WO2021248596A1 - 共轭双腔梭板转子发动机 - Google Patents

共轭双腔梭板转子发动机 Download PDF

Info

Publication number
WO2021248596A1
WO2021248596A1 PCT/CN2020/100048 CN2020100048W WO2021248596A1 WO 2021248596 A1 WO2021248596 A1 WO 2021248596A1 CN 2020100048 W CN2020100048 W CN 2020100048W WO 2021248596 A1 WO2021248596 A1 WO 2021248596A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
shuttle
area
conjugate
output shaft
Prior art date
Application number
PCT/CN2020/100048
Other languages
English (en)
French (fr)
Inventor
王建伟
Original Assignee
王建伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王建伟 filed Critical 王建伟
Publication of WO2021248596A1 publication Critical patent/WO2021248596A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/02Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/10Fuel supply; Introducing fuel to combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/12Ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/08Outer members for co-operation with rotary pistons; Casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention belongs to the technical field of engines, and in particular relates to a conjugate double-cavity shuttle plate rotor engine.
  • the traditional engine uses a cylinder piston and a crankshaft connecting rod for transmission. Because the piston is compressed to the bottom of the cylinder, when the spark plug ignites and explodes, the piston connecting rod and the crankshaft are almost in a straight line. The mechanical principle is used to analyze the thrust energy generated by the deflagration on the piston at this time. The efficiency of doing useful work is almost zero.
  • the simplest four-cylinder piston engine has at least 40 moving parts, including pistons, connecting rods, camshafts, valves, valve springs, rocker arms, timing belts, timing gears and crankshafts.
  • the reduction of moving parts means that the rotary engine is more reliable. This is why some aircraft manufacturers (including Airbus) tend to use rotary engines instead of piston engines. But it also has many shortcomings: high production cost, difficult lubrication, high maintenance cost and maintenance difficulty, low service life, insufficient combustion and large pollution, etc.
  • the present invention provides a conjugate double-cavity shuttle plate rotor engine, which has very few structural components, greatly improves the reliability and life of the whole machine, and greatly reduces the production cost. It can greatly improve the fuel thermal efficiency of the engine and the utilization rate of the water potential energy of the hydroelectric power generation, and achieve the purpose of the invention with a very small number of parts, a very low space occupancy rate and production and use costs.
  • a conjugated double-cavity shuttle rotor engine including an output shaft and at least one conjugate unit on the output shaft, each conjugate unit includes;
  • the stator includes a fixed housing and two end covers fixed at both ends of the housing. Both ends of the cover have a central hole and are rotatably matched with the two ends of the output shaft. The opposite faces of the two end covers are based on the end cover shaft.
  • the thickness is divided into four areas, which are the thin-walled area, the first transitional curved surface area, the thick-walled area, and the second transitional curved surface area in sequence.
  • the thin-walled area and the thick-walled area are arranged radially symmetrically, and the first transitional curved surface
  • the area and the second transitional curved area are connected between the thin-walled area and the thick-walled area.
  • the first transitional curved area is provided with a medium inlet cavity
  • the second transitional curved area is provided with a medium discharge cavity
  • of the two end caps one of the thin-walled
  • the wall area is arranged opposite to the other thick-walled area
  • the housing is provided with a medium inlet communicating with the medium inlet cavity of the two ends cover and a medium outlet communicating with the medium outlet cavity of the two ends cover;
  • a rotor which is fixed on the output shaft and coaxial with the output shaft, the rotor is located between the two ends of the cover, and the outer circular surface of the rotor is matched with the inner surface of the housing;
  • the two shuttle bodies penetrate the rotor in the axial direction and are slidably arranged on the rotor in the axial direction; the two shuttle bodies are radially symmetrically distributed on the rotor and are located between the inner surface of the housing and the outer circular surface of the output shaft; Both ends of the two shuttle bodies respectively contact the opposite surfaces of the two end covers.
  • the shuttle body is a plate, and the outer circular surface of the rotor is provided with two shuttle grooves that open to the outer circular surface of the output shaft, and the two shuttle grooves penetrate the rotor axially and are arranged symmetrically in the radial direction. ;
  • the two shuttle bodies are respectively axially slidably fitted in the two shuttle slots.
  • the thin-walled area and the thick-walled area occupy the same angle in the 360° circumference
  • the first transition curved surface area and the second transition curved surface area occupy the same angle in the 360° circumference.
  • the housings are respectively provided with spark plug installation holes communicating with the medium inlet cavities of the two end covers.
  • the housing is a cylinder
  • the two end covers are respectively fixed on the two ends of the cylinder
  • the outer circular surface of the end cover is provided with a discharge channel communicating with the medium discharge cavity, and the medium outlet and the discharge channel Connected.
  • At least one or more conjugate units are arranged axially on the output shaft.
  • the housing removes the electric spark plug and its matching mounting hole, leaving only the air intake channel, and the engine is converted to a conjugate double-chamber shuttle fluid engine.
  • the beneficial effect of the present invention is that the engine is mainly composed of three components: the stator, the rotor, and the shuttle body. Therefore, the number, volume and weight of the engine are less than four-fifths of the traditional engine because of the very few structural components. , The reliability and life of the whole machine will be greatly improved, and the production cost will be greatly reduced. That is, it can greatly improve the fuel thermal efficiency of the engine and the utilization rate of the water potential of the hydroelectric power generation, and achieve the purpose of the invention with a very small number of parts, a very low space occupancy rate and production and use costs.
  • the engine can be used as an internal combustion engine or as a fluid engine.
  • this engine has nothing else Energy loss. Therefore, compared with the traditional cylinder piston engine, the efficiency ratio is greatly improved, reaching more than 50-60% or even higher.
  • Figure 1 is a front view of a conjugate double-chamber shuttle rotor engine provided by an embodiment of the present invention, in which the casing is in a sectioned state;
  • Figure 2 is a cross-sectional view taken along line B-B in Figure 1;
  • Figure 3 is a top view of a conjugate double-chamber shuttle rotor engine provided by an embodiment of the present invention, in which the casing is in a cut-away state;
  • Figure 4 is a cross-sectional view along the line C-C in Figure 3;
  • Figure 5 is a cross-sectional view along the line A-A in Figure 1;
  • Fig. 6 is a cross-sectional view taken along the line D-D in Fig. 1;
  • Figure 7 is a schematic structural diagram of a stator in a conjugate double-chamber shuttle rotor engine provided by an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of the structure of a rotor in a conjugate double-chamber shuttle plate rotor engine provided by an embodiment of the present invention
  • FIG. 9 is a schematic structural view of the left end cover in the conjugated double-chamber shuttle plate rotor engine provided by an embodiment of the present invention.
  • Figure 10 is a schematic structural view of the right end cover in the conjugate double-chamber shuttle rotor engine provided by an embodiment of the present invention.
  • Figure 11 is a schematic structural view of a shuttle body in a conjugated double-chamber shuttle plate rotor engine provided by an embodiment of the present invention
  • Fig. 12 is a schematic diagram of an assembly structure of a rotor and a shuttle body in a conjugate double-chamber shuttle plate rotor engine provided by an embodiment of the present invention.
  • Figures 1 to 12 are the combined and exploded views of the overall assembly structure of the present invention to the appearance display and the description of the relationship between the various components.
  • Figure 7 is a schematic diagram of the stator structure.
  • the stator base 23 can be designed in any required structure according to the needs in actual design and use. Here, for intuitive understanding, a simple stator base is designed;
  • Figure 8 is a schematic diagram of the rotor structure.
  • the slot 12 is used to accommodate the shuttle plate shown in Figure 11;
  • Figure 9 and Figure 10 are schematic diagrams of the structure of the stator end cover (the key point of the conjugate double cavity of the present invention), in which the outer circular surface of the end cover 4 is in line with the inner wall of the housing 1.
  • FIG. 7 Inner circle surface in Figure 7
  • Figure 11 is a schematic diagram of the shuttle plate structure, and the two shuttle body end faces 14 are used for installation
  • the lower side surface 25 of the shuttle body is in contact with the outer surface of the output shaft 3 as shown in FIG. 8 for a left-right sliding fit along the axial direction.
  • the other side for example, the upper side surface of the shuttle body 25 in FIG. Perform a sliding fit when rotating in the left and right axial and radial directions.
  • the two shuttle bodies 9 in the shuttle slot 12 of the rotor 10 can slide left and right up and down (slip fit).
  • the assembly unit is installed into the stator from the right side of the stator with the end cover 4 installed on the left end.
  • the two shuttle bodies 9 in FIG. 12 can only slide in the left and right directions of the axis due to the restriction of the inner wall of the stator. Then assemble the end cover 4 and the center hole 22 shown in FIG.
  • the inner wall of the center hole 22 is also machined with a lubricating groove, and lubricating fluid is applied through the pre-made oil hole connected to it, so that the center hole 22 of the end cover 4 and the output shaft 3, and the inner surface of the end cover 4 and the end of the shuttle 9 Effective lubrication between contact surfaces.
  • a sufficient number of heat sinks can be made on the outside of the stator shell, and the solid output shaft 3 can be replaced with a hollow output shaft 3.
  • an impeller fan can be installed on the other end of the power output shaft 3 for powerful cooling.
  • the above-mentioned lubrication system and heat dissipation system are conventional matching systems of traditional engines, which are very mature and have nothing to do with the essence of the present invention.
  • the explosive gas expands sharply in the medium entering the cavity 6 in Figure 1-6, pushing the shuttle body 9 to protrude from the rotor 10 on the left side.
  • the force direction of the shuttle body 9 is the tangent direction perpendicular to the tangent circle of the output shaft 3 to push the rotor 10 to rotate in this direction, and drive the output shaft 3 to make a circular motion in the same direction.
  • the radially symmetric shuttle body 9 protrudes from the right end surface of the rotor 10 and is reversely pushed by the blasting gas of the medium that is reserved at the corresponding symmetrical position of the stator right side end cover 4 corresponding to the shuttle body 9 and enters the cavity 6. At the same time, it does work with the shuttle body 9 on the rotor 10, so that the output shaft 3 is driven by the symmetrical reverse thrust to rotate and do work at the same time to output power.
  • the conjugate double-chamber shuttle rotor engine provided by the present invention includes an output shaft 3 and at least one conjugate unit on the output shaft 3, and each conjugate unit includes:
  • the stator includes a fixed housing 1 and two end covers 4 respectively fixed at both ends of the housing 1. Both ends of the cover 4 have a central hole 22 and are respectively rotatably matched with both ends of the output shaft 3;
  • the opposite surfaces are divided into four areas according to the axial thickness of the end cap 4, which are respectively the thin-walled area 15, the first transitional curved surface area 16, the thick-walled area 17, the second transitional curved surface area 18, and the thin-walled area 15 which are arranged in sequence.
  • the first transition curved area 16 and the second transition curved area 18 are connected between the thin-walled area 15 and the thick-walled area 17, and the first transition curved area 16 is provided with a medium inlet cavity 6.
  • the second transitional curved area 18 is provided with a medium discharge cavity 19; of the two end caps 4, the thin-walled area 15 of one is opposite to the thick-walled area 17 of the other;
  • the rotor 10 is fixed on the output shaft 3 coaxially with the output shaft 3, the rotor 10 is located between the two end covers 4, and the outer circular surface of the rotor 10 matches the inner surface of the housing 1;
  • the two shuttle bodies 9 penetrate the rotor 10 axially and are slidably arranged on the rotor 10 in the axial direction; the two shuttle bodies 9 are radially symmetrically distributed on the rotor 10 and are located on the inner surface of the housing 1 and the output shaft 3 Between the outer circular surfaces of the two shuttle bodies 9 are respectively in contact with the opposite surfaces of the two end covers 4.
  • the inner surface of the housing 1, the opposite surfaces of the two end covers 4, the outer circular surface of the output shaft 3 and the two end surfaces of the rotor 10 form two conjugate cavities 2 at the two ends of the rotor 10.
  • the shuttle 9 separates the conjugate cavity 2 into two cavities.
  • the two shuttle bodies 9 can perform circular motion synchronously with the rotor 10, and can also perform axial reciprocating motion due to the constraints of the conjugate double cavity formed by the inner surfaces of the two stator end covers 4 (that is, the opposite surfaces of the two end covers 4) .
  • the casing 1 When used as an internal combustion engine, the casing 1 is respectively provided with spark plug mounting holes 13 communicating with the medium inlet cavity 6 of the two end covers 4.
  • the explosive gas expands rapidly and pushes the shuttle 9 closest to it to move away from the deflagration area, and 9 shuttles It can perform axial reciprocating motion and circular motion under the joint restriction of the rotor 10 and the conjugate cavity 2, thereby driving the shaft of the rotor 10 to rotate and output kinetic energy; no matter where the shuttle 9 is in the stator at this time, it can align the two One or all of the shuttle bodies 9 exert huge thrust to push the rotor 10 to rotate and drive the output shaft 3 to rotate to perform external work.
  • the explosive gas is finally discharged from the medium outlet 8 through the medium discharge chamber 19. If the spark plug mounting hole 13 is not provided, the ignition system is removed, and the above-mentioned driving force is changed into other fluids, such as high-pressure water, high-pressure oil, high-pressure air, etc., it can be used as a fluid engine.
  • a plurality of such conjugate units are arranged tightly in series along the axial direction, and they are arranged in a regular manner by rotating them at a certain angle along the radial direction to form a conjugate double-cavity shuttle rotor engine that is an integral multiple of 2.
  • the shuttle body 9 is a plate, and the outer circular surface of the rotor 10 is provided with two shuttle slots 12 that open to the outer circular surface of the output shaft 3.
  • the two shuttle slots 12 axially penetrate the rotor 10 and are arranged symmetrically in the radial direction; the two shuttle bodies 9 They are respectively axially slidably fitted in the two shuttle grooves 12.
  • the end surfaces at both ends of the shuttle body 9 are V-shaped or U-shaped.
  • the shuttle 9 can also adopt other shapes and structures.
  • the thin-walled area 15 and the thick-walled area 17 occupy the same angle in the 360° circumference, and the first transition curved area 16 and the second transition curved area 18 occupy the same angle in the 360° circumference.
  • the housing 1 is a cylinder, and the two end covers 4 are respectively fixed at the two ends of the cylinder.
  • the outer circular surface of the end cover 4 is provided with a discharge channel 20 communicating with the medium discharge chamber 19, and the medium outlet 8 is connected with the discharge channel 20.
  • Other accessories of this engine are the same as those of traditional piston cylinder engines, such as intake valves, spark plugs, etc.
  • the stator is composed of the housing 1 of Fig. 7 and two end covers 4 of Figs.
  • Zone 17 the smooth transition between the two thickness regions, the first transition curved area 16 and the second transition curved area 18 of the transition surface, the first transition curved area 16 and the second transition curved area 18 of this smooth transition are based on the radial direction A vertical line transitions, so that the curved surface can be slidably fitted with the end surface 14 of the shuttle body during dynamic fitting, and can be effectively sealed at the same time.
  • a medium inlet cavity 6 is formed on the first transition curved area 16 of each end cover 4 to serve as an intake ignition deflagration cavity, and a medium discharge cavity 19 and a discharge channel 20 are formed on the second transition curved area 18.
  • a cavity is formed between the thin-walled region 15, the first transitional curved region 16, the second transitional curved region 18 of the end cover 4 in FIG. 9 and the rotor end surface 21 in FIG. It is in contact with the end face 21 of the rotor in FIG. 8 to implement a sliding fit.
  • the thick and thin parts of the two end covers 4 are rotated by 180° and then fitted together. This forms a conjugate cavity 2 in the end cover 4 of the stator.
  • the rotor 10 is installed in it. Due to the isolation of the rotor 10, the two stators A conjugate cavity 2 between the end covers 4 is separated by the rotor 10 to form a conjugate double cavity structure.
  • a medium outlet 8 serves as a vent.
  • a rotor 10 with a certain width is fabricated and installed on the outside of an output shaft 3 with a diameter matching the central hole 22 of the stator end cover 4.
  • the opening parallel to the axis serves as the shuttle 12.
  • the size of the gap between this opening and the shuttle body 9 can be a dynamic fit size.
  • the shuttle body 9 is designed and manufactured to be in a sliding fit with the dimensions of the two radially symmetric shuttle slots 12 of the rotor 10, so that it can move left and right in the corresponding shuttle slots 12 of the rotor 10 in the axial direction.
  • a board-like structure it can be called a shuttle board.
  • the shuttle body 9 When the above-mentioned driving force is the oil-gas mixed explosive gas ignited by the spark plug 7 (equivalent to the work of the oil-gas mixed explosive gas ignited by the spark plug 7 in the piston cylinder), the shuttle body 9 is pushed by the explosive gas for a part of the area.
  • the function is equivalent to the piston function in a traditional engine. It directly exerts a force on the rotor 10, and the rotor 10 and the output shaft 3 are relatively fixed rigid bodies. Therefore, the driving force generated by the above-mentioned shuttle 9 directly acts on the output shaft 3 to directly output work.
  • the present invention can be called a conjugate dual-chamber shuttle-rotor internal combustion engine; if the ignition system is removed and the above-mentioned driving force is changed into other fluids, such as high-pressure water, high-pressure oil, high-pressure air, etc., it can be called the corresponding conjugate double Cavity shuttle plate rotor fluid engine.
  • the first ignition work when the fuel (or gas) and air mixture is input into the 2 medium inlets 5 of the assembled engine, and the spark plug 7 ignites and deflagrates, no matter this
  • a huge thrust can be applied to one or both of the two shuttle bodies 9 to push the rotor 10 to rotate, thereby driving the output shaft 3 to rotate and perform external work.
  • the shuttle 9 propelled by the explosive gas is ignited to perform work and the rotor 10 rotates close to 180°, the shuttle 9 begins to rotate through the pre-made medium discharge cavity 19 on the stator end cover 4 (4 in Figures 9, 10). ), the explosive gas is discharged from the corresponding medium outlet 8.
  • another shuttle body 9 enters the preset deflagration position, that is, the medium enters the cavity 6, enters another round of ignition and deflagration, and enters the next work output process.
  • An angle position indicator trigger matched with the stator is used to accurately locate the ignition time and angle, so that the two shuttles 9 are in each revolution The same position in a circle is driven by the explosive gas to rotate and do work.
  • Example 1 Refer to Figures 1-12.
  • the conjugated double-chamber shuttle plate rotor engine of the present invention is mainly divided into three parts.
  • the first part is the stator.
  • the housing 1 is a metal cylinder as shown in Figure 7, plus two of the same structure.
  • the mirror-symmetrical end cover 4 is constructed as shown in Fig. 9 and Fig. 10;
  • the second part is the rotor 10, which is an output shaft 3 as shown in Fig. 8 plus a rotor 10, and two shuttle slots 12 are opened on the rotor 10;
  • Part is two plate-shaped shuttle bodies 9 as shown in FIG. 11.
  • the two end covers 4 installed in the stator housing 1 each have a thick and thin area and a transition between the thick and thin areas.
  • the first intake ignition can push the shuttle body 9 and then push the rotor 10 and the output shaft 3 to rotate and output kinetic energy.
  • the length of the shuttle body 9 is the width of the rotor 10 plus the distance from the surface of the thin-walled area 15 of the end cover 4 to the end face 21 of the rotor. The distance between the cut surfaces. In this way, no matter what angle the rotor 10 rotates, the shuttle body 9 always contacts the opposite surfaces of the two end caps 4 in the conjugate double cavity and seals the conjugate cavity separated by it, as shown in Figs. 1 to 5.
  • the output shaft 3 is simultaneously driven by the reverse symmetric thrust of the shuttle 9 to perform work, and the output power (the direction of rotation is clockwise in Figure 5, and counterclockwise in Figure 6, in fact, the two thrusts are in the section of the rotor 10
  • the circle is reversed, but it pushes the rotor 10 to rotate in the same direction).
  • the shuttle body 9 will not only follow the rotation of the shaft, but also be affected by the conjugate changes of the inner curved surfaces of the two end caps 4 (faces 15, 16, 17, 18 in Fig. 9 and Fig. 10).
  • the shuttle moves left and right in the axial direction of the stator, which causes the deflagration thrust surface area received by the shuttle body 9 to increase, maintain, and decrease in three changes, and the transmitted power also undergoes three stages of increase, extreme value, and attenuation.
  • the transmitted power also undergoes three stages of increase, extreme value, and attenuation.
  • due to the relatively small changes in the kinetic energy of these three stages and the very rapid time alternation there are two such changes in the rotor 10 for each revolution. Therefore, from a statistical point of view, it can output a relatively stable average peak power supply. People use.
  • Embodiment 2 The conjugate double-chamber shuttle plate rotor engine of the present invention, as shown in Figure 1 to Figure 12. If the spark plug 7 on the stator housing 1 is removed and the spark plug mounting hole 13 ( Figure 7) is removed, a Fluid engine.
  • the position of the medium inlet 5 is used as a fluid input port to input fluid, such as high-pressure air, high-pressure hydraulic oil, high-pressure water (including river water as long as it has drop potential energy), etc., which can push the shuttle body 9 to drive the rotor 10 and drive the output shaft 3 to rotate Do work and output kinetic energy. It can be used to replace various fluids such as hydraulic turbines to transform kinetic energy and other fields.
  • input fluid such as high-pressure air, high-pressure hydraulic oil, high-pressure water (including river water as long as it has drop potential energy), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

一种共轭双腔梭板转子发动机,主要由定子、转子(10)、梭体(9)三大部件组成;其中定子由外壳(1)和两个端盖(4)组成,两个端盖(4)呈镜像对称结构;转子(10)固定在输出轴(3)上;梭体(9)轴向可滑动的设置在转子上(10),两梭体(9)在转子(10)上径向对称。在一个定子外壳(1)内表面、两个定子端盖(4)安装好后互为共轭的两个内表面和一个定子的两个端面以及转子轴表面形成了在定子两边的两个共轭腔体(2)。定子端盖(4)的一个径向和轴向方向上设计制作了一个介质进入腔(6),定子端盖(4)的另一边设计制作一个介质排出腔(19),火花塞(7)点燃喷入介质进入腔(6)的混合气体,爆燃气体推动梭体(9)进而推动转子(10)进而带动输出轴(3)转动输出动能。可大幅提高发动机燃油热效率和水力发电水势能利用率。

Description

共轭双腔梭板转子发动机 技术领域
本发明属于发动机技术领域,具体涉及一种共轭双腔梭板转子发动机。
背景技术
传统发动机采用气缸活塞加曲轴连杆方式传动,由于活塞压缩到气缸底部,火花塞点火爆炸做功时,活塞连杆和曲轴几乎在一条直线上,用力学原理分析此时的爆燃对活塞产生的推力能做有用功的效能几乎为零,它只能依靠曲轴和惯性飞轮的惯性传递到活塞连杆和曲轴产生的角度才能做少量的有用功,并且随着角度的增大,当活塞连杆和曲轴之间的夹角为直角时,气缸内油气混合气体被火花塞点燃时爆燃产生的动能才能完全作用于发动机动力输出,产生有用功极值,但从力学角度分析还是有一个沿连杆传出动力的反方向作用力作用在活塞上,使活塞有一个径向反作用力施加在与其配合的气缸壁上,增大活塞与气缸之间的摩擦力而消耗一部分能量,何况气缸活塞连杆曲轴发动机无法做到使活塞的连杆和曲轴永远成直角状态做功,当然就无法使气缸内油气爆炸产生的能量完全作用发动机输出而产生有用功,致使较大的能量被活塞、连杆和曲轴之间的撞击和摩擦消耗掉了。使目前全世界主流的传统气缸活塞式发动机热效率在30-38%,最高的燃油利用率(热效率)也才仅仅达到41%。再有就是正因为传统活塞连杆和曲轴之间角度的不断变化,导致传递能量效能太低,迫不得已只能增加活塞动能把活塞做的很大,同时加入惯性飞轮导致尺寸、重量大大增加进而使整机变得笨重不堪。
长期以来,减少发动机尺寸、零部件数量、增加发动机运行可靠性、提高发动机热效能、降低生产成本和使用成本,是发动机工程师们孜孜以求的目标和追求。虽然在上述目标中取得了一定进步,但由于传统发动机本身先天原理、 结构条件所限,气缸活塞连杆曲轴各个部件缺一不可,不可能取得任何革命性进步。倒是汪克尔转子发动机(三角转子发动机)的出现,打破了传统燃气发动机许多年来的垄断地位,其优势方面,与四冲程活塞式发动机相比,转子发动机的运动零件要少得多。双转子发动机主要有三个运动零件:两个转子和一个输出轴。即使最简单的四缸活塞式发动机也至少有40个运动零件,包括活塞、连杆、凸轮轴、气门、气门弹簧、摇臂、正时皮带、正时齿轮和曲轴等等。运动零件的减少意味着转子发动机的可靠性更高。这就是为什么某些飞机制造商(包括空中客车在内)倾向于使用转子发动机而非活塞式发动机的原因。但它也有许多缺陷:制作成本高、润滑困难、维修成本维修难度都很高,使用寿命低、燃烧不充分导致污染较大等等。
发明内容
本发明为解决上述问题,提供一种共轭双腔梭板转子发动机,结构部件极少,整机可靠性和寿命有极大提高,生产成本更是会大大降低。可以大幅提高发动机燃油热效率和水力发电水势能利用率,达到用极少量的零部件、极低的空间占用率和生产使用成本来达成本发明的目的。
为实现本发明目的,采用的技术方案为:一种共轭双腔梭板转子发动机,包括输出轴和输出轴上的至少一个共轭单元,每个共轭单元包括;
定子,其包括固定设置的外壳和分别固定在外壳两端的两个端盖,两端盖均具有中心孔,且分别与输出轴的两端转动配合;两端盖的相对面均根据端盖轴向厚度划分为四个区域,分别为依次环设的薄壁区、第一过渡曲面区、厚壁区、第二过渡曲面区,薄壁区与厚壁区径向对称设置,第一过渡曲面区和第二过渡曲面区连接在薄壁区与厚壁区之间,第一过渡曲面区开设有介质进入腔,第二过渡曲面区开设有介质排出腔;两个端盖中,一个的薄壁区与另一个的厚 壁区相对设置;外壳设有分别与两端盖的介质进入腔相通的介质进口、以及与两端盖的介质排出腔相通的介质出口;
转子,其固定在输出轴上与输出轴同轴心,转子位于两端盖之间,转子的外圆面与外壳的内表面相适配;
两个梭体,均轴向贯穿转子,且轴向可滑动的设置在转子上;两梭体在转子上呈径向对称分布,且位于外壳的内表面与输出轴的外圆面之间;两梭体的两端均分别接触至两端盖的相对面。
作为所述的进一步可选方案,所述梭体为板件,转子的外圆面开设有通至输出轴外圆面的两个梭槽,两梭槽轴向贯通转子,且径向对称设置;两梭体分别轴向滑动配合在两梭槽中。
作为所述的进一步可选方案,所述薄壁区与厚壁区在360°圆周中所占角度相同,第一过渡曲面区与第二过渡曲面区在360°圆周中所占角度相同。
作为所述的进一步可选方案,所述外壳分别设有与两端盖的介质进入腔连通的火花塞安装孔。
作为所述的进一步可选方案,所述外壳为筒体,两端盖分别固定在筒体内的两端,端盖的外圆面开设有与介质排出腔连通的排出通道,介质出口与排出通道连通。
作为所述的进一步可选方案,所述输出轴上轴向排列有至少有一个或多个共轭单元。
作为所述的进一步可选方案,外壳去掉电火花塞和其配套的安装孔,只保留进气通道,本发动机转换为共轭双腔梭板流体发动机。
本发明的有益效果是:本发动机主要是由定子、转子、梭体三大组件组成,因此发动机的零部件数量、体积和重量比传统发动机少了五分之四以上,正因 结构部件极少,整机可靠性和寿命就有极大提高,生产成本更是会大大降低。也就是可以大幅提高发动机燃油热效率和水力发电水势能利用率,达到用极少量的零部件、极低的空间占用率和生产使用成本来达成本发明的目的。本发动机既可作为内燃发动机,也可作为流体发动机。除了梭体与转子的滑配合、梭体与端盖相对面之间的滑配合、以及输出轴与定子端盖中心孔之间的轴承滚动配合的微小摩擦力消耗以外,本发动机没有任何别的能量损耗。因此与传统气缸活塞式发动机比起来,效能比大大提高,达到50-60%以上甚至更高。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,应当理解的是,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的共轭双腔梭板转子发动机的主视图,其中外壳为剖切状态;
图2是图1中B-B向剖视图;
图3是本发明实施例提供的共轭双腔梭板转子发动机的俯视图,其中外壳为剖切状态;
图4是图3中C-C向剖视图;
图5是图1中A-A向剖视图;
图6是图1中D-D向剖视图;
图7是本发明实施例提供的共轭双腔梭板转子发动机中定子的结构示意图;
图8是本发明实施例提供的共轭双腔梭板转子发动机中转子的结构示意 图;
图9是本发明实施例提供的共轭双腔梭板转子发动机中左侧端盖的结构示意图;
图10是本发明实施例提供的共轭双腔梭板转子发动机中右侧端盖的结构示意图;
图11是本发明实施例提供的共轭双腔梭板转子发动机中梭体的结构示意图;
图12是本发明实施例提供的共轭双腔梭板转子发动机中转子和梭体装配结构示意图。
附图标记:1-外壳;2-共轭腔体;3-输出轴;4-端盖;5-介质进口;6-介质进入腔;7-火花塞;8-介质出口;9-梭体;10-转子;11-喷嘴;12-梭槽;13-火花塞安装孔;14-梭体端面;15-薄壁区;16-第一过渡曲面区;17-厚壁区;18-第二过渡曲面区;19-介质排出腔;20-排出通道;21-转子端面;22-中心孔;23-定子座;24-键槽;25-梭体侧面。
图1-图12是本发明总体装配结构到各个部件之间外观展示和相互关系描述组合和分解图。具体是:图7是定子结构示意图,定子座23可在实际设计使用中根据需要可以设计为任何需要的结构形式,这里为了直观了解,设计了一个简易定子座;图8是转子结构示意图,梭槽12用以容纳配合如图11所示的梭板;图9图10是定子端盖结构示意图(本发明的共轭双腔关键点),其中端盖4的外圆面是与外壳1内壁(图7的内圆面)相配合的圆柱面,厚壁区17的表面与图8所示的转子端面21相贴合;图11是梭板结构示意图,两个梭体端面14用于安装在装配体中后,是起到与如图9图10中所示的定子端盖4相对面相配合并在该曲面上进行滑动并密封的作用,而梭体侧面25的其中一个面例 如图11下部的梭体侧面25与如图8的输出轴3外圆面接触沿轴向进行左右滑配合,另一个面例如图11上部的梭体侧面25是与图7所示的外壳1内表面接触进行左右轴向和径向圆周转动时的滑动配合。先将图9的端盖4装配到图7定子相对应内圆面的左端,再将图11的梭体9两片装配在图8转子10的两个配套梭槽12内,形成图12所示装配单元。此图12中两个梭体9在转子10梭槽12中可以左右上下滑动(滑配合)。将该装配单元从已经在左端安装了端盖4的定子右面安装进上述定子中,此时图12中的两片梭体9由于受到定子内壁的限制,只能在轴线左右方向滑动。再将图10所示的端盖4和中心孔22装配到上述装配好了装配单元的定子右端,完成本共轭双腔梭板转子发动机所有主件装配,如图1、图3所示。再安装图2、图3中的喷嘴11和安装火花塞7,再把介质出口8连接外部管道,就形成了一个完整的本发明所述的共轭双腔梭板转子发动机系统。至于润滑系统、散热系统,可以直接在定子套上面开孔注入润滑油,在定子对相应的内壁加工润滑槽,使定子内壁与转子10外壁、梭体9之间产生有效润滑,在定子端盖4中心孔22内壁也加工润滑槽,通过事先做好的与其相连接的注油孔施加润滑液,使端盖4中心孔22与输出轴3之间以及端盖4内表面与梭体9端头接触面之间有效润滑。而散热方面,可以在定子壳外面制作数量足够的散热片,并可以把实心输出轴3换成空心输出轴3,同时在动力输出轴3的另一端轴上安装一个叶轮风扇强力降温。上述的润滑系统、散热系统,乃是传统发动机常规配套系统,十分成熟,与本发明的精要不相干,仅仅一笔带过,不做赘述。工作时,只需要像传统发动机那样控制喷嘴11喷进的油气混合气体并用火花塞7点火,此时的爆燃气体在图1-6的介质进入腔6中急剧膨胀,推动梭体9左边突出转子10的左端面部分,此时梭体9受力方向,就是垂直于输出轴3向的切面圆的切线方向推动转子10向该方向旋转运动,带 动输出轴3做同向圆周运动。同理,与之径向对称的梭体9突出转子10右端面部分,受到该梭体9相对应的定子右侧端盖4相应对称位置预留的介质进入腔6爆燃气体的反向推动,同时与梭体9对转子10做功,使输出轴3同时受对称反向推力的推动旋转做功,输出动力。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得所有其他实施例,都属于本发明的保护范围。可以理解的是,附图仅仅提供参考与说明用,并非用来对本发明加以限制。附图中显示的连接关系仅仅是为了便于清晰描述,并不限定连接方式。
需要说明的是,当一个组件被认为是“连接”另一个组件时,它可以是直接连接到另一个组件,或者可能同时存在居中组件。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
下面结合附图及具体实施例对本发明作进一步阐述。
本发明提供的共轭双腔梭板转子发动机,包括输出轴3和输出轴3上的至少一个共轭单元,每个共轭单元包括;
定子,其包括固定设置的外壳1和分别固定在外壳1两端的两个端盖4,两端盖4均具有中心孔22,且分别与输出轴3的两端转动配合;两端盖4的相对面均根据端盖4轴向厚度划分为四个区域,分别为依次环设的薄壁区15、第一过渡曲面区16、厚壁区17、第二过渡曲面区18,薄壁区15与厚壁区17径 向对称设置,第一过渡曲面区16和第二过渡曲面区18连接在薄壁区15与厚壁区17之间,第一过渡曲面区16开设有介质进入腔6,第二过渡曲面区18开设有介质排出腔19;两个端盖4中,一个的薄壁区15与另一个的厚壁区17相对设置;外壳1设有分别与两端盖4的介质进入腔6相通的介质进口5、以及与两端盖4的介质排出腔19相通的介质出口8;
转子10,其固定在输出轴3上与输出轴3同轴心,转子10位于两端盖4之间,转子10的外圆面与外壳1的内表面相适配;
两个梭体9,均轴向贯穿转子10,且轴向可滑动的设置在转子10上;两梭体9在转子10上呈径向对称分布,且位于外壳1的内表面与输出轴3的外圆面之间;两梭体9的两端均分别接触至两端盖4的相对面。
外壳1的内表面、两个端盖4的相对面、输出轴3的外圆面以及转子10的两端面形成了位于转子10两端的两个共轭腔体2。梭体9又分别将共轭腔体2分隔成两个腔。两个梭体9既可以与转子10同步做圆周运动,又可以因为两个定子端盖4的内表面(即两端盖4的相对面)形成的共轭双腔的约束做轴向往复运动。
作为内燃发动机时,外壳1分别设有与两端盖4的介质进入腔6连通的火花塞安装孔13。在介质进口5输入燃油(或燃气)、空气混合气体到介质进入腔6后并由火花塞7点火爆燃,爆燃气体急剧膨胀推动离它最近的梭体9做远离爆燃区域运动,而梭体9只能在转子10和共轭腔体2共同限制下做轴向往复运动和圆周运动,进而带动转子10轴做旋转运动输出动能;无论此时梭体9在定子中的哪个位置,都可以对两个梭体9之一或全部施加巨大推力推动转子10旋转进而带动输出轴3旋转对外做功,爆燃气体最后经介质排出腔19从介质出口8排出。若不设置火花塞安装孔13,去掉点火系统,将上述推动力变为其它 流体,例如高压水、高压油、高压空气等,就可以作为流体发动机。
多个这样的共轭单元沿轴向紧密的串联排列起来,并使它们沿径向旋转一定的角度有规律的排布好,就可形成2的整倍数的共轭双腔梭板转子发动机。
梭体9为板件,转子10的外圆面开设有通至输出轴3外圆面的两个梭槽12,两梭槽12轴向贯通转子10,且径向对称设置;两梭体9分别轴向滑动配合在两梭槽12中。梭体9两端的端面呈V型或U型。除了板状结构,梭体9也可采用其他形状构造。
薄壁区15与厚壁区17在360°圆周中所占角度相同,第一过渡曲面区16与第二过渡曲面区18在360°圆周中所占角度相同。外壳1为筒体,两端盖4分别固定在筒体内的两端,端盖4的外圆面开设有与介质排出腔19连通的排出通道20,介质出口8与排出通道20连通。本发动机的其它附件与传统活塞气缸发动机附件相同,例如进气阀、火花塞等。
如图7、图9、图10所示,定子是由图7的外壳1和图9、图10两个端盖4组成。两个端盖4中间都有一个和输出轴3相配套的中心孔22,每个端盖4在中心孔22轴向上分一厚一薄两个厚度区域,即薄壁区15和厚壁区17,两个厚度区域之间平滑过渡,过渡面第一过渡曲面区16与第二过渡曲面区18,此平滑过渡的第一过渡曲面区16与第二过渡曲面区18是以径向为一垂直线过渡的,以使该曲面在动配合中能与梭体端面14进行滑动配合,同时还能有效密封。每个端盖4的第一过渡曲面区16上都制作一个介质进入腔6,作为进气点火爆燃腔,第二过渡曲面区18上都制作一个介质排出腔19和排出通道20。图9图10中端盖4的薄壁区15、第一过渡曲面区16、第二过渡曲面区18与图8中的转子端面21之间形成一个腔体,而厚壁区17的部分表面与图8中的转子端面21接触实施滑配合。两个端盖4的厚薄部分旋转180°后进行配合安装,这就 在定子的端盖4之内形成了一个共轭腔体2,把转子10安装进去,由于转子10的隔离,定子两个端盖4之间的一个共轭腔体2被转子10分开形成了共轭双腔结构。在定子对应于两个端盖4的介质进入腔6位置安装进气阀(与传统发动机相似的进气单向阀)和火花塞7各一个,在对应于端盖4的介质排出腔19各开一个介质出口8作为排气孔。
如图8,在一根与定子端盖4中心孔22配合直径的输出轴3外面,制作安装一个有一定宽度的转子10,转子10在与输出轴3径向对称的两侧部位各开一个平行于轴线的开口作为梭槽12。此开口的缝隙大小,与梭体9之间达到动配合尺寸即可。
如图11,设计制作与转子10的两个径向对称的梭槽12尺寸进行滑配合的梭体9,可以使它在转子10相应梭槽12中沿着轴向方向左右穿梭般移动。采用板子状结构时可称之为梭板。
本发动机工作原理:如图1-6所示,在转子10的两个径向对称的梭槽12中各安装了一个梭体9后,再将其装配到定子两个端盖4中,转子10、两个梭体9除了会和转子10做同步旋转运动外,还会在两个端盖4之间的两个共轭腔中沿轴向做来回穿梭运动。反过来,朝一个方向沿转子10切向推动梭体9,转子10受到梭体9切向的推力,就会沿受力方向转动。当上述这个推动力是被火花塞7点火的油气混合爆燃气体(相当于活塞气缸中被火花塞7点燃的油气混合爆燃气体做功)做功而来时,此时的梭体9被爆燃气体推动部分面积的功能相当于传统发动机中的活塞功能。它直接施加作用力作用于转子10上,而转子10与输出轴3为相对固定的刚体,因此这个由上述梭体9产生的推动力就直接作用在输出轴3上直接输出做功,此时的本发明可称为共轭双腔梭板转子内燃发动机;若去掉点火系统,将上述推动力变为其它流体,例如高压水、高压油、 高压空气等,就可以称之为相应的共轭双腔梭板转子流体发动机。
工作原理具体描述:如图1-6,第一次点火做功:当在装配好的本发动机的2个介质进口5输入燃油(或燃气)、空气混合气体后并由火花塞7点火爆燃,无论此时两梭体9在定子中的哪个位置,都可以对两个梭体9之一或全部施加巨大推力推动转子10旋转进而带动输出轴3旋转对外做功。当此次点火被爆燃气体推动的梭体9做功并使转子10旋转接近180°时,此梭体9开始转过定子端盖4上预先制作的介质排出腔19(图9、10中的4),爆燃气体从与此对应的介质出口8排出。此时另一个梭体9又进入到预先设置好的爆燃位,即介质进入腔6,进入又一轮点火爆燃进入下一个做功输出进程。第二次及第n次点火做功:可在输出轴3上指定位置设计制作有与定子相配套的角度位置指示触发器,用以精确定位点火时刻和角度,使得两个梭体9在每转一周的相同位置被爆燃气体推动旋转做功。同理,当此次点火被爆燃气体推动的两个梭体9做功并使转子10旋转接近180°时,梭体9开始转过定子端盖4上预先制作的介质排出腔19(图9-10的4位),爆燃气体从此介质排出腔19排出。此时另一个梭体9又进入到预先设置好的爆燃位,即介质进入腔6,又一轮点火爆燃推动这一梭体9进入下一个做功输出进程。如此不断循环,就形成了本发动机特有的“进气/点火爆燃-推动梭体9绕轴心旋转带动输出轴3做功输出动能-排气”三步动作做功循环。除了梭体9与梭槽12配合面的滑配合和梭体9与定子端盖4共轭双腔内壁面之间的滑配合以及输出轴3与定子中心孔22之间的轴承滚动配合的微小摩擦力消耗以外,本发动机没有任何别的能量损耗。因此可以使燃油利用率上升到50-60%以上甚至更高。这是燃油燃气发动机史上的一次革命。
实施例1:参阅图1-12,本发明的共轭双腔梭板转子发动机,主要分为三大部分,第一部分为定子,外壳1是一个金属筒体如图7,外加两个结构相同 镜像对称的端盖4如图9图10构成;第二部分为转子10,它是在如图8中一输出轴3上另加一个转子10,转子10上开两个梭槽12;第三部分是两片如图11所示的板状的梭体9。首先把图9中的端盖4安装在图7所示的定子的左端头后,再把两片梭体9安装在图8所示的输出轴3上相应梭槽12内如图12所示,然后把图12的这个装配子部件装配在刚刚安装了左端盖4的定子内,最后把图10的定子右端盖4安装在上述装配体的右端,得到图1、图3这两个图所示的本发明的总装配体。至于该总装配体中的进气部件、电火花塞、出气口等附件,图中有所表达,仅仅是为了表述本发明原理时,因有关联,故而也绘制并表达出来。
本共轭双腔梭板转子发动机结构原理和工作原理是:在图1-6中,安装在定子的外壳1中的两个端盖4,他们各有一个厚薄区域以及厚薄区域之间的过渡区域,如图9、图10所示,在他们的两个过渡区域(第一过渡曲面区16和第二过渡曲面区18)中,分别开有一个介质进入腔6和一个介质排出腔19和排出通道20,该端盖4的介质进入腔6对应于图7所示的定子外壳1上的介质进口5,以及火花塞安装孔13,该端盖4的介质排出腔19和排出通道20对应于图7所示的定子外壳1上的介质出口8,而图9-10中端盖4的厚壁区17,它们分别对应于如图8转子10的两个转子端面21相贴合,这样,图9图10中端盖4薄壁区15加上第一过渡曲面区16和第二过渡曲面区18就与两个转子端面21之间,加上图12的输出轴3外圆面和图7的外壳1内圆面之间,就形成了如图1-6中的2个轴向互成180°对称的两个共轭腔,此腔体又被梭体9分隔开,被两个梭板分隔开的左右两个共轭腔始终有一部分处于进气区域,一部分处于出气区域。所以无论梭体9在什么位置,第一次进气点火都可以推动梭体9进而推动转子10输出轴3转动做功输出动能。而梭体9的长度为转子10的 宽度加端盖4薄壁区15表面到转子端面21的距离,梭体9的这个长度也是图1中看到的两个端盖4的过渡面径向切面之间的距离。这样,无论转子10转到什么角度,梭体9始终在共轭双腔中与两个端盖4的相对面接触并密封被它分隔的共轭腔,如图1-图5所示。
本发明运转原理描述:观察图1-图6,当人们控制介质进口5的喷嘴11喷进油气混合气体到左右端盖4制作的相应的介质进入腔6中并用火花塞7点火(喷嘴11紧邻装在介质进口5旁),此时的爆燃气体在介质进入腔6中急剧膨胀,推动梭体9沿着梭板受力方向,也就是垂直于输出轴3向的切面圆的切线方向推动转子10向该方向运动,带动输出轴3做同向圆周运动。即输出轴3同时受到梭体9反向对称推力的推动旋转做功,输出动力(旋转方向在图5中是顺时针转动,在图6中是逆时针转动,实际上两个推力在转子10切面圆上反向,但却是推动转子10旋转方向相同)。在此过程中,梭体9除了会随着转轴的转动,受两个端盖4内曲面的共轭变化(图9图10的15、16、17、18面)的限制影响,还会相对于定子轴向左右穿梭运动,这就使梭体9受到的爆燃推力面面积发生增加、保持、减小三个变化,传出的动力也发生增加、极值、衰减三个阶段。但因这三个阶段动能的变化比较小加上时间交替十分迅速,转子10每转一周,就有两个这样的变化进程,因此从统计学说来,它可以输出一个较为稳定的动力平均峰值供人们使用。如果在同一根轴上制作多个转子10并安装对应数量梭体9和多组端盖4,并将每组端盖4在轴向上旋转指定经过精确计算的安装角度,就组成了多双腔共轭转子发动机(对应于传统发动机的多缸发动机组),而体积仅仅是轴向加长了一点,与传统多缸发动机庞大的体积相比,简直可以忽略不计了。这样输出的动力不仅更加平稳,而且更加强劲。
实施例2:本发明的共轭双腔梭板转子发动机,如图1-图12,如果将定子 外壳1上的火花塞7去掉并将此火花塞安装孔13(图7)去掉,就形成了一个流体发动机。介质进口5的位置上作为流体输入口输入流体,例如高压空气、高压液压油、高压水(包括只要具有落差势能的河水)等等,就可以推动梭体9带动转子10进而带动输出轴3旋转做功输出动能。可以用于替代水轮机等各种流体转化动能等领域。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (7)

  1. 共轭双腔梭板转子发动机,其特征在于,包括输出轴和输出轴上的至少一个共轭单元,每个共轭单元包括;
    定子,其包括固定设置的外壳和分别固定在外壳两端的两个端盖,两端盖均具有中心孔,且分别与输出轴的两端转动配合;两端盖的相对面均根据端盖轴向厚度划分为四个区域,分别为依次环设的薄壁区、第一过渡曲面区、厚壁区、第二过渡曲面区,薄壁区与厚壁区径向对称设置,第一过渡曲面区和第二过渡曲面区连接在薄壁区与厚壁区之间,第一过渡曲面区开设有介质进入腔,第二过渡曲面区开设有介质排出腔;两个端盖中,一个的薄壁区与另一个的厚壁区相对设置;外壳设有分别与两端盖的介质进入腔相通的介质进口、以及与两端盖的介质排出腔相通的介质出口;
    转子,其固定在输出轴上并与输出轴同轴心,转子位于两端盖之间,转子的外圆面与外壳的内表面相适配;
    两个梭体,均轴向贯穿转子,且轴向可滑动的设置在转子上;两梭体在转子上呈径向对称分布,且位于外壳的内表面与输出轴的外圆面之间;两梭体的两端均分别接触至两端盖的相对面。
  2. 根据权利要求1所述的共轭双腔梭板转子发动机,其特征在于,所述梭体为板件,转子的外圆面开设有通至输出轴外圆面的两个梭槽,两梭槽轴向贯通转子,且径向对称设置;两梭体分别轴向滑动配合在两梭槽中。
  3. 根据权利要求1所述的共轭双腔梭板转子发动机,其特征在于,所述薄壁区与厚壁区在360°圆周中所占角度相同,第一过渡曲面区与第二过渡曲面区在360°圆周中所占角度相同。
  4. 根据权利要求1所述的共轭双腔梭板转子发动机,其特征在于,所述外壳分别设有与两端盖的介质进入腔连通的火花塞安装孔。
  5. 根据权利要求1所述的共轭双腔梭板转子发动机,其特征在于,所述外壳为筒体,两端盖分别固定在筒体内的两端,端盖的外圆面开设有与介质排出腔连通的排出通道,介质出口与排出通道连通。
  6. 根据权利要求1所述的共轭双腔梭板转子发动机,其特征在于,所述输出轴上轴向排列有至少有一个或多个共轭单元。
  7. 根据权利要求1所述的共轭双腔梭板转子发动机,其特征在于,外壳去掉电火花塞和其配套的安装孔,只保留进气通道,本发动机转换为共轭双腔梭板流体发动机。
PCT/CN2020/100048 2020-06-08 2020-07-03 共轭双腔梭板转子发动机 WO2021248596A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010510187.5 2020-06-08
CN202010510187.5A CN111561390A (zh) 2020-06-08 2020-06-08 共轭双腔梭板转子发动机

Publications (1)

Publication Number Publication Date
WO2021248596A1 true WO2021248596A1 (zh) 2021-12-16

Family

ID=72075100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100048 WO2021248596A1 (zh) 2020-06-08 2020-07-03 共轭双腔梭板转子发动机

Country Status (2)

Country Link
CN (1) CN111561390A (zh)
WO (1) WO2021248596A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526937B1 (en) * 2000-05-22 2003-03-04 Alexander Bolonkin Economical eccentric internal combustion engine
CN1936297A (zh) * 2005-09-19 2007-03-28 龚樱 圆弧轮转子机
CN101852094A (zh) * 2009-09-28 2010-10-06 尚世群 位移滑片式转子发动机
CN102116196A (zh) * 2011-02-25 2011-07-06 绍兴文理学院 叶片式柴油发动机
CN206942873U (zh) * 2017-04-26 2018-01-30 吴结华 活刷式转子内燃机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526937B1 (en) * 2000-05-22 2003-03-04 Alexander Bolonkin Economical eccentric internal combustion engine
CN1936297A (zh) * 2005-09-19 2007-03-28 龚樱 圆弧轮转子机
CN101852094A (zh) * 2009-09-28 2010-10-06 尚世群 位移滑片式转子发动机
CN102116196A (zh) * 2011-02-25 2011-07-06 绍兴文理学院 叶片式柴油发动机
CN206942873U (zh) * 2017-04-26 2018-01-30 吴结华 活刷式转子内燃机

Also Published As

Publication number Publication date
CN111561390A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
KR100871992B1 (ko) 내연 로터리 기관 및 그 제조 방법
US7117839B2 (en) Multi-stage modular rotary internal combustion engine
EP0890721A1 (en) Rotary vane engine
US5352295A (en) Rotary vane engine
WO2021088135A1 (zh) 具有泽仑圆形状的腔体、流体工作装置以及发动机
US7140853B2 (en) Axial vane rotary device
WO2021248596A1 (zh) 共轭双腔梭板转子发动机
CN115306541B (zh) 独立配气缸内直燃圆周冲程内燃机和圆周冲程汽轮机
RU2351780C1 (ru) Роторно-поршневой двигатель внутреннего сгорания
RU2371586C2 (ru) Роторная машина
CN212838062U (zh) 共轭双腔梭板转子发动机
KR20110003396A (ko) 감람형 회전식 엔진
CN103498727A (zh) 叶片式发动机
CN109611195B (zh) 一种转子与定子间导流式转子内燃机
CN203515794U (zh) 叶片式发动机
KR100536468B1 (ko) 로터리엔진
RU2374454C2 (ru) Устройство поршневой машины и способ выполнения ее рабочего объема для организации термодинамического цикла
US3352291A (en) Rotary internal combustion engine
WO2009008743A1 (en) Circular run gear-piston engine
CN111441865B (zh) 旋转活塞燃气轮发动机
WO2018184035A1 (en) Two-stroke cycle rotary internal combustion engine
RU2541059C1 (ru) Роторно-пластинчатое устройство
RU2693550C1 (ru) Роторный двигатель внутреннего сгорания с несимметричным сжатием и расширением
CN113027601B (zh) 一种双转子内燃机
RU2805946C1 (ru) Роторно-поршневой двигатель внутреннего сгорания

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939935

Country of ref document: EP

Kind code of ref document: A1