WO2021249021A1 - 信息通告方法、通信节点、计算机可读介质 - Google Patents

信息通告方法、通信节点、计算机可读介质 Download PDF

Info

Publication number
WO2021249021A1
WO2021249021A1 PCT/CN2021/087648 CN2021087648W WO2021249021A1 WO 2021249021 A1 WO2021249021 A1 WO 2021249021A1 CN 2021087648 W CN2021087648 W CN 2021087648W WO 2021249021 A1 WO2021249021 A1 WO 2021249021A1
Authority
WO
WIPO (PCT)
Prior art keywords
slice
network
target
network slice
deterministic
Prior art date
Application number
PCT/CN2021/087648
Other languages
English (en)
French (fr)
Inventor
熊泉
张征
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21821646.3A priority Critical patent/EP4152695A1/en
Priority to US18/009,676 priority patent/US20230261995A1/en
Publication of WO2021249021A1 publication Critical patent/WO2021249021A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/20Traffic policing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0895Configuration of virtualised networks or elements, e.g. virtualised network function or OpenFlow elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5041Network service management, e.g. ensuring proper service fulfilment according to agreements characterised by the time relationship between creation and deployment of a service
    • H04L41/5054Automatic deployment of services triggered by the service manager, e.g. service implementation by automatic configuration of network components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation

Definitions

  • the present disclosure relates to the field of communication technology, in particular to information notification methods, communication nodes, and computer-readable media.
  • the IEEE 802.1 standard organization defines Time-Sensitive Networking (TSN, Time-Sensitive Networking), which mainly provides services with low latency, low packet loss and high reliability for L2 layer services.
  • TSN Time-Sensitive Networking
  • Deterministic Networking Deterministic Networking
  • RFC8655 defines DetNet-related technical architecture to provide deterministic services for Layer 2 bridging and Layer 3 routing networks.
  • Service level (QoS, Quality of Service) requirements include deterministic delay upper limit, low packet loss rate, reduced jitter, and high reliability.
  • embodiments of the present disclosure provide an information notification method applied to a first communication node, including:
  • the target deterministic flow is mapped to a target network slice according to the mapping rule, and the message of the target deterministic flow is transmitted through the target network slice.
  • embodiments of the present disclosure provide an information notification method applied to a second communication node, including:
  • the configuration message is delivered to the first communication node, so that the first communication node maps the target deterministic flow to the target network slice according to the mapping rule.
  • a first communication node including:
  • One or more processors are One or more processors;
  • a memory having one or more programs stored thereon, and when the one or more programs are executed by the one or more processors, the one or more processors are caused to implement the information notification described in the first aspect Method;
  • One or more I/O interfaces are connected between the processor and the memory, and are configured to implement information interaction between the processor and the memory.
  • embodiments of the present disclosure provide a second communication node, including:
  • One or more processors are One or more processors;
  • a memory having one or more programs stored thereon, and when the one or more programs are executed by the one or more processors, the one or more processors are caused to implement the information notification described in the second aspect Method;
  • One or more I/O interfaces are connected between the processor and the memory, and are configured to implement information interaction between the processor and the memory.
  • embodiments of the present disclosure provide a computer-readable medium on which a computer program is stored, and the computer program, when executed by a processor, implements the information notification method described in the first aspect or the information notification method described in the second aspect Information notification method.
  • Figure 1 is a flowchart of an information notification method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of the format of a slicing operation component in an embodiment of the present disclosure
  • FIG. 3 is a flowchart of an information notification method provided by an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of an information notification method provided by an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of an information notification method provided by an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of an information notification method provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a network structure of TSN or DetNet based on network slicing in an embodiment of the present disclosure
  • FIG. 8 is a block diagram of the composition of a first communication node provided by an embodiment of the present disclosure.
  • FIG. 9 is a block diagram of the composition of a second communication node provided by an embodiment of the present disclosure.
  • FIG. 10 is a block diagram of the composition of a computer-readable medium provided by an embodiment of the disclosure.
  • a network slice refers to a logical network with specific network characteristics, which is composed of network function modules and resources configured for these network function modules.
  • network slicing is slicing and virtualizing network topology resources such as network links, nodes, and ports of the bearer network to construct a virtual network.
  • an embodiment of the present disclosure provides an information notification method applied to a first communication node, including:
  • Step S110 Receive a deterministic flow configuration message sent by the second communication node, where the configuration message carries a mapping rule of the deterministic flow to the network slice;
  • Step S120 Map the target deterministic flow to a target network slice according to the mapping rule, and transmit the message of the target deterministic flow through the target network slice.
  • deterministic services are transmitted through the slicing network.
  • the deterministic services are transmitted through the slicing network on the L2 layer TSN terminal node or the L3 layer DetNet network, which will carry the deterministic services and non-deterministic services on the network.
  • Deterministic service isolation and different deterministic services are logically isolated, resources are reserved for deterministic services and allocated among different deterministic resources, thereby eliminating mutual interference between deterministic services.
  • the second communication node creates multiple network slices on the physical network.
  • network slices according to the business requirements of different deterministic services, respectively specify associated strategies and characteristics for different network slices, so as to meet the business requirements of specific deterministic services.
  • enhanced mobile bandwidth (eMBB, Enhanced Mobile Broadband) services such as 4K/8K mobile video require ultra-high bandwidth and ultra-high-speed mobility.
  • eMBB Enhanced Mobile Broadband
  • 4K/8K mobile video require ultra-high bandwidth and ultra-high-speed mobility.
  • When creating network slices that carry eMBB services specify the associations such as ultra-high bandwidth and ultra-high-speed mobility.
  • Ultra-reliable and low-latency communications such as industrial automation, autonomous driving, smart grid and remote control applications require ultra-low latency (less than 1ms) and high reliability
  • uRLLC Ultra-reliable and low-latency communications
  • M2M machine-to-machine
  • IOT Internet of Things
  • mMTC Massive Machine Type Communications
  • the control plane configuration is adopted, and the deterministic flow is mapped to the network slice through the notification and interaction between the second communication node and the first communication node.
  • Deterministic flow control such as mapping.
  • the first communication node receives a configuration message issued by the second communication node, the configuration message has a predetermined format and carries a mapping rule for deterministic flow to network slices.
  • the first communication node converts the received configuration message into a flow control strategy of the forwarding plane, so that in step S120, the received target deterministic flow is mapped to the target network slice, and the target network slice is passed through the target deterministic flow in step S120.
  • the network slice transmits the packets of the target deterministic flow.
  • the target network slice is a network slice that meets the service level agreement (SLA, Service Level Agreement) guarantee of the target deterministic flow.
  • the mapping rule is to identify the target network slice with corresponding SLA guarantee on the first communication node of the control plane, and map the target deterministic flow to the target network slice with corresponding SLA guarantee on the forwarding plane, and transmit through the target network slice. Information necessary for the message of the target deterministic flow.
  • the deterministic stream may be an L2 layer TSN stream or an L3 layer DetNet stream, which is not particularly limited in the embodiment of the present disclosure.
  • a network slice capable of providing SLA guarantee services meeting the deterministic business is created according to the business requirements of the deterministic business, and the control plane configuration is adopted to realize the first communication node and the second communication node.
  • the deterministic flow between communication nodes is mapped to the announcement and interaction of related information of the network slicing, so that the deterministic flow can be mapped to the network slicing with SLA guarantee, and the packets of the deterministic flow can be transmitted through the network slicing.
  • the first communication node is an ingress edge node of a slice network.
  • the deterministic flow is mapped to the corresponding network slice according to the network slice identifier.
  • the mapping rule includes a network slice identifier of the target network slice, and the network slice identifier is used to uniquely identify the target network slice.
  • the mapping rule includes the network slice identifier of the target slice network, so that the first communication node can uniquely identify the target network slice according to the network slice identifier as the mapping rule , And map the target deterministic flow to a target network slice with corresponding SLA guarantee, and transmit the message of the target deterministic flow through the target network slice.
  • the adopted distributed control plane technology that can support slices mainly includes Flexible Algorithm (FA), Virtual Private Network VPN+, and Transport Network Slice Slice+.
  • Network slice identifiers include: Administrative Instance Identifier (AI I), used to distinguish and identify different virtual network resources; slice flexible algorithm (FA, Flexible Algorithm) identifier FA-ID, used to identify a series of constraint conditions The corresponding FA path includes calculation-type, metric-type and other constraints; Virtual Transport Network (VTN, Virtual Transport Network) identification VTN-ID, used to identify the virtual transport network;
  • the network slice identification also includes the multi-topology identification Multi-Topology ID, used to identify a sub-topology. All of the above-mentioned slice identifiers can be used to uniquely identify a slice network.
  • the network slice identifier includes the management instance identifier AII, the slice flexible algorithm identifier FA-ID, the virtual transmission network identifier VTN-ID, and the multi-topology identifier Multi-Topology ID.
  • the slicing technology of the forwarding plane of the bearer network can be divided into soft slicing technology and hard slicing technology.
  • Soft slicing is at Layer 2 or above, and is based on statistical multiplexing slicing technology, such as segment routing (SR), Internet Protocol (IP, Internet Protocol)/multi-protocol label switching (MPLS, Multi-Protocol Label Switching) tunnel/pseudo wire technology, based on virtual private network (VPN, Virtual Private Network), virtual local area network (VLAN, Virtual Local Area Network) and other virtualization technologies.
  • SR segment routing
  • IP Internet Protocol
  • MPLS Multi-Protocol Label Switching
  • VPN Virtual Private Network
  • VLAN Virtual Local Area Network
  • Hard slicing is a slicing technology based on physical rigid pipes in the layer 1 or optical layer, such as FlexE technology, slicing channel (SC, Slicing Channel) technology, optical transport network (OTN, Optical Transport Network) technology, wave Wavelength Division Multiplexing (WDM) technology, etc.
  • FlexE slicing channel
  • OTN optical transport network
  • WDM wave Wavelength Division Multiplexing
  • the type of the target network slice includes soft slices created based on the slicing technology of flexible pipes, and hard slices created based on the slicing technology of physically rigid pipes;
  • the flexible pipe-based slicing technology includes tunnel/pseudo wire technology based on SR and IP/MPLS, and virtualization technology based on VPN and VLAN;
  • the slicing technology of the physical rigid pipeline includes flexible Ethernet FlexE technology, slicing channel SC technology, optical transport network OTN technology, and wavelength division multiplexing WDM technology.
  • the embodiments of the present disclosure adopt a control plane configuration method to realize the announcement and interaction of related information about the deterministic flow mapping to the network slice.
  • the embodiments of the present disclosure use Border Gateway Protocol (BGP, Border Gateway Protocol) messages to advertise deterministic flow mapping to network slice related information between the first communication node and the second communication node And interact.
  • Border Gateway Protocol Border Gateway Protocol
  • the configuration message includes a Border Gateway Protocol BGP message.
  • the embodiment of the present disclosure uses the UPDATE message in the BGP message to advertise and exchange information related to the deterministic flow mapping to the network slice between the first communication node and the second communication node.
  • the UPDATE message is used to transmit routing information between BGP peers.
  • the information it carries can be used to construct a topology describing the relationship between various autonomous systems, so as to notify peers of feasible routes that share common path attributes, or from services Withdraw multiple infeasible routes in the process.
  • the UPDATE message carries network layer reachability information (NLRI, Network Layer Reachability Information), which is used to indicate routing purpose information.
  • NLRI Network Layer Reachability Information
  • NLRI and extended community attributes can carry the matching conditions of the flow and the actions executed after the flow is matched, and are used to distribute the rules for filtering the flow and forwarding.
  • the flow specification in NLRI is an n-tuple consisting of multiple matching conditions that can be applied to IP traffic.
  • a Flowspec NLRI can include multiple components, such as target prefix, source prefix, protocol, port, etc. When a specific data packet matches the intersection (AND) of all components present in the flow specification, it will be regarded as a match with the flow specification.
  • a slice-action (slice-action) component is defined based on the BGP Flowspec, and the slice-action carries the mapping rule of the deterministic flow to the network slice.
  • the configuration message is an update UPDATE message in a BGP message
  • the UPDATE message carries network layer reachability information NLRI
  • the NLRI includes a slice-action component
  • the slice-action The mapping rule is configured in the component.
  • Fig. 2 is a schematic diagram of the format of BGP Flowspec slice-action in an embodiment of the disclosure.
  • the BGP Flowspec slice-action in the embodiment of the present disclosure includes:
  • a slice type field (Type), where the slice type field is configured with the type of the target network slice;
  • a slice ID field (Slice-ID), where the slice ID field is configured with a network slice ID of the target network slice.
  • the adopted distributed control plane technologies that can support slices mainly include Flexible Algorithm (FA), virtual transmission network VPN+, and transmission network slice Slice+.
  • FA Flexible Algorithm
  • AII Administrative Instance Identifier
  • FA-ID Virtual Transmission Network
  • VTN-ID Virtual Network-ID
  • Multi-Topology ID can be used to uniquely identify a slice network.
  • the length of the Type field is 8 bits.
  • the Slice-ID field is variable length. For example, if the network slice identifier is Multi-Topology ID, the length of the Slice-ID field is 16 bits; if the network slice identifier is FA-ID, the length of the Slice-ID field is 8 bits; If the network slice identifier is AII, the length of the Slice-ID field is 32 bits; if the network slice identifier is VTN-ID, the length of the Slice-ID field is 32 bits.
  • the deterministic flow is mapped to the target slice network according to the network slice identifier configured in the Slice-ID field of the slice-action component.
  • step S120 includes:
  • Step S121 Map the target deterministic flow to the target network slice according to the type of the target network slice configured in the slice type field and the network slice identifier of the target network configured in the slice identifier field , Transmitting the message of the target deterministic flow through the target network slice.
  • the embodiment of the present disclosure uses path calculation protocol (PCEP, Path Computation Element Protocol) messages to perform deterministic flow mapping between the first communication node and the second communication node to the relevant information of the network slice Announcements and interactions.
  • PCEP Path Computation Element Protocol
  • the message type of the configuration message includes a path calculation protocol PCEP message.
  • the message of the target deterministic flow includes a time-sensitive network TSN message and a deterministic network DetNet message.
  • an embodiment of the present disclosure provides an information notification method applied to a second communication node, including:
  • Step S210 Generate a configuration message according to the deterministic requirements of the target deterministic flow, where the configuration message carries a mapping rule from the deterministic flow to the network slice;
  • Step S220 Deliver the configuration message to the first communication node, so that the first communication node maps the target deterministic flow to the target network slice according to the mapping rule.
  • the second communication node creates multiple network slices on the physical network.
  • network slices according to the business requirements of different deterministic services, respectively specify associated strategies and characteristics for different network slices, so as to meet the business requirements of deterministic services.
  • enhanced mobile bandwidth (eMBB, Enhanced Mobile Broadband) services such as 4K/8K mobile video require ultra-high bandwidth and ultra-high-speed mobility.
  • eMBB Enhanced Mobile Broadband
  • 4K/8K mobile video require ultra-high bandwidth and ultra-high-speed mobility.
  • When creating network slices that carry eMBB services specify the associations such as ultra-high bandwidth and ultra-high-speed mobility.
  • ultra-high reliability and low latency communications such as industrial automation, autonomous driving, smart grid and remote control applications require ultra-low latency (less than 1ms) and high reliability
  • uRLLC Ultra-Reliable and Low Latency Communications
  • network slices that carry uRLLC services specify associated strategies and features such as ultra-low latency and high reliability
  • machine-to-machine M2M, machine to machine
  • IOT Internet of Things
  • massive machines Massive Machine Type Communications (mMTC, Massive Machine Type Communications) services require an ultra-high number of connections.
  • mMTC Massive Machine Type Communications
  • the control plane configuration is adopted, and the deterministic flow is mapped to the network slice through the announcement and interaction between the second communication node and the first communication node. Mapping etc.
  • the second communication node generates a configuration message according to a predetermined format, where the configuration message carries a deterministic flow to the network slice mapping rule, and in step S220, the configuration message is delivered to the first communication node, This enables the first communication node to map the target deterministic flow to the target network slice according to the mapping rule carried in the configuration message.
  • the target network slice is a network slice that meets the SLA guarantee of the target deterministic flow.
  • the deterministic stream may be an L2 layer TSN stream or an L3 layer DetNet stream, which is not particularly limited in the embodiment of the present disclosure.
  • a network slice capable of providing SLA guarantee services meeting the deterministic business is created according to the business requirements of the deterministic business, and the control plane configuration is adopted to realize the first communication node and the second communication node.
  • the deterministic flow between communication nodes is mapped to the announcement and interaction of related information of the network slice, so that the packets of the deterministic flow are mapped to the network slice with SLA guarantee for transmission, and the reservation and allocation of deterministic services are realized. Resources, avoid mutual interference between deterministic services, eliminate congestion, packet loss, etc., and meet the business needs of deterministic services.
  • the second communication node is a controller.
  • the deterministic flow is mapped to the corresponding network slice according to the network slice identifier carried in the configuration message.
  • the mapping rule includes a network slice identifier of the target network slice, and the network slice identifier is used to uniquely identify the target network slice.
  • the mapping rule includes the network slice identifier of the target slice network, so that the first communication node can uniquely identify the target network slice according to the network slice identifier as the mapping rule , And map the target deterministic flow to a target network slice with corresponding SLA guarantee, and transmit the message of the target deterministic flow through the target network slice.
  • the distributed control plane technologies that can support slices mainly include FA, VPN+, and Slice+.
  • Network slice identification includes: AI I, used to distinguish and identify different virtual network resources; FA-ID, used to identify the FA path corresponding to a series of constraints, including calculation-type, metric-type and other constraints; VTN -ID, used to identify the virtual transmission network; in addition, the network slice identification also includes Multi-Topology ID, used to identify a sub-topology.
  • the network slice identifier includes the management instance identifier AII, the slice flexible algorithm identifier FA-ID, the virtual transmission network identifier VTN-ID, and the multi-topology identifier Multi-Topology ID.
  • the above-mentioned slice identification can be used to uniquely identify a slice network.
  • the slicing technology of the forwarding plane of the bearer network can be divided into soft slicing technology and hard slicing technology.
  • Soft slicing is a slicing technology based on statistical multiplexing at Layer 2 or above, such as: tunnel/pseudo wire technology based on SR, IP/MPLS, and virtualization technology based on VPN, VLAN, etc.
  • Hard slicing is a slicing technology based on physical rigid pipes at the layer 1 or optical layer, such as FlexE technology, slicing channel (SC, Slicing Channel) technology, optical transport network (OTN, Optical Transport Network) technology, wave Wavelength Division Multiplexing (WDM) technology, etc.
  • the type of the target network slice includes soft slices created based on the slicing technology of flexible pipes, and hard slices created based on the slicing technology of physically rigid pipes;
  • the flexible pipe-based slicing technology includes tunnel/pseudo wire technology based on SR and IP/MPLS, and virtualization technology based on VPN and VLAN;
  • the slicing technology of the physical rigid pipeline includes flexible Ethernet FlexE technology, slicing channel SC technology, optical transport network OTN technology, and wavelength division multiplexing WDM technology.
  • the embodiments of the present disclosure adopt a control plane configuration method to realize the announcement and interaction of related information about the deterministic flow mapping to the network slice.
  • the embodiment of the present disclosure uses BGP messages to advertise and exchange information related to the deterministic flow mapping to the network slice between the first communication node and the second communication node.
  • the configuration message includes a Border Gateway Protocol BGP message.
  • the embodiment of the present disclosure uses the UPDATE message in the BGP message to advertise and exchange information related to the deterministic flow mapping to the network slice between the first communication node and the second communication node.
  • the UPDATE message is used to transmit routing information between BGP peers.
  • the information it carries can be used to construct a topology describing the relationship between various autonomous systems, so as to notify peers of feasible routes that share common path attributes, or from services Withdraw multiple infeasible routes in the process.
  • the UPDATE message carries network layer reachability information (NLRI, Network Layer Reachability Information), which is used to indicate routing purpose information.
  • NLRI Network Layer Reachability Information
  • NLRI and extended community attributes can carry the matching conditions of the flow and the actions executed after the flow is matched, and are used to distribute the rules for filtering the flow and forwarding.
  • the flow specification in NLRI is an n-tuple consisting of multiple matching conditions that can be applied to IP traffic.
  • a Flowspec NLRI can include multiple components, such as target prefix, source prefix, protocol, port, etc. When a specific data packet matches the intersection (AND) of all components present in the flow specification, it will be regarded as a match with the flow specification.
  • a slice-action (slice-action) component is defined based on the BGP Flowspec, and the slice-action carries the mapping rule of the deterministic flow to the network slice.
  • the configuration message is an update UPDATE message in a BGP message
  • the UPDATE message carries network layer reachability information NLRI
  • the NLRI includes a slice-action component.
  • steps S210 includes:
  • Step S211 Configure the mapping rule in the slice-action component to generate the configuration message.
  • Fig. 2 is a schematic diagram of the format of BGP Flowspec slice-action in an embodiment of the disclosure.
  • the BGP Flowspec slice-action in the embodiment of the present disclosure includes:
  • the slice type field (Type) is used to configure the type of the target network slice.
  • the slice ID field (Slice-ID) is used to configure the network slice ID of the target network slice.
  • the adopted distributed control plane technologies that can support slices mainly include Flexible Algorithms (FA), virtual transmission network VPN+, and transmission network slice Slice+.
  • FA Flexible Algorithms
  • AI I Administrative Instance Identifier
  • FA-ID Virtual Transmission Network
  • VTN-ID Virtual Network-ID
  • Multi-Topology ID can be used to uniquely identify a slice network.
  • the BGP Flowspec slice-action in the embodiment of the present disclosure further includes:
  • the length of the Type field is 8 bits.
  • the Slice-ID field is variable length. For example, if the network slice identifier is Multi-Topology ID, the length of the Slice-ID field is 16 bits; if the network slice identifier is FA-ID, the length of the Slice-ID field is 8 bits; If the network slice identifier is AI I, the length of the Slice-ID field is 32 bits; if the network slice identifier is VTN-ID, the length of the Slice-ID field is 32 bits.
  • the embodiment of the present disclosure uses path calculation protocol (PCEP, Path Computation Element Protocol) messages to perform deterministic flow mapping between the first communication node and the second communication node to the relevant information of the network slice Announcements and interactions.
  • PCEP Path Computation Element Protocol
  • the message type of the configuration message includes a path calculation protocol PCEP message.
  • the message of the target deterministic flow includes a time-sensitive network TSN message and a deterministic network DetNet message.
  • the second communication node creates hard slices based on FlexE, SC, or Optical Path Data Unit (ODUk) pipes, or creates tunnels/pseudo wire technologies based on SR, IP/MPLS, VPN, VLAN, etc. Virtualization technology and other soft slices.
  • FlexE FlexE
  • SC Optical Path Data Unit
  • ODUk Optical Path Data Unit
  • the information notification method further includes:
  • Step S230 Create at least one network slice according to the deterministic requirement.
  • network slicing is used to reserve and allocate resources for deterministic services.
  • control plane BGP/PCEP Flowspec method is used to filter deterministic flows, such as L2 layer TSN flows, L3 layer DetNet flows, etc., and deterministic flows Map to slices with deterministic services to complete the announcement and interaction of related information from deterministic flows to slices. The specific steps are as follows:
  • the second communication node respectively delivers configuration messages to the slice ingress and egress edge nodes, which carry deterministic flow filtering rules and mapping operations, and the message types include BGP messages or PCEP messages;
  • the first communication node receives and filters the TSN flow message or DetNet flow message according to the configuration message, and maps the TSN flow message or DetNet flow message to a slice with corresponding SLA guarantee for transmission.
  • the network structure of TSN or DetNet based on network slicing is shown in Figure 7.
  • the L2 layer TSN terminal node or the L3 layer DetNet network transmits deterministic services through the slicing network.
  • the first communication node is the entry edge node of the slice network, and the second communication node is the controller (Slicing Controller).
  • the physical network has created multiple slices vNet1, vNet2, vNet3, etc., and TSN flow or DetNet flow needs Map to slices with corresponding SLA guarantees.
  • network slicing is used to realize the resource reservation and allocation of deterministic services.
  • control plane BGP/PCEP Flowspec method is used to filter deterministic flows, such as L2 layer TSN flow, L3 layer DetNet flow, etc., and deterministic flow Map to slices with deterministic services, and complete the announcement and interaction of relevant information from deterministic flows to slices.
  • the slices vNet1, vNet2, and vNet3 are hard slices.
  • the controller issues and creates a hard slice vNet1 based on Flexible Ethernet (FlexE, Flex Ethernet), SC or ODUk pipes, etc., which can provide SLA guarantee services that meet the deterministic flow.
  • Flexible Ethernet Flexible Ethernet
  • SC or ODUk pipes etc.
  • the controller delivers a deterministic service configuration message to the ingress edge node of the slice network, which carries deterministic flow filtering rules and slice mapping operations, etc.
  • the message types include BGP messages or PCEP messages.
  • the ingress edge node of the slice network receives and filters TSN stream packets or DetNet stream packets according to the configuration message, and maps the TSN stream packets or DetNet stream packets to the hard slice vNet1 with corresponding SLA guarantee according to the Slice-ID. transmission.
  • the network structure of TSN or DetNet based on network slicing is shown in Figure 7.
  • the L2 layer TSN terminal node or the L3 layer DetNet network transmits deterministic services through the slicing network.
  • the first communication node is the ingress edge node of the slice network, and the second communication node is the controller (Slicing Controller).
  • the physical network has created multiple slices vNet1, vNet2, vNet3, etc., and TSN flow or DetNet flow requires Map to slices with corresponding SLA guarantees.
  • network slicing is used to realize the resource reservation and allocation of deterministic services.
  • control plane BGP/PCEP Flowspec method is used to filter deterministic flows, such as L2 layer TSN flow, L3 layer DetNet flow, etc., and deterministic flow Map to slices with deterministic services, and complete the announcement and interaction of relevant information from deterministic flows to slices.
  • the slices vNet1, vNet2, and vNet3 are hard slices.
  • the controller issues and creates a soft slice vNet2 based on SR, IP/MPLS tunnel/pseudowire technology, VPN, VLAN and other virtualization technologies.
  • the slice can provide SLA guarantee services that meet the deterministic flow.
  • the controller delivers a deterministic service configuration message to the ingress edge node of the slice network, which carries deterministic flow filtering rules and slice mapping operations, etc.
  • the message type includes BGP message or PCEP message.
  • the ingress edge node of the slice network receives and filters TSN stream packets or DetNet stream packets according to the configuration message, and maps the TSN stream packets or DetNet stream packets to the soft slice vNet2 with corresponding SLA guarantee according to the Slice-ID. transmission.
  • an embodiment of the present disclosure provides a first communication node, including:
  • One or more processors 101 are One or more processors 101;
  • the memory 102 has one or more programs stored thereon, and when the one or more programs are executed by the one or more processors, the one or more processors realize the information described in the first aspect Notification method
  • One or more I/O interfaces 103 are connected between the processor and the memory, and are configured to implement information interaction between the processor and the memory.
  • the processor 101 is a device with data processing capability, which includes but is not limited to a central processing unit (CPU), etc.; the memory 102 is a device with data storage capability, which includes but is not limited to random access memory (RAM, more specifically such as SDRAM). , DDR, etc.), read-only memory (ROM), charged erasable programmable read-only memory (EEPROM), flash memory (FLASH); I/O interface (read and write interface) 103 is connected between processor 101 and memory 102, The information interaction between the processor 101 and the memory 102 is implemented, which includes but is not limited to a data bus (Bus) and the like.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM charged erasable programmable read-only memory
  • FLASH flash memory
  • I/O interface (read and write interface) 103 is connected between processor 101 and memory 102, The information interaction between the processor 101 and the memory 102 is implemented, which includes but is not limited to a data bus (Bus) and the like.
  • the processor 101, the memory 102, and the I/O interface 103 are connected to each other through the bus 104, and further connected to other components of the computing device.
  • the first communication node is an ingress edge node of a slice network.
  • the first communication node is a routing device.
  • an embodiment of the present disclosure provides a second communication node, including:
  • One or more processors 201 are included in the Appendix 201;
  • the memory 202 has one or more programs stored thereon, and when the one or more programs are executed by the one or more processors, the one or more processors realize the information described in the second aspect Notification method
  • One or more I/O interfaces 203 are connected between the processor and the memory, and are configured to implement information interaction between the processor and the memory.
  • the processor 201 is a device with data processing capabilities, which includes but is not limited to a central processing unit (CPU), etc.; the memory 202 is a device with data storage capabilities, which includes but is not limited to random access memory (RAM, more specifically such as SDRAM). , DDR, etc.), read-only memory (ROM), charged erasable programmable read-only memory (EEPROM), flash memory (FLASH); the I/O interface (read-write interface) 203 is connected between the processor 201 and the memory 202, The information interaction between the processor 201 and the memory 202 is realized, which includes but is not limited to a data bus (Bus) and the like.
  • a data bus Buss
  • the processor 201, the memory 202, and the I/O interface 203 are connected to each other through the bus 204, and further connected to other components of the computing device.
  • the second communication node is a controller.
  • an embodiment of the present disclosure provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a processor, the information notification method described in the first aspect or the second The information notification method described in the aspect.
  • Such software may be distributed on a computer-readable medium, and the computer-readable medium may include a computer storage medium (or a non-transitory medium) and a communication medium (or a transitory medium).
  • the term computer storage medium includes volatile and non-volatile implementations in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data). Sexual, removable and non-removable media.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, tapes, magnetic disk storage or other magnetic storage, or can be used Any other medium that can store desired information and can be accessed by a computer.
  • a communication medium usually contains computer-readable instructions, data structures, program modules, or data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开实施例提供一种信息通告方法,应用于第一通信节点,所述信息通告方法包括:接收第二通信节点发送的确定性流的配置消息,所述配置消息携带确定性流到网络切片的映射规则;根据所述映射规则将目标确定性流映射到目标网络切片,通过所述目标网络切片传输所述目标确定性流的报文。本公开实施例还提供一种应用于第二通信节点的信息通告方法、一种第一通信节点、一种第二通信节点和一种计算机可读介质。

Description

信息通告方法、通信节点、计算机可读介质
相关申请的交叉引用
本申请要求于2020年6月12日提交的中国专利申请NO.202010537503.8的优先权,该中国专利申请的内容通过引用的方式整体合并于此。
技术领域
本公开涉及通信技术领域,特别涉及信息通告方法、通信节点、计算机可读介质。
背景技术
为了满足承载网确定性业务等的业务需求,IEEE 802.1标准组织定义了时间敏感网络(TSN,Time-Sensitive Networking),主要为L2层业务提供低时延、低丢包率、高可靠性服务。同时,为了在L3层实现确定性技术,IETF标准组织也提出了确定性网络技术(DetNet,Deterministic Networking),RFC8655定义了DetNet相关技术架构,为二层桥接和三层路由网络提供确定性业务,服务等级(QoS,Quality of Service)要求包括确定性时延上限、低丢包率、降低抖动和高可靠性等。
公开内容
第一方面,本公开实施例提供一种信息通告方法,应用于第一通信节点,包括:
接收第二通信节点发送的确定性流的配置消息,所述配置消息携带确定性流到网络切片的映射规则;以及
根据所述映射规则将目标确定性流映射到目标网络切片,通过所述目标网络切片传输所述目标确定性流的报文。
第二方面,本公开实施例提供一种信息通告方法,应用于第二通信节点,包括:
根据目标确定性流的确定性需求生成配置消息,所述配置消息携带有确定性流到网络切片的映射规则;以及
将所述配置消息下发到第一通信节点,以使所述第一通信节点根据所述映射规则将所述目标确定性流映射到目标网络切片。
第三方面,本公开实施例提供一种第一通信节点,包括:
一个或多个处理器;
存储器,其上存储有一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现第一方面所述的信息通告方法;以及
一个或多个I/O接口,连接在所述处理器与所述存储器之间,配置为实现所述处理器与所述存储器之间的信息交互。
第四方面,本公开实施例提供一种第二通信节点,包括:
一个或多个处理器;
存储器,其上存储有一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现第二方面所述的信息通告方法;以及
一个或多个I/O接口,连接在所述处理器与所述存储器之间,配置为实现所述处理器与所述存储器之间的信息交互。
第五方面,本公开实施例提供一种计算机可读介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现第一方面所述的信息通告方法、或第二方面所述的信息通告方法。
附图说明
图1是本公开实施例提供的信息通告方法的流程图;
图2是本公开实施例中切片操作组件的格式示意图;
图3是本公开实施例提供的信息通告方法的流程图;
图4是本公开实施例提供的信息通告方法的流程图;
图5是本公开实施例提供的信息通告方法的流程图;
图6是本公开实施例提供的信息通告方法的流程图;
图7是本公开实施例中基于网络切片的TSN或DetNet的网络结构的示意图;
图8是本公开实施例提供的第一通信节点的组成框图;
图9是本公开实施例提供的第二通信节点的组成框图;以及
图10为本公开实施例提供的计算机可读介质的组成框图。
具体实施方式
为使本领域的技术人员更好地理解本公开的技术方案,下面结合附图对本公开提供的信息通告方法、第一通信节点、第二通信节点、计算机可读介质进行详细描述。
在下文中将参考附图更充分地描述示例实施例,但是所述示例实施例可以以不同形式来体现且不应当被解释为受限于本文的阐述。反之,提供这些实施例的目的在于使本公开尽可能地透彻和完整,并使本领域技术人员充分理解本公开的范围。
在不冲突的情况下,本公开的各实施例及实施例中的各特征可相互组合。
如本文所使用的,术语“和/或”包括一个或多个相关列举条目的任何和所有组合。
本文所使用的术语仅用于描述特定实施例,且不意欲限制本公开。如本文所使用的,单数形式“一个”和“该”意欲包括至少一个,不排除多个,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括”和/或“由……制成”时,指定存在特定特征、整体、步骤、操作、元件和/或组件,但不排除存在或可添加一个或多个其它特征、整体、步骤、操作、元件、组件和/或其群组。
除非另外限定,否则本文所用的所有术语(包括技术术语和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。
网络切片(network slice)是指一个具有特定网络特性的逻辑网络,它由网络功能模块以及配置给这些网络功能模块的资源组成。在承载网场景下,网络切片是面向承载网网络链路、节点、端口等网络拓扑资源进行切片和虚拟化,构建虚拟网络。
经研究发现,现有TSN和DetNet中,通过为确定性业务预留资源来消除拥塞、丢包等,以满足承载网低时延、低丢包率、高可靠性等确定性业务的业务需求。但是,传统的承载网网络是在物理网络上直接部署业务及为确定性业务预留资源,在这种架构下,业务层的各种业务共享物理网络的资源,没有隔离机制,存在资源竞争的问题,因此会导致确定性业务之间相互干扰,无法达到消除拥塞、丢包等目标,也就无法满足确定性业务低时延抖动、低丢包率等业务需求。
有鉴于此,第一方面,参照图1,本公开实施例提供一种信息通告方法,应用于第一通信节点,包括:
步骤S110,接收第二通信节点发送的确定性流的配置消息,所述配置消息携带确定性流到网络切片的映射规则;以及
步骤S120,根据所述映射规则将目标确定性流映射到目标网络切片,通过所述目标网络切片传输所述目标确定性流的报文。
在本公开实施例中,基于网络切片技术,通过切片网络传输确定性业务,例如,在L2层TSN终端节点或L3层DetNet网络通过切片网络传输确定性业务,将承载网上的确定性业务和非确定性业务隔离、不同确定性业务在逻辑上进行隔离,为确定性业务预留资源并在不同确定性资源中进行分配,从而消除了确定性业务之间的相互干扰。
在本公开实施例中,第二通信节点在物理网络上创建多个网络切片。创建网络切片时,根据不同的确定性业务的业务需求,分别为不同的网络切片指定关联的策略和特性,从而满足特定的确定性业务的业务需求。例如,4K/8K移动视频等增强移动带宽(eMBB,Enhanced Mobile Broadband)业务要求超高带宽、超高速移动性,在创建承载eMBB业务的网络切片时,指定超高带宽、超高速移动性等关联策略和特性;工业自动化、自动驾驶、智能电网和远程控制应用等超高可靠与低时延通信(uRLLC,Ultra-Reliable and Low Latency  Communications)业务要求超低时延(小于1ms)、高可靠性,在创建承载uRLLC业务的网络切片时,指定超低时延、高可靠性等关联策略和特性;机器对机器(M2M,machine to machine)、物联网(IOT,Internet of Things)应用等海量机器类通信(mMTC,Massive Machine Type Communications)业务要求超高的连接数量,在创建承载mMTC业务的网络切片时,指定超高连接数量等关联策略和特性。
本公开实施例中,采用控制面配置的方式,通过在第二通信节点和第一通信节点之间进行确定性流映射到网络切片的相关信息的通告和交互,实现确定性流到网络切片的映射等对确定性流的控制。在步骤S110中,第一通信节点接收第二通信节点下发的配置消息,所述配置消息具有预定格式,并携带有确定性流到网络切片的映射规则。在本公开实施例中,第一通信节点将接收到的配置消息转换为转发面的流控制策略,从而在步骤S120中,将接收到的目标确定性流映射到目标网络切片,通过所述目标网络切片传输所述目标确定性流的报文。
需要说明的是,所述目标网络切片为满足所述目标确定性流的服务级别协议(SLA,Service Level Agreement)保障的网络切片。所述映射规则为在控制面第一通信节点识别具有对应SLA保障的目标网络切片、并在转发面将目标确定性流映射到具有对应SLA保障的目标网络切片上、通过所述目标网络切片传输所述目标确定性流的报文所必要的信息。
在本公开实施例中,所述确定性流可以是L2层TSN流,也可以是L3层DetNet流,本公开实施例对此不做特殊限定。
在本公开实施例提供的信息通告方法中,根据确定性业务的业务需求创建了能够提供满足确定性业务的SLA保障服务的网络切片,采用控制面配置的方式,实现第一通信节点与第二通信节点之间的确定性流映射到网络切片的相关信息的通告和交互,从而能够将确定性流映射到具有SLA保障的网络切片上,并通过网络切片传输确定性流的报文,实现了为确定性业务预留及分配资源,避免了确定性业务之间相互干扰,消除了拥塞、丢包等,满足了确定性业务的业务需求。
在一些实施方式中,所述第一通信节点为切片网络的入口边缘节点。
作为一种可选的实施方式,在第一通信节点中,根据网络切片标识将确定性流映射到对应的网络切片。
相应地,在一些实施方式中,所述映射规则包括所述目标网络切片的网络切片标识,所述网络切片标识用于唯一识别所述目标网络切片。
由于网络切片标识能够用于唯一识别一个切片网络,所述映射规则包括目标切片网络的网络切片标识,使得第一通信节点能够根据作为所述映射规则的网络切片标识,唯一的识别出目标网络切片,并将目标确定性流映射到具有对应SLA保障的目标网络切片上、通过所述目标网络切片传输所述目标确定性流的报文。
例如,在本公开实施例中,采用的可支持切片的分布式控制面技术主要有切片灵活算法(FA,Flexible Algorithm)、虚拟专用网络VPN+和传送网切片Slice+。网络切片标识包括:管理实例标识(AI I,Administrative Instance Identifier),用于区分和识别不同的虚拟网络资源;切片灵活算法(FA,Flexible Algorithm)标识FA-ID,用于标识一系列约束条件所对应的FA路径,包括calculation-type,metric-type及其他约束条件;虚拟传输网络(VTN,Virtual Transport Network)标识VTN-ID,用于标识虚拟传输网络;此外,网络切片标识还包括多拓扑标识Multi-Topology ID,用于标识一个子拓扑。上述切片标识都可以用于唯一识别一个切片网络。
相应地,在一些实施方式中,所述网络切片标识包括管理实例标识AII、切片灵活算法标识FA-ID、虚拟传输网络标识VTN-ID、多拓扑标识Multi-Topology ID。
在本公开实施例中,承载网转发面的切片技术可分为软切片技术和硬切片技术。软切片是在二层(Layer 2)或以上,基于统计复用的切片技术,如:基于分段路由(SR,Segment Routing)、网际互连协议(IP,Internet Protocol)/多协议标签交换(MPLS,Multi-Protocol Label Switching)的隧道/伪线技术,基于虚拟专 用网络(VPN,Virtual Private Network)、虚拟局域网(VLAN,Virtual Local Area Network)等的虚拟化技术。硬切片是在一层(Layer 1)或光层,基于物理刚性管道的切片技术,如:FlexE技术,切片通道(SC,Slicing Channel)技术,光传送网(OTN,Optical Transport Network)技术,波分复用(WDM,Wavelength Division Multiplexing)技术等。
相应地,在一些实施方式中,所述目标网络切片的类型包括基于柔性管道的切片技术创建的软切片、基于物理刚性管道的切片技术创建的硬切片;
所述基于柔性管道的切片技术包括基于SR、IP/MPLS的隧道/伪线技术、基于VPN、VLAN的虚拟化技术;
所述物理刚性管道的切片技术包括灵活以太网FlexE技术、切片通道SC技术、光传送网络OTN技术、波分复用WDM技术。
如上文所述,本公开实施例采用控制面配置的方式实现确定性流映射到网络切片的相关信息的通告和交互。作为一种可选的实施方式,本公开实施例通过边界网关协议(BGP,Border Gateway Protocol)消息在第一通信节点和第二通信节点之间进行确定性流映射到网络切片的相关信息的通告和交互。
相应地,在一些实施方式中,所述配置消息包括边界网关协议BGP消息。
作为一种可选的实施方式,本公开实施例通过BGP消息中的更新UPDATE消息在第一通信节点和第二通信节点之间进行确定性流映射到网络切片的相关信息的通告和交互。UPDATE消息用于在BGP对等体之间传输路由信息,其携带的信息可用于构建描述各种自治系统之间关系的拓扑,从而向对等方通告共享公共路径属性的可行路由,或从服务中撤回多个不可行路由。在UPDATE消息中携带有网络层可达性信息(NLRI,Network Layer Reachability Information),用于指示路由目的信息。在BGP流配置(Flowspec,Flow Specification)功能中,通过NLRI和扩展团体属性(Extended Community)能够携带流量的匹配条件和流量匹配后执行的动作,用于分发过滤流量及转 发的规则。
NLRI中的流规范是一个n元组,由可应用于IP流量的多个匹配条件组成。在一个Flowspec NLRI中,可以包括多个组件,例如目标前缀、源前缀、协议、端口等。当特定数据包与流规范中存在的所有组件的交集(AND)相匹配时,将被视为与流规范相匹配。
在本公开实施例中,基于BGP Flowspec定义了切片操作(slice-action)组件,在所述slice-action中携带确定性流到网络切片的映射规则。
相应地,在一些实施方式中,所述配置消息为BGP消息中的更新UPDATE消息,所述UPDATE消息携带网络层可达信息NLRI,所述NLRI包括切片操作slice-action组件,所述slice-action组件中配置有所述映射规则。
图2为本公开实施例中BGP Flowspec slice-action的格式示意图。
如图2所示,本公开实施例中的BGP Flowspec slice-action包括:
切片类型字段(Type),所述切片类型字段配置有所述目标网络切片的类型;以及
切片标识字段(Slice-ID),所述切片标识字段配置有所述目标网络切片的网络切片标识。
在本公开实施例中,采用的可支持切片的分布式控制面技术主要有切片灵活算法(FA,Flexible Algorithm)、虚拟传输网络VPN+和传送网切片Slice+。对应的,可以用管理实例标识(AII,Administrative Instance Identifier)、FA-ID、VTN-ID,Multi-Topology ID唯一的标识一个切片网络。
在一些实施方式中,如图2所示,Type字段的长度为8bit。Slice-ID字段为可变长,例如,若网络切片标识为Multi-Topology ID,则Slice-ID字段的长度为16bits;若网络切片标识为FA-ID,则Slice-ID字段的长度为8bits;若网络切片标识为AII,则Slice-ID字段的长度为32bits;若网络切片标识为VTN-ID,则Slice-ID字段 的长度为32bits。
在本公开实施例中,根据slice-action组件的Slice-ID字段中配置的网络切片标识,将确定性流映射到目标切片网络。
相应地,参照图3,在一些实施方式中,步骤S120包括:
步骤S121,根据所述切片类型字段中配置的所述目标网络切片的类型和所述切片标识字段中配置的所述目标网络的网络切片标识将所述目标确定性流映射到所述目标网络切片,通过所述目标网络切片传输所述目标确定性流的报文。
作为另一种可选的实施方式,本公开实施例通过路径计算协议(PCEP,Path Computation Element Protocol)消息在第一通信节点和第二通信节点之间进行确定性流映射到网络切片的相关信息的通告和交互。
相应地,在一些实施方式中,所述配置消息的消息类型包括路径计算协议PCEP消息。
在一些实施方式中,所述目标确定性流的报文包括时间敏感性网络TSN报文、确定性网络DetNet报文。
第二方面,参照图4,本公开实施例提供一种信息通告方法,应用于第二通信节点,包括:
步骤S210,根据目标确定性流的确定性需求生成配置消息,所述配置消息携带有确定性流到网络切片的映射规则;
步骤S220,将所述配置消息下发到第一通信节点,以使所述第一通信节点根据所述映射规则将所述目标确定性流映射到目标网络切片。
在本公开实施例中,第二通信节点在物理网络上创建多个网络切片。创建网络切片时,根据不同的确定性业务的业务需求,分别为不同的网络切片指定关联的策略和特性,从而满足确定性业务的业务需求。例如,4K/8K移动视频等增强移动带宽(eMBB,Enhanced Mobile Broadband)业务要求超高带宽、超高速移动性,在创建承载eMBB业务的网络切片时,指定超高带宽、超高速移动性等关联策略和特性;工业自动化、自动驾驶、智能电网和远程控制应用等超高可靠与低时 延通信(uRLLC,Ultra-Reliable and Low Latency Communications)业务要求超低时延(小于1ms)、高可靠性,在创建承载uRLLC业务的网络切片时,指定超低时延、高可靠性等关联策略和特性;机器对机器(M2M,machine to machine)、物联网(IOT,Internet of Things)应用等海量机器类通信(mMTC,Massive Machine Type Communications)业务要求超高的连接数量,在创建承载mMTC业务的网络切片时,指定超高连接数量等关联策略和特性。
本公开实施例中,采用控制面配置的方式,通过在第二通信节与第一通信节点之间进行确定性流映射到网络切片的相关信息的通告和交互,实现确定性流到网络切片的映射等。在步骤S210中,第二通信节点按照预定格式生成配置消息,在所述配置消息携带有确定性流到网络切片的映射规则,并在步骤S220中,将配置消息下发到第一通信节点,使得第一通信节点能够根据配置消息中携带的映射规则将目标确定性流映射到目标网络切片。需要说明的是,所述目标网络切片为满足所述目标确定性流的SLA保障的网络切片。
在本公开实施例中,所述确定性流可以是L2层TSN流,也可以是L3层DetNet流,本公开实施例对此不做特殊限定。
在本公开实施例提供的信息通告方法中,根据确定性业务的业务需求创建了能够提供满足确定性业务的SLA保障服务的网络切片,采用控制面配置的方式,实现第一通信节点与第二通信节点之间的确定性流映射到网络切片的相关信息的通告和交互,从而将确定性流的报文映射到具有SLA保障的网络切片上进行传输,实现了为确定性业务预留及分配资源,避免了确定性业务之间相互干扰,消除了拥塞、丢包等,满足了确定性业务的业务需求。
在一些实施方式中,所述第二通信节点为控制器。
作为一种可选的实施方式,在第一通信节点中,根据配置消息中携带的网络切片标识将确定性流映射到对应的网络切片。
相应地,在一些实施方式中,所述映射规则包括所述目标网络切片的网络切片标识,所述网络切片标识用于唯一识别所述目标网络切片。
由于网络切片标识能够用于唯一识别一个切片网络,所述映射规则包括目标切片网络的网络切片标识,使得第一通信节点能够根据作为所述映射规则的网络切片标识,唯一的识别出目标网络切片,并将目标确定性流映射到具有对应SLA保障的目标网络切片上、通过所述目标网络切片传输所述目标确定性流的报文。
例如,在本公开实施例中,采用的可支持切片的分布式控制面技术主要有FA、VPN+和Slice+。网络切片标识包括:AI I,用于区分和识别不同的虚拟网络资源;FA-ID,用于标识一系列约束条件所对应的FA路径,包括calculation-type,metric-type及其他约束条件;VTN-ID,用于标识虚拟传输网络;此外,网络切片标识还包括Multi-Topology ID,用于标识一个子拓扑。
相应地,在一些实施方式中,所述网络切片标识包括管理实例标识AII、切片灵活算法标识FA-ID、虚拟传输网络标识VTN-ID、多拓扑标识Multi-Topology ID。上述切片标识都可以用于唯一识别一个切片网络。
在本公开实施例中,承载网转发面的切片技术可分为软切片技术和硬切片技术。软切片是在二层(Layer 2)或以上,基于统计复用的切片技术,如:基于SR、IP/MPLS的隧道/伪线技术,基于VPN、VLAN等的虚拟化技术。硬切片是在一层(Layer 1)或光层,基于物理刚性管道的切片技术,如:FlexE技术,切片通道(SC,Slicing Channel)技术,光传送网(OTN,Optical Transport Network)技术,波分复用(WDM,Wavelength Division Multiplexing)技术等。
相应地,在一些实施方式中,所述目标网络切片的类型包括基于柔性管道的切片技术创建的软切片、基于物理刚性管道的切片技术创建的硬切片;
所述基于柔性管道的切片技术包括基于SR、IP/MPLS的隧道/伪线技术、基于VPN、VLAN的虚拟化技术;
所述物理刚性管道的切片技术包括灵活以太网FlexE技术、切片通道SC技术、光传送网络OTN技术、波分复用WDM技术。
如上文所述,本公开实施例采用控制面配置的方式实现确定性 流映射到网络切片的相关信息的通告和交互。作为一种可选的实施方式,本公开实施例通过BGP消息在第一通信节点和第二通信节点之间进行确定性流映射到网络切片的相关信息的通告和交互。
相应地,在一些实施方式中,所述配置消息包括边界网关协议BGP消息。
作为一种可选的实施方式,本公开实施例通过BGP消息中的更新UPDATE消息在第一通信节点和第二通信节点之间进行确定性流映射到网络切片的相关信息的通告和交互。UPDATE消息用于在BGP对等体之间传输路由信息,其携带的信息可用于构建描述各种自治系统之间关系的拓扑,从而向对等方通告共享公共路径属性的可行路由,或从服务中撤回多个不可行路由。在UPDATE消息中携带有网络层可达性信息(NLRI,Network Layer Reachability Information),用于指示路由目的信息。在BGP流配置(Flowspec,Flow Specification)功能中,通过NLRI和扩展团体属性(Extended Community)能够携带流量的匹配条件和流量匹配后执行的动作,用于分发过滤流量及转发的规则。
NLRI中的流规范是一个n元组,由可应用于IP流量的多个匹配条件组成。在一个Flowspec NLRI中,可以包括多个组件,例如目标前缀、源前缀、协议、端口等。当特定数据包与流规范中存在的所有组件的交集(AND)相匹配时,将被视为与流规范相匹配。
在本公开实施例中,基于BGP Flowspec定义了切片操作(slice-action)组件,在所述slice-action中携带确定性流到网络切片的映射规则。
相应地,在一些实施方式中,所述配置消息为BGP消息中的更新UPDATE消息,所述UPDATE消息携带网络层可达信息NLRI,所述NLRI包括切片操作slice-action组件,参照图5,步骤S210包括:
步骤S211,在所述slice-action组件中配置所述映射规则,生成所述配置消息。
图2为本公开实施例中BGP Flowspec slice-action的格式示意图。
如图2所示,本公开实施例中的BGP Flowspec slice-action包括:
切片类型字段(Type),用于配置所述目标网络切片的类型;以及
切片标识字段(Slice-ID),用于配置所述目标网络切片的网络切片标识。
在本公开实施例中,采用的可支持切片的分布式控制面技术主要有切片灵活算法(FA,Flexible Algorithm),虚拟传输网络VPN+和传送网切片Slice+。对应的,可以用管理实例标识(AI I,Administrative Instance Identifier)、FA-ID、VTN-ID,Multi-Topology ID唯一的标识一个切片网络。
在一些实施方式中,如图2所示,本公开实施例中的BGP Flowspec slice-action还包括:
保留字段(Resv)。
在一些实施方式中,如图2所示,Type字段的长度为8bit。Slice-ID字段为可变长,例如,若网络切片标识为Multi-Topology ID,则Slice-ID字段的长度为16bits;若网络切片标识为FA-ID,则Slice-ID字段的长度为8bits;若网络切片标识为AI I,则Slice-ID字段的长度为32bits;若网络切片标识为VTN-ID,则Slice-ID字段的长度为32bits。
作为另一种可选的实施方式,本公开实施例通过路径计算协议(PCEP,Path Computation Element Protocol)消息在第一通信节点和第二通信节点之间进行确定性流映射到网络切片的相关信息的通告和交互。
在一些实施方式中,所述配置消息的消息类型包括路径计算协议PCEP消息。
在一些实施方式中,所述目标确定性流的报文包括时间敏感性网络TSN报文、确定性网络DetNet报文。
在本公开实施例中,第二通信节点创建基于FlexE、SC或光通路数据单元(ODUk)管道等的硬切片,或创建基于SR、IP/MPLS的隧 道/伪线技术、基于VPN、VLAN等的虚拟化技术等的软切片。
相应地,在一些实施方式中,参照图6,在步骤S210之前,所述信息通告方法还包括:
步骤S230,根据确定性需求创建至少一个网络切片。
实例一
在实例一中,使用网络切片实现确定性业务的资源预留及分配,同时采用控制面BGP/PCEP Flowspec方法,过滤确定性流,如L2层TSN流、L3层DetNet流等,将确定性流映射到具有确定性服务的切片,完成确定性流到切片的相关信息的通告及交互,具体步骤如下:
第二通信节点分别下发配置消息到切片入口及出口边缘节点,其中携带确定性流过滤规则及映射操作,消息类型包括BGP消息或PCEP消息;
第一通信节点根据配置消息,接收并过滤TSN流报文或DetNet流报文,将TSN流报文或DetNet流报文映射到具有对应SLA保障的切片上进行传输。
实例二
基于网络切片的TSN或DetNet的网络结构如图7所示,在实例二中,L2层TSN终端节点或L3层DetNet网络通过切片网络传输确定性业务。在图7中,第一通信节点为切片网络的入口边缘节点,第二通信节点为控制器(Slicing Controller),物理网络已创建了多个切片vNet1,vNet2和vNet3等,TSN流或DetNet流需要映射到具有对应SLA保障的切片。在实例二中,使用网络切片实现确定性业务的资源预留及分配,同时采用控制面BGP/PCEP Flowspec方法,过滤确定性流,如L2层TSN流、L3层DetNet流等,将确定性流映射到具有确定性服务的切片,完成确定性流到切片的相关信息的通告及交互。
在实例二中,切片vNet1、vNet2和vNet3等为硬切片。
控制器下发并创建基于灵活以太网(FlexE,Flex Ethernet)、 SC或ODUk管道等的硬切片vNet1,该切片可以提供满足确定性流的SLA保障服务。
控制器下发确定性业务配置消息到切片网络的入口边缘节点,其中携带确定性流过滤规则及切片映射操作等,消息类型包括BGP消息或PCEP消息。
切片网络的入口边缘节点根据配置消息,接收并过滤TSN流报文或DetNet流报文,并根据Slice-ID将TSN流报文或DetNet流报文映射到具有对应SLA保障的硬切片vNet1上进行传输。
实例三
基于网络切片的TSN或DetNet的网络结构如图7所示,在实例三中,L2层TSN终端节点或L3层DetNet网络通过切片网络传输确定性业务。在图7中,第一通信节点为切片网络的入口边缘节点,第二通信节点为控制器(Slicing Controller),物理网络已创建了多个切片vNet1,vNet2和vNet3等,TSN流或DetNet流需要映射到具有对应SLA保障的切片。在实例三中,使用网络切片实现确定性业务的资源预留及分配,同时采用控制面BGP/PCEP Flowspec方法,过滤确定性流,如L2层TSN流、L3层DetNet流等,将确定性流映射到具有确定性服务的切片,完成确定性流到切片的相关信息的通告及交互。
在实例三中,切片vNet1、vNet2和vNet3等为硬切片。
控制器下发并创建基于SR、IP/MPLS的隧道/伪线技术、VPN、VLAN等虚拟化技术的软切片vNet2,该切片可以提供满足确定性流的SLA保障服务。
控制器下发确定性业务配置消息到切片网络的入口边缘节点,其中携带确定性流过滤规则及切片映射操作等,消息类型包括BGP消息或PCEP消息。
切片网络的入口边缘节点根据配置消息,接收并过滤TSN流报文或DetNet流报文,并根据Slice-ID将TSN流报文或DetNet流报文映射到具有对应SLA保障的软切片vNet2上进行传输。
第三方面,参照图8本公开实施例提供一种第一通信节点,包括:
一个或多个处理器101;
存储器102,其上存储有一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现第一方面所述的信息通告方法;
一个或多个I/O接口103,连接在处理器与存储器之间,配置为实现处理器与存储器之间的信息交互。
处理器101为具有数据处理能力的器件,其包括但不限于中央处理器(CPU)等;存储器102为具有数据存储能力的器件,其包括但不限于随机存取存储器(RAM,更具体如SDRAM、DDR等)、只读存储器(ROM)、带电可擦可编程只读存储器(EEPROM)、闪存(FLASH);I/O接口(读写接口)103连接在处理器101与存储器102间,能实现处理器101与存储器102之间的信息交互,其包括但不限于数据总线(Bus)等。
在一些实施方式中,处理器101、存储器102和I/O接口103通过总线104相互连接,进而与计算设备的其它组件连接。
在一些实施方式中,所述第一通信节点为切片网络的入口边缘节点。
在一些实施方式中,所述第一通信节点为路由设备。
上文已经对所述信息通告方法进行了详细的描述,此处不再赘述。
第四方面,参照图9,本公开实施例提供一种第二通信节点,包括:
一个或多个处理器201;
存储器202,其上存储有一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现第二方面所述的信息通告方法;
一个或多个I/O接口203,连接在处理器与存储器之间,配置为实现处理器与存储器之间的信息交互。
处理器201为具有数据处理能力的器件,其包括但不限于中央处理器(CPU)等;存储器202为具有数据存储能力的器件,其包括但不限于随机存取存储器(RAM,更具体如SDRAM、DDR等)、只读存储器(ROM)、带电可擦可编程只读存储器(EEPROM)、闪存(FLASH);I/O接口(读写接口)203连接在处理器201与存储器202间,能实现处理器201与存储器202之间的信息交互,其包括但不限于数据总线(Bus)等。
在一些实施方式中,处理器201、存储器202和I/O接口203通过总线204相互连接,进而与计算设备的其它组件连接。
在一些实施方式中,所述第二通信节点为控制器。
上文已经对所述信息通告方法进行了详细的描述,此处不再赘述。
第五方面,参照图10,本公开实施例提供一种计算机可读介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现第一方面所述的信息通告方法、或第二方面所述的信息通告方法。
上文已经对第一方面所述的信息通告方法和第二方面所述的信息通告方法进行了详细的描述,此处不再赘述。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器(如中央处理器、数字信号处理器或微处理器)执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其它数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质 包括但不限于RAM、ROM、EEPROM、闪存或其它存储器技术、CD-ROM、数字多功能盘(DVD)或其它光盘存储、磁盒、磁带、磁盘存储或其它磁存储器、或者可以用于存储期望的信息并且可以被计算机访问的任何其它的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其它传输机制的调制数据信号中的数据,并且可包括任何信息递送介质。
本文已经公开了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则与特定实施例相结合描述的特征、特性和/或元素可单独使用,或可与结合其它实施例描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。

Claims (28)

  1. 一种信息通告方法,应用于第一通信节点,包括:
    接收第二通信节点发送的确定性流的配置消息,所述配置消息携带确定性流到网络切片的映射规则;以及
    根据所述映射规则将目标确定性流映射到目标网络切片,通过所述目标网络切片传输所述目标确定性流的报文。
  2. 根据权利要求1所述的信息通告方法,其中,所述第一通信节点为切片网络的入口边缘节点。
  3. 根据权利要求1所述的信息通告方法,其中,所述映射规则包括所述目标网络切片的网络切片标识,所述网络切片标识用于唯一识别所述目标网络切片。
  4. 根据权利要求3所述的信息通告方法,其中,所述目标网络切片的网络切片标识包括管理实例标识、切片灵活算法标识、虚拟传输网络标识、多拓扑标识。
  5. 根据权利要求1至4中任意一项所述的信息通告方法,其中,所述目标网络切片的类型包括基于柔性管道的切片技术创建的软切片、基于物理刚性管道的切片技术创建的硬切片;
    所述基于柔性管道的切片技术包括基于分段路由、网际互连协议/多协议标签交换的隧道/伪线技术、基于虚拟专用网络、虚拟局域网的虚拟化技术;以及
    所述物理刚性管道的切片技术包括灵活以太网技术、切片通道技术、光传送网络技术、波分复用技术。
  6. 根据权利要求1所述的信息通告方法,其中,所述配置消息包括边界网关协议消息。
  7. 根据权利要求6所述的信息通告方法,其中,所述配置消息为边界网关协议消息中的更新消息,所述更新消息携带网络层可达信息,所述网络层可达信息包括切片操作组件,所述切片操作组件中配置有所述映射规则。
  8. 根据权利要求7所述的信息通告方法,其中,所述切片操作组件中配置的映射规则包括:
    切片类型字段,所述切片类型字段配置有所述目标网络切片的类型;以及
    切片标识字段,所述切片标识字段配置有所述目标网络切片的网络切片标识。
  9. 根据权利要求8所述的信息通告方法,其中,根据所述映射规则将目标确定性流映射到目标网络切片,通过所述目标网络切片传输所述目标确定性流的报文的步骤包括:
    根据所述切片类型字段中配置的所述目标网络切片的类型和所述切片标识字段中配置的所述目标网络的网络切片标识将所述目标确定性流映射到所述目标网络切片,通过所述目标网络切片传输所述目标确定性流的报文。
  10. 根据权利要求1所述的信息通告方法,其中,所述配置消息的消息类型包括路径计算协议消息。
  11. 根据权利要求1至4、6至10中任意一项所述的信息通告方法,其中,所述目标确定性流的报文包括时间敏感性网络报文、确定性网络报文。
  12. 一种信息通告方法,应用于第二通信节点,包括:
    根据目标确定性流的确定性需求生成配置消息,所述配置消息 携带有确定性流到网络切片的映射规则;以及
    将所述配置消息下发到第一通信节点,以使所述第一通信节点根据所述映射规则将所述目标确定性流映射到目标网络切片。
  13. 根据权利要求12所述的信息通告方法,其中,所述第二通信节点为控制器。
  14. 根据权利要求12所述的信息通告方法,其中,所述映射规则包括所述目标网络切片的网络切片标识,所述网络切片标识用于唯一识别所述目标网络切片。
  15. 根据权利要求14所述的信息通告方法,其中,所述目标网络切片的网络切片标识包括管理实例标识、切片灵活算法标识、虚拟传输网络标识、多拓扑标识。
  16. 根据权利要求12至15中任意一项所述的信息通告方法,其中,所述目标网络切片的类型包括基于柔性管道的切片技术创建的软切片、基于物理刚性管道的切片技术创建的硬切片;
    所述基于柔性管道的切片技术包括基于分段路由、网际互连协议/多协议标签交换的隧道/伪线技术、基于虚拟专用网络、虚拟局域网的虚拟化技术;以及
    所述物理刚性管道的切片技术包括灵活以太网技术、切片通道技术、光传送网络技术、波分复用技术。
  17. 根据权利要求12所述的信息通告方法,其中,所述配置消息包括边界网关协议消息。
  18. 根据权利要求17所述的信息通告方法,其中,所述配置消息为边界网关协议消息中的更新消息,所述更新消息携带网络层可达信息,所述网络层可达信息包括切片操作组件,
    根据目标确定性流的确定性需求生成配置消息的步骤包括:
    在所述切片操作组件中配置所述映射规则,生成所述配置消息。
  19. 根据权利要求18所述的信息通告方法,其中,所述切片操作组件中配置的映射规则包括:
    切片类型字段,用于配置所述目标网络切片的类型;以及
    切片标识字段,用于配置所述目标网络切片的网络切片标识。
  20. 根据权利要求19所述的信息通告方法,其中,所述切片标识字段的长度可变。
  21. 根据权利要求12所述的信息通告方法,其中,所述配置消息的消息类型包括路径计算协议消息。
  22. 根据权利要求12至15、17至21中任意一项所述的信息通告方法,其中,所述目标确定性流的报文包括时间敏感性网络报文、确定性网络报文。
  23. 根据权利要求12至15、17至21中任意一项所述的信息通告方法,其中,在根据目标确定性流的确定性需求生成配置消息的步骤之前,所述信息通告方法还包括:
    根据确定性需求创建至少一个网络切片。
  24. 一种第一通信节点,包括:
    一个或多个处理器;
    存储器,其上存储有一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现根据权利要求1至11中任意一项所述的信息通告方法;以及
    一个或多个I/O接口,连接在所述处理器与所述存储器之间,配置为实现所述处理器与所述存储器之间的信息交互。
  25. 根据权利要求24所述的第一通信节点,其中,所述第一通信节点为切片网络的入口边缘节点。
  26. 一种第二通信节点,包括:
    一个或多个处理器;
    存储器,其上存储有一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现根据权利要求12至23中任意一项所述的信息通告方法;以及
    一个或多个I/O接口,连接在所述处理器与所述存储器之间,配置为实现所述处理器与所述存储器之间的信息交互。
  27. 根据权利要求26所述的第二通信节点,其中,所述第二通信节点为控制器。
  28. 一种计算机可读介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现根据权利要求1至11中任意一项所述的信息通告方法、或权利要求12至23中任意一项所述的信息通告方法。
PCT/CN2021/087648 2020-06-12 2021-04-16 信息通告方法、通信节点、计算机可读介质 WO2021249021A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21821646.3A EP4152695A1 (en) 2020-06-12 2021-04-16 Information notification method, communication node, and computer-readable medium
US18/009,676 US20230261995A1 (en) 2020-06-12 2021-04-16 Information notification method, communication node and computer readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010537503.8 2020-06-12
CN202010537503.8A CN112511329A (zh) 2020-06-12 2020-06-12 信息通告方法及设备、可读介质

Publications (1)

Publication Number Publication Date
WO2021249021A1 true WO2021249021A1 (zh) 2021-12-16

Family

ID=74953485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087648 WO2021249021A1 (zh) 2020-06-12 2021-04-16 信息通告方法、通信节点、计算机可读介质

Country Status (4)

Country Link
US (1) US20230261995A1 (zh)
EP (1) EP4152695A1 (zh)
CN (1) CN112511329A (zh)
WO (1) WO2021249021A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023224601A1 (en) * 2022-05-17 2023-11-23 Rakuten Mobile, Inc. Control plane transport slice identifier for end-to-end 5g network slicing

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511329A (zh) * 2020-06-12 2021-03-16 中兴通讯股份有限公司 信息通告方法及设备、可读介质
CN115208777A (zh) * 2021-03-25 2022-10-18 中国移动通信有限公司研究院 一种信息处理方法、装置、平台设备及网络设备
CN115484152A (zh) * 2021-06-16 2022-12-16 华为技术有限公司 信息处理的方法、装置以及系统
CN115665024A (zh) * 2021-07-08 2023-01-31 中兴通讯股份有限公司 确定性流的转发方法及装置、存储介质及电子装置
CN113692020A (zh) * 2021-07-28 2021-11-23 北京直真科技股份有限公司 一种5g专网传输子切片自动开通方法
CN116170363A (zh) * 2021-11-25 2023-05-26 华为技术有限公司 一种引流的方法、设备及系统
CN114268537B (zh) * 2021-11-26 2023-12-22 华中科技大学 面向确定性网络的网络切片生成及动态配置系统及方法
WO2023155733A1 (zh) * 2022-02-17 2023-08-24 华为技术有限公司 一种网络切片信息传输方法及装置
CN116938719A (zh) * 2022-03-29 2023-10-24 中兴通讯股份有限公司 实现网络底层资源感知的确定性服务方法、设备、介质
CN117597908A (zh) * 2022-07-19 2024-02-23 新华三技术有限公司 确定性流传输方法、系统及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107659419A (zh) * 2016-07-25 2018-02-02 华为技术有限公司 网络切片方法和系统
CN109600259A (zh) * 2018-12-11 2019-04-09 浙江工商大学 一种基于软件可定义的实时传输机制
US20200178122A1 (en) * 2017-08-11 2020-06-04 Huawei Technologies Co., Ltd. Network slice deployment method and apparatus
CN112511329A (zh) * 2020-06-12 2021-03-16 中兴通讯股份有限公司 信息通告方法及设备、可读介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107659419A (zh) * 2016-07-25 2018-02-02 华为技术有限公司 网络切片方法和系统
US20200178122A1 (en) * 2017-08-11 2020-06-04 Huawei Technologies Co., Ltd. Network slice deployment method and apparatus
CN109600259A (zh) * 2018-12-11 2019-04-09 浙江工商大学 一种基于软件可定义的实时传输机制
CN112511329A (zh) * 2020-06-12 2021-03-16 中兴通讯股份有限公司 信息通告方法及设备、可读介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GROSSMAN E; ED DOLBY: "Deterministic Networking Use Cases; rfc8578.txt", DETERMINISTIC NETWORKING USE CASES; RFC8578.TX, 8578, 5 May 2019 (2019-05-05), pages 1 - 97, XP015132438 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023224601A1 (en) * 2022-05-17 2023-11-23 Rakuten Mobile, Inc. Control plane transport slice identifier for end-to-end 5g network slicing

Also Published As

Publication number Publication date
EP4152695A1 (en) 2023-03-22
CN112511329A (zh) 2021-03-16
US20230261995A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
WO2021249021A1 (zh) 信息通告方法、通信节点、计算机可读介质
US11431526B2 (en) Deterministic forwarding across L2 and L3 networks
US20210083940A1 (en) Method and apparatus for creating network slices
CN109863725B (zh) 基于最大分段标识符深度的分段路由方法及电子设备
US8867349B2 (en) Regulation of network traffic in virtual private networks
US20160006614A1 (en) Source Routing Using Path Computation Elements
US11362941B2 (en) Stateless multicast in label switched packet networks
US20170012895A1 (en) Path Computation Element Central Controllers (PCECCs) for Network Services
EP3468123B1 (en) Method and device for use in processing low-latency traffic
US11405283B2 (en) Connections and accesses for hierarchical path computation element (PCE)
US20170373966A1 (en) Packet Transmission Method, Node, Path Management Server and Storage Medium
WO2015192501A1 (zh) 地址信息的发布方法及装置
US10374935B2 (en) Link discovery method, system, and device
EP3253012B1 (en) Method and apparatus for obtaining port path
WO2018233580A1 (zh) 一种网络中建立转发路径的方法、控制器及系统
WO2015039617A1 (zh) 一种报文处理方法、系统及设备
WO2021164402A1 (zh) 路由方法、路由装置及计算机可读存储介质
WO2017211164A1 (zh) 一种确定跨域标签交换路径隧道的方法、设备和系统
CN114363249B (zh) 针对多路径分段路由的带宽约束
CN109768929B (zh) 一种基于vpws的报文传输方法及装置
WO2020114083A1 (zh) 一种ioam信息的处理方法和装置
WO2021103744A1 (zh) 一种异构网络通信方法、系统和控制器
US20020176415A1 (en) Channeling protocol data units
US11552884B1 (en) Efficient core routing
US9525615B2 (en) Systems and methods for implementing multiple ISIS routing instances on a network element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021821646

Country of ref document: EP

Effective date: 20221215

NENP Non-entry into the national phase

Ref country code: DE