at the center of the aperture, that is, an area that can be formed only by continuously moving the first fluid.
  • the method for controlling the aperture includes: determining a channel in the drive electrode array according to the isolation area, wherein the channel is connected to the isolation area and the first fluid; applying electric field voltages to the drive electrodes on the channel from the periphery of the drive electrode array to the center in sequence, Electric field voltages are applied to the driving electrodes corresponding to the isolation region from the close to the channel away from the channel; the driving electrodes at the periphery of the region corresponding to the aperture pattern in the driving electrode array are sequentially applied with electric field voltages from the periphery to the center of the driving electrode array according to the aperture pattern.
  • the channel can be determined according to the distance between the first fluid and the isolation region, or the channel can be determined according to the distance between the edge of the aperture pattern away from the isolation region and the isolation region.
  • the above-mentioned channel may be the channel where the first fluid is closest to the isolation area, or the channel where the outer edge of the aperture pattern is closest to the isolation area.
  • the aperture pattern shown in FIG. 19 corresponds to the 16 ⁇ 16 pixel arrangement driving electrode array 11 as shown in FIG. 18.
  • the description is as follows in conjunction with Figures 29-37, where the diagonally-lined electrode blocks (pixels) indicate that the electric field voltage is applied to the corresponding electrode blocks to form the potential difference between the electrode blocks and the common electrode, and the gridded electrode blocks indicate the corresponding electrode blocks
  • the upper cancel electric field voltage removes the potential difference between the voltage block and the common electrode.
  • "1" means that the voltage on the corresponding electrode block remains valid, and "0" means that no voltage is applied to the corresponding electrode block.
  • a channel is determined in the driving electrode array according to the isolation area.
  • the specific method is, for example, along a certain direction, this direction can be a horizontal direction or a vertical direction or a direction at a certain angle to the horizontal or vertical direction, and a channel is determined by connecting the first fluid and the isolation area.
  • Figure 29 The middle channel 291 includes two columns of electrode blocks. Of course, one column of electrode blocks or more columns of electrode blocks; or one row of electrode blocks or more rows of electrode blocks can also be used.
  • the channel may be a channel in the direction in which the first fluid is closest to the isolation area 293 (channel two 292 in FIG.
  • an electric field voltage is applied to the electrode block on the channel in this direction to connect the first fluid with the electrode block in the isolation area, as shown in Figure 29.
  • the electric field voltage is successively applied from the outer ring to the inner ring. Maintain the electric field voltage on the electrode block on the above-mentioned channel. Specifically, as shown in FIG.
  • the contact surface of the first fluid and the second hydrophobic layer in the area where the outermost electrode block (K1, K2) in channel one 291 is located will accumulate a large amount
  • the charge and the repulsion between the same-same charges weaken the surface tension of the first fluid and the second hydrophobic layer, that is, the addition of the external electric field force breaks the originally balanced three-phase surface tension, and the first fluid tends to spread and flow into the channel one 291
  • the area corresponding to the outermost electrode block (K1, K2) when the first fluid covers the area corresponding to the outermost electrode block (K1, K2) in channel one 291, the contact angle between the first fluid and the second fluid changes (minus) Small), the three-phase contact surface tension is automatically balanced, and the first fluid is not flowing.
  • an electric field is applied to the inner circle of the electrode block (M/2-2 circle of electrode blocks k5, k6) in channel 291 Voltage.
  • the electric field voltage is applied to the M/2-2th circle electrode block in channel one 291
  • the contact surface of the first fluid and the second hydrophobic layer in the area where the M/2-2 circle electrode block in channel one 291 is located will be Accumulate a large amount of charge, and the repulsion between the same-sex charges weakens the surface tension of the first fluid and the second hydrophobic layer, that is, the addition of external electric field force breaks the originally balanced three-phase surface tension, and the first fluid tends to spread and flow toward channel one.
  • the first fluid and the closest to the channel After the electric field voltage is applied to the electrode block closest to the channel, the first fluid and the closest to the channel
  • the contact surface of the second hydrophobic layer in the area where the electrode block is located will accumulate a large amount of charge, and the repulsion between the same-same charges makes the surface tension of the first fluid and the second hydrophobic layer weaken, that is, the addition of external electric field force breaks the original balanced three-phase
  • the first fluid tends to spread to the area corresponding to the electrode block closest to the channel.
  • the three-phase contact surface tension is automatically balanced, and the first fluid is not there.
  • the first fluid in the isolation area 293 and the first fluid in the second area of the aperture respectively have the characteristics of tending to shrink the surface area, minimizing the surface energy, and thus each restore the spherical crown. Then the first fluid is disconnected at the channel one 291, and at this time, a part of the first fluid returns to the second area of the aperture, and another part of the second fluid covers the isolation area 293.
  • the process of generating an aperture pattern includes the following steps:
  • the user can draw the first aperture pattern to be loaded on the mobile phone screen.
  • the first aperture pattern is drawn through the drawing application program of the mobile phone system, or the first aperture pattern is drawn in the application program specially developed for the aperture provided in the embodiment of the present application.
  • the pixel resolution of the aperture pattern is equal to the pixel resolution of the mobile phone screen, such as 1024 ⁇ 488, as shown in Figure 38.
  • the drawn first aperture image is filled with the second aperture pattern equal in proportion to the horizontal electrode blocks (pixels) and vertical electrode blocks (pixels) of the driving electrode array through the above application.
  • the horizontal electrode blocks of the driving electrode array are 16
  • the vertical electrode block is 16, then the application will fill the first aperture pattern drawn by the mobile phone into the second aperture pattern of 1024 ⁇ 1024, as shown in Figure 39.
  • the drawn first aperture image will not be deformed. Only the center pixel of the image of the first aperture pattern is used as the center of symmetry to extend the longitudinal pixels to both sides, for example, 268 pixels are extended to both sides.
  • the newly added pixels are uniformly set to black.
  • the image filling method can be expanded by copying the outer boundary value, or expanding the image as a period of a two-dimensional periodic function, or filling before the first pixel or after the last pixel in each dimension, or both.
  • the pixels of the second aperture pattern can be adjusted to 16 ⁇ 16, as shown in FIG. 40, the image size can be adjusted by nearest neighbor interpolation, bilinear interpolation, or bicubic interpolation.
  • the image of the third aperture pattern is a grayscale image
  • the third aperture pattern needs to be binarized first.
  • the binarization method can be to set a grayscale threshold, and set the pixels higher than this grayscale threshold to "1", represents the voltage information: apply an electric field voltage to the corresponding electrode block of the aperture pattern and maintain it effective. Set the pixels below this grayscale threshold to "0", which represents the voltage information: no voltage is applied to the electrode block corresponding to the aperture pattern, as shown in Figure 41.
  • the magnitude of the electric field voltage loaded on the electrode block corresponding to the aperture pattern is determined by the device circuit, such as 5-40V.
  • Figures 38-41 above are a brief description of the process of generating a user-defined aperture pattern.
  • the pattern may be, for example, an aperture pattern such as FIG. 13, FIG. 15, FIG. 17, FIG. 19, FIG. 21, FIG. 23, and FIG. 25.
  • a built-in aperture pattern can be displayed on the display of the electronic device for the user to choose. After the user selects an aperture pattern, the aperture can be controlled to generate a corresponding aperture pattern according to the above example.
  • the electronic device can also support simple operations of the user on the selected aperture pattern, such as zooming operation, rotating operation, superimposing operation, dragging operation, etc.
  • the user can use the aperture pattern shown in FIG. 13 to generate the aperture pattern shown in FIG. 17 through a zoom operation; or, after selecting the aperture pattern shown in FIG. 19 Then, the aperture pattern is rotated by a certain angle through the rotation operation; or the user selects two or more aperture patterns at the same time and then superimposes the aperture pattern. 17 and Figure 23 are superimposed, so that the final formed aperture pattern contains both the aperture pattern in Fig. 17 and Fig. 23; or, after the user selects the aperture pattern shown in Fig. 17, drag the aperture pattern in the aperture by operating the electronic device For example, drag the aperture pattern from the upper right corner shown in Fig. 17 to the lower left corner or the center.
  • An embodiment of the present application also provides a lens including at least one lens and the above-mentioned aperture.
  • a lens including at least one lens and the above-mentioned aperture.
  • the lens group 17 includes a first lens 171, a second lens 172, and a third lens 173.
  • FIG. 42 is only an example.
  • the lens group may include more or fewer lenses.
  • the third lens 173 may also be replaced with a combination of multiple lenses.
  • the aperture 01 is provided between the first lens 171 and the second lens 172 close to the protective glass 16 in the lens group 17.
  • any one of the lenses in the lens group 17 is used as the first substrate or the second substrate of the aperture 01.
  • multiplexing the lens of the lens as the first substrate or the second substrate of the aperture can save cost and increase the transmittance of the lens.
  • the difference from FIG. 42 is that the first lens 171 is used as the first substrate of the aperture 01, and the second lens 172 is used as the second substrate of the aperture 01.
  • the lens needs to have at least one plane; for example, in FIG. 43, the two opposite surfaces of the first lens 171 and the second lens 172 are both flat.
  • the first lens 171 faces the second lens 172.
  • the surface of the second lens 172 is a convex surface, and the surface of the second lens 172 facing the first lens 171 is a flat surface, and only the second lens 172 is reused as the second substrate of the aperture.
  • the above description is mainly based on the example that the aperture is set between the first lens 171 and the second lens 172, and it is also possible to set it between other adjacent lenses.
  • the aperture can also be set on the light-incident side of the front end of the lens to protect the lens group.
  • the lens includes aperture 01, lens group 17, and sensor 18 in the direction of the optical axis.
  • the methods and/or steps in the flow of the method for controlling the aperture can be implemented by the control device of the aperture, or can be implemented by the component (such as a chip or circuit) that can be used for the control device of the aperture. .
  • the device for controlling the aperture includes hardware structures and/or software modules corresponding to the respective functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of this application.
  • the embodiments of this application may divide the function modules of the aperture control device according to the above method embodiments.
  • each function module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • Fig. 46 shows a schematic structural diagram of an iris control device.
  • the iris control device is used to control the iris provided in the above embodiment, and includes: a control module 461 for applying electric field voltage to part of the driving electrodes in the driving electrode array, and moving the first fluid to the corresponding part of the driving electrodes And cover the area corresponding to the part of the driving electrode; the area corresponding to the driving electrode except the part of the driving electrode in the driving electrode array forms an aperture pattern.
  • the part of the drive electrode includes the periphery of the area corresponding to the aperture pattern in the drive electrode array
  • the drive electrodes; the control module 461 is specifically used to sequentially apply electric field voltages to the part of the drive electrodes from the periphery to the center of the drive electrode array.
  • the isolation area is an opaque area surrounded by the aperture pattern;
  • the part of the drive electrode includes the outer periphery of the area corresponding to the aperture pattern in the drive electrode array Drive electrodes, and drive electrodes corresponding to the isolation region;
  • the control module 461 is specifically configured to determine a channel in the drive electrode array according to the isolation region, wherein the channel connects the isolation region and the The first fluid; sequentially apply electric field voltages to the drive electrodes on the channel from the periphery to the center of the drive electrode array; apply electric field voltages to the drive electrodes corresponding to the isolation region from close to the channel to away from the channel Cancel the electric field voltage of the drive electrodes on the channel; apply electric field voltages to the drive electrodes at the periphery of the area corresponding to the aperture pattern in the drive electrode array from the periphery of the drive electrode array to the center.
  • a determining module 462 configured to determine the channel according to the distance between the first fluid and the isolation area, or according to the distance between the edge of the aperture pattern away from the isolation area and the isolation area Determine the channel.
  • an embodiment of the present application provides a schematic diagram of the hardware structure of an electronic device.
  • the electronic device includes the above-mentioned aperture 1105 or lens 1106, and the electronic device further includes: at least one processor (in FIG. 47, one processor 1101 is used as an example for description).
  • the transmission interface 1103 is taken as an example for description).
  • the electronic device may further include at least one memory (in FIG. 47, one memory 1102 is exemplarily described as an example).
  • the electronic device may further include at least one transmission interface 1103 (for example, it may be an interface circuit).
  • the aperture 1105, the lens 1106, the processor 1101, the memory 1102, and the transmission interface 1103 are connected through a communication line.
  • the communication line may include a path to transmit information between the above-mentioned components.
  • the processor 1101 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits used to control the execution of the program of this application Circuit.
  • the processor 1101 may also include multiple CPUs, and the processor 1101 may be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the processor 1101 may be the processor [110] in FIG. 1a.
  • the memory 1102 may be a device with a storage function. For example, it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of computer-executable instructions or data structures and can be used by Any other medium accessed by the computer, but not limited to this.
  • the memory 1102 may exist independently, and is connected to the processor 1101 through a communication line.
  • the memory 1102 may also be integrated with the processor 1101.
  • the memory 1102 is used to store computer-executable instructions for executing the solution of the present application, and the processor 1101 controls the execution.
  • the processor 1101 is configured to execute computer-executable instructions stored in the memory 1102, so as to implement the aperture control method described in the embodiment of the present application.
  • the processor 1101 may also perform the functions related to the processing in the controller of the aperture provided in the foregoing embodiment of the present application, and the transmission interface 1103 is responsible for connecting with other devices and performing signals. Transmission, such as obtaining an aperture pattern from another device, etc., which is not specifically limited in the embodiment of the present application.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program code or computer program code, which is not specifically limited in the embodiments of the present application.
  • the processor 1101 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 47.
  • the electronic device may include multiple processors, such as the processor 1101 and the processor 1104 in FIG. 47.
  • processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the processor 1101 in the electronic device may invoke the computer-executable instructions stored in the memory 1102 to make the electronic device execute the method in the foregoing method embodiment.
  • the function/implementation process of the control module 461 and the determination module 462 in FIG. 46 may be implemented by the processor 1101 in the electronic device shown in FIG. 47 calling the computer execution instructions stored in the memory 1102. Since the electronic device provided in this embodiment can execute the above-mentioned method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • an embodiment of the present application further provides an aperture control device (for example, the aperture control device may be a chip or a chip system), and the aperture control device includes a processor for implementing any of the foregoing methods.
  • the device for controlling the aperture further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program instructions stored in the memory to instruct the control device of the aperture to execute the method in any of the foregoing method embodiments.
  • the memory may not be in the iris control device.
  • the aperture control device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or include one or more data storage devices such as servers, data centers, etc. that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the computer may include the aforementioned device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Exposure Control For Cameras (AREA)

Abstract

本申请的实施例提供一种光圈及其控制方法、镜头及电子设备。涉及照相技术领域,提供一种新型可编程光圈,具有更高的稳定性及良好的透过率。光圈包括:第一基板和第二基板之间包括第一区域和第二区域,其中第二基板上的驱动电极阵列位于第一区域,第二基板上的公共电极位于第二区域,公共电极被位于第二区域的第一流体覆盖;驱动电极阵列包括阵列排列的透明的驱动电极;光圈还包括第二流体;第二流体包裹第一流体以及驱动电极阵列,其中,第一流体为不透明的电解液,第二流体为透明液体,第一流体与第二流体不相溶。

Description

一种光圈及其控制方法、镜头及电子设备
本申请要求于2020年06月09日提交国家知识产权局、申请号为202010518630.3、申请名称为“一种光圈及其控制方法、镜头及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及照相技术领域,尤其涉及一种光圈及其控制方法、镜头及电子设备。
背景技术
自从照相机被发明以来,光圈就是照相机的一件重要部件。而且随着照相技术的发展,拍照已经不再局限于少部分专业群体中,普通消费者也可以拍照。消费者对于拍照的理解已经从最开始的需求拍,技术拍,升级到现在的拍创意,拍所想。有研究表明,光圈的最佳图案(大小,形状,偏移,旋转等)随用户应用场景不同,拍摄条件以及拍摄内容的不同存在着很大不同。因此,依据拍摄过程中的实时变化,用户自行定义光圈图案来实现用户自主拍摄目的逐渐显现,即给拍摄设备配置可编程光圈。目前,主流的光圈仅能实现光圈大小的调整;可编程光圈技术还很不成熟,光圈的稳定性以及透过率受限。
发明内容
本申请实施例提供一种光圈及其控制方法、镜头及电子设备,提供一种新型可编程光圈,具有更高的稳定性及良好的透过率。
第一方面,本申请的实施例提供一种光圈。该光圈包括相对设置的第一基板和第二基板;其中第一基板和第二基板之间的区域包括第一区域和第二区域,例如:第一区域可以为靠近光圈的光轴的区域,第二区域为包围第一区域的区域;其中第二基板上的驱动电极阵列位于第一区域,第二基板上的公共电极位于第二区域,公共电极被位于第二区域的第一流体覆盖;驱动电极阵列包括阵列排列的透明的驱动电极;光圈还包括第二流体,其中第二流体包裹第一流体以及所述驱动电极阵列,其中,第一流体为不透明的电解液,第二流体为透明液体,第一流体与第二流体不相溶。
这样,当对驱动电极阵列中的驱动电极施加电压时,驱动电极与公共电极形成电场,在电场的作用下由于第一流体为电解液因此会流向施加电压的驱动电极,并且由于第一流体为不透明的电解液,因此能够将透明的驱动电极对应的区域遮挡,而未施加电压的驱动电极对应的区域仍然覆盖第二流体,因此未被第一流体遮挡的驱动电极对应的区域可以透过光线从而形成光圈图案。所以,当确定需要形成的光圈图案时,根据光圈图案的形状,可以确定驱动电极阵列透光的位置以及不透光的位置,并根据不透光的位置在驱动电极阵列相应的驱动电极上施加电压,使得第一流体遮挡施加电压的驱动电极,而未施加电压的驱动电极对应的区域未被第一流体遮挡可以透过光线,便可以形成需要的光圈图案的图形。因此,当需要的光圈图案各不相同时,在驱动电极阵列上确定的透光的位置与不透光的位置也各不相同,从而对于不同的光圈图案,在驱动电极阵列中需要施加电压的驱动电极也各不同,从而实现光圈的可编辑,另外由于无需机械部件,光圈的稳定性更高,并且光圈的透过率仅依赖于各功能层材料的 透过率以及反射,以及第二流体的透过率,可以保证良好的透过率。
在一种可能的实现方式中,为了保证第一流体和第二流体可以在第一基板与第二基板之间良好的流动。光圈还包括:第一疏水层和第二疏水层,其中,第一疏水层设置于第一基板与第二流体之间;第二疏水层设置于第二流体与驱动电极阵列之间。第二疏水层用于将驱动电极阵列封闭在第二疏水层与第二基板之间。并且第一疏水层和第二疏水层对第一流体以及第二流体具有疏水性,从而保证第一流体和第二流体可以在第一基板与第二基板之间良好的流动。
在一种可能的实现方式中,由于第一流体为电解液,其具有导电性,为避免第一流体对对驱动电极阵列造成影响,光圈还包括:绝缘介电层,绝缘介电层设置于第二疏水层与驱动电极阵列之间。
在一种可能的实现方式中,光圈还包括:侧壁框架,侧壁框架设置于第一疏水层与第二基板之间。其中,侧壁框架将第一流体和第二流体密封于第一疏水层和第二基板之间的空间。侧壁框架主要起支撑作用,同时也对第一流体和第二流体起密封作用。
在一种可能的实现方式中,驱动电极,包括:电极块以及与开关晶体管,驱动电极阵列还包括纵横交叉排列的栅极引线和漏极引线,其中,电极块与开关晶体管的源极连接,开关晶体管的栅极连接一条所述栅极引线,开关晶体管的漏极连接一条漏极引线。
在一种可能的实现方式中,驱动电极阵列边缘的驱动电极的各电极块朝向外侧的边缘具有凹陷与凸起交叠排列的结构。相似的,向内与驱动电极阵列的电极块相接触的绝缘介电层也呈凹陷与凸起交叠排列的结构,同理,向内与绝缘介电层接触的第二疏水层也呈凹陷与凸起交叠排列的结构。这种类似于“手形”的凹陷与凸起交叠排列的结构,使得驱动电极与第一流体存在一定交叉,有助于第一流体在电场作用下迅速流动至对应的电极块,并在失去电场时,顺利流回原来的位置。提升了光圈编辑的可靠性与重复性。当然图例中的凹陷与凸起交叠排列的结构是以弧形的凹陷或凸起为例进行说明,当然这种凹陷或凸起的结构也可以为锯齿形、方形等。
在一种可能的实现方式中,电极块之间的间隙填充有绝缘涂层,绝缘涂层的折射率与电极块的折射率的差值小于预设值。这样可以防止微小的周期性间隙对镜头的最终成像造成衍射光晕现象。当然,绝缘涂层的折射率与电极块的折射率相等时可以完全避免周期性间隙对镜头的最终成像造成衍射光晕现象。
在一种可能的实现方式中,还包括:微型结构柱,其中微型结构柱设置于第二基板上位于公共电极和第二疏水层之间,微型结构柱对第二流体具有亲水性。由于设置了对第二流体具有亲水性的微型柱结构,在电极块未加电场电压时,微型柱结构可以吸附第二流体形成一道屏障阻挡第一流体进入第一区域,保证了光圈编辑的可靠性和重复性。为了进一步提高上述效果,微型结构柱还对第一流体具有疏水性的特性。其中,上述的亲水性以及疏水性是指第二流体或第一流体对微型结构柱的湿润性。其中,亲水性指第二流体对微型结构柱的湿润性表现为湿润,疏水性指第一流体对微型结构柱的湿润性表现为不湿润。
在一种可能的实现方式中,还包括:遮光层,遮光层设置在第二区域,遮光层设置在第一基板上远离第二基板的一侧;或者,遮光层设置在第二基板上远离第一基板 的一侧。这样,可以防止光圈边缘的第二区域的第一流体不能完全遮挡环境杂光。
在一种可能的实现方式中,第二流体为油液。
在一种可能的实现方式中,驱动电极阵列,包括:按照M×N阵列排列的驱动电极,其中M为驱动电极的行数,N为驱动电极的列数,M以及N为正整数。
第二方面,提供一种如上述第一方面提供的光圈的控制方法。该光圈的控制方法包括:对驱动电极阵列中的部分驱动电极施加电场电压,将第一流体移动至部分驱动电极对应的区域,并覆盖部分驱动电极对应的区域;驱动电极阵列中除部分驱动电极之外的其他驱动电极对应的区域形成光圈图案。
在一种可能的实现方式中,光圈图案中不存在隔离区域,其中所述隔离区域为所述光圈图案包围的不透明的区域;所述部分驱动电极包括所述驱动电极阵列中所述光圈图案对应的区域外围的驱动电极;所述对所述驱动电极阵列中的部分驱动电极施加电场电压,包括:对所述部分驱动电极自所述驱动电极阵列的外围向中心依次施加电场电压。
在一种可能的实现方式中,所述光圈图案中存在隔离区域,其中所述隔离区域为所述光圈图案包围的不透明的区域;所述部分驱动电极包括所述驱动电极阵列中所述光圈图案对应的区域外围的驱动电极,以及所述隔离区域对应的驱动电极;所述对所述驱动电极阵列中的部分驱动电极施加电场电压,包括:根据所述隔离区域在所述驱动电极阵列中确定一条通道,其中所述通道连接所述隔离区域以及所述第一流体;对所述通道上的驱动电极自所述驱动电极阵列的外围向中心依次施加电场电压;对所述隔离区域对应的驱动电极自靠近所述通道到远离所述通道依次施加电场电压;将所述通道上的驱动电极的电场电压撤销;对所述驱动电极阵列中所述光圈图案对应的区域外围的驱动电极自所述驱动电极阵列的外围向中心依次施加电场电压。
在一种可能的实现方式中,根据所述第一流体与所述隔离区域的距离确定所述通道,或者根据所述光圈图案远离所述隔离区域的边缘与所述隔离区域的距离确定所述通道。
第三方面,提供一种镜头,包含至少一个透镜上述第一方面提供的光圈。
在一种可能的实现方式中,在所述镜头的光轴上,按照光线在所述光轴上的入射方向依次包括保护玻璃、透镜组和传感器,所述光圈设置在所述透镜组的一端或者所述镜头组中任意相邻的两个透镜之间。
在一种可能的实现方式中,所述镜头组中的任一透镜用作所述光圈的第一基板或第二基板。
在一种可能的实现方式中,所述镜头在光轴方向依次包括所述光圈、透镜组和传感器。
第四方面,提供了一种光圈的控制装置用于实现上述各种方法。该光圈的控制装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第五方面,提供一种电子设备,包含如第一方面所述的光圈或第四方面所述的镜头,以及处理器和存储器,该存储器,用于保存必要的程序指令和数据;处理器被配 置为调用存储在存储器中的程序指令以执行如上述任一方面的方法。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有程序指令,当该程序指令在计算机或处理器上运行时,使得计算机或处理器可以执行上述任一方面的方法。
第七方面,提供了一种包含指令的计算机程序产品,当该指令在计算机或处理器上运行时,使得计算机或处理器可以执行上述任一方面的方法。
其中,第二方面至第七方面及任一种设计方式所带来的技术效果可参见上述第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1a为本申请的实施例提供的一种电子设备的结构示意图;
图1b为本申请的实施例提供的一种电子设备的软件结构框图;
图1c为本申请的另一实施例提供的一种电子设备的结构示意图;
图2为本申请的实施例提供的一种光圈的俯视结构示意图;
图3为本申请的实施例提供的一种如图2所示的光圈AA’处的截面结构示意图;
图4为本申请的实施例提供的一种驱动电极阵列的截面结构示意图;
图5为本申请的实施例提供的一种驱动电极阵列的等效电路结构示意图;
图6为本申请的实施例提供的一种光圈的状态示意图一;
图7为本申请的实施例提供的一种光圈的状态示意图二;
图8为本申请的另一实施例提供的一种光圈的俯视结构示意图;
图9为本申请的又一实施例提供的一种光圈的俯视结构示意图;
图10为本申请的另一实施例提供的一种如图2所示的光圈AA’处的截面结构示意图;
图11为本申请的又一实施例提供的一种如图2所示的光圈AA’处的截面结构示意图;
图12为本申请的实施例提供的一种光圈图案对应的16×16的像素排布方式的驱动电极阵列中各电极块的电压分布;
图13提供了图12示出的驱动电极阵列中各电极块的电压分布形成的光圈图案;
图14为本申请的另一实施例提供的一种光圈图案对应的16×16的像素排布方式的驱动电极阵列中各电极块的电压分布;
图15提供了图14示出的驱动电极阵列中各电极块的电压分布形成的光圈图案;
图16为本申请的又一实施例提供的一种光圈图案对应的16×16的像素排布方式的驱动电极阵列中各电极块的电压分布;
图17提供了图16示出的驱动电极阵列中各电极块的电压分布形成的光圈图案;
图18为本申请的再一实施例提供的一种光圈图案对应的16×16的像素排布方式的驱动电极阵列中各电极块的电压分布;
图19提供了图18示出的驱动电极阵列中各电极块的电压分布形成的光圈图案;
图20为本申请的另一实施例提供的一种光圈图案对应的16×16的像素排布方式的驱动电极阵列中各电极块的电压分布;
图21提供了图20示出的驱动电极阵列中各电极块的电压分布形成的光圈图案;
图22为本申请的又一实施例提供的一种光圈图案对应的16×16的像素排布方式的驱动电极阵列中各电极块的电压分布;
图23提供了图22示出的驱动电极阵列中各电极块的电压分布形成的光圈图案;
图24为本申请的再一实施例提供的一种光圈图案对应的16×18的像素排布方式的驱动电极阵列中各电极块的电压分布;
图25提供了图24示出的驱动电极阵列中各电极块的电压分布形成的光圈图案;
图26为本申请的实施例提供的一种光圈的控制方法中的驱动电极阵列中各电极块的电压分布示意图一;
图27为本申请的实施例提供的一种光圈的控制方法中的驱动电极阵列中各电极块的电压分布示意图二;
图28为本申请的实施例提供的一种光圈的控制方法中的驱动电极阵列中各电极块的电压分布示意图三;
图29为本申请的另一实施例提供的一种光圈的控制方法中的驱动电极阵列中各电极块的电压分布示意图一;
图30为本申请的另一实施例提供的一种光圈的控制方法中的驱动电极阵列中各电极块的电压分布示意图二;
图31为本申请的实施例提供的一种光圈的控制方法中的驱动电极阵列中各电极块的电压分布示意图三;
图32为本申请的另一实施例提供的一种光圈的控制方法中的驱动电极阵列中各电极块的电压分布示意图四;
图33为本申请的另一实施例提供的一种光圈的控制方法中的驱动电极阵列中各电极块的电压分布示意图五;
图34为本申请的实施例提供的一种光圈的控制方法中的驱动电极阵列中各电极块的电压分布示意图六;
图35为本申请的另一实施例提供的一种光圈的控制方法中的驱动电极阵列中各电极块的电压分布示意图七;
图36为本申请的另一实施例提供的一种光圈的控制方法中的驱动电极阵列中各电极块的电压分布示意图八;
图37为本申请的实施例提供的一种光圈的控制方法中的驱动电极阵列中各电极块的电压分布示意图九;
图38为本申请的实施例提供的一种光圈图案的生成流程示意图一;
图39为本申请的实施例提供的一种光圈图案的生成流程示意图二;
图40为本申请的实施例提供的一种光圈图案的生成流程示意图三;
图41为本申请的实施例提供的一种光圈图案的生成流程示意图四;
图42为本申请的实施例提供的一种镜头的结构示意图;
图43为本申请的另一实施例提供的一种镜头的结构示意图;
图44为本申请的又一实施例提供的一种镜头的结构示意图;
图45为本申请的再一实施例提供的一种镜头的结构示意图;
图46为本申请的实施例提供的一种光圈的控制装置的结构示意图;
图47为本申请的又一实施例提供的一种电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
以下,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。此外,本申请中,“上”、“下”等方位术语是相对于附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。
以下对本申请的实施例涉及到的概念进行简单说明:
光圈,用来控制光线透过镜头,进入机身内感光面光量的装置,它通常是在镜头内,也可以设置在镜头外并配合镜头使用。表达光圈大小我们是用F/数值表示。
镜头,是利用透镜的折射原理,使景物光线通过镜头,在聚焦平面上形成清晰的影像的部件。
开关晶体管,也称作开关三极管(switch transistor),在本申请的实施例中通常采用薄膜场效应晶体管(thin film transistor,TFT)。
本申请的实施例应用于具有照相、摄像等图像采集功能的电子设备,该电子设备通常配置有具有光圈的镜头,或者独立设置配合镜头使用的光圈。该电子设备可以是照相机、摄像机、手机(mobile phone)、平板电脑(pad)、个人电脑、摄像头、智能穿戴产品(例如,智能手表、智能手环)、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality AR)终端设备等。本申请实施例对上述电子设备的具体形式不做特殊限制。以下为了方便说明,是以电子设备为手机为例进行的说明。
请参考图1a,以电子设备是手机为例,图1a示出了手机的一种硬件结构。如图1a所示,手机可以包括处理器110,外部存储器接口I1,内部存储器120,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,镜头193,显示屏10,以及用户标识模块(subscriber identification module,SIM)卡接口I2等。
其中,传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本申请实施例示意的结构并不构成对手机的具体限定。在本申请 另一些实施例中,手机可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是手机的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。I2S接口可以用于音频通信。PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。MIPI接口可以被用于连接处理器110与显示屏10,镜头193等外围器件。MIPI接口包括镜头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为手机充电,也可以用于手机与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对手机的结构限定。在本申请另一些实施例中,手机也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。电源管理模块141用于连接电池142,充电管理模块140与处 理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器120,外部存储器,显示屏10,镜头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。
手机的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。手机中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在手机上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。调制解调处理器可以包括调制器和解调器。
无线通信模块160可以提供应用在手机上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),GNSS,调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
示例性的,本申请实施例中的GNSS可以包括:GPS,GLONASS,BDS,QZSS,SBAS,和/或GALILEO等。
手机通过GPU,显示屏10,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏10和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。显示屏10用于显示图像,视频等。显示屏10包括显示面板。
手机可以通过ISP,镜头193,视频编解码器,GPU,显示屏10以及应用处理器等实现拍摄功能。ISP用于处理镜头193反馈的数据。镜头193用于获取静态图像或视频。物体通过镜头生成光学图像投射到感光元件。数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。视频编解码器用于对数字视频压缩或解压缩。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。 通过NPU可以实现手机的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口I1可以用于连接外部存储卡,例如Micro SD卡,实现扩展手机的存储能力。外部存储卡通过外部存储器接口I1与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器120可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器120的指令,从而执行手机的各种功能应用以及数据处理。
手机可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.2mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。手机可以接收按键输入,产生与手机的用户设置以及功能控制有关的键信号输入。马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。SIM卡接口I2用于连接SIM卡。SIM卡可以通过插入SIM卡接口I2,或从SIM卡接口I2拔出,实现和手机的接触和分离。手机可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口I2可以支持Nano SIM卡,Micro SIM卡,SIM卡等。
手机的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。本申请实施例以分层架构的安卓(Android)系统为例,示例性说明手机的软件结构。
图1b是本申请实施例的手机的软件结构框图。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android系统分为四层,从上至下分别为:应用程序层,应用程序框架层,安卓运行时(Android runtime)和系统库,以及内核层。
应用程序层可以包括一系列应用程序包。
如图1b所示,应用程序包可以包括相机,图库,日历,通话,地图,导航,WLAN,蓝牙,音乐,视频,短信息等应用程序。
应用程序框架层为应用程序层中的应用程序提供应用编程接口(application programming interface,API)和编程框架。
应用程序框架层包括一些预先定义的函数。
如图1b所示,应用程序框架层可以包括窗口管理器,内容提供器,视图系统,电话管理器,资源管理器,通知管理器等。
窗口管理器用于管理窗口程序。窗口管理器可以获取显示屏大小,判断是否有状态栏,锁定屏幕,截取屏幕等。
内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。所述数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。
视图系统包括可视控件,例如显示文字的控件,显示图片的控件等。视图系统可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。
电话管理器用于提供手机的通信功能。例如通话状态的管理(包括接通,挂断等)。
资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件,视频文件等等。
通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在系统顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话窗口形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,电子设备振动,指示灯闪烁等。
Android Runtime包括核心库和虚拟机。Android runtime负责安卓系统的调度和管理。
核心库包含两部分:一部分是java语言需要调用的功能函数,另一部分是安卓的核心库。
应用程序层和应用程序框架层运行在虚拟机中。虚拟机将应用程序层和应用程序框架层的java文件执行为二进制文件。虚拟机用于执行对象生命周期的管理,堆栈管理,线程管理,安全和异常的管理,以及垃圾回收等功能。
系统库可以包括多个功能模块。例如:表面管理器(surface manager),媒体库(Media Libraries),三维图形处理库(例如:OpenGL ES),2D图形引擎(例如:SGL)等。
表面管理器用于对显示子系统进行管理,并且为多个应用程序提供了2D和3D图层的融合。
媒体库支持多种常用的音频,视频格式回放和录制,以及静态图像文件等。媒体库可以支持多种音视频编码格式,例如:MPEG4,H.264,MP3,AAC,AMR,JPG,PNG等。
三维图形处理库用于实现三维图形绘图,图像渲染,合成,和图层处理等。
2D图形引擎是2D绘图的绘图引擎。
内核层是硬件和软件之间的层。内核层至少包含显示驱动,镜头驱动,音频驱动,传感器驱动。
下面结合捕获拍照场景,示例性说明手机软件以及硬件的工作流程。
当触摸传感器180K接收到触摸操作,相应的硬件中断被发给内核层。内核层将触摸操作加工成原始输入事件(包括触摸坐标,触摸操作的时间戳等信息)。原始输入 事件被存储在内核层。应用程序框架层从内核层获取原始输入事件,识别该输入事件所对应的控件。以该触摸操作是触摸单击操作,该单击操作所对应的控件为相机应用图标的控件为例,相机应用调用应用框架层的接口,启动相机应用,进而通过调用内核层启动镜头驱动,通过镜头193捕获静态图像或视频。
以下对上述显示屏10和镜头193在手机中的设置位置进行说明。如图1c所示,提供一种电子设备100,以手机为例,主要包括显示屏(display panel,DP)101。该显示屏101可以为液晶显示(liquid crystal display,LCD)屏,或者,有机发光二极管(organic light emitting diode,OLED)显示屏。本申请对此不作限定。上述电子设备100还包括中框102和壳体103。显示屏101和壳体103分别位于中框102的两侧,显示屏101的背面朝向壳体103,且该显示屏101和壳体103通过中框102相连接。中框102上可以设置上述的处理器,外部存储器接口,内部存储器,USB接口,充电管理模块,电源管理模块,电池,天线,天线,移动通信模块,无线通信模块,音频模块,扬声器,受话器,麦克风,耳机接口,传感器模块,按键,马达,指示器,镜头,显示屏,以及SIM卡接口等部件,当然这里只是一种示例电子设备100还可以包括比前述更多或更少的部件。如图1c所示,当电子设备100的中框102设置有镜头193时,镜头193通常包含光圈,或者光圈独立设置配合镜头193使用。当然图1c中仅示出一种设置于中框102的背面,朝向壳体103的镜头193,通常在一些实例中,还可以包含朝向显示屏101的前置镜头。
本申请实施例提供了一种光圈01,应用于上述的电子设备,如图2、图3所示,其中图2提供了光圈的俯视结构示意图,图3提供了在光圈的AA’处的截面结构示意图。该光圈01包括第一基板1和第二基板4,其中第一基板1和第二基板4可以相对设置;其中第一基板1和第二基板4之间第一区域aa和第二区域aa’,如图2、图3所示,第一区域aa可以为靠近光圈的光轴的区域,第二区域aa’为包围第一区域的区域;第二基板4上的驱动电极阵列11位于第一区域aa,第二基板4上的公共电极10位于第二区域aa’,公共电极10位于第二区域aa’的第一流体5覆盖;驱动电极阵列11包括阵列排列的透明的驱动电极,光圈还包括第二流体6,第二流体6包裹第一流体5以及驱动电极阵列11,其中,第一流体5为不透明的电解液,第二流体6为透明液体,第一流体5与第二流体5不相溶。
需要说明的是,透明指结构的材质不完全吸收(通常为材质的原子核外电子吸收)或者不完全反射某波段的光线,则该材质对该波段的光线透明;若该波段的光线可以被材质吸收或反射,则该材质对该波段的光线不透明;由于,量子力学效应考虑电子的能带结构和跃迁,不同的材质只能吸收或反射某些波段的光线。例如,某波段的光线被某材质吸收或反射,而该波段不在可见光波段范围内,则该材质对可见光波段是透明的。基于上述原理,对于人而言,材质的透明和不透明主要是考虑能够被人眼识别的可见光波段(例如波长为380nm-780nm)范围内。对于本申请的实施例提供的方案中,由于驱动电极、第一流体或第二流体通常为复合材料,通常为多种元素构成,因此构成驱动电极、第一流体或第二流体等结构的元素可能为多种,而结构中的不同元素对光线表现为透明或不透明,因此本申请中透明的驱动电极,指驱动电极对可见光波段的光线透过率为70%-99%,即可见光波段的光线通过驱动电极时,只有1%-30% 的光线被吸收或反射。类似的,本申请中第二流体6为透明液体,指第二流体对可见光波段的光线的透过率为80%-99%;即可见光波段的光线通过第二流体时,只有1%-20%的光线被吸收或反射。第一流体5为不透明的电解液,指第一流体对可见光波段的光线透过率小于1%(例如第一流体对可见光波段的光线透过率可以为0.1%-1%),即可见光波段的光线通过第一流体时,有超过99%的可光线被第一流体吸收或反射。
示例性的,如图4所示,驱动电极包括电极块1111(1112、1113、1114、1115)以及与电极块1111连接的开关晶体管,如图2所示,驱动电极阵列还包括纵横交叉排列的栅极引线121(122、123、124、125)和漏极引线131(132、133、134、135),其中,参照图5提供的,驱动电极的等效电路,电极块1111与开关晶体管的源极(source,s)112连接,开关晶体管的栅极(gate,g)113连接一条栅极引线121,开关晶体管的漏极(drain,d)115连接一条漏极引线131。图5中示出的电容C为公共电极10与电极块1111形成的等效电容。驱动电极阵列,包括:按照M×N阵列排列的驱动电极,其中M为驱动电极的行数,N为驱动电极的列数,所述M以及N为正整数。其中,图2以及图4是以5*5的驱动电极阵列为例进行说明,驱动电极阵列11的像素排布方式为M×N的像素阵列,例如M=5,N=5,则M×N为驱动电极阵列的分辨率,在下述方案中,将驱动电极阵列中的一个电极块也称作一个像素。如图2所示。5×5的驱动电极阵列分别包含1111,1112,1113,1114,1115;1121,1122,1123,1124,1125;1131,1132,1133,1134,1135;1141,1142,1143,1144,1145;1151,1152,1153,1154,1155,共计25个电极块。各开关晶体管M的源极分别连接对应电极块(图2、5中小圆圈所示)。其中,第一流体与第二流体通常为密度相近的液体,在一些示例中,上述流体也称作液体,第一流体也称作极性流体,第二流体也称作非极性流体。示例性的,第一流体可以为:添加吸收特定光波带颜料或染料的水性溶液;颜料或染可以采用如碳黑,epolin 7527B,qcr solutions vod875s,hwsands sda8530等;溶液如,水,或掺盐如NaCl,Na2SO4,LiCl,KCl水溶液,为了降低驱动电压,可在电解液中掺杂表面活性剂,如十二烷基硫酸钠(sds),Tween20等。第二流体6为油液,例如第二流体可以为烷烃、硅油等。
其中,以图4示出的驱动电极阵列为例,开关晶体管通常包括栅极113、覆盖栅极113的栅极绝缘层111、位于栅极绝缘层上位覆盖栅极113的半导体沟道激活层114,以及位于半导体沟道激活层114上的源极112和漏极115,其中源极112和漏极115之间形成沟道;此外,还可以包括覆盖源极112和漏极115的钝化层,其中图4中未示出。
此外,为了保证第一流体5和第二流体6可以在第一基板1与第二基板4之间良好的流动,光圈还包括第一疏水层2和第二疏水层8,并且第一疏水层2和第二疏水层8对第一流体以及第二流体具有疏水性,其中第一疏水层2设置于第一基板1与第二流体6之间;第二疏水层8设置于第二流体6与驱动电极阵列11之间,用于将驱动电极阵列11封闭在第二疏水层8与第二基板4之间。另外,还包括侧壁框架3,侧壁框架3设置于第一疏水层2与第二基板4之间,侧壁框架3将第一流体5和第二流体6密封于第一疏水层2和第二基板4之间的空间。由于第一流体5为电解液,其具有导电性,为避免第一流体对对驱动电极阵列11造成影响,光圈还包括:绝缘介电层7, 绝缘介电层7设置于第二疏水层8与驱动电极阵列11之间。其中上述的栅极绝缘层111、钝化层、以及绝缘介电层7通常采用透明的绝缘材料制作,例如氧化硅、氮化硅或有机树脂材料。上述的电极块1111(1112、1113、1114、1115)可以采用透明导电材料比如:氧化铟锡(indium tin oxide,ITO)、银纳米线、碳纳米管、石墨烯等透明导电材料,通常ITO对可见光波段的光线的透过率可以做到85%-90%,甚至90%以上。上述的栅极113、源极112、漏极115、栅极引线121、漏极引线131通常采用导电材料,例如可以是金属或合金材料,如:氮化钛(TiN),钨(W),镍(Ni),铂(Pt),钛(Ti),氮化钨(WN),钌(Ru),氧化钌(RuO x),铱(Ir),氧化铱(IrO x),TaN(氮化钽),钴(Co),铝(Al),铜(Cu),多晶硅(Si),铜钼合金,硅和金属的化合物等。当然为了提高第一区域的透过率也可以采用与电极块1111相同的透明导电材料。上述的公共电极10由于设置于第二区域,其可以采用不透明的导电材料。第一疏水层和第二疏水层可以是相同或这不同的材料,通常第一疏水层和第二疏水层采用含氟材料,例如Teflon AF、AF1600、Hyflon AD、AD40H、CYTOP、CTX809S等。
结合上述图5示出的驱动电极的等效电路,结合开关晶体管M的工作原理,可以看出当栅极引线121上施加选通信号时,与该栅极引线121连接的同一行的所有开关晶体管M均处于导通状态,即此时如果漏极引线131上施加电压,则会在电极块1111和公共电极10形成电场。图3为光圈不加电压时的状态,即电极块(1111,1112,1113,1114,1115)与公共电极10处于同电势,比如五个电极块与公共电极都接地。靠近光圈的光轴的第一区域被第二流体6覆盖,光圈边缘的第二区域被第一流体5与第二流体6同时覆盖。第一区域的第二流体6在上与第一疏水层2接触,在下与第二疏水层8接触;第二区域的第二流体6在上与第一疏水层2接触,在下与第一流体5接触,在侧与侧壁框架3接触,此时光圈开口最大。
图6与图7为光圈被编辑时的状态。当对驱动电极阵列中的部分驱动电极施加电压时,第一流体流向部分驱动电极对应的区域,并覆盖部分驱动电极对应的区域;驱动电极阵列中除部分驱动电极之外的其他驱动电极对应的区域形成光圈图案。如图6所示,当电极块1115与公共电极10上加上电压,比如电极块1115加载V+电压,其他电极块1111,1112,1113,1114四个与公共电极10都接地,此时由于电润湿效应,第一流体5会被驱动,从而覆盖到电极块1115上方的区域。相对地,第二流体6会被挤走覆盖至第一流体5移走的区域。如图7所示,当电极块1111,1113,1114,1115加载V+电压,电极块1112与公共电极10都接地,同样由于电润湿效应,第一流体5会被驱动,从而覆盖到电极块1111,1113,1114,1115上方的区域。相对地,第二流体6会被挤走覆盖至第一流体5移走的区域。这样当,第一流体覆盖部分电极块后,由于第一流体为不透明的电解液,因此被覆盖的电极块不能透过光线;而其他未被第一流体覆盖的部分可以透过光线,这些未被第一流体覆盖的电极块在透过光线时便形成光圈图案。
其中,当公共电极10与电极块之间不存在电压差时,被第二流体6包裹着的第一流体5趋向收缩表面积,使得表面能量最小,此时第二流体6与第一流体5形成的接触角α(参考图3所示)最大,表现为不湿润。参考图3,此时,三相的接触表面张力自动平衡(第一流体5与第二流体6的接触表面,第一流体5与第二疏水层8的接触表面,第二流体6与第二疏水层8的接触表面),此时第一流体5呈球冠状。当公 共电极10与电极块存在电压差时,相当于给第一流体5、电极块形成的相对电容充电(当包含第二疏水层8以及绝缘介电层7时,该电容的介质为第二疏水层8和绝缘介电层7),第一流体5与第二疏水层8的接触表面会积累大量电荷,同性电荷之间的排斥使得第一流体5与第二疏水层8的表面张力减弱,即外电场力的加入打破了原本平衡的三相的表面张力,第一流体5趋向于铺展,第一流体5与第二流体6形成的接触角β(参考图6所示)变小,表现为湿润。而当取消公共电极10与电极块的电压差时,第一流体5由于具有趋向收缩表面积,使得表面能量最小的特性,自动恢复初始的球冠状。
这样,当对驱动电极阵列11中的驱动电极施加电压时,驱动电极与公共电极形成电场,在电场的作用下由于第一流体为电解液因此会流向施加电压的驱动电极,并且由于第一流体为不透明的电解液,因此能够将透明的驱动电极对应的区域遮挡,而未施加电压的驱动电极对应的区域仍然覆盖第二流体,因此未被第一流体遮挡的驱动电极对应的区域可以透过光线从而形成光圈图案。所以,当确定需要形成的光圈图案时,根据光圈图案的形状,可以确定驱动电极阵列透光的位置以及不透光的位置,并根据不透光的位置在驱动电极阵列相应的驱动电极上施加电压,使得第一流体遮挡施加电压的驱动电极,而未施加电压的驱动电极对应的区域未被第一流体遮挡可以透过光线,便可以形成需要的光圈图案的图形。因此,当需要的光圈图案各不相同时,在驱动电极阵列上确定的透光的位置与不透光的位置也各不相同,从而对于不同的光圈图案,在驱动电极阵列中需要施加电压的驱动电极也各不同,从而实现光圈的可编辑,另外由于无需机械部件,光圈的稳定性更高,并且光圈的透过率仅依赖于各功能层材料的透过率以及反射,以及第二流体的透过率,可以保证良好的透过率。
驱动电极阵列11边缘的驱动电极的各电极块朝向外侧的边缘可以为标准直边,结合图2所示,电极块1111,1112,1113,1114,1115,1121,1131,1141,1151,1152,1153,1154,1155,1125,1135,1145外圈形状可以为标准直边,此时,由于绝缘介电层10以及第二疏水层8通常是采用化学气相沉积CVD或涂布工艺制作,因此向内与驱动电极阵列11的电极块相接触的绝缘介电层也为标准直边,同理,向内与绝缘介电层接触的第二疏水层也为标准直边。
而为了提升光圈编辑的可靠性与重复性,需要保证电极块与公共电极加上电压时,第一流体能够很快响应该电极块与公共电极产生的电场,流动至电极块上方,从而保证光圈编辑的可靠性;并且当电极块与公共电极停止施加的电压时,第一流体能够很快回复原来的位置,以保证光圈编辑的重复性。如图8所示,驱动电极阵列11边缘的驱动电极的各电极块朝向外侧的边缘具有凹陷与凸起交叠排列的结构。例如电极块1111,1112,1113,1114,1115,1121,1131,1141,1151,1152,1153,1154,1155,1125,1135,1145外圈形状可以为凹陷与凸起交叠排列的结构,相似的,向内与驱动电极阵列11的电极块相接触的绝缘介电层也呈凹陷与凸起交叠排列的结构,同理,向内与绝缘介电层接触的第二疏水层也呈凹陷与凸起交叠排列的结构。这种类似于“手形”的凹陷与凸起交叠排列的结构,使得驱动电极与第一流体存在一定交叉,有助于第一流体在电场作用下迅速流动至对应的电极块,并在失去电场时,顺利流回原来的位置。当然图例中的凹陷与凸起交叠排列的结构是以弧形的凹陷或凸起为例进行说明,当然 这种凹陷或凸起的结构也可以为锯齿形、方形等。
此外,为了提高光圈编辑的可靠性与重复性,避免在电极块未加电场电压时第一流体进入第一区域,如图9所示,光圈还包括:微型结构柱14,其中微型结构柱14设置于第二基板4上位于公共电极10和第二疏水层8之间,微型结构柱14对第二流体8具有亲水性。这样沿着公共电极10和第二疏水层8之间的区域,由于设置了对第二流体具有亲水性的微型柱结构,在电极块未加电场电压时,微型结构柱可以吸附第二流体形成一道屏障阻挡第一流体进入第一区域,保证了光圈编辑的可靠性和重复性。为了进一步提高上述效果,由于第一流体与第二流体不相溶,则微型结构柱对第一流体具有疏水性的特性。其中,上述的亲水性以及疏水性是指第二流体或第一流体对微型结构柱的湿润性。其中,亲水性指第二流体对微型结构柱的湿润性表现为湿润,疏水性指第一流体对微型结构柱的湿润性表现为不湿润。其中,流体对固体结构的湿润性主要可以通过流体与固体的接触角衡量,在杨氏(Young)模型下,流体与固体的接触表面为理想平滑的表面,通常接触角(也称作本征接触角)取[0,90]时,流体对固体表现为湿润,而接触角取(90,180]时,流体对固体表现为不湿润。通常为了增强在上述接触角条件下的亲水性或疏水性,通常可以将固体与流体的接触表面设置为粗糙状态,例如增加本申请的实施例提供的微型结构柱,在温泽(Wenzel)模型下,流体能够进入微型结构柱之间的空隙从而增大流体与固体的接触面积。在增加微型结构柱之后,在接触角为[0,90]时,在温泽(Wenzel)模型下接触角随接触表面的粗糙程度增加(例如提高微型结构柱的高度,降低微型结构柱的间距)而减小,则表现为流体对固体的亲水性增加;在接触角取(90,180]时,温泽(Wenzel)模型下接触角随接触表面的粗糙程度增加(例如提高微型结构柱的高度,降低微型结构柱的间距)而增加,则表现为流体对固体的疏水性增加;此外,在凯西(Cassie)模型下,流体与微型结构柱的顶端接触,而在相邻的微型结构柱之间的空隙中形成气泡从而减小流体与固体的接触面积,表现为提高固体对流体的疏水性,相应的在接触角取(90,180]时,凯西(Cassie)模型下能够提高固体对流体的疏水性程度。在本申请的实施例中,示例性的,在凯西(Cassie)模型下第二流体的与微型结构柱的接触角可以取120°-160°,需要说明的是,在粗糙的接触表面下流体与固体的接触角为表观接触角,表观接触角是考虑到实际中固体表面粗糙度影响之后测量得到的接触角。示例性的,本申请的实施例提供的微型结构柱的高度为10~250um,间距10~250um。
结合图3所示,电极块之间还存在间隙h,为防止微小的周期性间隙h对镜头的最终成像造成衍射光晕现象。电极块之间的间隙h填充有绝缘涂层,绝缘涂层的折射率与电极块的折射率的差值小于预设值。例如,该预设值取值范围为0.1×(1±20%)。当然,绝缘涂层的折射率与电极块的折射率相等时可以完全避免周期性间隙h对镜头的最终成像造成衍射光晕现象。
为防止光圈边缘的第二区域aa’的第一流体5不能完全遮挡环境杂光,光圈还包括:遮光层15,遮光层15设置在第二区域aa’其中,参照图10所示,遮光层15设置在第一基板1上远离第二基板的一侧,或者,参照图11所示,遮光层15设置在第二基板4上远离第一基板1的一侧。
基于上述的光圈,本申请的实施例可以提供的驱动电极阵列11的排布方式可以为 正方形排布,即驱动电极阵列11中的每个驱动电极的电极块的形状可以为正方形。当然也可以采用其他正多边形形式,例如正六边形。其中图13、图15、图17、图19、图21、图23、图25提供了一种光圈图案,图12提供了图13示出的光圈图案对应的16×16的像素排布方式的驱动电极阵列11中各电极块的电压分布。图14提供了图15示出的光圈图案对应的16×16的像素排布方式的驱动电极阵列11中各电极块的电压分布,图16提供了图17示出的光圈图案对应的16×16的像素排布方式的驱动电极阵列11中各电极块的电压分布,图18提供了图19示出的光圈图案对应的16×16的像素排布方式的驱动电极阵列11中各电极块的电压分布,图20提供了图21示出的光圈图案对应的16×16的像素排布方式的驱动电极阵列11中各电极块的电压分布,图22提供了图23示出的光圈图案对应的16×16的像素排布方式的驱动电极阵列11中各电极块的电压分布,图24提供了图25示出的光圈图案对应的16×18的像素排布方式的驱动电极阵列11中各电极块的电压分布。其中,图12、图14、图15、图16、图18、图20、图22的电极块为正方形;图24的电极块为正六边形;其中“1”表示对应电极块上存在电场电压,“0”表示对应电极块上不存在电场电压。图13、图15、图17展示了对圆形光圈图案的大小调节;图19、图21、图23、图25展示了异形光圈图案;图19、图21展示了对异形光圈图案的旋转;图23展示了偏心的异形光圈图案。
基于上述的光圈,本申请的实施例提供一种光圈的控制方法,包括:对驱动电极阵列中的部分驱动电极施加电场电压,将第一流体移动至部分驱动电极对应的区域,并覆盖部分驱动电极对应的区域;驱动电极阵列中除部分驱动电极之外的其他驱动电极对应的区域形成光圈图案。
具体的,上述的部分驱动电极可以根据光圈图案确定。以图13示出的圆形光圈图案为例,其中,光圈主要用于控制透过光圈进入镜头的光线,因此在图13示出的光圈图案中,白色区域为透明区域,即光线可以透过该区域进入镜头,因此该白色区域即光圈图案;黑色区域表示不透明区域,即光线照射该区域时被吸收或反射。那么通过本申请的实施例提供的光圈形成图13示出的光圈图案时,可以按照图12示出的驱动电极阵列11中各电极块的电压分布对驱动电极阵列中的黑色区域对应的驱动电极(即部分驱动电极)施加电场电压,对驱动电极阵列中的白色区域对应的驱动电极不施加电场电压,其中“1”表示对应电极块上存在电场电压,“0”表示对应电极块上不存在电场电压。这样,第一流体将被移动至图13中黑色区域在图12中对应的电极块上,并将相应的电极块覆盖,由于第一流体为不透明的电解质可以吸收或反射光线,阻挡光线进入镜头;而白色区域的电极块上不存在电场电压,因此没有被第一流体覆盖,光线可以通过进入,从而实现光圈的控制。类似的,调整光圈图案大小后,可以按照调整后的光圈图案大小重新配置驱动电极上的电压分布,例如,将图13的圆形光圈图案逐步调小直径后依次形成图15、图17对应的圆形光圈图案。对于形成异形光圈图案图19、图21、图23、图25时的控制,原理上与形成图13所示的光圈图案类似。
此外,根据光圈图案内部是否存在隔离区域,需要对光圈采用不同的控制方式。其中隔离区域为光圈图案包围的不透明的区域;由于需要通过第一流体将不透明的区域遮挡,因此当光圈图案内部是存在隔离区域时,需要将第一流体分离才能形成光圈图案。则根据是否需要将第一流体分离需要执行不同的控制方法。具体的,如图13、 图15、图17、图23、图25所示的光圈图案,光圈图案的内部不存在隔离区域,而图19、图21示出的光圈图案内部存在隔离区域。
示例一:对于光圈图案中不存在隔离区域的光圈图案,上述需要施加电场电压的部分驱动电极包括驱动电极阵列中光圈图案对应的区域外围的驱动电极。此时不需要第一流体分离就能形成的光圈图案,则对于部分驱动电极可以简单的从驱动电极阵列的外围向中心依次施加电场电压。
具体的,以形成图13示出的光圈图案的光圈的控制方法进行说明,该图13示出的光圈图案对应的16×16的像素排布方式的驱动电极阵列11,如图12所示。结合图26-图28说明如下,其中,打斜线的电极块(像素)表示在对应电极块上施加电压形成电极块与公共电极之间的电势差,“1”表示对应电极块上电压维持有效,“0”表示对应电极块上没有施加电压。对于图13示出的光圈图案,首先,对最外围电极块(第M/2圈电极块)上施加电场电压(如图26所示),M=16。在最外围电极块上施加电场电压后,第一流体与最外围电极块所在区域的第二疏水层的接触表面会积累大量电荷,同性电荷之间的排斥使得第一流体与第二疏水层的表面张力减弱,即外电场力的加入打破了原本平衡的三相的表面张力,第一流体趋向于铺展流向最外围电极块对应的区域,当第一流体覆盖最外围电极块对应的区域后,第一流体与第二流体的接触角发生改变(减小),三相的接触表面张力自动平衡,第一流体不在流动。然后,对次外围电极块(第M/2-1圈电极块)上施加电场电压,最外围电极块(第M/2圈电极块)上电场电压保持(如图27所示)。在次外围电极块上施加电场电压后,第一流体与次外围电极块所在区域的第二疏水层的接触表面会积累大量电荷,同性电荷之间的排斥使得第一流体与第二疏水层的表面张力减弱,即外电场力的加入打破了原本平衡的三相的表面张力,第一流体趋向于铺展流向次外围电极块对应的区域,当第一流体覆盖次外围电极块对应的区域后,第一流体与第二流体的接触角发生改变(进一步减小),三相的接触表面张力自动平衡,第一流体不在流动。然后,再向里一圈电极块(第M/2-2圈电极块)上施加电场电压(如图28所示)。在第M/2-2圈电极块上施加电场电压后,第一流体与第M/2-2圈电极块所在区域的第二疏水层的接触表面会积累大量电荷,同性电荷之间的排斥使得第一流体与第二疏水层的表面张力减弱,即外电场力的加入打破了原本平衡的三相的表面张力,第一流体趋向于铺展流向第M/2-2圈电极块对应的区域,当第一流体覆盖第M/2-2圈电极块对应的区域后,第一流体与第二流体的接触角发生改变(再次减小),三相的接触表面张力自动平衡,第一流体不在流动。最终,最外围电极(第M/2圈电极块)、次外围电极(第M/2圈电极块)以及第M/2-2圈电极块上电场电压保持。
示例二:对于光圈图案中存在隔离区域,需要第一流体分离才能形成的光圈图案。部分驱动电极包括驱动电极阵列中光圈图案对应的区域外围的驱动电极,以及隔离区域对应的驱动电极。则可以先将第一流体移至隔离区域对应电极块,并将其隔离。再对光圈图案对应的区域外围的驱动电极按示例一提供的方法从驱动电极阵列的外围向中心依次施加电场电压。结合图19示出的光圈图案,隔离区域即第一流体由光圈边缘的第二区域向光圈中心第一区域移动时,需要通过第一流体分离或分裂才可以形成的区域。而图19中,光圈图案为第一流体由光圈边缘的第二区域向光圈中心的第一区域移动时的连续区域,即只通过连续移动第一流体就可以形成的区域。该光圈的控制方 法包括:根据隔离区域在驱动电极阵列中确定一条通道,其中通道连接隔离区域以及所述第一流体;对通道上的驱动电极自驱动电极阵列的外围向中心依次施加电场电压,对隔离区域对应的驱动电极自靠近通道到远离通道依次施加电场电压;根据光圈图案对驱动电极阵列中光圈图案对应的区域外围的驱动电极自驱动电极阵列的外围向中心依次施加电场电压。具体的,可以根据第一流体与隔离区域的距离确定通道,或者根据光圈图案远离隔离区域的边缘与隔离区域的距离确定所述通道。当然为了提高光圈控制的响应速度,上述通道可以为第一流体距离隔离区域最近的通道,或者光圈图案的外侧边缘距离隔离区域最近的通道。
具体的,以形成图19示出的光圈图案的光圈的控制方法进行说明,该图19示出的光圈图案对应的16×16的像素排布方式的驱动电极阵列11,如图18所示。结合图29-图37说明如下,其中,打斜线的电极块(像素)表示在对应电极块上施加电场电压形成电极块与公共电极之间的电势差,打网格的电极块表示对应电极块上撤销电场电压去除电压块与公共电极之间的电势差,“1”表示对应电极块上电压维持有效,“0”表示对应电极块上没有施加电压。对于图19示出的光圈图案,首先,根据隔离区域在驱动电极阵列中确定一条通道。具体方式为,比如沿着某一方向,这一方向可以为水平方向或竖直方向或跟水平方向或竖直方向呈一定角度的方向,连接第一流体与隔离区域确定一个通道,当然图29中通道一291包含两列电极块,当然也可以采用一列电极块或者更多列电极块;或者一行电极块或者更多行电极块。如上所述,该通道可以是第一流体距离隔离区域293最近的方向上的一个通道(如图29中通道二292),或者光圈图案的外侧边缘距离隔离区域293最近的方向上的一个通道(如图29中的通道一291,电极块间距最短的方向即为距离隔离区域293最近的方向),以下均以通道一291为例进行说明。此时沿着这一方向在通道上的电极块上施加电场电压将第一流体与隔离区域的电极块连接起来,如图29所示,具体可以参照示例一示出的方法对通道上的电极块,由外圈向内圈逐次施加电场电压。保持上述通道上的电极块上的电场电压。具体的,如图29所示,首先对通道一291中对最外围电极块(第M/2圈电极块K1、K2)上施加电场电压,M=16。在通道一291中最外围电极块(K1、K2)上施加电场电压后,第一流体与通道一291中最外围电极块(K1、K2)所在区域的第二疏水层的接触表面会积累大量电荷,同性电荷之间的排斥使得第一流体与第二疏水层的表面张力减弱,即外电场力的加入打破了原本平衡的三相的表面张力,第一流体趋向于铺展流向通道一291中最外围电极块(K1、K2)对应的区域,当第一流体覆盖通道一291中最外围电极块(K1、K2)对应的区域后,第一流体与第二流体的接触角发生改变(减小),三相的接触表面张力自动平衡,第一流体不在流动。然后,对通道一291中次外围电极块(第M/2-1圈电极块(k3、k4)上施加电场电压,通道一291中最外围电极块(第M/2圈电极块)上电场电压保持。在通道一291中次外围电极块(k3、k4)上施加电场电压后,第一流体与通道一291中次外围电极块(k3、k4)所在区域的第二疏水层的接触表面会积累大量电荷,同性电荷之间的排斥使得第一流体与第二疏水层的表面张力减弱,即外电场力的加入打破了原本平衡的三相的表面张力,第一流体趋向于铺展流向通道一291中次外围电极块(k3、k4)对应的区域,当第一流体覆盖通道一291中次外围电极块(k3、k4)对应的区域后,第一流体与第二流体的接触角发生改变(减小),三相的接触表面张力自动 平衡,第一流体不在流动。然后,再向通道一291中里一圈电极块(第M/2-2圈电极块k5、k6)上施加电场电压。在通道一291中第M/2-2圈电极块上施加电场电压后,第一流体与通道一291中第M/2-2圈电极块所在区域的第二疏水层的接触表面会积累大量电荷,同性电荷之间的排斥使得第一流体与第二疏水层的表面张力减弱,即外电场力的加入打破了原本平衡的三相的表面张力,第一流体趋向于铺展流向通道一291中第M/2-2圈电极块对应的区域,当第一流体覆盖通道一291中第M/2-2圈电极块对应的区域后,第一流体与第二流体的接触角发生改变(减小),三相的接触表面张力自动平衡,第一流体不在流动。然后,按照上述方式在依次向通道一291中电极块k7和k8,以及k9和k10施加电场电压。最终,k1-k10上电场电压保持。然后,先将隔离区域293中距离通道最近的电极块施加电场电压,如图30所示。对距离通道最近的电极块施加电场电压后,第一流体与距离通道最近的电极块所在区域的第二疏水层的接触表面会积累大量电荷,同性电荷之间的排斥使得第一流体与第二疏水层的表面张力减弱,即外电场力的加入打破了原本平衡的三相的表面张力,第一流体趋向于铺展流向距离通道最近的电极块对应的区域,当第一流体覆盖距离通道最近的电极块对应的区域后,三相的接触表面张力自动平衡,第一流体不在流动。保持上述通道上的电极块上的电场电压,保持隔离区域293中距离通道最近的电极块上的电场电压,按照与通道由近及远的顺序,依次在隔离区域293剩下的电极块上施加电场电压(如图31、图32所示),并保持。然后,保持隔离区域293中电极块上的电场电压,撤销通道一291上的电极块上的电场电压。将需要分离的第一流体切断,如图33所示。由于通道一291上的电极块的电场电压撤销,则隔离区域293的第一流体以及光圈的第二区域的第一流体分别具有趋向收缩表面积,使得表面能量最小的特性,因此各自恢复球冠状,则第一流体在通道一291处断开,此时一部分第一流体回复至光圈的第二区域,另一部分第二流体覆盖在隔离区域293。保持隔离区域293的电极块上的电场电压,按照不需要第一流体分离就可形成光圈图案的方式(方式一)对隔离区域293周围的光圈图案对应的区域外围的驱动电极由外圈向内圈逐步施加电场电压(如图34到图37所示)。
其中需要说明的是,如图33所示,在图33对应的步骤中可以仅撤销通道中与光圈图案相交的电极块(即图29中的k7-k10)的电场电压。由于通道一291中存在与光圈图案相交的电极块(即图29中的k7-k10),因此在图33对应的步骤中即使将通道一291中所有电极块(即图29中的k1-k10)的电场电压全部撤销,在后续形成光圈图案的过程中,还需要对通道一291中与光圈图案不相交的电极块(即图29中的k1-k6)重新施加电场电压,因此在图33中可以仅撤销网格(即图29中的k7-k10)对应的电极块的电场电压。
结合图38-图41所示,对本申请的实施例提供的一种光圈图案的生成流程,包括如下步骤:
101、获取用户绘制的第一光圈图案。
其中,用户可以在手机屏幕上绘制所要加载的第一光圈图案。例如:通过手机系统自带绘图应用程序绘制第一光圈图案,或在专门为本本申请的实施例提供的光圈开发的应用程序里绘制第一光圈图案。此时光圈图案像素分辨率等于手机屏幕像素分辨率,比如1024×488,如图38所示。
102、将第一光圈图案调整为与驱动电极阵列的分辨率等比例的第二光圈图案。
例如,通过上述应用程序将绘制的第一光圈图像填充成与驱动电极阵列横向电极块(像素)与纵向电极块(像素)均等比例的第二光圈图案,例如驱动电极阵列横向的电极块为16,纵向电极块为16,则应用程序会将手机绘制的第一光圈图案填充为1024×1024的第二光圈图案,如图39所示。填充时保持绘制的第一光圈图像不发生变形,仅以第一光圈图案的图像中心像素为对称中心向两边扩展纵向像素,例如向两边各扩展268像素,填充时新增加像素统一设置为黑色。图像填充方法可采用通过复制外边界值扩展,或将图像看成一个二维周期函数的一个周期进行扩展,或在每一维的第一个像素前或最后一个像素后或两者都填充。
103、对第二光圈图案调整大小生成第三光圈图案,其中第三光圈图案的图像尺寸与驱动电极阵列的分辨率保持一致。
比如,可以对第二光圈图案进行像素调整至16×16,如图40所示,图像调整大小可采用最近邻插值法,或双线性插值法,或双三次插值法。
104、将第三光圈图案转化为驱动电极阵列上至少一个电极块上需要施加的电场电压的电压信息。
其中,第三光圈图案的图像是灰度图像,需要先对第三光圈图案进行二值化处理,二值化方法可采用设定灰度阈值,将高于这一灰度阈值的像素置为“1”,代表的电压信息是:在光圈图案对应电极块上施加电场电压,并维持有效。将低于这一灰度阈值的像素置“0”,代表的电压信息是:不在光圈图案对应电极块上施加电压,如图41所示。在光圈图案对应电极块上加载的电场电压的大小由设备电路决定,比如5~40V。
以上图38-图41是对一种用户定义光圈图案的生成流程的简要说明,在一些示例中,也可以是在电子设备内置若干种光圈图案供用户选择,例如可以在存储器中预先存储若干光圈图案,例如可以是图13、图15、图17、图19、图21、图23、图25等光圈图案。当需要控制光圈形成光圈图案时,可以在电子设备的显示屏上显示内置的光圈图案供用户选择,当用户选定一个光圈图案后,便可按照上述示例控制光圈生成对应的光圈图案。当然,对于上述在电子设备中内置光圈图案的方案,电子设备还可以支持用户对选定的光圈图案的简单操作,如缩放操作、旋转操作、叠加操作、拖动操作等。具体的,用户可以在选定图13所示的光圈图案后,将图13所示的光圈图案通过缩放操作生成图17所示的光圈图案;或者,在选定如图19所示的光圈图案后,通过旋转操作对光圈图案旋转一定的角度;或者,用户同时选定两幅或多幅光圈图案后对光圈图案进行叠加,如用户操作电子设备同时选定图17、图23,并将图17和图23叠加,使得最终形成的光圈图案同时包含图17以及图23中的光圈图案;或者,用户在选定图17所示的光圈图案后,通过操作电子设备拖动光圈图案在光圈中的位置,例如将光圈图案从图17示出的右上角拖动到左下角或中心等位置。
本申请的实施例还提供一种镜头包括至少一个透镜以及上述的光圈。具体的如图42所示,在镜头的光轴上,按照光线在光轴的入射方向,依次包括保护玻璃16、透镜组17和传感器18;光圈01设置在透镜组的一端或者镜头组中任意相邻的两个透镜之间。如图42所示,透镜组17包括第一透镜171、第二透镜172以及第三透镜173。当然图42仅是一种示例,根据镜头的功能的不同,透镜组可以包含更多或更少的透镜, 例如第三透镜173也可以替换为多个透镜的组合。如图42所示,光圈01设置在透镜组17中靠近保护玻璃16的第一透镜171和第二透镜172之间。
此外,透镜组17中的任一透镜用作光圈01的第一基板或第二基板。在该方案中将镜头的透镜复用为光圈的第一基板或第二基板,可以节约成本,同时提高镜头的透过率。如图43所示与图42的区别是将第一透镜171用作光圈01的第一基板,并将第二透镜172用作光圈01的第二基板。其中,在复用镜头组的透镜作为光圈的第一基板或第二基板时,该透镜至少需要具有一个平面;例如图43中,第一透镜171以及第二透镜172相对的两个面均为平面。当然,如果相邻的两个透镜相对的平面仅有一个平面,也可以仅复用一个透镜作为光圈的第一基板或第二基板;如图44所示,第一透镜171朝向第二透镜172的面为凸面,第二透镜172朝向第一透镜171的面为平面,则仅复用第二透镜172作为光圈的第二基板。以上主要是以将光圈设置在第一透镜171和第二透镜172之间为例进行说明,设置在其他相邻透镜之间也是可以的。
此外,还可以将光圈设置在镜头的前端入光侧,用作透镜组的保护,如图45所示,镜头在光轴方向依次包括光圈01、透镜组17和传感器18。
可以理解的是,以上各个实施例中,由光圈的控制方法流程中的方法和/或步骤可以由光圈的控制装置实现,也可以由可用于光圈的控制装置的部件(例如芯片或者电路)实现。
可以理解的是,该光圈的控制装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对光圈的控制装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图46示出了一种光圈的控制装置的结构示意图。该光圈的控制装置用于控制上述实施例提供的光圈,包括:控制模块461,用于对驱动电极阵列中的部分驱动电极施加电场电压,将所述第一流体移动至所述部分驱动电极对应的区域,并覆盖所述部分驱动电极对应的区域;所述驱动电极阵列中除所述部分驱动电极之外的其他驱动电极对应的区域形成光圈图案。
可选的,所述光圈图案中不存在隔离区域,其中所述隔离区域为所述光圈图案包围的不透明的区域;所述部分驱动电极包括所述驱动电极阵列中所述光圈图案对应的区域外围的驱动电极;所述控制模块461,具体用于对所述部分驱动电极自所述驱动电极阵列的外围向中心依次施加电场电压。
可选的,所述光圈图案中存在隔离区域,其中所述隔离区域为所述光圈图案包围的不透明的区域;所述部分驱动电极包括所述驱动电极阵列中所述光圈图案对应的区 域外围的驱动电极,以及所述隔离区域对应的驱动电极;所述控制模块461,具体用于根据所述隔离区域在所述驱动电极阵列中确定一条通道,其中所述通道连接所述隔离区域以及所述第一流体;对所述通道上的驱动电极自所述驱动电极阵列的外围向中心依次施加电场电压;对所述隔离区域对应的驱动电极自靠近所述通道到远离所述通道依次施加电场电压;将所述通道上的驱动电极的电场电压撤销;对所述驱动电极阵列中所述光圈图案对应的区域外围的驱动电极自所述驱动电极阵列的外围向中心依次施加电场电压。
可选的,还包括确定模块462,用于根据所述第一流体与所述隔离区域的距离确定所述通道,或者根据所述光圈图案远离所述隔离区域的边缘与所述隔离区域的距离确定所述通道。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
如图47所示,本申请的实施例提供一种电子设备的硬件结构示意图。
其中,电子设备包括上述的光圈1105或镜头1106,该电子设备还包括:至少一个处理器(图47中示例性的以包括一个处理器1101为例进行说明)图47中示例性的以包括一个传输接口1103为例进行说明)。可选的,电子设备还可以包括至少一个存储器(图47中示例性的以包括一个存储器1102为例进行说明)。可选的,电子设备还可以包括至少一个传输接口1103(例如可以是接口电路)。
光圈1105、镜头1106、处理器1101、存储器1102和传输接口1103通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器1101可以是通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。在具体实现中,作为一种实施例,处理器1101也可以包括多个CPU,并且处理器1101可以是单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。例如,处理器1101可以为图1a中的处理器[110]。
存储器1102可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有计算机执行指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1102可以是独立存在,通过通信线路与处理器1101相连接。存储器1102也可以和处理器1101集成在一起。
其中,存储器1102用于存储执行本申请方案的计算机执行指令,并由处理器1101来控制执行。具体的,处理器1101用于执行存储器1102中存储的计算机执行指令, 从而实现本申请实施例中所述的光圈的控制方法。
或者,可选的,本申请实施例中,也可以是处理器1101执行本申请上述实施例提供的图光圈的控制方中的处理相关的功能,传输接口1103负责与其他设备的连接并进行信号传输,例如从其他设备获取光圈图案等,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器1101可以包括一个或多个CPU,例如图47中的CPU0和CPU1。
在具体实现中,作为一种实施例,电子设备可以包括多个处理器,例如图47中的处理器1101和处理器1104。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
电子设备中的处理器1101可以通过调用存储器1102中存储的计算机执行指令,使得电子设备执行上述方法实施例中的方法。具体的,图46中的控制模块461、确定模块462的功能/实现过程可以通过图47所示的电子设备中的处理器1101调用存储器1102中存储的计算机执行指令来实现。由于本实施例提供的电子设备可执行上述的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种光圈的控制装置(例如,该光圈的控制装置可以是芯片或芯片系统),该光圈的控制装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该光圈的控制装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序指令以指示该光圈的控制装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该光圈的控制装置中。该光圈的控制装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其 他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (25)

  1. 一种光圈,其特征在于,包括第一基板和第二基板;
    所述第一基板和所述第二基板之间包括第一区域和第二区域,其中所述第二基板上的驱动电极阵列位于所述第一区域,所述第二基板上的公共电极位于所述第二区域,所述公共电极被位于所述第二区域的第一流体覆盖;
    所述驱动电极阵列包括阵列排列的透明的驱动电极;
    所述光圈还包括第二流体;
    所述第二流体包裹所述第一流体以及所述驱动电极阵列,其中,所述第一流体为不透明的电解液,所述第二流体为透明液体,所述第一流体与所述第二流体不相溶。
  2. 根据权利要求1所述的光圈,其特征在于,所述光圈还包括:第一疏水层和第二疏水层,其中,所述第一疏水层设置于所述第一基板与所述第二流体之间;所述第二疏水层设置于所述第二流体与所述驱动电极阵列之间。
  3. 根据权利要求2所述的光圈,其特征在于,所述光圈还包括:绝缘介电层,所述绝缘介电层设置于所述第二疏水层与所述驱动电极阵列之间。
  4. 根据权利要求2所述的光圈,其特征在于,所述光圈还包括:侧壁框架,所述侧壁框架设置于所述第一疏水层与所述第二基板之间。
  5. 根据权利要求1-4任一项所述的光圈,其特征在于,所述驱动电极,包括:电极块以及与开关晶体管,所述驱动电极阵列还包括纵横交叉排列的栅极引线和漏极引线,其中,所述电极块与所述开关晶体管的源极连接,所述开关晶体管的栅极连接一条所述栅极引线,所述开关晶体管的漏极连接一条所述漏极引线。
  6. 根据权利要求5所述的光圈,其特征在于,所述驱动电极阵列边缘的驱动电极的各电极块朝向外侧的边缘具有凹陷与凸起交叠排列的结构。
  7. 根据权利要求5或6所述的光圈,其特征在于,所述电极块之间的间隙填充有绝缘涂层,所述绝缘涂层的折射率与所述电极块的折射率的差值小于预设值。
  8. 根据权利要求2-7任一所述的光圈,其特征在于,还包括:微型结构柱,其中所述微型结构柱设置于所述第二基板上,所述微型结构柱位于所述公共电极和所述第二疏水层之间,所述微型结构柱对所述第二流体具有亲水性。
  9. 根据权利要求1-8任一所述的光圈,其特征在于,还包括:遮光层,所述遮光层位于所述第二区域,所述遮光层设置在所述第一基板上远离所述第二基板的一侧;或者,所述遮光层设置在所述第二基板上远离所述第一基板的一侧。
  10. 根据权利要求1-9任一所述的光圈,其特征在于,所述第二流体为油液。
  11. 根据权利要求1-10任一所述的光圈,其特征在于,所述驱动电极阵列,包括:按照M×N阵列排列的驱动电极,其中M为所述驱动电极的行数,N为所述驱动电极的列数,所述M以及N为正整数。
  12. 一种光圈的控制方法,所述光圈的控制方法用于控制如权利要求1-11任一项所述的光圈,其特征在于,
    对所述驱动电极阵列中的部分驱动电极施加电场电压,将所述第一流体移动至所述部分驱动电极对应的区域,并覆盖所述部分驱动电极对应的区域;所述驱动电极阵列中除所述部分驱动电极之外的其他驱动电极对应的区域形成光圈图案。
  13. 根据权利要求12所述的光圈的控制方法,其特征在于,所述光圈图案中不存在隔离区域,其中所述隔离区域为所述光圈图案包围的不透明的区域;所述部分驱动电极包括所述驱动电极阵列中所述光圈图案对应的区域外围的驱动电极;所述对所述驱动电极阵列中的部分驱动电极施加电场电压,包括:
    对所述部分驱动电极自所述驱动电极阵列的外围向中心依次施加电场电压。
  14. 根据权利要求12所述的光圈的控制方法,其特征在于,所述光圈图案中存在隔离区域,其中所述隔离区域为所述光圈图案包围的不透明的区域;所述部分驱动电极包括所述驱动电极阵列中所述光圈图案对应的区域外围的驱动电极,以及所述隔离区域对应的驱动电极;所述对所述驱动电极阵列中的部分驱动电极施加电场电压,包括:
    根据所述隔离区域在所述驱动电极阵列中确定一条通道,其中所述通道连接所述隔离区域以及所述第一流体;
    对所述通道上的驱动电极自所述驱动电极阵列的外围向中心依次施加电场电压;
    对所述隔离区域对应的驱动电极自靠近所述通道到远离所述通道依次施加电场电压;
    将所述通道上的驱动电极的电场电压撤销;
    对所述驱动电极阵列中所述光圈图案对应的区域外围的驱动电极自所述驱动电极阵列的外围向中心依次施加电场电压。
  15. 根据权利要求14所述的光圈的控制方法,其特征在于,
    根据所述第一流体与所述隔离区域的距离确定所述通道,或者根据所述光圈图案远离所述隔离区域的边缘与所述隔离区域的距离确定所述通道。
  16. 一种镜头,其特征在于,包含至少一个透镜,以及如权利要求1-11任一项所述的光圈。
  17. 根据权利要求16所述的镜头,其特征在于,在所述镜头的光轴上,按照光线在所述光轴上的入射方向依次包括保护玻璃、透镜组和传感器,所述光圈设置在所述透镜组的一端或者所述透镜组中任意相邻的两个透镜之间。
  18. 根据权利要求17所述的镜头,其特征在于,所述透镜组中的任一透镜用作所述光圈的第一基板或第二基板。
  19. 根据权利要求16所述的镜头,其特征在于,所述镜头在光轴方向依次包括所述光圈、透镜组和传感器。
  20. 一种光圈的控制装置,所述光圈的控制装置用于控制如权利要求1-11任一项所述的光圈,其特征在于,包括:
    控制模块,用于对所述驱动电极阵列中的部分驱动电极施加电场电压,将所述第一流体移动至所述部分驱动电极对应的区域,并覆盖所述部分驱动电极对应的区域;所述驱动电极阵列中除所述部分驱动电极之外的其他驱动电极对应的区域形成光圈图案。
  21. 根据权利要求20所述的光圈的控制装置,其特征在于,所述光圈图案中不存在隔离区域,其中所述隔离区域为所述光圈图案包围的不透明的区域;所述部分驱动电极包括所述驱动电极阵列中所述光圈图案对应的区域外围的驱动电极;所述控制模 块,具体用于对所述部分驱动电极自所述驱动电极阵列的外围向中心依次施加电场电压。
  22. 根据权利要求20所述的光圈的控制装置,其特征在于,所述光圈图案中存在隔离区域,其中所述隔离区域为所述光圈图案包围的不透明的区域;所述部分驱动电极包括所述驱动电极阵列中所述光圈图案对应的区域外围的驱动电极,以及所述隔离区域对应的驱动电极;所述控制模块,具体用于根据所述隔离区域在所述驱动电极阵列中确定一条通道,其中所述通道连接所述隔离区域以及所述第一流体;对所述通道上的驱动电极自所述驱动电极阵列的外围向中心依次施加电场电压;对所述隔离区域对应的驱动电极自靠近所述通道到远离所述通道依次施加电场电压;将所述通道上的驱动电极的电场电压撤销;对所述驱动电极阵列中所述光圈图案对应的区域外围的驱动电极自所述驱动电极阵列的外围向中心依次施加电场电压。
  23. 根据权利要求22所述的光圈的控制装置,其特征在于,还包括确定模块,用于根据所述第一流体与所述隔离区域的距离确定所述通道,或者根据所述光圈图案远离所述隔离区域的边缘与所述隔离区域的距离确定所述通道。
  24. 一种电子设备,其特征在于,包含如权利要求1-11任一项所述的光圈或如权利要求16-19任一项所述的镜头,以及处理器和存储器;其中,所述处理器被配置为调用存储在所述存储器中的程序指令,以执行如权利要求12-15中任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有程序指令,当所述程序指令在计算机或处理器上运行时,使得所述计算机或所述处理器执行如权利要求12-15任意一项所述的方法。
PCT/CN2021/090338 2020-06-09 2021-04-27 一种光圈及其控制方法、镜头及电子设备 WO2021249052A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/063,166 US20230105861A1 (en) 2020-06-09 2022-12-08 Aperture and aperture control method, imaging lens, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010518630.3A CN113852734B (zh) 2020-06-09 2020-06-09 一种光圈及其控制方法、镜头及电子设备
CN202010518630.3 2020-06-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/063,166 Continuation US20230105861A1 (en) 2020-06-09 2022-12-08 Aperture and aperture control method, imaging lens, and electronic device

Publications (1)

Publication Number Publication Date
WO2021249052A1 true WO2021249052A1 (zh) 2021-12-16

Family

ID=78845280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090338 WO2021249052A1 (zh) 2020-06-09 2021-04-27 一种光圈及其控制方法、镜头及电子设备

Country Status (3)

Country Link
US (1) US20230105861A1 (zh)
CN (1) CN113852734B (zh)
WO (1) WO2021249052A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI826163B (zh) * 2022-12-05 2023-12-11 宏碁股份有限公司 屏下相機及光圈元件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1069450A2 (en) * 1999-06-16 2001-01-17 Canon Kabushiki Kaisha Optical element and optical device having it
CN1831567A (zh) * 2005-03-08 2006-09-13 索尼株式会社 光器件
CN101685172A (zh) * 2008-09-26 2010-03-31 索尼株式会社 光学元件和成像装置
CN101685173A (zh) * 2008-09-26 2010-03-31 索尼株式会社 光学元件、成像装置以及驱动光学元件的方法
CN204856002U (zh) * 2015-07-31 2015-12-09 信利半导体有限公司 一种光圈和镜头模组
CN110632752A (zh) * 2019-09-27 2019-12-31 Oppo广东移动通信有限公司 聚光板、聚光显示屏及移动终端
CN110716369A (zh) * 2019-10-21 2020-01-21 Oppo广东移动通信有限公司 光圈、摄像头及电子装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011180293A (ja) * 2010-02-26 2011-09-15 Fujifilm Corp レンズアレイ
KR20150054544A (ko) * 2013-11-12 2015-05-20 삼성전자주식회사 미세 전기 유체 소자 및 이를 포함한 장치
CN107507135B (zh) * 2017-07-11 2020-04-24 天津大学 基于编码光圈和靶标的图像重构方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1069450A2 (en) * 1999-06-16 2001-01-17 Canon Kabushiki Kaisha Optical element and optical device having it
CN1831567A (zh) * 2005-03-08 2006-09-13 索尼株式会社 光器件
CN101685172A (zh) * 2008-09-26 2010-03-31 索尼株式会社 光学元件和成像装置
CN101685173A (zh) * 2008-09-26 2010-03-31 索尼株式会社 光学元件、成像装置以及驱动光学元件的方法
CN204856002U (zh) * 2015-07-31 2015-12-09 信利半导体有限公司 一种光圈和镜头模组
CN110632752A (zh) * 2019-09-27 2019-12-31 Oppo广东移动通信有限公司 聚光板、聚光显示屏及移动终端
CN110716369A (zh) * 2019-10-21 2020-01-21 Oppo广东移动通信有限公司 光圈、摄像头及电子装置

Also Published As

Publication number Publication date
CN113852734A (zh) 2021-12-28
CN113852734B (zh) 2023-01-17
US20230105861A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
CN110199267B (zh) 利用数据压缩进行实时图像转换的无缺失的高速缓存结构
TWI552110B (zh) 可變解析度之深度表示
US10692274B2 (en) Image processing apparatus and method
US11941724B2 (en) Model inference method and apparatus based on graphics rendering pipeline, and storage medium
US20160103483A1 (en) Methods to Pan, Zoom, Crop, and Proportionally Move on a Head Mountable Display
CN111738122A (zh) 图像处理的方法及相关装置
CN116325775A (zh) 屏下相机和传感器控制
WO2022042285A1 (zh) 一种应用程序界面显示的方法及电子设备
WO2021218364A1 (zh) 一种图像增强方法及电子设备
CN114911718A (zh) 利用多个lsr处理引擎的用于实时图像变换的无丢失高速缓存结构
CN111553846B (zh) 超分辨率处理方法及装置
WO2021249052A1 (zh) 一种光圈及其控制方法、镜头及电子设备
CN111882642B (zh) 三维模型的纹理填充方法及装置
KR20240058070A (ko) Npu를 포함하는 엣지 디바이스 그리고 동작 방법
US20230353862A1 (en) Image capture method, graphic user interface, and electronic device
WO2022156473A1 (zh) 一种播放视频的方法及电子设备
US20230228912A1 (en) Meta lens assembly and electronic device including the same
CN115480719A (zh) 图像传输与显示方法、相关设备及系统
US10867368B1 (en) Foveated image capture for power efficient video see-through
KR20160100152A (ko) 시인성 개선을 위한 이미지 처리 방법 및 이를 지원하는 전자 장치
CN114868180A (zh) 用于改变显示器的指定区域中的显示的电子装置及其操作方法
WO2022095906A1 (zh) 一种按键映射方法、电子设备及系统
CN113740997A (zh) 一种镜头组件、摄像模组以及电子设备
KR20220035011A (ko) 메타 렌즈 어셈블리 및 이를 포함한 전자 장치
KR20220086457A (ko) 가변 성능을 가지는 메타 광학 소자 및 이를 포함하는 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21823137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21823137

Country of ref document: EP

Kind code of ref document: A1