WO2021248448A1 - Wireless sensing indication in new radio communications - Google Patents

Wireless sensing indication in new radio communications Download PDF

Info

Publication number
WO2021248448A1
WO2021248448A1 PCT/CN2020/095799 CN2020095799W WO2021248448A1 WO 2021248448 A1 WO2021248448 A1 WO 2021248448A1 CN 2020095799 W CN2020095799 W CN 2020095799W WO 2021248448 A1 WO2021248448 A1 WO 2021248448A1
Authority
WO
WIPO (PCT)
Prior art keywords
occasions
resources
indication
reserved
sensing signal
Prior art date
Application number
PCT/CN2020/095799
Other languages
French (fr)
Inventor
Jing Dai
Yuwei REN
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/095799 priority Critical patent/WO2021248448A1/en
Publication of WO2021248448A1 publication Critical patent/WO2021248448A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the following relates generally to wireless communications and more specifically to wireless sensing indication in new radio communications.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a UE or a base station may perform wireless detection sensing using a same bandwidth as wireless communications. Sharing the bandwidth for both wireless detection sensing signals and wireless communications signals may result in collisions between the signals. Some techniques for sharing the bandwidth with both types of signaling can be improved.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support wireless sensing indication in new radio communications.
  • the described techniques provide for sharing a radio frequency spectrum band between sensing signals and wireless communications signals.
  • a wireless detection sensing signal may be transmitted using a bandwidth which is also used for wireless communications.
  • Wireless communications and wireless detection sensing signaling sharing the same bandwidth may lead to collisions between the signals.
  • the techniques described herein support efficient dynamic resource sharing of wireless detection sensing signaling and wireless communications. For example, by indicating which resources are reserved for wireless detection sensing, a device may efficiently use resources around the reserved resources for wireless communications. Additionally, or alternatively, a device may either cancel transmissions which are scheduled to overlap with the reserved resources or empty a buffer of received information corresponding to the reserved resources.
  • wireless detection sensing occasions there may be configured wireless detection sensing occasions on the radio frequency spectrum band.
  • the device may be indicated which of the configured wireless detection sensing occasions are reserved and used for wireless detection sensing, and which of the configured wireless detection sensing occasions are not being used for wireless sensing. The device may then accordingly communicate around the reserved wireless sensing occasions.
  • a method of wireless communication at a UE may include identifying a pattern for a set of sensing signal occasions, receiving an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identifying a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, and allocating the first set of resources for the communications based on the indication.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to identify a pattern for a set of sensing signal occasions, receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, and allocate the first set of resources for the communications based on the indication.
  • the apparatus may include means for identifying a pattern for a set of sensing signal occasions, receiving an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identifying a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, and allocating the first set of resources for the communications based on the indication.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to identify a pattern for a set of sensing signal occasions, receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, and allocate the first set of resources for the communications based on the indication.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining, based on the indication, that the second set of resources corresponds to the the wireless sensing detection, where the indication may be received after the resource allocation in a time domain.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for emptying buffered information corresponding to the second set of resources.
  • receiving the indication may include operations, features, means, or instructions for receiving downlink control information including the indication before the resource allocation in a time domain, and cancelling an uplink transmission corresponding to the second set of resources.
  • cancelling the uplink transmission further may include operations, features, means, or instructions for cancelling the uplink transmission from a first symbol of the second set of resources to a last symbol of the uplink transmission.
  • receiving the indication may include operations, features, means, or instructions for identifying a bitmap in the indication corresponding to the set of sensing signal occasions, where the one or more reserved occasions correspond to toggled bits of the bitmap.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a set of reserved sensing occasion patterns, where the indication corresponds to a selected reserved sensing occasion pattern of the set of reserved sensing occasion patterns.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a configuration for the set of reserved sensing occasion patterns via system information, a radio resource control message, downlink control information, or any combination thereof.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a pulse pattern for a sensing signal occasion of the set of sensing signal occasions.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a configuration for the pulse pattern via a radio resource control message, the indication, system information, downlink control information, or any combination thereof.
  • the indication may be received via downlink control information, system information, a radio resource control message, or any combination thereof.
  • the downlink control information may be a group common downlink control information.
  • the downlink control information includes per-component carrier indications for the one or more reserved occasions.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a scheduled uplink transmission overlapping the second set of resources, where the scheduled uplink transmission includes an uplink shared channel transmission, a sounding reference signal transmission, an uplink control channel transmission, or any combination thereof.
  • the indication may be received from another UE, a base station, or any combination thereof.
  • the indication may be received from the other UE on a sidelink.
  • the indication may be received at least a threshold duration of time before the second set of resources.
  • the second set of resources spans a system bandwidth.
  • a method of wireless communication at a device may include identifying a pattern for a set of sensing signal occasions, transmitting an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identifying a resource allocation for communications over a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, communicating with a UE using the first set of resources of the resource allocation in accordance with the indication, and transmitting a sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to identify a pattern for a set of sensing signal occasions, transmit an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, communicate with a UE using the first set of resources of the resource allocation in accordance with the indication, and transmit a sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
  • the apparatus may include means for identifying a pattern for a set of sensing signal occasions, transmitting an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identifying a resource allocation for communications over a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, communicating with a UE using the first set of resources of the resource allocation in accordance with the indication, and transmitting a sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
  • a non-transitory computer-readable medium storing code for wireless communication at a device is described.
  • the code may include instructions executable by a processor to identify a pattern for a set of sensing signal occasions, transmit an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, communicate with a UE using the first set of resources of the resource allocation in accordance with the indication, and transmit a sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the second set of resources may be not assigned for the UE, where the indication may be transmitted after the resource allocation in a time domain.
  • receiving the indication may include operations, features, means, or instructions for transmitting downlink control information including the indication before the resource allocation in a time domain, and determining an uplink transmission corresponding to the second set of resources may be cancelled.
  • the uplink transmission includes an uplink shared channel transmission, a sounding reference signal transmission, an uplink control channel transmission, or any combination thereof.
  • the downlink control information including the indication may be transmitted at least before a threshold duration of time between the downlink control information and the second set of resources.
  • the uplink transmission may be cancelled from a first symbol of the second set of resources to a last symbol of the uplink transmission.
  • the indication includes a bitmap corresponding to the one or more sensing signal occasions, where the one or more reserved occasions correspond to toggled bits of the bitmap.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a set of reserved sensing occasion patterns, where the indication corresponds to a selected reserved sensing occasion pattern of the set of reserved sensing occasion patterns.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a configuration for the set of reserved sensing occasion patterns via system information, a radio resource control message, downlink control information, or any combination thereof.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a pulse pattern for a sensing signal occasion of the set of sensing signal occasions.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a configuration for the pulse pattern via a radio resource control message, the indication, system information, downlink control information, or any combination thereof.
  • the indication may be transmitted via downlink control information, system information, a radio resource control message, or any combination thereof.
  • the downlink control information may be a group common downlink control information.
  • the downlink control information includes per-component carrier indications for the one or more reserved occasions.
  • the indication may be transmitted to the UE, another base station, or any combination thereof.
  • the second set of resources spans a system bandwidth.
  • the device may be a UE or a base station.
  • FIG. 1 illustrates an example of a system for wireless communications that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a wireless sensing burst pattern that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a reserved occasion indication scheme that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • FIG. 5 illustrates an example of a wireless sensing burst pattern that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • FIG. 6 illustrates an example of a process flow that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • FIGs. 7 and 8 show block diagrams of devices that support wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • FIG. 9 shows a block diagram of a communications manager that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • FIG. 10 shows a diagram of a system including a user equipment (UE) that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • UE user equipment
  • FIG. 11 shows a diagram of a system including a base station that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • FIGs. 12 through 16 show flowcharts illustrating methods that support wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • Some devices in a wireless communications system may use wireless sensing for precise environment imaging.
  • a user equipment (UE) in a vehicle-to-everything (V2X) system may use wireless sensing to detect locations or movements of vehicles, obstructions, pedestrians, etc.
  • Wireless detection sensing may be used for other environment sensing as well, such as building analytics and digital health monitoring.
  • a wireless sensing signal may be transmitted using a millimeter wave, which may provide a high level of detail for extracting range, velocity, or angular information for the environment imaging.
  • Some wireless communications systems may use sub-6 Gigahertz radio frequency spectrum bands and millimeter wave radio frequency spectrum bands for wireless communications. Therefore, some systems may support both wireless communications and wireless sensing on a millimeter wave radio frequency spectrum band. Wireless communications and wireless sensing sharing the same bandwidth may lead to collisions between the signals. Furthermore, it may be inefficient to allocate dedicated resources for wireless sensing and wireless communication separately.
  • the techniques described herein support efficient dynamic resource sharing of wireless sensing and wireless communications. These techniques support dynamic indication of resources which are allocated, or reserved, for wireless sensing in a radio frequency spectrum band that may also be used for wireless communications. By indicating which resources are reserved for wireless sensing, a device may efficiently use resources around the reserved resources for wireless communications. Additionally, or alternatively, the device may either cancel transmissions which are scheduled to overlap with the reserved resources or empty a buffer of received information corresponding to the reserved resources. These techniques may prevent collisions between the wireless sensing and the wireless communications. In some cases, there may be configured wireless sensing occasions on the radio frequency spectrum band. The device may be indicated which of the configured wireless sensing occasions are reserved and used for wireless sensing, and which of the configured wireless sensing occasions are not being used for wireless sensing.
  • the device may then accordingly communicate around the reserved wireless sensing occasions.
  • These techniques may be implemented for communications between a base station and a UE, between UEs (e.g., in device-to-device (D2D) communications or sidelink communications) , V2X communications, or others.
  • D2D device-to-device
  • sidelink communications e.g., in device-to-device (D2D) communications or sidelink communications
  • V2X communications e.g., V2X communications, or others.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to wireless sensing indication in new radio communications.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the wireless communications system 100 may support wireless sensing.
  • Wireless sensing may be used for environment imaging, such as in a V2X system.
  • a UE 115 may transmit a wireless sensing signal and detect a reflected wireless sensing signal, which may be similar to radar sensing.
  • the reflected wireless sensing signal may indicate information for an object which reflected the signal, such as the location, angular information, and velocity information of the object.
  • the object could be an obstruction in the road, a vehicle UE, a pedestrian, etc.
  • Wireless sensing may be used for other applications as well.
  • wireless sensing may be used for vehicle sensing by millimeter wave Radar and millimeter wave communication, handheld short-range sensing by UEs 115 such as smartphones or smartwatches or in-car-based control UE sensing, building analytics, such as residential security or building management (e.g., performed by sensing at a base station 105) , digital health monitoring, such as device-free eldercare by motion sensing, and sensing to support wireless communications, among other uses.
  • a higher sensing granularity may be supported by, for example, Terahertz radio.
  • digital health sensing may be performed by a customer premise equipment (CPE) or an access point.
  • CPE customer premise equipment
  • the wireless sensing signal may be transmitted on a bandwidth that is also used for wireless communications in the wireless communications system 100.
  • the wireless sensing signal may be transmitted using a millimeter wave bandwidth.
  • Some wireless communications, such as NR communications may use both sub-6GHz bands (e.g., Frequency Range 1 (FR1) bands) and millimeter wave bands (e.g., Frequency Range 2 (FR2) bands) for communications.
  • FR1 bands Frequency Range 1
  • FR2 bands Frequency Range 2
  • Using a cellular band for wireless sensing may provide some advantages for wireless sensing.
  • a device e.g., a base station 105 or a UE 115 transmitting the wireless sensing signal may already be configured with radio frequency hardware and antennas which use the radio frequency spectrum band.
  • wireless sensing may use some frameworks of wireless communications for efficient sensing procedures, such as re-using a channel state information (CSI) framework as a coarse input for a higher resolution sensing.
  • wireless sensing may also provide some information for the wireless communications.
  • the wireless communications system 100 may use environment sensing for network management (e.g., beam adaptation, protocol adaptation, etc. ) based on an environment condition which may be obtained via the wireless sensing.
  • sharing the radio frequency spectrum band between wireless detection sensing and wireless communications may cause collisions between the signaling.
  • Some wireless communications systems may implement techniques such as a preemption indication or a cancellation indication to indicate possible signaling collisions between high priority signaling and lower priority signaling. For example, for urgent transmission of a higher priority UE 115 (e.g., sending ultra-reliable, low latency communications) , some already indicated resource allocation for a lower-priority UE 115 may be preempted by the higher-priority data transmission.
  • a preemption indication may be sent after a base station 105 has transmitted the URLLC data to indicate to the lower-priority UE 115 that the signaling in the overlap resources was not targeted for the lower-priority UE 115.
  • an a priori cancellation indication may be sent before an uplink transmission (e.g., an uplink shared channel transmission or a sounding reference signal) to configure the lower-priority UE to cancel the uplink transmission.
  • Wireless detection sensing signaling may be transmitted in bursts of pulses.
  • the pulses may, in some cases, span a large frequency bandwidth (e.g., the system bandwidth) and be transmitted closely together in the time domain.
  • Some current techniques for preempting, or cancelling, resource assignments may not provide sufficient granularity for preempting or cancelling resources which overlap with a wireless detection sensing signal.
  • some current preemption or cancellation techniques for high priority signaling may not be granular enough to support communications in resources which are not directly overlapping the wireless detection sensing signal or between the pulses of a wireless detection sensing signal, or these techniques may not sufficiently indicate the wide bandwidth usage of the wireless detection sensing signal.
  • the wireless communications systems 100 and 200 described herein may implement techniques described herein to indicate wireless sensing with a fine enough granularity to support wireless communications in available resources which do not overlap with the reserved resources.
  • some aspects of the techniques for preemption indications and cancellation indications may be implemented to support indicating wireless detection sensing signals for enhanced use of a radio frequency spectrum band for wireless communications.
  • a transmitting device may send a sensing signal occasion indication to other devices to indicate which resources are reserved for the wireless sensing signal.
  • there may be a set of possible wireless sensing signal occasions though a subset of the possible wireless sensing signal occasions may actually be reserved and used for wireless sensing.
  • a pattern for the wireless sensing signal occasions may be preconfigured, and the transmitting device may indicate which of the occasions in a time range are reserved for wireless detection sensing.
  • the transmitting device may send the indication the reserved occasions to neighboring devices, which may also indicate which of the occasions may be used for wireless communications.
  • the indication may indicate reserved an unused occasions within a corresponding time range, such as a number of slots before or after the indication. This may support efficient use of the radio frequency spectrum band, as neighboring devices may use the non-reserved resources for wireless communications.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communication system 100.
  • the wireless communications system 200 may include UE 115-a and base station 105-a, which may be respective examples of a UE 115 and a base station 105 described with reference to FIG. 1.
  • the wireless communications system 200 may include vehicle UE (V-UE) 205-a and V-UE 205-b, which may each be an example of a UE 115.
  • V-UE vehicle UE
  • the techniques described herein may be implemented for communication between UEs 115, base stations 105, V-UEs 205, or any combination thereof, among other examples of devices in the wireless communications system 100 or 200.
  • the wireless communications system 200 may support wireless sensing.
  • Wireless sensing may be used for environment imaging, such as in a V2X system.
  • V-UE 205-a may transmit a wireless sensing signal 210 and detect a reflected wireless sensing signal 215.
  • the reflected wireless sensing signal 215 may indicate information for an object 220, such as the location, angular information, and velocity information of the object 220.
  • the object 220 could be an obstruction in the road, another V-UE 205 (e.g., V-UE 205-b) , a pedestrian, etc.
  • the wireless sensing signal 210 may be transmitted as a burst of wireless signal pulses, which may be similar to some aspects of radar sensing.
  • Wireless sensing may be used for other applications as well, such as facial or movement recognition at a UE 115, pedestrian movement sensing, short-range sensing in a smartphone or a smartwatch, building analytics or security, digital health monitoring, among other uses.
  • the wireless sensing signal may be transmitted on a bandwidth that is also used for wireless communications in the wireless communications system 200.
  • the wireless sensing signal may be transmitted using a millimeter wave bandwidth.
  • the wireless communications system 200 may also use the millimeter wave bandwidth for wireless communications, such as NR communications in Frequency Range 2.
  • Using a cellular band for wireless sensing may provide some advantages for wireless sensing.
  • a device e.g., a base station 105, a UE 115, or a V-UE 205 transmitting the wireless sensing signal may already be configured with radio frequency hardware and antennas which use the radio frequency spectrum band.
  • wireless sensing may use some frameworks of wireless communications for efficient sensing procedures, such as re-using a channel state information (CSI) framework as a coarse input for a higher resolution sensing.
  • wireless sensing may also provide some information for the wireless communications.
  • the wireless communications system 200 may use environment sensing for network management (e.g., beam adaptation, protocol adaptation, etc. ) based on an environment condition which may be obtained via the wireless sensing.
  • the wireless communications system 200 may implement techniques for dynamic resource sharing and wireless sensing indication.
  • a transmitting device may send a sensing signal occasion indication 225 to other devices to indicate which resources are reserved for the wireless sensing signal.
  • the transmitting device may send the indication 225 of which occasions are reserved and which may be used for wireless communications.
  • the indication 225 may indicate reserved an unused occasions within a corresponding time range, such as a number of slots before or after the indication 225. This may support efficient use of the radio frequency spectrum band, as neighboring devices may use the non-reserved resources for wireless communications.
  • a time-frequency occupation pattern of the possible wireless sensing signal occasions may be pre-configured or pre-defined.
  • neighboring devices may be configured with the occasions via RRC or system information.
  • the pattern for the wireless sensing signal occasions may be included in the sensing signal occasion indication 225.
  • UE 115-a may be configured with a bitmap, where each bit of the bitmap corresponds to a different wireless sensing signal occasion. If a bit of the bitmap is toggled, it may indicate that the corresponding wireless sensing signal occasion within the time range is reserved for wireless sensing. If the bit is not toggled, it may indicate that the corresponding wireless sensing signal occasion is not used for wireless sensing within the time range and may instead be used for wireless communications.
  • UE 115-a may be configured with a set of reserved occasion patterns, and the sensing signal occasion indication 225 may indicate a specific reserved occasion pattern of the set of reserved occasion patterns.
  • each pattern may correspond to a different value, which may save some bits over a bitmap if not all possible combinations of the occasions are used for a reserved pattern.
  • the sensing signal occasion indication 225 may be transmitted before or after the corresponding wireless sensing signal occasions.
  • the sensing signal occasion indication 225 may correspond to a time range including one or more sensing signal occasions, and the sensing signal occasion indication 225 may be transmitted before the time range (e.g., indicating which of the upcoming occasions are reserved for wireless sensing) or after the time range (e.g., indication which of the occasions were used for wireless sensing) .
  • the receiving device may be informed that the channels or signals received at the time/frequency resources corresponding to the reserved occasions are not targeted for the receiving device. If the time range occurs after the sensing signal occasion indication 225 is received, the receiving device may cancel transmission of a signal at the time/frequency resources corresponding to the reserved occasions.
  • the wireless sensing signal may be transmitted in a burst using a pulse waveform.
  • the wireless sensing signal 210 may have intervals between the pulses of the burst which may be utilized for wireless communication.
  • the receiving device may be configured with the pulse pattern of the wireless sensing signal 210.
  • the transmitting device may indicate the pulse pattern, or the receiving device may be indicated the pulse patterns. Configuring the receiving device with the pulse pattern may enable the receiving device to use any resources between, or adjacent to, the pulse waveform for wireless communications.
  • the wireless sensing signal 210 may have different waveforms in other examples.
  • the wireless sensing signal 210 may have a frequency-modulated continuous waveform or a phase-modulated continuous waveform.
  • These techniques may support efficient use of a radio frequency spectrum band that is used for both wireless communications and wireless sensing. These techniques may prevent collisions between wireless sensing and wireless communications and support high spectral efficiency for wireless communications in the resources which are not reserved for wireless sensing.
  • FIG. 3 illustrates an example of a wireless sensing burst pattern 300 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • the wireless sensing burst pattern 300 may implement aspects of wireless communication system 100.
  • a wireless communications system may support wireless sensing and wireless communications on a same radio frequency spectrum band.
  • a device may transmit a wireless sensing signal 305 on a radio frequency spectrum band.
  • the device may transmit the wireless sensing signal 305 on a millimeter wave band which may also be used for a wireless communications channel 310.
  • the wireless sensing signal 305 may be an example of a radar signal which is transmitted over a large bandwidth.
  • the wireless sensing signal 305 may be transmitted over an entire system bandwidth.
  • the wireless sensing signal 305 may be transmitted with a specific pattern in the time domain.
  • the wireless sensing signal 305 may be transmitted in a burst 315 including multiple pulses 320 of the wireless sensing signal 305. In some cases, there may be intervals between the pulses 320 of the burst 315.
  • these resources may be used for the wireless communication channel 310.
  • the wireless communication channel 310 which is outside of the burst 315 may be used for wireless communications on the wireless communication channel 310.
  • the burst 315 may be transmitted within an affected slot 325. In some cases, some techniques for preempting or canceling a transmission within an affected slot 325 may not provide sufficient granularity to perform wireless communications in resources outside of the overlapping resources.
  • a device may communicate on the wireless communication channel 310 during the affected slot 325 both outside of the burst 315 within the affected slot 325 but also between the pulses 320 within the burst 315.
  • FIG. 4 illustrates an example of a reserved occasion indication scheme 400 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • the reserved occasion indication scheme 400 may implement aspects of wireless communication system 100.
  • a device may transmit a wireless sensing signal on a radio frequency spectrum band that is also used for wireless communications. To prevent collisions between the wireless sensing signal and wireless communications signals, the device may indicate the presence of the wireless sensing signal. By indicating the presence of the wireless sensing signal, other wireless devices communicating on the radio frequency spectrum band may use resources on the radio frequency spectrum band which did not overlap with the wireless sensing signal for wireless communications.
  • a device using the radio frequency spectrum band for wireless communications may be configured with a pattern of sensing signal occasions.
  • a sensing occasion may either be reserved for the wireless sensing signal (e.g., a reserved occasion 405) or may not be used for the wireless sensing signal (e.g., an unreserved occasion 410) .
  • the reserved occasions 405 may collide with wireless communications, where the unreserved occasions 410 may be available for wireless communications without a possible collision, as there may not be a sensing signal transmission in these occasions.
  • the device may be configured with the time and frequency resources corresponding to the possible wireless sensing occasions.
  • the time and frequency occupation pattern of the potentially transmitted wireless sensing signal may be pre-defined, pre-configured, or indicated dynamically.
  • One example of time and frequency resources for an occupation pattern may be wireless sensing signal burst occasions, which may use the entire system bandwidth.
  • a reserved occasion indication 415 may be used to indicate the presence of a wireless sensing signal over a time range 420.
  • the duration of the time range 420 may be configurable.
  • the reserved occasion indication 415 may be transmitted via system information, downlink control information, or RRC signaling.
  • the downlink control information may be UE group common downlink control information.
  • the reserved occasion indication 415 may be downlink control information which includes per-component carrier sub-fields for indicating reserved time and frequency resources. This may enable finer granularity for indicating reserved resources for different UEs or serving cells.
  • the reserved occasion indication 415 may be transmitted before or after the time range 420.
  • reserved occasion indication 415-a may be transmitted before the time range 420
  • reserved occasion indication 415-b may be transmitted after the time range 420.
  • reserved occasion indication 415-a the device receiving the indication may cancel transmitting signal or channels corresponding to reserved occasions 405. For example, if the device is a UE 115, the UE 115 may cancel the transmission of uplink channels and signals at time frequency resources overlapping the wireless sensing signal in the reserved occasions 405. In some cases, the UE 115 may still transmit uplink channels and signals between pulses of the wireless sensing signal burst and in resources which do not overlap the wireless sensing signal. In some cases, reserved occasion indication 415-a may be transmitted a threshold of time before the cancelled transmission. For example, reserved occasion indication 415-a may be transmitted at least a configured amount of time (e.g., a DCI-to-cancelled-transmitting time) prior to the resources with the cancelled transmission.
  • a configured amount of time e.g., a DCI-to-cancelled-transmitting time
  • the device receiving the indication may be informed that the channel or signal received at the corresponding time and frequency resources are not targeted for the device. For example, the device may be indicated that the wireless sensing signal collided with the original channel or signal at the time and frequency resources reserved for the wireless sensing signal. In some cases, the device may empty a buffer corresponding to the reserved resources.
  • FIG. 5 illustrates an example of a wireless sensing burst pattern 500 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • the wireless sensing burst pattern 500 may implement aspects of wireless communication system 100.
  • a device may transmit a wireless sensing signal 515 on a radio frequency spectrum band which is also used for wireless communications.
  • the wireless sensing signal 515 and a wireless communication channel 520 may occupy a portion of a millimeter wave band.
  • Techniques described herein support indicating the presence of resources which are reserved for the wireless sensing signal 515 (e.g., reserved occasions 505) so that other devices may efficiently use the wireless communication channel 520.
  • the device transmitting the wireless sensing signal 515 may be referred to as the sensing device and may be an example of a base station 105 or a UE 115 described herein.
  • a neighboring device using the wireless communication channel 520 and being indicated of the wireless sensing signal 515 may be referred to as a neighboring device and may be an example of a UE 115 or a base station 105 described herein.
  • the wireless sensing signal 515 may be transmitted in configured time and frequency resource occasions in the radio frequency spectrum band.
  • wireless sensing occasions may be configured on the radio frequency spectrum band.
  • a wireless sensing occasion may either be reserved for wireless sensing (e.g., a reserved occasion 505) , or the wireless sensing occasion may not be reserved or used for wireless sensing (e.g., an unreserved occasion 510) .
  • the wireless sensing signal 515 may be transmitted during the reserved occasion 505 and may collide with wireless communications in overlapping resources.
  • the wireless sensing signal 515 may not be transmitted during the unreserved occasions 510, and the unreserved occasions 510 may be used for wireless communications without affecting the wireless communications.
  • the wireless sensing signal 515 may be transmitted in bursts 530.
  • each burst 530 may include a set of pulses 525 of the wireless sensing signal 515.
  • the reserved occasion 505 may overlap a wireless communication channel 520, so the wireless communication channel 520 may be present between the intervals of the pulses 525.
  • Neighboring devices to a sensing device may be configured with the time and frequency occupation pattern for the wireless sensing occasions.
  • the pattern for the wireless sensing occasions may be pre-configured (e.g., via system information or RRC) , pre-defined (e.g., stored in memory at the devices) , or indicated to the devices (e.g., via RRC signaling, a MAC CE, or control information) .
  • the neighboring devices to the sensing device may be indicated which of the wireless sensing occasions are reserved (e.g., reserved occasions 505) and which wireless sensing occasions are not used (e.g., unreserved occasions) .
  • the sensing device may transmit a wireless sensing occasion indication to indicate which occasions are reserved occasions 505.
  • the representation of the wireless sensing occasions in the indication may be a bitmap for all potential occasions within a time range. For example, each occasion within a time range may correspond to a bit of the bitmap. If a bit is toggled, then the corresponding sensing occasion may be a reserved occasion 505 for the time range.
  • the bitmap may include 8 bits, and fourth, fifth, and sixth bits of the bitmap may be toggled (e.g., the bitmap may be ⁇ 0, 0, 0, 1, 1, 1, 0, 0 ⁇ ) .
  • a set of reserved sensing signal occasion patterns there may be a set of reserved sensing signal occasion patterns.
  • a maximum number of wireless sensing occasions during the time range may be pre-defined or pre-configured.
  • a number of bits less than the total number of possible occasions may be used to represent the reserved occasions 505 (e.g., instead of a bitmap) .
  • log 2 (N+1) bits may be used for the reserved occasion indication, where N is the total number of potential wireless sensing occasions in the time range.
  • the maximum number of reserved occasions 505 is limited to M, where M ⁇ N, then may be used for the reserved occasion indication.
  • the set of reserved occasions may include consecutive occasions.
  • a start and length indicator value (SLIV) representation may be used, and may be used for the indication.
  • waveforms e.g., non-pulse waveforms
  • these techniques may still be applied to support wireless communications around the sensing signal waveform with a high granularity.
  • FIG. 6 illustrates an example of a process flow 600 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • the process flow 600 may implement aspects of wireless communication system 100 or 200.
  • the process flow 600 may be implemented by a UE 115 or a base station 105, or both, which may be respective examples of a UE 115 and a base station 105 described with reference to FIGs. 1 and 2.
  • base station 105 transmits a wireless sensing signal.
  • a UE 115, or another device may transmit the wireless sensing signal.
  • base station 105-b and UE 115-b may identify a pattern for a set of sensing signal occasions.
  • the pattern may be, for example, the time frequency resources of possible sensing signal occasions as described with reference to FIGs. 4 and 5.
  • base station 105-b may transmit an indication that one or more of the set of sensing signal occasions are reserved for wireless detection sensing.
  • the some of the sensing signal occasions may be reserved occasions, and some of the sensing signal occasions may be unreserved.
  • the indication may be a bitmap, where each bit of the bitmap may correspond to a sensing signal occasion of the set of sensing signal occasions. If, for example, a bit is toggled, the corresponding sensing signal occasion may be reserved for transmitting the sensing signal.
  • base station 105-b and UE 115-b may identify a resource allocation for communications over resources that include a first set of resources and a second set of resources.
  • the second set of resources may overlap the one or more reserved occasions.
  • UE 115-b may allocate the first set of resources for communications based on the indication. For example, UE 115-b may communicate on the resource allocation except for where the sensing signal overlaps the allocated resources.
  • base station 105-b, UE 115-b, or both may communicate using the first set of resources.
  • base station 105-b may communicate with UE 115-b using the first set of resources of the resource allocation in accordance with the indication.
  • base station 105-b may transmit the sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
  • the indication may be received after the resource allocation in the time domain.
  • UE 115-b may determine that the second set of resources correspond to the wireless sensing detection.
  • UE 115-b may empty buffered information corresponding to the second set of resources.
  • UE 115-b may still receive information from the first set of resources or use the first set of resources for communications.
  • the indication may be received before the resource allocation in the time domain.
  • UE 115-b may cancel an uplink transmission corresponding to the second set of resources. In some cases, UE 115-b may still communicate the uplink transmission on the first set of resources. In some examples, UE 115-b may cancel the uplink transmission from the first symbol of the reserved resources until a last symbol of the scheduled uplink transmission.
  • FIG. 7 shows a block diagram 700 of a device 705 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • the device 705 may be an example of aspects of a UE 115 or base station 105 as described herein.
  • the device 705 may include a receiver 710, a communications manager 715, and a transmitter 720.
  • the device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • Receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to wireless sensing indication in new radio communications, etc. ) . Information may be passed on to other components of the device 705.
  • the receiver 710 may be an example of aspects of the transceiver 1020 or 1120 as described with reference to FIGs. 10 and 11.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • the communications manager 715 may identify a pattern for a set of sensing signal occasions, receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, and allocate the first set of resources for the communications based on the indication.
  • the communications manager 715 may also identify a pattern for a set of sensing signal occasions, transmit an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, communicate with a UE using the first set of resources of the resource allocation in accordance with the indication, and transmit a sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
  • the communications manager 715 may be an example of aspects of the communications manager 1010 or 1110 as described herein.
  • the communications manager 715 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 715, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 715 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 715, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 715, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the actions performed by the communications manager 715 as described herein may be implemented to realize one or more potential advantages.
  • One implementation may allow a device (e.g., a UE 115 or a base station 105) to improve spectral efficiency in a wireless communications system that support wireless detection sensing on a radio frequency spectrum band that is used for wireless communications.
  • these techniques may prevent the device from receiving information which cannot be decoded due to an unexpected collision.
  • these techniques may be implemented to efficiently use resources for wireless communications which do not overlap with resources reserved for wireless detection sensing.
  • Transmitter 720 may transmit signals generated by other components of the device 705.
  • the transmitter 720 may be collocated with a receiver 710 in a transceiver module.
  • the transmitter 720 may be an example of aspects of the transceiver 1020 or 1120 as described with reference to FIGs. 10 and 11.
  • the transmitter 720 may utilize a single antenna or a set of antennas.
  • FIG. 8 shows a block diagram 800 of a device 805 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • the device 805 may be an example of aspects of a device 705, a UE 115, or a base station 105 as described herein.
  • the device 805 may include a receiver 810, a communications manager 815, and a transmitter 855.
  • the device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • Receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to wireless sensing indication in new radio communications, etc. ) . Information may be passed on to other components of the device 805.
  • the receiver 810 may be an example of aspects of the transceiver 1020 or 1120 as described with reference to FIGs. 10 and 11.
  • the receiver 810 may utilize a single antenna or a set of antennas.
  • the communications manager 815 may be an example of aspects of the communications manager 715 as described herein.
  • the communications manager 815 may include a sensing signal occasion pattern component 820, a reserved occasions indication component 825, a resource allocation identifying component 830, a resource allocating component 835, a reserved occasions indicating component 840, an available resource communicating component 845, and a sensing signal transmitting component 850.
  • the communications manager 815 may be an example of aspects of the communications manager 1010 or 1110 as described herein.
  • the sensing signal occasion pattern component 820 may identify a pattern for a set of sensing signal occasions.
  • the reserved occasions indication component 825 may receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing.
  • the resource allocation identifying component 830 may identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions.
  • the resource allocating component 835 may allocate the first set of resources for the communications based on the indication.
  • the sensing signal occasion pattern component 820 may identify a pattern for a set of sensing signal occasions.
  • the reserved occasions indicating component 840 may transmit an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing.
  • the resource allocation identifying component 830 may identify a resource allocation for communications over a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions.
  • the available resource communicating component 845 may communicate with a UE using the first set of resources of the resource allocation in accordance with the indication.
  • the sensing signal transmitting component 850 may transmit a sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
  • Transmitter 855 may transmit signals generated by other components of the device 805.
  • the transmitter 855 may be collocated with a receiver 810 in a transceiver module.
  • the transmitter 855 may be an example of aspects of the transceiver 1020 or 1120 as described with reference to FIGs. 10 and 11.
  • the transmitter 855 may utilize a single antenna or a set of antennas.
  • FIG. 9 shows a block diagram 900 of a communications manager 905 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • the communications manager 905 may be an example of aspects of a communications manager 715, a communications manager 815, or a communications manager 1010 described herein.
  • the communications manager 905 may include a sensing signal occasion pattern component 910, a reserved occasions indication component 915, a resource allocation identifying component 920, a resource allocating component 925, a buffer emptying component 930, an uplink transmission cancelling component 935, a pulse pattern identifying component 940, a reserved occasions indicating component 945, an available resource communicating component 950, and a sensing signal transmitting component 955.
  • Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the sensing signal occasion pattern component 910 may identify a pattern for a set of sensing signal occasions. In some examples, the sensing signal occasion pattern component 910 may identify a pattern for a set of sensing signal occasions.
  • the reserved occasions indication component 915 may receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing.
  • the reserved occasions indication component 915 may determine, based on the indication, that the second set of resources corresponds to the wireless sensing detection, where the indication is received after the resource allocation in a time domain. In some examples, the reserved occasions indication component 915 may receive downlink control information including the indication before the resource allocation in a time domain. In some examples, the reserved occasions indication component 915 may identify a bitmap in the indication corresponding to the set of sensing signal occasions, where the one or more reserved occasions correspond to toggled bits of the bitmap.
  • the reserved occasions indication component 915 may identify a set of reserved sensing occasion patterns, where the indication corresponds to a selected reserved sensing occasion pattern of the set of reserved sensing occasion patterns. In some examples, the reserved occasions indication component 915 may receive a configuration for the set of reserved sensing occasion patterns via system information, a radio resource control message, downlink control information, or any combination thereof. In some cases, the downlink control information including the indication is received at least a threshold duration of time before the downlink control information and the second set of resources.
  • the indication is received via downlink control information, system information, a radio resource control message, or any combination thereof.
  • the downlink control information is a group common downlink control information.
  • the downlink control information includes per-component carrier indications for the one or more reserved occasions.
  • the indication is received from another UE, a base station, or any combination thereof.
  • the indication is received from the other UE on a sidelink.
  • the resource allocation identifying component 920 may identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions. In some examples, the resource allocation identifying component 920 may identify a resource allocation for communications over a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions. In some cases, the second set of resources spans a system bandwidth.
  • the resource allocating component 925 may allocate the first set of resources for the communications based on the indication.
  • the reserved occasions indicating component 945 may transmit an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing.
  • the reserved occasions indicating component 945 may determine that the second set of resources are not assigned for the UE, where the indication is transmitted after the resource allocation in a time domain. In some examples, the reserved occasions indicating component 945 may transmit downlink control information including the indication before the resource allocation in a time domain.
  • the reserved occasions indicating component 945 may identify a set of reserved sensing occasion patterns, where the indication corresponds to a selected reserved sensing occasion pattern of the set of reserved sensing occasion patterns. In some examples, the reserved occasions indicating component 945 may transmit a configuration for the set of reserved sensing occasion patterns via system information, a radio resource control message, downlink control information, or any combination thereof.
  • the downlink control information including the indication is transmitted at least before a threshold duration of time between the downlink control information and the second set of resources.
  • the indication includes a bitmap corresponding to the one or more sensing signal occasions, where the one or more reserved occasions correspond to toggled bits of the bitmap.
  • the indication is transmitted via downlink control information, system information, a radio resource control message, or any combination thereof.
  • the downlink control information is a group common downlink control information.
  • the downlink control information includes per-component carrier indications for the one or more reserved occasions.
  • the indication is transmitted to the UE, another base station, or any combination thereof.
  • the device is a UE or a base station.
  • the available resource communicating component 950 may communicate with a UE using the first set of resources of the resource allocation in accordance with the indication.
  • the sensing signal transmitting component 955 may transmit a sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
  • the buffer emptying component 930 may empty buffered information corresponding to the second set of resources.
  • the uplink transmission cancelling component 935 may cancel an uplink transmission corresponding to the second set of resources. In some examples, the uplink transmission cancelling component 935 may cancel the uplink transmission from a first symbol of the second set of resources to a last symbol of the uplink transmission.
  • the uplink transmission cancelling component 935 may determine an uplink transmission corresponding to the second set of resources is cancelled.
  • the uplink transmission includes an uplink shared channel transmission, a sounding reference signal transmission, an uplink control channel transmission, or any combination thereof.
  • the uplink transmission is cancelled from a first symbol of the second set of resources to a last symbol of the uplink transmission.
  • the pulse pattern identifying component 940 may identify a pulse pattern for a sensing signal occasion of the set of sensing signal occasions. In some examples, the pulse pattern identifying component 940 may receive a configuration for the pulse pattern via a radio resource control message, the indication, system information, downlink control information, or any combination thereof. In some examples, the pulse pattern identifying component 940 may transmit a configuration for the pulse pattern via a radio resource control message, the indication, system information, downlink control information, or any combination thereof.
  • FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of or include the components of device 705, device 805, or a UE 115 as described herein.
  • the device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, a transceiver 1020, an antenna 1025, memory 1030, a processor 1040, and an I/O controller 1050. These components may be in electronic communication via one or more buses (e.g., bus 1055) .
  • buses e.g., bus 1055
  • the communications manager 1010 may identify a pattern for a set of sensing signal occasions, receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, and allocate the first set of resources for the communications based on the indication.
  • the communications manager 1010 may also identify a pattern for a set of sensing signal occasions, transmit an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, communicate with a UE using the first set of resources of the resource allocation in accordance with the indication, and transmit a sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
  • Transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1025. However, in some cases the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1030 may include RAM, ROM, or a combination thereof.
  • the memory 1030 may store computer-readable code 1035 including instructions that, when executed by a processor (e.g., the processor 1040) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1040
  • the memory 1030 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1040 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1040.
  • the processor 1040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1030) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting wireless sensing indication in new radio communications) .
  • the I/O controller 1050 may manage input and output signals for the device 1005.
  • the I/O controller 1050 may also manage peripherals not integrated into the device 1005.
  • the I/O controller 1050 may represent a physical connection or port to an external peripheral.
  • the I/O controller 1050 may utilize an operating system such as or another known operating system.
  • the I/O controller 1050 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 1050 may be implemented as part of a processor.
  • a user may interact with the device 1005 via the I/O controller 1050 or via hardware components controlled by the I/O controller 1050.
  • the code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1035 may not be directly executable by the processor 1040 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of or include the components of device 705, device 805, or a base station 105 as described herein.
  • the device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1110, a network communications manager 1115, a transceiver 1120, an antenna 1125, memory 1130, a processor 1140, and an inter-station communications manager 1145. These components may be in electronic communication via one or more buses (e.g., bus 1155) .
  • buses e.g., bus 1155
  • the communications manager 1110 may identify a pattern for a set of sensing signal occasions, receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, and allocate the first set of resources for the communications based on the indication.
  • the communications manager 1110 may also identify a pattern for a set of sensing signal occasions, transmit an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, communicate with a UE using the first set of resources of the resource allocation in accordance with the indication, and transmit a sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
  • Network communications manager 1115 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1115 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • Transceiver 1120 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1125. However, in some cases the device may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1130 may include RAM, ROM, or a combination thereof.
  • the memory 1130 may store computer-readable code 1135 including instructions that, when executed by a processor (e.g., the processor 1140) cause the device to perform various functions described herein.
  • the memory 1130 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1140 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1140 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1140.
  • the processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting wireless sensing indication in new radio communications) .
  • Inter-station communications manager 1145 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1145 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, inter-station communications manager 1145 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1135 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1135 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 12 shows a flowchart illustrating a method 1200 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • the operations of method 1200 may be implemented by a UE 115 or base station 105 or its components as described herein.
  • the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 7 through 11.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
  • the UE or base station may identify a pattern for a set of sensing signal occasions.
  • the operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by a sensing signal occasion pattern component as described with reference to FIGs. 7 through 11.
  • the UE or base station may receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing.
  • the operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a reserved occasions indication component as described with reference to FIGs. 7 through 11.
  • the UE or base station may identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions.
  • the operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a resource allocation identifying component as described with reference to FIGs. 7 through 11.
  • the UE or base station may allocate the first set of resources for the communications based on the indication.
  • the operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of 1220 may be performed by a resource allocating component as described with reference to FIGs. 7 through 11.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a UE 115 or base station 105 or its components as described herein.
  • the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 7 through 11.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
  • the UE or base station may identify a pattern for a set of sensing signal occasions.
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a sensing signal occasion pattern component as described with reference to FIGs. 7 through 11.
  • the UE or base station may receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a reserved occasions indication component as described with reference to FIGs. 7 through 11.
  • the UE or base station may determine, based on the indication, that the second set of resources corresponds to the wireless sensing detection, where the indication is received after the resource allocation in a time domain.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a reserved occasions indication component as described with reference to FIGs. 7 through 11.
  • the UE or base station may identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions.
  • the operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a resource allocation identifying component as described with reference to FIGs. 7 through 11.
  • the UE or base station may allocate the first set of resources for the communications based on the indication.
  • the operations of 1325 may be performed according to the methods described herein. In some examples, aspects of the operations of 1325 may be performed by a resource allocating component as described with reference to FIGs. 7 through 11.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or base station 105 or its components as described herein.
  • the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 7 through 11.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
  • the UE or base station may identify a pattern for a set of sensing signal occasions.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a sensing signal occasion pattern component as described with reference to FIGs. 7 through 11.
  • the UE or base station may receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a reserved occasions indication component as described with reference to FIGs. 7 through 11.
  • the UE or base station may receive downlink control information including the indication before the resource allocation in a time domain.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a reserved occasions indication component as described with reference to FIGs. 7 through 11.
  • the UE or base station may identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a resource allocation identifying component as described with reference to FIGs. 7 through 11.
  • the UE or base station may allocate the first set of resources for the communications based on the indication.
  • the operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a resource allocating component as described with reference to FIGs. 7 through 11.
  • the UE or base station may cancel an uplink transmission corresponding to the second set of resources.
  • the operations of 1430 may be performed according to the methods described herein. In some examples, aspects of the operations of 1430 may be performed by an uplink transmission cancelling component as described with reference to FIGs. 7 through 11.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a UE 115 or base station 105 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 7 through 11.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
  • the UE or base station may identify a pattern for a set of sensing signal occasions.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a sensing signal occasion pattern component as described with reference to FIGs. 7 through 11.
  • the UE or base station may receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a reserved occasions indication component as described with reference to FIGs. 7 through 11.
  • the UE or base station may identify a bitmap in the indication corresponding to the set of sensing signal occasions, where the one or more reserved occasions correspond to toggled bits of the bitmap.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a reserved occasions indication component as described with reference to FIGs. 7 through 11.
  • the UE or base station may identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a resource allocation identifying component as described with reference to FIGs. 7 through 11.
  • the UE or base station may allocate the first set of resources for the communications based on the indication.
  • the operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a resource allocating component as described with reference to FIGs. 7 through 11.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a UE 115 or base station 105 or its components as described herein.
  • the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 7 through 11.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
  • the UE or base station may identify a pattern for a set of sensing signal occasions.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a sensing signal occasion pattern component as described with reference to FIGs. 7 through 11.
  • the UE or base station may transmit an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a reserved occasions indicating component as described with reference to FIGs. 7 through 11.
  • the UE or base station may identify a resource allocation for communications over a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a resource allocation identifying component as described with reference to FIGs. 7 through 11.
  • the UE or base station may communicate with a UE using the first set of resources of the resource allocation in accordance with the indication.
  • the operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by an available resource communicating component as described with reference to FIGs. 7 through 11.
  • the UE or base station may transmit a sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
  • the operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by a sensing signal transmitting component as described with reference to FIGs. 7 through 11.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer,
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A device may transmit a sensing signal on a radio frequency spectrum band which is used for wireless communications. The device may indicate reserved resource occasions which are used to transmit the sensing signal so that other devices operating on the radio frequency spectrum band may more efficiently communicate on a wireless communication channel and either prevent or identify collisions with the sensing signal.

Description

WIRELESS SENSING INDICATION IN NEW RADIO COMMUNICATIONS
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to wireless sensing indication in new radio communications.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
A UE or a base station may perform wireless detection sensing using a same bandwidth as wireless communications. Sharing the bandwidth for both wireless detection sensing signals and wireless communications signals may result in collisions between the signals. Some techniques for sharing the bandwidth with both types of signaling can be improved.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support wireless sensing indication in new radio communications. Generally, the described techniques provide for sharing a radio frequency spectrum band between sensing signals and wireless communications signals. A wireless detection sensing signal  may be transmitted using a bandwidth which is also used for wireless communications. Wireless communications and wireless detection sensing signaling sharing the same bandwidth may lead to collisions between the signals. The techniques described herein support efficient dynamic resource sharing of wireless detection sensing signaling and wireless communications. For example, by indicating which resources are reserved for wireless detection sensing, a device may efficiently use resources around the reserved resources for wireless communications. Additionally, or alternatively, a device may either cancel transmissions which are scheduled to overlap with the reserved resources or empty a buffer of received information corresponding to the reserved resources. These techniques may prevent collisions between the wireless detection sensing and the wireless communications. In some cases, there may be configured wireless detection sensing occasions on the radio frequency spectrum band. The device may be indicated which of the configured wireless detection sensing occasions are reserved and used for wireless detection sensing, and which of the configured wireless detection sensing occasions are not being used for wireless sensing. The device may then accordingly communicate around the reserved wireless sensing occasions.
A method of wireless communication at a UE is described. The method may include identifying a pattern for a set of sensing signal occasions, receiving an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identifying a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, and allocating the first set of resources for the communications based on the indication.
An apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to identify a pattern for a set of sensing signal occasions, receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, and allocate the first set of resources for the communications based on the indication.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for identifying a pattern for a set of sensing signal occasions, receiving an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identifying a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, and allocating the first set of resources for the communications based on the indication.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to identify a pattern for a set of sensing signal occasions, receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, and allocate the first set of resources for the communications based on the indication.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining, based on the indication, that the second set of resources corresponds to the the wireless sensing detection, where the indication may be received after the resource allocation in a time domain.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for emptying buffered information corresponding to the second set of resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the indication may include operations, features, means, or instructions for receiving downlink control information including the indication before the resource allocation in a time domain, and cancelling an uplink transmission corresponding to the second set of resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, cancelling the uplink transmission further may include  operations, features, means, or instructions for cancelling the uplink transmission from a first symbol of the second set of resources to a last symbol of the uplink transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the indication may include operations, features, means, or instructions for identifying a bitmap in the indication corresponding to the set of sensing signal occasions, where the one or more reserved occasions correspond to toggled bits of the bitmap.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a set of reserved sensing occasion patterns, where the indication corresponds to a selected reserved sensing occasion pattern of the set of reserved sensing occasion patterns.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a configuration for the set of reserved sensing occasion patterns via system information, a radio resource control message, downlink control information, or any combination thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a pulse pattern for a sensing signal occasion of the set of sensing signal occasions.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a configuration for the pulse pattern via a radio resource control message, the indication, system information, downlink control information, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication may be received via downlink control information, system information, a radio resource control message, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the downlink control information may be a group common downlink control information.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the downlink control information includes per-component carrier indications for the one or more reserved occasions.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a scheduled uplink transmission overlapping the second set of resources, where the scheduled uplink transmission includes an uplink shared channel transmission, a sounding reference signal transmission, an uplink control channel transmission, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication may be received from another UE, a base station, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication may be received from the other UE on a sidelink.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication may be received at least a threshold duration of time before the second set of resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second set of resources spans a system bandwidth.
A method of wireless communication at a device is described. The method may include identifying a pattern for a set of sensing signal occasions, transmitting an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identifying a resource allocation for communications over a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, communicating with a UE using the first set of resources of the resource allocation in accordance with the indication, and transmitting a sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
An apparatus for wireless communication at a device is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the  memory. The instructions may be executable by the processor to cause the apparatus to identify a pattern for a set of sensing signal occasions, transmit an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, communicate with a UE using the first set of resources of the resource allocation in accordance with the indication, and transmit a sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
Another apparatus for wireless communication at a device is described. The apparatus may include means for identifying a pattern for a set of sensing signal occasions, transmitting an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identifying a resource allocation for communications over a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, communicating with a UE using the first set of resources of the resource allocation in accordance with the indication, and transmitting a sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
A non-transitory computer-readable medium storing code for wireless communication at a device is described. The code may include instructions executable by a processor to identify a pattern for a set of sensing signal occasions, transmit an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, communicate with a UE using the first set of resources of the resource allocation in accordance with the indication, and transmit a sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the second set of resources may be not assigned for the UE, where the indication may be transmitted after the resource allocation in a time domain.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the indication may include operations, features, means, or instructions for transmitting downlink control information including the indication before the resource allocation in a time domain, and determining an uplink transmission corresponding to the second set of resources may be cancelled.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the uplink transmission includes an uplink shared channel transmission, a sounding reference signal transmission, an uplink control channel transmission, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the downlink control information including the indication may be transmitted at least before a threshold duration of time between the downlink control information and the second set of resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the uplink transmission may be cancelled from a first symbol of the second set of resources to a last symbol of the uplink transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication includes a bitmap corresponding to the one or more sensing signal occasions, where the one or more reserved occasions correspond to toggled bits of the bitmap.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a set of reserved sensing occasion patterns, where the indication corresponds to a selected reserved sensing occasion pattern of the set of reserved sensing occasion patterns.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a configuration for the set of reserved sensing occasion patterns via system information, a radio resource control message, downlink control information, or any combination thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a pulse pattern for a sensing signal occasion of the set of sensing signal occasions.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a configuration for the pulse pattern via a radio resource control message, the indication, system information, downlink control information, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication may be transmitted via downlink control information, system information, a radio resource control message, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the downlink control information may be a group common downlink control information.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the downlink control information includes per-component carrier indications for the one or more reserved occasions.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication may be transmitted to the UE, another base station, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second set of resources spans a system bandwidth.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the device may be a UE or a base station.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a wireless sensing burst pattern that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a reserved occasion indication scheme that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
FIG. 5 illustrates an example of a wireless sensing burst pattern that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
FIG. 6 illustrates an example of a process flow that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
FIGs. 7 and 8 show block diagrams of devices that support wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
FIG. 9 shows a block diagram of a communications manager that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
FIG. 10 shows a diagram of a system including a user equipment (UE) that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
FIG. 11 shows a diagram of a system including a base station that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
FIGs. 12 through 16 show flowcharts illustrating methods that support wireless sensing indication in new radio communications in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Some devices in a wireless communications system may use wireless sensing for precise environment imaging. For example, a user equipment (UE) in a vehicle-to-everything (V2X) system may use wireless sensing to detect locations or movements of vehicles, obstructions, pedestrians, etc. Wireless detection sensing may be used for other environment sensing as well, such as building analytics and digital health monitoring. A wireless sensing signal may be transmitted using a millimeter wave, which may provide a high level of detail for extracting range, velocity, or angular information for the environment imaging. Some wireless communications systems may use sub-6 Gigahertz radio frequency spectrum bands and millimeter wave radio frequency spectrum bands for wireless communications. Therefore, some systems may support both wireless communications and wireless sensing on a millimeter wave radio frequency spectrum band. Wireless communications and wireless sensing sharing the same bandwidth may lead to collisions between the signals. Furthermore, it may be inefficient to allocate dedicated resources for wireless sensing and wireless communication separately.
The techniques described herein support efficient dynamic resource sharing of wireless sensing and wireless communications. These techniques support dynamic indication of resources which are allocated, or reserved, for wireless sensing in a radio frequency spectrum band that may also be used for wireless communications. By indicating which resources are reserved for wireless sensing, a device may efficiently use resources around the reserved resources for wireless communications. Additionally, or alternatively, the device may either cancel transmissions which are scheduled to overlap with the reserved resources or empty a buffer of received information corresponding to the reserved resources. These techniques may prevent collisions between the wireless sensing and the wireless communications. In some cases, there may be configured wireless sensing occasions on the radio frequency spectrum band. The device may be indicated which of the configured wireless sensing occasions are reserved and used for wireless sensing, and which of the configured wireless sensing occasions are not being used for wireless sensing. The device may then accordingly communicate around the reserved wireless sensing occasions. These techniques may be implemented for communications between a base station and a UE, between UEs (e.g., in device-to-device (D2D) communications or sidelink communications) , V2X communications, or others.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to wireless sensing indication in new radio communications.
FIG. 1 illustrates an example of a wireless communications system 100 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130  through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer  channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers  associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s = 1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided  into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any  combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which  different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time. For asynchronous operation, the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a  narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather,  safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter  to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. The techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input  multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals  communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific  reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the  MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
The wireless communications system 100 may support wireless sensing. Wireless sensing may be used for environment imaging, such as in a V2X system. For example, a UE 115 may transmit a wireless sensing signal and detect a reflected wireless sensing signal, which may be similar to radar sensing. The reflected wireless sensing signal may indicate information for an object which reflected the signal, such as the location, angular information, and velocity information of the object. The object could be an obstruction in the road, a vehicle UE, a pedestrian, etc. Wireless sensing may be used for other applications as well. For example, wireless sensing may be used for vehicle sensing by millimeter wave Radar and millimeter wave communication, handheld short-range sensing by UEs 115 such as smartphones or smartwatches or in-car-based control UE sensing, building analytics, such as residential security or building management (e.g., performed by sensing at a base station 105) , digital health monitoring, such as device-free eldercare by motion sensing, and sensing to support wireless communications, among other uses. In some cases, a higher sensing granularity may be supported by, for example, Terahertz radio. In some cases, digital health sensing may be performed by a customer premise equipment (CPE) or an access point.
In some cases, the wireless sensing signal may be transmitted on a bandwidth that is also used for wireless communications in the wireless communications system 100. For example, the wireless sensing signal may be transmitted using a millimeter wave bandwidth. Some wireless communications, such as NR communications, may use both sub-6GHz bands (e.g., Frequency Range 1 (FR1) bands) and millimeter wave bands (e.g., Frequency Range 2 (FR2) bands) for communications. Using a cellular band for wireless sensing may provide some advantages for wireless sensing. For example, a device (e.g., a base station 105 or a UE 115) transmitting the wireless sensing signal may already be configured with radio frequency hardware and antennas which use the radio frequency spectrum band. Additionally, wireless sensing may use some frameworks of wireless communications for efficient sensing procedures, such as re-using a channel state information (CSI) framework as a coarse input for a higher resolution sensing. In some cases, wireless sensing may also provide some information for the wireless communications. For example, the wireless communications system 100 may use environment sensing for network management (e.g., beam adaptation, protocol adaptation, etc. ) based on an environment condition which may be obtained via the wireless sensing.
In some cases, sharing the radio frequency spectrum band between wireless detection sensing and wireless communications may cause collisions between the signaling. Some wireless communications systems may implement techniques such as a preemption indication or a cancellation indication to indicate possible signaling collisions between high priority signaling and lower priority signaling. For example, for urgent transmission of a higher priority UE 115 (e.g., sending ultra-reliable, low latency communications) , some already indicated resource allocation for a lower-priority UE 115 may be preempted by the higher-priority data transmission. For downlink signaling, a preemption indication may be sent after a base station 105 has transmitted the URLLC data to indicate to the lower-priority UE 115 that the signaling in the overlap resources was not targeted for the lower-priority UE 115. For uplink, an a priori cancellation indication may be sent before an uplink transmission (e.g., an uplink shared channel transmission or a sounding reference signal) to configure the lower-priority UE to cancel the uplink transmission.
Wireless detection sensing signaling may be transmitted in bursts of pulses. The pulses may, in some cases, span a large frequency bandwidth (e.g., the system bandwidth) and be transmitted closely together in the time domain. Some current techniques for  preempting, or cancelling, resource assignments may not provide sufficient granularity for preempting or cancelling resources which overlap with a wireless detection sensing signal. For example, some current preemption or cancellation techniques for high priority signaling may not be granular enough to support communications in resources which are not directly overlapping the wireless detection sensing signal or between the pulses of a wireless detection sensing signal, or these techniques may not sufficiently indicate the wide bandwidth usage of the wireless detection sensing signal. Therefore, the  wireless communications systems  100 and 200 described herein may implement techniques described herein to indicate wireless sensing with a fine enough granularity to support wireless communications in available resources which do not overlap with the reserved resources. In some examples, some aspects of the techniques for preemption indications and cancellation indications may be implemented to support indicating wireless detection sensing signals for enhanced use of a radio frequency spectrum band for wireless communications.
In some examples, a transmitting device may send a sensing signal occasion indication to other devices to indicate which resources are reserved for the wireless sensing signal. In some cases, there may be a set of possible wireless sensing signal occasions, though a subset of the possible wireless sensing signal occasions may actually be reserved and used for wireless sensing. A pattern for the wireless sensing signal occasions may be preconfigured, and the transmitting device may indicate which of the occasions in a time range are reserved for wireless detection sensing. The transmitting device may send the indication the reserved occasions to neighboring devices, which may also indicate which of the occasions may be used for wireless communications. The indication may indicate reserved an unused occasions within a corresponding time range, such as a number of slots before or after the indication. This may support efficient use of the radio frequency spectrum band, as neighboring devices may use the non-reserved resources for wireless communications.
FIG. 2 illustrates an example of a wireless communications system 200 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communication system 100. The wireless communications system 200 may include UE 115-a and base station 105-a, which may be respective examples of a UE 115 and a base station 105 described with reference to FIG. 1. The wireless  communications system 200 may include vehicle UE (V-UE) 205-a and V-UE 205-b, which may each be an example of a UE 115. The techniques described herein may be implemented for communication between UEs 115, base stations 105, V-UEs 205, or any combination thereof, among other examples of devices in the  wireless communications system  100 or 200.
The wireless communications system 200 may support wireless sensing. Wireless sensing may be used for environment imaging, such as in a V2X system. For example, V-UE 205-a may transmit a wireless sensing signal 210 and detect a reflected wireless sensing signal 215. The reflected wireless sensing signal 215 may indicate information for an object 220, such as the location, angular information, and velocity information of the object 220. The object 220 could be an obstruction in the road, another V-UE 205 (e.g., V-UE 205-b) , a pedestrian, etc. The wireless sensing signal 210 may be transmitted as a burst of wireless signal pulses, which may be similar to some aspects of radar sensing. Wireless sensing may be used for other applications as well, such as facial or movement recognition at a UE 115, pedestrian movement sensing, short-range sensing in a smartphone or a smartwatch, building analytics or security, digital health monitoring, among other uses.
In some cases, the wireless sensing signal may be transmitted on a bandwidth that is also used for wireless communications in the wireless communications system 200. For example, the wireless sensing signal may be transmitted using a millimeter wave bandwidth. The wireless communications system 200 may also use the millimeter wave bandwidth for wireless communications, such as NR communications in Frequency Range 2. Using a cellular band for wireless sensing may provide some advantages for wireless sensing. For example, a device (e.g., a base station 105, a UE 115, or a V-UE 205) transmitting the wireless sensing signal may already be configured with radio frequency hardware and antennas which use the radio frequency spectrum band. Additionally, wireless sensing may use some frameworks of wireless communications for efficient sensing procedures, such as re-using a channel state information (CSI) framework as a coarse input for a higher resolution sensing. In some cases, wireless sensing may also provide some information for the wireless communications. For example, the wireless communications system 200 may use environment sensing for network management (e.g., beam adaptation, protocol adaptation, etc. ) based on an environment condition which may be obtained via the wireless sensing.
Using the same radio frequency spectrum band for wireless communications and wireless sensing may lead to collisions without specifying resource allocations for the different types of signals. In some cases, dedicated resources for wireless sensing and wireless communications may be inefficient. To support wireless communications and wireless sensing on a same radio frequency spectrum band, the wireless communications system 200 may implement techniques for dynamic resource sharing and wireless sensing indication.
For example, a transmitting device may send a sensing signal occasion indication 225 to other devices to indicate which resources are reserved for the wireless sensing signal. In some cases, there may be a set of possible wireless sensing signal occasions, though a subset of the possible wireless sensing signal occasions may actually be reserved and used for wireless sensing. The transmitting device may send the indication 225 of which occasions are reserved and which may be used for wireless communications. The indication 225 may indicate reserved an unused occasions within a corresponding time range, such as a number of slots before or after the indication 225. This may support efficient use of the radio frequency spectrum band, as neighboring devices may use the non-reserved resources for wireless communications.
In some cases, a time-frequency occupation pattern of the possible wireless sensing signal occasions may be pre-configured or pre-defined. For example, neighboring devices may be configured with the occasions via RRC or system information. Additionally, or alternatively, the pattern for the wireless sensing signal occasions may be included in the sensing signal occasion indication 225. In an example, UE 115-a may be configured with a bitmap, where each bit of the bitmap corresponds to a different wireless sensing signal occasion. If a bit of the bitmap is toggled, it may indicate that the corresponding wireless sensing signal occasion within the time range is reserved for wireless sensing. If the bit is not toggled, it may indicate that the corresponding wireless sensing signal occasion is not used for wireless sensing within the time range and may instead be used for wireless communications. In some cases, UE 115-a may be configured with a set of reserved occasion patterns, and the sensing signal occasion indication 225 may indicate a specific reserved occasion pattern of the set of reserved occasion patterns. For example, each pattern may correspond to a different value, which may save some bits over a bitmap if not all possible combinations of the occasions are used for a reserved pattern.
The sensing signal occasion indication 225 may be transmitted before or after the corresponding wireless sensing signal occasions. For example, the sensing signal occasion indication 225 may correspond to a time range including one or more sensing signal occasions, and the sensing signal occasion indication 225 may be transmitted before the time range (e.g., indicating which of the upcoming occasions are reserved for wireless sensing) or after the time range (e.g., indication which of the occasions were used for wireless sensing) . For example, if the time range occurs before the sensing signal occasion indication 225 is received, the receiving device may be informed that the channels or signals received at the time/frequency resources corresponding to the reserved occasions are not targeted for the receiving device. If the time range occurs after the sensing signal occasion indication 225 is received, the receiving device may cancel transmission of a signal at the time/frequency resources corresponding to the reserved occasions.
For some wireless sensing examples, the wireless sensing signal may be transmitted in a burst using a pulse waveform. For example, the wireless sensing signal 210 may have intervals between the pulses of the burst which may be utilized for wireless communication. In some cases, the receiving device may be configured with the pulse pattern of the wireless sensing signal 210. For example, the transmitting device may indicate the pulse pattern, or the receiving device may be indicated the pulse patterns. Configuring the receiving device with the pulse pattern may enable the receiving device to use any resources between, or adjacent to, the pulse waveform for wireless communications.
The wireless sensing signal 210 may have different waveforms in other examples. For example, in some cases the wireless sensing signal 210 may have a frequency-modulated continuous waveform or a phase-modulated continuous waveform.
These techniques may support efficient use of a radio frequency spectrum band that is used for both wireless communications and wireless sensing. These techniques may prevent collisions between wireless sensing and wireless communications and support high spectral efficiency for wireless communications in the resources which are not reserved for wireless sensing.
FIG. 3 illustrates an example of a wireless sensing burst pattern 300 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure. In some examples, the wireless sensing burst pattern 300 may implement  aspects of wireless communication system 100. As described with reference to FIG. 2, a wireless communications system may support wireless sensing and wireless communications on a same radio frequency spectrum band.
A device may transmit a wireless sensing signal 305 on a radio frequency spectrum band. For example, the device may transmit the wireless sensing signal 305 on a millimeter wave band which may also be used for a wireless communications channel 310. In some cases, the wireless sensing signal 305 may be an example of a radar signal which is transmitted over a large bandwidth. For example, the wireless sensing signal 305 may be transmitted over an entire system bandwidth.
The wireless sensing signal 305 may be transmitted with a specific pattern in the time domain. For example, the wireless sensing signal 305 may be transmitted in a burst 315 including multiple pulses 320 of the wireless sensing signal 305. In some cases, there may be intervals between the pulses 320 of the burst 315. By implementing techniques described herein, these resources may be used for the wireless communication channel 310. Additionally, the wireless communication channel 310 which is outside of the burst 315 may be used for wireless communications on the wireless communication channel 310. The burst 315 may be transmitted within an affected slot 325. In some cases, some techniques for preempting or canceling a transmission within an affected slot 325 may not provide sufficient granularity to perform wireless communications in resources outside of the overlapping resources. By implementing the techniques described herein, a device may communicate on the wireless communication channel 310 during the affected slot 325 both outside of the burst 315 within the affected slot 325 but also between the pulses 320 within the burst 315.
FIG. 4 illustrates an example of a reserved occasion indication scheme 400 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure. In some examples, the reserved occasion indication scheme 400 may implement aspects of wireless communication system 100.
A device may transmit a wireless sensing signal on a radio frequency spectrum band that is also used for wireless communications. To prevent collisions between the wireless sensing signal and wireless communications signals, the device may indicate the presence of the wireless sensing signal. By indicating the presence of the wireless sensing signal, other wireless devices communicating on the radio frequency spectrum band may use  resources on the radio frequency spectrum band which did not overlap with the wireless sensing signal for wireless communications.
In some cases, a device using the radio frequency spectrum band for wireless communications may be configured with a pattern of sensing signal occasions. A sensing occasion may either be reserved for the wireless sensing signal (e.g., a reserved occasion 405) or may not be used for the wireless sensing signal (e.g., an unreserved occasion 410) . The reserved occasions 405 may collide with wireless communications, where the unreserved occasions 410 may be available for wireless communications without a possible collision, as there may not be a sensing signal transmission in these occasions. The device may be configured with the time and frequency resources corresponding to the possible wireless sensing occasions. The time and frequency occupation pattern of the potentially transmitted wireless sensing signal may be pre-defined, pre-configured, or indicated dynamically. One example of time and frequency resources for an occupation pattern may be wireless sensing signal burst occasions, which may use the entire system bandwidth.
reserved occasion indication 415 may be used to indicate the presence of a wireless sensing signal over a time range 420. In some cases, the duration of the time range 420 may be configurable. The reserved occasion indication 415 may be transmitted via system information, downlink control information, or RRC signaling. In some cases, the downlink control information may be UE group common downlink control information. In some examples, the reserved occasion indication 415 may be downlink control information which includes per-component carrier sub-fields for indicating reserved time and frequency resources. This may enable finer granularity for indicating reserved resources for different UEs or serving cells.
The reserved occasion indication 415 may be transmitted before or after the time range 420. For example, reserved occasion indication 415-a may be transmitted before the time range 420, and reserved occasion indication 415-b may be transmitted after the time range 420.
For reserved occasion indication 415-a, the device receiving the indication may cancel transmitting signal or channels corresponding to reserved occasions 405. For example, if the device is a UE 115, the UE 115 may cancel the transmission of uplink channels and signals at time frequency resources overlapping the wireless sensing signal in the reserved  occasions 405. In some cases, the UE 115 may still transmit uplink channels and signals between pulses of the wireless sensing signal burst and in resources which do not overlap the wireless sensing signal. In some cases, reserved occasion indication 415-a may be transmitted a threshold of time before the cancelled transmission. For example, reserved occasion indication 415-a may be transmitted at least a configured amount of time (e.g., a DCI-to-cancelled-transmitting time) prior to the resources with the cancelled transmission.
For reserved occasion indication 415-b, the device receiving the indication may be informed that the channel or signal received at the corresponding time and frequency resources are not targeted for the device. For example, the device may be indicated that the wireless sensing signal collided with the original channel or signal at the time and frequency resources reserved for the wireless sensing signal. In some cases, the device may empty a buffer corresponding to the reserved resources.
FIG. 5 illustrates an example of a wireless sensing burst pattern 500 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure. In some examples, the wireless sensing burst pattern 500 may implement aspects of wireless communication system 100.
A device may transmit a wireless sensing signal 515 on a radio frequency spectrum band which is also used for wireless communications. For example, the wireless sensing signal 515 and a wireless communication channel 520 may occupy a portion of a millimeter wave band. Techniques described herein support indicating the presence of resources which are reserved for the wireless sensing signal 515 (e.g., reserved occasions 505) so that other devices may efficiently use the wireless communication channel 520. The device transmitting the wireless sensing signal 515 may be referred to as the sensing device and may be an example of a base station 105 or a UE 115 described herein. A neighboring device using the wireless communication channel 520 and being indicated of the wireless sensing signal 515 may be referred to as a neighboring device and may be an example of a UE 115 or a base station 105 described herein.
The wireless sensing signal 515 may be transmitted in configured time and frequency resource occasions in the radio frequency spectrum band. For example, wireless sensing occasions may be configured on the radio frequency spectrum band. A wireless sensing occasion may either be reserved for wireless sensing (e.g., a reserved occasion 505) ,  or the wireless sensing occasion may not be reserved or used for wireless sensing (e.g., an unreserved occasion 510) . The wireless sensing signal 515 may be transmitted during the reserved occasion 505 and may collide with wireless communications in overlapping resources. The wireless sensing signal 515 may not be transmitted during the unreserved occasions 510, and the unreserved occasions 510 may be used for wireless communications without affecting the wireless communications.
In some cases, the wireless sensing signal 515 may be transmitted in bursts 530. For example, each burst 530 may include a set of pulses 525 of the wireless sensing signal 515. The reserved occasion 505 may overlap a wireless communication channel 520, so the wireless communication channel 520 may be present between the intervals of the pulses 525.
Neighboring devices to a sensing device may be configured with the time and frequency occupation pattern for the wireless sensing occasions. In some cases, the pattern for the wireless sensing occasions may be pre-configured (e.g., via system information or RRC) , pre-defined (e.g., stored in memory at the devices) , or indicated to the devices (e.g., via RRC signaling, a MAC CE, or control information) .
In some cases, the neighboring devices to the sensing device may be indicated which of the wireless sensing occasions are reserved (e.g., reserved occasions 505) and which wireless sensing occasions are not used (e.g., unreserved occasions) . For example, the sensing device may transmit a wireless sensing occasion indication to indicate which occasions are reserved occasions 505. In some cases, the representation of the wireless sensing occasions in the indication may be a bitmap for all potential occasions within a time range. For example, each occasion within a time range may correspond to a bit of the bitmap. If a bit is toggled, then the corresponding sensing occasion may be a reserved occasion 505 for the time range. In the example of FIG. 5, the bitmap may include 8 bits, and fourth, fifth, and sixth bits of the bitmap may be toggled (e.g., the bitmap may be {0, 0, 0, 1, 1, 1, 0, 0} ) .
In another example, there may be a set of reserved sensing signal occasion patterns. For example, a maximum number of wireless sensing occasions during the time range may be pre-defined or pre-configured. For example, a number of bits less than the total number of possible occasions may be used to represent the reserved occasions 505 (e.g., instead of a bitmap) . For example, if there may only be one reserved occasion per time range, then log 2 (N+1) bits may be used for the reserved occasion indication, where N is the total  number of potential wireless sensing occasions in the time range. In another example, if the maximum number of reserved occasions 505 is limited to M, where M<N, then 
Figure PCTCN2020095799-appb-000001
may be used for the reserved occasion indication. In some cases, the set of reserved occasions may include consecutive occasions. In this example, a start and length indicator value (SLIV) representation may be used, and
Figure PCTCN2020095799-appb-000002
may be used for the indication.
In some other examples of waveforms (e.g., non-pulse waveforms) , there may not be a gap for wireless communications between pulses. However, these techniques may still be applied to support wireless communications around the sensing signal waveform with a high granularity.
FIG. 6 illustrates an example of a process flow 600 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure. In some examples, the process flow 600 may implement aspects of  wireless communication system  100 or 200. The process flow 600 may be implemented by a UE 115 or a base station 105, or both, which may be respective examples of a UE 115 and a base station 105 described with reference to FIGs. 1 and 2. In the example of the process flow 600, base station 105 transmits a wireless sensing signal. In other examples, a UE 115, or another device, may transmit the wireless sensing signal.
At 605, base station 105-b and UE 115-b may identify a pattern for a set of sensing signal occasions. The pattern may be, for example, the time frequency resources of possible sensing signal occasions as described with reference to FIGs. 4 and 5.
At 610, base station 105-b may transmit an indication that one or more of the set of sensing signal occasions are reserved for wireless detection sensing. For example, the some of the sensing signal occasions may be reserved occasions, and some of the sensing signal occasions may be unreserved. In some cases, the indication may be a bitmap, where each bit of the bitmap may correspond to a sensing signal occasion of the set of sensing signal occasions. If, for example, a bit is toggled, the corresponding sensing signal occasion may be reserved for transmitting the sensing signal. In some cases, there may be a set of reserved occasion patterns, where the indication may indicate one pattern of the set of reserved occasion patterns.
At 615, base station 105-b and UE 115-b may identify a resource allocation for communications over resources that include a first set of resources and a second set of resources. The second set of resources may overlap the one or more reserved occasions. At 620, UE 115-b may allocate the first set of resources for communications based on the indication. For example, UE 115-b may communicate on the resource allocation except for where the sensing signal overlaps the allocated resources.
At 625, base station 105-b, UE 115-b, or both, may communicate using the first set of resources. For example, base station 105-b may communicate with UE 115-b using the first set of resources of the resource allocation in accordance with the indication. At 630, base station 105-b may transmit the sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
In some cases, the indication may be received after the resource allocation in the time domain. In this example, UE 115-b may determine that the second set of resources correspond to the wireless sensing detection. In some examples, UE 115-b may empty buffered information corresponding to the second set of resources. UE 115-b may still receive information from the first set of resources or use the first set of resources for communications.
In some examples, the indication may be received before the resource allocation in the time domain. In this example, UE 115-b may cancel an uplink transmission corresponding to the second set of resources. In some cases, UE 115-b may still communicate the uplink transmission on the first set of resources. In some examples, UE 115-b may cancel the uplink transmission from the first symbol of the reserved resources until a last symbol of the scheduled uplink transmission.
FIG. 7 shows a block diagram 700 of a device 705 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure. The device 705 may be an example of aspects of a UE 115 or base station 105 as described herein. The device 705 may include a receiver 710, a communications manager 715, and a transmitter 720. The device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
Receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data  channels, and information related to wireless sensing indication in new radio communications, etc. ) . Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the  transceiver  1020 or 1120 as described with reference to FIGs. 10 and 11. The receiver 710 may utilize a single antenna or a set of antennas.
The communications manager 715 may identify a pattern for a set of sensing signal occasions, receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, and allocate the first set of resources for the communications based on the indication. The communications manager 715 may also identify a pattern for a set of sensing signal occasions, transmit an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, communicate with a UE using the first set of resources of the resource allocation in accordance with the indication, and transmit a sensing signal during the one or more reserved occasions of the set of sensing signal occasions. The communications manager 715 may be an example of aspects of the  communications manager  1010 or 1110 as described herein.
The communications manager 715, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 715, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 715, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 715, or its sub-components, may be a separate and  distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 715, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The actions performed by the communications manager 715 as described herein may be implemented to realize one or more potential advantages. One implementation may allow a device (e.g., a UE 115 or a base station 105) to improve spectral efficiency in a wireless communications system that support wireless detection sensing on a radio frequency spectrum band that is used for wireless communications. For example, these techniques may prevent the device from receiving information which cannot be decoded due to an unexpected collision. In some cases, these techniques may be implemented to efficiently use resources for wireless communications which do not overlap with resources reserved for wireless detection sensing.
Transmitter 720 may transmit signals generated by other components of the device 705. In some examples, the transmitter 720 may be collocated with a receiver 710 in a transceiver module. For example, the transmitter 720 may be an example of aspects of the  transceiver  1020 or 1120 as described with reference to FIGs. 10 and 11. The transmitter 720 may utilize a single antenna or a set of antennas.
FIG. 8 shows a block diagram 800 of a device 805 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure. The device 805 may be an example of aspects of a device 705, a UE 115, or a base station 105 as described herein. The device 805 may include a receiver 810, a communications manager 815, and a transmitter 855. The device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
Receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to wireless sensing indication in new radio communications, etc. ) . Information may be passed on to other components of the device 805. The receiver 810 may be an example of aspects of the  transceiver  1020 or 1120 as described  with reference to FIGs. 10 and 11. The receiver 810 may utilize a single antenna or a set of antennas.
The communications manager 815 may be an example of aspects of the communications manager 715 as described herein. The communications manager 815 may include a sensing signal occasion pattern component 820, a reserved occasions indication component 825, a resource allocation identifying component 830, a resource allocating component 835, a reserved occasions indicating component 840, an available resource communicating component 845, and a sensing signal transmitting component 850. The communications manager 815 may be an example of aspects of the  communications manager  1010 or 1110 as described herein.
The sensing signal occasion pattern component 820 may identify a pattern for a set of sensing signal occasions. The reserved occasions indication component 825 may receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing. The resource allocation identifying component 830 may identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions. The resource allocating component 835 may allocate the first set of resources for the communications based on the indication.
The sensing signal occasion pattern component 820 may identify a pattern for a set of sensing signal occasions. The reserved occasions indicating component 840 may transmit an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing. The resource allocation identifying component 830 may identify a resource allocation for communications over a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions. The available resource communicating component 845 may communicate with a UE using the first set of resources of the resource allocation in accordance with the indication. The sensing signal transmitting component 850 may transmit a sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
Transmitter 855 may transmit signals generated by other components of the device 805. In some examples, the transmitter 855 may be collocated with a receiver 810 in a transceiver module. For example, the transmitter 855 may be an example of aspects of the  transceiver  1020 or 1120 as described with reference to FIGs. 10 and 11. The transmitter 855 may utilize a single antenna or a set of antennas.
FIG. 9 shows a block diagram 900 of a communications manager 905 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure. The communications manager 905 may be an example of aspects of a communications manager 715, a communications manager 815, or a communications manager 1010 described herein. The communications manager 905 may include a sensing signal occasion pattern component 910, a reserved occasions indication component 915, a resource allocation identifying component 920, a resource allocating component 925, a buffer emptying component 930, an uplink transmission cancelling component 935, a pulse pattern identifying component 940, a reserved occasions indicating component 945, an available resource communicating component 950, and a sensing signal transmitting component 955. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The sensing signal occasion pattern component 910 may identify a pattern for a set of sensing signal occasions. In some examples, the sensing signal occasion pattern component 910 may identify a pattern for a set of sensing signal occasions. The reserved occasions indication component 915 may receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing.
In some examples, the reserved occasions indication component 915 may determine, based on the indication, that the second set of resources corresponds to the wireless sensing detection, where the indication is received after the resource allocation in a time domain. In some examples, the reserved occasions indication component 915 may receive downlink control information including the indication before the resource allocation in a time domain. In some examples, the reserved occasions indication component 915 may identify a bitmap in the indication corresponding to the set of sensing signal occasions, where the one or more reserved occasions correspond to toggled bits of the bitmap.
In some examples, the reserved occasions indication component 915 may identify a set of reserved sensing occasion patterns, where the indication corresponds to a selected reserved sensing occasion pattern of the set of reserved sensing occasion patterns. In some examples, the reserved occasions indication component 915 may receive a configuration for  the set of reserved sensing occasion patterns via system information, a radio resource control message, downlink control information, or any combination thereof. In some cases, the downlink control information including the indication is received at least a threshold duration of time before the downlink control information and the second set of resources.
In some cases, the indication is received via downlink control information, system information, a radio resource control message, or any combination thereof. In some cases, the downlink control information is a group common downlink control information. In some cases, the downlink control information includes per-component carrier indications for the one or more reserved occasions. In some cases, the indication is received from another UE, a base station, or any combination thereof. In some cases, the indication is received from the other UE on a sidelink.
The resource allocation identifying component 920 may identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions. In some examples, the resource allocation identifying component 920 may identify a resource allocation for communications over a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions. In some cases, the second set of resources spans a system bandwidth.
The resource allocating component 925 may allocate the first set of resources for the communications based on the indication. The reserved occasions indicating component 945 may transmit an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing.
In some examples, the reserved occasions indicating component 945 may determine that the second set of resources are not assigned for the UE, where the indication is transmitted after the resource allocation in a time domain. In some examples, the reserved occasions indicating component 945 may transmit downlink control information including the indication before the resource allocation in a time domain.
In some examples, the reserved occasions indicating component 945 may identify a set of reserved sensing occasion patterns, where the indication corresponds to a selected reserved sensing occasion pattern of the set of reserved sensing occasion patterns. In some examples, the reserved occasions indicating component 945 may transmit a configuration for  the set of reserved sensing occasion patterns via system information, a radio resource control message, downlink control information, or any combination thereof.
In some cases, the downlink control information including the indication is transmitted at least before a threshold duration of time between the downlink control information and the second set of resources. In some cases, the indication includes a bitmap corresponding to the one or more sensing signal occasions, where the one or more reserved occasions correspond to toggled bits of the bitmap. In some cases, the indication is transmitted via downlink control information, system information, a radio resource control message, or any combination thereof. In some cases, the downlink control information is a group common downlink control information. In some cases, the downlink control information includes per-component carrier indications for the one or more reserved occasions. In some cases, the indication is transmitted to the UE, another base station, or any combination thereof. In some cases, the device is a UE or a base station.
The available resource communicating component 950 may communicate with a UE using the first set of resources of the resource allocation in accordance with the indication. The sensing signal transmitting component 955 may transmit a sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
The buffer emptying component 930 may empty buffered information corresponding to the second set of resources. The uplink transmission cancelling component 935 may cancel an uplink transmission corresponding to the second set of resources. In some examples, the uplink transmission cancelling component 935 may cancel the uplink transmission from a first symbol of the second set of resources to a last symbol of the uplink transmission.
In some examples, the uplink transmission cancelling component 935 may determine an uplink transmission corresponding to the second set of resources is cancelled. In some cases, the uplink transmission includes an uplink shared channel transmission, a sounding reference signal transmission, an uplink control channel transmission, or any combination thereof. In some cases, the uplink transmission is cancelled from a first symbol of the second set of resources to a last symbol of the uplink transmission.
The pulse pattern identifying component 940 may identify a pulse pattern for a sensing signal occasion of the set of sensing signal occasions. In some examples, the pulse  pattern identifying component 940 may receive a configuration for the pulse pattern via a radio resource control message, the indication, system information, downlink control information, or any combination thereof. In some examples, the pulse pattern identifying component 940 may transmit a configuration for the pulse pattern via a radio resource control message, the indication, system information, downlink control information, or any combination thereof.
FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure. The device 1005 may be an example of or include the components of device 705, device 805, or a UE 115 as described herein. The device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, a transceiver 1020, an antenna 1025, memory 1030, a processor 1040, and an I/O controller 1050. These components may be in electronic communication via one or more buses (e.g., bus 1055) .
The communications manager 1010 may identify a pattern for a set of sensing signal occasions, receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, and allocate the first set of resources for the communications based on the indication.
The communications manager 1010 may also identify a pattern for a set of sensing signal occasions, transmit an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, communicate with a UE using the first set of resources of the resource allocation in accordance with the indication, and transmit a sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
Transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1020 may represent  a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1025. However, in some cases the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1030 may include RAM, ROM, or a combination thereof. The memory 1030 may store computer-readable code 1035 including instructions that, when executed by a processor (e.g., the processor 1040) cause the device to perform various functions described herein. In some cases, the memory 1030 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1040 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1040. The processor 1040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1030) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting wireless sensing indication in new radio communications) .
The I/O controller 1050 may manage input and output signals for the device 1005. The I/O controller 1050 may also manage peripherals not integrated into the device 1005. In some cases, the I/O controller 1050 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 1050 may utilize an operating system such as 
Figure PCTCN2020095799-appb-000003
or another known operating system. In other cases, the I/O controller 1050 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 1050 may be implemented as part of a processor. In some cases, a user may  interact with the device 1005 via the I/O controller 1050 or via hardware components controlled by the I/O controller 1050.
The code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1035 may not be directly executable by the processor 1040 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure. The device 1105 may be an example of or include the components of device 705, device 805, or a base station 105 as described herein. The device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1110, a network communications manager 1115, a transceiver 1120, an antenna 1125, memory 1130, a processor 1140, and an inter-station communications manager 1145. These components may be in electronic communication via one or more buses (e.g., bus 1155) .
The communications manager 1110 may identify a pattern for a set of sensing signal occasions, receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, and allocate the first set of resources for the communications based on the indication.
The communications manager 1110 may also identify a pattern for a set of sensing signal occasions, transmit an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing, identify a resource allocation for communications over a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions, communicate with a UE using the first set of resources of the resource allocation in accordance with the indication, and transmit a sensing signal during the one or more reserved occasions of the set of sensing signal occasions.
Network communications manager 1115 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1115 may manage the transfer of data communications for client devices, such as one or more UEs 115.
Transceiver 1120 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1125. However, in some cases the device may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1130 may include RAM, ROM, or a combination thereof. The memory 1130 may store computer-readable code 1135 including instructions that, when executed by a processor (e.g., the processor 1140) cause the device to perform various functions described herein. In some cases, the memory 1130 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1140 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1140 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1140. The processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting wireless sensing indication in new radio communications) .
Inter-station communications manager 1145 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the  inter-station communications manager 1145 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, inter-station communications manager 1145 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1135 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1135 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 12 shows a flowchart illustrating a method 1200 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure. The operations of method 1200 may be implemented by a UE 115 or base station 105 or its components as described herein. For example, the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 7 through 11. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
At 1205, the UE or base station may identify a pattern for a set of sensing signal occasions. The operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by a sensing signal occasion pattern component as described with reference to FIGs. 7 through 11.
At 1210, the UE or base station may receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing. The operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a reserved occasions indication component as described with reference to FIGs. 7 through 11.
At 1215, the UE or base station may identify a resource allocation for communications over resources that include a first set of resources and a second set of  resources, where the second set of resources overlaps the one or more reserved occasions. The operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a resource allocation identifying component as described with reference to FIGs. 7 through 11.
At 1220, the UE or base station may allocate the first set of resources for the communications based on the indication. The operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of 1220 may be performed by a resource allocating component as described with reference to FIGs. 7 through 11.
FIG. 13 shows a flowchart illustrating a method 1300 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure. The operations of method 1300 may be implemented by a UE 115 or base station 105 or its components as described herein. For example, the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 7 through 11. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
At 1305, the UE or base station may identify a pattern for a set of sensing signal occasions. The operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a sensing signal occasion pattern component as described with reference to FIGs. 7 through 11.
At 1310, the UE or base station may receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing. The operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a reserved occasions indication component as described with reference to FIGs. 7 through 11.
At 1315, the UE or base station may determine, based on the indication, that the second set of resources corresponds to the wireless sensing detection, where the indication is received after the resource allocation in a time domain. The operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the  operations of 1315 may be performed by a reserved occasions indication component as described with reference to FIGs. 7 through 11.
At 1320, the UE or base station may identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions. The operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a resource allocation identifying component as described with reference to FIGs. 7 through 11.
At 1325, the UE or base station may allocate the first set of resources for the communications based on the indication. The operations of 1325 may be performed according to the methods described herein. In some examples, aspects of the operations of 1325 may be performed by a resource allocating component as described with reference to FIGs. 7 through 11.
FIG. 14 shows a flowchart illustrating a method 1400 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a UE 115 or base station 105 or its components as described herein. For example, the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 7 through 11. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
At 1405, the UE or base station may identify a pattern for a set of sensing signal occasions. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a sensing signal occasion pattern component as described with reference to FIGs. 7 through 11.
At 1410, the UE or base station may receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a reserved occasions indication component as described with reference to FIGs. 7 through 11.
At 1415, the UE or base station may receive downlink control information including the indication before the resource allocation in a time domain. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a reserved occasions indication component as described with reference to FIGs. 7 through 11.
At 1420, the UE or base station may identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions. The operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a resource allocation identifying component as described with reference to FIGs. 7 through 11.
At 1425, the UE or base station may allocate the first set of resources for the communications based on the indication. The operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a resource allocating component as described with reference to FIGs. 7 through 11.
At 1430, the UE or base station may cancel an uplink transmission corresponding to the second set of resources. The operations of 1430 may be performed according to the methods described herein. In some examples, aspects of the operations of 1430 may be performed by an uplink transmission cancelling component as described with reference to FIGs. 7 through 11.
FIG. 15 shows a flowchart illustrating a method 1500 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a UE 115 or base station 105 or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 7 through 11. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
At 1505, the UE or base station may identify a pattern for a set of sensing signal occasions. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a sensing signal occasion pattern component as described with reference to FIGs. 7 through 11.
At 1510, the UE or base station may receive an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a reserved occasions indication component as described with reference to FIGs. 7 through 11.
At 1515, the UE or base station may identify a bitmap in the indication corresponding to the set of sensing signal occasions, where the one or more reserved occasions correspond to toggled bits of the bitmap. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a reserved occasions indication component as described with reference to FIGs. 7 through 11.
At 1520, the UE or base station may identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions. The operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a resource allocation identifying component as described with reference to FIGs. 7 through 11.
At 1525, the UE or base station may allocate the first set of resources for the communications based on the indication. The operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a resource allocating component as described with reference to FIGs. 7 through 11.
FIG. 16 shows a flowchart illustrating a method 1600 that supports wireless sensing indication in new radio communications in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a UE 115 or base station 105 or its components as described herein. For example, the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 7 through  11. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
At 1605, the UE or base station may identify a pattern for a set of sensing signal occasions. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a sensing signal occasion pattern component as described with reference to FIGs. 7 through 11.
At 1610, the UE or base station may transmit an indication that one or more of the set of sensing signal occasions are reserved occasions for wireless detection sensing. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a reserved occasions indicating component as described with reference to FIGs. 7 through 11.
At 1615, the UE or base station may identify a resource allocation for communications over a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a resource allocation identifying component as described with reference to FIGs. 7 through 11.
At 1620, the UE or base station may communicate with a UE using the first set of resources of the resource allocation in accordance with the indication. The operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by an available resource communicating component as described with reference to FIGs. 7 through 11.
At 1625, the UE or base station may transmit a sensing signal during the one or more reserved occasions of the set of sensing signal occasions. The operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by a sensing signal transmitting component as described with reference to FIGs. 7 through 11.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations  are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as  used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (41)

  1. A method for wireless communication at a user equipment (UE) , comprising:
    identifying a pattern for a plurality of sensing signal occasions;
    receiving an indication that one or more of the plurality of sensing signal occasions are reserved occasions for wireless detection sensing;
    identifying a resource allocation for communications over resources that include a first set of resources and a second set of resources, wherein the second set of resources overlaps the one or more reserved occasions; and
    allocating the first set of resources for the communications based at least in part on the indication.
  2. The method of claim 1, further comprising:
    determining, based at least in part on the indication, that the second set of resources corresponds to the wireless sensing detection, wherein the indication is received after the resource allocation in a time domain.
  3. The method of claim 2, further comprising:
    emptying buffered information corresponding to the second set of resources.
  4. The method of claim 1, wherein receiving the indication comprises:
    receiving downlink control information comprising the indication before the resource allocation in a time domain; and
    cancelling an uplink transmission corresponding to the second set of resources.
  5. The method of claim 4, wherein cancelling the uplink transmission further comprises:
    cancelling the uplink transmission from a first symbol of the second set of resources to a last symbol of the uplink transmission.
  6. The method of claim 1, wherein receiving the indication comprises:
    identifying a bitmap in the indication corresponding to the plurality of sensing signal occasions, wherein the one or more reserved occasions correspond to toggled bits of the bitmap.
  7. The method of claim 1, further comprising:
    identifying a set of reserved sensing occasion patterns, wherein the indication corresponds to a selected reserved sensing occasion pattern of the set of reserved sensing occasion patterns.
  8. The method of claim 7, further comprising:
    receiving a configuration for the set of reserved sensing occasion patterns via system information, a radio resource control message, downlink control information, or any combination thereof.
  9. The method of claim 1, further comprising:
    identifying a pulse pattern for a sensing signal occasion of the plurality of sensing signal occasions.
  10. The method of claim 9, further comprising:
    receiving a configuration for the pulse pattern via a radio resource control message, the indication, system information, downlink control information, or any combination thereof.
  11. The method of claim 1, wherein the indication is received via downlink control information, system information, a radio resource control message, or any combination thereof.
  12. The method of claim 11, wherein the downlink control information is a group common downlink control information.
  13. The method of claim 11, wherein the downlink control information includes per-component carrier indications for the one or more reserved occasions.
  14. The method of claim 1, further comprising:
    identifying a scheduled uplink transmission overlapping the second set of resources, wherein the scheduled uplink transmission comprises an uplink shared channel  transmission, a sounding reference signal transmission, an uplink control channel transmission, or any combination thereof.
  15. The method of claim 1, wherein the indication is received at least a threshold duration of time before the second set of resources.
  16. The method of claim 1, wherein the indication is received from another UE, a base station, or any combination thereof.
  17. The method of claim 16, wherein the indication is received from the other UE on a sidelink.
  18. The method of claim 1, wherein the second set of resources spans a system bandwidth.
  19. A method for wireless communication at a device, comprising:
    identifying a pattern for a plurality of sensing signal occasions;
    transmitting an indication that one or more of the plurality of sensing signal occasions are reserved occasions for wireless detection sensing;
    identifying a resource allocation for communications over a first set of resources and a second set of resources, wherein the second set of resources overlaps the one or more reserved occasions;
    communicating with a user equipment (UE) using the first set of resources of the resource allocation in accordance with the indication; and
    transmitting a sensing signal during the one or more reserved occasions of the plurality of sensing signal occasions.
  20. The method of claim 19, further comprising:
    determining that the second set of resources are not assigned for the UE, wherein the indication is transmitted after the resource allocation in a time domain.
  21. The method of claim 19, wherein receiving the indication comprises:
    transmitting downlink control information comprising the indication before the resource allocation in a time domain; and
    determining an uplink transmission corresponding to the second set of resources is cancelled.
  22. The method of claim 21, wherein the uplink transmission includes an uplink shared channel transmission, a sounding reference signal transmission, an uplink control channel transmission, or any combination thereof.
  23. The method of claim 21, wherein the downlink control information comprising the indication is transmitted at least before a threshold duration of time between the downlink control information and the second set of resources.
  24. The method of claim 21, wherein the uplink transmission is cancelled from a first symbol of the second set of resources to a last symbol of the uplink transmission.
  25. The method of claim 19, wherein the indication comprises a bitmap corresponding to the one or more sensing signal occasions, wherein the one or more reserved occasions correspond to toggled bits of the bitmap.
  26. The method of claim 19, further comprising:
    identifying a set of reserved sensing occasion patterns, wherein the indication corresponds to a selected reserved sensing occasion pattern of the set of reserved sensing occasion patterns.
  27. The method of claim 26, further comprising:
    transmitting a configuration for the set of reserved sensing occasion patterns via system information, a radio resource control message, downlink control information, or any combination thereof.
  28. The method of claim 19, further comprising:
    identifying a pulse pattern for a sensing signal occasion of the plurality of sensing signal occasions.
  29. The method of claim 28, further comprising:
    transmitting a configuration for the pulse pattern via a radio resource control message, the indication, system information, downlink control information, or any combination thereof.
  30. The method of claim 19, wherein the indication is transmitted via downlink control information, system information, a radio resource control message, or any combination thereof.
  31. The method of claim 30, wherein the downlink control information is a group common downlink control information.
  32. The method of claim 30, wherein the downlink control information includes per-component carrier indications for the one or more reserved occasions.
  33. The method of claim 19, wherein the indication is transmitted to the UE, another base station, or any combination thereof.
  34. The method of claim 19, wherein the second set of resources spans a system bandwidth.
  35. The method of claim 19, wherein the device is a user equipment (UE) or a base station.
  36. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    identify a pattern for a plurality of sensing signal occasions;
    receive an indication that one or more of the plurality of sensing signal occasions are reserved occasions for wireless detection sensing;
    identify a resource allocation for communications over resources that include a first set of resources and a second set of resources, where the second set of resources overlaps the one or more reserved occasions; and
    allocate the first set of resources for the communications based at least in part on the indication.
  37. An apparatus for wireless communication at a device, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    identify a pattern for a plurality of sensing signal occasions;
    transmit an indication that one or more of the plurality of sensing signal occasions are reserved occasions for wireless detection sensing;
    identify a resource allocation for communications over a first set of resources and a second set of resources, wherein the second set of resources overlaps the one or more reserved occasions;
    communicate with a user equipment (UE) using the first set of resources of the resource allocation in accordance with the indication; and
    transmit a sensing signal during the one or more reserved occasions of the plurality of sensing signal occasions.
  38. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for identifying a pattern for a plurality of sensing signal occasions;
    means for receiving an indication that one or more of the plurality of sensing signal occasions are reserved occasions for wireless detection sensing;
    means for identifying a resource allocation for communications over a first set of resources and a second set of resources, wherein the second set of resources overlaps the one or more reserved occasions; and
    means for allocating the first set of resources for the communications based at least in part on the indication.
  39. An apparatus for wireless communication at a device, comprising:
    means for identifying a pattern for a plurality of sensing signal occasions;
    means for transmitting an indication that one or more of the plurality of sensing signal occasions are reserved occasions for wireless detection sensing;
    means for identifying a resource allocation for communications over a first set of resources and a second set of resources, wherein the second set of resources overlaps the one or more reserved occasions;
    means for communicating with a user equipment (UE) using the first set of resources of the resource allocation in accordance with the indication; and
    means for transmitting a sensing signal during the one or more reserved occasions of the plurality of sensing signal occasions.
  40. A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable by a processor to:
    identify a pattern for a plurality of sensing signal occasions;
    receive an indication that one or more of the plurality of sensing signal occasions are reserved occasions for wireless detection sensing;
    identify a resource allocation for communications over a first set of resources and a second set of resources, wherein the second set of resources overlaps the one or more reserved occasions; and
    allocate the first set of resources for the communications based at least in part on the indication.
  41. A non-transitory computer-readable medium storing code for wireless communication at a device, the code comprising instructions executable by a processor to:
    identify a pattern for a plurality of sensing signal occasions;
    transmit an indication that one or more of the plurality of sensing signal occasions are reserved occasions for wireless detection sensing;
    identify a resource allocation for communications over a first set of resources and a second set of resources, wherein the second set of resources overlaps the one or more reserved occasions;
    communicate with a user equipment (UE) using the first set of resources of the resource allocation in accordance with the indication; and
    transmit a sensing signal during the one or more reserved occasions of the plurality of sensing signal occasions.
PCT/CN2020/095799 2020-06-12 2020-06-12 Wireless sensing indication in new radio communications WO2021248448A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095799 WO2021248448A1 (en) 2020-06-12 2020-06-12 Wireless sensing indication in new radio communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095799 WO2021248448A1 (en) 2020-06-12 2020-06-12 Wireless sensing indication in new radio communications

Publications (1)

Publication Number Publication Date
WO2021248448A1 true WO2021248448A1 (en) 2021-12-16

Family

ID=78846771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095799 WO2021248448A1 (en) 2020-06-12 2020-06-12 Wireless sensing indication in new radio communications

Country Status (1)

Country Link
WO (1) WO2021248448A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116056189A (en) * 2023-04-03 2023-05-02 深圳简谱技术有限公司 Hand-held mobile base station signal access method, mobile base station and mobile communication system
EP4239362A1 (en) * 2022-03-04 2023-09-06 Nokia Solutions and Networks Oy Resource allocation in joint communication and sensing
WO2024040493A1 (en) * 2022-08-25 2024-02-29 Qualcomm Incorporated Prioritization between sensing reference signals and communication reference signals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130242814A1 (en) * 2012-03-16 2013-09-19 Yiping Wang Uplink control channel resource collision resolution in carrier aggregation systems
CN104427631A (en) * 2013-09-05 2015-03-18 上海朗帛通信技术有限公司 D2D (device to device) transmission method and device
CN110933747A (en) * 2018-09-19 2020-03-27 华为技术有限公司 Resource allocation method and communication device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130242814A1 (en) * 2012-03-16 2013-09-19 Yiping Wang Uplink control channel resource collision resolution in carrier aggregation systems
CN104427631A (en) * 2013-09-05 2015-03-18 上海朗帛通信技术有限公司 D2D (device to device) transmission method and device
CN110933747A (en) * 2018-09-19 2020-03-27 华为技术有限公司 Resource allocation method and communication device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE, ZTE MICROELECTRONICS: "Overview of Duplexing and Cross-link Interference Mitigation", 3GPP DRAFT; R1-1701613 - 8.1.6 OVERVIEW OF DUPLEX AND INTERFER MANGT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20170213 - 20170217, 12 February 2017 (2017-02-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051208780 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4239362A1 (en) * 2022-03-04 2023-09-06 Nokia Solutions and Networks Oy Resource allocation in joint communication and sensing
WO2024040493A1 (en) * 2022-08-25 2024-02-29 Qualcomm Incorporated Prioritization between sensing reference signals and communication reference signals
CN116056189A (en) * 2023-04-03 2023-05-02 深圳简谱技术有限公司 Hand-held mobile base station signal access method, mobile base station and mobile communication system
CN116056189B (en) * 2023-04-03 2023-08-01 深圳简谱技术有限公司 Hand-held mobile base station signal access method, mobile base station and mobile communication system

Similar Documents

Publication Publication Date Title
US11778641B2 (en) Configurations for sidelink beam management
WO2021248448A1 (en) Wireless sensing indication in new radio communications
US11770835B2 (en) Sidelink and uplink prioritized cancellation
US20210298026A1 (en) Uplink indication for full-duplex operation
EP4111626A1 (en) Beam switching techniques for uplink transmission
WO2022067270A1 (en) Incentive-based relaying with prioritization
CN115280697A (en) Techniques for dynamically aggregating physical downlink shared channels for semi-persistent scheduling
US11799604B2 (en) Techniques for adapting a number of tracking reference signal symbols
WO2022177686A1 (en) Layer one sidelink channel state information reporting
WO2021231688A1 (en) Alternative communication resources for configured grants
CN115244885A (en) Compact downlink control information for two-step random access channel procedure
US20230209566A1 (en) Priority indication for downlink preemption and uplink cancellation
US20240015771A1 (en) Resource allocation for sidelink full duplex communications
WO2021248447A1 (en) Wireless sensing indication through slot format indication
WO2022032422A1 (en) Shared resource allocation
WO2021208068A1 (en) Coordinated sidelink resource allocation
WO2022011647A1 (en) Interference measurement based on multiple sensing resource candidates
EP4260504A1 (en) Flexible aperiodic sounding reference signal triggering
CN115349294A (en) Scheduling restrictions for cancelled or conflicting resources
CN115699950A (en) Phase tracking reference signal alignment for physical shared channels
US11470511B2 (en) Resolving conflicting rate matching resource indications
US11736972B2 (en) Protocol overhead reduction
US20210352673A1 (en) Uplink cancellation indication resource determination
WO2023150934A1 (en) Timing advance group indication based on unified transmission configuration indication
WO2021195832A1 (en) System information for uplink cancellation indication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939614

Country of ref document: EP

Kind code of ref document: A1