WO2021248526A1 - 一种低音增强方法、系统、电子设备和存储介质 - Google Patents

一种低音增强方法、系统、电子设备和存储介质 Download PDF

Info

Publication number
WO2021248526A1
WO2021248526A1 PCT/CN2020/096692 CN2020096692W WO2021248526A1 WO 2021248526 A1 WO2021248526 A1 WO 2021248526A1 CN 2020096692 W CN2020096692 W CN 2020096692W WO 2021248526 A1 WO2021248526 A1 WO 2021248526A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
speaker
parameters
bass enhancement
nonlinear
Prior art date
Application number
PCT/CN2020/096692
Other languages
English (en)
French (fr)
Inventor
蓝睿智
吴锐兴
叶利剑
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2021248526A1 publication Critical patent/WO2021248526A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/162Interface to dedicated audio devices, e.g. audio drivers, interface to CODECs

Definitions

  • the present invention relates to the technical field of loudspeakers, in particular to a bass enhancement method, system, electronic equipment and storage medium.
  • audio output devices including speakers has become very common, such as televisions, stereo systems, computers, smart phones, headphones, etc.
  • the audio speaker is an electroacoustic transducer, and the electroacoustic transducer generates sound in response to an electric audio signal input.
  • the playback device may have a bass enhancement function.
  • the general way is to first divide the frequency of the audio signal to obtain the relative high-frequency signal and low-frequency signal, and then add harmonics to the low-frequency signal to enhance the bass. Finally, by superimposing the high frequency information and the harmonic signal after bass enhancement, the bass enhancement signal corresponding to the original audio signal can be obtained.
  • a bass enhancement method including:
  • the generating the bass enhancement signal of the original audio signal includes:
  • the generating and adjusting the low-frequency signal according to the low-frequency signal in the original audio signal includes:
  • a harmonic adjustment signal is generated, and the harmonic adjustment signal is added to the low-frequency signal to obtain an adjusted low-frequency signal.
  • the method further includes:
  • the generating the harmonic adjustment signal includes:
  • the harmonic adjustment signal of the low frequency signal is generated according to the predicted response information of the loudspeaker.
  • the performing speaker response prediction according to the parameters of the speaker to obtain predicted response information of the speaker includes:
  • the method further includes:
  • the speaker response prediction is performed according to the linear parameter of the speaker, and the predicted response information of the speaker is obtained.
  • the method further includes:
  • condition parameters include, but are not limited to, ambient temperature, working time, and input signal One or more of the power dynamic range.
  • a bass enhancement system including:
  • the virtual bass enhancement module is used to receive the input original audio signal, generate the bass enhancement signal of the original audio signal, and input the non-linear compensation module;
  • the non-linear parameter module is used to obtain the non-linear parameter of the loudspeaker
  • the nonlinear compensation module is configured to perform nonlinear predistortion processing on the bass enhancement signal according to the nonlinear parameter to obtain an output signal, and the output signal is output by the speaker.
  • an electronic device including a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor executes the same as the first aspect and any of them.
  • the memory stores a computer program
  • the processor executes the same as the first aspect and any of them.
  • a computer storage medium stores one or more instructions, and the one or more instructions are suitable for being loaded by a processor and executed as in the first aspect and any one thereof Possible implementation steps.
  • the beneficial effects of the present invention are: according to the nonlinear parameters of the loudspeaker, the signal is pre-distorted, and the distortion caused by the nonlinearity of the system is pre-compensated at the input end, which can reduce the nonlinear distortion in the bass enhancement process and significantly improve the virtual bass. Effect.
  • Fig. 1 is a schematic flowchart of a bass enhancement method provided by the present invention
  • FIG. 2 is a schematic flowchart of another bass enhancement method provided by the present invention.
  • FIG. 3 is a schematic structural diagram of a bass enhancement system provided by the present invention.
  • FIG. 4 is a schematic diagram of the processing flow of a bass enhancement system provided by the present invention.
  • FIG. 5 is a schematic diagram of a processing flow of a virtual bass enhancement module provided by the present invention.
  • Fig. 6 is a schematic structural diagram of an electronic device provided by the present invention.
  • FIG. 1 is a schematic flowchart of a bass enhancement method according to an embodiment of the present invention.
  • the method may include:
  • the execution subject of the embodiment of the present invention may be a bass enhancement system, which includes a speaker, which can perform bass enhancement processing on the original audio signal and output the processed audio signal.
  • the above-mentioned bass enhancement system can be applied to various electronic devices.
  • the above-mentioned electronic devices can be terminal devices, including but not limited to mobile terminals, earphones, audio playback devices, and other types of computers, such as laptop computers and tablet computers. Other portable devices or desktop computers.
  • the above-mentioned original audio signal is the audio signal to be finally output from the speaker.
  • the generating of the bass enhancement signal of the original audio signal includes:
  • the original audio signal may first pass through a low-pass filter and a high-pass filter for frequency division processing to obtain corresponding low-frequency signals and high-frequency signals, respectively.
  • Bass enhancement is performed on the low-frequency signal, and after the adjusted low-frequency signal is generated, the above-mentioned high-frequency signal and the adjusted low-frequency signal are superimposed to obtain the bass enhancement signal of the original audio signal.
  • the low-frequency signal and the high-frequency signal are relative terms, that is, the original audio signal is divided into two parts according to the frequency, and different judgment standards can be set according to different needs.
  • the aforementioned generating and adjusting the low-frequency signal according to the low-frequency signal in the aforementioned original audio signal includes:
  • the harmonic adjustment signal of the low-frequency signal can be generated by the harmonic generation module, and then the harmonic adjustment signal is added to the low-frequency signal.
  • band-pass filtering can be performed after the harmonic generation module to further filter out excessive frequencies and noise to obtain a harmonic signal after bass enhancement, that is, the above-mentioned adjusted low-frequency signal.
  • the speakers will more or less show non-linear characteristics, and there will be signal components that do not exist in the input signal.
  • the distortion object is the amplitude and/or phase of the output signal
  • the nonlinear distortion implies that the output signal contains frequency components that do not exist in the input signal.
  • indirect testing methods can generally be used to analyze the nonlinearity of loudspeaker vibration, that is, by building a loudspeaker circuit model in advance, and then using the loudspeaker analyzer to test and perform adaptive fitting calculations to obtain the relevant loudspeaker nonlinearity. parameter.
  • the loudspeaker can be directly tested by equipment such as a loudspeaker test system and a rangefinder to analyze the nonlinear problem of the loudspeaker vibration, so as to directly obtain the nonlinear parameters of the loudspeaker.
  • equipment such as a loudspeaker test system and a rangefinder to analyze the nonlinear problem of the loudspeaker vibration, so as to directly obtain the nonlinear parameters of the loudspeaker.
  • a DC bias voltage signal can be applied to the speaker to bias the voice coil of the speaker in the magnetic gap, and then a distance meter such as a laser rangefinder can be used to measure the sound of the speaker under the DC bias voltage signal.
  • the bias displacement of the coil while keeping the value of the DC bias voltage signal at both ends of the speaker unchanged, output an AC analysis signal to the speaker under test through the speaker test system to obtain the impedance of the voice coil of the speaker under test in the bias position Curve and displacement-voltage transfer function curve, and then calculate the value of each nonlinear parameter of the speaker under test in the biased state of the voice coil based on these curves.
  • the magnitude of the DC bias voltage signal can be changed many times, the above steps are repeated, the bias displacement of the voice coil of the speaker under test in the magnetic gap under the corresponding DC bias voltage signal is measured, and the corresponding offset displacement is calculated.
  • conditional parameters of the loudspeaker can be obtained, and the non-linear parameters can be updated according to the aforementioned conditional parameters and the preset mapping relationship between the conditional parameters and the non-linear parameters.
  • the aforementioned conditional parameters include but are not limited to the environment. One or more of temperature, working time, and dynamic range of input signal power.
  • the nonlinear characteristic curve of the loudspeaker can also be obtained through simulation or measurement, which can include the mapping relationship between preset conditional parameters and nonlinear parameters.
  • conditional parameters are all factors that affect the nonlinear distortion of the loudspeaker, which may include but is not limited to ambient temperature. , Working time, one or more of the dynamic range of input signal power, for example, the mapping relationship between the ambient temperature and the nonlinear parameters of the speaker.
  • the nonlinear parameters of the loudspeaker can be updated periodically.
  • the specific method is to obtain the conditional parameters of the current loudspeaker, and determine the nonlinearity of the current loudspeaker according to the above-mentioned conditional parameters and the mapping relationship between the preset conditional parameters and the nonlinear parameters. Parameters to achieve real-time acquisition of loudspeaker nonlinear parameters.
  • a corresponding compensation signal may be generated according to the nonlinear parameters of the speaker, and the compensation signal may be used to perform nonlinear predistortion processing on the bass enhancement signal.
  • Compensation processing can be realized by a nonlinear filter, which is a nonlinear compensator, which can eliminate the nonlinear behavior of the loudspeaker by controlling the excitation signal without changing the structure of the loudspeaker.
  • this non-linear filter can form an all-pass filter with the actual loudspeaker.
  • the corresponding compensation signal is added, and the distortion caused by the nonlinearity is pre-compensated at the input end, and the obtained output signal can be output by the loudspeaker.
  • the sound signal played by the speaker is the linear response of the input electrical signal, which can significantly reduce the proportional distortion of the harmonic components caused by nonlinear distortion, thereby ensuring that the played sound signal is basically consistent with the expected response of bass enhancement.
  • the present invention generates the bass enhancement signal of the original audio signal by obtaining the input original audio signal, obtains the non-linear parameters of the speaker, and then performs non-linear predistortion processing on the bass enhancement signal according to the non-linear parameters of the speaker, The obtained output signal is output by the speaker.
  • the bass enhancement method of the present invention can reduce the nonlinear distortion in the bass enhancement processing, and significantly enhance the effect of virtual bass.
  • FIG. 2 is a schematic flowchart of another bass enhancement method according to an embodiment of the present invention. As shown in Figure 2, the method may include:
  • the execution subject of the embodiment of the present invention may be a bass enhancement system, which includes a speaker, which can perform bass enhancement processing on the original audio signal and output the processed audio signal.
  • the above-mentioned bass enhancement system can be applied to various electronic devices.
  • the above-mentioned electronic devices can be terminal devices, including but not limited to mobile terminals, earphones, audio playback devices, and other types of computers, such as laptop computers and tablet computers. Other portable devices or desktop computers.
  • step 201 reference may be made to the specific description in step 101 shown in FIG. 1, which will not be repeated here.
  • the parameters of the speaker include the linear parameters of the speaker.
  • the original audio signal may first pass through a low-pass filter and a high-pass filter for frequency division processing to obtain corresponding low-frequency signals and high-frequency signals, respectively.
  • the parameters of the above-mentioned loudspeaker include the linear parameters of the above-mentioned loudspeaker,
  • the output effect of the loudspeaker is affected by the loudspeaker parameters, and the above-mentioned loudspeaker parameters may include linear parameters and/or non-linear parameters.
  • the parameter influence of the loudspeaker can be considered, the response of the loudspeaker can be predicted, and the predicted response information of the loudspeaker can be obtained, and then step 203 is performed.
  • the harmonic adjustment signal of the low frequency signal is generated according to the predicted response information of the speaker.
  • the method of adding harmonics can be used.
  • the predicted response information of the speaker can be used as a reference to generate the harmonic adjustment signal of the low-frequency signal.
  • the wave carries on the low frequency signal enhancement, improves the bass enhancement effect.
  • step 203 includes:
  • the loudspeaker response prediction is performed according to the nonlinear parameters and linear parameters of the loudspeaker, and the predicted response information of the loudspeaker is obtained.
  • Non-linear parameters can also be included. Specifically, the non-linear parameters of the loudspeaker can be obtained by the correlation method in the embodiment shown in FIG. 1, which will not be repeated here.
  • pure signal processing can be directly performed based on the obtained low-frequency signal to generate harmonics, or the linear or nonlinear parameters of the loudspeaker can be used to predict the response of the loudspeaker, and then the harmonics can be generated based on the predicted response information.
  • the speaker response prediction is performed according to the linear parameters of the speaker to obtain the predicted response information of the speaker.
  • nonlinear parameter value of the speaker may be judged first. If the nonlinear parameter of the speaker is higher than the preset parameter threshold, it indicates the nonlinear influence of the speaker Relatively large, nonlinear parameters can be considered for speaker response prediction.
  • speaker response prediction can be performed based on the above-mentioned nonlinear parameters and linear parameters of the speaker; and if the nonlinear parameter of the speaker is not higher than the preset parameter threshold, it means that the speaker The non-linear effect of, is relatively small, it is possible to predict the response of the loudspeaker without considering the non-linear parameters, and only use the linear parameters that are relatively regular and easy to calculate for the prediction.
  • Step 204 may be executed after the above-mentioned harmonic adjustment signal is obtained.
  • the harmonic adjustment signal is added to the low frequency signal to obtain an adjusted low frequency signal.
  • step 204 and step 205 reference may be made to the specific description in step 102 of the embodiment shown in FIG. 1, and the foregoing step 206 may refer to the specific description of step 103 in the embodiment shown in FIG. 1, which will not be repeated here.
  • a system based entirely on signal processing does not take into account the nonlinear distortion of actual speakers.
  • the actual loudspeaker system when the driving voltage is large, will produce large nonlinear distortion (THD), and low-frequency and high-frequency signals will also produce intermodulation distortion (IMD), resulting in added harmonic components .
  • THD nonlinear distortion
  • IMD intermodulation distortion
  • the bass enhancement signal of the original audio signal is generated by obtaining the input original audio signal, the low frequency signal in the original audio signal is obtained, the speaker response is predicted according to the parameters of the speaker, and the predicted response of the speaker is obtained Information
  • the parameters of the loudspeaker include the linear parameters of the loudspeaker
  • the harmonic adjustment signal of the low-frequency signal is generated according to the predicted response information of the loudspeaker
  • the harmonic adjustment signal is added to the low-frequency signal to obtain the adjusted low-frequency signal
  • the original For the high-frequency signal in the audio signal, the above-mentioned adjusted low-frequency signal and the above-mentioned high-frequency signal are superimposed to obtain the above-mentioned bass enhancement signal.
  • harmonic adjustment is used according to the predicted response of the loudspeaker, taking into account the linear and/or nonlinear characteristics of the loudspeaker ; Perform nonlinear predistortion processing on the bass enhancement signal according to the nonlinear parameters of the speaker to obtain an output signal.
  • the output signal is output by the speaker, which can further reduce the nonlinear distortion in the bass enhancement process and significantly enhance the effect of virtual bass .
  • the embodiment of the present invention also discloses a bass enhancement system.
  • the bass enhancement system 300 includes:
  • the virtual bass enhancement module 310 is configured to receive the input original audio signal, generate the bass enhancement signal of the original audio signal, and input it to the nonlinear compensation module 320;
  • the aforementioned non-linear parameter module 320 is used to obtain the non-linear parameter of the loudspeaker
  • the non-linear compensation module 320 is configured to perform non-linear predistortion processing on the bass enhancement signal according to the non-linear parameters to obtain an output signal, and the output signal is output by the speaker.
  • the aforementioned virtual bass enhancement module 310 includes: a low-pass processing unit 311, a high-pass processing unit 312, and an integration unit 313;
  • the low-pass processing unit 311 is configured to generate and adjust the low-frequency signal according to the low-frequency signal in the original audio signal
  • the above-mentioned high-pass processing unit 312 is configured to obtain the high-frequency signal in the above-mentioned original audio signal
  • the above-mentioned integration unit 313 is configured to superimpose the above-mentioned adjusted low-frequency signal and the above-mentioned high-frequency signal to obtain the above-mentioned bass enhancement signal, and input the above-mentioned nonlinear compensation module.
  • the aforementioned low-pass processing unit 311 includes: a low-pass filter 3111 and a harmonic generation unit 3112;
  • the aforementioned low-pass filter 3111 is used to obtain the low-frequency signal in the aforementioned original audio signal
  • the harmonic generation unit 3112 is configured to generate a harmonic adjustment signal, and add the harmonic adjustment signal to the low-frequency signal to obtain an adjusted low-frequency signal.
  • the bass enhancement system 300 further includes a control module 330, configured to perform speaker response prediction according to the parameters of the speaker to obtain predicted response information of the speaker, and the parameters of the speaker include the linear parameters of the speaker;
  • the harmonic generation unit 3112 is specifically configured to generate the harmonic adjustment signal of the low-frequency signal according to the predicted response information of the loudspeaker.
  • control module 330 is specifically configured to:
  • the loudspeaker response prediction is performed according to the nonlinear parameters and linear parameters of the loudspeaker, and the predicted response information of the loudspeaker is obtained.
  • the aforementioned control module 330 is further configured to determine whether the non-linear parameters of the aforementioned speakers are higher than a preset parameter threshold before performing speaker response prediction based on the aforementioned non-linear parameters and linear parameters of the aforementioned speakers;
  • the speaker response prediction is performed according to the linear parameters of the speaker to obtain the predicted response information of the speaker.
  • the aforementioned nonlinear parameter module 320 is also used for:
  • conditional parameters of the above speakers Acquire the conditional parameters of the above speakers, and update the above-mentioned nonlinear parameters according to the above-mentioned conditional parameters and the mapping relationship between the preset conditional parameters and the nonlinear parameters.
  • the above-mentioned conditional parameters include, but are not limited to, the ambient temperature, working time, and the dynamic range of the input signal power. One or more of.
  • the steps involved in the methods shown in FIG. 1 and FIG. 2 may all be executed by each module in the bass enhancement system 300 shown in FIG. 3, and will not be repeated here.
  • a bass enhancement system shown in FIG. 4, which includes a nonlinear compensation module 5, which may correspond to the aforementioned nonlinear parameter module 320.
  • the original audio signal 1 is input to a virtual bass enhancement module 2 for processing.
  • the virtual bass enhancement module 2 includes a pure signal processing method that does not include a speaker model (no speaker parameters), or a signal processing method based on the speaker model. Method (only linear parameter model or complete non-linear parameter model is used); the non-linear parameter 3 of the loudspeaker includes the non-linear parameter of the offline test, or the non-linear parameter of the online update.
  • the audio signal 4 after virtual bass enhancement can be first input to the nonlinear compensation module 5 for non-linear predistortion processing, so as to obtain a non-linear predistortion processed audio signal 6 after virtual bass enhancement, which can be output through a speaker.
  • FIG. 5 the processing flow diagram of a virtual bass enhancement module shown in FIG. 5, in which the functions of the virtual bass enhancement module 2 in FIG. 4 are detailed.
  • 1 is still the original audio signal
  • 2-1 low-pass filter obtain the low-frequency part of the original audio signal
  • 2-2 high-pass filter obtain the high-frequency part of the original audio signal
  • 2- 3 The low frequency part of the original audio signal, this part performs virtual bass enhancement
  • 2- 3 The middle and high frequency part of the original audio signal, this part does not perform virtual bass enhancement
  • 2-5 harmonic generation module which can correspond to the aforementioned harmonics Generating unit 3112, this module can directly perform pure signal processing based on 2-3 signals to generate harmonics, or based on nonlinear parameter 3 (linear parameter or nonlinear parameter), after predicting the speaker response, generating harmonics based on the predicted response
  • 2-6 The low frequency signal after virtual bass enhancement
  • 2-7 The superimposition of the mid-high frequency signal and the low frequency signal after virtual bass enhancement
  • 2-8 The audio
  • the nonlinear compensation algorithm is used to identify the linear and nonlinear parameters of the speaker system, and the signal is predistorted to reduce the system due to nonlinearity.
  • the distortion is pre-compensated at the input.
  • the acoustic signal played by the speaker system is the linear response of the input electrical signal, which can significantly reduce the proportional distortion of the harmonic components caused by nonlinear distortion, thereby ensuring that the played acoustic signal is basically consistent with the expected response of bass enhancement, which is significant Enhance the effect of virtual bass.
  • the bass enhancement system 300 and the bass enhancement system 300 can obtain the input original audio signal, generate the bass enhancement signal of the original audio signal, obtain the nonlinear parameters of the loudspeaker, and then compare the above-mentioned nonlinear parameters according to the above-mentioned loudspeaker's nonlinear parameters.
  • the bass enhancement signal is subjected to non-linear predistortion processing, and the output signal is obtained by the speaker output, which can reduce the non-linear distortion in the bass enhancement processing and significantly enhance the effect of virtual bass.
  • an embodiment of the present invention also provides an electronic device.
  • the electronic device includes at least a processor 610, a non-volatile storage medium 620, an internal memory 630, and a network interface 640, where the processor 610, a non-volatile storage medium 620, the internal memory 630, and a network interface
  • the 640 can be connected through the system bus 650 or other methods, and can communicate with other devices through the network interface 640.
  • the non-volatile storage medium 620 may be stored in the memory.
  • the above-mentioned computer storage medium is used to store a computer program and an operating system.
  • the internal memory 630 also stores a computer program.
  • the above-mentioned computer program includes program instructions, and the above-mentioned processor can be used. To execute the above program instructions.
  • Processor 610 is the computing core and control core of the terminal, which is suitable for implementing one or more instructions, specifically suitable for loading and executing one or more instructions to realize the corresponding method flow or corresponding function;
  • processor 610 in the embodiment of the present invention may be used to perform a series of processing, including the method in the embodiment shown in FIG. 1 and FIG. 2 and so on.
  • the embodiment of the present invention also provides a computer storage medium (Memory).
  • the above-mentioned computer storage medium is a memory device in a terminal for storing programs and data. It can be understood that the computer storage medium herein may include a built-in storage medium in the terminal, and of course, may also include an extended storage medium supported by the terminal.
  • the computer storage medium provides storage space, and the storage space stores the operating system of the terminal. In addition, the storage space also stores one or more instructions suitable for being loaded and executed by the processor, and these instructions may be one or more computer programs (including program codes).
  • the computer storage medium here can be a high-speed RAM memory, or a non-volatile memory (non-volatile memory), such as at least one disk memory; optionally, it can also be at least one located far away from the aforementioned processor.
  • Computer storage media can be a high-speed RAM memory, or a non-volatile memory (non-volatile memory), such as at least one disk memory; optionally, it can also be at least one located far away from the aforementioned processor.
  • one or more instructions stored in the computer storage medium can be loaded and executed by the processor to implement the corresponding steps in the above-mentioned embodiments; in specific implementation, one or more instructions in the computer storage medium can be executed by The processor loads and executes any steps of the method in FIG. 1 and/or FIG. 2, which will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the division of the modules is only a logical function division, and there may be other divisions in actual implementation.
  • multiple modules or components can be combined or integrated into another system, or some features can be ignored, or not. implement.
  • the displayed or discussed mutual coupling, or direct coupling, or communication connection may be indirect coupling or communication connection through some interfaces, devices or modules, and may be in electrical, mechanical, or other forms.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in one place, or they may be distributed on multiple network modules. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions can be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer instructions can be from a website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (digital subscriber line) subscriber line, DSL)) or wireless (such as infrared, wireless, microwave, etc.) to transmit to another website, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available medium can be read-only memory (read-only memory, ROM), or random storage memory (random access memory, RAM), or magnetic media, such as floppy disks, hard drives, magnetic tapes, magnetic disks, or optical media, such as digital universal disks (digital versatile disc, DVD), or semiconductor media, such as solid state drives (solid state disk, SSD) etc.
  • ROM read-only memory
  • RAM random storage memory
  • magnetic media such as floppy disks, hard drives, magnetic tapes, magnetic disks, or optical media, such as digital universal disks (digital versatile disc, DVD), or semiconductor media, such as solid state drives (solid state disk, SSD) etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本发明提供了一种低音增强方法、系统、电子设备和存储介质,其中方法包括:获取输入的原始音频信号,生成所述原始音频信号的低音增强信号;获取扬声器的非线性参数;根据所述扬声器的非线性参数对所述低音增强信号进行非线性预失真处理,获得输出信号,所述输出信号由所述扬声器输出。本发明的低音增强方法可以降低低音增强处理中的非线性失真,显著提升虚拟低音的效果。

Description

一种低音增强方法、系统、电子设备和存储介质 技术领域
本发明涉及扬声器技术领域,尤其涉及一种低音增强方法、系统、电子设备和存储介质。
背景技术
包括扬声器的音频输出设备的使用已十分普遍,比如电视机、立体声系统、计算机、智能手机、耳机等。一般而言,音频扬声器为电声换能器,响应于电音频信号输入,所述电声换能器产生声音。
技术问题
为了增加或增强播放效果,改善低频声音的输出,播放设备可以具备低音增强功能。一般的方式是先对音频信号分频处理,获得相对的高频信号和低频信号,再对其中的低频信号添加谐波,用于增强低音。最后将高频信息和低音增强后的谐波信号叠加,则可以获得原始音频信号对应的低音增强信号。
但实际扬声器的受各种因素影响,可能导致添加的谐波成分与设计的谐波比例产生不同程度的偏差,导致低音增强的效果不佳。
技术解决方案
基于此,有必要针对上述问题,提供一种低音增强方法、系统、电子设备和存储介质,用于解决上述扬声器受各种因素影响低音增强效果不佳的问题。
本发明的技术方案如下:
一方面,提供了一种低音增强方法,包括:
获取输入的原始音频信号,生成所述原始音频信号的低音增强信号;
获取扬声器的非线性参数;
根据所述扬声器的非线性参数对所述低音增强信号进行非线性预失真处理,获得输出信号由扬声器输出。
可选的,所述生成所述原始音频信号的低音增强信号包括:
根据所述原始音频信号中的低频信号生成调整低频信号;
获取所述原始音频信号中的高频信号,将所述调整低频信号和所述高频信号叠加,获得所述低音增强信号。
可选的,所述根据所述原始音频信号中的低频信号生成调整低频信号包括:
获取所述原始音频信号中的低频信号;
生成谐波调整信号,并对所述低频信号添加所述谐波调整信号,获得调整低频信号。
可选的,所述方法还包括:
根据所述扬声器的参数进行扬声器响应预测,获得所述扬声器的预测响应信息,所述扬声器的参数包括所述扬声器的线性参数;
所述生成谐波调整信号包括:
根据所述扬声器的预测响应信息生成所述低频信号的谐波调整信号。
可选的,所述根据所述扬声器的参数进行扬声器响应预测,获得所述扬声器的预测响应信息,包括:
根据所述扬声器的非线性参数和线性参数进行扬声器响应预测,获得所述扬声器的预测响应信息。
可选的,所述方法还包括:
在根据所述扬声器的非线性参数和线性参数进行扬声器响应预测之前,判断所述扬声器的非线性参数是否高于预设参数阈值;
若高于,触发所述根据所述扬声器的非线性参数和线性参数进行扬声器响应预测的步骤;
若不高于,根据所述扬声器的线性参数进行扬声器响应预测,获得所述扬声器的预测响应信息。
可选的,所述方法还包括:
获取所述扬声器的条件参数,依据所述条件参数和预设的条件参数与非线性参数的映射关系,更新所述非线性参数,所述条件参数包括但不限于环境温度、工作时间、输入信号功率动态范围中的一种或几种。
另一方面,提供了一种低音增强系统,包括:
虚拟低音增强模块,用于接收输入的原始音频信号,生成所述原始音频信号的低音增强信号,并输入非线性补偿模块;
所述非线性参数模块,用于获取扬声器的非线性参数;
所述非线性补偿模块,用于根据所述非线性参数对所述低音增强信号进行非线性预失真处理,获得输出信号,所述输出信号由所述扬声器输出。
另一方面,提供了一种电子设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如第一方面及其任一种可能的实现方式的步骤。
另一方面,提供了一种计算机存储介质,所述计算机存储介质存储有一条或多条指令,所述一条或多条指令适于由处理器加载并执行如上述第一方面及其任一种可能的实现方式的步骤。
有益效果
本发明的有益效果在于:根据扬声器的非线性参数,将信号预失真处理,将系统由于非线性导致的失真在输入端预先补偿掉,可以降低低音增强处理中的非线性失真,显著提升虚拟低音的效果。
附图说明
图1为本发明提供的一种低音增强方法的流程示意图;
图2为本发明提供的另一种低音增强方法的流程示意图;
图3为本发明提供的一种低音增强系统的结构示意图;
图4为本发明提供的一种低音增强系统处理流程示意图;
图5为本发明提供的一种虚拟低音增强模块处理流程示意图;
图6为本发明提供的一种电子设备的结构示意图。
本发明的实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合本发明实施例中的附图对本发明实施例进行描述。
请参阅图1,图1是本发明实施例提供的一种低音增强方法的流程示意图。该方法可包括:
获取输入的原始音频信号,生成上述原始音频信号的低音增强信号。
本发明实施例的执行主体可以为一种低音增强系统,该低音增强系统包括扬声器,可以对原始音频信号进行低音增强处理并输出处理后的音频信号。在一种实施方式中,上述低音增强系统可以应用于各种电子设备,上述电子设备可以为终端设备,包括但不限于移动终端、耳机、音频播放设备,以及诸如膝上型计算机、平板计算机之类的其它便携式设备或者台式计算机。
上述原始音频信号即为待最终从扬声器输出的音频信号,对于不同的电子设备,可以通过不同的操作形式选择播放音乐,获取对应的音频信号进行输出,此处不做限制。即本发明实施例对上述原始音频信号进行低音增强处理,生成该原始音频信号的低音增强信号后,再由扬声器进行播放。
在一种实施方式中,上述生成上述原始音频信号的低音增强信号包括:
根据上述原始音频信号中的低频信号生成调整低频信号;
获取上述原始音频信号中的高频信号,将上述调整低频信号和上述高频信号叠加,获得上述低音增强信号。
具体的,原始音频信号可以先通过低通滤波器和高通滤波器,进行分频处理,分别获得相应的低频信号和高频信号。对于低频信号进行低音增强,生成调整低频信号后,将上述高频信号和调整低频信号叠加,可以获得该原始音频信号的低音增强信号。其中,低频信号和高频信号是相对而言的,即将该原始音频信号依据频率高低分为两部分,根据不同的需求可以有不同的判断标准。
进一步的,上述根据上述原始音频信号中的低频信号生成调整低频信号包括:
获取上述原始音频信号中的低频信号;
生成谐波调整信号,并对上述低频信号添加上述谐波调整信号,获得调整低频信号。
具体的,通过低通滤波器获取上述原始音频信号中的低频信号之后,可以通过谐波生成模块生成该低频信号的谐波调整信号,再对该低频信号添加谐波调整信号,通过添加谐波的方式来虚拟低音作用,同时,还可以在谐波生成模块后进行带通滤波,进一步滤除过高的频率以及噪声,获得低音增强后的谐波信号,即上述调整低频信号。
102、获取扬声器的非线性参数。
在较大振幅情况下,扬声器都或多或少地会表现出非线性特性,并会有在输入信号中并不存在的信号分量产生。在扬声器的线性失真中,失真对象是输出信号的幅度和/或相位,而非线性失真则暗示输出信号包含输入信号中不存在的频率组成,为了解决非线性失真带来的问题,可以先确定扬声器的非线性参数,再进行针对性的补偿。
具体的,一般可以利用间接测试法来分析扬声器振动的非线性问题, 即通过事先建一个扬声器的电路模型,再利用扬声器分析仪测试并经过自适应拟合运算的方法来得到相关的扬声器非线性参数。
可选的,可以通过扬声器测试系统和测距仪等设备对扬声器进行直接测试来分析扬声器振动的非线性问题,以直接获取扬声器的非线性参数。具体的,可以给扬声器施加直流偏置电压信号使该扬声器的音圈在磁间隙中发生偏置,再通过测距仪如激光测距仪,测量在该直流偏置电压信号下该扬声器的音圈的偏置位移,保持扬声器两端的直流偏置电压信号值不变的条件下,通过扬声器测试系统向待测扬声器输出交流分析信号,获取该待测扬声器的音圈在偏置位置下的阻抗曲线以及位移-电压传递函数曲线,再根据这些曲线计算该待测扬声器在音圈发生偏置状态下的各个非线性参数的数值。
则可以多次改变直流偏置电压信号的大小,重复上述步骤,测量出在对应的直流偏置电压信号下该待测扬声器的音圈在磁间隙中的偏置位移以及计算得出在相对应的音圈偏置位移下该待测扬声器的非线性参数的数值。
在一种可选的实施方式中,可以获取上述扬声器的条件参数,依据上述条件参数和预设的条件参数与非线性参数的映射关系,更新上述非线性参数,上述条件参数包括但不限于环境温度、工作时间、输入信号功率动态范围中的一种或几种。
还可以通过模拟或者测量,获得扬声器的非线性特征曲线,可以包括预设的条件参数与非线性参数的映射关系,上述条件参数都是影响扬声器非线性失真的因素,可包括但不限于环境温度、工作时间、输入信号功率动态范围中的一种或几种,比如,环境温度与该扬声器非线性参数的映射关系。进而,可以周期性地进行扬声器的非线性参数更新,具体的方法是,获取当前扬声器的条件参数,依据上述条件参数和预设的条件参数与非线性参数的映射关系,确定当前扬声器的非线性参数,实现实时的扬声器非线性参数获取。
综上,可以用不同的方式,获得扬声器离线测试的非线性参数,或者,通过获得的非线性特征曲线,确定扬声器在工作状态在线更新的非线性参数,本发明实施例对此不作限制。
103、根据上述扬声器的非线性参数对上述低音增强信号进行非线性预失真处理,获得输出信号,上述输出信号由上述扬声器输出。
具体的,可以根据上述扬声器的非线性参数生成对应的补偿信号,使用补偿信号对上述低音增强信号进行非线性预失真处理。
可以通过一个非线性滤波器实现补偿处理,该非线性滤波器为一个非线性补偿器,可与在不改变扬声器结构的条件下,通过控制激励信号消除扬声器的非线性行为。理想状态下,该非线性滤波器可与实际扬声器构成全通滤波器。
在扬声器输出之前,通过预失真处理,加入对应的补偿信号,将由于非线性导致的失真在输入端预先补偿掉,获得的输出信号可以由该扬声器输出。由此,扬声器播放之后的声信号为输入电信号的线性响应,可以明显降低非线性失真带来的谐波成分比例畸变的现象,进而保证播放的声信号与低音增强的预期响应基本吻合,从而显著提升虚拟低音的效果。
本发明通过获取输入的原始音频信号,生成所述原始音频信号的低音增强信号,获取扬声器的非线性参数,再根据所述扬声器的非线性参数对所述低音增强信号进行非线性预失真处理,获得输出信号由扬声器输出。本发明的低音增强方法可以降低低音增强处理中的非线性失真,显著提升虚拟低音的效果。
请参阅图2,图2是本发明实施例提供的另一种低音增强方法的流程示意图。如图2所示,该方法可包括:
201、获取输入的原始音频信号,生成上述原始音频信号的低音增强信号。
本发明实施例的执行主体可以为一种低音增强系统,该低音增强系统包括扬声器,可以对原始音频信号进行低音增强处理并输出处理后的音频信号。在一种实施方式中,上述低音增强系统可以应用于各种电子设备,上述电子设备可以为终端设备,包括但不限于移动终端、耳机、音频播放设备,以及诸如膝上型计算机、平板计算机之类的其它便携式设备或者台式计算机。
其中,上述步骤201可以参考图1所示的步骤101中的具体描述,此处不再赘述。
获取上述原始音频信号中的低频信号,根据上述扬声器的参数进行扬声器响应预测,获得上述扬声器的预测响应信息,上述扬声器的参数包括上述扬声器的线性参数。
具体的,原始音频信号可以先通过低通滤波器和高通滤波器,进行分频处理,分别获得相应的低频信号和高频信号。上述扬声器的参数包括上述扬声器的线性参数,
扬声器的输出效果受到扬声器参数的影响,上述扬声器的参数可以包括线性参数和/或非线性参数。可以考虑扬声器的参数影响,预测扬声器的响应,获得该扬声器的预测响应信息,再执行步骤203。
根据上述扬声器的预测响应信息生成上述低频信号的谐波调整信号。
为了增强低音信号,可以使用添加谐波的方式,本发明实施例中可以扬声器的预测响应信息作参考,生成该低频信号的谐波调整信号,结合扬声器自身性质,能够更好地生成适合的谐波进行低频信号增强,提高低音增强效果。
在一种可选的实施方式中,上述步骤203包括:
根据上述扬声器的非线性参数和线性参数进行扬声器响应预测,获得上述扬声器的预测响应信息。
还可以包括非线性参数,具体可以通过如图1所示实施例中的相关方法获得扬声器的非线性参数,此处不再赘述。
即本发明实施例中可以直接根据获得的低频信号进行纯信号处理,生成谐波,也可以根据扬声器的线性参数或非线性参数,进行扬声器响应预测后,根据预测响应信息生成谐波。
可选的,在根据上述扬声器的非线性参数和线性参数进行扬声器响应预测之前,判断上述扬声器的非线性参数是否高于预设参数阈值;
若高于,触发上述根据上述扬声器的非线性参数和线性参数进行扬声器响应预测的步骤;
若不高于,根据上述扬声器的线性参数进行扬声器响应预测,获得上述扬声器的预测响应信息。
在一种可选的实施方式中,可以有预设参数阈值,可以先对扬声器的非线性参数值进行判断,若扬声器的非线性参数高于该预设参数阈值,则表示扬声器的非线性影响相对较大,可以考虑非线性参数进行扬声器响应预测,如可以根据上述扬声器的非线性参数和线性参数进行扬声器响应预测;而若扬声器的非线性参数不高于该预设参数阈值,则表示扬声器的非线性影响相对较小,可以不考虑非线性参数进行扬声器响应预测,仅使用相对规律便于计算的线性参数进行预测。
获得上述谐波调整信号之后可以执行步骤204。
对上述低频信号添加上述谐波调整信号,获得调整低频信号。
205、获取上述原始音频信号中的高频信号,将上述调整低频信号和上述高频信号叠加,获得上述低音增强信号。
206、根据上述扬声器的非线性参数对上述低音增强信号进行非线性预失真处理,获得输出信号,上述输出信号由上述扬声器输出。
其中,上述步骤204和步骤205可以参考图1所示实施例的步骤102中的具体描述,上述步骤206可以参考图1所示实施例的步骤103中的具体描述,此处不再赘述。
随着手机行业的不断发展,各大手机厂商对系统的易用性和多媒体表现方面越来越重视。音频方面,消费者对于多媒体影音方面的要求也越来越高。同时,智能终端中的扬声器受体积限制,无法选用尺寸过大的扬声器。而较小尺寸的扬声器,其低频回放能力较差,即低音表现不足。
一般的完全基于信号处理的系统,没有考虑到实际扬声器的非线性失真问题。实际使用的扬声器系统,在驱动电压较大的情况下,会产生很大的非线性失真(THD),并且低频信号和高频信号还会产生互调失真(IMD),导致添加的谐波成分,在THD和IMD的作用下产生畸变,与设计的谐波比例产生很大的偏差,严重降低虚拟低音的效果。
本发明实施例中,通过获取输入的原始音频信号,生成上述原始音频信号的低音增强信号,获取上述原始音频信号中的低频信号,根据上述扬声器的参数进行扬声器响应预测,获得上述扬声器的预测响应信息,上述扬声器的参数包括上述扬声器的线性参数,再根据上述扬声器的预测响应信息生成上述低频信号的谐波调整信号,对上述低频信号添加上述谐波调整信号,获得调整低频信号,获取上述原始音频信号中的高频信号,将上述调整低频信号和上述高频信号叠加,获得上述低音增强信号,在低音增强环节根据扬声器预测响应使用谐波调整,考虑了扬声器的线性和/或非线性特征;根据上述扬声器的非线性参数对上述低音增强信号进行非线性预失真处理,获得输出信号,上述输出信号由上述扬声器输出,可以进一步降低低音增强处理中的非线性失真,显著提升虚拟低音的效果。
基于上述低音增强方法实施例的描述,本发明实施例还公开了一种低音增强系统。请参见图3,低音增强系统300包括:
虚拟低音增强模块310,用于接收输入的原始音频信号,生成上述原始音频信号的低音增强信号,并输入非线性补偿模块320;
上述非线性参数模块320,用于获取扬声器的非线性参数;
上述非线性补偿模块320,用于根据上述非线性参数对上述低音增强信号进行非线性预失真处理,获得输出信号,上述输出信号由上述扬声器输出。
可选的,上述虚拟低音增强模块310包括:低通处理单元311、高通处理单元312和整合单元313;
上述低通处理单元311,用于根据上述原始音频信号中的低频信号生成调整低频信号;
上述高通处理单元312,用于获取上述原始音频信号中的高频信号;
上述整合单元313,用于将上述调整低频信号和上述高频信号叠加,获得上述低音增强信号,并输入上述非线性补偿模块。
可选的,上述低通处理单元311包括:低通滤波器3111和谐波生成单元3112;
上述低通滤波器3111,用于获取上述原始音频信号中的低频信号;
上述谐波生成单元3112,用于生成谐波调整信号,并对上述低频信号添加上述谐波调整信号,获得调整低频信号。
可选的,上述低音增强系统300还包括控制模块330,用于根据上述扬声器的参数进行扬声器响应预测,获得上述扬声器的预测响应信息,上述扬声器的参数包括上述扬声器的线性参数;
上述谐波生成单元3112具体用于,根据上述扬声器的预测响应信息生成上述低频信号的谐波调整信号。
可选的,上述控制模块330具体用于:
根据上述扬声器的非线性参数和线性参数进行扬声器响应预测,获得上述扬声器的预测响应信息。
可选的,上述控制模块330还用于,在根据上述扬声器的非线性参数和线性参数进行扬声器响应预测之前,判断上述扬声器的非线性参数是否高于预设参数阈值;
若高于,触发根据上述扬声器的非线性参数和线性参数进行扬声器响应预测的步骤;
若不高于,根据上述扬声器的线性参数进行扬声器响应预测,获得上述扬声器的预测响应信息。
可选的,上述非线性参数模块320还用于:
获取上述扬声器的条件参数,依据上述条件参数和预设的条件参数与非线性参数的映射关系,更新上述非线性参数,上述条件参数包括但不限于环境温度、工作时间、输入信号功率动态范围中的一种或几种。
根据本发明的一个实施例,图1和图2所示的方法所涉及的各个步骤均可以是由图3所示的低音增强系统300中的各个模块执行的,此处不再赘述。
举例来讲,可以参考图4所示的一种低音增强系统处理流程示意图,其中包含非线性补偿模块5,可对应于前述非线性参数模块320。
如图4所示,原始音频信号1输入虚拟低音增强模块2进行处理,该虚拟低音增强模块2包括不包含扬声器模型(不使用扬声器参数)的纯信号处理方式,或根据扬声器模型进行信号处理的方式(仅使用线性参数模型或使用完整的非线性参数模型);扬声器的非线性参数3包括离线测试的非线性参数,或者在线更新的非线性参数。虚拟低音增强后的音频信号4可以先输入非线性补偿模块5进行非线性预失真处理,从而获得非线性预失真处理的、虚拟低音增强后的音频信号6,可通过扬声器输出。
进一步地,可以参考图5所示的一种的虚拟低音增强模块处理流程示意图,其中细化了图4中的虚拟低音增强模块2的功能。具体的,如图5所示,1仍为原始音频信号;2-1低通滤波:获取原始音频信号中的低频部分;2-2高通滤波:获取原始音频信号中的高频部分;2-3原始音频信号中的低频部分,此部分进行虚拟低音增强;2-4原始音频信号中的中高频部分,此部分不进行虚拟低音增强;2-5谐波生成模块,可对应于前述谐波生成单元3112,此模块可以直接根据2-3信号进行纯信号处理,生成谐波,也可以根据非线性参数3(线性参数或非线性参数),进行扬声器响应预测后,根据预测响应生成谐波;2-6虚拟低音增强后的低频信号;2-7 将中高频信号和虚拟低音增强后的低频信号叠加;2-8 虚拟低音增强后的音频信号。
通过上述描述更清楚地说明了本发明实施例中的低音增强系统300的功能,使用非线性补偿算法,通过识别扬声器系统的线性和非线性参数,将信号预失真处理,将系统由于非线性导致的失真在输入端预先补偿掉。这样扬声器系统播放之后的声信号为输入电信号的线性响应,可以明显降低非线性失真带来的谐波成分比例畸变的现象,进而保证播放的声信号与低音增强的预期响应基本吻合,从而显著提升虚拟低音的效果。
本发明实施例中的低音增强系统300,低音增强系统300可以获取输入的原始音频信号,生成上述原始音频信号的低音增强信号,获取扬声器的非线性参数,再根据上述扬声器的非线性参数对上述低音增强信号进行非线性预失真处理,获得输出信号由扬声器输出,可以降低低音增强处理中的非线性失真,显著提升虚拟低音的效果。
基于上述方法实施例以及装置实施例的描述,本发明实施例还提供一种电子设备。请参见图6,该电子设备至少包括处理器610、非易失性存储介质620、内存储器630和网络接口640,其中,处理器610、非易失性存储介质620、内存储器630和网络接口640可通过系统总线650或其他方式连接,通过网络接口640可以与其他设备进行通信。
非易失性存储介质620即计算机存储介质可以存储在存储器中,上述计算机存储介质用于存储计算机程序和操作系统,内存储器630也存储有计算机程序,上述计算机程序包括程序指令,上述处理器可用于执行上述程序指令。处理器610(或称CPU(Central Processing Unit,中央处理器))是终端的计算核心以及控制核心,其适于实现一条或多条指令,具体适于加载并执行一条或多条指令从而实现相应方法流程或相应功能;在一个实施例中,本发明实施例上述的处理器610可以用于进行一系列的处理,包括如图1和图2所示实施例中方法等等。
本发明实施例还提供了一种计算机存储介质(Memory),上述计算机存储介质是终端中的记忆设备,用于存放程序和数据。可以理解的是,此处的计算机存储介质既可以包括终端中的内置存储介质,当然也可以包括终端所支持的扩展存储介质。计算机存储介质提供存储空间,该存储空间存储了终端的操作系统。并且,在该存储空间中还存放了适于被处理器加载并执行的一条或多条的指令,这些指令可以是一个或一个以上的计算机程序(包括程序代码)。需要说明的是,此处的计算机存储介质可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器;可选的还可以是至少一个位于远离前述处理器的计算机存储介质。
在一个实施例中,可由处理器加载并执行计算机存储介质中存放的一条或多条指令,以实现上述实施例中的相应步骤;具体实现中,计算机存储介质中的一条或多条指令可以由处理器加载并执行图1和/或图2中方法的任意步骤,此处不再赘述。 
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,该模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。所显示或讨论的相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本发明实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者通过该计算机可读存储介质进行传输。该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是只读存储器(read-only memory,ROM),或随机存储存储器(random access memory,RAM),或磁性介质,例如,软盘、硬盘、磁带、磁碟、或光介质,例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质,例如,固态硬盘(solid state disk ,SSD)等。

Claims (10)

  1. 一种低音增强方法,其特征在于,包括:
    获取输入的原始音频信号,生成所述原始音频信号的低音增强信号;
    获取扬声器的非线性参数;
    根据所述扬声器的非线性参数对所述低音增强信号进行非线性预失真处理,获得输出信号,所述输出信号由所述扬声器输出。
  2. 根据权利要求1所述的低音增强方法,其特征在于,所述生成所述原始音频信号的低音增强信号包括:
    根据所述原始音频信号中的低频信号生成调整低频信号;
    获取所述原始音频信号中的高频信号,将所述调整低频信号和所述高频信号叠加,获得所述低音增强信号。
  3. 根据权利要求2所述的低音增强方法,其特征在于,所述根据所述原始音频信号中的低频信号生成调整低频信号包括:
    获取所述原始音频信号中的低频信号;
    生成谐波调整信号,并对所述低频信号添加所述谐波调整信号,获得调整低频信号。
  4. 根据权利要求3所述的低音增强方法,其特征在于,所述方法还包括:
    根据所述扬声器的参数进行扬声器响应预测,获得所述扬声器的预测响应信息,所述扬声器的参数包括所述扬声器的线性参数;
    所述生成谐波调整信号包括:
    根据所述扬声器的预测响应信息生成所述低频信号的谐波调整信号。
  5. 根据权利要求4所述的低音增强方法,其特征在于,所述根据所述扬声器的参数进行扬声器响应预测,获得所述扬声器的预测响应信息,包括:
    根据所述扬声器的非线性参数和线性参数进行扬声器响应预测,获得所述扬声器的预测响应信息。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    在根据所述扬声器的非线性参数和线性参数进行扬声器响应预测之前,判断所述扬声器的非线性参数是否高于预设参数阈值;
    若高于,触发所述根据所述扬声器的非线性参数和线性参数进行扬声器响应预测的步骤;
    若不高于,根据所述扬声器的线性参数进行扬声器响应预测,获得所述扬声器的预测响应信息。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述扬声器的条件参数,依据所述条件参数和预设的条件参数与非线性参数的映射关系,更新所述非线性参数,所述条件参数包括但不限于环境温度、工作时间、输入信号功率动态范围中的一种或几种。
  8. 一种低音增强系统,其特征在于,包括:
    虚拟低音增强模块,用于接收输入的原始音频信号,生成所述原始音频信号的低音增强信号,并输入非线性补偿模块;
    所述非线性参数模块,用于获取扬声器的非线性参数;
    所述非线性补偿模块,用于根据所述非线性参数对所述低音增强信号进行非线性预失真处理,获得输出信号,所述输出信号由所述扬声器输出。
  9. 一种存储介质,存储有计算机指令程序,其特征在于,所述计算机指令程序被处理器执行时,使得所述处理器执行如权利要求1至7中任一项所述方法的步骤。
  10. 一种计算机设备,其特征在于,包括至少一个存储器、至少一个处理器,所述存储器存储有计算机指令程序,所述计算机指令程序被所述处理器执行时,使得所述处理器执行如权利要求1至7中任一项所述方法的步骤。
PCT/CN2020/096692 2020-06-12 2020-06-18 一种低音增强方法、系统、电子设备和存储介质 WO2021248526A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010536876.3A CN111796791A (zh) 2020-06-12 2020-06-12 一种低音增强方法、系统、电子设备和存储介质
CN202010536876.3 2020-06-12

Publications (1)

Publication Number Publication Date
WO2021248526A1 true WO2021248526A1 (zh) 2021-12-16

Family

ID=72803318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096692 WO2021248526A1 (zh) 2020-06-12 2020-06-18 一种低音增强方法、系统、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN111796791A (zh)
WO (1) WO2021248526A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511941B (zh) * 2020-12-01 2023-06-13 恒玄科技(上海)股份有限公司 一种音频输出方法及系统及耳机
CN115567831A (zh) * 2021-06-30 2023-01-03 华为技术有限公司 一种提升扬声器的音质的方法及装置
US11950089B2 (en) 2021-07-29 2024-04-02 Samsung Electronics Co., Ltd. Perceptual bass extension with loudness management and artificial intelligence (AI)
CN115442709B (zh) * 2022-07-29 2023-06-16 荣耀终端有限公司 音频处理方法、虚拟低音增强系统、设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149034A (zh) * 2009-12-09 2011-08-10 三星电子株式会社 声音增强设备及方法
CN109996151A (zh) * 2019-04-10 2019-07-09 上海大学 一种基于瞬稳态信号分离混合虚拟低音增强处理方法
US20190222939A1 (en) * 2018-01-17 2019-07-18 Samsung Electronics Co, Ltd. Nonlinear control of vented box or passive radiator loudspeaker systems
CN110506425A (zh) * 2017-02-17 2019-11-26 思睿逻辑国际半导体有限公司 低音增强

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1667945A (zh) * 2005-04-01 2005-09-14 深圳市惠天通信技术有限公司 预失真音频线性功率放大系统
CN104471961A (zh) * 2012-05-29 2015-03-25 创新科技有限公司 自适应低音处理系统
CN104936088A (zh) * 2015-04-21 2015-09-23 上海大学 一种混合虚拟低音增强处理方法
US9848262B2 (en) * 2016-03-23 2017-12-19 Harman International Industries, Incorporated Techniques for tuning the distortion response of a loudspeaker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149034A (zh) * 2009-12-09 2011-08-10 三星电子株式会社 声音增强设备及方法
CN110506425A (zh) * 2017-02-17 2019-11-26 思睿逻辑国际半导体有限公司 低音增强
US20190222939A1 (en) * 2018-01-17 2019-07-18 Samsung Electronics Co, Ltd. Nonlinear control of vented box or passive radiator loudspeaker systems
CN109996151A (zh) * 2019-04-10 2019-07-09 上海大学 一种基于瞬稳态信号分离混合虚拟低音增强处理方法

Also Published As

Publication number Publication date
CN111796791A (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2021248526A1 (zh) 一种低音增强方法、系统、电子设备和存储介质
US10165361B2 (en) System and method for loudspeaker protection
WO2021248525A1 (zh) 一种信号非线性补偿方法、装置、电子设备和存储介质
TW503668B (en) Method and device for generating digital filters for equalizing a loudspeaker
KR102011537B1 (ko) 베이스 강화 시스템
CN110191396B (zh) 一种音频处理方法、装置、终端及计算机可读存储介质
WO2015085924A1 (zh) 一种扬声器自动均衡方法
CN111800723B (zh) 主动降噪耳机测试方法、装置、终端设备及存储介质
GB2519675A (en) A method for reducing loudspeaker phase distortion
JP2005500768A (ja) スピーカ周波数特性補償ツール
WO2020097824A1 (zh) 音频处理方法、装置、存储介质及电子设备
US20240015438A1 (en) Managing low frequencies of an output signal
CN107682802B (zh) 音频设备音效的调试方法及装置
CN105764008B (zh) 一种调试扩声系统传输频率特性的方法及装置
CN102905213A (zh) 音频信号处理设备和音频信号处理方法
WO2021248535A1 (zh) 一种手势动作判断方法、装置、电子设备和存储介质
CN102576560B (zh) 电子音频设备
CN115835094A (zh) 音频信号处理方法、系统、设备、产品及介质
JP6489082B2 (ja) イコライザ装置、及び、イコライザプログラム
Yeh et al. Nonlinear modeling of a guitar loudspeaker cabinet
WO2021248520A1 (zh) 扬声器的非线性补偿方法、扬声器设备、装置和存储介质
CN103796135A (zh) 具有回声消除的动态扬声器管理
US20120155673A1 (en) Compensation Filtering Device and Method Thereof
CN116013331A (zh) 一种低音增强方法、装置、电子设备及存储介质
CN117412222A (zh) 基于广义传递函数的空间自适应声辐射校准方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940311

Country of ref document: EP

Kind code of ref document: A1