WO2021248398A1 - 光谱共焦测量装置及测量方法 - Google Patents

光谱共焦测量装置及测量方法 Download PDF

Info

Publication number
WO2021248398A1
WO2021248398A1 PCT/CN2020/095524 CN2020095524W WO2021248398A1 WO 2021248398 A1 WO2021248398 A1 WO 2021248398A1 CN 2020095524 W CN2020095524 W CN 2020095524W WO 2021248398 A1 WO2021248398 A1 WO 2021248398A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
objective lens
lens group
measurement
Prior art date
Application number
PCT/CN2020/095524
Other languages
English (en)
French (fr)
Inventor
王锦峰
罗媛
何京
寇冠中
Original Assignee
东莞市神州视觉科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市神州视觉科技有限公司 filed Critical 东莞市神州视觉科技有限公司
Priority to PCT/CN2020/095524 priority Critical patent/WO2021248398A1/zh
Priority to JP2021557727A priority patent/JP7410969B2/ja
Priority to US17/753,395 priority patent/US20230087237A1/en
Priority to EP20940002.7A priority patent/EP4006483A4/en
Priority to KR1020217042219A priority patent/KR20220123177A/ko
Publication of WO2021248398A1 publication Critical patent/WO2021248398A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0028Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders specially adapted for specific applications, e.g. for endoscopes, ophthalmoscopes, attachments to conventional microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0064Optical details of the image generation multi-spectral or wavelength-selective arrangements, e.g. wavelength fan-out, chromatic profiling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/008Details of detection or image processing, including general computer control
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/108Beam splitting or combining systems for sampling a portion of a beam or combining a small beam in a larger one, e.g. wherein the area ratio or power ratio of the divided beams significantly differs from unity, without spectral selectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/50Using chromatic effects to achieve wavelength-dependent depth resolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0633Directed, collimated illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0635Structured illumination, e.g. with grating

Definitions

  • This application relates to the technical field of optical displacement measurement, in particular to a spectral confocal measurement device and measurement method.
  • Spectral confocal sensor is a non-contact displacement sensor based on wavelength displacement modulation. Because its measurement accuracy reaches sub-micron or even nanometer level, and it is not sensitive to object tilt, surface texture, etc., it also has a strong ability to resist stray light , It has quickly become a hot spot of current research, and is widely used in the fields of film thickness measurement, precision positioning, and precision instrument manufacturing.
  • the spectral confocal measurement system uses a light source to illuminate the surface of the object to be measured, and the reflected spectral information is detected by a CCD industrial camera or spectrometer, etc., to determine the peak wavelength focused on the surface of the object, so as to obtain the surface of the object to be measured.
  • Axial distance information is used to determine the peak wavelength focused on the surface of the object, so as to obtain the surface of the object to be measured.
  • the principle is to use the dispersive objective lens group to disperse the light from the light source after being focused by the dispersive objective lens group, forming a continuous monochromatic light focus on the optical axis and having different distances to the dispersive objective lens group, thereby establishing the wavelength and The linear relationship of the axial distance, and then use the spectral information reflected by the surface of the object to be measured to obtain the corresponding position information.
  • Figure 1 shows an existing spectroscopic confocal measurement device.
  • the light is emitted from the light source 1', enters the coupling part 2', is transmitted to the sampling part 3', and then is projected to the measured object 4'.
  • the reflected light carrying measurement information is formed on the surface and then returns back to the coupling part 2'along the original optical path. Part or all of the reflected light passes through the beam splitting part 5'and is finally converted into an electrical signal by the sensing part 6'. Analyze and obtain location measurement results.
  • An object of the present application is to provide a spectroscopic confocal measurement device to improve measurement accuracy and reduce production costs.
  • Another object of the present application is to provide a spectral confocal measurement method to improve measurement accuracy and reduce production costs.
  • a spectral confocal measurement device including:
  • the light source part is used to emit a broad-spectrum light beam with a certain wavelength range through a first predetermined path;
  • An optical sampling unit for condensing the light beams emitted from the light source on different measurement surfaces of the object to be measured, and outputting reflected light in a second predetermined path that is different from the first predetermined path;
  • the measuring part is used to receive and process the reflected light from the optical sampling part to obtain a measurement result.
  • the light source part includes a light source and a light source controller connected to the light source, and the optical sampling part includes a light entrance hole, a dispersive objective lens group, and a light exit hole.
  • the light source part further includes a focusing lens located below the light source.
  • the light source is a point light source
  • the point light source is emitted into the dispersive objective lens group in the first predetermined path in the form of a ring beam and reaches the measurement surface
  • the second predetermined path includes: the reflected light reflected from the measurement surface is output from the center of the dispersive objective lens group, enters the measurement part after passing through the light exit hole, the light source is a point light source, and the light source is The controller, the point light source is emitted into the dispersive objective lens group in the form of a ring beam in the first predetermined path.
  • the point light source is incident to the focusing lens in the form of a full beam or a circular beam, and is emitted into the chromatic dispersion in the form of a circular beam in the first predetermined path.
  • the objective lens group and reach the measurement surface.
  • the optical sampling part further includes a reflector located between the dispersive objective lens group and the light entrance hole, and the reflector is arranged on the axis of the dispersive objective lens group for receiving The reflected light output by the dispersive objective lens group directs the emitted light to the light exit hole.
  • the light source part further includes a reflecting mirror located between the focusing lens and the light entrance hole, the reflecting mirror is arranged on the axis of the dispersive objective lens group for receiving The reflected light output by the dispersive objective lens group guides the emitted light to the light exit hole, wherein the light exit hole and the light entrance hole are the same hole.
  • the light source is a linear light source or a point light source
  • the broad-spectrum light beam of the linear light source is emitted into a single side of the dispersive objective lens group through the first predetermined path and reaches
  • the second predetermined path includes: the reflected light reflected from the measurement surface is output from the opposite symmetrical side of the dispersive objective lens group, and enters the measurement part after passing through the light exit hole, wherein The light exit hole and the light entrance hole are the same hole.
  • the dispersive objective lens group includes a first-order dispersion objective lens group under the light source and a second-stage dispersion objective lens group under the first-stage dispersion objective lens group.
  • a diaphragm is provided between the first-order dispersion objective lens group and the second-order dispersion objective lens group.
  • the measurement unit includes:
  • An optical splitter for receiving and processing the reflected light from the optical sampling part
  • the processor is configured to calculate the measurement result according to the electrical signal from the sensor.
  • the optical splitter includes:
  • a diffraction grating for diffracting the reflected light from the collimator lens A diffraction grating for diffracting the reflected light from the collimator lens
  • the focusing lens is used to focus the diffracted reflected light to the sensor.
  • this application provides a spectral confocal measurement method, including:
  • the reflected light is received and processed, and the measurement result is calculated.
  • the spectroscopic confocal measurement device and method of the present application set a specific optical path, specifically by controlling the incident measurement beam to emit in a first predetermined path, and in an opposite direction different from the first predetermined path.
  • the second predetermined path outputs reflected light, and in this way, the undesired light beam is filtered, so that the purity of the spectrum of the emitted light can be improved, thereby improving the measurement accuracy of the subsequent measurement section.
  • Figure 1 is a schematic diagram of a conventional spectroscopic confocal measurement device.
  • Fig. 2 is a schematic diagram of a first embodiment of a spectroscopic confocal measuring device according to the present application.
  • Fig. 3 is a schematic diagram of a second embodiment of the spectral confocal measurement device of the present application.
  • Fig. 4 is a partial schematic diagram of the third embodiment of the spectral confocal measurement device of the present application.
  • Fig. 5a is a schematic diagram of the fourth embodiment of the spectral confocal measurement device of the present application in the X direction.
  • Fig. 5b is a schematic diagram of the fourth embodiment of the spectral confocal measurement device of the present application in the Y direction.
  • Fig. 5c is a schematic diagram of the structure of the diaphragm in Figs. 5a-5b.
  • Fig. 6 is a schematic diagram of a fifth embodiment of a spectral confocal measuring device according to the present application.
  • Fig. 7 is a schematic diagram of a sixth embodiment of a spectral confocal measuring device according to the present application.
  • an embodiment of the spectral confocal measurement device 200 of the present application includes a light source unit 210, an optical sampling unit 220, and a measurement unit 230.
  • the light source part 210 is used to emit a broad-spectrum light beam with a certain wavelength range through a first predetermined path
  • the optical sampling part 220 is used to condense the broad-spectrum light beam emitted from the light source part 210 on a different measurement surface, and is different from the first
  • the second predetermined path in the opposite direction of the predetermined path outputs reflected light
  • the measuring part 230 is used to receive and process the reflected light from the optical sampling part to obtain the measurement result.
  • the light source part 210 is encapsulated by a housing 210 a, which has a light source 211, a light source controller 212 connected to the light source 211, and a focusing lens 213 located under the light source 211.
  • the light source 211 may be a point light source or a line light source, such as an LED light source, a laser, or other light sources such as mercury vapor.
  • the light source 211 emits continuous visible light beams having different wavelengths from the blue wavelength range to the red wavelength range as the measurement light.
  • the light source controller 220 is used to control the incident light direction and path of the light source, thereby optimizing the light emitting direction path.
  • the light emitting direction and path of the present application are different, which will be described in detail below in conjunction with different embodiments. Since the light beam needs to be focused before entering the optical sampling part, the focusing lens 213 is arranged on the optical sampling part.
  • the light source part 210 and the optical sampling part 220 are connected, for example, connected by an optical fiber, and a light entrance hole (that is, an interface) is provided between the two, and the light entrance hole is provided at the focal point of the focusing lens 213.
  • the optical sampling unit 220 is encapsulated by the housing 220 a, and includes a light entrance hole 221, a dispersive objective lens group 222, a light exit hole 223 and a reflecting mirror 224.
  • the light entrance hole and the light exit hole are arranged on the housing 220a, the dispersive objective lens group 222 is arranged in the housing 220a, and the reflector 224 is located between the dispersive objective lens group 222 and the light entrance hole 221, and is arranged in the dispersive objective lens group.
  • the light exit hole 224 is located on the other side of the housing 220a to connect with the measuring part 230.
  • the light exit hole 224 can be realized by a pin hole or an aperture.
  • the shape of the housing 220a of the optical sampling unit 220 can be set according to actual requirements and is not limited.
  • the light source section 210 emits the measuring beam into the housing of the optical sampling section 220 through the focusing lens 213 and the light entrance hole 221, and the measuring beam passes through the dispersive objective lens group 222 and measures from the irradiation surface 220b provided at the front end of the housing.
  • the surface S is irradiated.
  • the dispersive objective lens group 222 is for the lens involved in the spectral confocal sensor and generates axial chromatic aberration.
  • the dispersive objective lens group 222 condenses the light incident on the optical sampling unit 220 at a focal position corresponding to the wavelength on the optical axis. Therefore, the light beams of different wavelengths contained in the corresponding light source are converged to different focus positions.
  • the light source includes continuous visible light beams with a certain wavelength range.
  • the light beams of red, green and blue are separated from each other and emitted from the irradiation surface of the housing. It should be noted that light of other colors and wavelengths may also be emitted.
  • the measuring beam is reflected by the surface to be measured, passes through the dispersive objective lens group, enters the reflector 224, is guided to the light exit hole 223, and then enters the measurement part 230.
  • the measurement unit 230 includes a spectroscope 240, a sensor 250, and a processor (not shown).
  • the beam splitter 240 is used to receive and process the reflected light from the optical sampling part
  • the sensor 250 is used to convert the reflected light from the beam splitter into an electrical signal
  • the processor is used to receive and process the reflected light from the sensor.
  • the electrical signal calculates the measurement result.
  • the beam splitter 240 includes a collimator lens 241, a diffraction grating 242, and a focusing lens 243.
  • the collimator lens 241 makes the measuring beam emitted from the light exit hole irradiate the diffraction grating 242 in a substantially collimated manner, the diffraction grating 242 diffracts the substantially collimated measuring beam, and the imaging lens 243 forms the diffracted light diffracted by the diffraction grating 242.
  • the +1-order diffracted light is imaged on the sensor 250, but other diffracted light such as -1 order diffracted light may also be imaged. It should be noted that the specific structure of the diffraction grating 242 is not limited.
  • the imaging lens 243 is a lens with small chromatic aberration, and can image diffracted light on the sensor 250 regardless of the wavelength of the measurement light.
  • the specific structure of the sensor 250 is not limited. For example, a CMOS line sensor or a CCD line sensor can be used.
  • the sensor 250 converts the measurement light into an electrical signal and transmits it to the processor. Based on the received signal, the processor can calculate the position of the object to be measured.
  • the specific calculation method can refer to the prior art, which will not be described in detail here.
  • the light source controller 212 controls the measuring beam of the point light source 211 to enter the focusing lens 213 in the form of a full beam (that is, the beam that does not shield any area), and then focus on the incident light through the focusing lens 213.
  • the hole 221 enters the housing 220a of the optical sampling part 220, and enters the dispersive objective lens group 222 in a predetermined direction in a ring-shaped beam (that is, shields the beam in the central area), as shown by the arrow A1 in the figure.
  • the first predetermined path is defined as: the light beam from the light source enters the dispersive objective lens group 222 from the light entrance hole 221, and then reaches the path of the surface S to be measured (that is, the light incident path);
  • the path is defined as: the light beam reflected from the surface S to be measured passes through the dispersive objective lens group 222, and then passes through the light exit hole to enter the path 230 of the measurement part (that is, the light exit path).
  • the first predetermined path described herein may refer to a complete or partial light path
  • the second predetermined path described herein may refer to a complete or partial light path. In this embodiment, as shown in FIG.
  • the first predetermined path is A1+a1
  • the second predetermined path is C1+c1.
  • the dispersive objective lens group 222 is set parallel to the surface S of the object to be measured, and the measuring beam of the point light source is incident at a certain angle with the surface to be measured along a predetermined path A1
  • the dispersive objective lens group 222 specifically the light beam at the center is shielded, and only the circular beam is left incident. After passing through the dispersive objective lens group 222, it reaches the surface S to be measured. The reflected light passes through the central part of the dispersive objective lens group 222 along the path of C1.
  • the measuring beam is reflected from the reflector 224 to the light exit hole 223. It can be seen that the exit path of the measuring beam does not return from the original path of the incident light, but takes the above-mentioned specific path.
  • the advantage of this is that the inconsistent beams are filtered, so that the purity of the spectrum of the emitted light can be improved, thereby improving the measurement accuracy of the subsequent measurement section.
  • the light source 211, the focusing lens 213, the light entrance hole 221, the dispersive objective lens group 222, the surface to be measured S and the reflecting mirror 224 are arranged coaxially, that is, their centers are on the same straight line. This setting can reduce the volume of the entire spectral confocal measurement device, thereby reducing production costs.
  • the number of dispersive objective lenses in the dispersive objective lens group 222 in the optical sampling part of the present application is not limited, and can be set to one or more to meet different design requirements.
  • FIG. 3 shows another embodiment of the present application using a point light source.
  • the difference from the first embodiment is: the light emitting method of the point light source 211 between entering the optical sampling part 220, the setting of the light emitting hole, and the light guide to The setting of the mirror 224' of the measuring part.
  • the center light of the measuring beam emitted by the point light source 211 is shielded, and enters the focusing lens 213 in the form of a ring beam, and then is focused by the focusing lens 213 and then enters the optical sampling section 220 through the light entrance hole 221
  • the housing of is incident on the dispersive objective lens group 222 in the form of a ring beam, and the incident light paths A2 and a2 are the same as A1 and a1 in the previous embodiment. But the light path is different.
  • the reflector 224' for light guide in this embodiment is provided with the light source part 210 instead of the optical sampling part 220.
  • the reflecting mirror 224' is located between the focusing lens 213 and the light entrance hole 221, and the reflecting mirror 224' is arranged on the axis of the dispersive objective lens group 220. That is, the light exit hole and the light entrance hole in this embodiment are the same hole.
  • the reflected light passes through the center part of the dispersive objective lens group 222 along the path of C2, and then It passes through the light incident hole 221 again to enter the reflector 224 ′ in the light source part 210, and finally is directly guided to the measurement part 230 by the reflector 224 ′. That is, the light exit path of this embodiment includes C2+c2.
  • the specific optical path can also filter the inconsistent light beams, so that the purity of the spectrum of the emitted light can be improved, thereby improving the measurement accuracy of the subsequent measurement section.
  • the incident and reflection of the light beam share the same light entrance hole, the installation and debugging efficiency is higher.
  • the measurement unit 230 in this embodiment has the same structure as the measurement unit 230 in the first embodiment, and will not be repeated here.
  • FIG. 4 shows another measurement structure and optical path control.
  • either a line light source or a point light source can be used as the incident light source.
  • this embodiment includes a two-stage dispersion objective lens group, that is, a first-stage dispersion objective lens group 222a, a second-stage dispersion objective lens group 222b, and the surface to be measured. To the bottom (as shown in the figure), set it coaxially in sequence.
  • the measuring beam of the linear light source 211' passes through the light incident slit 221' and enters the single side of the second-order dispersion objective lens group 222b through the first predetermined path A3 from the single side of the first-order dispersion objective lens group 222a. Then it reaches the measurement surface S, the measurement beam reflects from the measurement surface S and exits from the opposite symmetrical side of the second-level dispersion objective lens group 222b along the second predetermined path C3, and then is reflected to the light entrance slit 221' of the line light source, and then enters A measurement part (not shown) located on the side of the light incident slit 221' is used for measurement.
  • the structure of the measuring unit in this embodiment is the same as that of the measuring unit 230 in the first embodiment, and will not be repeated here.
  • Figures 5a-5c show the structure and optical path control of another preferred embodiment of the spectroscopic confocal measuring device of the present application.
  • This embodiment is a line light source confocal measuring device.
  • the embodiment shown in FIG. 4 is the same.
  • the light source 210 and the measuring part 230 are located on the same side of the light incident slit 221', the first-stage dispersion objective lens group 222a, the second-stage The dispersive objective lens group 222b is arranged coaxially.
  • the difference from the previous embodiment is that a diaphragm 26 is provided between the first-order dispersion objective lens group 222a and the second-order dispersion objective lens group 222b.
  • FIG. 1 shows the structure and optical path control of another preferred embodiment of the spectroscopic confocal measuring device of the present application.
  • This embodiment is a line light source confocal measuring device.
  • the embodiment shown in FIG. 4 is the same.
  • the light source 210 and the measuring part 230
  • the diaphragm 26 is provided with two channels 26a and 26b, respectively.
  • the shape of the two channels is square, but other shapes are also available.
  • the specific light path control is as follows: With the help of the light source controller, the measuring beam of the light source 210 passes through the light entrance slit 221', enters from a single side of the first-order dispersion objective lens group 222a through the first predetermined path A4, and passes through the diaphragm 26.
  • the light entrance 26a enters a single side of the second-order dispersion objective lens group 222b, and then reaches the measurement surface S.
  • the measuring beam reflects from the measurement surface S and takes a second predetermined path C4 from the opposite symmetrical side of the second-order dispersion objective lens group 222b.
  • the reflected light passes through the second-order dispersion objective lens group 222b, it passes through the light exit opening 26b of the diaphragm 26 and then passes through the light entrance slit 221', and finally enters the measuring part located on the side of the light entrance slit 221' 230 to make measurements.
  • FIGS. 4 and 5a-5b does not need to use the focusing lens and the reflecting mirror shown in FIGS. 2-3, and the structure is simpler.
  • FIGS. 6 and 7 respectively show the fifth and sixth embodiments of the spectroscopic confocal measurement of the present application, wherein FIG. 6 is a modified example based on FIG. 2, and FIG. 7 is a modified example of FIG. 3.
  • the optical path control of the two embodiments is opposite to the foregoing: the dispersive objective lens group is used as the description reference, the measuring light enters from the central area of the dispersive objective lens group, and the reflected measuring light is emitted from the outer periphery of the dispersive objective lens group in the form of a ring beam.
  • the specific light path control and structure are as follows.
  • the specific light paths in the two embodiments can also filter out non-conforming light beams, so that the purity of the spectrum of the emitted light can be improved, thereby improving the measurement accuracy of the subsequent measurement section.
  • the positions of the light source part and the measuring part shown in FIG. 2 are interchanged, and the positions of the light entrance hole and the light exit hole are interchanged, and the fifth embodiment as shown in FIG. 6 can be obtained. That is, the light source 211 in the light source section 210 emits the measuring beam into the housing of the optical sampling section 220 through the focusing lens 213 and the light entrance hole 221, and then is reflected by the reflector 224, and the measuring beam passes through the central part of the dispersive objective lens group 222. After reaching the measurement surface S, A5+a5 shown in the figure is the local light incident path.
  • the light beam reflected from the measuring surface S passes through the periphery of the dispersive objective lens group in a halo-shaped light beam, and then enters the measuring part 230 from the light exit hole 223.
  • the C5+c5 shown in the figure is the local light exit path.
  • the positions of the light source part and the measuring part shown in FIG. 3 are interchanged, and the light entrance hole 221 and the light exit hole 221 still share the same hole. It should be noted that the position of the reflector 224' remains unchanged. As shown in FIG. 6, the light source 211 in the light source part 210 is focused on the reflecting mirror 224' through the focusing lens 213, and then guided through the light entrance hole 221 to enter the interior of the optical sampling part 220, specifically from the dispersive objective lens group 222 The central part of ⁇ passes through and then reaches the measurement surface S, where A6+a6 shown in the figure is the local light incident path.
  • the light beam reflected from the measurement surface S passes through the periphery of the dispersive objective lens group in a halo-shaped light beam, and then enters the measurement part 230 through the light entrance hole 221 again.
  • C6+c6 shown in the figure is the local light exit path.
  • this application discloses a spectroscopic confocal measurement method, which includes the following steps:
  • the reflected light is received and processed, and the measurement result is calculated.
  • the specific light path control method please refer to the description of the above embodiment.
  • the spectroscopic confocal measurement device and method of the present application set a specific optical path, specifically by controlling the incident measurement beam to be emitted from a first predetermined path and to a second predetermined path that is different from the first predetermined path in the opposite direction
  • the reflected light is output, and the undesired beam is filtered in this way, effectively reducing the interference of other reflection wavelengths outside the confocal line, so that the purity of the spectrum of the emitted light can be improved, thereby improving the test sensitivity and measurement accuracy of the subsequent measurement department.
  • the device has a simple structure and can reduce production costs.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

一种光谱共焦测量装置,包括:光源部(210),用于以第一预定路径射出具有一定波长范围的宽光谱光束;光学采样部(220),用于将来自光源(211)射出的光束聚于待测物体的不同的测量表面,并以不同于与第一预定路径相反的第二预定路径输出反射光;以及测量部(230),用于接收并处理来自光学采样部(220)的反射光,以获得测量结果。可提高测量精度、降低生产成本。还公开一种光谱共焦测量方法。

Description

光谱共焦测量装置及测量方法 技术领域
本申请涉及一种光学位移测量技术领域,尤其涉及一种光谱共焦测量装置及测量方法。
背景技术
近年来,随着精密制造业的飞速发展,对测量技术的要求也大大提高。光谱共焦传感器为一种基于波长位移调制的非接触式位移传感器,由于其测量精度达到亚微米、甚至纳米级别,且对物体倾斜、表面纹理等不敏感,还具有较强的抗杂散光能力,其迅速成为当前研究的热点,广泛应用于薄膜厚度测量、精密定位、精密仪器制造等领域。
基于光谱共焦技术的光谱共焦测量系统使用光源照射到被测物体表面,由CCD工业相机或光谱仪等探测反射回来的光谱信息,确定聚焦在物体表面的峰值波长,从而获得待测物体表面的轴向距离信息。其原理是利用色散物镜组,使光源光线在经过色散物镜组聚焦后发生色散,在光轴上形成连续的,且到色散物镜组的距离互不相同的单色光焦点,从而建立起波长与轴向距离的线性关系,再利用经待测物体表面反射后的光谱信息得到相应的位置信息。
图1展示一种现有的光谱共焦测量装置,从光源1’发射光,进入耦合部2’后传递到采样部3’,再投射到被测物4’,在被测物4’的表面形成载有测量信息的反射光后沿着原有的光路反向返回耦合部2’,其中部分或全部反射光经过分光部5’后,最终由传感部6’转换成电信号,以解析获取位置测量结果。
该种测量装置及方法,由于反射光是沿着入射的光路反向返回入光孔,导致入光孔接收的光谱纯净度不高,导致测量结果有偏差,降低测量精度。
因此,亟待一种改进的光谱共焦测量装置及测量方法,以克服以上缺陷。
申请内容
本申请的一个目的在于提供一种光谱共焦测量装置,以提高测量精度、降低生产成本。
本申请的另一个目的在于提供一种光谱共焦测量方法,以提高测量精度、降低生产成本。
为了实现上述目的,本申请提供一种光谱共焦测量装置,包括:
光源部,用于以第一预定路径射出具有一定波长范围的宽光谱光束;
光学采样部,用于将来自所述光源射出的所述光束聚于待测物体的不同的测量表面,并以不同于与所述第一预定路径相反的第二预定路径输出反射光;以及
测量部,用于接收并处理来自所述光学采样部的所述反射光,以获得测量结果。
较佳地,所述光源部包括光源及与所述光源连接的光源控制器,所述光学采样部包括入光孔、色散物镜组及出光孔。
较佳地,所述光源部还包括位于所述光源下方的聚焦透镜。
较佳地,所述光源为点光源,借助所述光源控制器,所述点光源以环状光束的方式以所述第一预定路径发射进入所述色散物镜组并到达所述测量表面,所述第二预定路径包括:从所述测量表面反射的所述反射光从所述色散物镜组的中心输出,通过所述出光孔后进入所述测量部所述光源为点光源,借助所述光源控制器,所述点光源以环状光束的方式以所述第一预定路径发射进入所述色散物镜组。
作为另一实施例,所述点光源以全光束的入光方式或环状光束的方式射入至所述聚焦透镜,并以环状光束的方式以所述第一预定路径发射进入所述色散物镜组并到达所述测量表面。
较佳地,所述光学采样部还包括位于所述色散物镜组和所述入光孔之间的反射镜,所述反射镜设于所述色散物镜组的轴心线上,用于接收从所述色散物镜组输出的所述反射光并将所述发射光导向所述出光孔。
较佳地,所述光源部还包括位于所述聚焦透镜和所述入光孔之间的反射镜, 所述反射镜设于所述色散物镜组的轴心线上,用于接收从所述色散物镜组输出的反射光并将所述发射光导向所述出光孔,其中所述出光孔和所述入光孔为同一孔。
作为另一实施例,所述光源为线光源或点光源,借助所述光源控制器,所述线光源的宽光谱光束以所述第一预定路径发射进入所述色散物镜组的单一侧并达到所述测量表面,所述第二预定路径包括:从所述测量表面反射的所述反射光从所述色散物镜组的相对的对称侧输出,通过所述出光孔后进入所述测量部,其中所述出光孔和所述入光孔为同一孔。
较佳地,所述色散物镜组包括位于所述光源下方的第一级色散物镜组以及位于所述第一级色散物镜组下方的第二级色散物镜组。
作为另一实施例,所述第一级色散物镜组和所述第二级色散物镜组之间设有光阑。
较佳地,所述测量部包括:
分光器,用于接收并处理来自所述光学采样部的所述反射光;
传感器,用于将来自所述分光器的所述反射光转换成电信号;以及
处理器,用于根据来自所述传感器的所述电信号计算测量结果。
较佳地,所述分光器包括:
准直镜,用于将来自所述光学采光部的反射光准直折射;
衍射光栅,用于使来自所述准直镜的反射光发生衍射;以及
聚焦镜,用于将衍射后的反射光聚焦到所述传感器。
相应地,本申请提供一种光谱共焦测量方法,包括:
控制光源以第一预定路径射出具有一定波长范围的宽光谱光束;
将来自所述光源射出的所述光束聚于待测物体的不同的测量表面,并以不同于与所述第一预定路径相反的第二预定路径输出反射光;以及
接收并处理所述反射光并计算测量结果。
与现有技术相比,本申请的光谱共焦测量装置及方法,设定特定的光路,具体是通过控制入射的测量光束以第一预定路径射出,并以不同于第一预定路 径的相反方向的第二预定路径输出反射光,以此方式将不期望的光束过滤,使得出射光线的光谱的纯净度得以提高,从而提高后续测量部的测量精度。
通过以下的描述并结合附图,本申请将变得更加清晰,这些附图用于解释本申请的实施例。
附图说明
图1为传统的光谱共焦测量装置的示意图。
图2为本申请光谱共焦测量装置的第一实施例的示意图。
图3为本申请光谱共焦测量装置的第二实施例的示意图。
图4为本申请光谱共焦测量装置的第三实施例的局部示意图。
图5a为本申请光谱共焦测量装置的第四实施例在X方向上的示意图。
图5b为本申请光谱共焦测量装置的第四实施例在Y方向上的示意图。
图5c为图5a-5b中的光阑的结构示意图。
图6为本申请光谱共焦测量装置的第五实施例的示意图。
图7为本申请光谱共焦测量装置的第六实施例的示意图。
具体实施方式
下面将参考附图阐述本申请几个不同的最佳实施例,其中不同图中相同的标号代表相同的部件。如上所述,本申请的实质在于提供一种改进的光谱共焦测量装置及测量方法,通过控制入射光的方向以优化光路,从而提高测量精度、降低生产成本。
请参考图2,本申请的光谱共焦测量装置200的一个实施例包括光源部210、光学采样部220、测量部230。该光源部210用于以第一预定路径射出具有一定波长范围的宽光谱光束,光学采样部220用于将来自光源部210射出的宽光谱光束聚于不同的测量表面,并以不同于第一预定路径的相反方向的第二预定路径输出反射光,测量部230用于接收并处理来自光学采样部的所述反射光,以获得测量结果。
具体地,在图2的实施例中,光源部210由壳体210a封装,其具有光源211、与所述光源211连接的光源控制器212,以及位于光源211下方的聚焦透镜213。该光源211可为点光源或线光源,例如LED光源、激光、或例如汞蒸汽等等其他光源。具体地,该光源211射出包括具有从蓝色波长范围到红色波长范围的不同波长的连续可见光束来作为测量光。而光源控制器220则用来控制光源的入光方向及路径,从而优化出光方向路径。针对点光源和线光源的不同,本申请的出光方向及路径不同,下文会结合不同的实施例进行详细介绍。由于在光束进入光学采样部之间需经过聚焦,则聚焦透镜213设置在光学采样部之上。
光源部210和光学采样部220连接,例如通过光纤连接,两者之间设有入光孔(即接口),该入光孔设于聚焦透镜213的焦点处。具体地,光学采样部220由壳体220a封装,包括入光孔221、色散物镜组222、出光孔223以及反射镜224。具体地,入光孔和出光孔设置在壳体220a上,色散物镜组222设于壳体220a之内,反射镜224位于色散物镜组222和入光孔221之间,且设于色散物镜组222的轴心线上,出光孔224位于壳体220a另一侧以与测量部230连接。可选地,出光孔224可选用销孔或孔径实现。光学采样部220的壳体220a形状可依照实际需求而设定,并不受限制。
具体地,光源部210通过聚焦透镜213及入光孔221将测量光束射出至光学采样部220的壳体内部,测量光束穿过色散物镜组222并且从壳体的前端设置的照射面220b向测量表面S照射。色散物镜组222为针对光谱共焦传感器所涉及的透镜且产生轴向色像差,具体地,色散物镜组222使入射到光学采样部220的光会聚在光轴上与波长相对应的聚焦位置处,因此对应光源中所包含的不同波长的光束被会聚到不同的聚焦位置。光源中包括一定波长范围的连续可见光束,例如红绿蓝三个颜色的光束彼此分离,并且从壳体的照射面向待测表面射出,应当注意的是,也可能射出其他颜色其他波长的光。
测量光束经过待测表面反射经过色散物镜组进入到反射镜224中,从而导向至出光孔223,进而进入测量部230。
具体地,在一个实施例中,测量部230包括分光器240、传感器250及处理器(未示出)。该分光器240用于接收并处理来自光学采样部的反射光,传感器 250用于将来自所述分光器的所述反射光转换成电信号,处理器则用于根据来自所述传感器的所述电信号计算测量结果。
作为一个优选实施例,如图所示,该分光器240包括准直镜241、衍射光栅242、聚焦镜243。准直镜241使得从出光孔射出的测量光束大致准直地照射到衍射光栅242上,衍射光栅242使大致准直照射的测量光束发生衍射,成像透镜243使由衍射光栅242衍射的衍射光成像在传感器250上。通常,使+1阶衍射光在传感器250上成像,但也可以对例如-1阶衍射光等的其它衍射光进行成像。应当注意的是,衍射光栅242的具体结构不受限制。
应当注意的是,成像透镜243是色像差小的透镜,并且能够与测量光的波长无关地使衍射光成像在传感器250上。
传感器250的具体结构并不受限制,例如可使用CMOS线传感器或CCD线传感器等,传感器250将测量光转换成电信号,并传送至处理器。基于接收到的信号,处理器可计算待测物体的位置。具体的计算方法可参考现有技术,在此不详述。
下面依照几个实施例对本申请的光路控制进行详细描述。
在如图2所示的实施例中,光源控制器212控制点光源211的测量光束以全光束(即不遮蔽任何区域的光束)的形式进入至聚焦透镜213,经过聚焦透镜213聚焦在入光孔221进入光学采样部220的壳体220a,并以环状光束(即将中心区域的光束遮蔽)的方式以预定方向射入色散物镜组222中,如图中箭头A1所示。其中,点光源211在本文中,第一预定路径定义为:来自光源的光束从入光孔221射入色散物镜组222,继而达到待测表面S的路径(即入光路径);第二预定路径定义为:自待测表面S反射的光束穿过色散物镜组222,继而穿过出光孔进入测量部的路径230的路径(即出光路径)。本文所述的第一预定路径可以指代完整或部分的入光路径,本文所述的第二预定路径可以指代完整或部分的出光路径。在本实施例中,如图2所示,第一预定路径为A1+a1,第二预定路径为C1+c1。如图所示,以待测物体的表面S作为基准,色散物镜组222的设置与待测物体的待测表面S平行,点光源的测量光束以预定路径A1与待测表面呈一定角度地入射至色散物镜组222,具体为位于中心的光束被屏蔽,仅保 留环状光束入射,经过色散物镜组222后达到待测表面S,反射光沿着C1的路径从色散物镜组222的中心部分穿出,继而测量光束从反射镜224处反射至出光孔223。由此可见,测量光束的出光路径并非从入光路径原路返回,而是采取上述特定的路径。这样的好处是将不符合的光束过滤,使得出射光线的光谱的纯净度得以提高,从而提高后续测量部的测量精度。
优选地,上述光源211、聚焦透镜213、入光孔221、色散物镜组222以及待测表面S以及反射镜224呈共轴设置,即其中心位于同一直线上。该设置可减少整个光谱共焦测量装置的体积,从而降低生产成本。
另外,通过上述的光路控制大幅提高测量精度,本申请的光学采样部中的色散物镜组222中色散物镜的个数不受限制,可设置为一个或多个,以适应不同的设计需求。
图3展示本申请采用点光源的另一实施例,与第一实施例不同之处在于:点光源211在进入光学采样部220之间的出光方式、出光孔的设置、以及用于导光至测量部的反射镜224’的设置。
具体地,如图所示,点光源211发出的测量光束的中心光线被屏蔽,而采用环状光束的方式进入聚焦透镜213,继而经过聚焦透镜213聚焦后通过入光孔221进入光学采样部220的壳体,以环状光束的方式入射至色散物镜组222上,入光路径A2、a2即如上一实施例的A1、a1一致。但出光路径则有所不同。具体地,本实施例中用于导光的反射镜224’则设置光源部210,而非光学采样部220。即,反射镜224’位于聚焦透镜213和入光孔221之间,该反射镜224’设于色散物镜组220的轴心线上。亦即,本实施例中的出光孔和入光孔为同一个孔,出光时,测量光束从测量表面S的反射后,反射光沿C2的路径从色散物镜组222的中心部分穿出,继而再次经过入光孔221而进入光源部210中的反射镜224’,最后由反射镜224’直接导向至测量部230。即,本实施例的出光路径包括C2+c2。该特定的光路同样可将不符合的光束过滤,使得出射光线的光谱的纯净度得以提高,从而提高后续测量部的测量精度。本实施例中,由于光束的入射与反射共用同一个入光孔,因此安装及调试效率更高。
本实施例中的测量部230与第一实施例中的测量部230结构一致,在此不赘述。
作为第三实施例,图4示出另一种测量结构及光路控制。其中,线光源或点光源均可作为入射光源。以线光源211’为例,与前两个实施例不同,本实施例包括两级色散物镜组,即,第一级色散物镜组222a、第二级色散物镜组222b以及待测表面S由上至下(如图示)依次共轴设置。借助光源控制器,线光源211’的测量光束经过入光狭缝221’后仅从第一级色散物镜组222a的单一侧以第一预定路径A3进入第二级色散物镜组222b的单一侧,继而达到测量表面S,测量光束自测量表面S反射并从第二级色散物镜组222b的相对的对称侧以第二预定路径C3射出,从而反射到线光源的入光狭缝221’,继而进入位于入光狭缝221’一侧的测量部(未示出)以进行测量。此种光路控制方式,只有位于共焦线上特定波长的光束才能经过测量表面进入色散透镜组最后经由入光狭缝221’进入测量部(成像系统),不符合的光束无法进入测量部,因此有效减小共焦线外其它反射波长的干扰,使测试灵敏度更高,测量精度提高。本实施例中的测量部与第一实施例中的测量部230结构一致,在此不赘述。
图5a-5c则示出本申请光谱共焦测量装置的另一优选实施例的结构及光路控制。本实施例为线光源共焦测量装置,如图4所示的实施例一致,光源部210及测量部230位于入光狭缝221’的同侧,第一级色散物镜组222a、第二级色散物镜组222b共轴设置。与上一实施例不同的是,第一级色散物镜组222a和第二级色散物镜组222b之间设有光阑26,如图5c所示,光阑26设有两个通道26a、26b分别供入光及出光,两通道的形状为方形,也可为其它形状。借助光阑26,可将入射和反射光路有效分开,过滤杂光,也可减少共焦线外其它反射波长的干扰。
具体的光路控制如下:借助光源控制器,光源210的测量光束经过入光狭缝221’后,从第一级色散物镜组222a的单一侧以第一预定路径A4进入,经过光阑26中的入光口26a,进入第二级色散物镜组222b的单一侧,继而达到测量表面S,测量光束自测量表面S反射并从第二级色散物镜组222b的相对的对称侧以第二预定路径C4射出,具体地,反射光从第二级色散物镜组222b穿出后, 经过光阑26的出光口26b从而经过入光狭缝221’,最后进入位于入光狭缝221’一侧的测量部230以进行测量。
值得注意的是,图4及图5a-5b所示的实施例中无需使用如图2-3所示的聚焦透镜和反射镜,结构更简单。
图6和图7分别展示本申请光谱共焦测量的第五、第六实施例,其中图6为基于图2的变形例,图7为图3的变形例。此两实施例的光路控制与前述相反:以色散物镜组为描述基准,测量光从色散物镜组的中心区域入射,反射的测量光则从色散物镜组的外周以环状光束的方式出射。具体的光路控制以及结构如下所述。此两实施例中特定的光路同样可将不符合的光束过滤,使得出射光线的光谱的纯净度得以提高,从而提高后续测量部的测量精度。
将图2所示的光源部和测量部的位置互换,入光孔和出光孔的位置互换,即可得到如图6所示的第五实施例。即,光源部210中的光源211通过聚焦透镜213以及入光孔221将测量光束射出至光学采样部220的壳体内部,继而经过反射镜224反射,测量光束从色散物镜组222的中心部分穿过,到达测量表面S,图中所示的A5+a5即为局部入光路径。从测量表面S反射的光束从色散物镜组的周边以光环圈状光束穿过,继而从出光孔223进入测量部230,图中所示的C5+c5即为局部出光路径。
类似地,将图3所示的光源部和测量部的位置互换,入光孔221和出光孔221仍然共用同一孔,需注意的是,反射镜224’的位置不变。如图6所示,光源部210中的光源211通过聚焦镜213聚焦到反射镜224’上,继而被导向穿过入光孔221而进入光学采样部220的内部,具体为从色散物镜组222的中心部分穿过继而到达测量表面S,图中所示的A6+a6即为局部入光路径。从测量表面S反射的光束从色散物镜组的周边以光环圈状光束穿过,继而再次通过入光孔221进入测量部230,图中所示的C6+c6即为局部出光路径。
相应地,本申请公开一种光谱共焦测量方法,该方法包括以下步骤:
控制光源以第一预定路径射出具有一定波长范围的宽光谱光束;
将来自所述光源射出的所述宽光谱光束聚于待测物体的不同的测量表面,并以不同于与所述第一预定路径相反的第二预定路径输出反射光;以及
接收并处理所述反射光并计算测量结果。具体的光路控制方法请见以上实施例的描述。
综上,本申请的光谱共焦测量装置及方法,设置特定的光路,具体是通过控制入射的测量光束以第一预定路径射出,并以不同于第一预定路径的相反方向的第二预定路径输出反射光,以此方式将不期望的光束过滤,有效减小共焦线外其它反射波长的干扰,使得出射光线的光谱的纯净度得以提高,从而提高后续测量部的测试灵敏度、测量精度。而且该装置结构简单,可降低生产成本。
以上所揭露的仅为本申请的较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请申请专利范围所作的等同变化,仍属本申请所涵盖的范围。

Claims (13)

  1. 一种光谱共焦测量装置,其特征在于,包括:
    光源部,用于以第一预定路径射出具有一定波长范围的宽光谱光束;
    光学采样部,用于将来自所述光源射出的所述宽光谱光束聚于待测物体的不同的测量表面,并以不同于与所述第一预定路径相反的第二预定路径输出反射光;以及
    测量部,用于接收并处理来自所述光学采样部的所述反射光,以获得测量结果。
  2. 如权利要求1所述的光谱共焦测量装置,其特征在于:所述光源部包括光源及与所述光源连接的光源控制器,所述光学采样部包括入光孔、色散物镜组及出光孔。
  3. 如权利要求2所述的光谱共焦测量装置,其特征在于:所述光源部还包括位于所述光源下方的聚焦透镜。
  4. 如权利要求2所述的光谱共焦测量装置,其特征在于:所述光源为点光源,借助所述光源控制器,所述点光源以环状光束的方式以所述第一预定路径发射进入所述色散物镜组并到达所述测量表面,所述第二预定路径包括:从所述测量表面反射的所述反射光从所述色散物镜组的中心输出,通过所述出光孔后进入所述测量部。
  5. 如权利要求3所述的光谱共焦测量装置,其特征在于:所述点光源以全光束的入光方式或环状光束的方式射入至所述聚焦透镜,并以环状光束的方式以所述第一预定路径发射进入所述色散物镜组并到达所述测量表面。
  6. 如权利要求4所述的光谱共焦测量装置,其特征在于:所述光学采样部还包括位于所述色散物镜组和所述入光孔之间的反射镜,所述反射镜设于所述色散物镜组的轴心线上,用于接收从所述色散物镜组输出的所述反射光并将所述发射光导向所述出光孔。
  7. 如权利要求5所述的光谱共焦测量装置,其特征在于:所述光源部还包括位于所述聚焦透镜和所述入光孔之间的反射镜,所述反射镜设于所述色散物镜组的轴心线上,用于接收从所述色散物镜组输出的反射光并将所述发射光导向所述出光孔,其中所述出光孔和所述入光孔为同一孔。
  8. 如权利要求2所述的光谱共焦测量装置,其特征在于:所述光源为线光源或点光源,借助所述光源控制器,所述线光源的宽光谱光束以所述第一预定路径发射进入所述色散物镜组的单一侧并达到所述测量表面,所述第二预定路径包括:从所述测量表面反射的所述反射光从所述色散物镜组的相对的对称侧输出,通过所述出光孔后进入所述测量部,其中所述出光孔和所述入光孔为同一孔。
  9. 如权利要求8所述的光谱共焦测量装置,其特征在于:所述色散物镜组包括位于所述光源下方的第一级色散物镜组以及位于所述第一级色散物镜组下方的第二级色散物镜组。
  10. 如权利要求9所述的光谱共焦测量装置,其特征在于:所述第一级色散物镜组和所述第二级色散物镜组之间设有光阑。
  11. 如权利要求1所述的光谱共焦测量装置,其特征在于:所述测量部包括:
    分光器,用于接收并处理来自所述光学采样部的所述反射光;
    传感器,用于将来自所述分光器的所述反射光转换成电信号;以及
    处理器,用于根据来自所述传感器的所述电信号计算测量结果。
  12. 如权利要求11所述的光谱共焦测量装置,其特征在于:所述分光器包括:
    准直镜,用于将来自所述光学采光部的反射光准直折射;
    衍射光栅,用于使来自所述准直镜的反射光发生衍射;以及
    聚焦镜,用于将衍射后的反射光聚焦到所述传感器。
  13. 一种光谱共焦测量方法,其特征在于,包括以下步骤:
    控制光源以第一预定路径射出具有一定波长范围的宽光谱光束;
    将来自所述光源射出的所述宽光谱光束聚于待测物体的不同的测量表面,并以不同于与所述第一预定路径相反的第二预定路径输出反射光;以及
    接收并处理所述反射光并计算测量结果。
PCT/CN2020/095524 2020-06-11 2020-06-11 光谱共焦测量装置及测量方法 WO2021248398A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/095524 WO2021248398A1 (zh) 2020-06-11 2020-06-11 光谱共焦测量装置及测量方法
JP2021557727A JP7410969B2 (ja) 2020-06-11 2020-06-11 スペクトル共焦点測定装置及び測定方法
US17/753,395 US20230087237A1 (en) 2020-06-11 2020-06-11 Spectral confocal measurement device and measurement method thereof
EP20940002.7A EP4006483A4 (en) 2020-06-11 2020-06-11 SPECTRAL CONFOCAL MEASUREMENT DEVICE AND MEASUREMENT METHODS
KR1020217042219A KR20220123177A (ko) 2020-06-11 2020-06-11 분광 공초점 측정장치 및 그 측정 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095524 WO2021248398A1 (zh) 2020-06-11 2020-06-11 光谱共焦测量装置及测量方法

Publications (1)

Publication Number Publication Date
WO2021248398A1 true WO2021248398A1 (zh) 2021-12-16

Family

ID=78846743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095524 WO2021248398A1 (zh) 2020-06-11 2020-06-11 光谱共焦测量装置及测量方法

Country Status (5)

Country Link
US (1) US20230087237A1 (zh)
EP (1) EP4006483A4 (zh)
JP (1) JP7410969B2 (zh)
KR (1) KR20220123177A (zh)
WO (1) WO2021248398A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115077391A (zh) * 2022-03-25 2022-09-20 上海洛丁森工业自动化设备有限公司 微位移传感器及位移测量方法
CN116447988A (zh) * 2023-06-16 2023-07-18 宁德微图智能科技有限公司 一种采用宽光谱光源的三角激光测量方法
WO2023151736A1 (de) * 2022-02-11 2023-08-17 Micro-Epsilon Optronic Gmbh System und verfahren zur konfokal-chromatischen linienabstandsmessung
DE102022202778B4 (de) 2022-02-11 2024-05-16 Micro-Epsilon Optronic Gmbh System und Verfahren zur konfokal-chromatischen Linienabstandsmessung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116518870B (zh) * 2023-04-20 2024-04-19 华中科技大学 一种双光栅大量程高分辨光谱线共焦成像装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0950168A1 (en) 1997-11-06 1999-10-20 Stil S.A. Optoelectronic system using spatiochromatic triangulation
FR2805342A1 (fr) 2000-02-21 2001-08-24 Sabban Joseph Cohen Capteur de numerisation 3d optique haute resolution a faible angle de triangulation
DE10321896A1 (de) 2003-05-07 2004-12-09 Universität Stuttgart Optischer Sensor und Verfahren mittels Triangulation, insbesondere zur chromatischen Objekt-Tiefenabtastung
JP2012002537A (ja) * 2010-06-14 2012-01-05 Omron Corp 計測装置
CN104034268A (zh) * 2014-07-01 2014-09-10 西安工业大学 双缝干涉条纹解码光谱共焦位移传感器及其位移测量方法
CN104061901A (zh) * 2013-03-19 2014-09-24 力诚仪器有限公司 立体距离测定方法及其系统
JP2014528084A (ja) * 2011-09-29 2014-10-23 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 共焦点分光計および共焦点分光計における画像形成方法
CN108981579A (zh) * 2018-07-25 2018-12-11 浙江大学 一种用于大范围测量的光谱共焦测量系统及方法
CN109945800A (zh) * 2019-03-28 2019-06-28 浙江大学 一种用于三维面型测量的线形光谱共焦系统
CN110412758A (zh) * 2019-08-13 2019-11-05 茂莱(南京)仪器有限公司 一种基于光谱共焦的成像检测装置
CN210036602U (zh) * 2019-07-29 2020-02-07 海伯森技术(深圳)有限公司 一种光谱共焦位移传感探头
CN110849271A (zh) * 2019-12-23 2020-02-28 海伯森技术(深圳)有限公司 一种光谱共焦测量系统及方法
CN110887450A (zh) * 2019-12-23 2020-03-17 海伯森技术(深圳)有限公司 一种基于光谱共焦的物体表面三维信息测量系统及方法
WO2020059677A1 (ja) * 2018-09-18 2020-03-26 オムロン株式会社 光学計測装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785651A (en) * 1995-06-07 1998-07-28 Keravision, Inc. Distance measuring confocal microscope
DE10242374A1 (de) * 2002-09-12 2004-04-01 Siemens Ag Konfokaler Abstandssensor
US7768629B2 (en) * 2006-05-12 2010-08-03 Voith Patent Gmbh Device and process for optical distance measurement
EP2304400A1 (en) * 2008-06-25 2011-04-06 Bioptigen, Inc. Volume phase grating spectrometers and related methods and systems
JP2012093197A (ja) * 2010-10-26 2012-05-17 Canon Inc 高さの計測装置
JP2012189547A (ja) * 2011-03-14 2012-10-04 Omron Corp 変位センサ
DE102012022304A1 (de) * 2012-02-29 2013-08-29 Confovis Gmbh Anordnung zur optischen Abtastung und Profilometrie nach dem Lichtschnittverfahren
US9829312B2 (en) * 2015-07-09 2017-11-28 Mituloyo Corporation Chromatic confocal range sensor comprising a camera portion
JP7393364B2 (ja) * 2018-06-20 2023-12-06 プレシテク オプトロニク ゲゼルシャフト ミット ベシュレンクテル ハフツング 測定対象を光学的にクロマチック共焦点で測定し、かつ共焦点で結像させる装置及び方法
CN109580640A (zh) * 2018-12-07 2019-04-05 哈尔滨工业大学 一种环形光式暗场共焦亚表面无损检测装置和方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0950168A1 (en) 1997-11-06 1999-10-20 Stil S.A. Optoelectronic system using spatiochromatic triangulation
FR2805342A1 (fr) 2000-02-21 2001-08-24 Sabban Joseph Cohen Capteur de numerisation 3d optique haute resolution a faible angle de triangulation
DE10321896A1 (de) 2003-05-07 2004-12-09 Universität Stuttgart Optischer Sensor und Verfahren mittels Triangulation, insbesondere zur chromatischen Objekt-Tiefenabtastung
JP2012002537A (ja) * 2010-06-14 2012-01-05 Omron Corp 計測装置
JP2014528084A (ja) * 2011-09-29 2014-10-23 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 共焦点分光計および共焦点分光計における画像形成方法
CN104061901A (zh) * 2013-03-19 2014-09-24 力诚仪器有限公司 立体距离测定方法及其系统
CN104034268A (zh) * 2014-07-01 2014-09-10 西安工业大学 双缝干涉条纹解码光谱共焦位移传感器及其位移测量方法
CN108981579A (zh) * 2018-07-25 2018-12-11 浙江大学 一种用于大范围测量的光谱共焦测量系统及方法
WO2020059677A1 (ja) * 2018-09-18 2020-03-26 オムロン株式会社 光学計測装置
CN109945800A (zh) * 2019-03-28 2019-06-28 浙江大学 一种用于三维面型测量的线形光谱共焦系统
CN210036602U (zh) * 2019-07-29 2020-02-07 海伯森技术(深圳)有限公司 一种光谱共焦位移传感探头
CN110412758A (zh) * 2019-08-13 2019-11-05 茂莱(南京)仪器有限公司 一种基于光谱共焦的成像检测装置
CN110849271A (zh) * 2019-12-23 2020-02-28 海伯森技术(深圳)有限公司 一种光谱共焦测量系统及方法
CN110887450A (zh) * 2019-12-23 2020-03-17 海伯森技术(深圳)有限公司 一种基于光谱共焦的物体表面三维信息测量系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4006483A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023151736A1 (de) * 2022-02-11 2023-08-17 Micro-Epsilon Optronic Gmbh System und verfahren zur konfokal-chromatischen linienabstandsmessung
DE102022202778B4 (de) 2022-02-11 2024-05-16 Micro-Epsilon Optronic Gmbh System und Verfahren zur konfokal-chromatischen Linienabstandsmessung
CN115077391A (zh) * 2022-03-25 2022-09-20 上海洛丁森工业自动化设备有限公司 微位移传感器及位移测量方法
CN116447988A (zh) * 2023-06-16 2023-07-18 宁德微图智能科技有限公司 一种采用宽光谱光源的三角激光测量方法
CN116447988B (zh) * 2023-06-16 2023-10-31 宁德微图智能科技有限公司 一种采用宽光谱光源的三角激光测量方法

Also Published As

Publication number Publication date
KR20220123177A (ko) 2022-09-06
JP2022541364A (ja) 2022-09-26
EP4006483A1 (en) 2022-06-01
JP7410969B2 (ja) 2024-01-10
EP4006483A4 (en) 2023-04-12
US20230087237A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
WO2021248398A1 (zh) 光谱共焦测量装置及测量方法
CN111879239B (zh) 光谱共焦测量装置及测量方法
TW201428230A (zh) 位移測量方法及位移測量裝置
JP2014055920A (ja) 共焦点計測装置
TWI245114B (en) Apparatus for measuring imaging spectrograph
US5767966A (en) Optical spectrum measuring device
JP7451687B2 (ja) オーバレイ計測用格子ターゲット構造の暗視野イメージング
JP2023532618A (ja) レーザ波長測定装置及び方法
CN115597711B (zh) 一种光谱仪及其光路设计方法
CN113513994A (zh) 一种大量程的光谱共焦位移检测装置
CN111413070A (zh) 亮度检测装置及其检测方法
CN110836642A (zh) 一种基于三角测量法的彩色三角位移传感器及其测量方法
JP2002005629A (ja) 光学的測定装置
US7248364B2 (en) Apparatus and method for optical characterization of a sample over a broadband of wavelengths with a small spot size
JP7486178B2 (ja) 分光分析装置
US10837832B2 (en) Spectrometer and method for measuring the spectral characteristics thereof
WO2023185199A1 (zh) 光谱共焦测量装置
KR101326204B1 (ko) 박막 두께 측정장치 및 방법
KR20130012412A (ko) 박막 두께 측정장치
CN214502376U (zh) 一种大量程的光谱共焦位移检测装置
JP3494148B2 (ja) フォーカス検出装置及びレーザ検査加工装置
JP2012122757A (ja) 測光装置
JP2000055733A (ja) マルチチャンネル分光計
JPH0432728A (ja) コヒーレント光選択分光方法及び装置
CN117629405A (zh) 光谱仪

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021557727

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020940002

Country of ref document: EP

Effective date: 20220228

NENP Non-entry into the national phase

Ref country code: DE