WO2021248931A1 - 超强啁啾激光脉冲分步压缩装置 - Google Patents

超强啁啾激光脉冲分步压缩装置 Download PDF

Info

Publication number
WO2021248931A1
WO2021248931A1 PCT/CN2021/076680 CN2021076680W WO2021248931A1 WO 2021248931 A1 WO2021248931 A1 WO 2021248931A1 CN 2021076680 W CN2021076680 W CN 2021076680W WO 2021248931 A1 WO2021248931 A1 WO 2021248931A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser pulse
grating
ultra
compression module
Prior art date
Application number
PCT/CN2021/076680
Other languages
English (en)
French (fr)
Inventor
刘军
李儒新
Original Assignee
中国科学院上海光学精密机械研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海光学精密机械研究所 filed Critical 中国科学院上海光学精密机械研究所
Publication of WO2021248931A1 publication Critical patent/WO2021248931A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0972Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/44Grating systems; Zone plate systems

Definitions

  • the invention relates to a super-strong and ultra-short laser, in particular to a super-strong chirped laser pulse fractional compression device, which is used for the chirped pulse amplification of a beat-watt high peak power laser or the pulse in an optical parametric chirped pulse amplification system Compressed terminal. It is suitable for increasing the compressed output laser energy or reducing the laser pulse width, that is, increasing the laser peak power and focus power density.
  • ultra-strong and ultra-short laser pulses Due to the important applications of astrophysics, laser electron or proton acceleration, laser plasma physics and other major cutting-edge scientific research, ultra-strong and ultra-short laser pulses have achieved rapid development in recent years. This super powerful laser can provide unprecedented new experimental methods and extreme physical conditions for humans to explore cutting-edge science such as vacuum physics. At present, there are already more than 50 sets of ultra-strong and ultra-short laser devices of the order of more than beat watts (10 15 watts) at home and abroad, and 10PW-100PW ultra-strong laser devices are under construction.
  • the main technology to achieve ultra-high peak power laser amplification is chirped pulse amplification technology, including chirped pulse amplification (CPA) technology based on laser medium amplification and optical parametric amplification based on nonlinear crystals.
  • Chirped pulse amplification optical parameter chirped pulse amplification, referred to as OPCPA
  • Both of these methods have been developed relatively mature, and are widely used in the energy amplification process of terawatt and petawatt super-powered lasers.
  • the basic idea is to first use a pulse stretcher to introduce positive dispersion to the incident ultrashort laser pulse, thereby broadening the incident ultrashort laser pulse width from femtosecond or picosecond order to On the order of nanoseconds (10 -9 seconds).
  • the pulse-stretched laser is further amplified in a laser medium (such as Ti:Sapphire crystal) or a nonlinear crystal (such as BBO, KDP crystal) to obtain high-energy chirped laser pulses.
  • the amplified chirped laser pulse finally passes through a pulse compressor composed of gratings to compress the chirped laser pulse with a nanosecond pulse width back to a femtosecond or picosecond pulse width, thereby realizing ultra-strong and ultra-short laser pulse output .
  • the current terminal compressors are all reflective gratings to obtain a larger amount of dispersion, and the compressor structure is relatively simple.
  • the structured optical path of this type of typical four-grating compressor based on large-aperture gratings is shown in Figure 1.
  • the compressor is mainly composed of two parallel reflection grating pairs, grating 1 and grating 2, grating 3 and grating 4.
  • the working principle of the compressor is that the ultra-strong chirped laser pulse is first diffracted by grating 1, and then diffracted and collimated again by grating 2 to become a parallel laser with spatial chirp, and then compressed by grating 3 and grating 4 to obtain femtoseconds. Laser output.
  • the grating 3 and the grating 4 are usually placed as mirror images of the grating 1 and the grating 2.
  • the laser pulse energy of the amplified output needs to be larger and larger. Restricted by the current processing technology of large-diameter compressed gratings, it is extremely difficult to process large-size gratings. Even if they are processed in the future, the price is extremely expensive. This greatly limits the pulse compression of higher energy lasers and thus limits the ability to obtain higher peaks. Ultra-strong and ultra-short laser pulses with high power. Under the condition that the laser spot cannot be enlarged, the laser energy density hitting the grating becomes higher and higher, and the risk of damage to the grating is greater.
  • the compression gratings used in the compressor are plated with metal or dielectric reflective films.
  • the damage threshold of these highly reflective films decreases as the laser pulse narrows.
  • the pulse width on the last output grating is only on the order of femtoseconds or picoseconds, and the peak power it bears is very high, which is very easy to be broken.
  • the damage threshold of the first grating (endurable to nanosecond laser damage) may be 3 times or even dozens of times higher than the damage threshold of the last grating (endurable to femtosecond or picosecond laser damage).
  • the present invention also takes advantage of this feature.
  • super-powered lasers usually have large spatial intensity modulation, which also limits the incident laser energy of the grating compressor.
  • the purpose of the present invention is to overcome the above shortcomings of the prior art and propose a super-chirped laser pulse stepwise compression device.
  • This device will reduce the spatial intensity modulation of the incident laser to increase the incident laser energy on the first and last compressed gratings, and combine the spatiotemporal distortion compensation of the spatiotemporal compensation sheet in the main compressor with material dispersion compensation, and the final compressor Spatio-temporal focusing or self-compression methods enable a single typical four-grating compressor or a set of internal partial optical grating compressors to achieve high-energy laser pulse compression.
  • An ultra-strong chirped laser pulse stepwise compression device which is characterized in that the components along the forward direction of the laser pulse are pre-compression mode, main compression module, and final compression module in sequence.
  • the pre-compression module is composed of a prism pair and a reflector providing negative dispersion and angular dispersion;
  • the main compression module is composed of an incident reflector, a grating compressor, a space-time compensation sheet, and an exit reflector;
  • the final compression is composed of a focusing system and a transparent dielectric sheet.
  • the pre-compression module is a pair of prism pairs, multiple pairs of prisms, or a transmission grating that can provide negative dispersion and angular dispersion.
  • the prism pair is a small apex angle prism pair.
  • the grating compressor is a typical four-grating compressor, or an internal optical grating compressor, or a ring grating compressor.
  • the time-space compensation sheet can be a glass sheet or other transparent dispersion medium.
  • the focusing system is a focusing lens such as a parabolic reflector, and the combination of the transparent medium sheet can be zero to multiple sheets of glass or other transparent dispersion medium.
  • the combination of the focusing system and the transparent medium sheet can be used alone or in combination.
  • the present invention has the following salient features:
  • the pre-compression module based on prism equivalence compresses a small amount of pulses, and the most important thing is to use the prism to perform angular dispersion on the incident laser, thereby smoothing the spatial intensity distribution of the incident laser, reducing the spatial intensity modulation, and improving the first compression grating The incident laser energy on.
  • the small-angle prism pair can also replace the magnified spatial filtering system to a certain extent.
  • the main compression module based on the grating compressor is used to compensate most of the dispersion of the chirped pulse.
  • the laser pulse exiting the main compressor still has a certain amount of negative chirp Tweeted. This will make the beam on the last compressed grating smooth, and at the same time have a longer pulse width, thereby increasing the incident laser energy of the last compressed grating.
  • the space-time compensation film in the main compression module can compensate the space-time distortion introduced by the grating diffraction wavefront inside the compressor, so as to obtain shorter pulses.
  • a certain thickness of the space-time compensation film can also introduce an appropriate amount of positive dispersion, which makes the laser with negative chirp output after the final compression is also a spatially smooth laser.
  • This spatio-temporal compensator can also be used directly in the split window of the main compressor.
  • the transparent medium sheet after the focusing and focusing system can use dispersion compensation and spatiotemporal focusing to further obtain compressed pulses at the focal point.
  • the self-compression may also compress the incident laser pulse to a narrower.
  • the glass flakes are between the focusing system and the target, so there is no need to consider factors such as the self-focusing effect in the transparent medium material that may damage the lens.
  • the laser reflected from the surface of the transparent medium sheet can also be used to measure and monitor the temporal and spatial characteristics of the laser pulse, avoiding the need for additional sampling optical components.
  • the present invention adjusts the laser light in time and space by introducing a pre-compression module, so as to increase the incident laser energy on the first and last gratings of the main compression module, and then can pass through a single grating compressor or a single internal optical compressor, Realize the compression of high-energy super-strong laser pulses.
  • Figure 1 is a schematic diagram of the optical path structure of an existing typical four-grating compressor
  • Figure 2 is a block flow diagram of the new step-by-step compression method of the present invention
  • Figure 3 is a diagram of the optical path structure of the device and embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the optical path structure of an embodiment of the super-chirped laser pulse stepwise compression device of the present invention.
  • the structure of the embodiment of the super-chirped laser pulse stepwise compression device of the present invention is the pre-compression module, the main compression module, and the final compression module.
  • the super-chirped laser pulse stepwise compression device of this embodiment is shown in Fig. 3, which mainly includes: a pre-compression module composed of a pair of prisms 1, 2, and a mirror 3 with a small apex angle; and an incident mirror 4, a typical four-grating
  • the main compression module composed of the first grating 5, the second grating 6, the third grating 7 and the fourth grating 8, the space-time compensation sheet 9, and the exit mirror 10 in the compressor performs the main dispersion compensation; finally, the parabolic surface
  • the mirror 11 and the glass sheet combination for dispersion compensation or self-compression 12 serve as a final compression module to further compress the pulse.
  • the incident super chirped laser pulse width is 4ns
  • the center wavelength is 910nm
  • the spectral range is 810nm to 1010nm smooth Gaussian spectrum
  • the beam is 500mm ⁇ 500mm square flat-top beam
  • the beam spatial intensity modulation is 2, and the spatial intensity is randomly distributed.
  • the apex angle of the small apex angle prism pair 1 and 2 is 15 degrees, and the incident angle is 7 degrees.
  • the prism pair can introduce 50ps pulse compression to the incident chirped laser. For a wide bandwidth laser, this makes the laser spot smooth in the angular dispersion direction to a certain extent, thereby reducing the laser spatial intensity modulation.
  • the angular dispersion process of the prism pair also avoids the use of spatial filters.
  • the laser light passing through the pre-compression module is led into the main compression module by the mirror 3 and the incident mirror 4.
  • the main compression module is composed of four meter-level gold-plated first gratings 5, second gratings 6, third gratings 7, and fourth gratings 8.
  • the incident energy on the first grating 5 is the highest, and the beam size is small, so the energy density is the largest.
  • the nanosecond pulse width and pre-compressed beam smoothing effect increase the highest incident laser pulse energy.
  • the second grating 6 and the third grating 7 still have a nanosecond pulse width, the beam size is expanded due to angular dispersion, and the beam is smoothly spaced, so it will not be damaged.
  • the fourth grating 8 of the main compression module outputs a negatively chirped laser pulse of about 1 ps.
  • the spatio-temporal compensation sheet 9 can compensate the spatiotemporal distortion introduced by the diffracted wavefront of the second grating 6 and the third grating 7, and can introduce an appropriate amount of positive dispersion.
  • the laser output from the main compression module passes through the output mirror 10 and is led to the final compression module. Finally, it is focused by the parabolic mirror 11 (here it also has temporal and spatial focusing characteristics), and is subjected to dispersion compensation and self-compression through the glass block assembly 12, and a super-strong and ultra-short laser pulse of 15 fs can be obtained at the focal point.
  • the device of the present invention reduces the spatial intensity modulation of the incident laser, increases the incident laser energy on the first and last compressed gratings, and combines material dispersion compensation, spatiotemporal focusing, or self-compression to make a single typical four-grating compression
  • High-energy laser pulse compression can be achieved by a set of internal beam grating compressors or a set of internal beam grating compressors.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)

Abstract

一种超强啁啾激光脉冲分步压缩装置,其构成包括:由棱镜对等负色散元件组成的光束平滑和初始预压缩模块,由光栅压缩器等组成的脉冲主压缩模块,以及基于时空聚焦和(或)透明介质片中自压缩过程组成的终压缩模块。本发明利用预压缩模块对于入射激光空间强度调制的平滑作用,降低激光空间强度的调制,降低激光强度空间调制对于入射和出射光栅的损伤,从而可以提升入射激光能量,单级获得更强的激光输出。在终压缩模块的脉冲自压缩过程还可进一步展宽光谱和压缩激光脉冲获得更短激光脉冲输出。

Description

超强啁啾激光脉冲分步压缩装置 技术领域
本发明涉及超强超短激光,特别是一种超强啁啾激光脉冲分步压缩装置,该装置用于拍瓦高峰值功率激光的啁啾脉冲放大或光参量啁啾脉冲放大系统中的脉冲压缩终端。适用于提升压缩输出激光能量或降低激光脉冲宽度,即提升激光峰值功率和聚焦功率密度。
背景技术
由于天体物理、激光电子或质子加速、激光等离子物理等重大前沿科学研究中的重要应用,超强超短激光脉冲近年来获得了快速的发展。这种超强激光可以为人类探索真空物理等前沿科学提供了前所未有的全新的实验手段和极端的物理条件。目前国内外都已经有五十套以上拍瓦(10 15瓦)量级的超强超短激光装置,并且正在建设10PW-100PW超强激光装置。
当前,实现超高峰值功率激光放大的主要技术是啁啾脉冲放大技术,其中包括基于激光介质放大的啁啾脉冲放大(chirped pulse amplification,简称CPA)技术和基于非线性晶体进行参量放大的光参量啁啾脉冲放大(optical parameter chirped pulse amplification,简称OPCPA)技术。这两种方法都已经发展比较成熟,并广泛应用于太瓦和拍瓦超强激光的能量放大过程中。在两种啁啾脉冲放大技术中,基本思路都是首先采用一个脉冲展宽器对入射的超短激光脉冲引入正色散,从而将入射的超短激光脉冲宽度从飞秒或皮秒量级展宽到纳秒(10 -9秒)量级。脉冲展宽后的激光进而在激光介质(比如钛宝石晶体)或者 非线性晶体(比如BBO,KDP晶体)中进行多级放大,从而获得大能量的啁啾激光脉冲。放大后的啁啾激光脉冲最后经过由光栅组成的脉冲压缩器将纳秒量级脉冲宽度的啁啾激光脉冲压缩回到飞秒或皮秒量级脉宽,从而实现超强超短激光脉冲输出。
在超高峰值功率超强超短激光装置中,当前的终端压缩器都是反射式光栅来获得较大的色散量,压缩器结构较为简单。目前,这类基于大口径光栅的典型四光栅压缩器的结构光路如图1所示。压缩器主要由两组平行的反射光栅对,光栅1和光栅2,光栅3和光栅4组成。压缩器的工作原理是,超强啁啾激光脉冲首先经过光栅1衍射,然后经过光栅2再次衍射准直变成带有空间啁啾的平行激光,接着再经过光栅3和光栅4压缩得到飞秒激光输出。其中光栅3和光栅4通常为光栅1和光栅2的镜像放置。
最近,随着激光峰值功率的提升,放大输出的激光脉冲能量也就需要越来越大。受制于当期大口径压缩光栅的加工工艺,大尺寸光栅加工制作的难度极高,即使未来加工出来,价格也极为昂贵,这就大大限制了更高能量激光的脉冲压缩,从而限制了获得更高峰值功率的超强超短激光脉冲。在激光光斑不能变大情况下,打在光栅上的激光能量密度也越来越高,对光栅的损伤风险也就越大。为解决这一问题,有人提出在放大后将激光直接分束,然后分别进入不同光栅压缩器压缩,最后再进行激光组束的方法获得超强超短激光。但是这种方法,需要多个独立的真空光栅压缩器,成本很高,经过多个独立的真空压缩器后,由于指向、震动等各种因素影响再进行高效激光组束也非常困难。前期我们也提出了激光压缩器内部进行激光分束的新方法,可以简化装置同时,提高稳定性及组束可靠性。
在压缩器中使用的压缩光栅都镀有金属或者介质反射膜,这些高反 膜的损伤阈值随激光脉冲的变窄而降低。最后一块输出光栅上脉冲宽度只有飞秒或皮秒量级,承受的峰值功率很高,非常容易被打坏。根据镀膜的材料和方法的不同,第一块光栅(承受纳秒激光损伤)可能比最后一块光栅(承受飞秒或皮秒激光损伤)的损伤阈值高3倍以致几十倍以上。本发明也利用了这一特性。并且超强激光通常具有较大的空间强度调制,这也限制了光栅压缩器的入射激光能量。
发明内容
本发明的目的在于克服上述现有技术的缺点,提出一种超强啁啾激光脉冲分步压缩装置。该装置将通过降低入射激光空间强度调制度,提升第一块和最后一块压缩光栅上的入射激光能量,并结合主压缩器中时空补偿片的时空畸变补偿与材料色散补偿、终压缩器中的时空聚焦或自压缩等方法,使得单个典型四光栅压缩器或一套内部分光型光栅压缩器等就可以实现高能量激光脉冲压缩。
本发明方法的技术解决方案如下:
一种超强啁啾激光脉冲分步压缩装置,其特点在于沿激光脉冲前进方的构成依次是预压缩模、主压缩模块、和终压缩模块。
所述的预压缩模块由提供负色散和角色散的棱镜对和反射镜构成;所述的主压缩模块由入射反射镜、光栅压缩器、时空补偿片和出射反射镜组成;所述的终压缩模块由聚焦系统和透明介质片组合。
所述的预压缩模块为可提供负色散和角色散的一对棱镜对、多对棱镜对、或透射光栅。
所述的棱镜对为小顶角棱镜对。
所述的光栅压缩器为典型四光栅压缩器、或内部分光型光栅压缩器、或环形光栅压缩器等。
所述的时空补偿片可以为玻璃片或其它透明的色散介质。
所述的聚焦系统为抛物面反射镜等聚焦镜片,所述的透明介质片组合可以为零到多片的玻璃或其它透明色散介质。
所述的聚焦系统和透明介质片组合可以单独使用也可以组合使用。
本发明具有如下的显著特点:
1、基于棱镜对等的预压缩模块在少量压缩脉冲的同时,最重要的是利用棱镜对对入射激光进行角色散,从而平滑入射激光空间强度分布,降低空间强度调制,提升第一块压缩光栅上的入射激光能量。并且,小角度棱镜对一定程度还可以替代放大后的空间滤波系统。
2、基于光栅压缩器的主压缩模块用于啁啾脉冲绝大部分色散的补偿,同时在压缩器最后部分,通过调节光栅对长度,使得出射主压缩器的激光脉冲依然带有一定量的负啁啾。这会使得在最后一块压缩光栅上的光束也是平滑过的,同时有更长脉宽,从而提升最后一块压缩光栅的可入射激光能量。
3、主压缩模块中的时空补偿片,可以补偿压缩器内部由于光栅衍射波前引入的时空畸变,从而可获得更短脉冲。同时一定厚度的时空补偿片还可以引入适量的正色散,这使得在最后压缩输出具有负啁啾的激光也是空间平滑的激光。这一时空补偿片还可以直接用于主压缩器的分割窗片。
4、最后,聚焦和聚焦系统后的透明介质薄片可以利用色散补偿和时空聚焦进一步在焦点获得压缩脉冲。而自压缩还可能将入射激光脉冲压缩到更窄。这里玻璃薄片在聚焦系统与靶之间,可以不用考虑透明介质材料中的自聚焦效应有可能打坏镜片等因素。并且从透明介质片表面反 射的激光还可以用于激光脉冲的时空特性测量与监测,避免了需要另外增加取样的光学元件。
总之,本发明通过引入预压缩模块在时间和空间上调控激光,从而可以提升主压缩模块第一块和最后一块光栅上的入射激光能量,进而可以通过单个光栅压缩器或者单个内部分光压缩器,实现高能量的超强激光脉冲的压缩。
附图说明
图1为现有典型四光栅压缩器光路结构示意图
图2为本发明的分步压缩新方法的模块流程图
图3为本发明的装置和实施例的光路结构图
具体实施方式
以下结合附图与实施例对本发明作进一步的说明,但不应以此限制本发明的保护范围。
图3为本发明超强啁啾激光脉冲分步压缩装置实施例光路结构示意图。由图可见,本发明超强啁啾激光脉冲分步压缩装置实施例的结构,如图2沿激光脉冲前进方的构成依次是预压缩模、主压缩模块、和终压缩模块,
本实施例超强啁啾激光脉冲分步压缩装置如图3,主要包括:由小顶角棱镜对1、2、及反射镜3组合成预压缩模块;由入射反射镜4、典型的四光栅压缩器中的第一光栅5、第二光栅6、第三光栅7和第四光栅8,时空补偿片9,以及出射反射镜,10组成的主压缩模块进行主要的色散补偿;最后,由抛物面反射镜11和色散补偿或自压缩用玻璃片组合 12作为终压缩模块对脉冲进行进一步压缩。
入射超强啁啾激光脉冲宽度为4ns,中心波长为910nm,光谱范围为810nm到1010nm平滑高斯光谱,光束为500mm×500mm方形平顶光束,光束空间强度调制度为2,空间强度随机分布。
小顶角棱镜对1、2的顶角为15度,入射角为7度,棱镜对可对入射啁啾激光引入50ps的脉冲压缩。对于宽带宽的激光,这使得激光光斑在角色散方向上一定程度上被平滑,从而降低激光空间强度调制。棱镜对的角色散过程也避免了空间滤波器的使用。经过预压缩模块的激光由反射镜3、入射反射镜4导入主压缩模块。主压缩模块由四块米级镀金的第一光栅5、第二光栅6、第三光栅7和第四光栅8组成。其中第一块光栅5上的入射能量最高,光束尺寸小,因此能量密度最大。纳秒脉宽和预压缩的光束平滑作用,提升了最高入射激光脉冲能量。第二光栅6和第三光栅7依然是纳秒脉宽,光束尺寸因为角色散而扩展,并且光束被空间匀滑,所以不会损伤。主压缩模块的第四光栅8输出1ps左右的负啁啾激光脉冲。时空补偿片9可以补偿第二光栅6和第三光栅7衍射波前引入的时空畸变,并可以引入适量的正色散。主压缩模块输出激光经过输出反射镜10导入终压缩模块。最后经过抛物面反射镜11聚焦(这里还具有时空聚焦特性),并经过玻璃块组合12进行色散补偿与自压缩,在焦点可以获得15fs的超强超短激光脉冲。
实验表明,本发明装置通过降低入射激光空间强度调制度,提升第一块和最后一块压缩光栅上的入射激光能量,并结合材料色散补偿、时空聚焦或自压缩等方法,使得单个典型四光栅压缩器或一套内部分束光栅压缩器等就可以实现高能量激光脉冲压缩。

Claims (7)

  1. 一种超强啁啾激光脉冲分步压缩装置,其特征在于,沿激光脉冲前进方的构成依次是预压缩模、主压缩模块和终压缩模块,
    所述的预压缩模块由提供负色散和角色散的棱镜对(1)(2)和反射镜(3)构成;所述的主压缩模块由入射反射镜(4),由光栅(5)(6)(7)(8)组成的光栅压缩器,以及时空补偿片(9)和出射反射镜(10)组成;所述的终压缩模块由聚焦系统(11)和透明介质片组合(12)组成。
  2. 根据权利要求1所述的超强啁啾激光脉冲压缩装置,其特征在于,所述的预压缩模块为可提供负色散和角色散的一对棱镜对、多对棱镜对、或透射光栅。
  3. 根据权利要求2所述的超强啁啾激光脉冲压缩装置,其特征在于,所述的棱镜对(1)(2)为小顶角棱镜对。
  4. 根据权利要求1所述的超强啁啾激光脉冲压缩装置,其特征在于,所述的光栅压缩器为典型四光栅压缩器(5)(6)(7)(8)、或内部分光型光栅压缩器、或环形光栅压缩器。
  5. 根据权利要求1所述的超强啁啾激光脉冲压缩装置,其特征在于,所述的时空补偿片(9)为零到多片的玻璃片或其它透明的色散介质。
  6. 根据权利要求1所述的超强啁啾激光脉冲压缩装置,其特征在于,所述的聚焦系统(11)为抛物面反射镜等聚焦镜片,所述的透明介质片组合(12)可以为零到多片的玻璃或其它透明色散介质。
  7. 根据权利要求6所述的超强啁啾激光脉冲压缩装置,其特征在于,所述的聚焦系统(11)和透明介质片组合(12)可以单独使用也可以组合使用。
PCT/CN2021/076680 2020-06-12 2021-02-18 超强啁啾激光脉冲分步压缩装置 WO2021248931A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010534823.8A CN111600190B (zh) 2020-06-12 2020-06-12 超强啁啾激光脉冲分步压缩装置
CN202010534823.8 2020-06-12

Publications (1)

Publication Number Publication Date
WO2021248931A1 true WO2021248931A1 (zh) 2021-12-16

Family

ID=72190203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076680 WO2021248931A1 (zh) 2020-06-12 2021-02-18 超强啁啾激光脉冲分步压缩装置

Country Status (2)

Country Link
CN (1) CN111600190B (zh)
WO (1) WO2021248931A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111600190B (zh) * 2020-06-12 2023-01-20 中国科学院上海光学精密机械研究所 超强啁啾激光脉冲分步压缩装置
CN113285334B (zh) * 2021-05-11 2022-08-09 中国科学院上海光学精密机械研究所 超强啁啾激光脉冲非对称四光栅压缩装置
CN113437621B (zh) * 2021-06-17 2022-12-06 中国科学院上海光学精密机械研究所 高功率激光时空啁啾脉冲放大系统
CN113644528A (zh) * 2021-07-20 2021-11-12 中国科学院上海光学精密机械研究所 一种高峰值功率飞秒激光的多路分束装置和方法
US11860507B2 (en) 2021-11-29 2024-01-02 National Tsing Hua University Cascaded focusing and compressing postcompression system and method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779780A (zh) * 2013-12-30 2014-05-07 中国科学院西安光学精密机械研究所 多级超短脉冲激光分步压缩系统
CN108594461A (zh) * 2018-01-31 2018-09-28 中国科学院上海光学精密机械研究所 内部分光型光栅压缩器
CN108988107A (zh) * 2018-08-15 2018-12-11 武汉安扬激光技术有限责任公司 一种飞秒紫外光激光器
CN110554513A (zh) * 2019-08-30 2019-12-10 中国科学院上海光学精密机械研究所 用于调试光栅压缩器的光纤阵列装置及其调试方法
CN111600190A (zh) * 2020-06-12 2020-08-28 中国科学院上海光学精密机械研究所 超强啁啾激光脉冲分步压缩装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1564051A (zh) * 2004-04-06 2005-01-12 中国科学院上海光学精密机械研究所 啁啾脉冲压缩器
CN102162966B (zh) * 2011-04-06 2012-09-26 中国航空工业集团公司北京长城计量测试技术研究所 一种用于飞秒激光频率梳的扩谱装置
CN102360147B (zh) * 2011-09-28 2013-06-12 中国科学院上海光学精密机械研究所 基于深刻蚀透射式石英光栅的啁啾控制装置
CN110137785B (zh) * 2019-05-28 2024-03-19 北京科益虹源光电技术有限公司 一种窄线宽准分子激光系统和线宽压缩并整形的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779780A (zh) * 2013-12-30 2014-05-07 中国科学院西安光学精密机械研究所 多级超短脉冲激光分步压缩系统
CN108594461A (zh) * 2018-01-31 2018-09-28 中国科学院上海光学精密机械研究所 内部分光型光栅压缩器
CN108988107A (zh) * 2018-08-15 2018-12-11 武汉安扬激光技术有限责任公司 一种飞秒紫外光激光器
CN110554513A (zh) * 2019-08-30 2019-12-10 中国科学院上海光学精密机械研究所 用于调试光栅压缩器的光纤阵列装置及其调试方法
CN111600190A (zh) * 2020-06-12 2020-08-28 中国科学院上海光学精密机械研究所 超强啁啾激光脉冲分步压缩装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI ZHAOYANG, KAWANAKA JUNJI: "Complex spatiotemporal coupling distortion pre-compensation with double-compressors for an ultra-intense femtosecond laser", OPTICS EXPRESS, vol. 27, no. 18, 2 September 2019 (2019-09-02), pages 25172, XP055878562, DOI: 10.1364/OE.27.025172 *

Also Published As

Publication number Publication date
CN111600190A (zh) 2020-08-28
CN111600190B (zh) 2023-01-20

Similar Documents

Publication Publication Date Title
WO2021248931A1 (zh) 超强啁啾激光脉冲分步压缩装置
Khazanov et al. Nonlinear compression of high-power laser pulses: compression after compressor approach
Harth et al. Compact 200 kHz HHG source driven by a few-cycle OPCPA
Hädrich et al. Single-pass high harmonic generation at high repetition rate and photon flux
Hornung et al. Temporal pulse control of a multi-10 TW diode-pumped Yb: glass laser
CA2897228C (en) System and method for high-intensity ultrashort pulse compression
CN111641098A (zh) 一种产生高能超短脉冲的装置及其工作方法
CN113067239B (zh) 一种中红外飞秒脉冲激光器
CN112366497A (zh) 预置空间啁啾的激光脉宽压缩系统
CN108508677A (zh) 一种基于ppln晶体的超连续谱变频激光器
Chen et al. Forty-five terawatt vortex ultrashort laser pulses from a chirped-pulse amplification system
CN213304579U (zh) 一种多波长输出的短脉冲激光器
CN102360147B (zh) 基于深刻蚀透射式石英光栅的啁啾控制装置
Fülöp et al. Short-pulse optical parametric chirped-pulse amplification for the generation of high-power few-cycle pulses
CN114284853A (zh) 一种中红外双波长可调谐的飞秒脉冲激光器
WO2015056049A1 (en) Laser pulse stretcher and compressor
CN108594461B (zh) 内部分光型光栅压缩器
Danson et al. Pulse fidelity in ultra-high-power (petawatt class) laser systems
CN107394575A (zh) 激光器的倍频装置
CN111509547A (zh) 超高峰值功率飞秒激光级联混合压缩系统
CN207474912U (zh) 激光器的倍频装置
Jovanovic et al. Mid-infrared laser system development for dielectric laser accelerators
CN111399244B (zh) 光栅压缩器内部时空畸变的补偿方法
Zuev et al. Offner stretcher for the PEARL laser facility
Petrulėnas et al. High-efficiency bismuth borate-based optical parametric chirped pulse amplifier with approximately 2.1 mJ, 38 fs output pulses at approximately 2150 nm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822633

Country of ref document: EP

Kind code of ref document: A1