WO2021248394A1 - System and method for timing information transmission - Google Patents

System and method for timing information transmission Download PDF

Info

Publication number
WO2021248394A1
WO2021248394A1 PCT/CN2020/095494 CN2020095494W WO2021248394A1 WO 2021248394 A1 WO2021248394 A1 WO 2021248394A1 CN 2020095494 W CN2020095494 W CN 2020095494W WO 2021248394 A1 WO2021248394 A1 WO 2021248394A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
wireless communication
signal
frame
network
Prior art date
Application number
PCT/CN2020/095494
Other languages
French (fr)
Inventor
Shuaihua KOU
Peng Hao
Xianghui HAN
Junfeng Zhang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2020/095494 priority Critical patent/WO2021248394A1/en
Priority to CN202080097479.9A priority patent/CN115176508A/en
Publication of WO2021248394A1 publication Critical patent/WO2021248394A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others

Definitions

  • the disclosure relates generally to wireless communications and, more particularly, to systems and methods for timing information transmission.
  • 5G 5th Generation
  • NR New Radio
  • the UE before a user equipment (UE) can send data to a network, the UE is required to obtain uplink synchronization and downlink synchronization with the network.
  • the synchronization can be achieved by performing a random access procedure.
  • example embodiments disclosed herein are directed to solving the issues relating to one or more of the problems presented in the prior art, as well as providing additional features that will become readily apparent by reference to the following detailed description when taken in conjunction with the accompany drawings.
  • example systems, methods, devices and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and are not limiting, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of this disclosure.
  • a wireless communication method includes receiving, by a wireless communication device from a wireless communication node, a first signal on a first time-domain unit and transmitting, by the wireless communication device to the wireless communication node, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device received the first signal.
  • the wireless communication method includes receiving, by the wireless communication device from the wireless communication node, a third signal on a third time-domain unit.
  • the third signal is configured to trigger the transmission of the second signal.
  • the third signal includes at least one of a downlink control information (DCI) or a medium access control (MAC) control element (CE) .
  • DCI downlink control information
  • MAC medium access control
  • CE control element
  • a wireless communication method includes transmitting, by a wireless communication device to a wireless communication node, a first signal transmitted on a first-time domain unit and transmitting, by the wireless communication device to the wireless communication node, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device transmitted the first signal.
  • FIG. 1 illustrates an example cellular communication network in which techniques and other aspects disclosed herein may be implemented, in accordance with an embodiment of the present disclosure.
  • FIG. 2 illustrates block diagrams of an example base station and a user equipment device, in accordance with some embodiments of the present disclosure.
  • FIG. 3 illustrates an example diagram of a transmission, in accordance with some embodiments of the present disclosure.
  • FIG. 4 is a diagram illustrating an example of receiving time reporting, in accordance with some embodiments of the present disclosure.
  • FIG. 5 is a diagram illustrating an example of receiving time reporting, in accordance with some embodiments of the present disclosure.
  • FIG. 6 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure.
  • FIG. 7 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure.
  • FIG. 8 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure.
  • FIG. 9 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure.
  • FIG. 10 is a diagram illustrating an example of transmitting time reporting, in accordance with some embodiments of the present disclosure.
  • FIG. 11 is a diagram illustrating an example of transmitting time reporting, in accordance with some embodiments of the present disclosure.
  • FIG. 12 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure.
  • FIG. 13 illustrates a flowchart diagram illustrating a method for transmitting timing information, in accordance with some embodiments of the present disclosure.
  • FIG. 14 illustrates a flowchart diagram illustrating a method for transmitting timing information, in accordance with some embodiments of the present disclosure.
  • FIG. 15 illustrates a flowchart diagram illustrating a method for receiving timing information, in accordance with some embodiments of the present disclosure.
  • FIG. 16 illustrates a flowchart diagram illustrating a method for receiving timing information, in accordance with some embodiments of the present disclosure.
  • FIG. 1 illustrates an example wireless communication network, and/or system, 100 in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure.
  • the wireless communication network 100 may be any wireless network, such as a cellular network or a narrowband Internet of things (NB-IoT) network, and is herein referred to as “network 100.
  • NB-IoT narrowband Internet of things
  • Such an example network 100 includes a base station 102 (hereinafter “BS 102” ) and a user equipment device 104 (hereinafter “UE 104” ) that can communicate with each other via a communication link 110 (e.g., a wireless communication channel) , and a cluster of cells 126, 130, 132, 134, 136, 138 and 140 overlaying a geographical area 101.
  • a communication link 110 e.g., a wireless communication channel
  • the BS 102 and UE 104 are contained within a respective geographic boundary of cell 126.
  • Each of the other cells 130, 132, 134, 136, 138 and 140 may include at least one base station operating at its allocated bandwidth to provide adequate radio coverage to its intended users.
  • the BS 102 may operate at an allocated channel transmission bandwidth to provide adequate coverage to the UE 104.
  • the BS 102 and the UE 104 may communicate via a downlink radio frame 118, and an uplink radio frame 124 respectively.
  • Each radio frame 118/124 may be further divided into sub-frames 120/127 which may include data symbols 122/128.
  • the BS 102 and UE 104 are described herein as non-limiting examples of “communication nodes, ” generally, which can practice the methods disclosed herein. Such communication nodes may be capable of wireless and/or wired communications, in accordance with various embodiments of the present solution.
  • FIG. 2 illustrates a block diagram of an example wireless communication system 200 for transmitting and receiving wireless communication signals, e.g., OFDM/OFDMA signals, in accordance with some embodiments of the present solution.
  • the system 200 may include components and elements configured to support known or conventional operating features that need not be described in detail herein.
  • system 200 can be used to communicate (e.g., transmit and receive) data symbols in a wireless communication environment such as the wireless communication environment 100 of Figure 1, as described above.
  • the System 200 generally includes a base station 202 (hereinafter “BS 202” ) and a user equipment device 204 (hereinafter “UE 204” ) .
  • the BS 202 includes a BS (base station) transceiver module 210, a BS antenna 212, a BS processor module 214, a BS memory module 216, and a network communication module 218, each module being coupled and interconnected with one another as necessary via a data communication bus 220.
  • the UE 204 includes a UE (user equipment) transceiver module 230, a UE antenna 232, a UE memory module 234, and a UE processor module 236, each module being coupled and interconnected with one another as necessary via a data communication bus 240.
  • the BS 202 communicates with the UE 204 via a communication channel 250, which can be any wireless channel or other medium suitable for transmission of data as described herein.
  • system 200 may further include any number of modules other than the modules shown in Figure 2.
  • modules other than the modules shown in Figure 2.
  • Those skilled in the art will understand that the various illustrative blocks, modules, circuits, and processing logic described in connection with the embodiments disclosed herein may be implemented in hardware, computer-readable software, firmware, or any practical combination thereof. To clearly illustrate this interchangeability and compatibility of hardware, firmware, and software, various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware, or software can depend upon the particular application and design constraints imposed on the overall system. Those familiar with the concepts described herein may implement such functionality in a suitable manner for each particular application, but such implementation decisions should not be interpreted as limiting the scope of the present disclosure.
  • the UE transceiver 230 may be referred to herein as an "uplink" transceiver 230 that includes a radio frequency (RF) transmitter and a RF receiver each comprising circuitry that is coupled to the antenna 232.
  • a duplex switch (not shown) may alternatively couple the uplink transmitter or receiver to the uplink antenna in time duplex fashion.
  • the BS transceiver 210 may be referred to herein as a "downlink" transceiver 210 that includes a RF transmitter and a RF receiver each comprising circuity that is coupled to the antenna 212.
  • a downlink duplex switch may alternatively couple the downlink transmitter or receiver to the downlink antenna 212 in time duplex fashion.
  • the operations of the two transceiver modules 210 and 230 can be coordinated in time such that the uplink receiver circuitry is coupled to the uplink antenna 232 for reception of transmissions over the wireless transmission link 250 at the same time that the downlink transmitter is coupled to the downlink antenna 212. In some embodiments, there is close time synchronization with a minimal guard time between changes in duplex direction.
  • the UE transceiver 230 and the base station transceiver 210 are configured to communicate via the wireless data communication link 250, and cooperate with a suitably configured RF antenna arrangement 212/232 that can support a particular wireless communication protocol and modulation scheme.
  • the UE transceiver 210 and the base station transceiver 210 are configured to support industry standards such as the Long Term Evolution (LTE) and emerging 5G standards, and the like. It is understood, however, that the present disclosure is not necessarily limited in application to a particular standard and associated protocols. Rather, the UE transceiver 230 and the base station transceiver 210 may be configured to support alternate, or additional, wireless data communication protocols, including future standards or variations thereof.
  • LTE Long Term Evolution
  • 5G 5G
  • the BS 202 may be an evolved node B (eNB) , a serving eNB, a target eNB, a femto station, or a pico station, for example.
  • eNB evolved node B
  • the UE 204 may be embodied in various types of user devices such as a mobile phone, a smart phone, a personal digital assistant (PDA) , tablet, laptop computer, wearable computing device, etc.
  • PDA personal digital assistant
  • the processor modules 214 and 236 may be implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein.
  • a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by processor modules 214 and 236, respectively, or in any practical combination thereof.
  • the memory modules 216 and 234 may be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • memory modules 216 and 234 may be coupled to the processor modules 210 and 230, respectively, such that the processors modules 210 and 230 can read information from, and write information to, memory modules 216 and 234, respectively.
  • the memory modules 216 and 234 may also be integrated into their respective processor modules 210 and 230.
  • the memory modules 216 and 234 may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by processor modules 210 and 230, respectively.
  • Memory modules 216 and 234 may also each include non-volatile memory for storing instructions to be executed by the processor modules 210 and 230, respectively.
  • the network communication module 218 generally represents the hardware, software, firmware, processing logic, and/or other components of the base station 202 that enable bi-directional communication between base station transceiver 210 and other network components and communication nodes configured to communication with the base station 202.
  • network communication module 218 may be configured to support internet or WiMAX traffic.
  • network communication module 218 provides an 802.3 Ethernet interface such that base station transceiver 210 can communicate with a conventional Ethernet based computer network.
  • the network communication module 218 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC) ) .
  • MSC Mobile Switching Center
  • a time clock is needed for the communication equipment.
  • some methods are provided for a network or a user equipment (UE) to get the time clock when a synchronous (sync) source is on a wireless terminal.
  • a UE e.g., UE 104, UE 204, a mobile device, a wireless communication device, etc.
  • PRACH physical random access channel
  • the network sends a random access response (RAR, e.g., msg2) to the UE after receiving PRACH from the UE.
  • RAR schedules a physical uplink shared channel (PUSCH, e.g., msg3) for the UE.
  • PUSCH physical uplink shared channel
  • the UE sends the PUSCH to the network after receiving RAR.
  • the network sends a physical downlink control channel (PDCCH) scheduling a physical downlink shared channel (PDSCH, e.g., msg4) to the UE after receiving msg3.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the UE sends a PRACH and a PUSCH (collectively, e.g., msgA) to the network.
  • the network sends a RAR (e.g., msgB) to the UE after receiving msgA.
  • the wireless communication system includes a time interval (e.g., propagation delay) between a time when a signal is transmitted by a sender (e.g., the UE or the network) and a time when the signal is received by a receiver (e.g., the UE or the network) .
  • FIG. 3 illustrates an example timing diagram of a transmission, in accordance with some embodiments of the present disclosure. As shown in FIG. 3, the signal is transmitted by the sender starting from transmitting time t1, the signal is received by the receiver starting from receiving time t2, and the propagation delay is t2-t1.
  • the transmitting time and the receiving time are absolute time, e.g., global positioning system (GPS) time, Coordinated Universal Time (UTC) , or local time.
  • GPS global positioning system
  • UTC Coordinated Universal Time
  • the starting point of the signal is received at 13 o’clock 32 minutes 16 seconds 138 milliseconds 31 microseconds 183 nanoseconds on March 17 in 2019, and a message indicating the receiving time (e.g., a receiving time message) includes the receiving time, i.e., 13 o’clock 32 minutes 16 seconds 138 milliseconds 31 microseconds 183 nanoseconds on March 17 in 2019.
  • the UE sends (e.g. reports, transmits, communicates, indicates) , to the network, the receiving time (e.g., first time, first time value, first time-domain unit) of a first reference point (e.g., first signal) received by the UE.
  • the receiving time of the first reference point is the time when the UE receives the first reference point from the network.
  • the first reference point can be (e.g., identified as, occurring during, at a time of, etc.
  • a boundary e.g., starting or ending boundary
  • a unit e.g., transmission, transmission unit
  • a symbol e.g., an orthogonal frequency division multiplexing (OFDM) symbol
  • OFDM orthogonal frequency division multiplexing
  • the unit corresponding to the first reference point can be referred to as a reference unit (e.g., reference transmission, reference transmission unit) such as a reference symbol, a reference sub-slot, a reference slot, a reference sub-frame and a reference system frame.
  • a wireless communication device receives, from a wireless communication node, a first signal on a first time-domain unit.
  • the wireless communication device transmits, to the wireless communication node, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device received the first signal.
  • a wireless communication device transmits, to a wireless communication node, a first signal transmitted on a first-time domain unit.
  • the wireless communication device transmits, to the wireless communication node, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device transmitted the first signal.
  • the time information includes a time of a starting boundary or an ending boundary of the first time-domain unit.
  • the reference symbol is a downlink (DL) symbol, which is used for downlink signal transmission. If the first reference point is the ending boundary of the reference unit, the last one or more symbols of the reference unit are downlink symbols used for downlink signal transmission. If the first reference point is the starting boundary of the reference unit, the first one or more symbols of the reference unit are the downlink symbols used for downlink signals transmission. In some embodiments, the UE sends the receiving time of the boundary of the reference unit to the network.
  • the information of the receiving time can be in Radio Resource Control (RRC) signaling, or Medium Access Control (MAC) Control Element (CE) , or Uplink Control information (UCI) .
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • CE Control Element
  • UCI Uplink Control information
  • the time information is included in at least one of a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
  • the reference unit is indicated by the network to the UE via a RRC signaling, or a MAC CE, or a Downlink Control Information (DCI) .
  • the first reference point for receiving time reporting is indicated by the network to the UE.
  • the first time-domain unit is indicated by the wireless communication node via at least one of a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or downlink control information (DCI) .
  • RRC radio resource control
  • MAC medium access control
  • DCI downlink control information
  • the reference unit is indicated by the UE to the network via a RRC signaling, or a MAC CE, or a UCI.
  • the first reference point for receiving time reporting is indicated by UE to the network.
  • the first time-domain unit is indicated by the wireless communication device via at least one of: a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
  • RRC radio resource control
  • MAC medium access control
  • UCI uplink control information
  • the UE sends the receiving time of a first reference point to the network at a certain (e.g., predetermined, occurring once per each period of time, etc. ) time.
  • the receiving time that is sent by the UE is the receiving time of the indicated first reference point that is adjacent to (e.g., before and closest to among the reference points that are before) the certain time.
  • the receiving time can be carried by (e.g., transmitted by, included in, assigned to, corresponding to, etc. ) a physical uplink share channel (PUSCH) or a physical uplink control channel (PUCCH) .
  • PUSCH physical uplink share channel
  • PUCCH physical uplink control channel
  • the time carried by the PUSCH or the PUCCH is the receiving time of the indicated first reference point that is adjacent to (e.g., before and closest to) the start of the PUSCH or the PUCCH.
  • the second signal includes at least one of a physical uplink control channel (PUCCH) signal or a physical uplink shared channel (PUSCH) signal.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • FIG. 4 is a diagram illustrating an example of receiving time reporting, in accordance with some embodiments of the present disclosure.
  • a system frame number 5 is indicated (e.g. by the network or by the UE) as the reference frame and the first reference point is the starting boundary of the reference frame.
  • the first system frame number 5 is received starting from t1. That is, the receiving time of starting boundary of the first reference frame is t1.
  • the receiving time of starting boundary of the second, third, and fourth reference frames are t2, t3, and t4, respectively.
  • the UE sends receiving time of first reference point to the network at t5. Since the reference point of the second reference frame (e.g.
  • the receiving time that is sent by the UE at t5 is the receiving time of the starting boundary of the second reference frame (i.e., t2 is sent by the UE as the receiving time) .
  • the first reference point configured by the network is periodic.
  • the UE sends the receiving time of the first reference point to the network after the first reference point is received and before the next first reference point is received.
  • the receiving time reporting by the UE is also periodic with the same periodicity of the first reference point.
  • the wireless communication device receives, from the wireless communication node, the first signal every certain period of time.
  • the wireless communication device transmits, to the wireless communication node, the second signal carrying the time information indicative of when the wireless communication device received the first signal during each period of time.
  • the reference unit configured by the network is periodic.
  • the UE sends the receiving time to the network after each of the reference units is received and before the next reference unit is received.
  • the receiving time reporting by the UE is periodic with the same periodicity of the reference unit.
  • a periodicity and a offset may be configured.
  • the offset for the reference unit is the time interval between one of the reference unit and the starting point. Generally, the starting point is the start of system frame number 0.
  • FIG. 5 is a diagram illustrating an example of receiving time reporting, in accordance with some embodiments of the present disclosure.
  • the offset is 10 frames and the periodicity is 40 frames.
  • the starting point is the start of system frame 0.
  • the reference frames illustrated in FIG. 5 are system frame 10, system frame 50, system frame 90 and system frame 130, respectively.
  • the starting boundary of system frame 0, system frame 10, system frame 50, system frame 90 and system frame 130 are received at t1, t2, t3, t4, and t5, respectively.
  • the first reference point is the starting boundary of the reference frame.
  • the UE sends the receiving time of the starting boundary of frame 10 (i.e., t2) to the network after the frame 10 is received and before the frame 50 is received. In another case, the UE sends the receiving time of the starting boundary of frame 10 (i.e., t2) after the t2 and before t3. Similarly, for the reference frame 50, the UE sends the receiving time of the starting boundary of frame 50 (i.e., t3) to the network after the frame 50 is received and before the frame 90 is received. In another case, the UE sends the receiving time of the starting boundary of frame 50 (i.e., t3) after the t3 and before t4.
  • the reference unit is indicated by the network implicitly as well as, in some embodiments, the first reference point.
  • the network sends a downlink control information (DCI) to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH is used to transmit the receiving time.
  • the network sends a MAC CE to the UE and the MAC CE indicates that the UE reports the receiving time.
  • the reference unit is the first unit or the last unit on which the DCI or the MAC CE is transmitted.
  • the reference symbol, sub-slot, slot, sub-frame, and system frame is the first or last symbol, sub-slot, slot, sub-frame, and frame, respectively, on which the DCI or the MAC CE is transmitted.
  • the DCI is carried by the PDCCH and the MAC CE is carried by the PDSCH.
  • the symbol, sub-slot, slot, sub-frame and frame on which a DCI is transmitted are equal to the symbol, sub-slot, slot, sub-frame and frame of the PDCCH carrying the DCI, respectively.
  • the wireless communication device receives, from the wireless communication node, a third signal on a third time-domain unit.
  • the third signal is configured to trigger the transmission of the second signal.
  • the third signal includes at least one of a downlink control information (DCI) and a MAC CE.
  • DCI downlink control information
  • each of the first, second, and third time-domain units includes at least one of: a symbol, a sub-slot, a slot, a sub-frame, a frame.
  • FIG. 6 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure.
  • the system frame N (N is an integer) is received starting from t1.
  • the receiving time of the starting boundary of system frame N is t1 and the receiving time of the ending boundary of system frame N is t2.
  • the PDCCH is transmitted on system frame N to schedule the PUSCH.
  • the PDCCH further indicates that the PUSCH is used to transmit the receiving time. Therefore, the reference frame is system frame N. If the reference point is the starting boundary of the frame, the receiving time of the reference point is t1 and the value of t1 can be reported by the UE to the network. If the reference point is ending boundary of the frame, the receiving time of the reference point is t2 and the value of t2 can be reported by the UE to the network.
  • FIG. 7 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure.
  • the system frame N is received starting from t1.
  • the receiving time of the starting boundary of system frame N is t1 and the receiving time of the ending boundary of system frame N is t2.
  • the MAC CE is transmitted on the system frame N and the MAC CE is used to indicate that the UE reports the receiving time to the network. Therefore, the reference frame is system frame N. If the reference point is the starting boundary of the frame, the receiving time of the reference point is t1 and the value of t1 can be reported by the UE to the network. If the reference point is ending boundary of the frame, the receiving time of the reference point is t2 and the value of t2 can be reported by the UE to the network.
  • the network sends a DCI to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH is to transmit the receiving time.
  • the time interval between the DCI and the scheduled PUSCH is equal to or larger than a threshold. In some embodiments, the time interval between the last symbol of the PDCCH carrying the DCI and the first symbol of the scheduled PUSCH is equal to and larger than a threshold.
  • the network sends a MAC CE to the UE, and, in some embodiments, the MAC CE indicates that the UE reports the receiving time.
  • the receiving time is carried by a PUSCH or a PUCCH.
  • the time interval between the MAC CE and the PUSCH or the PUCCH is equal to and larger than a threshold.
  • the time interval between the last symbol of the PDSCH carrying MAC CE and the first symbol of the PUSCH or the PUCCH is equal to or larger than a threshold.
  • the value of the threshold may be configured by the network or pre-defined by the specification.
  • the network sends a DCI to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH is to transmit the receiving time. In some embodiments, the network sends a MAC CE to the UE, and, in some embodiments, the MAC CE indicates that the UE reports the receiving time.
  • the reference symbol is the symbol before or after than the symbol on which the DCI or the MAC CE is transmitted with a first offset between them. In some embodiments, reference unit is the unit before or after than the unit on which the DCI or the MAC CE is transmitted with a first offset between them.
  • the reference symbol, sub-slot, slot, sub-frame, and frame is the symbol sub-slot, slot, sub-frame, and frame, respectively, before or after than the respective symbol, sub-slot, slot, sub-frame, and frame on which the DCI or the MAC CE is transmitted with a first offset between them.
  • the first offset is configured by the network or pre-defined by the specification.
  • a first time offset exists between the first time-domain unit and the third time-domain unit.
  • the first time offset is pre-configured or indicated by the wireless communication node.
  • FIG. 8 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure.
  • the system frame 20 is received starting from t1.
  • the receiving time of the starting boundary of system frame 20 is t1 and the receiving time of the ending boundary of system frame 20 is t2.
  • the first offset is 3 frames.
  • the PDCCH transmitted on frame 23 indicates that the UE reports the receiving time.
  • the reference frame is frame 20 since the offset between frame 20 and frame 23 is 3 frames. If the reference point is the starting boundary of the reference frame, the receiving time of the starting boundary of system frame 20 (i.e., t1) is reported. If the reference point is the ending boundary of the reference frame, the receiving time of the ending boundary of system frame 20 (i.e., t2) is reported.
  • the UE sends the receiving time of a first reference point to the network at a certain time.
  • the first reference point is before than the certain time with a second offset between the first reference point and the certain time.
  • the second offset is constant and can be configured by the network or pre-defined by the specification.
  • the UE sends the receiving time of a first reference point to the network via an uplink transmission.
  • the uplink transmission is PUCCH or PUSCH.
  • reference unit is before or after the uplink transmission with a second offset between the reference unit and the first unit of the uplink transmission.
  • reference symbol sub-slot, slot, sub-frame, and frame is before or after the uplink transmission with a second offset between the reference symbol, sub-slot, slot, sub-frame, and frame and the first symbol, sub-slot, slot, sub-frame, and frame, respectively, of the uplink transmission.
  • the second offset can be a number of symbols, sub-slots, slots, sub-frames, frames or milliseconds.
  • the second offset is configured by the network or pre-defined by the specification.
  • the value of the offset can be zero.
  • a second time offset exists between the first time-domain unit and a second time-domain unit on which the second signal is transmitted.
  • the second time offset is pre-configured or indicated by the wireless communication node.
  • FIG. 9 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure.
  • the system frame 15 is received starting from t1.
  • the receiving time of the starting boundary of system frame 15 is t1 and the receiving time of the ending boundary of system frame 15 is t2.
  • the ending boundary of system frame 15 is the starting boundary of system frame 16.
  • the receiving time of the ending boundary of system frame 16 is t3.
  • the PUSCH transmitted on the system frame 16 carries the receiving time.
  • a PUSCH transmitted in system frame 16 is used to transmit the receiving time.
  • the offset between the reference frame and the frame of PUSCH i.e., system frame 16
  • the reference frame is system frame 15.
  • the receiving time of the starting boundary of system frame 15 (i.e., t1) is transmitted in the PUSCH. If the reference point is the ending boundary of the reference frame, the receiving time of the ending boundary of system frame 15 (i.e., t2) is transmitted in the PUSCH.
  • the network can get the time when the network sends the first reference point.
  • the time when the network sends the first reference point is the receiving time reported by the UE minus the propagation delay.
  • the propagation delay is the half of the time advanced of the UE.
  • the UE sends (e.g. reports) the transmitting time of a second reference point to the network.
  • the transmitting time of the second reference point is the time when the UE transmits the reference point to the network.
  • the second reference point can be at least one of a boundary (e.g., starting or ending boundary) of a unit such as a symbol, a sub-slot, a slot, a sub-frame, or a frame.
  • the unit corresponding to the second reference point can be referred to as a reference unit such as a reference symbol, a reference sub-slot, a reference slot, a reference sub-frame and a reference system frame.
  • a wireless communication device transmits, to a wireless communication node, a first signal transmitted on a first-time domain unit.
  • the wireless communication device transmits, to the wireless communication node, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device transmitted the first signal.
  • the time information includes a time of a starting boundary or an ending boundary of the first time-domain unit.
  • the reference symbol is an uplink symbol, which is used for uplink signal transmission. If the second reference point is the ending boundary of the reference unit, the last one or more symbols of the reference unit are uplink symbols used for uplink signal transmission. If the second reference point is the starting boundary of the reference unit, the first one or more symbols of the reference unit are the uplink symbols used for uplink signals transmission. In some embodiments, the UE sends the transmitting time of the starting or ending boundary of the reference unit to the network.
  • the information of the transmitting time can be in RRC signaling, or MAC CE, or UCI.
  • the time information is included in at least one of a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
  • RRC radio resource control
  • MAC medium access control
  • UCI uplink control information
  • the reference unit is indicated by the network to the UE via a RRC signaling, a MAC CE, or a DCI.
  • the second reference point for transmitting time reporting is indicated by the network to the UE.
  • the first time-domain unit is indicated by the wireless communication node via at least one of: a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or downlink control information (DCI)
  • RRC radio resource control
  • MAC medium access control
  • DCI downlink control information
  • the reference unit is indicated by the UE to the network via a RRC signaling, a MAC CE, or a UCI.
  • the second reference point for transmitting time reporting is indicated by the UE to the network.
  • the first time-domain unit is indicated by the wireless communication device via at least one of: a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
  • RRC radio resource control
  • MAC medium access control
  • UCI uplink control information
  • the UE sends the transmitting time of a second reference point to the network at a certain time.
  • the transmitting time that is sent by the UE is the transmitting time of the indicated second reference point that is adjacent to (e.g., before and closest to) the certain time.
  • the transmitting time can be carried by a PUSCH or a PUCCH.
  • the transmitting time carried by the PUSCH or the PUCCH is the transmitting time of the indicated second reference point that is before and closest to the start of the PUSCH or the PUSCH.
  • FIG. 10 is a diagram illustrating an example of transmitting time reporting, in accordance with some embodiments of the present disclosure.
  • System frame number 5 is indicated as reference frame.
  • the second reference point is the ending boundary of the reference frame.
  • the first system frame number 5 is transmitted with the ending boundary at t1. So the transmitting time of ending boundary of the first reference frame is t1.
  • the transmitting time of ending boundary of the second reference frame is t2.
  • the transmitting time of ending boundary of the third reference frame is t3.
  • the transmitting time of ending boundary of the fourth reference frame is t4.
  • the UE sends transmitting time of second reference point to the network at t5. Since the reference point of the second reference boundary (e.g.
  • the transmitting time that is sent by the UE at t5 is the transmitting time of the ending boundary of the second reference frame, i.e. t2 is sent by the UE as the receiving time.
  • the second reference point configured by the network is periodic.
  • the UE sends the transmitting time of the second reference point to the network after each of the second reference point is transmitted and before the next second reference point is transmitted.
  • the transmitting time reporting by the UE is also periodic with the same periodicity of the second reference point.
  • the reference symbol, reference unit configured by the network is periodic.
  • the UE sends the transmitting time to the network after each of the reference units is transmitted and before the next reference unit is transmitted.
  • the transmitting time reporting by the UE is periodic with the same periodicity of the reference unit.
  • the wireless communication device transmits, to the wireless communication node, the first signal every certain period of time.
  • the wireless communication device transmits, to the wireless communication node, the second signal carrying the time information indicative of when the wireless communication device transmitted the first signal during each period of time.
  • FIG. 11 is a diagram illustrating an example of transmitting time reporting, in accordance with some embodiments of the present disclosure.
  • the offset is 10 frames and the periodicity is 40 frames.
  • the starting point is the start of system frame 0.
  • the reference frames illustrated in FIG. 11 are system frame 10, system frame 50, system frame 90 and system frame 130, respectively.
  • the starting boundary of system frame 0, system frame 10, system frame 50, system frame 90 and system frame 130 are transmitted at t1, t2, t3, t4 and t5, respectively.
  • the second reference point is the starting boundary of the reference frame.
  • the UE sends the transmitting time of the starting boundary of frame 10 (i.e., t2) to the network after the frame 10 is transmitted and before the frame 50 is transmitted. In another case, the UE sends the transmitting time of the starting boundary of frame 10 (i.e., t2) after the t2 and before t3. Similarly, for the reference frame 50, the UE sends the transmitting time of the starting boundary of frame 50 (i.e., t3) to the network after the frame 50 is transmitted and before the frame 90 is transmitted. In another case, the UE sends the transmitting time of the starting boundary of frame 50 (i.e., t3) after the t3 and before t4.
  • the reference unit is indicated by the network implicitly as well as, in some embodiments, the first reference point.
  • the network sends a downlink control information (DCI) to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH is used to transmit the transmitting time.
  • the network sends a MAC CE to the UE, and, in some embodiments, the MAC CE indicates that the UE reports the transmitting time.
  • the transmitting time can be carried by a PUSCH or a PUCCH.
  • the reference unit is the first or last unit on which the PUSCH or the PUCCH is transmitted.
  • FIG. 12 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure.
  • the system frame N (N is an integer) is transmitted starting from t1.
  • the transmitting time of the starting boundary of system frame N is t1 and the transmitting time of the ending boundary of system frame N is t2.
  • a PUSCH scheduled by a PDCCH is transmitted on system frame N.
  • the PUSCH is indicated to carry the transmitting time of the reference frame.
  • the reference frame is system frame N, on which the PUSCH is transmitted. If the reference point is the starting boundary of the frame, the transmitting time of the reference point is t1 and the value of t1 can be carried by the PUSCH for transmitting time reporting.
  • the time interval between the second reference point, and, in some embodiments, the PUCCH or the PUSCH that carries the transmitting time of the second reference point is equal to or larger than a threshold. In some embodiments, the time interval between the second reference point and the first symbol of the PUCCH or the first symbol of the PUSCH is equal to or larger than a threshold, wherein, in some embodiments, the PUSCH or the PUCCH carries the transmitting time of the second reference point.
  • the network sends a DCI to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH carries the transmitting time of a second reference point.
  • the network sends a MAC CE to the UE, and, in some embodiments, the MAC CE indicates that the UE reports the transmitting time.
  • the transmitting time can be carried by a PUSCH or a PUCCH.
  • the reference unit is the unit before or after than the unit on which the DCI or the MAC CE is transmitted with a first offset between them. In some embodiments, the first offset is configured by the network or pre-defined by the specification.
  • the wireless communication device receives, from the wireless communication node, a third signal on a third time-domain unit.
  • the third signal is configured to trigger the transmission of the second signal.
  • the third signal includes at least one of: a downlink control information (DCI) , a MAC CE.
  • DCI downlink control information
  • each of the first, second and third time-domain units includes at least one of: a symbol, a sub-slot, a slot, a sub-frame, a frame.
  • a first time offset exists between the first time-domain unit and the third time-domain unit. In some embodiments, the first time offset is pre-configured or indicated by the wireless communication node.
  • the UE sends the transmitting time of a second reference point to the network at a certain time.
  • the second reference point is before than the certain time with a second offset between the first reference point and the certain time.
  • the second offset is constant and can be configured by the network or pre-defined by the specification.
  • the UE sends the transmitting time of a second reference point to the network.
  • the transmitting time of the second reference point is carried by an uplink transmission.
  • the uplink transmission is PUCCH or PUSCH.
  • the reference unit is before or after the uplink transmission with a second offset between the reference unit and the first unit of the uplink transmission.
  • the second offset is configured by the network or pre-defined by the specification.
  • a second time offset exists between the first time-domain unit and the second time-domain unit on which the second signal is transmitted.
  • the second time offset is pre-configured or indicated by the wireless communication node.
  • the network can get the time when the network receives the second reference point.
  • the time when the network receives the second reference point is the transmitting time reported by the UE plus propagation delay.
  • the propagation delay is the half of the time advanced of the UE.
  • a physical signal configuration is configured by the network to the UE.
  • the network configures that the physical signal configuration is used for uplink synchronization in order for the network to get the time clock.
  • a UE sends the physical signal (e.g., reference physical signal) to the network.
  • the UE sends the transmitting time of a third reference point to the network.
  • the third reference point is the starting or ending boundary of the first or last unit of the physical signal. For instance, the third reference point is the first or last symbol, sub-slot, slot, sub-frame, and frame of the physical signal.
  • the reference physical signal is the physical signal that is transmitted by the UE adjacent to (e.g., before and closest to) the time when the UE sends the transmitting time to the network.
  • the reference physical signal is indicated by the UE to the network via RRC signaling, MAC CE, or UCI.
  • the physical signal is PRACH.
  • the transmitting time is transmitted in msg3.
  • the transmitting time is carried by the PUSCH in the msgA.
  • the time interval between the PRACH and the PUSCH in the msgA is equal to or larger than a threshold.
  • the transmission of the PRACH and the report of the transmitting time are triggered by a DCI or a MAC CE.
  • the physical signal is sounding reference signal (SRS) .
  • the reference SRS is indicated by the network.
  • a DCI schedules a PUSCH transmission and triggers an SRS transmission.
  • the SRS transmission is before the PUSCH transmission.
  • the transmitting time of the SRS is transmitted in the PUSCH.
  • the first signal includes at least one of a physical uplink shared channel (PUSCH) , a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) signal or a sounding reference signal (SRS) .
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • SRS sounding reference signal
  • the network can get the exact time when the network receives the third reference point.
  • the time when the network receives the third reference point is the transmitting time reported by the UE plus the propagation delay.
  • the propagation delay is the half of the time advanced of the UE.
  • the time advanced is estimated (e.g. measured, determined) based on the reference PRACH.
  • the time advanced is estimated (e.g. measured, determined) based on the reference SRS.
  • a first UE sends the transmitting time of a fourth reference point to a second UE via sidelink.
  • the transmitting time can be carried by physical sidelink shared channel (PSSCH) or physical sidelink control channel (PSCCH) .
  • the transmitting time of the fourth reference point is the time when the first UE sends the fourth reference point to the second UE.
  • the fourth reference point is the starting boundary or the ending boundary of a sidelink transmission (e.g. symbol, sub-slot, slot, sub-frame, or frame) .
  • the fourth reference point is the starting boundary of the sidelink transmission, the first one or more symbols of the sidelink transmission is transmitted from the first UE to the second UE.
  • the fourth reference point is the ending boundary of the sidelink transmission, the last one or more symbols of the sidelink transmission is transmitted from the first UE to the second UE.
  • a first UE sends the receiving time of a fourth reference point to a second UE via sidelink.
  • the receiving time can be carried by PSSCH or PSCCH.
  • the receiving time of the fourth reference point is the time when the first UE receives the fourth reference point from the second UE.
  • the fourth reference point is the starting boundary of the sidelink transmission
  • the first one or more symbols of the sidelink transmission is transmitted from the second UE to the first UE.
  • the fourth reference point is the ending boundary of the sidelink transmission
  • the last one or more symbols of the sidelink transmission is transmitted from the second UE to the first UE.
  • the sidelink transmission is the transmission of reference symbol, reference sub-slot, reference slot, reference sub-frame, or reference frame.
  • the reference symbol, reference sub-slot, reference slot, reference sub-frame, or reference frame is indicated by the network to the first UE and the second UE via a RRC signaling, or a MAC CE, or a Downlink Control Information (DCI) .
  • the first reference point for receiving time reporting is indicated by the network to the UE.
  • the reference symbol, reference sub-slot, reference slot, reference sub-frame, or reference frame is indicated by the first UE to the second UE via a RRC signaling, or a MAC CE, or a Downlink Control Information (DCI) .
  • the first reference point for receiving time reporting is indicated by the first UE to the second UE.
  • the reference symbol, reference sub-slot, reference slot, reference sub-frame, or reference frame is indicated by the second UE to the first UE via a RRC signaling, or a MAC CE, or a Downlink Control Information (DCI) .
  • the first reference point for receiving time reporting is indicated by the second UE to the first UE.
  • the second UE When the second UE receives the transmitting time or the receiving time from the first UE, the second UE can get the time when UE receives or sends the fourth reference point.
  • the time when UE receives or sends the fourth reference point is the transmitting time or the receiving time sent by the first UE.
  • FIG. 13 illustrates a flowchart diagram illustrating a method 1300 for transmitting timing information, in accordance with some embodiments of the present disclosure.
  • the method 1300 can be performed by a wireless communication device (e.g., a UE) , in some embodiments. Additional, fewer, or different operations may be performed in the method 1300 depending on the embodiment.
  • a wireless communication device e.g., a UE
  • a wireless communication device receives, from a wireless communication node (e.g., a network) , a first signal on a first time-domain unit (1302) .
  • the wireless communication device transmits, to the wireless communication node, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device received the first signal (1304) .
  • FIG. 14 illustrates a flowchart diagram illustrating a method 1400 for transmitting timing information, in accordance with some embodiments of the present disclosure.
  • the method 1400 can be performed by a wireless communication device (e.g., a UE) , in some embodiments. Additional, fewer, or different operations may be performed in the method 1400 depending on the embodiment.
  • a wireless communication device e.g., a UE
  • a wireless communication device transmits, to a wireless communication node (e.g., a network) , a first signal transmitted on a first-time domain unit (1402) .
  • the wireless communication device transmits, to the wireless communication node, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device transmitted the first signal (1404) .
  • the network receives, from the UE, the receiving time (e.g., first time, first time value, first time-domain unit) of a first reference point (e.g., first signal) received by the UE.
  • the receiving time of the first reference point is the time when the UE receives the first reference point from the network.
  • the first reference point can be (e.g., identified as, occurring during, at a time of, etc.
  • a boundary e.g., starting or ending boundary
  • a unit e.g., transmission, transmission unit
  • a symbol e.g., an orthogonal frequency division multiplexing (OFDM) symbol
  • OFDM orthogonal frequency division multiplexing
  • the unit corresponding to the first reference point can be referred to as a reference unit (e.g., reference transmission, reference transmission unit) such as a reference symbol, a reference sub-slot, a reference slot, a reference sub-frame and a reference system frame.
  • a wireless communication node sends, to a wireless communication device, a first signal on a first time-domain unit.
  • the wireless communication node receives, from the wireless communication device, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device received the first signal.
  • a wireless communication node receives, from a wireless communication device, a first signal transmitted on a first-time domain unit.
  • the wireless communication node receives, from the wireless communication device, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device transmitted the first signal.
  • the time information includes a time of a starting boundary or an ending boundary of the first time-domain unit.
  • the reference symbol is a downlink (DL) symbol, which is used for downlink signal transmission. If the first reference point is the ending boundary of the reference unit, the last one or more symbols of the reference unit are downlink symbols used for downlink signal transmission. If the first reference point is the starting boundary of the reference unit, the first one or more symbols of the reference unit are the downlink symbols used for downlink signals transmission. In some embodiments, the network receives the receiving time of the boundary of the reference unit from the UE.
  • the information of the receiving time can be in Radio Resource Control (RRC) signaling, or Medium Access Control (MAC) Control Element (CE) , or Uplink Control information (UCI) .
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • CE Control Element
  • UCI Uplink Control information
  • the time information is included in at least one of a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
  • the reference unit is indicated by the network to the UE via a RRC signaling, or a MAC CE, or a Downlink Control Information (DCI) .
  • the first reference point for receiving time reporting is indicated by the network to the UE.
  • the first time-domain unit is indicated by the wireless communication node via at least one of a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or downlink control information (DCI) .
  • RRC radio resource control
  • MAC medium access control
  • DCI downlink control information
  • the reference unit is indicated by the UE to the network via a RRC signaling, or a MAC CE, or a UCI.
  • the first reference point for receiving time reporting is indicated by UE to the network.
  • the first time-domain unit is indicated by the wireless communication device via at least one of: a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
  • RRC radio resource control
  • MAC medium access control
  • UCI uplink control information
  • the UE sends the receiving time of a first reference point to the network at a certain (e.g., predetermined, occurring once per each period of time, etc. ) time.
  • the receiving time that is received by the network is the receiving time of the indicated first reference point that is adjacent to (e.g., before and closest to among the reference points that are before) the certain time.
  • the receiving time can be carried by (e.g., transmitted by, included in, assigned to, corresponding to, etc. ) a physical uplink share channel (PUSCH) or a physical uplink control channel (PUCCH) .
  • PUSCH physical uplink share channel
  • PUCCH physical uplink control channel
  • the time carried by the PUSCH or the PUCCH is the receiving time of the indicated first reference point that is adjacent to (e.g., before and closest to) the start of the PUSCH or the PUCCH.
  • the second signal includes at least one of a physical uplink control channel (PUCCH) signal or a physical uplink shared channel (PUSCH) signal.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • a system frame number 5 is indicated (e.g. by the network or by the UE) as the reference frame and the first reference point is the starting boundary of the reference frame.
  • the first system frame number 5 is received starting from t1. That is, the receiving time of starting boundary of the first reference frame is t1.
  • the receiving time of starting boundary of the second, third, and fourth reference frames are t2, t3, and t4, respectively.
  • the UE sends receiving time of first reference point to the network at t5. Since the reference point of the second reference frame (e.g.
  • the receiving time that is sent by the UE at t5 is the receiving time of the starting boundary of the second reference frame (i.e., t2 is received by the network as the receiving time) .
  • the first reference point configured by the network is periodic.
  • the UE sends the receiving time of the first reference point to the network after the first reference point is received and before the next first reference point is received.
  • the receiving time reporting by the UE is also periodic with the same periodicity of the first reference point.
  • the wireless communication node transmits, to the wireless communication device, the first signal every certain period of time.
  • the wireless communication node receives, from the wireless communication device, the second signal carrying the time information indicative of when the wireless communication device received the first signal during each period of time.
  • the reference unit configured by the network is periodic.
  • the UE sends the receiving time to the network after each of the reference units is received and before the next reference unit is received.
  • the receiving time reporting by the UE is periodic with the same periodicity of the reference unit.
  • a periodicity and a offset may be configured.
  • the offset for the reference unit is the time interval between one of the reference unit and the starting point. Generally, the starting point is the start of system frame number 0.
  • the offset is 10 frames and the periodicity is 40 frames.
  • the starting point is the start of system frame 0.
  • the reference frames illustrated in FIG. 5 are system frame 10, system frame 50, system frame 90 and system frame 130, respectively.
  • the starting boundary of system frame 0, system frame 10, system frame 50, system frame 90 and system frame 130 are received at t1, t2, t3, t4, and t5, respectively.
  • the first reference point is the starting boundary of the reference frame.
  • the UE sends the receiving time of the starting boundary of frame 10 (i.e., t2) to the network after the frame 10 is received and before the frame 50 is received. In another case, the UE sends the receiving time of the starting boundary of frame 10 (i.e., t2) after the t2 and before t3. Similarly, for the reference frame 50, the UE sends the receiving time of the starting boundary of frame 50 (i.e., t3) to the network after the frame 50 is received and before the frame 90 is received. In another case, the UE sends the receiving time of the starting boundary of frame 50 (i.e., t3) after the t3 and before t4.
  • the reference unit is indicated by the network implicitly as well as, in some embodiments, the first reference point.
  • the network sends a downlink control information (DCI) to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH is used to transmit the receiving time.
  • the network sends a MAC CE to the UE and the MAC CE indicates that the UE reports the receiving time.
  • the reference unit is the first unit or the last unit on which the DCI or the MAC CE is transmitted.
  • the reference symbol, sub-slot, slot, sub-frame, and system frame is the first or last symbol, sub-slot, slot, sub-frame, and frame, respectively, on which the DCI or the MAC CE is transmitted.
  • the DCI is carried by the PDCCH and the MAC CE is carried by the PDSCH.
  • the symbol, sub-slot, slot, sub-frame and frame on which a DCI is transmitted are equal to the symbol, sub-slot, slot, sub-frame and frame of the PDCCH carrying the DCI, respectively.
  • the wireless communication node transmits, to the wireless communication device, a third signal on a third time-domain unit.
  • the third signal is configured to trigger the transmission of the second signal.
  • the third signal includes at least one of a downlink control information (DCI) and a MAC CE.
  • DCI downlink control information
  • each of the first, second, and third time-domain units includes at least one of: a symbol, a sub-slot, a slot, a sub-frame, a frame.
  • the system frame N (N is an integer) is received starting from t1.
  • the receiving time of the starting boundary of system frame N is t1 and the receiving time of the ending boundary of system frame N is t2.
  • the PDCCH is transmitted on system frame N to schedule the PUSCH.
  • the PDCCH further indicates that the PUSCH is used to transmit the receiving time. Therefore, the reference frame is system frame N. If the reference point is the starting boundary of the frame, the report of the receiving time of the reference point is t1 and the value of t1 can be received by the network from the the UE. If the reference point is ending boundary of the frame, the report of the receiving time of the reference point is t2 and the value of t2 can be received by the network from the UE.
  • the system frame N is received starting from t1.
  • the receiving time of the starting boundary of system frame N is t1 and the receiving time of the ending boundary of system frame N is t2.
  • the MAC CE is transmitted on the system frame N and the MAC CE is used to indicate that the UE reports the receiving time to the network. Therefore, the reference frame is system frame N. If the reference point is the starting boundary of the frame, the report of the receiving time of the reference point is t1 and the value of t1 can be received by the network from the UE. If the reference point is ending boundary of the frame, the report of the receiving time of the reference point is t2 and the value of t2 can be received by the network from the UE.
  • the network sends a DCI to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH is to transmit the receiving time.
  • the time interval between the DCI and the scheduled PUSCH is equal to or larger than a threshold. In some embodiments, the time interval between the last symbol of the PDCCH carrying the DCI and the first symbol of the scheduled PUSCH is equal to and larger than a threshold.
  • the network sends a MAC CE to the UE, and, in some embodiments, the MAC CE indicates that the UE reports the receiving time.
  • the receiving time is carried by a PUSCH or a PUCCH.
  • the time interval between the MAC CE and the PUSCH or the PUCCH is equal to and larger than a threshold.
  • the time interval between the last symbol of the PDSCH carrying MAC CE and the first symbol of the PUSCH or the PUCCH is equal to or larger than a threshold.
  • the value of the threshold may be configured by the network or pre-defined by the specification.
  • the network sends a DCI to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH is to transmit the receiving time. In some embodiments, the network sends a MAC CE to the UE, and, in some embodiments, the MAC CE indicates that the UE reports the receiving time.
  • the reference symbol is the symbol before or after than the symbol on which the DCI or the MAC CE is transmitted with a first offset between them. In some embodiments, reference unit is the unit before or after than the unit on which the DCI or the MAC CE is transmitted with a first offset between them.
  • the reference symbol, sub-slot, slot, sub-frame, and frame is the symbol sub-slot, slot, sub-frame, and frame, respectively, before or after than the respective symbol, sub-slot, slot, sub-frame, and frame on which the DCI or the MAC CE is transmitted with a first offset between them.
  • the first offset is configured by the network or pre-defined by the specification.
  • a first time offset exists between the first time-domain unit and the third time-domain unit.
  • the first time offset is pre-configured or indicated by the wireless communication node.
  • the system frame 20 is received starting from t1.
  • the receiving time of the starting boundary of system frame 20 is t1 and the receiving time of the ending boundary of system frame 20 is t2.
  • the first offset is 3 frames.
  • the PDCCH transmitted on frame 23 indicates that the UE reports the receiving time.
  • the reference frame is frame 20 since the offset between frame 20 and frame 23 is 3 frames. If the reference point is the starting boundary of the reference frame, the receiving time of the starting boundary of system frame 20 (i.e., t1) is reported. If the reference point is the ending boundary of the reference frame, the receiving time of the ending boundary of system frame 20 (i.e., t2) is reported.
  • the UE sends the receiving time of a first reference point to the network at a certain time.
  • the first reference point is before than the certain time with a second offset between the first reference point and the certain time.
  • the second offset is constant and can be configured by the network or pre-defined by the specification.
  • the network receives the receiving time of a first reference point from the UE via an uplink transmission.
  • the uplink transmission is PUCCH or PUSCH.
  • reference unit is before or after the uplink transmission with a second offset between the reference unit and the first unit of the uplink transmission.
  • reference symbol sub-slot, slot, sub-frame, and frame is before or after the uplink transmission with a second offset between the reference symbol, sub-slot, slot, sub-frame, and frame and the first symbol, sub-slot, slot, sub-frame, and frame, respectively, of the uplink transmission.
  • the second offset can be a number of symbols, sub-slots, slots, sub-frames, frames or milliseconds.
  • the second offset is configured by the network or pre-defined by the specification.
  • the value of the offset can be zero.
  • a second time offset exists between the first time-domain unit and a second time-domain unit on which the second signal is transmitted.
  • the second time offset is pre-configured or indicated by the wireless communication node.
  • the system frame 15 is received starting from t1.
  • the receiving time of the starting boundary of system frame 15 is t1 and the receiving time of the ending boundary of system frame 15 is t2.
  • the ending boundary of system frame 15 is the starting boundary of system frame 16.
  • the receiving time of the ending boundary of system frame 16 is t3.
  • the PUSCH transmitted on the system frame 16 carries the receiving time.
  • a PUSCH transmitted in system frame 16 is used to transmit the receiving time.
  • the offset between the reference frame and the frame of PUSCH (i.e., system frame 16) is 1 frame. Therefore, the reference frame is system frame 15. If the reference point is the starting boundary of the reference frame, the receiving time of the starting boundary of system frame 15 (i.e., t1) is transmitted in the PUSCH. If the reference point is the ending boundary of the reference frame, the receiving time of the ending boundary of system frame 15 (i.e., t2) is transmitted in the PUSCH.
  • the network can get the time when the network sends the first reference point.
  • the time when the network sends the first reference point is the reported receiving time received by the network minus the propagation delay.
  • the propagation delay is the half of the time advanced of the UE.
  • the network receives the transmitting time of a second reference point from the UE.
  • the transmitting time of the second reference point is the time when the UE transmits the reference point to the network.
  • the second reference point can be at least one of a boundary (e.g., starting or ending boundary) of a unit such as a symbol, a sub-slot, a slot, a sub-frame, or a frame.
  • the unit corresponding to the second reference point can be referred to as a reference unit such as a reference symbol, a reference sub-slot, a reference slot, a reference sub-frame and a reference system frame.
  • a wireless communication node receives, from a wireless communication device, a first signal transmitted on a first-time domain unit.
  • the wireless communication node receives, from the wireless communication device, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device transmitted the first signal.
  • the time information includes a time of a starting boundary or an ending boundary of the first time-domain unit.
  • the reference symbol is an uplink symbol, which is used for uplink signal transmission. If the second reference point is the ending boundary of the reference unit, the last one or more symbols of the reference unit are uplink symbols used for uplink signal transmission. If the second reference point is the starting boundary of the reference unit, the first one or more symbols of the reference unit are the uplink symbols used for uplink signals transmission. In some embodiments, the network receives the transmitting time of the starting or ending boundary of the reference unit from the UE.
  • the information of the transmitting time can be in RRC signaling, or MAC CE, or UCI.
  • the time information is included in at least one of a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
  • RRC radio resource control
  • MAC medium access control
  • UCI uplink control information
  • the reference unit is indicated by the network to the UE via a RRC signaling, a MAC CE, or a DCI.
  • the second reference point for transmitting time reporting is indicated by the network to the UE.
  • the first time-domain unit is indicated by the wireless communication node via at least one of: a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or downlink control information (DCI)
  • RRC radio resource control
  • MAC medium access control
  • DCI downlink control information
  • the reference unit is indicated by the UE to the network via a RRC signaling, a MAC CE, or a UCI.
  • the second reference point for transmitting time reporting is indicated by the UE to the network.
  • the first time-domain unit is indicated by the wireless communication device via at least one of: a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
  • RRC radio resource control
  • MAC medium access control
  • UCI uplink control information
  • the UE sends the transmitting time of a second reference point to the network at a certain time.
  • the transmitting time that is received by the network is the transmitting time of the indicated second reference point that is adjacent to (e.g., before and closest to) the certain time.
  • the transmitting time can be carried by a PUSCH or a PUCCH.
  • the transmitting time carried by the PUSCH or the PUCCH is the transmitting time of the indicated second reference point that is before and closest to the start of the PUSCH or the PUSCH.
  • the system frame number 5 is indicated as reference frame.
  • the second reference point is the ending boundary of the reference frame.
  • the first system frame number 5 is transmitted with the ending boundary at t1. So the transmitting time of ending boundary of the first reference frame is t1.
  • the transmitting time of ending boundary of the second reference frame is t2.
  • the transmitting time of ending boundary of the third reference frame is t3.
  • the transmitting time of ending boundary of the fourth reference frame is t4.
  • the UE sends transmitting time of second reference point to the network at t5. Since the reference point of the second reference boundary (e.g.
  • the transmitting time that is sent by the UE at t5 is the transmitting time of the ending boundary of the second reference frame, i.e. t2 is received by the network as the receiving time.
  • the second reference point configured by the network is periodic.
  • the UE sends the transmitting time of the second reference point to the network after each of the second reference point is transmitted and before the next second reference point is transmitted.
  • the transmitting time reporting by the UE is also periodic with the same periodicity of the second reference point.
  • the reference symbol, reference unit configured by the network is periodic.
  • the UE sends the transmitting time to the network after each of the reference units is transmitted and before the next reference unit is transmitted.
  • the transmitting time reporting by the UE is periodic with the same periodicity of the reference unit.
  • the wireless communication node receives, from the wireless communication device, the first signal every certain period of time.
  • the wireless communication node receives, from the wireless communication device, the second signal carrying the time information indicative of when the wireless communication device transmitted the first signal during each period of time.
  • the offset is 10 frames and the periodicity is 40 frames.
  • the starting point is the start of system frame 0.
  • the reference frames illustrated in FIG. 11 are system frame 10, system frame 50, system frame 90 and system frame 130, respectively.
  • the starting boundary of system frame 0, system frame 10, system frame 50, system frame 90 and system frame 130 are transmitted at t1, t2, t3, t4 and t5, respectively.
  • the second reference point is the starting boundary of the reference frame.
  • the UE sends the transmitting time of the starting boundary of frame 10 (i.e., t2) to the network after the frame 10 is transmitted and before the frame 50 is transmitted. In another case, the UE sends the transmitting time of the starting boundary of frame 10 (i.e., t2) after the t2 and before t3. Similarly, for the reference frame 50, the UE sends the transmitting time of the starting boundary of frame 50 (i.e., t3) to the network after the frame 50 is transmitted and before the frame 90 is transmitted. In another case, the UE sends the transmitting time of the starting boundary of frame 50 (i.e., t3) after the t3 and before t4.
  • the reference unit is indicated by the network implicitly as well as, in some embodiments, the first reference point.
  • the network sends a downlink control information (DCI) to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH is used to transmit the transmitting time.
  • the network sends a MAC CE to the UE, and, in some embodiments, the MAC CE indicates that the UE reports the transmitting time.
  • the transmitting time can be carried by a PUSCH or a PUCCH.
  • the reference unit is the first or last unit on which the PUSCH or the PUCCH is transmitted.
  • the system frame N (N is an integer) is transmitted starting from t1.
  • the transmitting time of the starting boundary of system frame N is t1 and the transmitting time of the ending boundary of system frame N is t2.
  • a PUSCH scheduled by a PDCCH is transmitted on system frame N.
  • the PUSCH is indicated to carry the transmitting time of the reference frame.
  • the reference frame is system frame N, on which the PUSCH is transmitted. If the reference point is the starting boundary of the frame, the transmitting time of the reference point is t1 and the value of t1 can be carried by the PUSCH for transmitting time reporting.
  • the time interval between the second reference point, and, in some embodiments, the PUCCH or the PUSCH that carries the transmitting time of the second reference point is equal to or larger than a threshold. In some embodiments, the time interval between the second reference point and the first symbol of the PUCCH or the first symbol of the PUSCH is equal to or larger than a threshold, wherein, in some embodiments, the PUSCH or the PUCCH carries the transmitting time of the second reference point.
  • the network sends a DCI to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH carries the transmitting time of a second reference point.
  • the network sends a MAC CE to the UE, and, in some embodiments, the MAC CE indicates that the UE reports the transmitting time.
  • the transmitting time can be carried by a PUSCH or a PUCCH.
  • the reference unit is the unit before or after than the unit on which the DCI or the MAC CE is transmitted with a first offset between them. In some embodiments, the first offset is configured by the network or pre-defined by the specification.
  • the wireless communication node transmits, to the wireless communication device, a third signal on a third time-domain unit.
  • the third signal is configured to trigger the transmission of the second signal.
  • the third signal includes at least one of: a downlink control information (DCI) , a MAC CE.
  • DCI downlink control information
  • each of the first, second and third time-domain units includes at least one of: a symbol, a sub-slot, a slot, a sub-frame, a frame.
  • a first time offset exists between the first time-domain unit and the third time-domain unit. In some embodiments, the first time offset is pre-configured or indicated by the wireless communication node.
  • the UE sends the transmitting time of a second reference point to the network at a certain time.
  • the second reference point is before than the certain time with a second offset between the first reference point and the certain time.
  • the second offset is constant and can be configured by the network or pre-defined by the specification.
  • the network receives the transmitting time of a second reference point from the UE.
  • the transmitting time of the second reference point is carried by an uplink transmission.
  • the uplink transmission is PUCCH or PUSCH.
  • the reference unit is before or after the uplink transmission with a second offset between the reference unit and the first unit of the uplink transmission.
  • the second offset is configured by the network or pre-defined by the specification.
  • a second time offset exists between the first time-domain unit and the second time-domain unit on which the second signal is transmitted.
  • the second time offset is pre-configured or indicated by the wireless communication node.
  • the network can get the time when the network receives the second reference point.
  • the time when the network receives the second reference point is the reported transmitting time received by the network plus propagation delay.
  • the propagation delay is the half of the time advanced of the UE.
  • a physical signal configuration is configured by the network to the UE.
  • the network configures that the physical signal configuration is used for uplink synchronization in order for the network to get the time clock.
  • a network receives the physical signal (e.g., reference physical signal) from the UE.
  • the network receives the transmitting time of a third reference point from the UE.
  • the third reference point is the starting or ending boundary of the first or last unit of the physical signal. For instance, the third reference point is the first or last symbol, sub-slot, slot, sub-frame, and frame of the physical signal.
  • the reference physical signal is the physical signal that is transmitted by the UE adjacent to (e.g., before and closest to) the time when the UE sends the transmitting time to the network.
  • the reference physical signal is indicated by the UE to the network via RRC signaling, MAC CE, or UCI.
  • the physical signal is PRACH.
  • the transmitting time is transmitted in msg3.
  • the transmitting time is carried by the PUSCH in the msgA.
  • the time interval between the PRACH and the PUSCH in the msgA is equal to or larger than a threshold.
  • the transmission of the PRACH and the report of the transmitting time are triggered by a DCI or a MAC CE.
  • the physical signal is sounding reference signal (SRS) .
  • the reference SRS is indicated by the network.
  • a DCI schedules a PUSCH transmission and triggers an SRS transmission.
  • the SRS transmission is before the PUSCH transmission.
  • the transmitting time of the SRS is transmitted in the PUSCH.
  • the first signal includes at least one of a physical uplink shared channel (PUSCH) , a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) signal or a sounding reference signal (SRS) .
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • SRS sounding reference signal
  • the network can get the exact time when the network receives the third reference point.
  • the time when the network receives the third reference point is the reported transmitting time received by the network plus the propagation delay.
  • the propagation delay is the half of the time advanced of the UE. The time advanced is estimated (e.g. measured, determined) based on the reference PRACH. The time advanced is estimated (e.g. measured, determined) based on the reference SRS.
  • FIG. 15 illustrates a flowchart diagram illustrating a method 1500 for receiving timing information, in accordance with some embodiments of the present disclosure.
  • the method 1500 can be performed by a wireless communication node (e.g., a network) , in some embodiments. Additional, fewer, or different operations may be performed in the method 1500 depending on the embodiment.
  • a wireless communication node e.g., a network
  • a wireless communication node transmits, to a wireless communication device (e.g., a UE) , a first signal on a first time-domain unit (1502) .
  • the wireless communication node receives, from the wireless communication device, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device received the first signal (1504) .
  • FIG. 16 illustrates a flowchart diagram illustrating a method 1600 for receiving timing information, in accordance with some embodiments of the present disclosure.
  • the method 1600 can be performed by a wireless communication node (e.g., a network) , in some embodiments. Additional, fewer, or different operations may be performed in the method 1600 depending on the embodiment.
  • a wireless communication node e.g., a network
  • a wireless communication node receives, from a wireless communication device node (e.g., a UE) , a first signal transmitted on a first-time domain unit (1602) .
  • the wireless communication node receives, from the wireless communication device, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device transmitted the first signal (1604) .
  • any reference to an element herein using a designation such as “first, “ “second, “ and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
  • any of the various illustrative logical blocks, modules, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software” or a "software module) , or any combination of these techniques.
  • firmware e.g., a digital implementation, an analog implementation, or a combination of the two
  • firmware various forms of program or design code incorporating instructions
  • software or a “software module”
  • IC integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the logical blocks, modules, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device.
  • a general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine.
  • a processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another.
  • a storage media can be any available media that can be accessed by a computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • module refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various modules are described as discrete modules; however, as would be apparent to one of ordinary skill in the art, two or more modules may be combined to form a single module that performs the associated functions according embodiments of the present solution.
  • memory or other storage may be employed in embodiments of the present solution.
  • memory or other storage may be employed in embodiments of the present solution.
  • any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present solution.
  • functionality illustrated to be performed by separate processing logic elements, or controllers may be performed by the same processing logic element, or controller.
  • references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.

Abstract

A system and method for receiving downlink control signals are disclosed herein. In one embodiment, a method performed by a wireless communication device includes receiving, by a wireless communication device from a wireless communication node, a first signal on a first time-domain unit and transmitting, by the wireless communication device to the wireless communication node, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device received the first signal.

Description

SYSTEM AND METHOD FOR TIMING INFORMATION TRANSMISSION TECHNICAL FIELD
The disclosure relates generally to wireless communications and, more particularly, to systems and methods for timing information transmission.
BACKGROUND
In the 5th Generation (5G) New Radio (NR) mobile networks, before a user equipment (UE) can send data to a network, the UE is required to obtain uplink synchronization and downlink synchronization with the network. The synchronization can be achieved by performing a random access procedure.
SUMMARY
The example embodiments disclosed herein are directed to solving the issues relating to one or more of the problems presented in the prior art, as well as providing additional features that will become readily apparent by reference to the following detailed description when taken in conjunction with the accompany drawings. In accordance with various embodiments, example systems, methods, devices and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and are not limiting, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of this disclosure.
In one embodiment, a wireless communication method includes receiving, by a wireless communication device from a wireless communication node, a first signal on a first time-domain unit and transmitting, by the wireless communication device to the wireless communication node, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device received the first signal.
In some embodiments, the wireless communication method includes receiving, by the wireless communication device from the wireless communication node, a third signal on a third time-domain unit. In some embodiments, the third signal is configured to trigger the transmission of the second signal. In some embodiments, the third signal includes at least one of a downlink control information (DCI) or a medium access control (MAC) control element (CE) .
In another embodiment, a wireless communication method includes transmitting, by a wireless communication device to a wireless communication node, a first signal transmitted on a first-time domain unit and transmitting, by the wireless communication device to the wireless communication node, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device transmitted the first signal.
The above and other aspects and their implementations are described in greater detail in the drawings, the descriptions, and the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Various example embodiments of the present solution are described in detail below with reference to the following figures or drawings. The drawings are provided for purposes of illustration only and merely depict example embodiments of the present solution to facilitate the reader's understanding of the present solution. Therefore, the drawings should not be considered  limiting of the breadth, scope, or applicability of the present solution. It should be noted that for clarity and ease of illustration, these drawings are not necessarily drawn to scale.
FIG. 1 illustrates an example cellular communication network in which techniques and other aspects disclosed herein may be implemented, in accordance with an embodiment of the present disclosure.
FIG. 2 illustrates block diagrams of an example base station and a user equipment device, in accordance with some embodiments of the present disclosure.
FIG. 3 illustrates an example diagram of a transmission, in accordance with some embodiments of the present disclosure.
FIG. 4 is a diagram illustrating an example of receiving time reporting, in accordance with some embodiments of the present disclosure.
FIG. 5 is a diagram illustrating an example of receiving time reporting, in accordance with some embodiments of the present disclosure.
FIG. 6 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure.
FIG. 7 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure.
FIG. 8 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure.
FIG. 9 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure.
FIG. 10 is a diagram illustrating an example of transmitting time reporting, in accordance with some embodiments of the present disclosure.
FIG. 11 is a diagram illustrating an example of transmitting time reporting, in accordance with some embodiments of the present disclosure.
FIG. 12 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure.
FIG. 13 illustrates a flowchart diagram illustrating a method for transmitting timing information, in accordance with some embodiments of the present disclosure.
FIG. 14 illustrates a flowchart diagram illustrating a method for transmitting timing information, in accordance with some embodiments of the present disclosure.
FIG. 15 illustrates a flowchart diagram illustrating a method for receiving timing information, in accordance with some embodiments of the present disclosure.
FIG. 16 illustrates a flowchart diagram illustrating a method for receiving timing information, in accordance with some embodiments of the present disclosure.
DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS
Various example embodiments of the present solution are described below with reference to the accompanying figures to enable a person of ordinary skill in the art to make and use the present solution. As would be apparent to those of ordinary skill in the art, after reading the present disclosure, various changes or modifications to the examples described herein can be made without departing from the scope of the present solution. Thus, the present solution is not limited to the example embodiments and applications described and illustrated herein.  Additionally, the specific order or hierarchy of steps in the methods disclosed herein are merely example approaches. Based upon design preferences, the specific order or hierarchy of steps of the disclosed methods or processes can be re-arranged while remaining within the scope of the present solution. Thus, those of ordinary skill in the art will understand that the methods and techniques disclosed herein present various steps or acts in a sample order, and the present solution is not limited to the specific order or hierarchy presented unless expressly stated otherwise.
A. Network Environment and Computing Environment
FIG. 1 illustrates an example wireless communication network, and/or system, 100 in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure. In the following discussion, the wireless communication network 100 may be any wireless network, such as a cellular network or a narrowband Internet of things (NB-IoT) network, and is herein referred to as “network 100. ” Such an example network 100 includes a base station 102 (hereinafter “BS 102” ) and a user equipment device 104 (hereinafter “UE 104” ) that can communicate with each other via a communication link 110 (e.g., a wireless communication channel) , and a cluster of  cells  126, 130, 132, 134, 136, 138 and 140 overlaying a geographical area 101. In Figure 1, the BS 102 and UE 104 are contained within a respective geographic boundary of cell 126. Each of the  other cells  130, 132, 134, 136, 138 and 140 may include at least one base station operating at its allocated bandwidth to provide adequate radio coverage to its intended users.
For example, the BS 102 may operate at an allocated channel transmission bandwidth to provide adequate coverage to the UE 104. The BS 102 and the UE 104 may communicate via a downlink radio frame 118, and an uplink radio frame 124 respectively. Each radio frame  118/124 may be further divided into sub-frames 120/127 which may include data symbols 122/128. In the present disclosure, the BS 102 and UE 104 are described herein as non-limiting examples of “communication nodes, ” generally, which can practice the methods disclosed herein. Such communication nodes may be capable of wireless and/or wired communications, in accordance with various embodiments of the present solution.
FIG. 2 illustrates a block diagram of an example wireless communication system 200 for transmitting and receiving wireless communication signals, e.g., OFDM/OFDMA signals, in accordance with some embodiments of the present solution. The system 200 may include components and elements configured to support known or conventional operating features that need not be described in detail herein. In one illustrative embodiment, system 200 can be used to communicate (e.g., transmit and receive) data symbols in a wireless communication environment such as the wireless communication environment 100 of Figure 1, as described above.
System 200 generally includes a base station 202 (hereinafter “BS 202” ) and a user equipment device 204 (hereinafter “UE 204” ) . The BS 202 includes a BS (base station) transceiver module 210, a BS antenna 212, a BS processor module 214, a BS memory module 216, and a network communication module 218, each module being coupled and interconnected with one another as necessary via a data communication bus 220. The UE 204 includes a UE (user equipment) transceiver module 230, a UE antenna 232, a UE memory module 234, and a UE processor module 236, each module being coupled and interconnected with one another as necessary via a data communication bus 240. The BS 202 communicates with the UE 204 via a communication channel 250, which can be any wireless channel or other medium suitable for transmission of data as described herein.
As would be understood by persons of ordinary skill in the art, system 200 may further include any number of modules other than the modules shown in Figure 2. Those skilled in the art will understand that the various illustrative blocks, modules, circuits, and processing logic described in connection with the embodiments disclosed herein may be implemented in hardware, computer-readable software, firmware, or any practical combination thereof. To clearly illustrate this interchangeability and compatibility of hardware, firmware, and software, various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware, or software can depend upon the particular application and design constraints imposed on the overall system. Those familiar with the concepts described herein may implement such functionality in a suitable manner for each particular application, but such implementation decisions should not be interpreted as limiting the scope of the present disclosure.
In accordance with some embodiments, the UE transceiver 230 may be referred to herein as an "uplink" transceiver 230 that includes a radio frequency (RF) transmitter and a RF receiver each comprising circuitry that is coupled to the antenna 232. A duplex switch (not shown) may alternatively couple the uplink transmitter or receiver to the uplink antenna in time duplex fashion. Similarly, in accordance with some embodiments, the BS transceiver 210 may be referred to herein as a "downlink" transceiver 210 that includes a RF transmitter and a RF receiver each comprising circuity that is coupled to the antenna 212. A downlink duplex switch may alternatively couple the downlink transmitter or receiver to the downlink antenna 212 in time duplex fashion. The operations of the two  transceiver modules  210 and 230 can be coordinated in time such that the uplink receiver circuitry is coupled to the uplink antenna 232 for reception of transmissions over the wireless transmission link 250 at the same time that the  downlink transmitter is coupled to the downlink antenna 212. In some embodiments, there is close time synchronization with a minimal guard time between changes in duplex direction.
The UE transceiver 230 and the base station transceiver 210 are configured to communicate via the wireless data communication link 250, and cooperate with a suitably configured RF antenna arrangement 212/232 that can support a particular wireless communication protocol and modulation scheme. In some illustrative embodiments, the UE transceiver 210 and the base station transceiver 210 are configured to support industry standards such as the Long Term Evolution (LTE) and emerging 5G standards, and the like. It is understood, however, that the present disclosure is not necessarily limited in application to a particular standard and associated protocols. Rather, the UE transceiver 230 and the base station transceiver 210 may be configured to support alternate, or additional, wireless data communication protocols, including future standards or variations thereof.
In accordance with various embodiments, the BS 202 may be an evolved node B (eNB) , a serving eNB, a target eNB, a femto station, or a pico station, for example. In some embodiments, the UE 204 may be embodied in various types of user devices such as a mobile phone, a smart phone, a personal digital assistant (PDA) , tablet, laptop computer, wearable computing device, etc. The  processor modules  214 and 236 may be implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein. In this manner, a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like. A processor may also be implemented as a combination of computing devices, e.g., a  combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
Furthermore, the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by  processor modules  214 and 236, respectively, or in any practical combination thereof. The  memory modules  216 and 234 may be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. In this regard,  memory modules  216 and 234 may be coupled to the  processor modules  210 and 230, respectively, such that the  processors modules  210 and 230 can read information from, and write information to,  memory modules  216 and 234, respectively. The  memory modules  216 and 234 may also be integrated into their  respective processor modules  210 and 230. In some embodiments, the  memory modules  216 and 234 may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by  processor modules  210 and 230, respectively.  Memory modules  216 and 234 may also each include non-volatile memory for storing instructions to be executed by the  processor modules  210 and 230, respectively.
The network communication module 218 generally represents the hardware, software, firmware, processing logic, and/or other components of the base station 202 that enable bi-directional communication between base station transceiver 210 and other network components and communication nodes configured to communication with the base station 202. For example, network communication module 218 may be configured to support internet or WiMAX traffic. In  a typical deployment, without limitation, network communication module 218 provides an 802.3 Ethernet interface such that base station transceiver 210 can communicate with a conventional Ethernet based computer network. In this manner, the network communication module 218 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC) ) . The terms “configured for, ” “configured to” and conjugations thereof, as used herein with respect to a specified operation or function, refer to a device, component, circuit, structure, machine, signal, etc., that is physically constructed, programmed, formatted and/or arranged to perform the specified operation or function.
B. Timing Information Transmission
In wireless communication technology, a time clock is needed for the communication equipment. In this disclosure, some methods are provided for a network or a user equipment (UE) to get the time clock when a synchronous (sync) source is on a wireless terminal.
In a wireless communication system, a UE (e.g., UE 104, UE 204, a mobile device, a wireless communication device, etc. ) sends a physical random access channel (PRACH, e.g., msg1) to a network (e.g., the network 100, the system 200, the BS 102, the BS 202, a gNB, an eNB, a wireless communication node, etc. ) . The network sends a random access response (RAR, e.g., msg2) to the UE after receiving PRACH from the UE. RAR schedules a physical uplink shared channel (PUSCH, e.g., msg3) for the UE. The UE sends the PUSCH to the network after receiving RAR. The network sends a physical downlink control channel (PDCCH) scheduling a physical downlink shared channel (PDSCH, e.g., msg4) to the UE after receiving msg3.
In the wireless communication system, the UE sends a PRACH and a PUSCH (collectively, e.g., msgA) to the network. The network sends a RAR (e.g., msgB) to the UE after receiving msgA.
In some embodiments, the wireless communication system includes a time interval (e.g., propagation delay) between a time when a signal is transmitted by a sender (e.g., the UE or the network) and a time when the signal is received by a receiver (e.g., the UE or the network) . FIG. 3 illustrates an example timing diagram of a transmission, in accordance with some embodiments of the present disclosure. As shown in FIG. 3, the signal is transmitted by the sender starting from transmitting time t1, the signal is received by the receiver starting from receiving time t2, and the propagation delay is t2-t1. The transmitting time and the receiving time are absolute time, e.g., global positioning system (GPS) time, Coordinated Universal Time (UTC) , or local time. For example, the starting point of the signal is received at 13 o’clock 32 minutes 16 seconds 138 milliseconds 31 microseconds 183 nanoseconds on March 17 in 2019, and a message indicating the receiving time (e.g., a receiving time message) includes the receiving time, i.e., 13 o’clock 32 minutes 16 seconds 138 milliseconds 31 microseconds 183 nanoseconds on March 17 in 2019.
In some embodiments, the UE sends (e.g. reports, transmits, communicates, indicates) , to the network, the receiving time (e.g., first time, first time value, first time-domain unit) of a first reference point (e.g., first signal) received by the UE. The receiving time of the first reference point is the time when the UE receives the first reference point from the network. The first reference point can be (e.g., identified as, occurring during, at a time of, etc. ) at least one of a boundary (e.g., starting or ending boundary) of a unit (e.g., transmission, transmission unit) such as a symbol (e.g., an orthogonal frequency division multiplexing (OFDM) symbol) , a sub- slot, a slot, a sub-frame, or a frame (e.g., system frame) . The unit corresponding to the first reference point can be referred to as a reference unit (e.g., reference transmission, reference transmission unit) such as a reference symbol, a reference sub-slot, a reference slot, a reference sub-frame and a reference system frame. That is, the symbol, the sub-slot, the slot, the sub-frame and the system frame corresponding to the first reference point can be referred to as a reference symbol, a reference sub-slot, a reference slot, a reference sub-frame and a reference system frame, respectively. In some embodiments, a wireless communication device receives, from a wireless communication node, a first signal on a first time-domain unit. The wireless communication device transmits, to the wireless communication node, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device received the first signal. In some embodiments, a wireless communication device transmits, to a wireless communication node, a first signal transmitted on a first-time domain unit. The wireless communication device transmits, to the wireless communication node, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device transmitted the first signal. In some embodiments, the time information includes a time of a starting boundary or an ending boundary of the first time-domain unit.
The reference symbol is a downlink (DL) symbol, which is used for downlink signal transmission. If the first reference point is the ending boundary of the reference unit, the last one or more symbols of the reference unit are downlink symbols used for downlink signal transmission. If the first reference point is the starting boundary of the reference unit, the first one or more symbols of the reference unit are the downlink symbols used for downlink signals  transmission. In some embodiments, the UE sends the receiving time of the boundary of the reference unit to the network.
The information of the receiving time can be in Radio Resource Control (RRC) signaling, or Medium Access Control (MAC) Control Element (CE) , or Uplink Control information (UCI) . In some embodiments, the time information is included in at least one of a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
In some embodiments, the reference unit is indicated by the network to the UE via a RRC signaling, or a MAC CE, or a Downlink Control Information (DCI) . The first reference point for receiving time reporting is indicated by the network to the UE. In some embodiments, the first time-domain unit is indicated by the wireless communication node via at least one of a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or downlink control information (DCI) .
In some embodiments, the reference unit is indicated by the UE to the network via a RRC signaling, or a MAC CE, or a UCI. The first reference point for receiving time reporting is indicated by UE to the network. In some embodiments, the first time-domain unit is indicated by the wireless communication device via at least one of: a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
In some embodiments, the UE sends the receiving time of a first reference point to the network at a certain (e.g., predetermined, occurring once per each period of time, etc. ) time. In some embodiments, the receiving time that is sent by the UE is the receiving time of the indicated first reference point that is adjacent to (e.g., before and closest to among the reference  points that are before) the certain time. The receiving time can be carried by (e.g., transmitted by, included in, assigned to, corresponding to, etc. ) a physical uplink share channel (PUSCH) or a physical uplink control channel (PUCCH) . The time carried by the PUSCH or the PUCCH is the receiving time of the indicated first reference point that is adjacent to (e.g., before and closest to) the start of the PUSCH or the PUCCH. In some embodiments, the second signal includes at least one of a physical uplink control channel (PUCCH) signal or a physical uplink shared channel (PUSCH) signal.
FIG. 4 is a diagram illustrating an example of receiving time reporting, in accordance with some embodiments of the present disclosure. As shown in FIG. 4, a system frame number 5 is indicated (e.g. by the network or by the UE) as the reference frame and the first reference point is the starting boundary of the reference frame. In FIG. 4, there are 4 system frames with system frame number 5. The first system frame number 5 is received starting from t1. That is, the receiving time of starting boundary of the first reference frame is t1. Similarly, the receiving time of starting boundary of the second, third, and fourth reference frames are t2, t3, and t4, respectively. In some embodiments, the UE sends receiving time of first reference point to the network at t5. Since the reference point of the second reference frame (e.g. the starting boundary of the second reference frame) is before and closest to t5, the receiving time that is sent by the UE at t5 is the receiving time of the starting boundary of the second reference frame (i.e., t2 is sent by the UE as the receiving time) .
In some embodiments, the first reference point configured by the network is periodic. The UE sends the receiving time of the first reference point to the network after the first reference point is received and before the next first reference point is received. The receiving time reporting by the UE is also periodic with the same periodicity of the first reference point. In  some embodiments, the wireless communication device receives, from the wireless communication node, the first signal every certain period of time. In some embodiments, the wireless communication device transmits, to the wireless communication node, the second signal carrying the time information indicative of when the wireless communication device received the first signal during each period of time.
In some embodiments, the reference unit configured by the network is periodic. The UE sends the receiving time to the network after each of the reference units is received and before the next reference unit is received. The receiving time reporting by the UE is periodic with the same periodicity of the reference unit. For the periodic reference unit, a periodicity and a offset may be configured. The offset for the reference unit is the time interval between one of the reference unit and the starting point. Generally, the starting point is the start of system frame number 0.
FIG. 5 is a diagram illustrating an example of receiving time reporting, in accordance with some embodiments of the present disclosure. The offset is 10 frames and the periodicity is 40 frames. The starting point is the start of system frame 0. Based on the offset and the periodicity, the reference frames illustrated in FIG. 5 are system frame 10, system frame 50, system frame 90 and system frame 130, respectively. The starting boundary of system frame 0, system frame 10, system frame 50, system frame 90 and system frame 130 are received at t1, t2, t3, t4, and t5, respectively. In some embodiments, the first reference point is the starting boundary of the reference frame.
For the reference frame 10, the UE sends the receiving time of the starting boundary of frame 10 (i.e., t2) to the network after the frame 10 is received and before the frame 50 is received. In another case, the UE sends the receiving time of the starting boundary of frame 10  (i.e., t2) after the t2 and before t3. Similarly, for the reference frame 50, the UE sends the receiving time of the starting boundary of frame 50 (i.e., t3) to the network after the frame 50 is received and before the frame 90 is received. In another case, the UE sends the receiving time of the starting boundary of frame 50 (i.e., t3) after the t3 and before t4.
In some embodiments, the reference unit is indicated by the network implicitly as well as, in some embodiments, the first reference point. In some embodiments, the network sends a downlink control information (DCI) to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH is used to transmit the receiving time. In some embodiments, the network sends a MAC CE to the UE and the MAC CE indicates that the UE reports the receiving time. In some embodiments, the reference unit is the first unit or the last unit on which the DCI or the MAC CE is transmitted. For instance, the reference symbol, sub-slot, slot, sub-frame, and system frame is the first or last symbol, sub-slot, slot, sub-frame, and frame, respectively, on which the DCI or the MAC CE is transmitted. In some embodiments, the DCI is carried by the PDCCH and the MAC CE is carried by the PDSCH. The symbol, sub-slot, slot, sub-frame and frame on which a DCI is transmitted are equal to the symbol, sub-slot, slot, sub-frame and frame of the PDCCH carrying the DCI, respectively. The symbol, sub-slot, slot, sub-frame and frame on which a MAC CE is transmitted are equal to the symbol, sub-slot, slot, sub-frame and frame of the PDSCH carrying the MAC CE, respectively. In some embodiments, the wireless communication device receives, from the wireless communication node, a third signal on a third time-domain unit. In some embodiments, the third signal is configured to trigger the transmission of the second signal. In some embodiments, the third signal includes at least one of a downlink control information (DCI) and a MAC CE. In some embodiments, each  of the first, second, and third time-domain units includes at least one of: a symbol, a sub-slot, a slot, a sub-frame, a frame.
FIG. 6 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure. The system frame N (N is an integer) is received starting from t1. The receiving time of the starting boundary of system frame N is t1 and the receiving time of the ending boundary of system frame N is t2. The PDCCH is transmitted on system frame N to schedule the PUSCH. The PDCCH further indicates that the PUSCH is used to transmit the receiving time. Therefore, the reference frame is system frame N. If the reference point is the starting boundary of the frame, the receiving time of the reference point is t1 and the value of t1 can be reported by the UE to the network. If the reference point is ending boundary of the frame, the receiving time of the reference point is t2 and the value of t2 can be reported by the UE to the network.
FIG. 7 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure. The system frame N is received starting from t1. The receiving time of the starting boundary of system frame N is t1 and the receiving time of the ending boundary of system frame N is t2. The MAC CE is transmitted on the system frame N and the MAC CE is used to indicate that the UE reports the receiving time to the network. Therefore, the reference frame is system frame N. If the reference point is the starting boundary of the frame, the receiving time of the reference point is t1 and the value of t1 can be reported by the UE to the network. If the reference point is ending boundary of the frame, the receiving time of the reference point is t2 and the value of t2 can be reported by the UE to the network.
In some embodiments, the network sends a DCI to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH is to transmit the receiving time. In  some embodiments, the time interval between the DCI and the scheduled PUSCH is equal to or larger than a threshold. In some embodiments, the time interval between the last symbol of the PDCCH carrying the DCI and the first symbol of the scheduled PUSCH is equal to and larger than a threshold.
In some embodiments, the network sends a MAC CE to the UE, and, in some embodiments, the MAC CE indicates that the UE reports the receiving time. In some embodiments, the receiving time is carried by a PUSCH or a PUCCH. In some embodiments, the time interval between the MAC CE and the PUSCH or the PUCCH is equal to and larger than a threshold. In some embodiments, the time interval between the last symbol of the PDSCH carrying MAC CE and the first symbol of the PUSCH or the PUCCH is equal to or larger than a threshold. The value of the threshold may be configured by the network or pre-defined by the specification.
In some embodiments, the network sends a DCI to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH is to transmit the receiving time. In some embodiments, the network sends a MAC CE to the UE, and, in some embodiments, the MAC CE indicates that the UE reports the receiving time. In some embodiments, the reference symbol is the symbol before or after than the symbol on which the DCI or the MAC CE is transmitted with a first offset between them. In some embodiments, reference unit is the unit before or after than the unit on which the DCI or the MAC CE is transmitted with a first offset between them. For instance, the reference symbol, sub-slot, slot, sub-frame, and frame is the symbol sub-slot, slot, sub-frame, and frame, respectively, before or after than the respective symbol, sub-slot, slot, sub-frame, and frame on which the DCI or the MAC CE is transmitted with a first offset between them. The first offset is configured by the network or pre-defined by  the specification. In some embodiments, a first time offset exists between the first time-domain unit and the third time-domain unit. In some embodiments, the first time offset is pre-configured or indicated by the wireless communication node.
FIG. 8 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure. The system frame 20 is received starting from t1. The receiving time of the starting boundary of system frame 20 is t1 and the receiving time of the ending boundary of system frame 20 is t2. The first offset is 3 frames. The PDCCH transmitted on frame 23 indicates that the UE reports the receiving time. The reference frame is frame 20 since the offset between frame 20 and frame 23 is 3 frames. If the reference point is the starting boundary of the reference frame, the receiving time of the starting boundary of system frame 20 (i.e., t1) is reported. If the reference point is the ending boundary of the reference frame, the receiving time of the ending boundary of system frame 20 (i.e., t2) is reported.
In some embodiments, the UE sends the receiving time of a first reference point to the network at a certain time. In some embodiments, the first reference point is before than the certain time with a second offset between the first reference point and the certain time. In some embodiments, the second offset is constant and can be configured by the network or pre-defined by the specification.
The UE sends the receiving time of a first reference point to the network via an uplink transmission. The uplink transmission is PUCCH or PUSCH. In some embodiments, reference unit is before or after the uplink transmission with a second offset between the reference unit and the first unit of the uplink transmission. For instance, reference symbol sub-slot, slot, sub-frame, and frame is before or after the uplink transmission with a second offset between the reference symbol, sub-slot, slot, sub-frame, and frame and the first symbol, sub-slot, slot, sub-frame, and  frame, respectively, of the uplink transmission. The second offset can be a number of symbols, sub-slots, slots, sub-frames, frames or milliseconds. In some embodiments, the second offset is configured by the network or pre-defined by the specification. The value of the offset can be zero. In some embodiments, a second time offset exists between the first time-domain unit and a second time-domain unit on which the second signal is transmitted. In some embodiments, the second time offset is pre-configured or indicated by the wireless communication node.
FIG. 9 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure. The system frame 15 is received starting from t1. The receiving time of the starting boundary of system frame 15 is t1 and the receiving time of the ending boundary of system frame 15 is t2. The ending boundary of system frame 15 is the starting boundary of system frame 16. The receiving time of the ending boundary of system frame 16 is t3. The PUSCH transmitted on the system frame 16 carries the receiving time. A PUSCH transmitted in system frame 16 is used to transmit the receiving time. The offset between the reference frame and the frame of PUSCH (i.e., system frame 16) is 1 frame. Therefore, the reference frame is system frame 15. If the reference point is the starting boundary of the reference frame, the receiving time of the starting boundary of system frame 15 (i.e., t1) is transmitted in the PUSCH. If the reference point is the ending boundary of the reference frame, the receiving time of the ending boundary of system frame 15 (i.e., t2) is transmitted in the PUSCH.
When the network receives the receiving time from the UE, the network can get the time when the network sends the first reference point. In some embodiments, the time when the network sends the first reference point is the receiving time reported by the UE minus the  propagation delay. In some embodiments, the propagation delay is the half of the time advanced of the UE.
In some embodiments, the UE sends (e.g. reports) the transmitting time of a second reference point to the network. The transmitting time of the second reference point is the time when the UE transmits the reference point to the network. The second reference point can be at least one of a boundary (e.g., starting or ending boundary) of a unit such as a symbol, a sub-slot, a slot, a sub-frame, or a frame. The unit corresponding to the second reference point can be referred to as a reference unit such as a reference symbol, a reference sub-slot, a reference slot, a reference sub-frame and a reference system frame. In some embodiments, a wireless communication device transmits, to a wireless communication node, a first signal transmitted on a first-time domain unit. The wireless communication device transmits, to the wireless communication node, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device transmitted the first signal. In some embodiments, the time information includes a time of a starting boundary or an ending boundary of the first time-domain unit.
The reference symbol is an uplink symbol, which is used for uplink signal transmission. If the second reference point is the ending boundary of the reference unit, the last one or more symbols of the reference unit are uplink symbols used for uplink signal transmission. If the second reference point is the starting boundary of the reference unit, the first one or more symbols of the reference unit are the uplink symbols used for uplink signals transmission. In some embodiments, the UE sends the transmitting time of the starting or ending boundary of the reference unit to the network.
The information of the transmitting time can be in RRC signaling, or MAC CE, or UCI. In some embodiments, the time information is included in at least one of a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
In some embodiments, the reference unit is indicated by the network to the UE via a RRC signaling, a MAC CE, or a DCI. In some embodiments, the second reference point for transmitting time reporting is indicated by the network to the UE. In some embodiments, the first time-domain unit is indicated by the wireless communication node via at least one of: a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or downlink control information (DCI)
In some embodiments, the reference unit is indicated by the UE to the network via a RRC signaling, a MAC CE, or a UCI. In some embodiments, the second reference point for transmitting time reporting is indicated by the UE to the network. In some embodiments, the first time-domain unit is indicated by the wireless communication device via at least one of: a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
The UE sends the transmitting time of a second reference point to the network at a certain time. In some embodiments, the transmitting time that is sent by the UE is the transmitting time of the indicated second reference point that is adjacent to (e.g., before and closest to) the certain time. The transmitting time can be carried by a PUSCH or a PUCCH. In some embodiments, the transmitting time carried by the PUSCH or the PUCCH is the transmitting time of the indicated second reference point that is before and closest to the start of the PUSCH or the PUSCH.
FIG. 10 is a diagram illustrating an example of transmitting time reporting, in accordance with some embodiments of the present disclosure. System frame number 5 is indicated as reference frame. The second reference point is the ending boundary of the reference frame. There are 4 system frames with system frame number 5. The first system frame number 5 is transmitted with the ending boundary at t1. So the transmitting time of ending boundary of the first reference frame is t1. Similarly, the transmitting time of ending boundary of the second reference frame is t2. The transmitting time of ending boundary of the third reference frame is t3. The transmitting time of ending boundary of the fourth reference frame is t4. The UE sends transmitting time of second reference point to the network at t5. Since the reference point of the second reference boundary (e.g. the ending boundary of the second reference frame) is before and closest to t5, the transmitting time that is sent by the UE at t5 is the transmitting time of the ending boundary of the second reference frame, i.e. t2 is sent by the UE as the receiving time.
In some embodiments, the second reference point configured by the network is periodic. The UE sends the transmitting time of the second reference point to the network after each of the second reference point is transmitted and before the next second reference point is transmitted. The transmitting time reporting by the UE is also periodic with the same periodicity of the second reference point.
In some embodiments, the reference symbol, reference unit configured by the network is periodic. The UE sends the transmitting time to the network after each of the reference units is transmitted and before the next reference unit is transmitted. The transmitting time reporting by the UE is periodic with the same periodicity of the reference unit. In some embodiments, the wireless communication device transmits, to the wireless communication node, the first signal every certain period of time. In some embodiments, the wireless communication  device transmits, to the wireless communication node, the second signal carrying the time information indicative of when the wireless communication device transmitted the first signal during each period of time.
FIG. 11 is a diagram illustrating an example of transmitting time reporting, in accordance with some embodiments of the present disclosure. The offset is 10 frames and the periodicity is 40 frames. The starting point is the start of system frame 0. Based on the offset and the periodicity, the reference frames illustrated in FIG. 11 are system frame 10, system frame 50, system frame 90 and system frame 130, respectively. The starting boundary of system frame 0, system frame 10, system frame 50, system frame 90 and system frame 130 are transmitted at t1, t2, t3, t4 and t5, respectively. In some embodiments, the second reference point is the starting boundary of the reference frame.
For the reference frame 10, the UE sends the transmitting time of the starting boundary of frame 10 (i.e., t2) to the network after the frame 10 is transmitted and before the frame 50 is transmitted. In another case, the UE sends the transmitting time of the starting boundary of frame 10 (i.e., t2) after the t2 and before t3. Similarly, for the reference frame 50, the UE sends the transmitting time of the starting boundary of frame 50 (i.e., t3) to the network after the frame 50 is transmitted and before the frame 90 is transmitted. In another case, the UE sends the transmitting time of the starting boundary of frame 50 (i.e., t3) after the t3 and before t4.
In some embodiments, the reference unit is indicated by the network implicitly as well as, in some embodiments, the first reference point.
In some embodiments, the network sends a downlink control information (DCI) to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH is used to transmit the transmitting time. In some embodiments, the network sends a MAC CE to the UE, and, in some embodiments, the MAC CE indicates that the UE reports the transmitting time. The transmitting time can be carried by a PUSCH or a PUCCH. In some embodiments, the reference unit is the first or last unit on which the PUSCH or the PUCCH is transmitted.
FIG. 12 is a diagram illustrating an example of a reference frame, in accordance with some embodiments of the present disclosure. The system frame N (N is an integer) is transmitted starting from t1. The transmitting time of the starting boundary of system frame N is t1 and the transmitting time of the ending boundary of system frame N is t2. A PUSCH scheduled by a PDCCH is transmitted on system frame N. The PUSCH is indicated to carry the transmitting time of the reference frame. The reference frame is system frame N, on which the PUSCH is transmitted. If the reference point is the starting boundary of the frame, the transmitting time of the reference point is t1 and the value of t1 can be carried by the PUSCH for transmitting time reporting.
In some embodiments, the time interval between the second reference point, and, in some embodiments, the PUCCH or the PUSCH that carries the transmitting time of the second reference point is equal to or larger than a threshold. In some embodiments, the time interval between the second reference point and the first symbol of the PUCCH or the first symbol of the PUSCH is equal to or larger than a threshold, wherein, in some embodiments, the PUSCH or the PUCCH carries the transmitting time of the second reference point.
In some embodiments, the network sends a DCI to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH carries the transmitting time of a  second reference point. In some embodiments, the network sends a MAC CE to the UE, and, in some embodiments, the MAC CE indicates that the UE reports the transmitting time. The transmitting time can be carried by a PUSCH or a PUCCH. In some embodiments, the reference unit is the unit before or after than the unit on which the DCI or the MAC CE is transmitted with a first offset between them. In some embodiments, the first offset is configured by the network or pre-defined by the specification. In some embodiments, the wireless communication device receives, from the wireless communication node, a third signal on a third time-domain unit. In some embodiments, the third signal is configured to trigger the transmission of the second signal. In some embodiments, the third signal includes at least one of: a downlink control information (DCI) , a MAC CE. In some embodiments, each of the first, second and third time-domain units includes at least one of: a symbol, a sub-slot, a slot, a sub-frame, a frame. In some embodiments, a first time offset exists between the first time-domain unit and the third time-domain unit. In some embodiments, the first time offset is pre-configured or indicated by the wireless communication node.
In some embodiments, the UE sends the transmitting time of a second reference point to the network at a certain time. In some embodiments, the second reference point is before than the certain time with a second offset between the first reference point and the certain time. In some embodiments, the second offset is constant and can be configured by the network or pre-defined by the specification.
In some embodiments, the UE sends the transmitting time of a second reference point to the network. In some embodiments, the transmitting time of the second reference point is carried by an uplink transmission. In some embodiments, the uplink transmission is PUCCH or PUSCH. The In some embodiments, the reference unit is before or after the uplink transmission  with a second offset between the reference unit and the first unit of the uplink transmission. In some embodiments, the second offset is configured by the network or pre-defined by the specification. In some embodiments, a second time offset exists between the first time-domain unit and the second time-domain unit on which the second signal is transmitted. In some embodiments, the second time offset is pre-configured or indicated by the wireless communication node.
When the network receives the transmitting time from the UE, the network can get the time when the network receives the second reference point. In some embodiments, the time when the network receives the second reference point is the transmitting time reported by the UE plus propagation delay. In some embodiments, the propagation delay is the half of the time advanced of the UE.
In some embodiments, a physical signal configuration is configured by the network to the UE. The network configures that the physical signal configuration is used for uplink synchronization in order for the network to get the time clock. In some embodiments, a UE sends the physical signal (e.g., reference physical signal) to the network. The UE sends the transmitting time of a third reference point to the network. The third reference point is the starting or ending boundary of the first or last unit of the physical signal. For instance, the third reference point is the first or last symbol, sub-slot, slot, sub-frame, and frame of the physical signal.
In some embodiments, the reference physical signal is the physical signal that is transmitted by the UE adjacent to (e.g., before and closest to) the time when the UE sends the transmitting time to the network. In some embodiments, the reference physical signal is indicated by the UE to the network via RRC signaling, MAC CE, or UCI.
In some embodiments, the physical signal is PRACH. In some embodiments, the transmitting time is transmitted in msg3. In some embodiments, the transmitting time is carried by the PUSCH in the msgA. In some embodiments, the time interval between the PRACH and the PUSCH in the msgA is equal to or larger than a threshold. In some embodiments, the transmission of the PRACH and the report of the transmitting time are triggered by a DCI or a MAC CE.
In some embodiments, the physical signal is sounding reference signal (SRS) . The reference SRS is indicated by the network. In some embodiments, a DCI schedules a PUSCH transmission and triggers an SRS transmission. In some embodiments, the SRS transmission is before the PUSCH transmission. In some embodiments, the transmitting time of the SRS is transmitted in the PUSCH. In some embodiments, the first signal includes at least one of a physical uplink shared channel (PUSCH) , a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) signal or a sounding reference signal (SRS) .
When the network receives the transmitting time sent by the UE, the network can get the exact time when the network receives the third reference point. In some embodiments, the time when the network receives the third reference point is the transmitting time reported by the UE plus the propagation delay. In some embodiments, the propagation delay is the half of the time advanced of the UE. The time advanced is estimated (e.g. measured, determined) based on the reference PRACH. The time advanced is estimated (e.g. measured, determined) based on the reference SRS.
In some embodiments, a first UE sends the transmitting time of a fourth reference point to a second UE via sidelink. The transmitting time can be carried by physical sidelink shared channel (PSSCH) or physical sidelink control channel (PSCCH) . In some embodiment,  the transmitting time of the fourth reference point is the time when the first UE sends the fourth reference point to the second UE. In some embodiments, the fourth reference point is the starting boundary or the ending boundary of a sidelink transmission (e.g. symbol, sub-slot, slot, sub-frame, or frame) . In some embodiments, if the fourth reference point is the starting boundary of the sidelink transmission, the first one or more symbols of the sidelink transmission is transmitted from the first UE to the second UE. In some embodiments, if the fourth reference point is the ending boundary of the sidelink transmission, the last one or more symbols of the sidelink transmission is transmitted from the first UE to the second UE.
In some embodiments, a first UE sends the receiving time of a fourth reference point to a second UE via sidelink. The receiving time can be carried by PSSCH or PSCCH. In some embodiments, the receiving time of the fourth reference point is the time when the first UE receives the fourth reference point from the second UE. In some embodiments, if the fourth reference point is the starting boundary of the sidelink transmission, the first one or more symbols of the sidelink transmission is transmitted from the second UE to the first UE. In some embodiments, if the fourth reference point is the ending boundary of the sidelink transmission, the last one or more symbols of the sidelink transmission is transmitted from the second UE to the first UE.
In some embodiments, the sidelink transmission is the transmission of reference symbol, reference sub-slot, reference slot, reference sub-frame, or reference frame. In some embodiments, the reference symbol, reference sub-slot, reference slot, reference sub-frame, or reference frame is indicated by the network to the first UE and the second UE via a RRC signaling, or a MAC CE, or a Downlink Control Information (DCI) . In some embodiments, the first reference point for receiving time reporting is indicated by the network to the UE.
In some embodiments, the reference symbol, reference sub-slot, reference slot, reference sub-frame, or reference frame is indicated by the first UE to the second UE via a RRC signaling, or a MAC CE, or a Downlink Control Information (DCI) . In some embodiments, the first reference point for receiving time reporting is indicated by the first UE to the second UE.
In some embodiments, the reference symbol, reference sub-slot, reference slot, reference sub-frame, or reference frame is indicated by the second UE to the first UE via a RRC signaling, or a MAC CE, or a Downlink Control Information (DCI) . In some embodiments, the first reference point for receiving time reporting is indicated by the second UE to the first UE.
When the second UE receives the transmitting time or the receiving time from the first UE, the second UE can get the time when UE receives or sends the fourth reference point. In some embodiments, the time when UE receives or sends the fourth reference point is the transmitting time or the receiving time sent by the first UE.
FIG. 13 illustrates a flowchart diagram illustrating a method 1300 for transmitting timing information, in accordance with some embodiments of the present disclosure. Referring to FIGS. 1-12, the method 1300 can be performed by a wireless communication device (e.g., a UE) , in some embodiments. Additional, fewer, or different operations may be performed in the method 1300 depending on the embodiment.
A wireless communication device receives, from a wireless communication node (e.g., a network) , a first signal on a first time-domain unit (1302) . The wireless communication device transmits, to the wireless communication node, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device received the first signal (1304) .
FIG. 14 illustrates a flowchart diagram illustrating a method 1400 for transmitting timing information, in accordance with some embodiments of the present disclosure. Referring to FIGS. 1-12, the method 1400 can be performed by a wireless communication device (e.g., a UE) , in some embodiments. Additional, fewer, or different operations may be performed in the method 1400 depending on the embodiment.
A wireless communication device transmits, to a wireless communication node (e.g., a network) , a first signal transmitted on a first-time domain unit (1402) . The wireless communication device transmits, to the wireless communication node, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device transmitted the first signal (1404) .
In some embodiments, the network receives, from the UE, the receiving time (e.g., first time, first time value, first time-domain unit) of a first reference point (e.g., first signal) received by the UE. The receiving time of the first reference point is the time when the UE receives the first reference point from the network. The first reference point can be (e.g., identified as, occurring during, at a time of, etc. ) at least one of a boundary (e.g., starting or ending boundary) of a unit (e.g., transmission, transmission unit) such as a symbol (e.g., an orthogonal frequency division multiplexing (OFDM) symbol) , a sub-slot, a slot, a sub-frame, or a frame (e.g., system frame) . The unit corresponding to the first reference point can be referred to as a reference unit (e.g., reference transmission, reference transmission unit) such as a reference symbol, a reference sub-slot, a reference slot, a reference sub-frame and a reference system frame. That is, the symbol, the sub-slot, the slot, the sub-frame and the system frame corresponding to the first reference point can be referred to as a reference symbol, a reference sub-slot, a reference slot, a reference sub-frame and a reference system frame, respectively. In  some embodiments, a wireless communication node sends, to a wireless communication device, a first signal on a first time-domain unit. The wireless communication node receives, from the wireless communication device, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device received the first signal. In some embodiments, a wireless communication node receives, from a wireless communication device, a first signal transmitted on a first-time domain unit. The wireless communication node receives, from the wireless communication device, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device transmitted the first signal. In some embodiments, the time information includes a time of a starting boundary or an ending boundary of the first time-domain unit.
The reference symbol is a downlink (DL) symbol, which is used for downlink signal transmission. If the first reference point is the ending boundary of the reference unit, the last one or more symbols of the reference unit are downlink symbols used for downlink signal transmission. If the first reference point is the starting boundary of the reference unit, the first one or more symbols of the reference unit are the downlink symbols used for downlink signals transmission. In some embodiments, the network receives the receiving time of the boundary of the reference unit from the UE.
The information of the receiving time can be in Radio Resource Control (RRC) signaling, or Medium Access Control (MAC) Control Element (CE) , or Uplink Control information (UCI) . In some embodiments, the time information is included in at least one of a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
In some embodiments, the reference unit is indicated by the network to the UE via a RRC signaling, or a MAC CE, or a Downlink Control Information (DCI) . The first reference point for receiving time reporting is indicated by the network to the UE. In some embodiments, the first time-domain unit is indicated by the wireless communication node via at least one of a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or downlink control information (DCI) .
In some embodiments, the reference unit is indicated by the UE to the network via a RRC signaling, or a MAC CE, or a UCI. The first reference point for receiving time reporting is indicated by UE to the network. In some embodiments, the first time-domain unit is indicated by the wireless communication device via at least one of: a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
In some embodiments, the UE sends the receiving time of a first reference point to the network at a certain (e.g., predetermined, occurring once per each period of time, etc. ) time. In some embodiments, the receiving time that is received by the network is the receiving time of the indicated first reference point that is adjacent to (e.g., before and closest to among the reference points that are before) the certain time. The receiving time can be carried by (e.g., transmitted by, included in, assigned to, corresponding to, etc. ) a physical uplink share channel (PUSCH) or a physical uplink control channel (PUCCH) . The time carried by the PUSCH or the PUCCH is the receiving time of the indicated first reference point that is adjacent to (e.g., before and closest to) the start of the PUSCH or the PUCCH. In some embodiments, the second signal includes at least one of a physical uplink control channel (PUCCH) signal or a physical uplink shared channel (PUSCH) signal.
Referring back to FIG. 4, a system frame number 5 is indicated (e.g. by the network or by the UE) as the reference frame and the first reference point is the starting boundary of the reference frame. In FIG. 4, there are 4 system frames with system frame number 5. The first system frame number 5 is received starting from t1. That is, the receiving time of starting boundary of the first reference frame is t1. Similarly, the receiving time of starting boundary of the second, third, and fourth reference frames are t2, t3, and t4, respectively. In some embodiments, the UE sends receiving time of first reference point to the network at t5. Since the reference point of the second reference frame (e.g. the starting boundary of the second reference frame) is before and closest to t5, the receiving time that is sent by the UE at t5 is the receiving time of the starting boundary of the second reference frame (i.e., t2 is received by the network as the receiving time) .
In some embodiments, the first reference point configured by the network is periodic. The UE sends the receiving time of the first reference point to the network after the first reference point is received and before the next first reference point is received. The receiving time reporting by the UE is also periodic with the same periodicity of the first reference point. In some embodiments, the wireless communication node transmits, to the wireless communication device, the first signal every certain period of time. In some embodiments, the wireless communication node receives, from the wireless communication device, the second signal carrying the time information indicative of when the wireless communication device received the first signal during each period of time.
In some embodiments, the reference unit configured by the network is periodic. The UE sends the receiving time to the network after each of the reference units is received and before the next reference unit is received. The receiving time reporting by the UE is periodic  with the same periodicity of the reference unit. For the periodic reference unit, a periodicity and a offset may be configured. The offset for the reference unit is the time interval between one of the reference unit and the starting point. Generally, the starting point is the start of system frame number 0.
Referring now to FIG. 5, the offset is 10 frames and the periodicity is 40 frames. The starting point is the start of system frame 0. Based on the offset and the periodicity, the reference frames illustrated in FIG. 5 are system frame 10, system frame 50, system frame 90 and system frame 130, respectively. The starting boundary of system frame 0, system frame 10, system frame 50, system frame 90 and system frame 130 are received at t1, t2, t3, t4, and t5, respectively. In some embodiments, the first reference point is the starting boundary of the reference frame.
For the reference frame 10, the UE sends the receiving time of the starting boundary of frame 10 (i.e., t2) to the network after the frame 10 is received and before the frame 50 is received. In another case, the UE sends the receiving time of the starting boundary of frame 10 (i.e., t2) after the t2 and before t3. Similarly, for the reference frame 50, the UE sends the receiving time of the starting boundary of frame 50 (i.e., t3) to the network after the frame 50 is received and before the frame 90 is received. In another case, the UE sends the receiving time of the starting boundary of frame 50 (i.e., t3) after the t3 and before t4.
In some embodiments, the reference unit is indicated by the network implicitly as well as, in some embodiments, the first reference point. In some embodiments, the network sends a downlink control information (DCI) to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH is used to transmit the receiving time. In some embodiments, the network sends a MAC CE to the UE and the MAC CE indicates that the UE reports the receiving time. In some embodiments, the reference unit is the first unit or the last  unit on which the DCI or the MAC CE is transmitted. For instance, the reference symbol, sub-slot, slot, sub-frame, and system frame is the first or last symbol, sub-slot, slot, sub-frame, and frame, respectively, on which the DCI or the MAC CE is transmitted. In some embodiments, the DCI is carried by the PDCCH and the MAC CE is carried by the PDSCH. The symbol, sub-slot, slot, sub-frame and frame on which a DCI is transmitted are equal to the symbol, sub-slot, slot, sub-frame and frame of the PDCCH carrying the DCI, respectively. The symbol, sub-slot, slot, sub-frame and frame on which a MAC CE is transmitted are equal to the symbol, sub-slot, slot, sub-frame and frame of the PDSCH carrying the MAC CE, respectively. In some embodiments, the wireless communication node transmits, to the wireless communication device, a third signal on a third time-domain unit. In some embodiments, the third signal is configured to trigger the transmission of the second signal. In some embodiments, the third signal includes at least one of a downlink control information (DCI) and a MAC CE. In some embodiments, each of the first, second, and third time-domain units includes at least one of: a symbol, a sub-slot, a slot, a sub-frame, a frame.
Referring now to FIG. 6, the system frame N (N is an integer) is received starting from t1. The receiving time of the starting boundary of system frame N is t1 and the receiving time of the ending boundary of system frame N is t2. The PDCCH is transmitted on system frame N to schedule the PUSCH. The PDCCH further indicates that the PUSCH is used to transmit the receiving time. Therefore, the reference frame is system frame N. If the reference point is the starting boundary of the frame, the report of the receiving time of the reference point is t1 and the value of t1 can be received by the network from the the UE. If the reference point is ending boundary of the frame, the report of the receiving time of the reference point is t2 and the value of t2 can be received by the network from the UE.
Referring now to FIG. 7, the system frame N is received starting from t1. The receiving time of the starting boundary of system frame N is t1 and the receiving time of the ending boundary of system frame N is t2. The MAC CE is transmitted on the system frame N and the MAC CE is used to indicate that the UE reports the receiving time to the network. Therefore, the reference frame is system frame N. If the reference point is the starting boundary of the frame, the report of the receiving time of the reference point is t1 and the value of t1 can be received by the network from the UE. If the reference point is ending boundary of the frame, the report of the receiving time of the reference point is t2 and the value of t2 can be received by the network from the UE.
In some embodiments, the network sends a DCI to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH is to transmit the receiving time. In some embodiments, the time interval between the DCI and the scheduled PUSCH is equal to or larger than a threshold. In some embodiments, the time interval between the last symbol of the PDCCH carrying the DCI and the first symbol of the scheduled PUSCH is equal to and larger than a threshold.
In some embodiments, the network sends a MAC CE to the UE, and, in some embodiments, the MAC CE indicates that the UE reports the receiving time. In some embodiments, the receiving time is carried by a PUSCH or a PUCCH. In some embodiments, the time interval between the MAC CE and the PUSCH or the PUCCH is equal to and larger than a threshold. In some embodiments, the time interval between the last symbol of the PDSCH carrying MAC CE and the first symbol of the PUSCH or the PUCCH is equal to or larger than a threshold. The value of the threshold may be configured by the network or pre-defined by the specification.
In some embodiments, the network sends a DCI to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH is to transmit the receiving time. In some embodiments, the network sends a MAC CE to the UE, and, in some embodiments, the MAC CE indicates that the UE reports the receiving time. In some embodiments, the reference symbol is the symbol before or after than the symbol on which the DCI or the MAC CE is transmitted with a first offset between them. In some embodiments, reference unit is the unit before or after than the unit on which the DCI or the MAC CE is transmitted with a first offset between them. For instance, the reference symbol, sub-slot, slot, sub-frame, and frame is the symbol sub-slot, slot, sub-frame, and frame, respectively, before or after than the respective symbol, sub-slot, slot, sub-frame, and frame on which the DCI or the MAC CE is transmitted with a first offset between them. The first offset is configured by the network or pre-defined by the specification. In some embodiments, a first time offset exists between the first time-domain unit and the third time-domain unit. In some embodiments, the first time offset is pre-configured or indicated by the wireless communication node.
Referring now to FIG. 8, the system frame 20 is received starting from t1. The receiving time of the starting boundary of system frame 20 is t1 and the receiving time of the ending boundary of system frame 20 is t2. The first offset is 3 frames. The PDCCH transmitted on frame 23 indicates that the UE reports the receiving time. The reference frame is frame 20 since the offset between frame 20 and frame 23 is 3 frames. If the reference point is the starting boundary of the reference frame, the receiving time of the starting boundary of system frame 20 (i.e., t1) is reported. If the reference point is the ending boundary of the reference frame, the receiving time of the ending boundary of system frame 20 (i.e., t2) is reported.
In some embodiments, the UE sends the receiving time of a first reference point to the network at a certain time. In some embodiments, the first reference point is before than the certain time with a second offset between the first reference point and the certain time. In some embodiments, the second offset is constant and can be configured by the network or pre-defined by the specification.
The network receives the receiving time of a first reference point from the UE via an uplink transmission. The uplink transmission is PUCCH or PUSCH. In some embodiments, reference unit is before or after the uplink transmission with a second offset between the reference unit and the first unit of the uplink transmission. For instance, reference symbol sub-slot, slot, sub-frame, and frame is before or after the uplink transmission with a second offset between the reference symbol, sub-slot, slot, sub-frame, and frame and the first symbol, sub-slot, slot, sub-frame, and frame, respectively, of the uplink transmission. The second offset can be a number of symbols, sub-slots, slots, sub-frames, frames or milliseconds. In some embodiments, the second offset is configured by the network or pre-defined by the specification. The value of the offset can be zero. In some embodiments, a second time offset exists between the first time-domain unit and a second time-domain unit on which the second signal is transmitted. In some embodiments, the second time offset is pre-configured or indicated by the wireless communication node.
Referring now to FIG. 9, the system frame 15 is received starting from t1. The receiving time of the starting boundary of system frame 15 is t1 and the receiving time of the ending boundary of system frame 15 is t2. The ending boundary of system frame 15 is the starting boundary of system frame 16. The receiving time of the ending boundary of system frame 16 is t3. The PUSCH transmitted on the system frame 16 carries the receiving time. A  PUSCH transmitted in system frame 16 is used to transmit the receiving time. The offset between the reference frame and the frame of PUSCH (i.e., system frame 16) is 1 frame. Therefore, the reference frame is system frame 15. If the reference point is the starting boundary of the reference frame, the receiving time of the starting boundary of system frame 15 (i.e., t1) is transmitted in the PUSCH. If the reference point is the ending boundary of the reference frame, the receiving time of the ending boundary of system frame 15 (i.e., t2) is transmitted in the PUSCH.
When the network receives the receiving time from the UE, the network can get the time when the network sends the first reference point. In some embodiments, the time when the network sends the first reference point is the reported receiving time received by the network minus the propagation delay. In some embodiments, the propagation delay is the half of the time advanced of the UE.
In some embodiments, the network receives the transmitting time of a second reference point from the UE. The transmitting time of the second reference point is the time when the UE transmits the reference point to the network. The second reference point can be at least one of a boundary (e.g., starting or ending boundary) of a unit such as a symbol, a sub-slot, a slot, a sub-frame, or a frame. The unit corresponding to the second reference point can be referred to as a reference unit such as a reference symbol, a reference sub-slot, a reference slot, a reference sub-frame and a reference system frame. In some embodiments, a wireless communication node receives, from a wireless communication device, a first signal transmitted on a first-time domain unit. The wireless communication node receives, from the wireless communication device, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device transmitted the first signal. In some  embodiments, the time information includes a time of a starting boundary or an ending boundary of the first time-domain unit.
The reference symbol is an uplink symbol, which is used for uplink signal transmission. If the second reference point is the ending boundary of the reference unit, the last one or more symbols of the reference unit are uplink symbols used for uplink signal transmission. If the second reference point is the starting boundary of the reference unit, the first one or more symbols of the reference unit are the uplink symbols used for uplink signals transmission. In some embodiments, the network receives the transmitting time of the starting or ending boundary of the reference unit from the UE.
The information of the transmitting time can be in RRC signaling, or MAC CE, or UCI. In some embodiments, the time information is included in at least one of a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
In some embodiments, the reference unit is indicated by the network to the UE via a RRC signaling, a MAC CE, or a DCI. In some embodiments, the second reference point for transmitting time reporting is indicated by the network to the UE. In some embodiments, the first time-domain unit is indicated by the wireless communication node via at least one of: a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or downlink control information (DCI)
In some embodiments, the reference unit is indicated by the UE to the network via a RRC signaling, a MAC CE, or a UCI. In some embodiments, the second reference point for transmitting time reporting is indicated by the UE to the network. In some embodiments, the  first time-domain unit is indicated by the wireless communication device via at least one of: a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
The UE sends the transmitting time of a second reference point to the network at a certain time. In some embodiments, the transmitting time that is received by the network is the transmitting time of the indicated second reference point that is adjacent to (e.g., before and closest to) the certain time. The transmitting time can be carried by a PUSCH or a PUCCH. In some embodiments, the transmitting time carried by the PUSCH or the PUCCH is the transmitting time of the indicated second reference point that is before and closest to the start of the PUSCH or the PUSCH.
Referring now to FIG. 10, the system frame number 5 is indicated as reference frame. The second reference point is the ending boundary of the reference frame. There are 4 system frames with system frame number 5. The first system frame number 5 is transmitted with the ending boundary at t1. So the transmitting time of ending boundary of the first reference frame is t1. Similarly, the transmitting time of ending boundary of the second reference frame is t2. The transmitting time of ending boundary of the third reference frame is t3. The transmitting time of ending boundary of the fourth reference frame is t4. The UE sends transmitting time of second reference point to the network at t5. Since the reference point of the second reference boundary (e.g. the ending boundary of the second reference frame) is before and closest to t5, the transmitting time that is sent by the UE at t5 is the transmitting time of the ending boundary of the second reference frame, i.e. t2 is received by the network as the receiving time.
In some embodiments, the second reference point configured by the network is periodic. The UE sends the transmitting time of the second reference point to the network after  each of the second reference point is transmitted and before the next second reference point is transmitted. The transmitting time reporting by the UE is also periodic with the same periodicity of the second reference point.
In some embodiments, the reference symbol, reference unit configured by the network is periodic. The UE sends the transmitting time to the network after each of the reference units is transmitted and before the next reference unit is transmitted. The transmitting time reporting by the UE is periodic with the same periodicity of the reference unit. In some embodiments, the wireless communication node receives, from the wireless communication device, the first signal every certain period of time. In some embodiments, the wireless communication node receives, from the wireless communication device, the second signal carrying the time information indicative of when the wireless communication device transmitted the first signal during each period of time.
Referring now to FIG. 11, the offset is 10 frames and the periodicity is 40 frames. The starting point is the start of system frame 0. Based on the offset and the periodicity, the reference frames illustrated in FIG. 11 are system frame 10, system frame 50, system frame 90 and system frame 130, respectively. The starting boundary of system frame 0, system frame 10, system frame 50, system frame 90 and system frame 130 are transmitted at t1, t2, t3, t4 and t5, respectively. In some embodiments, the second reference point is the starting boundary of the reference frame.
For the reference frame 10, the UE sends the transmitting time of the starting boundary of frame 10 (i.e., t2) to the network after the frame 10 is transmitted and before the frame 50 is transmitted. In another case, the UE sends the transmitting time of the starting boundary of frame 10 (i.e., t2) after the t2 and before t3. Similarly, for the reference frame 50,  the UE sends the transmitting time of the starting boundary of frame 50 (i.e., t3) to the network after the frame 50 is transmitted and before the frame 90 is transmitted. In another case, the UE sends the transmitting time of the starting boundary of frame 50 (i.e., t3) after the t3 and before t4.
In some embodiments, the reference unit is indicated by the network implicitly as well as, in some embodiments, the first reference point.
In some embodiments, the network sends a downlink control information (DCI) to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH is used to transmit the transmitting time. In some embodiments, the network sends a MAC CE to the UE, and, in some embodiments, the MAC CE indicates that the UE reports the transmitting time. The transmitting time can be carried by a PUSCH or a PUCCH. In some embodiments, the reference unit is the first or last unit on which the PUSCH or the PUCCH is transmitted.
Referring now to FIG. 12, the system frame N (N is an integer) is transmitted starting from t1. The transmitting time of the starting boundary of system frame N is t1 and the transmitting time of the ending boundary of system frame N is t2. A PUSCH scheduled by a PDCCH is transmitted on system frame N. The PUSCH is indicated to carry the transmitting time of the reference frame. The reference frame is system frame N, on which the PUSCH is transmitted. If the reference point is the starting boundary of the frame, the transmitting time of the reference point is t1 and the value of t1 can be carried by the PUSCH for transmitting time reporting.
In some embodiments, the time interval between the second reference point, and, in some embodiments, the PUCCH or the PUSCH that carries the transmitting time of the second  reference point is equal to or larger than a threshold. In some embodiments, the time interval between the second reference point and the first symbol of the PUCCH or the first symbol of the PUSCH is equal to or larger than a threshold, wherein, in some embodiments, the PUSCH or the PUCCH carries the transmitting time of the second reference point.
In some embodiments, the network sends a DCI to the UE to schedule a PUSCH, and, in some embodiments, the DCI indicates that the PUSCH carries the transmitting time of a second reference point. In some embodiments, the network sends a MAC CE to the UE, and, in some embodiments, the MAC CE indicates that the UE reports the transmitting time. The transmitting time can be carried by a PUSCH or a PUCCH. In some embodiments, the reference unit is the unit before or after than the unit on which the DCI or the MAC CE is transmitted with a first offset between them. In some embodiments, the first offset is configured by the network or pre-defined by the specification. In some embodiments, the wireless communication node transmits, to the wireless communication device, a third signal on a third time-domain unit. In some embodiments, the third signal is configured to trigger the transmission of the second signal. In some embodiments, the third signal includes at least one of: a downlink control information (DCI) , a MAC CE. In some embodiments, each of the first, second and third time-domain units includes at least one of: a symbol, a sub-slot, a slot, a sub-frame, a frame. In some embodiments, a first time offset exists between the first time-domain unit and the third time-domain unit. In some embodiments, the first time offset is pre-configured or indicated by the wireless communication node.
In some embodiments, the UE sends the transmitting time of a second reference point to the network at a certain time. In some embodiments, the second reference point is before than the certain time with a second offset between the first reference point and the certain time. In  some embodiments, the second offset is constant and can be configured by the network or pre-defined by the specification.
In some embodiments, the network receives the transmitting time of a second reference point from the UE. In some embodiments, the transmitting time of the second reference point is carried by an uplink transmission. In some embodiments, the uplink transmission is PUCCH or PUSCH. The In some embodiments, the reference unit is before or after the uplink transmission with a second offset between the reference unit and the first unit of the uplink transmission. In some embodiments, the second offset is configured by the network or pre-defined by the specification. In some embodiments, a second time offset exists between the first time-domain unit and the second time-domain unit on which the second signal is transmitted. In some embodiments, the second time offset is pre-configured or indicated by the wireless communication node.
When the network receives the transmitting time from the UE, the network can get the time when the network receives the second reference point. In some embodiments, the time when the network receives the second reference point is the reported transmitting time received by the network plus propagation delay. In some embodiments, the propagation delay is the half of the time advanced of the UE.
In some embodiments, a physical signal configuration is configured by the network to the UE. The network configures that the physical signal configuration is used for uplink synchronization in order for the network to get the time clock. In some embodiments, a network receives the physical signal (e.g., reference physical signal) from the UE. The network receives the transmitting time of a third reference point from the UE. The third reference point is the starting or ending boundary of the first or last unit of the physical signal. For instance, the third  reference point is the first or last symbol, sub-slot, slot, sub-frame, and frame of the physical signal.
In some embodiments, the reference physical signal is the physical signal that is transmitted by the UE adjacent to (e.g., before and closest to) the time when the UE sends the transmitting time to the network. In some embodiments, the reference physical signal is indicated by the UE to the network via RRC signaling, MAC CE, or UCI.
In some embodiments, the physical signal is PRACH. In some embodiments, the transmitting time is transmitted in msg3. In some embodiments, the transmitting time is carried by the PUSCH in the msgA. In some embodiments, the time interval between the PRACH and the PUSCH in the msgA is equal to or larger than a threshold. In some embodiments, the transmission of the PRACH and the report of the transmitting time are triggered by a DCI or a MAC CE.
In some embodiments, the physical signal is sounding reference signal (SRS) . The reference SRS is indicated by the network. In some embodiments, a DCI schedules a PUSCH transmission and triggers an SRS transmission. In some embodiments, the SRS transmission is before the PUSCH transmission. In some embodiments, the transmitting time of the SRS is transmitted in the PUSCH. In some embodiments, the first signal includes at least one of a physical uplink shared channel (PUSCH) , a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) signal or a sounding reference signal (SRS) .
When the network receives the transmitting time sent by the UE, the network can get the exact time when the network receives the third reference point. In some embodiments, the time when the network receives the third reference point is the reported transmitting time  received by the network plus the propagation delay. In some embodiments, the propagation delay is the half of the time advanced of the UE. The time advanced is estimated (e.g. measured, determined) based on the reference PRACH. The time advanced is estimated (e.g. measured, determined) based on the reference SRS.
FIG. 15 illustrates a flowchart diagram illustrating a method 1500 for receiving timing information, in accordance with some embodiments of the present disclosure. Referring to FIGS. 1-12, the method 1500 can be performed by a wireless communication node (e.g., a network) , in some embodiments. Additional, fewer, or different operations may be performed in the method 1500 depending on the embodiment.
A wireless communication node transmits, to a wireless communication device (e.g., a UE) , a first signal on a first time-domain unit (1502) . The wireless communication node receives, from the wireless communication device, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device received the first signal (1504) .
FIG. 16 illustrates a flowchart diagram illustrating a method 1600 for receiving timing information, in accordance with some embodiments of the present disclosure. Referring to FIGS. 1-12, the method 1600 can be performed by a wireless communication node (e.g., a network) , in some embodiments. Additional, fewer, or different operations may be performed in the method 1600 depending on the embodiment.
A wireless communication node receives, from a wireless communication device node (e.g., a UE) , a first signal transmitted on a first-time domain unit (1602) . The wireless communication node receives, from the wireless communication device, a second signal on a  second time-domain unit carrying time information indicative of when the wireless communication device transmitted the first signal (1604) .
While various embodiments of the present solution have been described above, it should be understood that they have been presented by way of example only, and not by way of limitation. Likewise, the various diagrams may depict an example architectural or configuration, which are provided to enable persons of ordinary skill in the art to understand example features and functions of the present solution. Such persons would understand, however, that the solution is not restricted to the illustrated example architectures or configurations, but can be implemented using a variety of alternative architectures and configurations. Additionally, as would be understood by persons of ordinary skill in the art, one or more features of one embodiment can be combined with one or more features of another embodiment described herein. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described illustrative embodiments.
It is also understood that any reference to an element herein using a designation such as "first, " "second, " and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
Additionally, a person having ordinary skill in the art would understand that information and signals can be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits and symbols, for example, which may be referenced in the above description can be represented by voltages,  currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
A person of ordinary skill in the art would further appreciate that any of the various illustrative logical blocks, modules, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software" or a "software module) , or any combination of these techniques. To clearly illustrate this interchangeability of hardware, firmware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware or software, or a combination of these techniques, depends upon the particular application and design constraints imposed on the overall system. Skilled artisans can implement the described functionality in various ways for each particular application, but such implementation decisions do not cause a departure from the scope of the present disclosure.
Furthermore, a person of ordinary skill in the art would understand that various illustrative logical blocks, modules, devices, components and circuits described herein can be implemented within or performed by an integrated circuit (IC) that can include a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, or any combination thereof. The logical blocks, modules, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device. A general purpose processor can be a microprocessor, but in the alternative, the processor can be  any conventional processor, controller, or state machine. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein.
If implemented in software, the functions can be stored as one or more instructions or code on a computer-readable medium. Thus, the steps of a method or algorithm disclosed herein can be implemented as software stored on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another. A storage media can be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
In this document, the term "module" as used herein, refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various modules are described as discrete modules; however, as would be apparent to one of ordinary skill in the art, two or more modules may be combined to form a single module that performs the associated functions according embodiments of the present solution.
Additionally, memory or other storage, as well as communication components, may be employed in embodiments of the present solution. It will be appreciated that, for clarity purposes, the above description has described embodiments of the present solution with  reference to different functional units and processors. However, it will be apparent that any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present solution. For example, functionality illustrated to be performed by separate processing logic elements, or controllers, may be performed by the same processing logic element, or controller. Hence, references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.
Various modifications to the implementations described in this disclosure will be readily apparent to those skilled in the art, and the general principles defined herein can be applied to other implementations without departing from the scope of this disclosure. Thus, the disclosure is not intended to be limited to the implementations shown herein, but is to be accorded the widest scope consistent with the novel features and principles disclosed herein, as recited in the claims below.

Claims (27)

  1. A wireless communication method, comprising:
    receiving, by a wireless communication device from a wireless communication node, a first signal on a first time-domain unit; and
    transmitting, by the wireless communication device to the wireless communication node, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device received the first signal.
  2. The wireless communication method of claim 1, wherein the time information is included in at least one of: a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
  3. The wireless communication method of claim 1, wherein the time information includes a time of a starting boundary or an ending boundary of the first time-domain unit.
  4. The wireless communication method of claim 1, further comprising:
    receiving, by the wireless communication device from the wireless communication node, a third signal on a third time-domain unit, wherein the third signal is configured to trigger the transmission of the second signal,
    wherein the third signal includes at least one of: a downlink control information (DCI) , a MAC CE.
  5. The wireless communication method of claim 4, wherein each of the first, second, and third time-domain units includes at least one of: a symbol, a sub-slot, a slot, a sub-frame, a frame.
  6. The wireless communication method of claim 4, wherein a first time offset exists  between the first time-domain unit and the third time-domain unit.
  7. The wireless communication method of claim 6, wherein the first time offset is pre-configured or indicated by the wireless communication node.
  8. The wireless communication method of claim 1, wherein a second time offset exists between the first time-domain unit and a second time-domain unit on which the second signal is transmitted.
  9. The wireless communication method of claim 8, wherein the second time offset is pre-configured or indicated by the wireless communication node.
  10. The wireless communication method of claim 1, further comprising:
    receiving, by the wireless communication device from the wireless communication node, the first signal every certain period of time; and
    transmitting, by the wireless communication device to the wireless communication node, the second signal carrying the time information indicative of when the wireless communication device received the first signal during each period of time.
  11. The wireless communication method of claim 1, wherein the first time-domain unit is indicated by the wireless communication node via at least one of: a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or downlink control information (DCI) .
  12. The wireless communication method of claim 1, wherein the first time-domain unit is indicated by the wireless communication device via at least one of: a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
  13. A wireless communication method, comprising:
    transmitting, by a wireless communication device, a first signal transmitted on a first time-domain unit; and
    transmitting, by the wireless communication device to a wireless communication node, a second signal on a second time-domain unit carrying time information indicative of when the wireless communication device transmitted the first signal.
  14. The wireless communication method of claim 13, wherein the time information is included in at least one of: a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
  15. The wireless communication method of claim 13, wherein the first signal includes at least one of: a physical uplink shared channel (PUSCH) , a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) signal or a sounding reference signal (SRS) .
  16. The wireless communication method of claim 13, wherein the time information includes a time of a starting boundary or an ending boundary of the first time-domain unit.
  17. The wireless communication method of claim 13, further comprising:
    receiving, by the wireless communication device from the wireless communication node,  a third signal on a third time-domain unit, wherein the third signal is configured to trigger the transmission of the second signal,
    wherein the third signal includes at least one of: a downlink control information (DCI) , a MAC CE.
  18. The wireless communication method of claim 13, wherein each of the first, second and third time-domain units includes at least one of: a symbol, a sub-slot, a slot, a sub-frame, a frame.
  19. The wireless communication method of claim 17, wherein a first time offset exists between the first time-domain unit and the third time-domain unit.
  20. The wireless communication method of claim 19, wherein the first time offset is pre-configured or indicated by the wireless communication node.
  21. The wireless communication method of claim 13, wherein a second time offset exists between the first time-domain unit and the second time-domain unit on which the second signal is transmitted.
  22. The wireless communication method of claim 21, wherein the second time offset is pre-configured or indicated by the wireless communication node.
  23. The wireless communication method of claim 13, further comprising:
    transmitting, by the wireless communication device to the wireless communication node, the first signal every certain period of time; and
    transmitting, by the wireless communication device to the wireless communication node, the second signal carrying the time information indicative of when the wireless communication device transmitted the first signal during each period of time.
  24. The wireless communication method of claim 13, wherein the first time-domain unit is indicated by the wireless communication node via at least one of: a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or downlink control information (DCI) .
  25. The wireless communication method of claim 13, wherein the first time-domain unit is indicated by the wireless communication device via at least one of: a radio resource control (RRC) signaling, a medium access control (MAC) control element (CE) , or uplink control information (UCI) .
  26. A wireless communications apparatus comprising a processor and a memory, wherein the processor is configured to read code from the memory and implement a method recited in any of claims 1 to 25.
  27. A computer program product comprising a computer-readable program medium code stored thereupon, the code, when executed by a processor, causing the processor to implement a method recited in any of claims 1 to 25.
PCT/CN2020/095494 2020-06-11 2020-06-11 System and method for timing information transmission WO2021248394A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/095494 WO2021248394A1 (en) 2020-06-11 2020-06-11 System and method for timing information transmission
CN202080097479.9A CN115176508A (en) 2020-06-11 2020-06-11 System and method for timing information transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095494 WO2021248394A1 (en) 2020-06-11 2020-06-11 System and method for timing information transmission

Publications (1)

Publication Number Publication Date
WO2021248394A1 true WO2021248394A1 (en) 2021-12-16

Family

ID=78846734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095494 WO2021248394A1 (en) 2020-06-11 2020-06-11 System and method for timing information transmission

Country Status (2)

Country Link
CN (1) CN115176508A (en)
WO (1) WO2021248394A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140331048A1 (en) * 2011-12-16 2014-11-06 Alcatel Lucent Method and apparatus for monitoring transmission characteristics in a network
CN108271274A (en) * 2017-01-04 2018-07-10 中兴通讯股份有限公司 A kind of information synchronization method and device
CN109302739A (en) * 2017-07-24 2019-02-01 华为技术有限公司 A kind of sending method of synchronization signal, method of reseptance and device
CN109688594A (en) * 2017-10-18 2019-04-26 中国电信股份有限公司 Time delay monitoring method, base station and terminal and computer storage medium
CN110896560A (en) * 2018-09-13 2020-03-20 维沃移动通信有限公司 Uplink signal sending method and terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140331048A1 (en) * 2011-12-16 2014-11-06 Alcatel Lucent Method and apparatus for monitoring transmission characteristics in a network
CN108271274A (en) * 2017-01-04 2018-07-10 中兴通讯股份有限公司 A kind of information synchronization method and device
CN109302739A (en) * 2017-07-24 2019-02-01 华为技术有限公司 A kind of sending method of synchronization signal, method of reseptance and device
CN109688594A (en) * 2017-10-18 2019-04-26 中国电信股份有限公司 Time delay monitoring method, base station and terminal and computer storage medium
CN110896560A (en) * 2018-09-13 2020-03-20 维沃移动通信有限公司 Uplink signal sending method and terminal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Discussion of TA in D2D SA", 3GPP DRAFT; R1-143075 DISCUSSION OF TA IN D2D SA, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Dresden, Germany; 20140818 - 20140822, 17 August 2014 (2014-08-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050788554 *

Also Published As

Publication number Publication date
CN115176508A (en) 2022-10-11

Similar Documents

Publication Publication Date Title
TWI762456B (en) Communicating subframe timing of an access point on a shared communication medium
JP7420795B2 (en) Method and apparatus for configuring and scheduling sidelink resources
US20210250931A1 (en) Method and apparatus for configuration of sidelink channel resource units
US20210400632A1 (en) Method and Apparatus for Configuration of Sidelink Channel Resource Units
US20210243758A1 (en) Resource indication method and apparatus and communication system
US11419039B2 (en) System and method for indicating information
CN111491390B (en) Uplink transmission method and device
US20220330321A1 (en) Signaling solution for fast beam diversity
WO2023137665A1 (en) Positioning using reference signals with overlapping resources between adjacent frequency hops
CN109151984B (en) Measurement signal sending method, indication information sending method and equipment
WO2021248394A1 (en) System and method for timing information transmission
WO2022006708A1 (en) Method, device and computer storage medium for communication
AU2018435705B2 (en) Systems and methods for valid subframe determination
WO2023201453A1 (en) Methods and systems of uplink cell and scell activation
WO2023050252A1 (en) Systems and methods for indicating positioning timing information
US20230309041A1 (en) Method and apparatus of system information transmission
US20230403064A1 (en) Determining times for applying beam states for uplink transmissions
WO2023050248A1 (en) Systems and methods for measurements on positioning reference signals
WO2023155120A1 (en) Systmes and methods for indicating timing difference between different cells
WO2022147645A1 (en) System and method for sounding reference signal transmission
US20220159734A1 (en) Systems and methods of enhanced random access procedure
US20240032003A1 (en) Systems and methods of scheduling with offset
WO2022073179A1 (en) Method and device for signal transmission
US20230007616A1 (en) Systems and methods to trigger sending uplink messages
WO2021003661A1 (en) Systems and methods for performing random access procedure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20939875

Country of ref document: EP

Kind code of ref document: A1