WO2021248279A1 - Antibodies against sars-cov-2 s1 spike protein - Google Patents
Antibodies against sars-cov-2 s1 spike protein Download PDFInfo
- Publication number
- WO2021248279A1 WO2021248279A1 PCT/CN2020/094953 CN2020094953W WO2021248279A1 WO 2021248279 A1 WO2021248279 A1 WO 2021248279A1 CN 2020094953 W CN2020094953 W CN 2020094953W WO 2021248279 A1 WO2021248279 A1 WO 2021248279A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antibody
- antigen
- binding fragment
- cov
- sars
- Prior art date
Links
- 229940096437 Protein S Drugs 0.000 title claims abstract description 22
- 101710198474 Spike protein Proteins 0.000 title claims abstract description 22
- 108091005609 SARS-CoV-2 Spike Subunit S1 Proteins 0.000 title description 2
- 230000027455 binding Effects 0.000 claims abstract description 181
- 208000025721 COVID-19 Diseases 0.000 claims abstract description 67
- 241001678559 COVID-19 virus Species 0.000 claims abstract description 58
- 101000629318 Severe acute respiratory syndrome coronavirus 2 Spike glycoprotein Proteins 0.000 claims abstract description 44
- 238000000034 method Methods 0.000 claims abstract description 34
- 108020003175 receptors Proteins 0.000 claims abstract description 20
- 102000005962 receptors Human genes 0.000 claims abstract description 20
- 241000700605 Viruses Species 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims abstract description 8
- 238000002616 plasmapheresis Methods 0.000 claims abstract description 7
- 238000000338 in vitro Methods 0.000 claims abstract description 5
- 239000000427 antigen Substances 0.000 claims description 154
- 108091007433 antigens Proteins 0.000 claims description 154
- 102000036639 antigens Human genes 0.000 claims description 154
- 239000012634 fragment Substances 0.000 claims description 134
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 79
- 150000007523 nucleic acids Chemical class 0.000 claims description 71
- 102000039446 nucleic acids Human genes 0.000 claims description 56
- 108020004707 nucleic acids Proteins 0.000 claims description 56
- 210000004027 cell Anatomy 0.000 claims description 36
- 108010047041 Complementarity Determining Regions Proteins 0.000 claims description 30
- 102100035765 Angiotensin-converting enzyme 2 Human genes 0.000 claims description 27
- 108090000975 Angiotensin-converting enzyme 2 Proteins 0.000 claims description 27
- 239000008194 pharmaceutical composition Substances 0.000 claims description 19
- 125000000539 amino acid group Chemical group 0.000 claims description 16
- 239000003814 drug Substances 0.000 claims description 14
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 14
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 13
- 239000002773 nucleotide Substances 0.000 claims description 13
- 125000003729 nucleotide group Chemical group 0.000 claims description 13
- 229920001184 polypeptide Polymers 0.000 claims description 13
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 13
- 239000003937 drug carrier Substances 0.000 claims description 11
- 238000003556 assay Methods 0.000 claims description 9
- 241000283966 Pholidota <mammal> Species 0.000 claims description 8
- 239000003085 diluting agent Substances 0.000 claims description 8
- 239000000835 fiber Substances 0.000 claims description 8
- 238000003018 immunoassay Methods 0.000 claims description 8
- 238000003259 recombinant expression Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 7
- 238000011282 treatment Methods 0.000 claims description 7
- 238000002965 ELISA Methods 0.000 claims description 6
- 241001465754 Metazoa Species 0.000 claims description 6
- 210000004369 blood Anatomy 0.000 claims description 6
- 239000008280 blood Substances 0.000 claims description 6
- 238000001943 fluorescence-activated cell sorting Methods 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 210000002381 plasma Anatomy 0.000 claims description 6
- 239000000523 sample Substances 0.000 claims description 6
- 241000282375 Herpestidae Species 0.000 claims description 5
- 241000124008 Mammalia Species 0.000 claims description 5
- 230000000241 respiratory effect Effects 0.000 claims description 5
- 208000011580 syndromic disease Diseases 0.000 claims description 5
- 210000001519 tissue Anatomy 0.000 claims description 5
- 241000282836 Camelus dromedarius Species 0.000 claims description 4
- 239000012472 biological sample Substances 0.000 claims description 4
- 230000000903 blocking effect Effects 0.000 claims description 4
- 230000001413 cellular effect Effects 0.000 claims description 4
- 210000002966 serum Anatomy 0.000 claims description 4
- 238000012286 ELISA Assay Methods 0.000 claims description 3
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 claims description 3
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 claims description 3
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 claims description 3
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 claims description 3
- 229920001410 Microfiber Polymers 0.000 claims description 3
- 210000004381 amniotic fluid Anatomy 0.000 claims description 3
- 210000001175 cerebrospinal fluid Anatomy 0.000 claims description 3
- 238000012258 culturing Methods 0.000 claims description 3
- 210000003608 fece Anatomy 0.000 claims description 3
- 238000010166 immunofluorescence Methods 0.000 claims description 3
- 238000003364 immunohistochemistry Methods 0.000 claims description 3
- 238000001114 immunoprecipitation Methods 0.000 claims description 3
- 238000002955 isolation Methods 0.000 claims description 3
- 238000002493 microarray Methods 0.000 claims description 3
- 239000003658 microfiber Substances 0.000 claims description 3
- 238000006386 neutralization reaction Methods 0.000 claims description 3
- 238000003127 radioimmunoassay Methods 0.000 claims description 3
- 210000003296 saliva Anatomy 0.000 claims description 3
- 210000001138 tear Anatomy 0.000 claims description 3
- 210000002700 urine Anatomy 0.000 claims description 3
- 238000001262 western blot Methods 0.000 claims description 3
- 241000699802 Cricetulus griseus Species 0.000 claims description 2
- 210000005260 human cell Anatomy 0.000 claims description 2
- 210000001672 ovary Anatomy 0.000 claims description 2
- 210000001808 exosome Anatomy 0.000 claims 1
- 210000002751 lymph Anatomy 0.000 claims 1
- 239000006166 lysate Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 9
- 241000282412 Homo Species 0.000 abstract description 4
- 230000003472 neutralizing effect Effects 0.000 abstract description 4
- 230000002401 inhibitory effect Effects 0.000 abstract description 3
- 239000012805 animal sample Substances 0.000 abstract 1
- 235000001014 amino acid Nutrition 0.000 description 45
- 229940024606 amino acid Drugs 0.000 description 44
- 150000001413 amino acids Chemical class 0.000 description 44
- 201000003176 Severe Acute Respiratory Syndrome Diseases 0.000 description 13
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 13
- 108090000623 proteins and genes Proteins 0.000 description 12
- 102100035360 Cerebellar degeneration-related antigen 1 Human genes 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 108091033319 polynucleotide Proteins 0.000 description 9
- 102000040430 polynucleotide Human genes 0.000 description 9
- 239000002157 polynucleotide Substances 0.000 description 9
- 235000018102 proteins Nutrition 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- 101710117290 Aldo-keto reductase family 1 member C4 Proteins 0.000 description 8
- 201000010099 disease Diseases 0.000 description 8
- 208000024891 symptom Diseases 0.000 description 8
- 230000003993 interaction Effects 0.000 description 7
- 229940124597 therapeutic agent Drugs 0.000 description 7
- 238000002560 therapeutic procedure Methods 0.000 description 7
- 241000315672 SARS coronavirus Species 0.000 description 6
- 208000037847 SARS-CoV-2-infection Diseases 0.000 description 6
- 230000034994 death Effects 0.000 description 6
- 231100000517 death Toxicity 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 108060003951 Immunoglobulin Proteins 0.000 description 5
- 208000035475 disorder Diseases 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 102000018358 immunoglobulin Human genes 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 4
- 150000005829 chemical entities Chemical class 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 229960005486 vaccine Drugs 0.000 description 4
- 230000003612 virological effect Effects 0.000 description 4
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 3
- -1 5 or 6 Chemical class 0.000 description 3
- 241000008904 Betacoronavirus Species 0.000 description 3
- 241000288673 Chiroptera Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 235000006708 antioxidants Nutrition 0.000 description 3
- 210000001124 body fluid Anatomy 0.000 description 3
- 239000010839 body fluid Substances 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 229940127121 immunoconjugate Drugs 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229930182817 methionine Natural products 0.000 description 3
- 235000006109 methionine Nutrition 0.000 description 3
- 229960004452 methionine Drugs 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 229930024421 Adenine Natural products 0.000 description 2
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 101710114810 Glycoprotein Proteins 0.000 description 2
- 239000012981 Hank's balanced salt solution Substances 0.000 description 2
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 2
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 241000127282 Middle East respiratory syndrome-related coronavirus Species 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 102000044437 S1 domains Human genes 0.000 description 2
- 108700036684 S1 domains Proteins 0.000 description 2
- 206010040070 Septic Shock Diseases 0.000 description 2
- 101710167605 Spike glycoprotein Proteins 0.000 description 2
- 229960000643 adenine Drugs 0.000 description 2
- 239000012491 analyte Substances 0.000 description 2
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 2
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 230000004540 complement-dependent cytotoxicity Effects 0.000 description 2
- 229940104302 cytosine Drugs 0.000 description 2
- 229940127089 cytotoxic agent Drugs 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- 230000034217 membrane fusion Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000036303 septic shock Effects 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- 229940035893 uracil Drugs 0.000 description 2
- 230000007502 viral entry Effects 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- LDDMACCNBZAMSG-BDVNFPICSA-N (2r,3r,4s,5r)-3,4,5,6-tetrahydroxy-2-(methylamino)hexanal Chemical compound CN[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO LDDMACCNBZAMSG-BDVNFPICSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-GASJEMHNSA-N 2-amino-2-deoxy-D-galactopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O MSWZFWKMSRAUBD-GASJEMHNSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- CFKMVGJGLGKFKI-UHFFFAOYSA-N 4-chloro-m-cresol Chemical compound CC1=CC(O)=CC=C1Cl CFKMVGJGLGKFKI-UHFFFAOYSA-N 0.000 description 1
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 208000031504 Asymptomatic Infections Diseases 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 241000282832 Camelidae Species 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 241000711573 Coronaviridae Species 0.000 description 1
- 108010061994 Coronavirus Spike Glycoprotein Proteins 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 101000690301 Homo sapiens Aldo-keto reductase family 1 member C4 Proteins 0.000 description 1
- 101001116548 Homo sapiens Protein CBFA2T1 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical group C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 208000025370 Middle East respiratory syndrome Diseases 0.000 description 1
- 208000034486 Multi-organ failure Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 206010053159 Organ failure Diseases 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 102000002067 Protein Subunits Human genes 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 1
- 108091005634 SARS-CoV-2 receptor-binding domains Proteins 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 230000008382 alveolar damage Effects 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940124599 anti-inflammatory drug Drugs 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008275 binding mechanism Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 229960004106 citric acid Drugs 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000012050 conventional carrier Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 229960002433 cysteine Drugs 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000012631 diagnostic technique Methods 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 229940021013 electrolyte solution Drugs 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 235000003969 glutathione Nutrition 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 102000054751 human RUNX1T1 Human genes 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- BQINXKOTJQCISL-GRCPKETISA-N keto-neuraminic acid Chemical compound OC(=O)C(=O)C[C@H](O)[C@@H](N)[C@@H](O)[C@H](O)[C@H](O)CO BQINXKOTJQCISL-GRCPKETISA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 208000029744 multiple organ dysfunction syndrome Diseases 0.000 description 1
- 210000004897 n-terminal region Anatomy 0.000 description 1
- CERZMXAJYMMUDR-UHFFFAOYSA-N neuraminic acid Natural products NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO CERZMXAJYMMUDR-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 229920002113 octoxynol Polymers 0.000 description 1
- 150000002482 oligosaccharides Polymers 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000008196 pharmacological composition Substances 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 208000026425 severe pneumonia Diseases 0.000 description 1
- 208000013220 shortness of breath Diseases 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000010415 tropism Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/08—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
- C07K16/10—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
- C07K16/1002—Coronaviridae
- C07K16/1003—Severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2 or Covid-19]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/21—Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Definitions
- the present invention is related to human antibodies and antigen-binding fragments of human antibodies that specifically bind to the spike protein of the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) , and therapeutic and diagnostic methods of using those antibodies.
- SARS-CoV-2 Severe Acute Respiratory Syndrome-Coronavirus-2
- Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2, COVID-19) is a newly emergent betacoronavirus which causes severe acute respiratory disease. As of March 28, 2020, the World Health Organization reported 509, 164 cases of COVID-19 worldwide and 23, 335 deaths, yielding a global death rate from the disease of 4.58%. Over 100,000 COVID-19 cases have been identified in the United States with 1, 603 confirmed deaths, yielding a national COVID-19 death rate of 1.57%. At this rate, if the virus continues unabated despite clinical and public health interventions, COVID-19 could claim as many as 5 million lives in the United States alone. Clinical features of SARS-CoV-2 infection in humans range from an asymptomatic infection to very severe pneumonia, with potential development of acute respiratory distress syndrome, septic shock and multi-organ failure resulting in death.
- SARS-CoV-2 shares substantial genetic and functional similarity with other pathogenic human betacoronaviruses, including Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) .
- SARS-CoV Severe Acute Respiratory Syndrome Coronavirus
- MERS-CoV Middle Eastern Respiratory Syndrome Coronavirus
- the virus is believed to have originated in bats (Ge et al., 2013) or pangolins (Zhang et al., 2020) ; the exact source and animal reservoir of COVID-19 is yet to be elucidated.
- COVID-19 utilizes an extensively glycosylated envelope-bound homotrimeric Spike protein (S) to interact with the cellular ACE2 receptor. Binding to ACE2 triggers a series of cell membrane fusion events resulting in viral entry (Luan et al., 2020; Ortega et al., 2020) . Each S protomer consists of two subunits: a globular S1 domain at the N-terminal region, and the membrane-proximal S2 and transmembrane domains. Determinants of host range and cellular tropism are found in the ACE2 receptor binding domain (RBD) within the S1 domain, while mediators of membrane fusion have been identified within the S2 domain.
- RBD ACE2 receptor binding domain
- US 9,718,872 B2 describes the isolation and characterization of human antibodies to Middle East Respiratory Syndrome coronavirus spike protein as do US10,131,704B2, US10,406,222B2, and WO2016138160A1 while EP-2193802-B1, WO2008060331A9, US7629443B2, WO2006095180A2 describe the generation of neutralizing antibodies to SARS-CoV.
- Neutralizing human antibodies to the receptor binding domain of the COVID-19 spike protein from eight SARS-COV-2 infected individuals have been disclosed in a bioRxiv preprint by Ju et al., doi: https: //doi. org/10.1101/2020.03.21.990770.
- antibodies and fragments thereof that bind to SARS-CoV-2 spike protein, as well as nucleic acids encoding these antibodies, methods of use and articles containing them.
- Exemplary sequences of heavy and light chain regions that comprise CDRs useful in binding SARS-CoV-2 spike protein are provided in the Sequence Listing and the Figures.
- FIG. 1 COVID-19 antibody Heavy Chain Variable Regions (HCVR) . Alignment of fourteen patient-derived COVID-19 antibody HCVR amino acid sequences. Asterisks represent fully conserved residues, colons indicate conservation between groups of strong similar chemical properties, and periods indicate conservation between groups of weakly similar properties.
- HCVR Heavy Chain Variable Regions
- FIG. 1 COVID-19 antibody Light Chain Variable Regions (LCVR) . Alignment of fourteen patient-derived COVID-19 antibody LCVR amino acid sequences. Asterisks represent fully conserved residues, colons indicate conservation between groups of strong similar chemical properties, and periods indicate conservation between groups of weakly similar properties.
- LCVR Light Chain Variable Regions
- FIG. 1 Table 1. EC50 values (nanomolar) of select clones of the present invention.
- a microtiter plate-based assay used to detect the interaction between SARS-CoV-2 Spike protein RBD with COVID-19 antibodies of the present invention.
- SARS-CoV-2 Spike RBD was coated onto microtiter plates and then incubated with graded doses of recombinant human antibodies. Bound antibodies were detected with anti-human antibodies conjugated to horse radish peroxidase. Detection of COVID-19 antibodies was achieved upon addition of HRP substrate and measuring the resulting absorbance at 450 nm.
- EC50 values for the representative antibodies of the present invention are given with each antibody identifier.
- FIG. 1 An exemplary filter device comprising elongated tube 601 and internally disposed microfilters 605, with entry 607 and exit 609.
- immunoglobulin refers to a polypeptide encoded by a member of the immunoglobulin gene superfamily. This includes both immunoglobulin heavy chains and immunoglobulin light chains.
- antibody refers to an immunoglobulin molecule that recognizes and specifically binds to a one or more target antigens.
- antibody includes both intact antibodies and antigen-binding fragments of antibodies.
- An “intact antibody” comprises a tetramer composed of two pairs of polypeptide chains, each pair having one “light” chain (about 25 kD) and one “heavy” chain (about 50-70 kD) held together through disulfide bonds. Light chains and heavy chains each comprise a variable region and a constant region.
- Antibody binding occurs through at least one antigen recognition site within the variable region of the immunoglobulin at one or more epitopes on the antigen.
- the antigen recognition site of the variable region is composed of hypervariable regions or complementarity determining regions ( “CDRs” ) and frameworks regions.
- CDRs complementarity determining regions
- Each light chain and heavy chain of an intact immunoglobulin typically comprises three CDRs referred to as HCDRl, HCDR2 and HCDR3 (heavy chain) and (HCDRl, HCDR2 and HCDR3 (light chain) .
- Antibodies can be of (i) any of the five major classes of immunoglobulins, based on the identity of their heavy-chain constant domains –alpha (IgA) , delta (IgD) , epsilon (IgE) , gamma (IgG) and mu (IgM) , or (ii) subclasses (isotypes) thereof (E.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) .
- the lights chains can be either lamda or kappa.
- the term “intact” in reference to an antibody refers to an antibody comprising two heavy chains and two light chains.
- antigen-binding fragment in reference to an antibody is any fragment of an antibody that binds a target antigen.
- Antigen-binding fragments of antibodies typically include at least a heavy chain variable region and a light chain variable region.
- Antigen-binding fragments include, without limitation, the following forms: Fv (a monovalent or bi-valent variable region fragment, and can encompass only the variable regions (e.g., VL and/or VH) , Fab (VLCL VHCH) , F (ab') 2, Fv (VLVH) , scFv (single chain Fv) (a polypeptide comprising a VL and VH joined by a linker, e.g., a peptide linker) , (scFv) 2, sc (Fv) 2, bispecific sc (Fv) 2, bispecific (scFv) 2, minibody (sc (FV) 2 fused to CH3 domain) , triabody is trivalent s
- antibody further embraces multivalent antibodies (antibodies comprising binding regions that bind two different epitopes or proteins) .
- the term “monoclonal antibody” refers to a clonal preparation or composition of antibodies with a single binding specificity and affinity for a given epitope on an antigen ( “monoclonal antibody composition” ) .
- a “polyclonal antibody” refers to a preparation or composition of antibodies that are raised against a single antigen, but with different binding specificities and affinities ( “polyclonal antibody composition” ) .
- chimeric antibody refers to an antibody having amino acid sequences derived from two or more species.
- the variable region of both light and heavy chains correspond to the variable region of antibodies derived from one species of mammal (e.g., mouse, rat, rabbit, etc. ) with the desired specificity, affinity and capability, while the constant region are homologous the sequence derived from another species (typically in the subject receiving the therapy, e.g., human) to avoid eliciting an immune response.
- humanized antibody refers to a chimeric antibody in which the CDRs, obtained from the VH and VL regions of a non-human antibody having the desired specificity, affinity and capability are grafted to a human framework sequence.
- the framework residues of the humanized antibody is modified to refine and optimize the antibody specificity, affinity and capability.
- Humanization i.e., substitution of non-human CDR sequences for the corresponding sequences of a human antibody, can be performed following the methods described in, e.g., U.S. Patent Nos.
- human antibody refers to an antibody produced by a human or an antibody having an amino acid sequence corresponding thereto made by any technique known in the art.
- hybrid antibody refers to antibody in which pairs of heavy and light chains form antibodies with different antigenic determinant regions are assembled together so that two different epitopes or two different antigens can be recognized and bound by the resulting tetramer.
- Hybrid antibodies can be bispecific (binding 2 distinct antigens or epitopes) or multispecific (> 1 distinct antigen or epitope) .
- an antibody is “monospecific” if all of its antigen binding sites bind to the same epitope.
- an antibody is “bispecific” if it has at least two different antigen binding sites which each bind to a different epitope or antigen.
- an antibody is “polyvalent” if it has more than one antigen binding site.
- an antibody that is tetravalent has for antigen binding sites.
- variable region sequence Three complementarity determining regions contained within a variable region sequence refers to the set of CDR’s including CDR1, CDR2 and CDR3 contained within the variable region sequence. It can refer to the CDR sequence set included in a heavy chain (HCDRl, HCDR2 and HCDR3) or a light chain (LCDRl, LCDR2 and LCDR3) .
- a “full” CDR sequence set refers to the state including both heavy chain and light chain CDR sequences.
- the specificity of the binding can be defined in terms of the comparative dissociation constants (Kd) of the antibody (or other targeting moiety) for target, as compared to the dissociation constant with respect to the antibody and other materials in the environment or unrelated molecules in general.
- Kd comparative dissociation constants
- a larger (higher) Kd is a Kd that describes a lower affinity interaction.
- a smaller (lower) Kd is a Kd that describes a higher affinity interaction or tighter binding.
- the Kd for an antibody specifically binding to a target may be femtomolar, picomolar, nanomolar, or micromolar and the Kd for the antibody binding to unrelated material may be millimolar or higher.
- an antibody “specifically binds” or is “specific for” a target antigen or target group of antigens if it binds the target antigen or each member of the target group of antigens with an affinity of at least any of 1 ⁇ 10 -6 M, 1 ⁇ 10 -7 M, 1 ⁇ 10 -8 M, 1 ⁇ 10 -9 M, 1 ⁇ 10 -10 M, 1 ⁇ 10 -11 M, 1 ⁇ 10 -12 M, and binds to the target antigen with an affinity that is at least two-fold greater than its affinity for non-target antigens.
- specific binding is characterized by binding the antigen with sufficient affinity that the antibody is useful as a diagnostic to detect the antigen or epitope and/or as a therapeutic agent in targeting the antigen or epitope.
- an antibody binds” or “recognizes” an antigen or epitope if it binds the antigen or epitope with a Kd of less than 10 -4 M (i.e., in the micromolar range) .
- antibody neutralizes a virus if it both binds to the virus and inhibits infectivity of the virus.
- antibody interacts with” amino acid residues if the amino acid residues are included in an epitope to which the antibody binds.
- the measured level of reduction can be at least any of 5%, 10%, 25%, 50%, 80%, 90%, 95%, 97.5%, 99%, 99.5%, 99.9%of a control.
- the terms “antigen, ” “immunogen, ” and “antibody target, ” refer to a molecule, compound, or complex that is recognized by an antibody, i.e., can be bound by the antibody.
- epitope refers to the localized site on an antigen that is recognized and bound by an antibody.
- Epitopes can include a few amino acids or portions of a few amino acids, e.g., 5 or 6, or more, e.g., 20 or more amino acids, or portions of those amino acids.
- the epitope includes non-protein components, e.g., from a carbohydrate, nucleic acid, or lipid.
- the epitope is a three-dimensional moiety.
- the epitope can be comprised of consecutive amino acids, or amino acids from different parts of the protein that are brought into proximity by protein folding (e.g., a discontinuous epitope) .
- composition refers to a composition comprising a pharmaceutical compound (e.g., a drug) and a pharmaceutically acceptable carrier.
- the term “pharmaceutically acceptable” refers to a carrier that is compatible with the other ingredients of a pharmaceutical composition and can be safely administered to a subject.
- the term is used synonymously with “physiologically acceptable” and “pharmacologically acceptable” .
- Pharmaceutical compositions and techniques for their preparation and use are known to those of skill in the art in light of the present disclosure. For a detailed listing of suitable pharmacological compositions and techniques for their administration one may refer to texts such as Remington's Pharmaceutical Sciences, 17th ed. 1985; Brunton et al., “Goodman and Gilman’s The Pharmacological Basis of Therapeutics, ” McGraw-Hill, 2005; University of the Sciences in Philadelphia (eds.
- the term “diluent” refers to a pharmaceutically acceptable carrier which does not inhibit a physiological activity or property of an active compound, such as an antibody, or immunoconjugate, to be administered and does not irritate the subject and does not abrogate the biological activity and properties of the administered compound.
- Diluents include any and all solvents, dispersion media, coatings, surfactants, antioxidants, preservative salts, preservatives, binders, excipients, disintegration agents, lubricants, such like materials and combinations thereof, as would be known to one of ordinary skill in the art (see, for example, Remington's Pharmaceutical Sciences, 18th Ed. Mack Printing Company, 1990, pp. 1289-1329, incorporated herein by reference) . Except insofar as any conventional carrier is incompatible with the active ingredient, its use in the pharmaceutical compositions is contemplated.
- Pharmaceutically acceptable carriers will generally be sterile, at least for human use.
- a pharmaceutical composition will generally comprise agents for buffering and preservation in storage, and can include buffers and carriers for appropriate delivery, depending on the route of administration.
- Examples of pharmaceutically acceptable carriers include, without limitation, normal (0.9%) saline, phosphate-buffered saline (PBS) Hank’s balanced salt solution (HBSS) and multiple electrolyte solutions such as PlasmaLyte ATM (Baxter) .
- Acceptable carriers, excipients and/or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid, glutathione, cysteine, methionine and citric acid; preservatives (such as ethanol, benzyl alcohol, phenol, m-cresol, p-chlor-m-cresol, methyl or propyl parabens, benzalkonium chloride, or combinations thereof) ; amino acids such as arginine, glycine, ornithine, lysine, histidine, glutamic acid, aspartic acid, isoleucine, leucine, alanine, phenylalanine, tyrosine, tryptophan, methionine, serine, proline and combinations thereof; monosaccharides, disaccharides and other carbohydrates; low molecular weight (less than about 10 residues) polypeptides; proteins, such
- the term “subject” refers to an individual animal, including, without limitation, animals that may be reservoirs of SARS-CoV2.
- the term “patient” as used herein refers to a subject under the care or supervision of a health care provider such as a doctor or nurse.
- Subjects include mammals, including, without limitation, humans, pangolins, bats, civets, camels.
- biological sample refers to a sample of fluid or tissue sample derived from a subject.
- Biological samples include, without limitation, body fluids, tissues, secretions, and waste products derived from a subject. These include, without limitation, blood, plasma, serum, tears, saliva, cerebrospinal fluid, amniotic fluid, exhaled breath condensate, throat swab, lung lavage, urine and feces.
- immunoassay refers to a method of detecting an analyte by detecting binding between an antibody binding fragment of an antibody and the analyte.
- Immunoassay methods include, for example, radioimmunoassay, enzyme-linked immunosorbent assay (ELISA) , sandwich assays, Western blot, immunoprecipitation, immunohistochemistry, immunofluorescence, antibody microarray, dot blotting, and fluorescence-activated cell sorting (FACS) .
- An exemplary amino acid sequence of COVID19 Spike Glycoprotein Receptor is provided at SEQ ID NO. 61.
- the underlined residues (331-524) represent the binding domain.
- kit refers to a collection of items intended for use together.
- the items in the kit may or may not be in operative connection with each other.
- a kit can comprise, e.g., antibodies or antigen-binding fragments as disclosed herein, optionally attached to a solid support, as well as reagents for performing assays and control reagents.
- items in a kit are contained in primary containers, such as vials, tubes, bottles, boxes or bags. Separate items can be contained in their own, separate containers or in the same container.
- kits in a kit, or primary containers of a kit can be assembled into a secondary container, for example a box or a bag, optionally adapted for commercial sale, e.g., for shelving, or for transport by a common carrier, such as mail or delivery service.
- a common carrier such as mail or delivery service.
- solid support refers to a solid material to which antibodies can be attached.
- Exemplary solid supports include, without limitation, beads or particles (e.g., made of, sepharose) , microtiter plates, microchips, filters, membranes or fibers, e.g., microfiers (e.g., made of polyethylene, vinyl alcohol copolymer or polysulfone) and.
- Hollow microfibers for use in plasmapheresis can have an inner diameter of about 100 microns and 400 microns and a wall thickness of about 30 microns to 60 microns.
- a filter device for filtering blood during plasmapheresis.
- the device comprises an elongated, hollow tube comprising and entrance and an exit and, within the tube, a plurality of elongated microporous fibers, typically having an interior lumen extending along the length thereof, wherein the microporous filters comprise, immobilized thereto, an antibody or antigen binding fragment that binds to a SARS-CoV-2 spike protein, as described herein.
- Antibodies and antigen-binding fragments as disclosed herein are useful to detect SARS-CoV-2 infection and to make a diagnosis of SARS-CoV-2 infection or COVID 19 disease.
- diagnosis refers to a relative probability that a subject has a disorder.
- prognosis refers to a relative probability that a certain future outcome may occur in the subject.
- the term terms “therapy, ” “treatment, ” “therapeutic intervention” and “amelioration” refer to any activity resulting in a reduction in the severity of symptoms or disease.
- the terms “treat” and “prevent” are not intended to be absolute terms.
- Treatment and prevention can refer to any delay in onset, amelioration of symptoms, improvement in patient survival, increase in survival time or rate, etc. Treatment and prevention can be complete or partial.
- the severity of disease is reduced by at least 25%, 50%, 75%, 80%, or 90%, or in some cases, no longer detectable using standard diagnostic techniques.
- an “effective amount” refers to an amount of an agent, such as an antibody or antigen-binding fragment, that is sufficient to generate a desired response, such as reduce or eliminate a sign or symptom of SARS-CoV-2 infection or COVID 19 disease.
- an “effective amount” is one that treats (including prophylaxis) one or more symptoms and/or underlying causes of any of a disorder or disease and/or prevents progression of a disease.
- recombinant DNA or “recombinant nucleic acid” refers to a nucleic acid molecule comprising sequences not normally attached in nature.
- recombinant cell refers to a cell comprising a recombinant nucleic acid or a nucleic acid not normally found in the cell in nature.
- recombinant when used in reference to a protein, refers to a protein produced by a recombinant DNA technology.
- expression control sequence refers to a nucleotide sequence that regulates transcription and/or translation of a nucleotide sequence operatively linked thereto.
- Expression control sequences include promoters, enhancers, repressors ( “transcription regulatory sequences” ) and ribosome binding sites ( “translation regulatory sequences” ) .
- a nucleotide sequence is “operatively linked” with an expression control sequence when the expression control sequence functions in a cell to regulate transcription or translation of the nucleotide sequence. This includes promoting transcription of the nucleotide sequence through an interaction between a polymerase and a promoter.
- expression construct refers to a recombinant nucleic acid molecule comprising an expression control sequence operatively linked with a heterologous nucleic acid sequence.
- a “recombinant cell” refers to a cell comprising a recombinant nucleic acid molecule, e.g., a cell comprising an expression construct.
- sequence identity refers to the percentage of sequence identity between two polypeptide sequences or two nucleic acid sequences. To determine the percent identity of two amino acid sequences or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino acid or nucleic acid sequence) . The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position.
- the two sequences are the same length.
- the determination of percent identity between two sequences can also be accomplished using a mathematical algorithm.
- a preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul, 1990, Proc. Natl. Acad. Sci. U.S.A. 87: 2264-2268, modified as in Karlin and Altschul, 1993, Proc. Natl. Acad. Sci. U.S.A. 90: 5873-5877.
- Gapped BLAST can be utilized as described in Altschul et al., 1997, Nucleic Acids Res. 25:3389-3402.
- PSI-BLAST can be used to perform an iterated search which detects distant relationships between molecules (Id. ) .
- the default parameters of the respective programs e.g., of XBLAST and NBLAST
- Another preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, 1988, CABIOS 4: 11-17.
- ALIGN program version 2.0 which is part of the GCG sequence alignment software package.
- a PAM120 weight residue table a gap length penalty of 12
- a gap penalty of 4 a gap penalty of 4.
- the percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, typically only exact matches are counted.
- percentage sequence identities can be determined when antibody sequences are maximally aligned by IMGT. After alignment, if a subject antibody region (e.g., the entire mature variable region of a heavy or light chain) is being compared with the same region of a reference antibody, the percentage sequence identity between the subject and reference antibody regions is the number of positions occupied by the same amino acid in both the subject and reference antibody region divided by the total number of aligned positions of the two regions, multiplied by 100 to convert to percentage.
- a subject antibody region e.g., the entire mature variable region of a heavy or light chain
- Percent amino acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., Nucleic Acids Res. 25: 3389-3402 (1997) ) .
- NCBI-BLAST2 sequence comparison program may be obtained from the National Institute of Health, Bethesda, Md.
- %amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B is calculated as follows:
- nucleic acid sequence refers to a sequence of nucleoside or nucleotide monomers consisting of naturally occurring bases, sugars and intersugar (backbone) linkages and includes cDNA. The term also includes modified or substituted sequences comprising non-naturally occurring monomers or portions thereof.
- the nucleic acid sequences of the present application may be deoxyribonucleic acid sequences (DNA) or ribonucleic acid sequences (RNA) and may include naturally occurring bases including adenine, guanine, cytosine, thymidine and uracil.
- the sequences may also contain modified bases. Examples of such modified bases include aza and deaza adenine, guanine, cytosine, thymidine and uracil; and xanthine and hypoxanthine. It is understood that polynucleotides comprising non-transcribable nucleotide bases may be useful as probes in, for example, hybridization assays.
- nucleic acid can be either double stranded or single stranded, and represents the sense or antisense strand. Further, the term “nucleic acid” includes the complementary nucleic acid sequences as well as codon optimized or synonymous codon equivalents.
- amino acid sequence “consists of” only the amino acids in that sequence.
- a chemical entity such as a polypeptide
- the antibodies and binding-fragments thereof can be “aconjugated antibody” or a “non-conjugated antibody” (that is, not conjugated) .
- conjugate refers to a first molecule, e.g., an antibody (an “immunoconjugate” ) , chemically coupled with a moiety, such as a detectable label or a biologically active moiety, such as a drug, toxin or chemotherapeutic or cytotoxic agent. Accordingly, this disclosure contemplates antibodies conjugated with one or more moieties.
- labeled molecule refers to a molecule that is bound to a detectable label, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds, such that the presence of the molecule may be detected by detecting the presence of the detectable label bound to the molecule.
- detectable label refers to a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means. Examples of detectable labels are described herein and include, without limitation, colorimetric, fluorescent, chemiluminescent, enzymatic, and radioactive labels.
- a detectable label can also be a moiety that does not itself produce a signal (e.g., biotin) , but that binds to a second moiety that is able to produce a signal (e.g., labeled avidin) .
- the present invention provides antibodies and antigen-binding fragments thereof that bind SARS-CoV-2 spike protein.
- the antibodies of the present invention are useful, inter alia, for inhibiting or neutralizing the activity of COVID-19 spike protein.
- the antibodies are useful for blocking binding of the virus to its host cell receptor angiotensin converting enzyme 2 (ACE2) and for preventing the entry of COVID-19 virus into host cells.
- ACE2 angiotensin converting enzyme 2
- the antibodies function by inhibiting the cell-to-cell transmission of the virus.
- the antibodies are useful in preventing, treating or ameliorating at least one symptom of SARS-CoV-2 infection in a subject.
- the antibodies may be administered prophylactically or therapeutically to a subject having or at risk of having SARS-CoV-2 infection.
- the antibodies are not naturally occurring antibodies.
- the antibodies of the invention can be full-length (e.g., “intact” ) (for example, an IgG1 or IgG4 antibody) or may comprise only an antigen-binding portion (for example, a Fab, F (ab) 2 or scFv fragment) , and may be modified to affect functionality, e.g., to increase persistence in the host or to eliminate residual effector functions (Reddy et al., 2000, J. Immunol. 164: 1925-1933) .
- the antibodies may be bispecific.
- the present invention provides isolated recombinant monoclonal antibodies or antigen-binding fragments thereof that bind specifically to the SARS-CoV-2 spike protein.
- the antibodies are fully human monoclonal antibodies.
- the antibodies and antigen-binding fragments thereof of the invention bind to an epitope within the receptor binding domain (RBD) of the spike protein of SARS-CoV-2.
- the present invention provides antibodies and antigen-binding fragments thereof that bind to spike protein of different SARS-CoV-2 isolates.
- Figure 1 sets forth the amino acid sequence identifiers of the heavy chain variable regions (HCVRs) , and heavy chain complementarity determining regions (HCDRl, HCDR2 and HCDR3) ;
- Figure 2 sets forth the amino acid sequence identifiers of the light chain variable regions (LCVRs) , and light chain complementarity determining regions (LCDRl, LCDR2 and LCDR3) of exemplary anti-COVID-19 antibodies.
- SEQ ID NOs 1-14 and 29-42 set forth the nucleic acid sequences of the HCVRs, LCVRs, HCDRl, HCDR2 HCDR3, LCDRl, LCDR2 and LCDR3 of the exemplary anti-COVID-19 antibodies.
- SEQ ID NOs 15-28 and 43-56 set forth the amino acid sequences of the HCVRs, LCVRs, HCDRl, HCDR2 HCDR3, LCDRl, LCDR2 and LCDR3 of the exemplary anti-COVID-19 antibodies.
- the present invention provides antibodies, or antigen-binding fragments thereof, comprising an HCVR comprising an amino acid sequence selected from any of the HCVR amino acid sequences listed in Figure 1, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
- the present invention also provides antibodies, or antigen-binding fragments thereof, comprising an LCVR comprising an amino acid sequence selected from any of the LCVR amino acid sequences listed in Figure 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
- the present invention also provides antibodies, or antigen-binding fragments thereof, comprising an HCVR and an LCVR amino acid sequence pair (HCVR/LCVR) comprising any of the HCVR amino acid sequences listed in Figure 1 paired with any of the LCVR amino acid sequences listed in Figure 2.
- the present invention provides antibodies, or antigen-binding fragments thereof, comprising an HCVR/LCVR amino acid sequence pair contained within any of the exemplary anti-COVID-19 antibodies listed in Figures 1 and 2.
- the HCVR/LCVR amino acid sequence pair is selected from the group consisting of SEQ ID NOs: 15/43, 16/44, 17/45, 18/46, 19/47, 20/48, 21/49, 22/50, 23/51, 24/52, 25/53, 26/54, 27/55, and 28/56.
- the recombinant monoclonal antibody or antigen-binding fragment thereof that specifically binds to Severe Respiratory Syndrome Coronavirus-2 (SARS-CoV-2, COVID-19) spike protein comprises: three heavy chain complementarity determining regions (CDRs) (HCDRl, HCDR2 and HCDR3) contained within any one of the heavy chain variable region (HCVR) sequences selected from the group consisting of SEQ ID NOs: 15-28; and three light chain CDRs (LCDRl, LCDR2 and LCDR3) contained within any one of the light chain variable region (LCVR) sequences selected from the group consisting of SEQ ID NOs: 43-56.
- CDRs heavy chain complementarity determining regions
- the HCVR/LCVR amino acid sequence pairs are combined with heavy and light chain constant regions comprised of SEQ ID NO. 58 and 60, respectively.
- the antibody has one or more of the following characteristics: interacts with one or more amino acid residues in the receptor binding domain of the SARS-CoV-2 spike protein selected from amino acid residues 331 -524 of (SEQ ID NO 61) ; blocks binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 (ACE2) cellular receptor by more than 90%, as measured in a blocking ELISA assay; neutralizes SARS-CoV-2 infectivity of human host cells by more than 90%and with IC50 less than 20 nM, as measured in a virus-like particle (VLP) neutralization assay; neutralizes SARS-CoV-2 infectivity wherein the SARS-CoV-2 comprises an isolate of the virus derived from infected individuals; and prevents entry of SARS-CoV-2 into a host cell.
- ACE2 angiotensin converting enzyme
- the antibody or antigen-binding fragment thereof comprises a HCVR having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15-28. .
- the antibody or antigen-binding fragment thereof comprises a LCVR having an amino acid sequence selected from the group consisting of SEQ ID NOs: 43-56.
- the antibody or antigen-binding fragment comprises a HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 15/43, 16/44, 17/45, 18/46, 19/47, 20/48, 21/49, 22/50, 23/51, 24/52, 25/53, 26/54, 27/55, and 28/56.
- the antibody or antigen-binding fragment thereof is a human antibody, a humanized antibody, or a chimeric antibody. In another embodiment the antibody or antigen-binding fragment thereof is a bi-specific antibody. In another embodiment the antibody or antigen-binding fragment thereof is specific for a first epitope and a second, different, epitope of SARS-CoV-2 spike protein.
- an isolated human antibody or antigen-binding fragment thereof that competes for binding to SARS-CoV-2 with an antibody or antigen-binding fragment as described herein.
- the antibody or antigen-binding fragment thereof interacts with the spike protein of patient-derived SARS-CoV-2 isolates.
- the antibody or antigen-binding fragment thereof blocks the binding of SARS-CoV-2 to ACE2 on human cells.
- the antibody or antigen-binding fragment thereof is produced as a recombinant antibody in mammalian expression host, preferably 293T cells or Chinese hamster ovary (CHO) cell lines.
- an isolated recombinant human monoclonal antibody or antigen-binding fragment thereof that binds to the same epitope as the antibody or antigen-binding fragment as described herein.
- the antibody or antigen-binding fragment is a human antibody, a humanized antibody, or a chimeric antibody.
- the antibody or antigen-binding fragment recognizes an epitope of S1 Spike protein (SEQ ID NO 61) comprising amino acid residues 331 –524.
- a recombinant monoclonal antibody or antigen-binding fragment thereof that specifically binds to Severe Respiratory Syndrome Coronavirus-2 (SARS-CoV-2, COVID-19) spike protein
- the antibody or antigen-binding fragment comprises: a HCDRl domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15-28; a HCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15-28; a HCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15-28; a LCDRl domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 43-56; a LCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 43-56; a LCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 43-56.
- CDRs within HCVR and LCVR amino acid sequences are well known in the art and can be used to identify CDRs within the specified HCVR and/or LCVR amino acid sequences disclosed herein.
- Exemplary conventions that can be used to identify the boundaries of CDRs include, e.g., the Kabat definition, the Chothia definition, and the AbM definition.
- the Kabat definition is based on sequence variability
- the Chothia definition is based on the location of the structural loop regions
- the AbM definition is a compromise between the Kabat and Chothia approaches. See, e.g., Martin, "Protein Sequence and Structure Analysis of Antibody Variable Domains, " Antibody Engineering Vol. 2, DOI 10.1007/978-3-642-01147-4_3.
- Public databases are also available for identifying CDR sequences within an antibody.
- the present invention includes anti-COVID-19 antibodies having a modified glycosylation pattern.
- modification to remove undesirable glycosylation sites may be useful, or an antibody lacking a fucose moiety present on the oligosaccharide chain, for example, to increase antibody dependent cellular cytotoxicity (ADCC) function (see Shield et al. (2002) JBC 277: 26733) .
- ADCC antibody dependent cellular cytotoxicity
- modification of galactosylation can be made in order to modify complement dependent cytotoxicity (CDC) .
- the present invention also provides for antibodies and antigen-binding fragments thereof that compete for specific binding to SARS-CoV-2-Swith an antibody or antigen-binding fragment thereof comprising the CDRs of a HCVR and the CDRs of a LCVR, wherein the HCVR and LCVR each has an amino acid sequence selected from the HCVR and LCVR sequences listed in Figures 1 and 2.
- the present invention provides isolated antibodies and antigen-binding fragments thereof that block COVID-19 spike protein binding to ACE2.
- the antibody or antigen-binding fragment thereof that blocks SARS-CoV-2 spike protein binding to ACE2 may bind to the same epitope on SARS-CoV-2 spike protein as ACE2 or may bind to a different epitope on SARS-CoV-2 spike protein as ACE2.
- the present invention provides antibodies or antigen-binding fragments thereof that block the binding of SARS-CoV-2 to human, pangolin and bat ACE2.
- the antibodies or antigen-binding fragments of the present invention are bispecific comprising a first binding specificity to a first epitope in the receptor binding domain of SARS-CoV-2 spike protein and a second binding specificity to a second epitope in the receptor binding domain of SARS-CoV-2 spike protein wherein the first and second epitopes are distinct and non-overlapping.
- the invention provides an isolated antibody or antigen-binding fragment that has one or more of the following characteristics: (a) is a fully human monoclonal antibody; (b) is a fully recombinant human antibody produced by transfection or stable integration of the antibody coding sequences in an appropriate expression host such as 293T or Chinese hamster ovary cell lines; (c) interacts with one or more amino acid residues in the receptor binding domain of the SARS-CoV-2 spike protein (SEQ ID NO 61) selected from amino acid residues 331 -524; (d) blocks binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 (ACE2) by more than 90%, as measured in a blocking ELISA assay; (e) neutralizes SARS-CoV-2 infectivity of human host cells by more than 90%and with an IC50 less than 25 nM, as measured in a virus-like particle (VLP) neutralization assay; (f) neutralizes SARS-CoV-2 infectivity wherein the SARS-Co
- the present invention provides nucleic acid molecules encoding anti-SARS-CoV-2 spike antibodies or portions thereof.
- the present invention provides nucleic acid molecules encoding any of the HCVR amino acid sequences listed in Figure 1; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCVR nucleic acid sequences listed in SEQ ID NO. 1-14, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
- the present invention also provides nucleic acid molecules encoding any of the LCVR amino acid sequences listed in Figure 2; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCVR nucleic acid sequences listed in SEQ ID NO. 29-42, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
- the present invention also provides nucleic acid molecules encoding any of the HCDRI amino acid sequences listed in Figure 1; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCDRl nucleic acid sequences listed in SEQ ID NO. 1-14, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
- the present invention also provides nucleic acid molecules encoding any of the HCDR2 amino acid sequences listed in Figure 1; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCDR2 nucleic acid sequences listed in SEQ ID NO. 1-14, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
- the present invention also provides nucleic acid molecules encoding any of the HCDR3 amino acid sequences listed in Figure 1; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCDR3 nucleic acid sequences listed in SEQ ID NO. 1-14, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
- the present invention also provides nucleic acid molecules encoding any of the LCDRl amino acid sequences listed in Figure 2; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCDRl nucleic acid sequences listed in SEQ ID NO. 29-42, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
- the present invention also provides nucleic acid molecules encoding any of the LCDR2 amino acid sequences listed in Figure 2; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCDR2 nucleic acid sequences listed in SEQ ID NO. 29-42, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
- the present invention also provides nucleic acid molecules encoding any of the LCDR3 amino acid sequences listed in Figure 2; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCDR3 nucleic acid sequences listed in SEQ ID NO. 29-42, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
- the present invention also provides nucleic acid molecules encoding a human heavy chain constant region and a light chain constant region with which any of the HCVRs and LCVRs of Figure 1 and 2 may be paired to form a functional anti-COVID-19 antibody.
- the nucleotide sequences for the heavy chain constant region are given in SEQ ID NO. 57 and the corresponding amino acid sequence in SEQ ID NO. 58.
- the nucleotide sequences for the light chain constant region are given in SEQ ID NO. 59 and the corresponding amino acid sequence in SEQ ID NO. 60.
- the present invention provides nucleic acid molecules encoding any of the heavy chain amino acid sequences listed in Figure 1.
- the present invention also provides nucleic acid molecules encoding any of the light chain amino acid sequences listed in Figure 2.
- the present invention provides recombinant expression vectors capable of expressing a polypeptide comprising a heavy or light chain variable region of an anti-SARS-CoV-2 antibody.
- the present invention includes recombinant expression vectors comprising any of the nucleic acid molecules mentioned above, i.e., nucleic acid molecules encoding any of the HCVR, LCVR, and/or CDR sequences as set forth in Figures 1 and 2.
- host cells into which such vectors have been introduced as well as methods of producing the antibodies or portions thereof by culturing the host cells under conditions permitting production of the antibodies or antibody fragments, and recovering the antibodies and antibody fragments so produced.
- nucleic acid molecule encoding an amino acid sequence for a LCVR and/or a HCVR of an antibody or antigen-binding fragment of an antibody that binds to a SARS-CoV-2 spike protein, as provided herein.
- the nucleic acid molecule comprises nucleotide sequences encoding: three heavy chain complementarity determining regions (CDRs) (HCDRl, HCDR2 and HCDR3) contained within any one of the heavy chain variable region (HCVR) sequences selected from the group consisting of SEQ ID NOs: 15-28; and three light chain CDRs (LCDRl, LCDR2 and LCDR3) contained within any one of the light chain variable region (LCVR) sequences selected from the group consisting of SEQ ID NOs: 29-42.
- CDRs heavy chain complementarity determining regions
- the antibody or antigen-binding fragment comprises a HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 15/43, 16/44, 17/45, 18/46, 19/47, 20/48, 21/49, 22/50, 23/51, 24/52, 25/53, 26/54, 27/55, and 28/56.
- the nucleic acid molecule comprises a nucleotide sequence selected from any of SEQ ID NOs: 1-14 and SEQ ID NOs: 29-42.
- the nucleic acid molecule comprises a pair of nucleotide sequences selected from SEQ ID NOs: 1/29, 2/30, 3/31, 4/32, 5/33, 6/34, 7/35, 8/36, 9/37, 10/38, 11/39, 12/40, 30/41, 14/42.
- nucleic acid molecule encoding an amino acid sequence for a LCVR and/or a HCVR of an antibody or antigen-binding fragment thereof.
- a recombinant expression construct comprising an expression control sequence operatively linked to a recombinant nucleic acid molecule encoding an amino acid sequence for a LCVR and/or a HCVR of an antibody or antigen binding fragment of an antibody that binds to a SARS-CoV-2 spike protein, as provided herein.
- a recombinant host cell comprising a recombinant expression construct comprising one or more expression control sequences operatively linked to one or more recombinant nucleic acid molecules encoding a polypeptide comprising a LCVR and/or a HCVR of an antibody or antigen binding fragment of an antibody that binds to a SARS-CoV-2 spike protein, as provided herein.
- the polypeptide can further comprise an immunoglobulin light chain constant region and/or an immunoglobulin heavy chain constant region.
- each nucleic acid molecule encoding light chain or heavy chain sequences can be under control of the same or different expression control sequences.
- the invention provides a pharmaceutical composition comprising a therapeutically effective amount of at least one recombinant monoclonal antibody or antigen-binding fragment thereof which specifically binds COVID-19 spike protein and a pharmaceutically acceptable carrier.
- the invention features a composition which is a combination of an anti-SARS-CoV-2-S antibody and a second therapeutic agent.
- the second therapeutic agent is any agent that is advantageously combined with an anti-COVID-19 antibody.
- Exemplary agents that may be advantageously combined with an anti-SARS-CoV-2 antibody include, without limitation, other agents that bind and/or inhibit SARS-CoV-2 activity (including other antibodies or antigen-binding fragments thereof, etc.
- the invention provides for a pharmaceutical composition comprising: (a) a first anti-SARS-CoV-2-S antibody or antigen-binding fragment thereof; (b) a second anti-SARS-CoV-2-S antibody or antigen-binding fragment thereof, wherein the first antibody binds to a first epitope on SARS-CoV-2 spike protein and the second antibody binds to a second epitope on SARS-CoV-2 spike protein wherein the first and second epitopes are distinct and non-overlapping; and (c) a pharmaceutically acceptable carrier or diluent.
- the invention provides for a pharmaceutical composition
- a pharmaceutical composition comprising: (a) a first anti-SARS-CoV-2-Santibody or antigen-binding fragment thereof; (b) a second anti-SARS-CoV-2-S antibody or antigen-binding fragment thereof, wherein the first antibody does not cross-compete with the second antibody for binding to SARS-CoV-2 spike protein; and (c) a pharmaceutically acceptable carrier or diluent.
- a method of detecting SARS-CoV-2 comprising performing an immunoassay on a biological sample from a subject; wherein the immunoassay uses an antibody or antigen-binding fragment of an antibody that binds to a SARS-CoV-2 spike protein, as provided herein.
- the immunoassay selected from radioimmunoassay, enzyme-linked immunosorbent assay (ELISA) , sandwich assays, Western blot, immunoprecipitation, immunohistochemistry, immunofluorescence, antibody microarray, dot blotting, and fluorescence-activated cell sorting (FACS) .
- the subject is a human or a nonhuman mammal, e.g., pangolin, a bat, a civet or a camel.
- an antibody or antigen-binding fragment as described herein in the preparation of a diagnostic for the detection of SARS-CoV-2 in a sample.
- the invention provides therapeutic methods for treating a disease or disorder associated with SARS-CoV-2 such as viral infection in a subject using an anti-SARS-CoV-2-S antibody or antigen-binding portion of an antibody of the invention, wherein the therapeutic methods comprise administering a therapeutically effective amount of a pharmaceutical composition comprising an antibody or antigen-binding fragment of an antibody of the invention to the subject in need thereof.
- the disorder treated is any disease or condition which is improved, ameliorated, inhibited or prevented by inhibition of SARS-CoV-2 activity.
- the invention provides methods to prevent, treat or ameliorate at least one symptom of COVID-19 infection, the method comprising administering a therapeutically effective amount of an anti-SARS-CoV-2-S antibody or antigen-binding fragment thereof of the invention to a subject in need thereof.
- the present invention provides methods to ameliorate or reduce the severity of at least one symptom or indication of COVID-19 infection in a subject by administering an anti-COVID-19 antibody of the invention, wherein the at least one symptom or indication is selected from the group consisting of inflammation in the lung, alveolar damage, fever, cough, shortness of breath, diarrhea, organ failure, pneumonia, septic shock and death.
- the invention provides methods to decrease viral load in a subject, the methods comprising administering to the subject an effective amount of an antibody or fragment thereof of the invention that binds SARS-CoV-2-S and blocks SARS-CoV-2 binding to host cell receptor ACE2.
- the antibody or antigen-binding fragment thereof may be administered prophylactically or therapeutically to a subject having or at risk of having COVID-19 infection.
- the subjects at risk include, but are not limited to, an immunocompromised person, an elderly adult (more than 65 years of age) , children younger than 2 years of age, travelers to or from any country with known incidence to COVID-19 infection, healthcare workers, adults or children in close contact with a person (s) with confirmed or suspected COVID-19 infection, and people with underlying medical conditions such as pulmonary infection, heart disease or diabetes.
- the antibody or antigen-binding fragment thereof the invention is administered in combination with a second therapeutic agent to the subject in need thereof.
- the second therapeutic agent may be selected from the group consisting of any non-contraindicated anti-inflammatory drug (such as acetaminophen) , an anti-infective drug, a different antibody to SARS-CoV-2 spike protein, an anti-viral drug, a vaccine for SARS-CoV-2, a dietary supplement such as anti-oxidants and any other drug or therapy known in the art.
- the second therapeutic agent may be an agent that helps to counteract or reduce any possible side effect (s) associated with an antibody or antigen-binding fragment thereof of the invention, if such side effect (s) should occur.
- the antibody or fragment thereof may be administered subcutaneously, intravenously, intradermally, intraperitoneally, orally, intra-muscularly, or intracranially.
- the antibody may be administered as a single intravenous infusion for maximum concentration of the antibody in the serum of the subject.
- the antibody or fragment thereof may be administered at a dose of about 0.1 mg/kg of body weight to about 100 mg/kg of body weight of the subject.
- an antibody of the present invention may be administered at one or more doses comprising between 20 mg to 600 mg.
- the present invention also includes use of an anti-COVID-19 antibody or antigen-binding fragment thereof of the invention in the manufacture of a medicament for the treatment of a disease or disorder that would benefit from the blockade of SARS-CoV-2 binding and/or activity.
- a method of treating a subject infected with SARS-CoV-2 comprising administering to the subject an effective amount of a pharmaceutical composition comprising an antibody or antigen-binding fragment of an antibody that binds to a SARS-CoV-2 spike protein, as provided herein and a pharmaceutically acceptable carrier or diluent.
- a method of treating a subject infected with SARS-CoV-2 comprising performing plasmapheresis on the subject using plasma filter comprising a microporous fiber having immobilized thereto an antibody or antigen-binding fragment of an antibody that binds to a SARS-CoV-2 spike protein, as provided herein, wherein the antibody or the antigen-binding fragment of the antibody removes SARS-CoV-2 from the blood of the subject.
- the present invention includes use of anti-COVID-19 antibody or antigen-binding fragment thereof of the invention in the manufacture of in vitro diagnostics for the rapid detection of COVID-19 virus and/or portions thereof in body fluids, tissues, secretions, and waste products derived from humans or potential COVID-19 animal reservoirs, including but not limited to pangolins, bats, and other known animal reservoirs (e.g., civets and dromedary camels) of the genetically related betacoronaviruses referred to as SARS-CoV and MERS.
- body fluids, tissues, secretions, and waste products include, but are not limited to, blood, plasma, serum, tears, saliva, cerebrospinal fluid, amniotic fluid, exhaled breath condensate, urine and feces.
- the present invention includes use of anti-COVID-19 antibody or antigen-binding fragment thereof of the invention in the application and manufacture of solid supports/matrices employed in plasmapheresis to affect the concentration of COVID-19 viral particles and/or fragments derived therefrom.
- Such antibody-bearing scaffolds may have utility in active removal of COVID-19 particles from patient or donor plasma, thereby decreasing viral load.
- a solid support bearing one or more antibody or antigen-binding fragments that bind to SARS-CoV-2 spike protein as provided herein.
- the support comprises a microporous filter, e.g., a hollow microfiber configured for use in plasmapheresis.
- a filter device comprising an elongated, hollow tube comprising and entrance and an exit and, within the tube, a plurality of elongated, microporous fibers having an interior lumen extending along the length thereof, wherein the microporous fibers comprise, immobilized thereto, an antibody or antigen binding fragment that binds to a SARS-CoV-2 spike protein, as provided herein.
- an antibody or antigen-binding fragment of an antibody comprising culturing a recombinant host cell comprising a recombinant expression construct comprising one or more expression control sequences operatively linked to a recombinant nucleic acid molecule encoding an amino acid sequence for a LCVR and/or a HCVR of an antibody or antigen binding fragment of an antibody that binds to a SARS-CoV-2 spike protein, as provided herein, wherein the host cell produces the antibody or antigen-binding fragment of an antibody, and isolating the antibody or antigen-binding fragment of an antibody from the cell.
- antibodies e.g., recombinant, monoclonal, or polyclonal antibodies
- many techniques known in the art can be used (see, e.g., Kohler &Milstein, Nature 256: 495-497 (1975) ; Kozbor et al., Immunology Today 4: 72 (1983) ; Cole et al., pp. 77-96 in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. (1985) ; Coligan, Current Protocols in Immunology (1991) ; Harlow &Lane, Antibodies, A Laboratory Manual (1988) ; and Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986) ) .
- genes encoding the heavy and light chains of an antibody of interest can be cloned from a cell, e.g., the genes encoding a monoclonal antibody can be cloned from a hybridoma and used to produce a recombinant monoclonal antibody.
- Gene libraries encoding heavy and light chains of monoclonal antibodies can also be made from hybridoma or plasma cells. Techniques for the production of single chain antibodies or recombinant antibodies (U.S. Patent 4,946,778, U.S. Patent No. 4,816,567) can be adapted to produce antibodies to polypeptides of this invention.
- transgenic mice or other organisms such as other mammals, can be used to express humanized or human antibodies (see, e.g., U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, Marks et al., Bio/Technology 10: 779-783 (1992) ; Lonberg et al., Nature 368: 856-859 (1994) ; Morrison, Nature 368: 812-13 (1994) ; Fishwild et al., Nature Biotechnology 14: 845-51 (1996) ; Neuberger, Nature Biotechnology 14: 826 (1996) ; and Lonberg &Huszar, Intern. Rev. Immunol.
- phage display technology can be used to identify antibodies and heteromeric Fab fragments that specifically bind to selected antigens (see, e.g., McCafferty et al., Nature 348: 552-554 (1990) ; Marks et al., Biotechnology 10:779-783 (1992) ) .
- Antibodies can also be made bispecific, i.e., able to recognize two different antigens (see, e.g., WO 93/08829, Traunecker et al., EMBO J.
- Antibodies can also be heteroconjugates, e.g., two covalently joined antibodies, or immunotoxins (see, e.g., U.S. Patent No. 4,676,980 , WO 91/00360; WO 92/200373; and EP 03089) .
- Antibodies can be produced using any number of expression systems, including prokaryotic and eukaryotic expression systems.
- the expression system is a mammalian cell expression, such as a hybridoma, or a CHO cell expression system. Many such systems are widely available from commercial suppliers.
- the V H and V L regions may be expressed using a single vector, e.g., in a di-cistronic expression unit, or under the control of different promoters.
- the V H and V L region may be expressed using separate vectors.
- a V H or V L region as described herein may optionally comprise a methionine at the N-terminus.
- Binding fragments of antibodies can be produced by a variety of methods, including, digestion of an intact antibody with an enzyme, such as pepsin (to generate (Fab') 2 fragments) or papain (to generate Fab fragments) ; or de novo synthesis.
- an enzyme such as pepsin (to generate (Fab') 2 fragments) or papain (to generate Fab fragments) ; or de novo synthesis.
- Antibody fragments can also be synthesized using recombinant DNA methodology.
- a humanized antibody has one or more amino acid residues from a source which is non-human. These non-human amino acid residues are often referred to as import residues, which are typically taken from an import variable domain. Humanization can be essentially performed following the method of Winter and co-workers (see, e.g., Jones et al., Nature 321: 522-525 (1986) ; Riechmann et al., Nature 332: 323-327 (1988) ; Verhoeyen et al., Science 239: 1534-1536 (1988) and Presta, Curr. Op. Struct.
- humanized antibodies are chimeric antibodies (U.S. Patent No. 4,816,567) , wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.
- humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
- SEQ ID Nos 1–14 Heavy Chain Variable Region DNA Sequences
- SEQ ID Nos 29–42 Light Chain Variable Region DNA Sequences
- SEQ ID NOs 57–58 Heavy Chain Constant Region DNA and Amino Acid Sequences
- SEQ ID NOs 59-60 Light Chain Constant Region DNA and Amino Acid Sequences
- SEQ ID NO 61 COVID 19 Glycoprotein Receptor (underlined amino acids 331-524 represent binding domain)
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Virology (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Oncology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pulmonology (AREA)
- Communicable Diseases (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Peptides Or Proteins (AREA)
Abstract
Provided are recombinant monoclonal antibodies that bind to the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2 or COVID-19) spike protein, and methods of use. In various embodiments, the antibodies are fully human antibodies that bind to SARS-CoV-2 spike protein. In some embodiments, the antibodies are useful for inhibiting or neutralizing SARS-CoV-2 activity, thus providing a means of treating or preventing COVID-19 infection in humans. In some embodiments, provided is a combination of one or more antibodies that bind to the SARS-CoV-2 spike protein for use in treating COVID-19 infection. In certain embodiments, the one or more antibodies bind to distinct non-competing epitopes comprised in the receptor binding domain of the SARS-CoV-2 spike protein. In certain embodiments, the antibodies can be used to make an in vitro diagnostic for detection of COVID-19 in human and non-human animal samples. In still other embodiments, the antibodies can be used to remove virus from patient plasma via plasmapheresis.
Description
The present invention is related to human antibodies and antigen-binding fragments of human antibodies that specifically bind to the spike protein of the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) , and therapeutic and diagnostic methods of using those antibodies.
SEQUENCE LISTING
A sequence listing is appended hereto.
STATEMENT OF RELATED ART
[Rectified under Rule 91, 17.06.2020]
Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2, COVID-19) is a newly emergent betacoronavirus which causes severe acute respiratory disease. As of March 28, 2020, the World Health Organization reported 509, 164 cases of COVID-19 worldwide and 23, 335 deaths, yielding a global death rate from the disease of 4.58%. Over 100,000 COVID-19 cases have been identified in the United States with 1, 603 confirmed deaths, yielding a national COVID-19 death rate of 1.57%. At this rate, if the virus continues unabated despite clinical and public health interventions, COVID-19 could claim as many as 5 million lives in the United States alone. Clinical features of SARS-CoV-2 infection in humans range from an asymptomatic infection to very severe pneumonia, with potential development of acute respiratory distress syndrome, septic shock and multi-organ failure resulting in death.
Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2, COVID-19) is a newly emergent betacoronavirus which causes severe acute respiratory disease. As of March 28, 2020, the World Health Organization reported 509, 164 cases of COVID-19 worldwide and 23, 335 deaths, yielding a global death rate from the disease of 4.58%. Over 100,000 COVID-19 cases have been identified in the United States with 1, 603 confirmed deaths, yielding a national COVID-19 death rate of 1.57%. At this rate, if the virus continues unabated despite clinical and public health interventions, COVID-19 could claim as many as 5 million lives in the United States alone. Clinical features of SARS-CoV-2 infection in humans range from an asymptomatic infection to very severe pneumonia, with potential development of acute respiratory distress syndrome, septic shock and multi-organ failure resulting in death.
SARS-CoV-2 shares substantial genetic and functional similarity with other pathogenic human betacoronaviruses, including Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) . The virus is believed to have originated in bats (Ge et al., 2013) or pangolins (Zhang et al., 2020) ; the exact source and animal reservoir of COVID-19 is yet to be elucidated.
COVID-19 utilizes an extensively glycosylated envelope-bound homotrimeric Spike protein (S) to interact with the cellular ACE2 receptor. Binding to ACE2 triggers a series of cell membrane fusion events resulting in viral entry (Luan et al., 2020; Ortega et al., 2020) . Each S protomer consists of two subunits: a globular S1 domain at the N-terminal region, and the membrane-proximal S2 and transmembrane domains. Determinants of host range and cellular tropism are found in the ACE2 receptor binding domain (RBD) within the S1 domain, while mediators of membrane fusion have been identified within the S2 domain. A recent high-resolution structure of SARS-CoV-2 RBD bound to the N-terminal peptidase domain of ACE2 suggests that the overall ACE2-binding mechanism is virtually the same between SARS-CoV-2 and SARS-CoV RBDs, indicating convergent ACE2-binding evolution between these two viruses. This suggests that disruption of the RBD and ACE2 interaction would block SARS-CoV-2 entry into the target cell. Targeting of ACE2 has been shown, in fact, to inhibit COVID-19 infection. However, given the important physiological roles of ACE2 in vivo, these agents may have undesired side effects. Anti-Spike antibodies, on the other hand, should permit inhibition of COVID-19-ACE2 interactions without alternating or impeding ACE2 function. Furthermore, SARS-CoV or MERS-CoV RBD-based vaccine studies in experimental animals have also shown strong polyclonal antibody responses that inhibit viral entry.
These important findings indicate that anti-Spike antibodies should be able to effectively block SARS-CoV-2 entry.
US 9,718,872 B2 describes the isolation and characterization of human antibodies to Middle East Respiratory Syndrome coronavirus spike protein as do US10,131,704B2, US10,406,222B2, and WO2016138160A1 while EP-2193802-B1, WO2008060331A9, US7629443B2, WO2006095180A2 describe the generation of neutralizing antibodies to SARS-CoV. Neutralizing human antibodies to the receptor binding domain of the COVID-19 spike protein from eight SARS-COV-2 infected individuals have been disclosed in a bioRxiv preprint by Ju et al., doi: https: //doi. org/10.1101/2020.03.21.990770.
Thus far, there has been no vaccine or therapeutic agent to prevent or treat COVID-19 infection. In view of the continuing and substantial threat to human health and high fatality rate (over 4.5%globally) , there is an urgent need for preventive and therapeutic antiviral therapies for COVID-19 control. Fully human antibodies that specifically bind to SARS-CoV-2 spike protein with high affinity and inhibit virus infectivity could be important in the prevention and treatment of COVID-19 infection. Furthermore, high specificity COVID-19 Spike antibodies could serve as important reagents for the development of rapid in vitro diagnostics for COVID-19 detection at all stages of infection and, when applicable, therapeutic intervention.
BRIEF SUMMARY OF THE INVENTION
Provided herein are antibodies and fragments thereof that bind to SARS-CoV-2 spike protein, as well as nucleic acids encoding these antibodies, methods of use and articles containing them. Exemplary sequences of heavy and light chain regions that comprise CDRs useful in binding SARS-CoV-2 spike protein are provided in the Sequence Listing and the Figures.
Figure 1. COVID-19 antibody Heavy Chain Variable Regions (HCVR) . Alignment of fourteen patient-derived COVID-19 antibody HCVR amino acid sequences. Asterisks represent fully conserved residues, colons indicate conservation between groups of strong similar chemical properties, and periods indicate conservation between groups of weakly similar properties.
Figure 2. COVID-19 antibody Light Chain Variable Regions (LCVR) . Alignment of fourteen patient-derived COVID-19 antibody LCVR amino acid sequences. Asterisks represent fully conserved residues, colons indicate conservation between groups of strong similar chemical properties, and periods indicate conservation between groups of weakly similar properties.
Figure 3. Table 1. EC50 values (nanomolar) of select clones of the present invention. A microtiter plate-based assay used to detect the interaction between SARS-CoV-2 Spike protein RBD with COVID-19 antibodies of the present invention. SARS-CoV-2 Spike RBD was coated onto microtiter plates and then incubated with graded doses of recombinant human antibodies. Bound antibodies were detected with anti-human antibodies conjugated to horse radish peroxidase. Detection of COVID-19 antibodies was achieved upon addition of HRP substrate and measuring the resulting absorbance at 450 nm. EC50 values for the representative antibodies of the present invention are given with each antibody identifier.
Figure 4. An exemplary filter device comprising elongated tube 601 and internally disposed microfilters 605, with entry 607 and exit 609.
I. Definitions
As used herein, the term “immunoglobulin” refers to a polypeptide encoded by a member of the immunoglobulin gene superfamily. This includes both immunoglobulin heavy chains and immunoglobulin light chains.
As used herein, the term “antibody” refers to an immunoglobulin molecule that recognizes and specifically binds to a one or more target antigens. The term “antibody” includes both intact antibodies and antigen-binding fragments of antibodies. An “intact antibody” comprises a tetramer composed of two pairs of polypeptide chains, each pair having one “light” chain (about 25 kD) and one “heavy” chain (about 50-70 kD) held together through disulfide bonds. Light chains and heavy chains each comprise a variable region and a constant region.
Antibody binding occurs through at least one antigen recognition site within the variable region of the immunoglobulin at one or more epitopes on the antigen. The antigen recognition site of the variable region is composed of hypervariable regions or complementarity determining regions ( “CDRs” ) and frameworks regions. Each light chain and heavy chain of an intact immunoglobulin typically comprises three CDRs referred to as HCDRl, HCDR2 and HCDR3 (heavy chain) and (HCDRl, HCDR2 and HCDR3 (light chain) .
Antibodies can be of (i) any of the five major classes of immunoglobulins, based on the identity of their heavy-chain constant domains –alpha (IgA) , delta (IgD) , epsilon (IgE) , gamma (IgG) and mu (IgM) , or (ii) subclasses (isotypes) thereof (E.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) . The lights chains can be either lamda or kappa.
As used herein, the term “intact” in reference to an antibody refers to an antibody comprising two heavy chains and two light chains.
As used herein, the term “antigen-binding fragment” in reference to an antibody is any fragment of an antibody that binds a target antigen. Antigen-binding fragments of antibodies typically include at least a heavy chain variable region and a light chain variable region. Antigen-binding fragments include, without limitation, the following forms: Fv (a monovalent or bi-valent variable region fragment, and can encompass only the variable regions (e.g., VL and/or VH) , Fab (VLCL VHCH) , F (ab') 2, Fv (VLVH) , scFv (single chain Fv) (a polypeptide comprising a VL and VH joined by a linker, e.g., a peptide linker) , (scFv) 2, sc (Fv) 2, bispecific sc (Fv) 2, bispecific (scFv) 2, minibody (sc (FV) 2 fused to CH3 domain) , triabody is trivalent sc (Fv) 3 or trispecific sc (Fv) 3.
The term antibody further embraces multivalent antibodies (antibodies comprising binding regions that bind two different epitopes or proteins) .
As used herein, the term “monoclonal antibody” refers to a clonal preparation or composition of antibodies with a single binding specificity and affinity for a given epitope on an antigen ( “monoclonal antibody composition” ) . A “polyclonal antibody” refers to a preparation or composition of antibodies that are raised against a single antigen, but with different binding specificities and affinities ( “polyclonal antibody composition” ) .
As used herein, the term “chimeric antibody” refers to an antibody having amino acid sequences derived from two or more species. In one embodiment, the variable region of both light and heavy chains correspond to the variable region of antibodies derived from one species of mammal (e.g., mouse, rat, rabbit, etc. ) with the desired specificity, affinity and capability, while the constant region are homologous the sequence derived from another species (typically in the subject receiving the therapy, e.g., human) to avoid eliciting an immune response.
As used herein, the term “humanized antibody” refers to a chimeric antibody in which the CDRs, obtained from the VH and VL regions of a non-human antibody having the desired specificity, affinity and capability are grafted to a human framework sequence. In one embodiment, the framework residues of the humanized antibody is modified to refine and optimize the antibody specificity, affinity and capability. Humanization, i.e., substitution of non-human CDR sequences for the corresponding sequences of a human antibody, can be performed following the methods described in, e.g., U.S. Patent Nos. 5,545,806; 5,569,825; 5,633,425; 5,661,016; Riechmann et al., Nature 332: 323-327 (1988) ; Marks et al., Bio/Technology 10: 779-783 (1992) ; Morrison, Nature 368: 812-13 (1994) ; Fishwild et al., Nature Biotechnology 14: 845-51 (1996) .
As used herein, the term “human antibody” refers to an antibody produced by a human or an antibody having an amino acid sequence corresponding thereto made by any technique known in the art.
As used herein, the term “hybrid antibody” refers to antibody in which pairs of heavy and light chains form antibodies with different antigenic determinant regions are assembled together so that two different epitopes or two different antigens can be recognized and bound by the resulting tetramer. Hybrid antibodies can be bispecific (binding 2 distinct antigens or epitopes) or multispecific (> 1 distinct antigen or epitope) .
As used herein, an antibody is “monospecific” if all of its antigen binding sites bind to the same epitope.
As used herein, an antibody is “bispecific” if it has at least two different antigen binding sites which each bind to a different epitope or antigen.
As used herein, an antibody is “polyvalent” if it has more than one antigen binding site. For example, an antibody that is tetravalent has for antigen binding sites.
Three complementarity determining regions contained within a variable region sequence refers to the set of CDR’s including CDR1, CDR2 and CDR3 contained within the variable region sequence. It can refer to the CDR sequence set included in a heavy chain (HCDRl, HCDR2 and HCDR3) or a light chain (LCDRl, LCDR2 and LCDR3) . A “full” CDR sequence set refers to the state including both heavy chain and light chain CDR sequences.
The specificity of the binding can be defined in terms of the comparative dissociation constants (Kd) of the antibody (or other targeting moiety) for target, as compared to the dissociation constant with respect to the antibody and other materials in the environment or unrelated molecules in general. A larger (higher) Kd is a Kd that describes a lower affinity interaction. Conversely a smaller (lower) Kd is a Kd that describes a higher affinity interaction or tighter binding. By way of example only, the Kd for an antibody specifically binding to a target may be femtomolar, picomolar, nanomolar, or micromolar and the Kd for the antibody binding to unrelated material may be millimolar or higher. Binding affinity can be in the micromolar range (kD = 10
-4 to 10
-6) , nanomole range (kD = 10
-7 M to 10
-9 M) , picomole range (kD = 10
-10 M to 10
-
12 M) , or femtomole range (kD = 10
-13 M to 10
-15 M) .
As used herein, an antibody “specifically binds” or is “specific for” a target antigen or target group of antigens if it binds the target antigen or each member of the target group of antigens with an affinity of at least any of 1×10
-6 M, 1×10
-7M, 1×10
-8M, 1×10
-9 M, 1×10
-10 M, 1×10
-11 M, 1×10
-12 M, and binds to the target antigen with an affinity that is at least two-fold greater than its affinity for non-target antigens. Typically, specific binding is characterized by binding the antigen with sufficient affinity that the antibody is useful as a diagnostic to detect the antigen or epitope and/or as a therapeutic agent in targeting the antigen or epitope.
As used herein, an antibody “binds” or “recognizes” an antigen or epitope if it binds the antigen or epitope with a Kd of less than 10
-4M (i.e., in the micromolar range) .
As used herein, and antibody “neutralizes” a virus if it both binds to the virus and inhibits infectivity of the virus.
As used herein, and antibody “interacts with” amino acid residues if the amino acid residues are included in an epitope to which the antibody binds.
As used herein, and antibody “blocks” or “antagonizes” the binding between two molecules when it competitively reduces or prevents interaction of the molecules. In an embodiment, the measured level of reduction can be at least any of 5%, 10%, 25%, 50%, 80%, 90%, 95%, 97.5%, 99%, 99.5%, 99.9%of a control.
As used herein, the terms “antigen, ” “immunogen, ” and “antibody target, ” refer to a molecule, compound, or complex that is recognized by an antibody, i.e., can be bound by the antibody.
As used herein, the term “epitope” refers to the localized site on an antigen that is recognized and bound by an antibody. Epitopes can include a few amino acids or portions of a few amino acids, e.g., 5 or 6, or more, e.g., 20 or more amino acids, or portions of those amino acids. In some cases, the epitope includes non-protein components, e.g., from a carbohydrate, nucleic acid, or lipid. In some cases, the epitope is a three-dimensional moiety. Thus, for example, where the target is a protein, the epitope can be comprised of consecutive amino acids, or amino acids from different parts of the protein that are brought into proximity by protein folding (e.g., a discontinuous epitope) .
As used herein, the term “pharmaceutical composition” refers to a composition comprising a pharmaceutical compound (e.g., a drug) and a pharmaceutically acceptable carrier.
As used herein, the term “pharmaceutically acceptable” refers to a carrier that is compatible with the other ingredients of a pharmaceutical composition and can be safely administered to a subject. The term is used synonymously with “physiologically acceptable” and “pharmacologically acceptable” . Pharmaceutical compositions and techniques for their preparation and use are known to those of skill in the art in light of the present disclosure. For a detailed listing of suitable pharmacological compositions and techniques for their administration one may refer to texts such as Remington's Pharmaceutical Sciences, 17th ed. 1985; Brunton et al., “Goodman and Gilman’s The Pharmacological Basis of Therapeutics, ” McGraw-Hill, 2005; University of the Sciences in Philadelphia (eds. ) , “Remington: The Science and Practice of Pharmacy, ” Lippincott Williams &Wilkins, 2005; and University of the Sciences in Philadelphia (eds. ) , “Remington: The Principles of Pharmacy Practice, ” Lippincott Williams &Wilkins, 2008.
As used herein, the term “diluent” refers to a pharmaceutically acceptable carrier which does not inhibit a physiological activity or property of an active compound, such as an antibody, or immunoconjugate, to be administered and does not irritate the subject and does not abrogate the biological activity and properties of the administered compound. Diluents include any and all solvents, dispersion media, coatings, surfactants, antioxidants, preservative salts, preservatives, binders, excipients, disintegration agents, lubricants, such like materials and combinations thereof, as would be known to one of ordinary skill in the art (see, for example, Remington's Pharmaceutical Sciences, 18th Ed. Mack Printing Company, 1990, pp. 1289-1329, incorporated herein by reference) . Except insofar as any conventional carrier is incompatible with the active ingredient, its use in the pharmaceutical compositions is contemplated.
Pharmaceutically acceptable carriers will generally be sterile, at least for human use. A pharmaceutical composition will generally comprise agents for buffering and preservation in storage, and can include buffers and carriers for appropriate delivery, depending on the route of administration. Examples of pharmaceutically acceptable carriers include, without limitation, normal (0.9%) saline, phosphate-buffered saline (PBS) Hank’s balanced salt solution (HBSS) and multiple electrolyte solutions such as PlasmaLyte ATM (Baxter) .
Acceptable carriers, excipients and/or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid, glutathione, cysteine, methionine and citric acid; preservatives (such as ethanol, benzyl alcohol, phenol, m-cresol, p-chlor-m-cresol, methyl or propyl parabens, benzalkonium chloride, or combinations thereof) ; amino acids such as arginine, glycine, ornithine, lysine, histidine, glutamic acid, aspartic acid, isoleucine, leucine, alanine, phenylalanine, tyrosine, tryptophan, methionine, serine, proline and combinations thereof; monosaccharides, disaccharides and other carbohydrates; low molecular weight (less than about 10 residues) polypeptides; proteins, such as gelatin or serum albumin; chelating agents such as EDTA; sugars such as trehalose, sucrose, lactose, glucose, mannose, maltose, galactose, fructose, sorbose, raffinose, glucosamine, N-methylglucosamine, galactosamine, and neuraminic acid; and/or non-ionic surfactants such as Tween, Pluronics, Triton-X, or polyethylene glycol (PEG) .
As used herein, the term “subject” refers to an individual animal, including, without limitation, animals that may be reservoirs of SARS-CoV2. The term “patient” as used herein refers to a subject under the care or supervision of a health care provider such as a doctor or nurse. Subjects include mammals, including, without limitation, humans, pangolins, bats, civets, camels.
As used herein, the term “biological sample" refers to a sample of fluid or tissue sample derived from a subject. Biological samples include, without limitation, body fluids, tissues, secretions, and waste products derived from a subject. These include, without limitation, blood, plasma, serum, tears, saliva, cerebrospinal fluid, amniotic fluid, exhaled breath condensate, throat swab, lung lavage, urine and feces.
As used herein, the term “immunoassay” refers to a method of detecting an analyte by detecting binding between an antibody binding fragment of an antibody and the analyte. Immunoassay methods include, for example, radioimmunoassay, enzyme-linked immunosorbent assay (ELISA) , sandwich assays, Western blot, immunoprecipitation, immunohistochemistry, immunofluorescence, antibody microarray, dot blotting, and fluorescence-activated cell sorting (FACS) .
An exemplary amino acid sequence of COVID19 Spike Glycoprotein Receptor is provided at SEQ ID NO. 61. The underlined residues (331-524) represent the binding domain.
As used herein, the term “kit” refers to a collection of items intended for use together. The items in the kit may or may not be in operative connection with each other. A kit can comprise, e.g., antibodies or antigen-binding fragments as disclosed herein, optionally attached to a solid support, as well as reagents for performing assays and control reagents. Typically, items in a kit are contained in primary containers, such as vials, tubes, bottles, boxes or bags. Separate items can be contained in their own, separate containers or in the same container. Items in a kit, or primary containers of a kit, can be assembled into a secondary container, for example a box or a bag, optionally adapted for commercial sale, e.g., for shelving, or for transport by a common carrier, such as mail or delivery service.
As used herein, the term “solid support” refers to a solid material to which antibodies can be attached. Exemplary solid supports include, without limitation, beads or particles (e.g., made of, sepharose) , microtiter plates, microchips, filters, membranes or fibers, e.g., microfiers (e.g., made of polyethylene, vinyl alcohol copolymer or polysulfone) and. Hollow microfibers for use in plasmapheresis can have an inner diameter of about 100 microns and 400 microns and a wall thickness of about 30 microns to 60 microns.
In one embodiment, provided herein is a filter device for filtering blood during plasmapheresis. The device comprises an elongated, hollow tube comprising and entrance and an exit and, within the tube, a plurality of elongated microporous fibers, typically having an interior lumen extending along the length thereof, wherein the microporous filters comprise, immobilized thereto, an antibody or antigen binding fragment that binds to a SARS-CoV-2 spike protein, as described herein.
Antibodies and antigen-binding fragments as disclosed herein are useful to detect SARS-CoV-2 infection and to make a diagnosis of SARS-CoV-2 infection or COVID 19 disease. As used herein, the term “diagnosis” refers to a relative probability that a subject has a disorder. Similarly, the term “prognosis” refers to a relative probability that a certain future outcome may occur in the subject.
As used herein, the term terms “therapy, ” “treatment, ” “therapeutic intervention” and “amelioration” refer to any activity resulting in a reduction in the severity of symptoms or disease. The terms “treat” and “prevent” are not intended to be absolute terms. Treatment and prevention can refer to any delay in onset, amelioration of symptoms, improvement in patient survival, increase in survival time or rate, etc. Treatment and prevention can be complete or partial. In some aspects, the severity of disease is reduced by at least 25%, 50%, 75%, 80%, or 90%, or in some cases, no longer detectable using standard diagnostic techniques.
As used herein, the terms “effective amount, ” “effective dose, ” and “therapeutically effective amount, ” refer to an amount of an agent, such as an antibody or antigen-binding fragment, that is sufficient to generate a desired response, such as reduce or eliminate a sign or symptom of SARS-CoV-2 infection or COVID 19 disease. In some examples, an “effective amount” is one that treats (including prophylaxis) one or more symptoms and/or underlying causes of any of a disorder or disease and/or prevents progression of a disease.
The term “recombinant DNA” or “recombinant nucleic acid” refers to a nucleic acid molecule comprising sequences not normally attached in nature. The term “recombinant cell” refers to a cell comprising a recombinant nucleic acid or a nucleic acid not normally found in the cell in nature. The term “recombinant” when used in reference to a protein, refers to a protein produced by a recombinant DNA technology.
As used herein, the term “expression control sequence” refers to a nucleotide sequence that regulates transcription and/or translation of a nucleotide sequence operatively linked thereto. Expression control sequences include promoters, enhancers, repressors ( “transcription regulatory sequences” ) and ribosome binding sites ( “translation regulatory sequences” ) .
As used herein, a nucleotide sequence is “operatively linked” with an expression control sequence when the expression control sequence functions in a cell to regulate transcription or translation of the nucleotide sequence. This includes promoting transcription of the nucleotide sequence through an interaction between a polymerase and a promoter.
As used herein, the term “expression construct” refers to a recombinant nucleic acid molecule comprising an expression control sequence operatively linked with a heterologous nucleic acid sequence.
As used herein, a “recombinant cell” refers to a cell comprising a recombinant nucleic acid molecule, e.g., a cell comprising an expression construct.
The term "sequence identity" as used herein refers to the percentage of sequence identity between two polypeptide sequences or two nucleic acid sequences. To determine the percent identity of two amino acid sequences or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino acid or nucleic acid sequence) . The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., %identity=number of identical overlapping positions/total number of positions times 100%) . In one embodiment, the two sequences are the same length. The determination of percent identity between two sequences can also be accomplished using a mathematical algorithm. A preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul, 1990, Proc. Natl. Acad. Sci. U.S.A. 87: 2264-2268, modified as in Karlin and Altschul, 1993, Proc. Natl. Acad. Sci. U.S.A. 90: 5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul et al., 1990, J. Mol. Biol. 215: 403. BLAST nucleotide searches can be performed with the NBLAST nucleotide program parameters set, e.g., for score=100, wordlength=12 to obtain nucleotide sequences homologous to a nucleic acid molecules of the present application. BLAST protein searches can be performed with the XBLAST program parameters set, e.g., to score-50, wordlength=3 to obtain amino acid sequences homologous to a protein molecule described herein. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., 1997, Nucleic Acids Res. 25:3389-3402. Alternatively, PSI-BLAST can be used to perform an iterated search which detects distant relationships between molecules (Id. ) . When utilizing BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of the respective programs (e.g., of XBLAST and NBLAST) can be used (see, e.g., the NCBI website) . Another preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, 1988, CABIOS 4: 11-17. Such an algorithm is incorporated in the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. The percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, typically only exact matches are counted.
For antibodies, percentage sequence identities can be determined when antibody sequences are maximally aligned by IMGT. After alignment, if a subject antibody region (e.g., the entire mature variable region of a heavy or light chain) is being compared with the same region of a reference antibody, the percentage sequence identity between the subject and reference antibody regions is the number of positions occupied by the same amino acid in both the subject and reference antibody region divided by the total number of aligned positions of the two regions, multiplied by 100 to convert to percentage.
Percent amino acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., Nucleic Acids Res. 25: 3389-3402 (1997) ) . The NCBI-BLAST2 sequence comparison program may be obtained from the National Institute of Health, Bethesda, Md. NCBI-BLAST2 uses several search parameters, wherein all of those search parameters are set to default values including, for example, unmask=yes, strand=all, expected occurrences=10, minimum low complexity length= 15/5, multi-pass e-value=0.01, constant for multi-pass=25, dropoff for final gapped alignment=25 and scoring matrix=BLOSUM62.
In situations where NCBI-BLAST2 is employed for amino acid sequence comparisons, the %amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain %amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows:
100 times the fraction X/Y
where X is the number of amino acid residues scored as identical matches by the sequence alignment program NCBI-BLAST2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the %amino acid sequence identity of A to B will not equal the %amino acid sequence identity of B to A. The term “nucleic acid sequence” as used herein refers to a sequence of nucleoside or nucleotide monomers consisting of naturally occurring bases, sugars and intersugar (backbone) linkages and includes cDNA. The term also includes modified or substituted sequences comprising non-naturally occurring monomers or portions thereof. The nucleic acid sequences of the present application may be deoxyribonucleic acid sequences (DNA) or ribonucleic acid sequences (RNA) and may include naturally occurring bases including adenine, guanine, cytosine, thymidine and uracil. The sequences may also contain modified bases. Examples of such modified bases include aza and deaza adenine, guanine, cytosine, thymidine and uracil; and xanthine and hypoxanthine. It is understood that polynucleotides comprising non-transcribable nucleotide bases may be useful as probes in, for example, hybridization assays. The nucleic acid can be either double stranded or single stranded, and represents the sense or antisense strand. Further, the term "nucleic acid" includes the complementary nucleic acid sequences as well as codon optimized or synonymous codon equivalents.
As used herein, an amino acid sequence “consists of” only the amino acids in that sequence.
As used herein, a chemical entity, such as a polypeptide, is “substantially pure” if it is the predominant chemical entity of its kind (e.g., of polypeptides) in a composition. This includes the chemical entity representing more than 50%, more than 80%, more than 90%, more than 95%, more than 98%, more than 99%, more than 99.5%, more than 99.9%, or more than 99.99%of the chemical entities of its kind in the composition.
The antibodies and binding-fragments thereof can be “aconjugated antibody” or a “non-conjugated antibody” (that is, not conjugated) . The term “conjugate” refers to a first molecule, e.g., an antibody (an “immunoconjugate” ) , chemically coupled with a moiety, such as a detectable label or a biologically active moiety, such as a drug, toxin or chemotherapeutic or cytotoxic agent. Accordingly, this disclosure contemplates antibodies conjugated with one or more moieties.
As used herein, the term “labeled” molecule refers to a molecule that is bound to a detectable label, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds, such that the presence of the molecule may be detected by detecting the presence of the detectable label bound to the molecule.
As used herein, the term “detectable label” refers to a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means. Examples of detectable labels are described herein and include, without limitation, colorimetric, fluorescent, chemiluminescent, enzymatic, and radioactive labels. For the purposes of the present disclosure, a detectable label can also be a moiety that does not itself produce a signal (e.g., biotin) , but that binds to a second moiety that is able to produce a signal (e.g., labeled avidin) .
II. Antibodies
The present invention provides antibodies and antigen-binding fragments thereof that bind SARS-CoV-2 spike protein. The antibodies of the present invention are useful, inter alia, for inhibiting or neutralizing the activity of COVID-19 spike protein. In some embodiments, the antibodies are useful for blocking binding of the virus to its host cell receptor angiotensin converting enzyme 2 (ACE2) and for preventing the entry of COVID-19 virus into host cells. In some embodiments, the antibodies function by inhibiting the cell-to-cell transmission of the virus. In certain embodiments, the antibodies are useful in preventing, treating or ameliorating at least one symptom of SARS-CoV-2 infection in a subject. In certain embodiments, the antibodies may be administered prophylactically or therapeutically to a subject having or at risk of having SARS-CoV-2 infection. In certain embodiments, the antibodies are not naturally occurring antibodies.
The antibodies of the invention can be full-length (e.g., “intact” ) (for example, an IgG1 or IgG4 antibody) or may comprise only an antigen-binding portion (for example, a Fab, F (ab) 2 or scFv fragment) , and may be modified to affect functionality, e.g., to increase persistence in the host or to eliminate residual effector functions (Reddy et al., 2000, J. Immunol. 164: 1925-1933) . In certain embodiments, the antibodies may be bispecific.
In a first aspect, the present invention provides isolated recombinant monoclonal antibodies or antigen-binding fragments thereof that bind specifically to the SARS-CoV-2 spike protein. In some embodiments, the antibodies are fully human monoclonal antibodies. The antibodies and antigen-binding fragments thereof of the invention bind to an epitope within the receptor binding domain (RBD) of the spike protein of SARS-CoV-2. In some embodiments, the present invention provides antibodies and antigen-binding fragments thereof that bind to spike protein of different SARS-CoV-2 isolates.
Exemplary anti-COVID-19 spike antibodies of the present invention are listed in Figures 1 and 2 herein. Figure 1 sets forth the amino acid sequence identifiers of the heavy chain variable regions (HCVRs) , and heavy chain complementarity determining regions (HCDRl, HCDR2 and HCDR3) ; Figure 2 sets forth the amino acid sequence identifiers of the light chain variable regions (LCVRs) , and light chain complementarity determining regions (LCDRl, LCDR2 and LCDR3) of exemplary anti-COVID-19 antibodies. SEQ ID NOs 1-14 and 29-42 set forth the nucleic acid sequences of the HCVRs, LCVRs, HCDRl, HCDR2 HCDR3, LCDRl, LCDR2 and LCDR3 of the exemplary anti-COVID-19 antibodies. SEQ ID NOs 15-28 and 43-56 set forth the amino acid sequences of the HCVRs, LCVRs, HCDRl, HCDR2 HCDR3, LCDRl, LCDR2 and LCDR3 of the exemplary anti-COVID-19 antibodies.
Antibodies and Associated SEQ ID NOs:
The present invention provides antibodies, or antigen-binding fragments thereof, comprising an HCVR comprising an amino acid sequence selected from any of the HCVR amino acid sequences listed in Figure 1, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
The present invention also provides antibodies, or antigen-binding fragments thereof, comprising an LCVR comprising an amino acid sequence selected from any of the LCVR amino acid sequences listed in Figure 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto. The present invention also provides antibodies, or antigen-binding fragments thereof, comprising an HCVR and an LCVR amino acid sequence pair (HCVR/LCVR) comprising any of the HCVR amino acid sequences listed in Figure 1 paired with any of the LCVR amino acid sequences listed in Figure 2. According to certain embodiments, the present invention provides antibodies, or antigen-binding fragments thereof, comprising an HCVR/LCVR amino acid sequence pair contained within any of the exemplary anti-COVID-19 antibodies listed in Figures 1 and 2. In certain embodiments, the HCVR/LCVR amino acid sequence pair is selected from the group consisting of SEQ ID NOs: 15/43, 16/44, 17/45, 18/46, 19/47, 20/48, 21/49, 22/50, 23/51, 24/52, 25/53, 26/54, 27/55, and 28/56.
In certain embodiments, the recombinant monoclonal antibody or antigen-binding fragment thereof that specifically binds to Severe Respiratory Syndrome Coronavirus-2 (SARS-CoV-2, COVID-19) spike protein comprises: three heavy chain complementarity determining regions (CDRs) (HCDRl, HCDR2 and HCDR3) contained within any one of the heavy chain variable region (HCVR) sequences selected from the group consisting of SEQ ID NOs: 15-28; and three light chain CDRs (LCDRl, LCDR2 and LCDR3) contained within any one of the light chain variable region (LCVR) sequences selected from the group consisting of SEQ ID NOs: 43-56. In another embodiment, the HCVR/LCVR amino acid sequence pairs are combined with heavy and light chain constant regions comprised of SEQ ID NO. 58 and 60, respectively. In another embodiment the antibody has one or more of the following characteristics: interacts with one or more amino acid residues in the receptor binding domain of the SARS-CoV-2 spike protein selected from amino acid residues 331 -524 of (SEQ ID NO 61) ; blocks binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 (ACE2) cellular receptor by more than 90%, as measured in a blocking ELISA assay; neutralizes SARS-CoV-2 infectivity of human host cells by more than 90%and with IC50 less than 20 nM, as measured in a virus-like particle (VLP) neutralization assay; neutralizes SARS-CoV-2 infectivity wherein the SARS-CoV-2 comprises an isolate of the virus derived from infected individuals; and prevents entry of SARS-CoV-2 into a host cell. In another embodiment the antibody or antigen-binding fragment thereof comprises a HCVR having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15-28. . In another embodiment the antibody or antigen-binding fragment thereof comprises a LCVR having an amino acid sequence selected from the group consisting of SEQ ID NOs: 43-56. In another embodiment the antibody or antigen-binding fragment comprises a HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 15/43, 16/44, 17/45, 18/46, 19/47, 20/48, 21/49, 22/50, 23/51, 24/52, 25/53, 26/54, 27/55, and 28/56. In another embodiment the antibody or antigen-binding fragment thereof is a human antibody, a humanized antibody, or a chimeric antibody. In another embodiment the antibody or antigen-binding fragment thereof is a bi-specific antibody. In another embodiment the antibody or antigen-binding fragment thereof is specific for a first epitope and a second, different, epitope of SARS-CoV-2 spike protein.
In another aspect provided herein is an isolated human antibody or antigen-binding fragment thereof that competes for binding to SARS-CoV-2 with an antibody or antigen-binding fragment as described herein. In one embodiment the antibody or antigen-binding fragment thereof interacts with the spike protein of patient-derived SARS-CoV-2 isolates. In another embodiment the antibody or antigen-binding fragment thereof blocks the binding of SARS-CoV-2 to ACE2 on human cells. In another embodiment the antibody or antigen-binding fragment thereof is produced as a recombinant antibody in mammalian expression host, preferably 293T cells or Chinese hamster ovary (CHO) cell lines.
In another aspect provided herein is an isolated recombinant human monoclonal antibody or antigen-binding fragment thereof that binds to the same epitope as the antibody or antigen-binding fragment as described herein. In one embodiment the antibody or antigen-binding fragment is a human antibody, a humanized antibody, or a chimeric antibody. In another embodiment the antibody or antigen-binding fragment recognizes an epitope of S1 Spike protein (SEQ ID NO 61) comprising amino acid residues 331 –524.
In another aspect provided herein is a recombinant monoclonal antibody or antigen-binding fragment thereof that specifically binds to Severe Respiratory Syndrome Coronavirus-2 (SARS-CoV-2, COVID-19) spike protein, wherein the antibody or antigen-binding fragment comprises: a HCDRl domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15-28; a HCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15-28; a HCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15-28; a LCDRl domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 43-56; a LCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 43-56; a LCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 43-56.
Methods and techniques for identifying CDRs within HCVR and LCVR amino acid sequences are well known in the art and can be used to identify CDRs within the specified HCVR and/or LCVR amino acid sequences disclosed herein. Exemplary conventions that can be used to identify the boundaries of CDRs include, e.g., the Kabat definition, the Chothia definition, and the AbM definition. In general terms, the Kabat definition is based on sequence variability, the Chothia definition is based on the location of the structural loop regions, and the AbM definition is a compromise between the Kabat and Chothia approaches. See, e.g., Martin, "Protein Sequence and Structure Analysis of Antibody Variable Domains, " Antibody Engineering Vol. 2, DOI 10.1007/978-3-642-01147-4_3. Public databases are also available for identifying CDR sequences within an antibody.
The present invention includes anti-COVID-19 antibodies having a modified glycosylation pattern. In some embodiments, modification to remove undesirable glycosylation sites may be useful, or an antibody lacking a fucose moiety present on the oligosaccharide chain, for example, to increase antibody dependent cellular cytotoxicity (ADCC) function (see Shield et al. (2002) JBC 277: 26733) . In other applications, modification of galactosylation can be made in order to modify complement dependent cytotoxicity (CDC) . The present invention also provides for antibodies and antigen-binding fragments thereof that compete for specific binding to SARS-CoV-2-Swith an antibody or antigen-binding fragment thereof comprising the CDRs of a HCVR and the CDRs of a LCVR, wherein the HCVR and LCVR each has an amino acid sequence selected from the HCVR and LCVR sequences listed in Figures 1 and 2.
The present invention provides isolated antibodies and antigen-binding fragments thereof that block COVID-19 spike protein binding to ACE2. In some embodiments, the antibody or antigen-binding fragment thereof that blocks SARS-CoV-2 spike protein binding to ACE2 may bind to the same epitope on SARS-CoV-2 spike protein as ACE2 or may bind to a different epitope on SARS-CoV-2 spike protein as ACE2. In some embodiments, the present invention provides antibodies or antigen-binding fragments thereof that block the binding of SARS-CoV-2 to human, pangolin and bat ACE2.
In certain embodiments, the antibodies or antigen-binding fragments of the present invention are bispecific comprising a first binding specificity to a first epitope in the receptor binding domain of SARS-CoV-2 spike protein and a second binding specificity to a second epitope in the receptor binding domain of SARS-CoV-2 spike protein wherein the first and second epitopes are distinct and non-overlapping. In one embodiment, the invention provides an isolated antibody or antigen-binding fragment that has one or more of the following characteristics: (a) is a fully human monoclonal antibody; (b) is a fully recombinant human antibody produced by transfection or stable integration of the antibody coding sequences in an appropriate expression host such as 293T or Chinese hamster ovary cell lines; (c) interacts with one or more amino acid residues in the receptor binding domain of the SARS-CoV-2 spike protein (SEQ ID NO 61) selected from amino acid residues 331 -524; (d) blocks binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 (ACE2) by more than 90%, as measured in a blocking ELISA assay; (e) neutralizes SARS-CoV-2 infectivity of human host cells by more than 90%and with an IC50 less than 25 nM, as measured in a virus-like particle (VLP) neutralization assay; (f) neutralizes SARS-CoV-2 infectivity wherein the SARS-CoV-2 comprises an isolate of the virus derived from infected individuals; (g) is a bi-specific antibody comprising a first binding specificity to a first epitope in the receptor binding domain of COVID-19 spike protein and a second binding specificity to a second epitope in the receptor binding domain of COVID-19 spike protein wherein the first and second epitopes are distinct and non-overlapping.
III. Nucleic Acid Molecules and Recombinant Cells
In a second aspect, the present invention provides nucleic acid molecules encoding anti-SARS-CoV-2 spike antibodies or portions thereof. For example, the present invention provides nucleic acid molecules encoding any of the HCVR amino acid sequences listed in Figure 1; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCVR nucleic acid sequences listed in SEQ ID NO. 1-14, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
The present invention also provides nucleic acid molecules encoding any of the LCVR amino acid sequences listed in Figure 2; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCVR nucleic acid sequences listed in SEQ ID NO. 29-42, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
The present invention also provides nucleic acid molecules encoding any of the HCDRI amino acid sequences listed in Figure 1; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCDRl nucleic acid sequences listed in SEQ ID NO. 1-14, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
The present invention also provides nucleic acid molecules encoding any of the HCDR2 amino acid sequences listed in Figure 1; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCDR2 nucleic acid sequences listed in SEQ ID NO. 1-14, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
The present invention also provides nucleic acid molecules encoding any of the HCDR3 amino acid sequences listed in Figure 1; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCDR3 nucleic acid sequences listed in SEQ ID NO. 1-14, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
The present invention also provides nucleic acid molecules encoding any of the LCDRl amino acid sequences listed in Figure 2; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCDRl nucleic acid sequences listed in SEQ ID NO. 29-42, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
The present invention also provides nucleic acid molecules encoding any of the LCDR2 amino acid sequences listed in Figure 2; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCDR2 nucleic acid sequences listed in SEQ ID NO. 29-42, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
The present invention also provides nucleic acid molecules encoding any of the LCDR3 amino acid sequences listed in Figure 2; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCDR3 nucleic acid sequences listed in SEQ ID NO. 29-42, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98%or at least 99%sequence identity thereto.
The present invention also provides nucleic acid molecules encoding a human heavy chain constant region and a light chain constant region with which any of the HCVRs and LCVRs of Figure 1 and 2 may be paired to form a functional anti-COVID-19 antibody. The nucleotide sequences for the heavy chain constant region are given in SEQ ID NO. 57 and the corresponding amino acid sequence in SEQ ID NO. 58. The nucleotide sequences for the light chain constant region are given in SEQ ID NO. 59 and the corresponding amino acid sequence in SEQ ID NO. 60.
The present invention provides nucleic acid molecules encoding any of the heavy chain amino acid sequences listed in Figure 1. The present invention also provides nucleic acid molecules encoding any of the light chain amino acid sequences listed in Figure 2.
In a related aspect, the present invention provides recombinant expression vectors capable of expressing a polypeptide comprising a heavy or light chain variable region of an anti-SARS-CoV-2 antibody. For example, the present invention includes recombinant expression vectors comprising any of the nucleic acid molecules mentioned above, i.e., nucleic acid molecules encoding any of the HCVR, LCVR, and/or CDR sequences as set forth in Figures 1 and 2. Also included within the scope of the present invention are host cells into which such vectors have been introduced, as well as methods of producing the antibodies or portions thereof by culturing the host cells under conditions permitting production of the antibodies or antibody fragments, and recovering the antibodies and antibody fragments so produced.
In another aspect, provided herein is a recombinant nucleic acid molecule encoding an amino acid sequence for a LCVR and/or a HCVR of an antibody or antigen-binding fragment of an antibody that binds to a SARS-CoV-2 spike protein, as provided herein. In one embodiment the nucleic acid molecule comprises nucleotide sequences encoding: three heavy chain complementarity determining regions (CDRs) (HCDRl, HCDR2 and HCDR3) contained within any one of the heavy chain variable region (HCVR) sequences selected from the group consisting of SEQ ID NOs: 15-28; and three light chain CDRs (LCDRl, LCDR2 and LCDR3) contained within any one of the light chain variable region (LCVR) sequences selected from the group consisting of SEQ ID NOs: 29-42. In certain embodiments, the antibody or antigen-binding fragment comprises a HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 15/43, 16/44, 17/45, 18/46, 19/47, 20/48, 21/49, 22/50, 23/51, 24/52, 25/53, 26/54, 27/55, and 28/56. In another embodiment the nucleic acid molecule comprises a nucleotide sequence selected from any of SEQ ID NOs: 1-14 and SEQ ID NOs: 29-42. In another embodiment the nucleic acid molecule comprises a pair of nucleotide sequences selected from SEQ ID NOs: 1/29, 2/30, 3/31, 4/32, 5/33, 6/34, 7/35, 8/36, 9/37, 10/38, 11/39, 12/40, 30/41, 14/42.
In another aspect, provided herein is a recombinant nucleic acid molecule encoding an amino acid sequence for a LCVR and/or a HCVR of an antibody or antigen-binding fragment thereof.
In another aspect, provided herein is a recombinant expression construct comprising an expression control sequence operatively linked to a recombinant nucleic acid molecule encoding an amino acid sequence for a LCVR and/or a HCVR of an antibody or antigen binding fragment of an antibody that binds to a SARS-CoV-2 spike protein, as provided herein.
In another aspect, provided herein is a recombinant host cell comprising a recombinant expression construct comprising one or more expression control sequences operatively linked to one or more recombinant nucleic acid molecules encoding a polypeptide comprising a LCVR and/or a HCVR of an antibody or antigen binding fragment of an antibody that binds to a SARS-CoV-2 spike protein, as provided herein. The polypeptide can further comprise an immunoglobulin light chain constant region and/or an immunoglobulin heavy chain constant region. For example, each nucleic acid molecule encoding light chain or heavy chain sequences can be under control of the same or different expression control sequences.
IV. Pharmaceutical Compositions
In a third aspect, the invention provides a pharmaceutical composition comprising a therapeutically effective amount of at least one recombinant monoclonal antibody or antigen-binding fragment thereof which specifically binds COVID-19 spike protein and a pharmaceutically acceptable carrier. In a related aspect, the invention features a composition which is a combination of an anti-SARS-CoV-2-S antibody and a second therapeutic agent. In one embodiment, the second therapeutic agent is any agent that is advantageously combined with an anti-COVID-19 antibody. Exemplary agents that may be advantageously combined with an anti-SARS-CoV-2 antibody include, without limitation, other agents that bind and/or inhibit SARS-CoV-2 activity (including other antibodies or antigen-binding fragments thereof, etc. ) and/or agents which do not directly bind SARS-CoV-2-S but nonetheless inhibit viral activity including infectivity of host cells. In certain embodiments, the invention provides for a pharmaceutical composition comprising: (a) a first anti-SARS-CoV-2-S antibody or antigen-binding fragment thereof; (b) a second anti-SARS-CoV-2-S antibody or antigen-binding fragment thereof, wherein the first antibody binds to a first epitope on SARS-CoV-2 spike protein and the second antibody binds to a second epitope on SARS-CoV-2 spike protein wherein the first and second epitopes are distinct and non-overlapping; and (c) a pharmaceutically acceptable carrier or diluent. In certain embodiments, the invention provides for a pharmaceutical composition comprising: (a) a first anti-SARS-CoV-2-Santibody or antigen-binding fragment thereof; (b) a second anti-SARS-CoV-2-S antibody or antigen-binding fragment thereof, wherein the first antibody does not cross-compete with the second antibody for binding to SARS-CoV-2 spike protein; and (c) a pharmaceutically acceptable carrier or diluent.
V. Methods of Diagnosis
In a fourth aspect, provided herein is a method of detecting SARS-CoV-2 comprising performing an immunoassay on a biological sample from a subject; wherein the immunoassay uses an antibody or antigen-binding fragment of an antibody that binds to a SARS-CoV-2 spike protein, as provided herein. In one embodiment the immunoassay selected from radioimmunoassay, enzyme-linked immunosorbent assay (ELISA) , sandwich assays, Western blot, immunoprecipitation, immunohistochemistry, immunofluorescence, antibody microarray, dot blotting, and fluorescence-activated cell sorting (FACS) . In another embodiment the subject is a human or a nonhuman mammal, e.g., pangolin, a bat, a civet or a camel.
In another aspect, provided herein is the use of an antibody or antigen-binding fragment as described herein in the preparation of a diagnostic for the detection of SARS-CoV-2 in a sample.
VI. Methods of Treatment
In a fifth aspect, the invention provides therapeutic methods for treating a disease or disorder associated with SARS-CoV-2 such as viral infection in a subject using an anti-SARS-CoV-2-S antibody or antigen-binding portion of an antibody of the invention, wherein the therapeutic methods comprise administering a therapeutically effective amount of a pharmaceutical composition comprising an antibody or antigen-binding fragment of an antibody of the invention to the subject in need thereof. The disorder treated is any disease or condition which is improved, ameliorated, inhibited or prevented by inhibition of SARS-CoV-2 activity. In certain embodiments, the invention provides methods to prevent, treat or ameliorate at least one symptom of COVID-19 infection, the method comprising administering a therapeutically effective amount of an anti-SARS-CoV-2-S antibody or antigen-binding fragment thereof of the invention to a subject in need thereof. In some embodiments, the present invention provides methods to ameliorate or reduce the severity of at least one symptom or indication of COVID-19 infection in a subject by administering an anti-COVID-19 antibody of the invention, wherein the at least one symptom or indication is selected from the group consisting of inflammation in the lung, alveolar damage, fever, cough, shortness of breath, diarrhea, organ failure, pneumonia, septic shock and death. In certain embodiments, the invention provides methods to decrease viral load in a subject, the methods comprising administering to the subject an effective amount of an antibody or fragment thereof of the invention that binds SARS-CoV-2-S and blocks SARS-CoV-2 binding to host cell receptor ACE2. In some embodiments, the antibody or antigen-binding fragment thereof may be administered prophylactically or therapeutically to a subject having or at risk of having COVID-19 infection. The subjects at risk include, but are not limited to, an immunocompromised person, an elderly adult (more than 65 years of age) , children younger than 2 years of age, travelers to or from any country with known incidence to COVID-19 infection, healthcare workers, adults or children in close contact with a person (s) with confirmed or suspected COVID-19 infection, and people with underlying medical conditions such as pulmonary infection, heart disease or diabetes. In certain embodiments, the antibody or antigen-binding fragment thereof the invention is administered in combination with a second therapeutic agent to the subject in need thereof. The second therapeutic agent may be selected from the group consisting of any non-contraindicated anti-inflammatory drug (such as acetaminophen) , an anti-infective drug, a different antibody to SARS-CoV-2 spike protein, an anti-viral drug, a vaccine for SARS-CoV-2, a dietary supplement such as anti-oxidants and any other drug or therapy known in the art. In certain embodiments, the second therapeutic agent may be an agent that helps to counteract or reduce any possible side effect (s) associated with an antibody or antigen-binding fragment thereof of the invention, if such side effect (s) should occur. The antibody or fragment thereof may be administered subcutaneously, intravenously, intradermally, intraperitoneally, orally, intra-muscularly, or intracranially. In one embodiment, the antibody may be administered as a single intravenous infusion for maximum concentration of the antibody in the serum of the subject. The antibody or fragment thereof may be administered at a dose of about 0.1 mg/kg of body weight to about 100 mg/kg of body weight of the subject. In certain embodiments, an antibody of the present invention may be administered at one or more doses comprising between 20 mg to 600 mg.
The present invention also includes use of an anti-COVID-19 antibody or antigen-binding fragment thereof of the invention in the manufacture of a medicament for the treatment of a disease or disorder that would benefit from the blockade of SARS-CoV-2 binding and/or activity.
In another aspect, provided herein is a method of treating a subject infected with SARS-CoV-2 comprising administering to the subject an effective amount of a pharmaceutical composition comprising an antibody or antigen-binding fragment of an antibody that binds to a SARS-CoV-2 spike protein, as provided herein and a pharmaceutically acceptable carrier or diluent.
In another aspect, provided herein is a method of treating a subject infected with SARS-CoV-2 comprising performing plasmapheresis on the subject using plasma filter comprising a microporous fiber having immobilized thereto an antibody or antigen-binding fragment of an antibody that binds to a SARS-CoV-2 spike protein, as provided herein, wherein the antibody or the antigen-binding fragment of the antibody removes SARS-CoV-2 from the blood of the subject.
VII. Kits and Articles
In a sixth aspect, the present invention includes use of anti-COVID-19 antibody or antigen-binding fragment thereof of the invention in the manufacture of in vitro diagnostics for the rapid detection of COVID-19 virus and/or portions thereof in body fluids, tissues, secretions, and waste products derived from humans or potential COVID-19 animal reservoirs, including but not limited to pangolins, bats, and other known animal reservoirs (e.g., civets and dromedary camels) of the genetically related betacoronaviruses referred to as SARS-CoV and MERS. These body fluids, tissues, secretions, and waste products include, but are not limited to, blood, plasma, serum, tears, saliva, cerebrospinal fluid, amniotic fluid, exhaled breath condensate, urine and feces.
In a seventh aspect, the present invention includes use of anti-COVID-19 antibody or antigen-binding fragment thereof of the invention in the application and manufacture of solid supports/matrices employed in plasmapheresis to affect the concentration of COVID-19 viral particles and/or fragments derived therefrom. Such antibody-bearing scaffolds may have utility in active removal of COVID-19 particles from patient or donor plasma, thereby decreasing viral load.
In another aspect provided herein is a solid support bearing one or more antibody or antigen-binding fragments that bind to SARS-CoV-2 spike protein as provided herein. In one embodiment, the support comprises a microporous filter, e.g., a hollow microfiber configured for use in plasmapheresis.
In another aspect, provided herein is a filter device comprising an elongated, hollow tube comprising and entrance and an exit and, within the tube, a plurality of elongated, microporous fibers having an interior lumen extending along the length thereof, wherein the microporous fibers comprise, immobilized thereto, an antibody or antigen binding fragment that binds to a SARS-CoV-2 spike protein, as provided herein.
VIII. Methods of Making
In another aspect, provided herein is a method of making an antibody or antigen-binding fragment of an antibody comprising culturing a recombinant host cell comprising a recombinant expression construct comprising one or more expression control sequences operatively linked to a recombinant nucleic acid molecule encoding an amino acid sequence for a LCVR and/or a HCVR of an antibody or antigen binding fragment of an antibody that binds to a SARS-CoV-2 spike protein, as provided herein, wherein the host cell produces the antibody or antigen-binding fragment of an antibody, and isolating the antibody or antigen-binding fragment of an antibody from the cell.
For preparation of antibodies, e.g., recombinant, monoclonal, or polyclonal antibodies, many techniques known in the art can be used (see, e.g., Kohler &Milstein, Nature 256: 495-497 (1975) ; Kozbor et al., Immunology Today 4: 72 (1983) ; Cole et al., pp. 77-96 in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. (1985) ; Coligan, Current Protocols in Immunology (1991) ; Harlow &Lane, Antibodies, A Laboratory Manual (1988) ; and Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986) ) . The genes encoding the heavy and light chains of an antibody of interest can be cloned from a cell, e.g., the genes encoding a monoclonal antibody can be cloned from a hybridoma and used to produce a recombinant monoclonal antibody. Gene libraries encoding heavy and light chains of monoclonal antibodies can also be made from hybridoma or plasma cells. Techniques for the production of single chain antibodies or recombinant antibodies (U.S. Patent 4,946,778, U.S. Patent No. 4,816,567) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, can be used to express humanized or human antibodies (see, e.g., U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, Marks et al., Bio/Technology 10: 779-783 (1992) ; Lonberg et al., Nature 368: 856-859 (1994) ; Morrison, Nature 368: 812-13 (1994) ; Fishwild et al., Nature Biotechnology 14: 845-51 (1996) ; Neuberger, Nature Biotechnology 14: 826 (1996) ; and Lonberg &Huszar, Intern. Rev. Immunol. 13: 65-93 (1995) ) . Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that specifically bind to selected antigens (see, e.g., McCafferty et al., Nature 348: 552-554 (1990) ; Marks et al., Biotechnology 10:779-783 (1992) ) . Antibodies can also be made bispecific, i.e., able to recognize two different antigens (see, e.g., WO 93/08829, Traunecker et al., EMBO J. 10: 3655-3659 (1991) ; and Suresh et al., Methods in Enzymology 121: 210 (1986) ) . Antibodies can also be heteroconjugates, e.g., two covalently joined antibodies, or immunotoxins (see, e.g., U.S. Patent No. 4,676,980 , WO 91/00360; WO 92/200373; and EP 03089) .
Antibodies can be produced using any number of expression systems, including prokaryotic and eukaryotic expression systems. In some embodiments, the expression system is a mammalian cell expression, such as a hybridoma, or a CHO cell expression system. Many such systems are widely available from commercial suppliers. In embodiments in which an antibody comprises both a V
H and V
L region, the V
H and V
L regions may be expressed using a single vector, e.g., in a di-cistronic expression unit, or under the control of different promoters. In other embodiments, the V
H and V
L region may be expressed using separate vectors. A V
H or V
L region as described herein may optionally comprise a methionine at the N-terminus.
Binding fragments of antibodies can be produced by a variety of methods, including, digestion of an intact antibody with an enzyme, such as pepsin (to generate (Fab')
2 fragments) or papain (to generate Fab fragments) ; or de novo synthesis. Antibody fragments can also be synthesized using recombinant DNA methodology.
Methods for humanizing non-human antibodies (i.e., using CDRs from non-human antibodies) are also known in the art. Generally, a humanized antibody has one or more amino acid residues from a source which is non-human. These non-human amino acid residues are often referred to as import residues, which are typically taken from an import variable domain. Humanization can be essentially performed following the method of Winter and co-workers (see, e.g., Jones et al., Nature 321: 522-525 (1986) ; Riechmann et al., Nature 332: 323-327 (1988) ; Verhoeyen et al., Science 239: 1534-1536 (1988) and Presta, Curr. Op. Struct. Biol. 2: 593-596 (1992) ) , by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Such humanized antibodies are chimeric antibodies (U.S. Patent No. 4,816,567) , wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
As used herein, the following meanings apply unless otherwise specified. The word “may” is used in a permissive sense (i.e., meaning having the potential to) , rather than the mandatory sense (i.e., meaning must) . The words “include” , “including” , and “includes” and the like mean including, but not limited to. The singular forms “a, ” “an, ” and “the” include plural referents. Thus, for example, reference to “an element” includes a combination of two or more elements, notwithstanding use of other terms and phrases for one or more elements, such as “one or more. ” The phrase “at least one” includes “one or more” , “one or a plurality” and “a plurality” . The term “or” is, unless indicated otherwise, non-exclusive, i.e., encompassing both “and” and “or. ” The term “any of” between a modifier and a sequence means that the modifier modifies each member of the sequence. So, for example, the phrase “at least any of 1, 2 or 3” means “at least 1, at least 2 or at least 3” . The term "consisting essentially of" refers to the inclusion of recited elements and other elements that do not materially affect the basic and novel characteristics of a claimed combination.
It should be understood that the description and the drawings are not intended to limit the invention to the particular form disclosed, but to the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention as defined by the appended claims. Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description and the drawings are to be construed as illustrative only and are for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as examples of embodiments.
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference
REFERENCES CITED
Ge, X. -Y., Li, J. -L., Yang, X. -L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Hu, B., Zhang, W., Peng, C., et al. (2013) . Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538.
Luan, J., Lu, Y., Jin, X., and Zhang, L. (2020) . Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochem. Biophys. Res. Commun.
Ortega, J.T., Serrano, M.L., Pujol, F.H., and Rangel, H.R. (2020) . Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI J. 19, 410–417.
Xu, J., Jia, W., Wang, P., Zhang, S., Shi, X., Wang, X., and Zhang, L. (2019) . Antibodies and vaccines against Middle East respiratory syndrome coronavirus. Emerg. Microbes Infect. 8, 841–856.
Zhang, T., Wu, Q., and Zhang, Z. (2020) . Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Curr. Biol. CB.
SEQUENCE LISTING
Sequence details for following pages:
SEQ ID NOs 15–28 = Heavy Chain Variable Region Amino Acid Sequences
SEQ ID NOs 29–42 = Light Chain Variable Region DNA Sequences
SEQ ID NOs 43–56 = Light Chain Variable Region Amino Acid Sequences
SEQ ID NOs 57–58 = Heavy Chain Constant Region DNA and Amino Acid Sequences
SEQ ID NOs 59-60 = Light Chain Constant Region DNA and Amino Acid Sequences
SEQ ID NO 61 = COVID 19 Glycoprotein Receptor (underlined amino acids 331-524 represent binding domain)
Original Clone ID: 413-2 HCVR1
Sequence Length: 366 bases
SEQ ID NO. 1
Original Clone ID: 413-3 HCVR2
Sequence Length: 390 bases
SEQ ID NO. 2
Original Clone ID: 505-1 HCVR3
Sequence Length: 354 bases
SEQ ID NO. 3
Original Clone ID: 505-3 HCVR4
Sequence Length: 357 bases
SEQ ID NO. 4
Original Clone ID: 505-5 HCVR5
Sequence Length: 357 bases
SEQ ID NO. 5
Original Clone ID: 515-5 HCVR6
Sequence Length: 375 bases
SEQ ID NO. 6
Original Clone ID: 553-13 HCVR7
Sequence Length: 351 bases
SEQ ID NO. 7
Original Clone ID: 553-15 HCVR8
Sequence Length: 357 bases
SEQ ID NO. 8
Original Clone ID: 553-17 HCVR9
Sequence Length: 351 bases
SEQ ID NO. 9
Original Clone ID: 553-18 HCVR10
Sequence Length: 372 bases
SEQ ID NO. 10
Original Clone ID: 553-20 HCVR11
Sequence Length: 360 bases
SEQ ID NO. 11
Original Clone ID: 553-27 HCVR12
Sequence Length: 351 bases
SEQ ID NO. 12
Original Clone ID: 553-60 HCVR13
Sequence Length: 360 bases
SEQ ID NO. 13
Original Clone ID: 553-63 HCVR14
Sequence Length: 360 bases
SEQ ID NO. 14
Original Clone ID: 413-2 HCVR1
Sequence Length: 122 amino acids
SEQ ID NO. 15
Original Clone ID: 413-3 HCVR2
Sequence Length: 130 amino acids
SEQ ID NO. 16
Original Clone ID: 505-1 HCVR3
Sequence Length: amino acids
SEQ ID NO. 17
Original Clone ID: 505-3 HCVR4
Sequence Length: 119 amino acids
SEQ ID NO. 18
Original Clone ID: 505-5 HCVR5
Sequence Length: 119 amino acids
SEQ ID NO. 19
Original Clone ID: 515-5 HCVR6
Sequence Length: 125 amino acids
SEQ ID NO. 20
Original Clone ID: 553-13 HCVR7
Sequence Length: 117 amino acids
SEQ ID NO. 21
Original Clone ID: 553-15 HCVR8
Sequence Length: 119 amino acids
SEQ ID NO. 22
Original Clone ID: 553-17 HCVR9
Sequence Length: 117 amino acids
SEQ ID NO. 23
Original Clone ID: 553-18 HCVR10
Sequence Length: 124 amino acids
SEQ ID NO. 24
Original Clone ID: 553-20 HCVR11
Sequence Length: 120 amino acids
SEQ ID NO. 25
Original Clone ID: 553-27 HCVR12
Sequence Length: 117 amino acids
SEQ ID NO. 26
Original Clone ID: 553-60 HCVR13
Sequence Length: 120 amino acids
SEQ ID NO. 27
Original Clone ID: 553-63 HCVR14
Sequence Length: 120 amino acids
SEQ ID NO. 28
Original Clone ID: 413-2 LCVR1
Sequence Length: 327 bases
SEQ ID NO. 29
Original Clone ID: 413-3 LCVR2
Sequence Length: 324 bases
SEQ ID NO. 30
Original Clone ID: 505-1 LCVR3
Sequence Length: 333 bases
SEQ ID NO. 31
Original Clone ID: 505-3 LCVR4
Sequence Length: 336 bases
SEQ ID NO. 32
Original Clone ID: 505-5 LCVR5
Sequence Length: 336 bases
SEQ ID NO. 33
Original Clone ID: 515-5 LCVR6
Sequence Length: 321 bases
SEQ ID NO. 34
Original Clone ID: 553-13 LCVR7
Sequence Length: 324 bases
SEQ ID NO. 35
Original Clone ID: 553-15 LCVR8
Sequence Length: 336 bases
SEQ ID NO. 36
Original Clone ID: 553-17 LCVR9
Sequence Length: 333 bases
SEQ ID NO. 37
Original Clone ID: 553-18 LCVR10
Sequence Length: 336 bases
SEQ ID NO. 38
Original Clone ID: 553-20 LCVR11
Sequence Length: 339 bases
SEQ ID NO. 39
Original Clone ID: 553-27 LCVR12
Sequence Length: 324 bases
SEQ ID NO. 40
Original Clone ID: 553-60 LCVR13
Sequence Length: 324 bases
SEQ ID NO. 41
Original Clone ID: 553-63 LCVR14
Sequence Length: 321 bases
SEQ ID NO. 42
Original Clone ID: 413-2 LCVR1
Sequence Length: 109 amino acids
SEQ ID NO. 43
Original Clone ID: 413-3 LCVR2
Sequence Length: 108 amino acids
SEQ ID NO. 44
Original Clone ID: 505-1 LCVR3
Sequence Length: 111 amino acids
SEQ ID NO. 45
Original Clone ID: 505-3 LCVR4
Sequence Length: 112 amino acids
SEQ ID NO. 46
Original Clone ID: 505-5 LCVR5
Sequence Length: 112 amino acids
SEQ ID NO. 47
Original Clone ID: 515-5 LCVR6
Sequence Length: amino acids
SEQ ID NO. 48
Original Clone ID: 553-13 LCVR7
Sequence Length: 108 amino acids
SEQ ID NO. 49
Original Clone ID: 553-15 LCVR8
Sequence Length: 112 amino acids
SEQ ID NO. 50
Original Clone ID: 553-17 LCVR9
Sequence Length: 111 amino acids
SEQ ID NO. 51
Original Clone ID: 553-18 LCVR10
Sequence Length: 112 amino acids
SEQ ID NO. 52
Original Clone ID: 553-20 LCVR11
Sequence Length: 113 amino acids
SEQ ID NO. 53
Original Clone ID: 553-27 LCVR12
Sequence Length: 108 amino acids
SEQ ID NO. 54
Original Clone ID: 553-60 LCVR13
Sequence Length: 108 amino acids
SEQ ID NO. 55
Original Clone ID: 553-63 LCVR14
Sequence Length: 107 amino acids
SEQ ID NO. 56
Heavy Chain Constant Region
Sequence Length: 993 bases
SEQ ID NO. 57
Heavy Chain Constant Region
SEQ ID NO. 58
Light Chain Constant Region:
Sequence Length: 324 bases
SEQ ID NO. 59
Light Chain Constant Region:
SEQ ID NO. 60
COVID19 Spike Glycoprotein Receptor Binding Domain
SEQ ID NO. 61
Claims (47)
- A recombinant monoclonal antibody or antigen-binding fragment thereof that specifically binds to Severe Respiratory Syndrome Coronavirus-2 (SARS-CoV-2, COVID-19) spike protein, wherein the antibody or antigen-binding fragment comprises:three heavy chain complementarity determining regions (CDRs) (HCDRl, HCDR2 and HCDR3) contained within any one of the heavy chain variable region (HCVR) sequences selected from the group consisting of SEQ ID NOs: 15-28; andthree light chain CDRs (LCDRl, LCDR2 and LCDR3) contained within any one of the light chain variable region (LCVR) sequences selected from the group consisting of SEQ ID NOs: 43-56.
- The antibody or antigen-binding fragment thereof of claim 1, wherein the antibody or antigen-binding fragment comprises a HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 15/43, 16/44, 17/45, 18/46, 19/47, 20/48, 21/49, 22/50, 23/51, 24/52, 25/53, 26/54, 27/55, and 28/56.
- The antibody or antigen-binding fragment thereof of claim 1, wherein the HCVR/LCVR amino acid sequence pairs are combined with heavy and light chain constant regions comprised of SEQ ID NO. 58 and 60, respectively.
- The antibody or antigen-binding fragment thereof of claim 1, wherein the antibody has one or more of the following characteristics:(a. ) interacts with one or more amino acid residues in the receptor binding domain of the SARS-CoV-2 spike protein (SEQ ID NO 61) selected from amino acid residues 331 -524;(b. ) blocks binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 (ACE2) cellular receptor by more than 90%, as measured in a blocking ELISA assay;(c. ) neutralizes SARS-CoV-2 infectivity of human host cells by more than 90%and with IC50 less than 20 nM, as measured in a virus-like particle (VLP) neutralization assay;(d. ) neutralizes SARS-CoV-2 infectivity wherein the SARS-CoV-2 comprises an isolate of the virus derived from infected individuals; and(e. ) prevents entry of SARS-CoV-2 into a host cell.
- The antibody or antigen-binding fragment thereof of claim 1, comprising a HCVR having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15-28.
- The antibody or antigen-binding fragment thereof of claim 1, comprising a LCVR having an amino acid sequence selected from the group consisting of SEQ ID NOs: 43-56.
- The antibody or antigen-binding fragment thereof of claim 1 which is a human antibody, a humanized antibody, or a chimeric antibody.
- The antibody or antigen-binding fragment thereof of claim 1 which is a bi-specific antibody.
- The antibody or antigen-binding fragment thereof of claim 8, wherein the antibody or antigen-binding fragment thereof is specific for a first epitope and a second, different, epitope of SARS-CoV-2 spike protein.
- An isolated human antibody or antigen-binding fragment thereof that competes for binding to SARS-CoV-2 with the antibody or antigen-binding fragment of claim 1.
- The antibody or antigen-binding fragment thereof of claim 10, wherein the antibody or antigen-binding fragment thereof interacts with the spike protein of patient-derived SARS-CoV-2 isolates.
- The antibody or antigen-binding fragment thereof of claim 11, wherein the antibody or antigen-binding fragment thereof blocks the binding of SARS-CoV-2 to ACE2 on human cells.
- The antibody or antigen-binding fragment thereof of claim 12, wherein the antibody or antigen-binding fragment thereof is produced as a recombinant antibody in mammalian expression host, preferably 293T cells or Chinese hamster ovary (CHO) cell lines.
- An isolated recombinant human monoclonal antibody or antigen-binding fragment thereof that binds to the same epitope as the antibody or antigen-binding fragment of claim 1.
- The antibody or antigen-binding fragment of claim 14, which is a human antibody, a humanized antibody, or a chimeric antibody.
- The antibody or antigen-binding fragment of claim 14, which antibody recognizes an epitope of S1 Spike protein (SEQ ID NO 61) comprising amino acid residues 331 –524.
- A recombinant monoclonal antibody or antigen-binding fragment thereof that specifically binds to Severe Respiratory Syndrome Coronavirus-2 (SARS-CoV-2, COVID-19) spike protein, wherein the antibody or antigen-binding fragment comprises:(a) a HCDRl domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15-28;(b) a HCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15-28;(c) a HCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15-28;(d) a LCDRl domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 43-56;(e) a LCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 43-56;(f) a LCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 43-56.
- A pharmaceutical composition comprising the antibody or antigen-binding fragment thereof of any of claims 1-17, and a pharmaceutically acceptable carrier or diluent.
- A pharmaceutical composition comprising:(a) a first antibody or antigen-binding fragment thereof that binds to SARS-CoV-2 spike protein at a first epitope;(b) a second antibody or antigen-binding fragment thereof that binds to SARS-CoV-2 spike protein at a second epitope; and(c) a pharmaceutically acceptable carrier or diluent, wherein the first antibody or antigen-binding fragment thereof is an antibody or antigen-binding fragment of any of claims 1-17.
- The pharmaceutical composition of claim 19, comprising a HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 15/43, 16/44, 17/45, 18/46, 19/47, 20/48, 21/49, 22/50, 23/51, 24/52, 25/53, 26/54, 27/55, and 28/56.
- The pharmaceutical composition of claim 19, wherein at least the first antibody or antigen-binding fragment thereof or the second antibody or antigen-binding fragment thereof blocks SARS-CoV-2 binding to ACE2.
- The pharmaceutical composition of claim 19, wherein the first and second epitopes are present in the receptor binding domain of COVID-19 spike protein and are distinct and non-overlapping.
- The pharmaceutical composition of claim 22, wherein the first antibody or antigen-binding fragment thereof comprises:three heavy chain complementarity determining regions (CDRs) (HCDRl, HCDR2 and HCDR3) contained within any one of the heavy chain variable region (HCVR) sequences selected from the group consisting of SEQ ID NOs: 15-28; andthree light chain CDRs (LCDRl, LCDR2 and LCDR3) contained within any one of the light chain variable region (LCVR) sequences selected from the group consisting of SEQ ID NOs: –43-56.
- The pharmaceutical composition of claim 22, wherein the first antibody or antigen-binding fragment comprises a HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 15/43, 16/44, 17/45, 18/46, 19/47, 20/48, 21/49, 22/50, 23/51, 24/52, 25/53, 26/54, 27/55, and 28/56.
- Kits and in vitro diagnostics utilizing one or more antibody or antigen-binding fragments thereof of any of claims 1-17for the isolation and/or detection of SARS-CoV-2 in one or more sample types of human or nonhuman origin, including: blood, plasma, serum, saliva, tears, cerebrospinal fluid, lymph, urine, feces, exhaled breath condensate, perspiration, amniotic fluid, exosomes, cell and tissue lysates.
- The kits and in vitro diagnostics of claim 25 for the isolation and/or detection of SARS-CoV-2 a nonhuman animal, e. g. , a pangolin, a bat, a civet, or a camel.
- A solid support bearing one or more antibody or antigen-binding fragments thereof of any of claims 1-17.
- The solid support of claim 27, wherein the support comprises a microporous filter, e.g., a hollow microfiber.
- A filter device comprising an elongated, hollow tube comprising and entrance and an exit and, within the tube, a plurality of elongated, microporous fibers having an interior lumen extending along the length thereof, wherein the microporous fibers comprise, immobilized thereto, an antibody or antigen binding fragment that binds to a SARS-CoV-2 spike protein, as described herein.
- A method of detecting SARS-CoV-2 comprising performing an immunoassay on a biological sample from a subject; wherein the immunoassay uses an antibody or antigen-binding fragment of any of claims 1-17.
- The method of claim 30, wherein the immunoassay selected from radioimmunoassay, enzyme-linked immunosorbent assay (ELISA) , sandwich assays, Western blot, immunoprecipitation, immunohistochemistry, immunofluorescence, antibody microarray, dot blotting, and fluorescence-activated cell sorting (FACS) .
- The method of claim 31, wherein the subject is a human or a nonhuman mammal, e.g., pangolin, a bat, a civet or a camel.
- The use of an antibody or antigen-binding fragment as described herein in the preparation of a medicament for the treatment of a subject infected with SARS-CoV-2.
- The use of an antibody or antigen-binding fragment as described herein in the preparation of a diagnostic for the detection of SARS-CoV-2 in a sample.
- A method of treating a subject infected with SARS-CoV-2 comprising administering to the subject an effective amount of a pharmaceutical composition comprising an antibody or antigen-binding fragment thereof of any of claims 1-17and a pharmaceutically acceptable carrier or diluent.
- A method of treating a subject infected with SARS-CoV-2 comprising performing plasmapheresis on the subject using plasma filter comprising a microporous fiber having immobilized thereto an antibody of any of claims 1-17 wherein the antibody or the antigen-binding fragment of the antibody removes SARS-CoV-2 from the blood of the subject.
- A recombinant nucleic acid molecule encoding an amino acid sequence for a LCVR and/or a HCVR of an antibody or antigen-binding fragment thereof of any of claims 1-17.
- The recombinant nucleic acid molecule of claim 37, wherein the nucleic acid molecule further encodes a light chain constant region or a heavy chain constant region.
- The recombinant nucleic acid molecule of claim 37, comprising nucleotide sequences encoding:three heavy chain complementarity determining regions (CDRs) (HCDRl, HCDR2 and HCDR3) contained within any one of the heavy chain variable region (HCVR) sequences selected from the group consisting of SEQ ID NOs: 15-28; and/orthree light chain CDRs (LCDRl, LCDR2 and LCDR3) contained within any one of the light chain variable region (LCVR) sequences selected from the group consisting of SEQ ID NOs: 43-56.
- The recombinant nucleic acid molecule of claim 37, wherein the antibody or antigen-binding fragment comprises a HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 15/43, 16/44, 17/45, 18/46, 19/47, 20/48, 21/49, 22/50, 23/51, 24/52, 25/53, 26/54, 27/55, and 28/56.
- The recombinant nucleic acid molecule of claim 37, comprising a nucleotide sequence selected from any of SEQ ID NOs: 1-14 and SEQ ID NOs: 29-42.
- The recombinant nucleic acid molecule of claim 37, comprising a pair of nucleotide sequences selected from SEQ ID NOs: 1/29, 2/30, 3/31, 4/32, 5/33, 6/34, 7/35, 8/36, 9/37, 10/38, 11/39, 12/40, 30/41, 14/42.
- A recombinant expression construct comprising an expression control sequence operatively linked to a recombinant nucleic acid molecule of any one of claims 37 to 41.
- A recombinant host cell comprising recombinant nucleic acid molecule of claim 42.
- A recombinant host cell comprising a recombinant expression construct comprising one or more expression control sequences operatively linked to one or more recombinant nucleic acid molecules encoding a polypeptide comprising a LCVR and/or a HCVR of an antibody or antigen binding fragment of an antibody that binds to a SARS-CoV-2 spike protein, as provided herein.
- The recombinant host cell of claim 44, wherein the polypeptide further comprises an immunoglobulin light chain constant region and/or an immunoglobulin heavy chain constant region.
- A method of making an antibody or antigen-binding fragment of an antibody comprising culturing a recombinant host cell comprising a recombinant expression construct comprising one or more expression control sequences operatively linked to a recombinant nucleic acid molecule encoding an amino acid sequence for a LCVR and/or a HCVR of an antibody or antigen binding fragment of an antibody that binds to a SARS-CoV-2 spike protein, as provided herein, wherein the host cell produces the antibody or antigen-binding fragment of an antibody, and isolating the antibody or antigen-binding fragment of an antibody from the cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/094953 WO2021248279A1 (en) | 2020-06-08 | 2020-06-08 | Antibodies against sars-cov-2 s1 spike protein |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/094953 WO2021248279A1 (en) | 2020-06-08 | 2020-06-08 | Antibodies against sars-cov-2 s1 spike protein |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021248279A1 true WO2021248279A1 (en) | 2021-12-16 |
Family
ID=78846963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/094953 WO2021248279A1 (en) | 2020-06-08 | 2020-06-08 | Antibodies against sars-cov-2 s1 spike protein |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021248279A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114395034A (en) * | 2022-03-24 | 2022-04-26 | 中国科学院微生物研究所 | Human antibody for efficiently neutralizing novel coronavirus and application thereof |
CN114560931A (en) * | 2022-04-27 | 2022-05-31 | 清华大学 | Neutralizing antibody against SARS-CoV-2 and use thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015164865A1 (en) * | 2014-04-25 | 2015-10-29 | Dana-Farber Cancer Institute, Inc. | Middle east respiratory syndrome coronavirus neutralizing antibodies and methods of use thereof |
WO2017046801A1 (en) * | 2015-09-17 | 2017-03-23 | Ramot At Tel-Aviv University Ltd. | Coronaviruses epitope-based vaccines |
CN111218458A (en) * | 2020-02-27 | 2020-06-02 | 珠海丽凡达生物技术有限公司 | mRNAs encoding SARS-CoV-2 virus antigen and vaccine and preparation method of vaccine |
-
2020
- 2020-06-08 WO PCT/CN2020/094953 patent/WO2021248279A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015164865A1 (en) * | 2014-04-25 | 2015-10-29 | Dana-Farber Cancer Institute, Inc. | Middle east respiratory syndrome coronavirus neutralizing antibodies and methods of use thereof |
WO2017046801A1 (en) * | 2015-09-17 | 2017-03-23 | Ramot At Tel-Aviv University Ltd. | Coronaviruses epitope-based vaccines |
CN111218458A (en) * | 2020-02-27 | 2020-06-02 | 珠海丽凡达生物技术有限公司 | mRNAs encoding SARS-CoV-2 virus antigen and vaccine and preparation method of vaccine |
Non-Patent Citations (4)
Title |
---|
EJEMEL MONIR, LI QI, HOU SHURONG, SCHILLER ZACHARY A., WALLACE AARON L., AMCHESLAVSKY ALLA, YILMAZ NESE KURT, TOOMEY JACQUELINE R.: "IgA MAb blocks SARS-CoV-2 Spike-ACE2 interaction providing mucosal immunity", BIORXIV, 15 May 2020 (2020-05-15), XP055878561, Retrieved from the Internet <URL:https://www.biorxiv.org/content/10.1101/2020.05.15.096719v1.full.pdf> DOI: 10.1101/2020.05.15.096719 * |
JU BIN; ZHANG QI; GE JIWAN; WANG RUOKE; SUN JING; GE XIANGYANG; YU JIAZHEN; SHAN SISI; ZHOU BING; SONG SHUO; TANG XIAN; YU JINFANG: "Human neutralizing antibodies elicited by SARS-CoV-2 infection", NATURE, NATURE PUBLISHING GROUP UK, LONDON, vol. 584, no. 7819, 26 May 2020 (2020-05-26), London, pages 115 - 119, XP037211705, ISSN: 0028-0836, DOI: 10.1038/s41586-020-2380-z * |
MENG YUAN, WU NICHOLAS C., ZHU XUEYONG, LEE CHANG-CHUN D., SO RAY T. Y., LV HUIBIN, MOK CHRIS K. P., WILSON IAN A.: "A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, vol. 368, no. 6491, 8 May 2020 (2020-05-08), pages 630 - 633, XP055707792, DOI: 10.1126/science.abb7269 * |
WU RUIJUN, LI ZHI-FEI, ZHANG XIN, PU RUN, AO YI, SUN YAN-RONG: "Development and Prospect of Antibody Drugs for SARS-CoV-2", CHINA BIOTECHNOLOGY, vol. 40, no. 5, 15 May 2020 (2020-05-15), pages 1 - 6, XP055878556, DOI: 10.13523/j.cb.2003076 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114395034A (en) * | 2022-03-24 | 2022-04-26 | 中国科学院微生物研究所 | Human antibody for efficiently neutralizing novel coronavirus and application thereof |
CN114395034B (en) * | 2022-03-24 | 2022-08-05 | 中国科学院微生物研究所 | Human antibody for efficiently neutralizing novel coronavirus and application thereof |
CN114560931A (en) * | 2022-04-27 | 2022-05-31 | 清华大学 | Neutralizing antibody against SARS-CoV-2 and use thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021207962A1 (en) | Antibodies to sars-coronavirus (covid-19) s1 spike protein | |
KR101407216B1 (en) | Human cytomegalovirus neutralising antibodies and use thereof | |
RU2469045C2 (en) | Antibodies neutralising human cytomegalovirus and use thereof | |
WO2012113348A1 (en) | Anti-cd4 protein monoclonal antibody, active fragments and uses thereof | |
TWI785583B (en) | Monoclonal antibody against new coronavirus and use thereof | |
WO2021248279A1 (en) | Antibodies against sars-cov-2 s1 spike protein | |
EP3791895A1 (en) | Preparations comprising anti-pcsk9 antibodies and use thereof | |
MX2010009885A (en) | Compositions and methods for the therapy and diagnosis of cytomegalovirus infections. | |
CN114174331B (en) | Antibodies that bind to human metapneumovirus fusion proteins and uses thereof | |
RU2688627C2 (en) | ANTIBODIES TO HPA-1a | |
EP4282880A1 (en) | Fully human broad-spectrum neutralizing antibody 76e1 against coronavirus, and use thereof | |
EP4206224A1 (en) | Human antibody or antigen-binding fragment thereof against coronavirus spike protein | |
US20230348568A1 (en) | Epstein-barr virus monoclonal antibodies and uses thereof | |
JP4270473B2 (en) | Human monoclonal antibody specific for hepatitis C virus (HCV) E2 antigen | |
WO2000032635A9 (en) | Tumor specific human monoclonal antibodies and methods of use | |
WO2022127739A1 (en) | Antigen-binding protein specifically binding to sars-cov-2 | |
CN113444177A (en) | anti-IL-1 beta antibodies, pharmaceutical compositions thereof, and uses thereof | |
WO1991005876A1 (en) | Human cytomegalovirus-specific monoclonal antibody cocktail | |
CN107286237B (en) | Acquisition and application of anti-hepatitis C virus antibody | |
WO2024053719A1 (en) | Human antibody against coronavirus variants or antigen-binding fragment thereof | |
WO2022143815A1 (en) | Neutralizing antibody against epitopes of receptor binding domain of novel coronavirus and use thereof | |
RU2807067C2 (en) | Antibodies against cxcr2 and their use | |
EP4417621A1 (en) | Design and application of fully human antibody for neutralizing respiratory syncytial virus | |
CN116419972A (en) | anti-SARS-CoV-2 antibody and application thereof | |
WO2024054822A1 (en) | Engineered sars-cov-2 antibodies with increased neutralization breadth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20939571 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20939571 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20939571 Country of ref document: EP Kind code of ref document: A1 |