WO2021246377A1 - Wear-resistant member and faucet valve and piston/cylinder unit using same - Google Patents

Wear-resistant member and faucet valve and piston/cylinder unit using same Download PDF

Info

Publication number
WO2021246377A1
WO2021246377A1 PCT/JP2021/020731 JP2021020731W WO2021246377A1 WO 2021246377 A1 WO2021246377 A1 WO 2021246377A1 JP 2021020731 W JP2021020731 W JP 2021020731W WO 2021246377 A1 WO2021246377 A1 WO 2021246377A1
Authority
WO
WIPO (PCT)
Prior art keywords
wear
resistant member
valve body
average value
open pores
Prior art date
Application number
PCT/JP2021/020731
Other languages
French (fr)
Japanese (ja)
Inventor
憲一 古舘
美恵子 八嶋
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2022528829A priority Critical patent/JPWO2021246377A1/ja
Priority to CN202180032623.5A priority patent/CN115485253B/en
Publication of WO2021246377A1 publication Critical patent/WO2021246377A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
    • F16K3/04Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members
    • F16K3/06Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages

Definitions

  • the present invention relates to a wear-resistant member and a faucet valve, piston / cylinder unit using the wear-resistant member.
  • Patent Document 1 proposes a silicon carbide-carbon composite material in which a liquid, grease-like or solid lubricant is filled in the open pores, and the composite ceramic material can be used for a water supply (fosset) valve. Has been described.
  • the wear-resistant member of the present disclosure is made of ceramics containing silicon carbide as a main component, has a plurality of open pores on a sliding surface, and has an open pore circle from the average value (A) of the distance between the centers of gravity of adjacent open pores.
  • the value (C) obtained by subtracting the average value (B) of the corresponding diameter is 6 times or more the average value (B).
  • the wear-resistant member of the present disclosure is made of ceramics containing silicon carbide as a main component, has a plurality of open pores on a sliding surface, and has an open pore circle from the average value (A) of the distance between the centers of gravity of adjacent open pores.
  • the value (C) obtained by subtracting the average value (B) of the equivalent diameter is 50 ⁇ m or more and 170 ⁇ m or less.
  • the faucet valve of the present disclosure includes a fixed valve body and a movable valve body that abut and slide on each other's sliding surfaces, and at least one of the fixed valve body and the movable valve body is made of the above-mentioned wear-resistant member. .. Further, the piston / cylinder unit of the present disclosure includes a piston equipped with a piston ring and a cylinder equipped with a cylinder liner having an inner peripheral surface that slides on an outer peripheral surface of the piston ring, and includes a cylinder liner and a piston ring. At least one of the above is made of the wear resistant member.
  • (A) is a micrograph showing a sliding surface of a wear-resistant member according to an embodiment of the present disclosure
  • (B) and (C) are micrographs of an enlarged portion A of (A).
  • .. It is a micrograph which shows the state which etched the sliding surface of the wear-resistant member which concerns on one Embodiment of this disclosure.
  • (A) is the perspective view which shows the state which opened the fluid passage
  • (B) is the perspective view which shows the state which the fluid passage is closed. ..
  • the lubricant held inside the open pores is also ubiquitous.
  • the material is stuck to the opposing material that is in sliding contact with the material, and that galling, abnormal noise, or the like is likely to occur.
  • the sliding surfaces in which the open pores are close to each other receive high pressure, cracks connecting the open pores are likely to develop.
  • the mechanical strength of the portion is lowered and the fluid flows out to the outside.
  • the wear-resistant member according to the present disclosure suppresses the generation of sticking, galling, abnormal noise, etc. to the facing material that is in sliding contact with the wear-resistant member, further reduces the mechanical strength, and causes the fluid to flow out to the outside. It is possible to provide a wear-resistant member capable of suppressing the above.
  • FIG. 1 (A) is a micrograph showing a sliding surface of a wear-resistant member according to an embodiment of the present disclosure
  • FIGS. 1 (B) and 1 (C) show a part A of FIG. 1 (A). This is a magnified micrograph.
  • the wear-resistant member provided with the sliding surface shown in FIG. 1 is made of ceramics containing silicon carbide as a main component.
  • the main component in the present disclosure means a component that occupies 80% by mass or more in the total 100% by mass of the components constituting the ceramics.
  • the main component is preferably a component that accounts for 90% by mass or more of the total 100% by mass of the components constituting the ceramics.
  • the components constituting the ceramics may be obtained by using an X-ray diffractometer (XRD).
  • XRD X-ray diffractometer
  • the content of each component can be determined by determining the content of the elements constituting the component using a fluorescent X-ray analyzer (XRF) or an ICP emission spectroscopic analyzer after identifying the component and converting it into the identified component. good.
  • XRF fluorescent X-ray analyzer
  • ICP emission spectroscopic analyzer after identifying the component and converting it into the identified component. good.
  • the sliding surface shown in FIG. 1 has a plurality of open air holes 1, and is obtained from the average value (A) of the distances between the centers of gravity of the adjacent open air holes 1a, 1b, 1c, ...
  • the value (C) obtained by subtracting the average value (B) of the circle equivalent diameters d1, d2, d3, ... Of the open pores 1a, 1b, 1c, ... Is 6 times or more the average value (B). ..
  • the flatness of the sliding surface can be controlled within an appropriate range. Therefore, the gap between the mating material and the sliding surface to be in contact with the sliding surface is narrowed, and the outflow of the liquid from the gap to the outside can be suppressed.
  • the above value (C) may be 12 times or less of the average value (B).
  • the value (C) is 12 times or less the average value (B)
  • the arrangement of the open pores becomes appropriate. Therefore, the arrangement of the lubricants is not unevenly distributed, and the lubrication performance can be maintained for a long period of time.
  • the sliding surface shown in FIG. 1 has a plurality of open air holes 1, and is obtained from the average value (A) of the distances between the centers of gravity of the adjacent open air holes 1a, 1b, 1c, ...
  • the value (C) obtained by subtracting the average value (B) of the circle equivalent diameters d1, d2, d3, ... Of the open pores 1a, 1b, 1c, ... Is 50 ⁇ m or more and 170 ⁇ m or less.
  • the value (C) is 50 ⁇ m or more, the flatness of the sliding surface can be controlled within an appropriate range. Therefore, the gap between the mating material and the sliding surface to be in contact with the sliding surface is narrowed, and the outflow of the liquid from the gap to the outside can be suppressed.
  • the value (C) is 170 ⁇ m or less, the arrangement of the open pores becomes appropriate. Therefore, the arrangement of the lubricants is not unevenly distributed, and the lubrication performance can be maintained for a long period of time.
  • the distance between the centers of gravity of the open pores can be obtained by the following method. Observe the sliding surface at a magnification of 50 times and select an average range, for example, an area of 1.768 mm 2 (horizontal length 1.36 mm, vertical length 1.3 mm). The area to be observed is photographed with a CCD camera to obtain an observation image. Using the image analysis software "A image-kun (ver2.52)" (registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd.) for this observation image, the center of gravity of the open pore is measured by the distance between the centers of gravity. You can find the distance.
  • the image analysis software "A image-kun” the image analysis software manufactured by Asahi Kasei Engineering Co., Ltd. is shown.
  • the threshold value indicating the lightness and darkness of the image may be 156, the lightness may be dark, the small figure removal area may be 20 ⁇ m 2 , and the noise removal filter may be omitted.
  • the threshold value may be adjusted according to the brightness of the observation image, the brightness is darkened, the binarization method is manual, the small figure removal area is 20 ⁇ m 2, and the noise removal filter is omitted.
  • the threshold may be adjusted so that the marker appearing in the image matches the shape of the open pore. The reason why the small figure removal area is set to a relatively large value of 20 ⁇ m 2 is that the open pores smaller than this value have low lubricant holding performance.
  • the equivalent circle diameter of the open pore can be obtained by the following method.
  • the diameter equivalent to the circle of the open pores may be obtained by a technique called particle analysis.
  • the setting conditions of this method may be the same as the setting conditions used in the distance between the centers of gravity of the dispersion measurement.
  • the kurtosis Ku of the distance between the centers of gravity of the open pores may be 0.3 or more and 4 or less.
  • the kurtosis Ku of the distance between the centers of gravity of the open pores is 0.3 or more, the distribution of the distance between the centers of gravity of the open pores becomes narrow.
  • the kurtosis Ku of the distance between the centers of gravity is 4 or less, there are no open pores extremely separated from each other.
  • the lubricant can be evenly supplied between the sliding surfaces, and the sliding performance can be maintained for a long period of time. ..
  • kurtosis Ku is an index (statistic) showing how much the peak and tail of the distribution differ from the normal distribution.
  • the distribution has a sharp peak and a long and thick hem.
  • the kurtosis Ku 0, the distribution is normal.
  • the kurtosis Ku ⁇ 0 the distribution has a rounded peak and a short, thin tail.
  • the kurtosis of the distance between the centers of gravity may be obtained by using the function Kurt provided in Excel (registered trademark, Microsoft Corporation).
  • the area ratio of the open air hole 1 on the sliding surface is, for example, 1.2% or more and less than 5%, and can be obtained by the above-mentioned particle analysis method.
  • the area ratio of the open air hole 1 on the sliding surface is preferably 2% or more and 4.5% or less.
  • FIG. 2 is a micrograph showing a state in which the sliding surface of the wear-resistant member according to the embodiment of the present disclosure is etched.
  • This etched surface is obtained by immersing the wear resistant member in a heat-melted solution of sodium hydroxide and potassium nitrate in a mass ratio of 1: 1 for 20 seconds.
  • This etched surface is observed with an optical microscope at a magnification of 50 times, and the surface on which crystal particles of various sizes are observed on average is selected.
  • the surface on which crystal particles of various sizes are observed on average is not the surface on which the region without coarse-grained crystal particles is intentionally selected by observing the etched surface widely, but the surface of coarse-grained crystal particles or It means a surface in which fine-grained crystal particles are present on average.
  • the area of the surface is, for example, 2.7 ⁇ 10 ⁇ 2 ⁇ m 2 (horizontal length is 0.19 ⁇ m, vertical length is 0.14 ⁇ m).
  • the sliding surface has coarse-grained crystal particles 2 and fine-grained crystal particles 3 containing silicon carbide as a main component.
  • the average value (D) of the equivalent circle diameters of the fine granular crystal particles 2 is smaller than the average value (B) of the equivalent circle diameters of the open pores 1.
  • the coarse-grained crystal particles 2 are crystal particles having an area of 1000 ⁇ m 2 or more
  • the fine-grained crystal particles 3 are crystal particles having a circle-equivalent diameter of 8 ⁇ m or less. Needless to say, there may be crystal particles having an equivalent circle diameter of more than 8 ⁇ m and an area of less than 1000 ⁇ m 2.
  • the average value (D) of the equivalent circle diameter of the fine granular crystal particles 3 is smaller than the average value (B) of the equivalent circle diameter of the open pore 1, it becomes difficult to thresh from the contour of the open pore 1. As a result, the risk of damaging the sliding surface of the opposing material that comes into contact is reduced.
  • the difference between the average value (D) of the equivalent circle diameter of the fine granular crystal particles 3 on the sliding surface and the average value (B) of the equivalent circle diameter of the open pore 1 is 5 ⁇ m or more.
  • the average value (D) of the equivalent circle diameters of the fine granular crystal particles 3 is, for example, 1 ⁇ m or more and 6 ⁇ m or less.
  • the average value (B) of the equivalent circle diameter of the open pore 1 is, for example, 8 ⁇ m or more and 30 ⁇ m or less.
  • the equivalent circle diameter of the fine granular crystal particles 3 is, for example, the image analysis software (for example, manufactured by Mitani Shoji Co., Ltd.) for the etched surface having an area of 2.7 ⁇ 10 ⁇ 2 ⁇ m 2 by the method described above. , Win ROOF).
  • the threshold value of the equivalent circle diameter is set to 0.21 ⁇ m, and the particle size less than 0.21 ⁇ m is not included in the calculation of the average value (B) of the equivalent circle diameter.
  • the coarse-grained crystal particles 2 are preferably 6 area% or more and 15 area% or less. When the coarse-grained crystal particles 2 are 6 area% or more, even if fine cracks are generated due to thermal shock, the coarse-grained crystal particles 2 can suppress the growth of cracks. When the coarse-grained crystal particles 2 are 15 area% or less, mechanical properties such as strength, rigidity, and fracture toughness can be enhanced.
  • the coarse-grained crystal particles 2 may contain a plurality of intragranular pores 4.
  • the coarse-grained crystal particles 2 include a plurality of intragranular pores, the thermal stress generated in the coarse-grained crystal particles 2 in a high-temperature environment is easily relaxed by the intra-grain pores 4, so that the heat resistance is improved.
  • the equivalent circle diameter of the intragranular pores 4 is, for example, 6 ⁇ m or less.
  • the coarse-grained crystal particles 2 and the fine-grained crystal particles 3 are crystal particles containing silicon carbide as a main component. Using a wavelength dispersive X-ray microanalyzer device, each distribution of Si and C is confirmed, and when the distributions of Si and C are overlapped, these overlap, and as a result, crystal particles containing silicon carbide as the main component. You just have to confirm that.
  • the relative density of the ceramics forming the wear-resistant member of the present disclosure is preferably 96% or more and 99% or less, and particularly preferably 96.7% or more and 98.8% or less. This relative density is a percentage of the apparent density of the wear resistant member to the theoretical density of the ceramics.
  • the theoretical density of ceramics may be obtained as follows.
  • the content of each of the wear-resistant members is determined by an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer or a fluorescent X-ray analyzer. Identification of each component is performed by an X-ray diffractometer using CuK ⁇ rays.
  • the identified component is SiC or B 4 C
  • it can be obtained by converting it into SiC or B 4 C using the Si and B content values obtained by ICP emission spectroscopic analysis or fluorescent X-ray analysis. Just do it.
  • the apparent density of the wear-resistant member may be determined in accordance with JIS R 1634-1998.
  • the main component constituting the ceramic is silicon carbide and the components other than the main component are boron carbide, assuming that the contents are a mass% and b mass%, respectively, the theoretical densities of silicon carbide and boron carbide, respectively.
  • the theoretical density of the ceramics (1) is calculated using the formula (1).
  • T.D is 3.21 g / cm 3 .
  • the relative density can be obtained by dividing the apparent density of the ceramics obtained in accordance with JIS R 1634-1998 by this theoretical density (TD) 3.21 g / cm 3.
  • the graphite content in the ceramics may be less than 1% by mass, particularly 0.1% by mass or less, and may not be contained. This is because when graphite is contained, the sliding characteristics are improved, but the sliding surface is easily worn, so that the life of the wear-resistant member is shortened.
  • the wear-resistant member contains graphite in the identification of the component by the X-ray diffraction method, the graphite content may be determined by using the Rietveld method.
  • the ceramics may contain sulfur.
  • the sulfur content may be 0.02% by mass or less in terms of oxide (SO 3).
  • SO 3 oxide
  • the wear-resistant member described above includes, for example, a valve body of a faucet valve, a piston / cylinder unit, a bearing, a fuel injection nozzle, a rolling roll, a ball bearing, a roll bearing, a rotary shaft mounted on a flow control valve, or rotation thereof. It can be used as a sliding member such as a washer with which the shaft rotatably engages.
  • FIG. 3A and 3B are views showing a faucet valve according to an embodiment of the present disclosure
  • FIG. 3A is a perspective view showing a state in which the fluid passage is open
  • FIG. 3B is a perspective view showing a state in which the fluid passage is closed. It is a perspective view which shows the state.
  • the faucet valve 20 shown in FIG. 3 includes a fixed valve body 21 and a movable valve body 22 that abut and slide the sliding surfaces 21a and 22a of each other.
  • the fixed valve body 21 is fixed to a resin case (not shown), and the movable valve body 22 is configured to move on the fixed valve body 21 inside the resin case.
  • Fluid passages 21b and 22b are formed in the fixed valve body 21 and the movable valve body 22 in the thickness direction, respectively, and both fluid passages 21b and 22b are connected on the sliding surfaces 21a and 22a.
  • a lever 23 is fixed to the movable valve body 22, and the movable valve body 22 can be moved by moving the lever 23 in the vertical direction or the rotational direction.
  • the wear-resistant member 10 according to the embodiment of the present disclosure is used for both the fixed valve body 21 and the movable valve body 22.
  • the wear resistant member 10 may be used only for either the fixed valve body 21 or the movable valve body 22.
  • the faucet valve 20 when the fluid passages 21b and 22b are open, fluids such as water and hot water flow sequentially from the direction of the white arrow to the fluid passages 21b and 22b, and the faucet valve 20 is set. A fluid is discharged from a faucet (not shown) connected to the valve 20. At this time, the fluid inserted between the sliding surfaces 21a and 22a together with the silicon grease previously applied to any of the sliding surfaces 21a and 22a becomes a lubricating liquid and acts to maintain the sliding characteristics.
  • the contact between the sliding surfaces 21a and 22a includes a state in which the respective surfaces are in contact with each other via such a lubricating liquid.
  • the movable valve body 22 can be moved in either the vertical direction by the lever 23 to close the space between the fluid passages 21b and 22b, and the discharge of the fluid from the faucet is stopped. be able to.
  • the movable valve body 22 By moving the movable valve body 22 in the rotational direction, the area of the end face to which the fluid passages 21b and 22b are connected is adjusted. As a result, the flow rate of the fluid discharged from the faucet can be adjusted.
  • the fixed valve body 21 may have a smaller value (C) than the movable valve body 22.
  • C the area of the sliding surface 21a of the fixed valve body 21 is larger than that of the sliding surface 22a of the movable valve body 22. Therefore, the sliding surface 22a is always in contact with the sliding surface 21a.
  • a part of the sliding surface 21a is not in a state of being in constant sliding contact with the sliding surface 22a. Therefore, by reducing the above value (C), the amount of silicon grease contained in the open pores can be increased, and the holding performance of the silicon grease is also improved.
  • the difference between the above values (C) is, for example, 3 ⁇ m or more and 15 ⁇ m or less.
  • FIG. 4 is a cross-sectional view showing a main part of the piston / cylinder unit according to the embodiment of the present disclosure.
  • the piston / cylinder unit 30 includes a piston 32 to which a plurality of piston rings 31 are mounted, and a cylinder 34 to which a cylinder liner 33 having an inner peripheral surface that slides on an outer peripheral surface of the piston ring 31 is mounted.
  • the outer peripheral surface of the piston ring 31 slides along the axial direction on the inner peripheral surface of the cylinder liner 33.
  • the outer peripheral surface of the piston ring 31 and the inner peripheral surface of the cylinder liner 33 are both sliding surfaces having a plurality of open holes.
  • the inner peripheral surface of the cylinder liner 33 has a larger area than the outer peripheral surface of the piston ring 31. Therefore, it does not always come into contact with the outer peripheral surface of the piston ring 31.
  • the outer peripheral surface 7 of the piston ring 31 is in constant contact with the inner peripheral surface of the cylinder liner 33.
  • the cylinder 34 is made of, for example, an aluminum or iron casting.
  • the cylinder liner 33 is, for example, an abrasion-resistant member made of ceramics containing silicon carbide as a main component.
  • the piston 32 is made of, for example, an aluminum or iron casting. Although the piston 32 is integrally formed in FIG. 4, the piston head portion 32a and the piston skirt portion 32b may be separate.
  • the piston head portion 32a is made of ceramics containing silicon nitride, silicon carbide or the like as main components.
  • the piston ring 31 is, for example, a wear-resistant member made of ceramics containing silicon carbide as a main component.
  • the cylinder liner 33 and the piston ring 31 is the wear resistant member of the present disclosure.
  • the cylinder liner 33 and the piston ring 31 may be made of the wear-resistant member of the present disclosure, and the cylinder liner 33 may have a smaller value (C) than the piston ring 31.
  • the area of the inner peripheral surface of the cylinder liner 33 is larger than that of the outer peripheral surface of the piston ring 31. Therefore, the outer peripheral surface is always in sliding contact with the inner peripheral surface. On the other hand, a part of the inner peripheral surface is not always in sliding contact with the outer peripheral surface.
  • the amount of the lubricant such as oil contained in the open pores can be increased, and the lubricant holding performance can be improved.
  • the difference between the above values (C) is, for example, 3 ⁇ m or more and 15 ⁇ m or less.
  • a hydrophobic pore-forming agent consisting of ⁇ -type silicon carbide powder having an average particle size (D 50 ) of 0.5 ⁇ m or more and 2 ⁇ m or less, a sintering aid, and resin beads, and pore dispersion in which the pore-forming agent is dispersed.
  • D 50 average particle size
  • these raw materials are wet-mixed and pulverized with a ball mill or a bead mill using a barrel mill, a rotary mill, a vibration mill, a bead mill, an attritor or the like to obtain a slurry.
  • a dispersant that disperses the silicon carbide powder may be added.
  • Sintering aids can be a combination of boron carbide powder and an aqueous phenol solution or a combination of lignin sulfonate and lignin carboxylate powder as a carbon source, or aluminum oxide powder and rare earth oxide powder such as yttrium oxide. May be combined with.
  • the sintering aid is composed of the former combination, for example, the boron carbide powder is 0.2 parts by mass or more and 0.6 parts by mass or less with respect to 100 parts by mass of the ⁇ -type silicon carbide powder, and the phenol.
  • the aqueous solution or the powder of lignin sulfonate and lignin carboxylate is 0.5 parts by mass and 4.0 parts by mass in terms of carbon.
  • the salt of lignin sulfonate and lignin carboxylate may be at least one of lithium, sodium and ammonium.
  • the pore-forming agent is, for example, silicone beads and suspension-polymerized crosslinkable resin beads consisting of at least one of polyacrylic-styrene.
  • the content of the pore forming agent should be set to ⁇ -type silicon carbide.
  • the average particle size (D 50 ) may be 36 ⁇ m or more and 45 ⁇ m or less, particularly 40 ⁇ m or more and 45 ⁇ m or less, with respect to 100 parts by mass of the powder. Even when a wear-resistant member having the above value (C) of 50 ⁇ m or more and 170 ⁇ m or less is obtained, the content of the pore forming agent and the average particle size (D 50 ) may be the same as described above.
  • the range of the particle size of the pore forming agent is, for example, 5 ⁇ m or more and 125 ⁇ m or less.
  • pore formation having an average particle size (D 50 ) of 42.5 ⁇ m or more and 44.5 ⁇ m or less.
  • An agent may be used.
  • the pore dispersant is used to disperse the pore forming agent.
  • the pore dispersant include anionic surfactants such as carboxylates, sulfonates, sulfates and phosphates.
  • anionic surfactants such as carboxylates, sulfonates, sulfates and phosphates.
  • the anionic surfactant is highly effective in wetting and infiltrating the pore-forming agent into the slurry.
  • the pore dispersant may be added in an amount of 0.14% by mass or more and 0.24% by mass or less with respect to 100% by mass of the pore forming agent.
  • celluloses such as methyl cellulose and carboxymethyl cellulose and their variants, saccharides, starches, dextrin and various variants thereof, various water-soluble synthetic resins such as polyvinyl alcohol, vinyl acetate and the like are added.
  • Granules are obtained by adding a synthetic resin emulsion, arabic rubber, casein, alginate, glucomannan, glycerin, sorbitan fatty acid ester and the like, mixing them, and then spray-drying them. Most of the obtained granules contain a pore-forming agent.
  • iron and its compounds may be removed by a method such as removing iron with an iron remover using a magnetic force.
  • the granules having the adjusted powder bulk density are filled in a molding die, and the pressure is applied to the filled granules at, for example, 78 Pa or more and 118 Pa or less, and the raw density is, for example, 1.8 g / cm 3 or more.
  • the raw density is, for example, 1.8 g / cm 3 or more.
  • the molded product is degreased in a nitrogen atmosphere at a temperature of 450 to 650 ° C. and a holding time of 2 to 10 hours to obtain a degreased body.
  • the wear-resistant member of the present disclosure can be obtained by holding the degreased body in a vacuum atmosphere or a reduced pressure atmosphere of an inert gas such as argon gas at a temperature of 1800 ° C. or higher and 2200 ° C. or lower for 3 hours or longer and 5 hours or lower. Can be done.
  • Example 1 First, a predetermined amount of a sintering aid and a pore-forming agent was added to the ⁇ -type silicon carbide powder forming the main component.
  • a sintering aid a boron carbide powder and an aqueous phenol solution were used.
  • pore-forming agent suspension-polymerized crosslinkable resin beads made of polyacrylic-styrene were used.
  • the content of the pore-forming agent and the average particle size (D 50 ) with respect to 100 parts by mass of the powder of ⁇ -type silicon carbide were as shown in Table 1. Further, sodium polycarboxylate as a pore dispersant was added to each sample in an amount of 0.2% by mass based on 100% by mass of the pore forming agent to prepare a compounding raw material. After putting this compounding raw material into a ball mill for each sample, it was mixed for 48 hours to form a slurry. A binder was added to this slurry, mixed, and then spray-dried to obtain silicon carbide granules having an average particle size of 80 ⁇ m.
  • the granules were filled in a molding die and pressed with a pressure of 98 MPa in the thickness direction to form a molded body.
  • the obtained molded product was heated in a nitrogen atmosphere for 20 hours, held at 600 ° C. for 5 hours, and then naturally cooled to be degreased to obtain a degreased body.
  • the degreased body was held at 2030 ° C. for 5 hours in a vacuum atmosphere to obtain a fixed valve body 21 made of ceramics containing silicon carbide as a main component.
  • the movable valve body 22 was adjusted so as to be made of dense ceramics containing silicon carbide as a main component without adding a pore forming agent and a pore dispersant.
  • the relative density of the ceramics forming the movable valve body 22 was set to 99%. Then, the surfaces of the fixed valve body 21 and the movable valve body 22 facing each other were polished to obtain sliding surfaces 21a and 22a. In each case, the flatness of the sliding surfaces 21a and 22a was 1 ⁇ m or less, and the arithmetic mean roughness (Ra) was 0.2 ⁇ m or less.
  • Table 1 shows the magnification of the value (C) obtained by subtracting (B) and the value (C) with respect to the average value (B).
  • the faucet valve 20 shown in FIG. 3 was manufactured and a sliding test was performed.
  • the faucet valve 20 used in this sliding test consists of a movable valve body 22 having a fluid passage 22b having a diameter of 5 mm in a disk-shaped body having an outer diameter of 30 mm and a wall thickness of 10 mm, and a disk having an outer diameter of 20 mm and a film thickness of 8 mm. It is composed of a fixed valve body 21 having a fluid passage 21b having a diameter of 5 mm in the shape.
  • sample No. The values (C) of 1 to 4 and 6 to 10 are 6 times or more the average value (B). Therefore, the sample No. It can be said that 1 to 4 and 6 to 10 have good slidability and can suppress the outflow of the fluid to the outside.
  • Sample No. In 1 to 4, 6 to 10, the value (C) obtained by subtracting the average value (B) from the average value (A) is also 50 ⁇ m or more and 170 ⁇ m or less.

Abstract

A wear-resistant member according to the present disclosure comprises a ceramic having silicon carbide as the main component, and has a plurality of open pores on a sliding surface, wherein the value (C) provided by subtracting the average value (B) of the circle-equivalent diameter of the open pores from the average value (A) of the distance between the centers of gravity of adjacent open pores, is at least 6-times that of the average value (B).

Description

耐摩耗性部材およびこれを用いたフォーセットバルブ、ピストン・シリンダユニットAbrasion resistant member and faucet valve, piston / cylinder unit using it
 本発明は耐摩耗性部材およびこれを用いたフォーセットバルブ、ピストン・シリンダユニットに関する。 The present invention relates to a wear-resistant member and a faucet valve, piston / cylinder unit using the wear-resistant member.
 従来、母材となるセラミックスに炭素を複合化することにより母材の摺動特性を改善し、さらに摺動面上の開気孔に潤滑剤を充填することにより、乾燥状態においても摺動特性を維持することを可能とした複合セラミックスが提供されている。このような複合セラミックスとして、特許文献1では開気孔内に液状、グリース状または固体状の潤滑剤が充填された炭化珪素―炭素複合材が提案され、水道(フォーセット)バルブに用いられることが記載されている。 Conventionally, carbon is compounded with ceramics as a base material to improve the sliding characteristics of the base material, and by filling the open pores on the sliding surface with a lubricant, the sliding characteristics can be improved even in a dry state. Composite ceramics that can be maintained are provided. As such a composite ceramic, Patent Document 1 proposes a silicon carbide-carbon composite material in which a liquid, grease-like or solid lubricant is filled in the open pores, and the composite ceramic material can be used for a water supply (fosset) valve. Has been described.
特開平9-165281号公報Japanese Unexamined Patent Publication No. 9-165281
 本開示の耐摩耗性部材は、炭化珪素を主成分とするセラミックスからなり、摺動面に開気孔を複数有し、隣り合う開気孔の重心間距離の平均値(A)から開気孔の円相当径の平均値(B)を引いた値(C)が、平均値(B)の6倍以上である。 The wear-resistant member of the present disclosure is made of ceramics containing silicon carbide as a main component, has a plurality of open pores on a sliding surface, and has an open pore circle from the average value (A) of the distance between the centers of gravity of adjacent open pores. The value (C) obtained by subtracting the average value (B) of the corresponding diameter is 6 times or more the average value (B).
 本開示の耐摩耗性部材は、炭化珪素を主成分とするセラミックスからなり、摺動面に開気孔を複数有し、隣り合う開気孔の重心間距離の平均値(A)から開気孔の円相当径の平均値(B)を引いた値(C)が、50μm以上170μm以下である。 The wear-resistant member of the present disclosure is made of ceramics containing silicon carbide as a main component, has a plurality of open pores on a sliding surface, and has an open pore circle from the average value (A) of the distance between the centers of gravity of adjacent open pores. The value (C) obtained by subtracting the average value (B) of the equivalent diameter is 50 μm or more and 170 μm or less.
 本開示のフォーセットバルブは、互いの摺動面を当接し摺動させる固定弁体と可動弁体とを備え、固定弁体および可動弁体の少なくとも一方が、上記の耐摩耗性部材からなる。さらに、本開示のピストン・シリンダユニットは、ピストンリングが装着されたピストンと、ピストンリングの外周面と摺動する内周面を有するシリンダライナーが装着されたシリンダとを備え、シリンダライナーおよびピストンリングの少なくとも一方が上記の耐摩耗性部材からなる。 The faucet valve of the present disclosure includes a fixed valve body and a movable valve body that abut and slide on each other's sliding surfaces, and at least one of the fixed valve body and the movable valve body is made of the above-mentioned wear-resistant member. .. Further, the piston / cylinder unit of the present disclosure includes a piston equipped with a piston ring and a cylinder equipped with a cylinder liner having an inner peripheral surface that slides on an outer peripheral surface of the piston ring, and includes a cylinder liner and a piston ring. At least one of the above is made of the wear resistant member.
(A)は、本開示の一実施形態に係る耐摩耗性部材の摺動面を示す顕微鏡写真であり、(B)および(C)は、(A)のA部を拡大した顕微鏡写真である。(A) is a micrograph showing a sliding surface of a wear-resistant member according to an embodiment of the present disclosure, and (B) and (C) are micrographs of an enlarged portion A of (A). .. 本開示の一実施形態に係る耐摩耗性部材の摺動面をエッチングした状態を示す顕微鏡写真である。It is a micrograph which shows the state which etched the sliding surface of the wear-resistant member which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係るフォーセットバルブを示す図であり、(A)は流体通路を開いた状態を示す斜視図であり、(B)は流体通路を閉じた状態を示す斜視図である。It is a figure which shows the faucet valve which concerns on one Embodiment of this disclosure, (A) is the perspective view which shows the state which opened the fluid passage, (B) is the perspective view which shows the state which the fluid passage is closed. .. 本開示の一実施形態に係るピストン・シリンダユニットの要部を示す断面図である。It is sectional drawing which shows the main part of the piston / cylinder unit which concerns on one Embodiment of this disclosure.
 従来の炭化珪素-炭素複合材のように、摺動面上の開気孔が遍在すると、開気孔の内部に保持される潤滑剤も遍在することになる。このような状態が生じた場合、摺接する対向材と固着したり、かじり、異音などが発生しやすくなる。さらに、開気孔同士が接近した摺動面は高い圧力を受けると、開気孔同士を繋ぐクラックが進展しやすくなる。その結果、多くの開気孔がクラックで繋がった場合、その部分の機械的強度が低下したり、流体が外部に流出したりするという問題がある。 When the open pores on the sliding surface are ubiquitous as in the conventional silicon carbide-carbon composite material, the lubricant held inside the open pores is also ubiquitous. When such a state occurs, it is likely that the material is stuck to the opposing material that is in sliding contact with the material, and that galling, abnormal noise, or the like is likely to occur. Further, when the sliding surfaces in which the open pores are close to each other receive high pressure, cracks connecting the open pores are likely to develop. As a result, when many open pores are connected by cracks, there is a problem that the mechanical strength of the portion is lowered and the fluid flows out to the outside.
 本開示に係る耐摩耗性部材は、上記の構成を有することによって、摺接する対向材との固着、かじり、異音などの発生を抑制し、さらに機械的強度の低下および流体の外部への流出を抑制することができる耐摩耗性部材を提供することができる。 By having the above-mentioned configuration, the wear-resistant member according to the present disclosure suppresses the generation of sticking, galling, abnormal noise, etc. to the facing material that is in sliding contact with the wear-resistant member, further reduces the mechanical strength, and causes the fluid to flow out to the outside. It is possible to provide a wear-resistant member capable of suppressing the above.
 以下、図面を参照して、本開示の一実施形態に係る耐摩耗性部材について詳細に説明する。但し、本明細書の全図において、混同を生じない限り、同一部分には同一符号を付し、その説明を適時省略する。 Hereinafter, the wear-resistant member according to the embodiment of the present disclosure will be described in detail with reference to the drawings. However, in all the drawings of the present specification, the same parts are designated by the same reference numerals and the description thereof will be omitted as appropriate as long as they do not cause confusion.
 図1(A)は、本開示の一実施形態に係る耐摩耗性部材の摺動面を示す顕微鏡写真であり、図1(B)および(C)は、図1(A)のA部を拡大した顕微鏡写真である。図1に示す摺動面を備える耐摩耗性部材は、炭化珪素を主成分とするセラミックスからなる。 1 (A) is a micrograph showing a sliding surface of a wear-resistant member according to an embodiment of the present disclosure, and FIGS. 1 (B) and 1 (C) show a part A of FIG. 1 (A). This is a magnified micrograph. The wear-resistant member provided with the sliding surface shown in FIG. 1 is made of ceramics containing silicon carbide as a main component.
 本開示における主成分とは、セラミックスを構成する成分の合計100質量%中、80質量%以上を占める成分をいう。特に、主成分は、セラミックスを構成する成分の合計100質量%のうち、90質量%以上を占める成分であるとよい。 The main component in the present disclosure means a component that occupies 80% by mass or more in the total 100% by mass of the components constituting the ceramics. In particular, the main component is preferably a component that accounts for 90% by mass or more of the total 100% by mass of the components constituting the ceramics.
 セラミックスを構成する成分は、X線回折装置(XRD)を用いて求めればよい。各成分の含有量は、成分を同定した後、蛍光X線分析装置(XRF)またはICP発光分光分析装置を用いて、成分を構成する元素の含有量を求め、同定された成分に換算すればよい。 The components constituting the ceramics may be obtained by using an X-ray diffractometer (XRD). The content of each component can be determined by determining the content of the elements constituting the component using a fluorescent X-ray analyzer (XRF) or an ICP emission spectroscopic analyzer after identifying the component and converting it into the identified component. good.
 図1に示す摺動面は開気孔1を複数有し、隣り合う開気孔1a,1b,1c,・・・の重心間距離x1,x2,x3,・・・の平均値(A)から、開気孔1a,1b,1c,・・・の円相当径d1,d2,d3,・・・の平均値(B)を引いた値(C)が、平均値(B)の6倍以上である。値(C)が平均値(B)の6倍以上であると、摺動面の平面度を適正な範囲で制御することができる。そのため、当接する相手材の摺動面との隙間が狭くなり、隙間から外部への液体の流出を抑制することができる。 The sliding surface shown in FIG. 1 has a plurality of open air holes 1, and is obtained from the average value (A) of the distances between the centers of gravity of the adjacent open air holes 1a, 1b, 1c, ... The value (C) obtained by subtracting the average value (B) of the circle equivalent diameters d1, d2, d3, ... Of the open pores 1a, 1b, 1c, ... Is 6 times or more the average value (B). .. When the value (C) is 6 times or more the average value (B), the flatness of the sliding surface can be controlled within an appropriate range. Therefore, the gap between the mating material and the sliding surface to be in contact with the sliding surface is narrowed, and the outflow of the liquid from the gap to the outside can be suppressed.
 上記値(C)が平均値(B)の12倍以下であってもよい。値(C)が平均値(B)の12倍以下であると、開気孔の配置が適切となる。そのため、潤滑剤の配置も偏在することがなく、長期間に亘って潤滑性能を維持することができる。 The above value (C) may be 12 times or less of the average value (B). When the value (C) is 12 times or less the average value (B), the arrangement of the open pores becomes appropriate. Therefore, the arrangement of the lubricants is not unevenly distributed, and the lubrication performance can be maintained for a long period of time.
 図1に示す摺動面は開気孔1を複数有し、隣り合う開気孔1a,1b,1c,・・・の重心間距離x1,x2,x3,・・・の平均値(A)から、開気孔1a,1b,1c,・・・の円相当径d1,d2,d3,・・・の平均値(B)を引いた値(C)が、50μm以上170μm以下である。値(C)が50μm以上であると、摺動面の平面度を適正な範囲で制御することができる。そのため、当接する相手材の摺動面との隙間が狭くなり、隙間から外部への液体の流出を抑制することができる。値(C)が170μm以下であると、開気孔の配置が適切となる。そのため、潤滑剤の配置も偏在することがなく、長期間に亘って潤滑性能を維持することができる。 The sliding surface shown in FIG. 1 has a plurality of open air holes 1, and is obtained from the average value (A) of the distances between the centers of gravity of the adjacent open air holes 1a, 1b, 1c, ... The value (C) obtained by subtracting the average value (B) of the circle equivalent diameters d1, d2, d3, ... Of the open pores 1a, 1b, 1c, ... Is 50 μm or more and 170 μm or less. When the value (C) is 50 μm or more, the flatness of the sliding surface can be controlled within an appropriate range. Therefore, the gap between the mating material and the sliding surface to be in contact with the sliding surface is narrowed, and the outflow of the liquid from the gap to the outside can be suppressed. When the value (C) is 170 μm or less, the arrangement of the open pores becomes appropriate. Therefore, the arrangement of the lubricants is not unevenly distributed, and the lubrication performance can be maintained for a long period of time.
 開気孔の重心間距離は、以下の方法で求めることができる。摺動面を50倍の倍率で観察し、平均的な範囲を選択して、例えば、面積が1.768mm2(横方向の長さが1.36mm、縦方向の長さが1.3mm)となる範囲をCCDカメラで撮影して、観察像を得る。この観察像を対象として、画像解析ソフト「A像くん(ver2.52)」(登録商標、旭化成エンジニアリング(株)製)を用いて、分散度計測の重心間距離法という手法で開気孔の重心間距離を求めればよい。以下、画像解析ソフト「A像くん」と記載した場合、旭化成エンジニアリング(株)製の画像解析ソフトを示す。 The distance between the centers of gravity of the open pores can be obtained by the following method. Observe the sliding surface at a magnification of 50 times and select an average range, for example, an area of 1.768 mm 2 (horizontal length 1.36 mm, vertical length 1.3 mm). The area to be observed is photographed with a CCD camera to obtain an observation image. Using the image analysis software "A image-kun (ver2.52)" (registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd.) for this observation image, the center of gravity of the open pore is measured by the distance between the centers of gravity. You can find the distance. Hereinafter, when the image analysis software "A image-kun" is described, the image analysis software manufactured by Asahi Kasei Engineering Co., Ltd. is shown.
 この手法の設定条件としては、例えば、画像の明暗を示す指標であるしきい値を156、明度を暗、小図形除去面積を20μm2、雑音除去フィルタを無とすればよい。観察像の明るさに応じて、しきい値は調整すればよく、明度を暗、2値化の方法を手動とし、小図形除去面積を20μm2および雑音除去フィルタを無とした上で、観察像に現れるマーカーが開気孔の形状と一致するように、しきい値を調整すればよい。小図形除去面積を20μm2と比較的大きな値にしたのは、この値よりも小さい開気孔は、潤滑剤の保持性能が低いからである。 As the setting conditions of this method, for example, the threshold value indicating the lightness and darkness of the image may be 156, the lightness may be dark, the small figure removal area may be 20 μm 2 , and the noise removal filter may be omitted. The threshold value may be adjusted according to the brightness of the observation image, the brightness is darkened, the binarization method is manual, the small figure removal area is 20 μm 2, and the noise removal filter is omitted. The threshold may be adjusted so that the marker appearing in the image matches the shape of the open pore. The reason why the small figure removal area is set to a relatively large value of 20 μm 2 is that the open pores smaller than this value have low lubricant holding performance.
 開気孔の円相当径は、以下の方法で求めることができる。上記観察像を対象として、粒子解析という手法で開気孔の円相当径を求めればよい。この手法の設定条件も分散度計測の重心間距離法で用いた設定条件と同じにすればよい。 The equivalent circle diameter of the open pore can be obtained by the following method. For the above observation image, the diameter equivalent to the circle of the open pores may be obtained by a technique called particle analysis. The setting conditions of this method may be the same as the setting conditions used in the distance between the centers of gravity of the dispersion measurement.
 開気孔の重心間距離の尖度Kuは0.3以上4以下であってもよい。開気孔の重心間距離の尖度Kuが0.3以上であると、開気孔の重心間距離の分布が狭くなる。一方、重心間距離の尖度Kuが4以下であると、互いに極端に離れた開気孔が存在しなくなる。重心間距離の尖度Kuが0.3以上4以下であると、摺動面間に潤滑剤を万遍なく供給することができ、さらに長期間に亘って摺動性能を維持することができる。 The kurtosis Ku of the distance between the centers of gravity of the open pores may be 0.3 or more and 4 or less. When the kurtosis Ku of the distance between the centers of gravity of the open pores is 0.3 or more, the distribution of the distance between the centers of gravity of the open pores becomes narrow. On the other hand, when the kurtosis Ku of the distance between the centers of gravity is 4 or less, there are no open pores extremely separated from each other. When the kurtosis Ku of the distance between the centers of gravity is 0.3 or more and 4 or less, the lubricant can be evenly supplied between the sliding surfaces, and the sliding performance can be maintained for a long period of time. ..
 ここで、尖度Kuとは、分布のピークと裾が正規分布からどれだけ異なっているかを示す指標(統計量)である。尖度Ku>0である場合、鋭いピークと長く太い裾を有する分布となる。尖度Ku=0である場合、正規分布となる。尖度Ku<0である場合、分布は丸みがかったピークと短く細い尾を有する分布となる。重心間距離の尖度Kuは、Excel(登録商標、Microsoft Corporation)に備えられている関数Kurtを用いて求めればよい。 Here, kurtosis Ku is an index (statistic) showing how much the peak and tail of the distribution differ from the normal distribution. When the kurtosis Ku> 0, the distribution has a sharp peak and a long and thick hem. When the kurtosis Ku = 0, the distribution is normal. When the kurtosis Ku <0, the distribution has a rounded peak and a short, thin tail. The kurtosis of the distance between the centers of gravity may be obtained by using the function Kurt provided in Excel (registered trademark, Microsoft Corporation).
 開気孔1の摺動面における面積率は、例えば、1.2%以上5%未満であり、上述した粒子解析という手法で求めることができる。特に、開気孔1の摺動面における面積率は、2%以上4.5%以下であるとよい。 The area ratio of the open air hole 1 on the sliding surface is, for example, 1.2% or more and less than 5%, and can be obtained by the above-mentioned particle analysis method. In particular, the area ratio of the open air hole 1 on the sliding surface is preferably 2% or more and 4.5% or less.
 図2は、本開示の一実施形態に係る耐摩耗性部材の摺動面をエッチングした状態を示す顕微鏡写真である。このエッチングされた面は、水酸化ナトリウムおよび硝酸カリウムが1:1の質量比からなる加熱溶融された溶液に、耐摩耗性部材を20秒浸漬することによって得られる。このエッチングされた面を50倍の倍率で光学顕微鏡を用いて観察し、様々な大きさの結晶粒子が平均的に観察される面を選択する。様々な大きさの結晶粒子が平均的に観察される面とは、エッチングされた面を広く観察して、粗粒状結晶粒子がない領域が故意に選ばれた面ではなく、粗粒状結晶粒子や微粒状結晶粒子が平均的に存在する面を意味する。その面の面積は、例えば2.7×10-2μm2(横方向の長さが0.19μm、縦方向の長さが0.14μm)である。 FIG. 2 is a micrograph showing a state in which the sliding surface of the wear-resistant member according to the embodiment of the present disclosure is etched. This etched surface is obtained by immersing the wear resistant member in a heat-melted solution of sodium hydroxide and potassium nitrate in a mass ratio of 1: 1 for 20 seconds. This etched surface is observed with an optical microscope at a magnification of 50 times, and the surface on which crystal particles of various sizes are observed on average is selected. The surface on which crystal particles of various sizes are observed on average is not the surface on which the region without coarse-grained crystal particles is intentionally selected by observing the etched surface widely, but the surface of coarse-grained crystal particles or It means a surface in which fine-grained crystal particles are present on average. The area of the surface is, for example, 2.7 × 10 −2 μm 2 (horizontal length is 0.19 μm, vertical length is 0.14 μm).
 図2に示すように、摺動面は、炭化珪素を主成分とする粗粒状結晶粒子2および微粒状結晶粒子3を有する。微粒状結晶粒子2の円相当径の平均値(D)は、開気孔1の円相当径の平均値(B)よりも小さい。粗粒状結晶粒子2は、面積が1000μm2以上の結晶粒子であり、微粒状結晶粒子3は、円相当径が8μm以下の結晶粒子である。円相当径が8μmを超えて面積が1000μm2未満の結晶粒子が存在してもよいことは、言うまでもない。 As shown in FIG. 2, the sliding surface has coarse-grained crystal particles 2 and fine-grained crystal particles 3 containing silicon carbide as a main component. The average value (D) of the equivalent circle diameters of the fine granular crystal particles 2 is smaller than the average value (B) of the equivalent circle diameters of the open pores 1. The coarse-grained crystal particles 2 are crystal particles having an area of 1000 μm 2 or more, and the fine-grained crystal particles 3 are crystal particles having a circle-equivalent diameter of 8 μm or less. Needless to say, there may be crystal particles having an equivalent circle diameter of more than 8 μm and an area of less than 1000 μm 2.
 微粒状結晶粒子3の円相当径の平均値(D)が、開気孔1の円相当径の平均値(B)よりも小さいと、開気孔1の輪郭から脱粒しにくくなる。その結果、当接する対向材の摺動面に損傷を与えるおそれが低減する。特に、摺動面における微粒状結晶粒子3の円相当径の平均値(D)と、開気孔1の円相当径の平均値(B)との差が5μm以上であるとよい。 When the average value (D) of the equivalent circle diameter of the fine granular crystal particles 3 is smaller than the average value (B) of the equivalent circle diameter of the open pore 1, it becomes difficult to thresh from the contour of the open pore 1. As a result, the risk of damaging the sliding surface of the opposing material that comes into contact is reduced. In particular, it is preferable that the difference between the average value (D) of the equivalent circle diameter of the fine granular crystal particles 3 on the sliding surface and the average value (B) of the equivalent circle diameter of the open pore 1 is 5 μm or more.
 微粒状結晶粒子3の円相当径の平均値(D)は、例えば、1μm以上6μm以下である。開気孔1の円相当径の平均値(B)は、例えば、8μm以上30μm以下である。微粒状結晶粒子3の円相当径は、例えば、上述した方法で、面積が2.7×10-2μm2のエッチングされた面を対象として、画像解析ソフト(例えば、三谷商事(株)製、Win ROOF)を用いて解析することによって得ることができる。解析にするに当たり、円相当径の閾値は、0.21μmとし、0.21μm未満の粒径は円相当径の平均値(B)算出の対象とはしない。 The average value (D) of the equivalent circle diameters of the fine granular crystal particles 3 is, for example, 1 μm or more and 6 μm or less. The average value (B) of the equivalent circle diameter of the open pore 1 is, for example, 8 μm or more and 30 μm or less. The equivalent circle diameter of the fine granular crystal particles 3 is, for example, the image analysis software (for example, manufactured by Mitani Shoji Co., Ltd.) for the etched surface having an area of 2.7 × 10 −2 μm 2 by the method described above. , Win ROOF). In the analysis, the threshold value of the equivalent circle diameter is set to 0.21 μm, and the particle size less than 0.21 μm is not included in the calculation of the average value (B) of the equivalent circle diameter.
 粗粒状結晶粒子2は、6面積%以上15面積%以下であるとよい。粗粒状結晶粒子2が6面積%以上であると、熱衝撃により微細なクラックが生じても粗粒状結晶粒子2によってクラックの進展を抑制することができる。粗粒状結晶粒子2が15面積%以下であると、強度、剛性、破壊靭性などの機械的特性を高くすることができる。 The coarse-grained crystal particles 2 are preferably 6 area% or more and 15 area% or less. When the coarse-grained crystal particles 2 are 6 area% or more, even if fine cracks are generated due to thermal shock, the coarse-grained crystal particles 2 can suppress the growth of cracks. When the coarse-grained crystal particles 2 are 15 area% or less, mechanical properties such as strength, rigidity, and fracture toughness can be enhanced.
 粗粒状結晶粒子2は粒内気孔4を複数含んでいるとよい。粗粒状結晶粒子2が粒内気孔を複数含んでいると、高温環境下で粗粒状結晶粒子2に生じる熱応力は粒内気孔4によって緩和されやすいので、耐熱性が向上する。粒内気孔4の円相当径は、例えば6μm以下である。 The coarse-grained crystal particles 2 may contain a plurality of intragranular pores 4. When the coarse-grained crystal particles 2 include a plurality of intragranular pores, the thermal stress generated in the coarse-grained crystal particles 2 in a high-temperature environment is easily relaxed by the intra-grain pores 4, so that the heat resistance is improved. The equivalent circle diameter of the intragranular pores 4 is, for example, 6 μm or less.
 粗粒状結晶粒子2および微粒状結晶粒子3は炭化珪素を主成分とする結晶粒子である。波長分散型X線マイクロアナライザー装置を用いて、SiおよびCの各分布を確認し、SiおよびCの分布を重ねたときにこれらが重複していることで、炭化珪素を主成分とする結晶粒子であることを確認すればよい。 The coarse-grained crystal particles 2 and the fine-grained crystal particles 3 are crystal particles containing silicon carbide as a main component. Using a wavelength dispersive X-ray microanalyzer device, each distribution of Si and C is confirmed, and when the distributions of Si and C are overlapped, these overlap, and as a result, crystal particles containing silicon carbide as the main component. You just have to confirm that.
 本開示の耐摩耗性部材を形成するセラミックスの相対密度は96%以上99%以下であるとよく、特に、96.7%以上98.8%以下であるのがよい。この相対密度は、セラミックスの理論密度に対する耐摩耗性部材の見掛密度の百分率である。セラミックスの理論密度については、次のように求めればよい。耐摩耗性部材を構成するそれぞれの含有量をICP(InductivilyCoupled Plasma)発光分光分析装置または蛍光X線分析装置により求める。各成分の同定はCuKα線を用いたX線回折装置によって行う。例えば同定された成分がSiCやB4Cであれば、ICP発光分光分析法または蛍光X線分析法により求めたSiおよびBの含有量の値を用いてSiCやB4Cに換算して求めればよい。耐摩耗性部材の見掛密度は、JIS R 1634-1998に準拠して求めればよい。 The relative density of the ceramics forming the wear-resistant member of the present disclosure is preferably 96% or more and 99% or less, and particularly preferably 96.7% or more and 98.8% or less. This relative density is a percentage of the apparent density of the wear resistant member to the theoretical density of the ceramics. The theoretical density of ceramics may be obtained as follows. The content of each of the wear-resistant members is determined by an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer or a fluorescent X-ray analyzer. Identification of each component is performed by an X-ray diffractometer using CuKα rays. For example, if the identified component is SiC or B 4 C, it can be obtained by converting it into SiC or B 4 C using the Si and B content values obtained by ICP emission spectroscopic analysis or fluorescent X-ray analysis. Just do it. The apparent density of the wear-resistant member may be determined in accordance with JIS R 1634-1998.
 セラミックスを構成する主成分が炭化珪素であり、主成分以外の成分が炭化硼素である場合、含有量がそれぞれa質量%およびb質量%であるとすると、炭化珪素および炭化硼素のそれぞれの理論密度の値(炭化珪素=3.21g/cm3、炭化硼素=2.52g/cm3)を用いて、以下の式(1)により炭化珪素質焼結体の理論密度(T.D)を求めることができる。
  T.D=1/(0.01×(a/3.21+b/2.52))・・・(1)
When the main component constituting the ceramic is silicon carbide and the components other than the main component are boron carbide, assuming that the contents are a mass% and b mass%, respectively, the theoretical densities of silicon carbide and boron carbide, respectively. (Silicon carbide = 3.21 g / cm 3 , boron carbide = 2.52 g / cm 3 ), the theoretical density (TD) of the silicon carbide sintered body is obtained by the following formula (1). be able to.
T. D = 1 / (0.01 × (a / 3.21 + b / 2.52)) ... (1)
 例えば、セラミックスを構成する成分の含有量が、炭化珪素が99.6質量%であり、炭化硼素が0.4質量%であるときには、式(1)を用いて計算すると、セラミックスの理論密度(T.D)は、3.21g/cm3となる。JIS R 1634-1998に準拠して求めたセラミックスの見掛密度を、この理論密度(T.D)3.21g/cm3で除すことにより、相対密度を求めることができる。 For example, when the content of the components constituting the ceramics is 99.6% by mass for silicon carbide and 0.4% by mass for boron carbide, the theoretical density of the ceramics (1) is calculated using the formula (1). T.D) is 3.21 g / cm 3 . The relative density can be obtained by dividing the apparent density of the ceramics obtained in accordance with JIS R 1634-1998 by this theoretical density (TD) 3.21 g / cm 3.
 セラミックスにおけるグラファイトの含有量は、1質量%未満、特に0.1質量%以下であるとよく、含まれなくてもよい。グラファイトが含まれていると、摺動特性は向上するものの、摺動面は摩耗しやすくなるため、耐摩耗性部材としての寿命が短くなるからである。X線回折法による成分の同定で、耐摩耗性部材にグラファイトが含まれていたときにはリートベルト法を用いて、グラファイトの含有量を求めればよい。 The graphite content in the ceramics may be less than 1% by mass, particularly 0.1% by mass or less, and may not be contained. This is because when graphite is contained, the sliding characteristics are improved, but the sliding surface is easily worn, so that the life of the wear-resistant member is shortened. When the wear-resistant member contains graphite in the identification of the component by the X-ray diffraction method, the graphite content may be determined by using the Rietveld method.
 セラミックスはイオウを含んでいてもよい。イオウの含有量は、酸化物(SO3)に換算して0.02質量%以下であってもよい。摺動開始後、摺動面にイオウが含まれていると、クラックの起点になりやすいものの、イオウの含有量が酸化物(SO3)に換算して上記範囲であると、クラックの起点になるおそれが低減する。 The ceramics may contain sulfur. The sulfur content may be 0.02% by mass or less in terms of oxide (SO 3). After the start of sliding, if sulfur is contained in the sliding surface, it tends to be the starting point of cracks, but if the sulfur content is within the above range in terms of oxide (SO 3 ), it will be the starting point of cracks. The risk of becoming is reduced.
 上述した耐摩耗性部材は、例えば、フォーセットバルブの弁体、ピストン・シリンダユニット、軸受、燃料噴射用ノズル、圧延ロール、ボールベアリング、ロールベアリング、流量制御弁で装着される回転軸やこの回転軸が回転可能に係合するワッシャ、などの摺動部材として用いることができる。 The wear-resistant member described above includes, for example, a valve body of a faucet valve, a piston / cylinder unit, a bearing, a fuel injection nozzle, a rolling roll, a ball bearing, a roll bearing, a rotary shaft mounted on a flow control valve, or rotation thereof. It can be used as a sliding member such as a washer with which the shaft rotatably engages.
 図3は、本開示の一実施形態に係るフォーセットバルブを示す図であり、図3(A)は流体通路を開いた状態を示す斜視図であり、図3(B)は流体通路を閉じた状態を示す斜視図である。 3A and 3B are views showing a faucet valve according to an embodiment of the present disclosure, FIG. 3A is a perspective view showing a state in which the fluid passage is open, and FIG. 3B is a perspective view showing a state in which the fluid passage is closed. It is a perspective view which shows the state.
 図3に示すフォーセットバルブ20は、互いの摺動面21a、22aを当接し摺動させる固定弁体21と可動弁体22とを備えている。固定弁体21は、樹脂ケース(図示しない)に固定され、可動弁体22は樹脂ケースの内部で固定弁体21上で可動するように構成されている。固定弁体21、可動弁体22内にはそれぞれ厚み方向に流体通路21b、22bが形成され、双方の流体通路21b、22bは、摺動面21a、22a上で連結している。可動弁体22にはレバー23が固定され、このレバー23を上下方向あるいは回転方向に動かすことにより可動弁体22は可動する。フォーセットバルブ20では、固定弁体21および可動弁体22の双方に、本開示の一実施形態に係る耐摩耗性部材10が使用されている。固定弁体21および可動弁体22のいずれか一方のみに、耐摩耗性部材10が使用されていてもよい。 The faucet valve 20 shown in FIG. 3 includes a fixed valve body 21 and a movable valve body 22 that abut and slide the sliding surfaces 21a and 22a of each other. The fixed valve body 21 is fixed to a resin case (not shown), and the movable valve body 22 is configured to move on the fixed valve body 21 inside the resin case. Fluid passages 21b and 22b are formed in the fixed valve body 21 and the movable valve body 22 in the thickness direction, respectively, and both fluid passages 21b and 22b are connected on the sliding surfaces 21a and 22a. A lever 23 is fixed to the movable valve body 22, and the movable valve body 22 can be moved by moving the lever 23 in the vertical direction or the rotational direction. In the faucet valve 20, the wear-resistant member 10 according to the embodiment of the present disclosure is used for both the fixed valve body 21 and the movable valve body 22. The wear resistant member 10 may be used only for either the fixed valve body 21 or the movable valve body 22.
 フォーセットバルブ20は、図3(A)に示すように、流体通路21b、22bが開いた状態では、白抜き矢印方向から水や湯水などの流体が流体通路21b、22bに順次流れ、フォーセットバルブ20に接続された蛇口(図示しない)から流体が吐出する。このとき、いずれかの摺動面21a、22aに予め塗布されていたシリコングリスとともに摺動面21a、22a間に挿入した流体が潤滑液となって、摺動特性を維持するように作用する。互いの摺動面21a、22aが当接するとは、このような潤滑液を介してそれぞれの面が当接している状態を含む。 As shown in FIG. 3A, in the faucet valve 20, when the fluid passages 21b and 22b are open, fluids such as water and hot water flow sequentially from the direction of the white arrow to the fluid passages 21b and 22b, and the faucet valve 20 is set. A fluid is discharged from a faucet (not shown) connected to the valve 20. At this time, the fluid inserted between the sliding surfaces 21a and 22a together with the silicon grease previously applied to any of the sliding surfaces 21a and 22a becomes a lubricating liquid and acts to maintain the sliding characteristics. The contact between the sliding surfaces 21a and 22a includes a state in which the respective surfaces are in contact with each other via such a lubricating liquid.
 他方、図3(B)に示すように、レバー23で可動弁体22を上下方向のいずれかに動かすことによって流体通路21b、22b間を閉ざすことができ、蛇口からの流体の吐出を制止することができる。可動弁体22を回転方向に動かすことによって流体通路21b、22bが連結する端面の面積が調整される。その結果、蛇口から吐出する流体の流量を調整することができる。 On the other hand, as shown in FIG. 3B, the movable valve body 22 can be moved in either the vertical direction by the lever 23 to close the space between the fluid passages 21b and 22b, and the discharge of the fluid from the faucet is stopped. be able to. By moving the movable valve body 22 in the rotational direction, the area of the end face to which the fluid passages 21b and 22b are connected is adjusted. As a result, the flow rate of the fluid discharged from the faucet can be adjusted.
 図3に示すフォーセットバルブ20では、固定弁体21は可動弁体22よりも上記値(C)が小さくてもよい。通常、可動弁体22の摺動面22aより固定弁体21の摺動面21aの方が面積が大きい。そのため、摺動面22aは常時、摺動面21aに常時摺接した状態となる。一方、摺動面21aの一部は、摺動面22aと常時摺接した状態にはならない。そのため、上記値(C)を小さくすることで、開気孔に含まれるシリコングリスを保持できる量が多くなり、シリコングリスの保持性能も高くなる。上記値(C)の差は、例えば、3μm以上15μm以下である。 In the faucet valve 20 shown in FIG. 3, the fixed valve body 21 may have a smaller value (C) than the movable valve body 22. Normally, the area of the sliding surface 21a of the fixed valve body 21 is larger than that of the sliding surface 22a of the movable valve body 22. Therefore, the sliding surface 22a is always in contact with the sliding surface 21a. On the other hand, a part of the sliding surface 21a is not in a state of being in constant sliding contact with the sliding surface 22a. Therefore, by reducing the above value (C), the amount of silicon grease contained in the open pores can be increased, and the holding performance of the silicon grease is also improved. The difference between the above values (C) is, for example, 3 μm or more and 15 μm or less.
 図4は、本開示の一実施形態に係るピストン・シリンダユニットの要部を示す断面図である。ピストン・シリンダユニット30は、複数のピストンリング31が装着されたピストン32と、ピストンリング31の外周面と摺動する内周面を有するシリンダライナー33が装着されたシリンダ34とを備えている。 FIG. 4 is a cross-sectional view showing a main part of the piston / cylinder unit according to the embodiment of the present disclosure. The piston / cylinder unit 30 includes a piston 32 to which a plurality of piston rings 31 are mounted, and a cylinder 34 to which a cylinder liner 33 having an inner peripheral surface that slides on an outer peripheral surface of the piston ring 31 is mounted.
 ピストンリング31の外周面は、シリンダライナー33の内周面に軸方向に沿って摺動する。ピストンリング31の外周面およびシリンダライナー33の内周面は、いずれも開気孔を複数有する摺動面である。シリンダライナー33の内周面はピストンリング31の外周面より面積が大きい。そのため、常時、ピストンリング31の外周面に接触することはない。一方、ピストンリング31の外周面7は、シリンダライナー33の内周面に常時接触する。 The outer peripheral surface of the piston ring 31 slides along the axial direction on the inner peripheral surface of the cylinder liner 33. The outer peripheral surface of the piston ring 31 and the inner peripheral surface of the cylinder liner 33 are both sliding surfaces having a plurality of open holes. The inner peripheral surface of the cylinder liner 33 has a larger area than the outer peripheral surface of the piston ring 31. Therefore, it does not always come into contact with the outer peripheral surface of the piston ring 31. On the other hand, the outer peripheral surface 7 of the piston ring 31 is in constant contact with the inner peripheral surface of the cylinder liner 33.
 シリンダ34は、例えば、アルミニウムまたは鉄製の鋳物からなる。シリンダライナー33は、例えば、炭化珪素を主成分とするセラミックスからなる耐摩耗性部材である。ピストン32は、例えば、アルミニウムまたは鉄製の鋳物からなる。ピストン32は、図4では一体的に形成されているが,ピストンヘッド部32aとピストンスカート部32bとが別々であってもよい。 The cylinder 34 is made of, for example, an aluminum or iron casting. The cylinder liner 33 is, for example, an abrasion-resistant member made of ceramics containing silicon carbide as a main component. The piston 32 is made of, for example, an aluminum or iron casting. Although the piston 32 is integrally formed in FIG. 4, the piston head portion 32a and the piston skirt portion 32b may be separate.
 ピストンヘッド部32aとピストンスカート部32bとが別々の場合、ピストンヘッド部32aは、窒化珪素、炭化珪素等を主成分とするセラミックスからなる。ピストンリング31は、例えば、炭化珪素を主成分とするセラミックスからなる耐摩耗性部材である。 When the piston head portion 32a and the piston skirt portion 32b are separate, the piston head portion 32a is made of ceramics containing silicon nitride, silicon carbide or the like as main components. The piston ring 31 is, for example, a wear-resistant member made of ceramics containing silicon carbide as a main component.
 本開示の一実施形態に係るピストン・シリンダユニット30は、シリンダライナー33およびピストンリング31の少なくとも一方が本開示の耐摩耗性部材である。特に、シリンダライナー33およびピストンリング31が本開示の耐摩耗性部材からなり、シリンダライナー33はピストンリング31よりも上記値(C)が小さくてもよい。ピストンリング31の外周面よりシリンダライナー33の内周面の方が面積が大きい。そのため、外周面は内周面に常時摺接した状態となる。一方、内周面の一部は、外周面と常時摺接した状態にはならない。そのため、上記値(C)を小さくすることで、開気孔に含まれるオイル等の潤滑剤を保持できる量が多くなり、潤滑剤の保持性能も高くなる。上記値(C)の差は、例えば、3μm以上15μm以下である。 In the piston / cylinder unit 30 according to the embodiment of the present disclosure, at least one of the cylinder liner 33 and the piston ring 31 is the wear resistant member of the present disclosure. In particular, the cylinder liner 33 and the piston ring 31 may be made of the wear-resistant member of the present disclosure, and the cylinder liner 33 may have a smaller value (C) than the piston ring 31. The area of the inner peripheral surface of the cylinder liner 33 is larger than that of the outer peripheral surface of the piston ring 31. Therefore, the outer peripheral surface is always in sliding contact with the inner peripheral surface. On the other hand, a part of the inner peripheral surface is not always in sliding contact with the outer peripheral surface. Therefore, by reducing the value (C), the amount of the lubricant such as oil contained in the open pores can be increased, and the lubricant holding performance can be improved. The difference between the above values (C) is, for example, 3 μm or more and 15 μm or less.
 次に、本開示の一実施形態に係る耐摩耗性部材の製造方法の一例について説明する。まず、平均粒径(D50)が0.5μm以上2μm以下であるα型炭化珪素の粉末、焼結助剤、樹脂ビーズからなる疎水性の気孔形成剤およびこの気孔形成剤を分散させる気孔分散剤を準備する。次いで、これらの原料を、バレルミル、回転ミル、振動ミル、ビーズミルまたはアトライターなどを用いてボールミルまたはビーズミルなどで湿式混合、粉砕してスラリーとする。炭化珪素の粉末を分散させる分散剤を添加してもよい。 Next, an example of a method for manufacturing a wear-resistant member according to an embodiment of the present disclosure will be described. First, a hydrophobic pore-forming agent consisting of α-type silicon carbide powder having an average particle size (D 50 ) of 0.5 μm or more and 2 μm or less, a sintering aid, and resin beads, and pore dispersion in which the pore-forming agent is dispersed. Prepare the agent. Next, these raw materials are wet-mixed and pulverized with a ball mill or a bead mill using a barrel mill, a rotary mill, a vibration mill, a bead mill, an attritor or the like to obtain a slurry. A dispersant that disperses the silicon carbide powder may be added.
 焼結助剤は炭化硼素の粉末とカーボン源としてフェノール水溶液あるいはリグニンスルホン酸塩およびリグニンカルボン酸塩の粉末とを組み合わせとを組み合わせるか、あるいは酸化アルミニウムの粉末と酸化イットリウムなどの希土類酸化物の粉末とを組み合わせてもよい。焼結助剤が前者の組み合わせからなる場合には、α型炭化珪素の粉末100質量部に対して、例えば、炭化硼素の粉末は0.2質量部以上0.6質量部以下であり、フェノール水溶液あるいはリグニンスルホン酸塩およびリグニンカルボン酸塩の粉末は、炭素換算で0.5質量部4.0質量部である。リグニンスルホン酸塩およびリグニンカルボン酸塩の塩は、リチウム、ナトリウムおよびアンモニウムの少なくとも1種であるとよい。 Sintering aids can be a combination of boron carbide powder and an aqueous phenol solution or a combination of lignin sulfonate and lignin carboxylate powder as a carbon source, or aluminum oxide powder and rare earth oxide powder such as yttrium oxide. May be combined with. When the sintering aid is composed of the former combination, for example, the boron carbide powder is 0.2 parts by mass or more and 0.6 parts by mass or less with respect to 100 parts by mass of the α-type silicon carbide powder, and the phenol. The aqueous solution or the powder of lignin sulfonate and lignin carboxylate is 0.5 parts by mass and 4.0 parts by mass in terms of carbon. The salt of lignin sulfonate and lignin carboxylate may be at least one of lithium, sodium and ammonium.
 気孔形成剤は、例えば、シリコーンビーズ、およびポリアクリルースチレンの少なくとも1種からなる懸濁重合された架橋性の樹脂ビーズである。摺動面に開気孔を複数有し、上記値(C)が、平均値(B)の6倍以上である耐摩耗性部材を得るには、気孔形成剤の含有量を、α型炭化珪素の粉末100質量部に対して、1.2質量部以上1.38質量部以下とし、その平均粒径(D50)を36μm以上45μm以下、特に40μm以上45μm以下とすればよい。上記値(C)が、50μm以上170μm以下である耐摩耗性部材を得る場合も、気孔形成剤の含有量および平均粒径(D50)は上記と同じにすればよい。 The pore-forming agent is, for example, silicone beads and suspension-polymerized crosslinkable resin beads consisting of at least one of polyacrylic-styrene. In order to obtain a wear-resistant member having a plurality of open pores on the sliding surface and having the above value (C) 6 times or more the average value (B), the content of the pore forming agent should be set to α-type silicon carbide. The average particle size (D 50 ) may be 36 μm or more and 45 μm or less, particularly 40 μm or more and 45 μm or less, with respect to 100 parts by mass of the powder. Even when a wear-resistant member having the above value (C) of 50 μm or more and 170 μm or less is obtained, the content of the pore forming agent and the average particle size (D 50 ) may be the same as described above.
 気孔形成剤の粒径の範囲は、例えば、5μm以上125μm以下である。例えば、開気孔の重心間距離の尖度Kuが0.3以上4以下である耐摩耗性部材を得るには、平均粒径(D50)が42.5μm以上44.5μm以下である気孔形成剤を用いればよい。 The range of the particle size of the pore forming agent is, for example, 5 μm or more and 125 μm or less. For example, in order to obtain a wear-resistant member having a kurtosis Ku of the distance between the centers of gravity of the open pores of 0.3 or more and 4 or less, pore formation having an average particle size (D 50 ) of 42.5 μm or more and 44.5 μm or less. An agent may be used.
 気孔分散剤は、気孔形成剤を分散させるために使用される。気孔分散剤としては、例えば、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩などのアニオン界面活性剤などが挙げられる。アニオン界面活性剤が気孔形成剤に吸着することによって、気孔形成剤はスラリー中に容易に湿潤および浸透する。さらに、アニオン界面活性剤が有する親水基の電荷反発により、気孔形成剤の凝集がさらに抑制される。そのため、気孔形成剤がスラリー中に凝集することなく十分に分散することができる。アニオン界面活性剤は、気孔形成剤をスラリーに湿潤および浸透させる効果が高い。気孔分散剤は、気孔形成剤100質量%に対し、0.14質量%以上0.24質量%以下添加すればよい。 The pore dispersant is used to disperse the pore forming agent. Examples of the pore dispersant include anionic surfactants such as carboxylates, sulfonates, sulfates and phosphates. By adsorbing the anionic surfactant to the pore-forming agent, the pore-forming agent is easily wetted and penetrated into the slurry. Further, the charge repulsion of the hydrophilic group of the anionic surfactant further suppresses the aggregation of the pore-forming agent. Therefore, the pore-forming agent can be sufficiently dispersed without agglutinating in the slurry. The anionic surfactant is highly effective in wetting and infiltrating the pore-forming agent into the slurry. The pore dispersant may be added in an amount of 0.14% by mass or more and 0.24% by mass or less with respect to 100% by mass of the pore forming agent.
 次に、このスラリーに、バインダーとして、メチルセルロース、カルボキシメチルセルロースなどのセルロース類やその変成品、糖類、澱粉類、デキストリンやこれらの各種変成品、ポリビニルアルコールなどの水溶性各種合成樹脂や酢酸ビニルなどの合成樹脂エマルジョン、アラビアゴム、カゼイン、アルギン酸塩、グルコマンナン、グリセリン、ソルビタン脂肪酸エステルなどを添加し混合した後、噴霧乾燥することで顆粒を得る。得られた大部分の顆粒には、気孔形成剤が内包された状態となる。 Next, in this slurry, as a binder, celluloses such as methyl cellulose and carboxymethyl cellulose and their variants, saccharides, starches, dextrin and various variants thereof, various water-soluble synthetic resins such as polyvinyl alcohol, vinyl acetate and the like are added. Granules are obtained by adding a synthetic resin emulsion, arabic rubber, casein, alginate, glucomannan, glycerin, sorbitan fatty acid ester and the like, mixing them, and then spray-drying them. Most of the obtained granules contain a pore-forming agent.
 噴霧乾燥の前にASTM E 11-61に記載されている粒度番号が2000のメッシュまたはこのメッシュより細かいメッシュの篩いに通すことによって、粗大な不純物やゴミを除去する。さらに磁力を用いた除鉄機で除鉄するなどの方法で、鉄およびその化合物を除去するとよい。 Before spray drying, coarse impurities and dust are removed by passing through a mesh with a particle size number of 2000 or a mesh finer than this mesh described in ASTM E 11-61. Further, iron and its compounds may be removed by a method such as removing iron with an iron remover using a magnetic force.
 次に、粉体嵩密度が調整された顆粒を成形型に充填し、圧力を、例えば、78Pa以上118Pa以下として充填した顆粒を加圧して生密度が、例えば、1.8g/cm3以上1.95g/cm3以下である成形体を得る。 Next, the granules having the adjusted powder bulk density are filled in a molding die, and the pressure is applied to the filled granules at, for example, 78 Pa or more and 118 Pa or less, and the raw density is, for example, 1.8 g / cm 3 or more. Obtain a molded product having a weight of .95 g / cm 3 or less.
 成形体を窒素雰囲気中、温度450~650℃、保持時間2~10時間で脱脂して、脱脂体とする。脱脂体を真空雰囲気またはアルゴンガスなどの不活性ガスの減圧雰囲気中、温度を1800℃以上2200℃以下として、3時間以上5時間以下で保持することによって、本開示の耐摩耗性部材を得ることができる。 The molded product is degreased in a nitrogen atmosphere at a temperature of 450 to 650 ° C. and a holding time of 2 to 10 hours to obtain a degreased body. The wear-resistant member of the present disclosure can be obtained by holding the degreased body in a vacuum atmosphere or a reduced pressure atmosphere of an inert gas such as argon gas at a temperature of 1800 ° C. or higher and 2200 ° C. or lower for 3 hours or longer and 5 hours or lower. Can be done.
 以下、本実施形態の実施例を具体的に説明するが、本実施形態はこれらの実施例に限定されるものではない。 Hereinafter, examples of the present embodiment will be specifically described, but the present embodiment is not limited to these examples.
(実施例1)
 まず、主成分を成すα型炭化珪素の粉末に、焼結助剤と、気孔形成剤とを所定量添加した。焼結助剤としては、炭化硼素の粉末およびフェノール水溶液を用いた。気孔形成剤としては、ポリアクリルースチレンからなる懸濁重合された架橋性の樹脂ビーズを用いた。
(Example 1)
First, a predetermined amount of a sintering aid and a pore-forming agent was added to the α-type silicon carbide powder forming the main component. As the sintering aid, a boron carbide powder and an aqueous phenol solution were used. As the pore-forming agent, suspension-polymerized crosslinkable resin beads made of polyacrylic-styrene were used.
 固定弁体を得るために、α型炭化珪素の粉末100質量部に対する気孔形成剤の含有量および平均粒径(D50)は、表1に示す通りとした。さらに、各試料に、気孔分散剤としてポリカルボン酸ナトリウムを、気孔形成剤100質量%に対して0.2質量%添加して、調合原料とした。この調合原料を各試料毎にボールミルに投入した後、48時間混合してスラリー化した。このスラリーにバインダーを添加して混合した後、噴霧乾燥することにより平均粒径80μmの炭化珪素の顆粒を得た。 In order to obtain a fixed valve body, the content of the pore-forming agent and the average particle size (D 50 ) with respect to 100 parts by mass of the powder of α-type silicon carbide were as shown in Table 1. Further, sodium polycarboxylate as a pore dispersant was added to each sample in an amount of 0.2% by mass based on 100% by mass of the pore forming agent to prepare a compounding raw material. After putting this compounding raw material into a ball mill for each sample, it was mixed for 48 hours to form a slurry. A binder was added to this slurry, mixed, and then spray-dried to obtain silicon carbide granules having an average particle size of 80 μm.
 次に、この顆粒を成形型に充填し、厚み方向に98MPaの圧力で加圧し成形して成形体とした。得られた成形体を、窒素雰囲気中、20時間で昇温し、600℃で5時間保持後、自然冷却して脱脂し、脱脂体とした。次に、脱脂体を真空雰囲気中、2030℃にて5時間保持することにより、炭化珪素を主成分とするセラミックスからなる固定弁体21を得た。一方、可動弁体22は、気孔形成剤および気孔分散剤を添加せず、炭化珪素を主成分とする緻密質のセラミックスからなるように調整した。 Next, the granules were filled in a molding die and pressed with a pressure of 98 MPa in the thickness direction to form a molded body. The obtained molded product was heated in a nitrogen atmosphere for 20 hours, held at 600 ° C. for 5 hours, and then naturally cooled to be degreased to obtain a degreased body. Next, the degreased body was held at 2030 ° C. for 5 hours in a vacuum atmosphere to obtain a fixed valve body 21 made of ceramics containing silicon carbide as a main component. On the other hand, the movable valve body 22 was adjusted so as to be made of dense ceramics containing silicon carbide as a main component without adding a pore forming agent and a pore dispersant.
 可動弁体22を形成するセラミックスの相対密度は99%とした。そして、固定弁体21および可動弁体22が互いに対向する表面を研磨加工して摺動面21a、22aを得た。いずれも摺動面21a、22aの平面度は1μm以下であり、算術平均粗さ(Ra)は0.2μm以下であった。 The relative density of the ceramics forming the movable valve body 22 was set to 99%. Then, the surfaces of the fixed valve body 21 and the movable valve body 22 facing each other were polished to obtain sliding surfaces 21a and 22a. In each case, the flatness of the sliding surfaces 21a and 22a was 1 μm or less, and the arithmetic mean roughness (Ra) was 0.2 μm or less.
 得られた各試料の固定弁体21の摺動面21aにおける開気孔の重心間距離の平均値(A)、開気孔の円相当径の平均値(B)、平均値(A)から平均値(B)を引いた値(C)、および平均値(B)に対する値(C)の倍率を、表1に示した。 The average value (A) of the distance between the centers of gravity of the open pores on the sliding surface 21a of the fixed valve body 21 of each sample obtained, the average value (B) of the circle equivalent diameter of the open pores, and the average value from the average value (A). Table 1 shows the magnification of the value (C) obtained by subtracting (B) and the value (C) with respect to the average value (B).
 次に、図3に示すフォーセットバルブ20を製作し、摺動試験を行った。この摺動試験に用いたフォーセットバルブ20は、外径30mm、肉厚10mmの円板状体に直径5mmの流体通路22bを有する可動弁体22と、外径20mm、膜厚8mmの円板状体に直径5mmの流体通路21bを有する固定弁体21とからなる。 Next, the faucet valve 20 shown in FIG. 3 was manufactured and a sliding test was performed. The faucet valve 20 used in this sliding test consists of a movable valve body 22 having a fluid passage 22b having a diameter of 5 mm in a disk-shaped body having an outer diameter of 30 mm and a wall thickness of 10 mm, and a disk having an outer diameter of 20 mm and a film thickness of 8 mm. It is composed of a fixed valve body 21 having a fluid passage 21b having a diameter of 5 mm in the shape.
 固定弁体21の摺動面21aにシリコングリスを塗布した後、固定弁体21および可動弁体22をケーシングによって294Nの軸力で押さえつけながら、流体通路21b、22bに80℃の温水を0.1MPaの圧力で注入し、可動弁体22をレバー23により摺動させるのに必要な操作力を測定した。レバー23の測定位置は、レバー23の支点より直線距離で83mm離れた位置とした。 After applying silicon grease to the sliding surface 21a of the fixed valve body 21, hot water at 80 ° C. is applied to the fluid passages 21b and 22b while the fixed valve body 21 and the movable valve body 22 are pressed by the casing with an axial force of 294N. The injection was performed at a pressure of 1 MPa, and the operating force required to slide the movable valve body 22 by the lever 23 was measured. The measurement position of the lever 23 was set to a position 83 mm away from the fulcrum of the lever 23 in a straight line distance.
 この摺動試験による評価基準は、可動弁体20を10万回摺動させた後のレバー23の操作力が0.8kg以下のものを摺動性が良好であると判断した。可動弁体20を16万回摺動させた後の摺動面21a、22a間のリーク(水漏れ)の有無を調べた。結果を表1に示す。 According to the evaluation criteria based on this sliding test, it was judged that the lever 23 having an operating force of 0.8 kg or less after sliding the movable valve body 20 100,000 times had good slidability. After sliding the movable valve body 20 160,000 times, the presence or absence of a leak (water leak) between the sliding surfaces 21a and 22a was examined. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、試料No.1~4、6~10の値(C)は平均値(B)の6倍以上である。したがって、試料No.1~4、6~10は、良好な摺動性を有し、かつ流体の外部への流出を抑制することができているといえる。試料No.1~4、6~10において、平均値(A)から平均値(B)を引いた値(C)は、50μm以上170μm以下でもある。 As shown in Table 1, sample No. The values (C) of 1 to 4 and 6 to 10 are 6 times or more the average value (B). Therefore, the sample No. It can be said that 1 to 4 and 6 to 10 have good slidability and can suppress the outflow of the fluid to the outside. Sample No. In 1 to 4, 6 to 10, the value (C) obtained by subtracting the average value (B) from the average value (A) is also 50 μm or more and 170 μm or less.
 1  開気孔
 2  粗粒状炭化珪素粒子
 3  微粒状炭化珪素粒子
 4  粒内気孔
 20 フォーセットバルブ
 21 固定弁体
 22 可動弁体
 23 レバー
 30 ピストン・シリンダユニット
 31 ピストンリング
 32 ピストン
 32a ピストンヘッド部
 32b ピストンスカート部
 33 シリンダライナー
 34 シリンダ
1 Open pores 2 Coarse granular silicon carbide particles 3 Fine granular silicon carbide particles 4 Intragrain pores 20 Faucet valve 21 Fixed valve body 22 Movable valve body 23 Lever 30 Piston cylinder unit 31 Piston ring 32 Piston 32a Piston head part 32b Piston skirt Part 33 Cylinder liner 34 Cylinder

Claims (12)

  1.  炭化珪素を主成分とするセラミックスからなり、
     摺動面に開気孔を複数有し、隣り合う前記開気孔の重心間距離の平均値(A)から前記開気孔の円相当径の平均値(B)を引いた値(C)が、前記平均値(B)の6倍以上である、耐摩耗性部材。
    It consists of ceramics whose main component is silicon carbide.
    The value (C), which has a plurality of open pores on the sliding surface and is obtained by subtracting the average value (B) of the circle-equivalent diameters of the open pores from the average value (A) of the distance between the centers of gravity of the adjacent open pores, is the said. A wear resistant member that is 6 times or more the average value (B).
  2.  炭化珪素を主成分とするセラミックスからなり、
     摺動面に開気孔を複数有し、隣り合う前記開気孔の重心間距離の平均値(A)から前記開気孔の円相当径の平均値(B)を引いた値(C)が、50μm以上170μm以下である、耐摩耗性部材。
    It consists of ceramics whose main component is silicon carbide.
    A value (C) having a plurality of open pores on the sliding surface, obtained by subtracting the average value (B) of the equivalent circle diameters of the open pores from the average value (A) of the distance between the centers of gravity of the adjacent open pores, is 50 μm. A wear resistant member having a diameter of 170 μm or less.
  3.  前記開気孔の重心間距離の尖度Kuが0.3以上4以下である、請求項1または2に記載の耐摩耗性部材。 The wear-resistant member according to claim 1 or 2, wherein the kurtosis Ku of the distance between the centers of gravity of the open pores is 0.3 or more and 4 or less.
  4.  前記摺動面は、粗粒状結晶粒子および微粒状結晶粒子を有し、
     前記微粒状結晶粒子の円相当径の平均値(D)は、前記開気孔の円相当径の平均値(B)よりも小さい、請求項1~3のいずれかに記載の耐摩耗性部材。
    The sliding surface has coarse-grained crystal particles and fine-grained crystal particles, and has
    The wear-resistant member according to any one of claims 1 to 3, wherein the average value (D) of the equivalent circle diameters of the fine granular crystal particles is smaller than the average value (B) of the equivalent circle diameters of the open pores.
  5.  前記微粒状結晶粒子の円相当径の平均値(D)と、前記開気孔の円相当径の平均値(B)との差が、5μm以上である、請求項4に記載の耐摩耗性部材。 The wear-resistant member according to claim 4, wherein the difference between the average value (D) of the equivalent circle diameters of the fine granular crystal particles and the average value (B) of the equivalent circle diameters of the open pores is 5 μm or more. ..
  6.  前記粗粒状結晶粒子は、5面積%以上15面積%以下である、請求項4または5に記載の耐摩耗性部材。 The wear-resistant member according to claim 4 or 5, wherein the coarse-grained crystal particles are 5 area% or more and 15 area% or less.
  7.  前記粗粒状結晶粒子は、粒内気孔を含む、請求項4~6のいずれかに記載の耐摩耗性部材。 The wear-resistant member according to any one of claims 4 to 6, wherein the coarse-grained crystal particles include intragranular pores.
  8.  前記セラミックスは、イオウを含み、該イオウの含有量が酸化物(SO3)に換算して0.02質量%以下(但し、0質量%を除く)である、請求項1~7のいずれかに記載の耐摩耗性部材。 Any of claims 1 to 7, wherein the ceramic contains sulfur, and the sulfur content is 0.02% by mass or less (excluding 0% by mass) in terms of oxide (SO 3). Abrasion resistant member according to.
  9.  互いの摺動面を当接し摺動させる固定弁体と可動弁体とを備え、
     前記固定弁体および前記可動弁体の少なくとも一方が請求項1~8のいずれかに記載の耐摩耗性部材からなる、フォーセットバルブ。
    It is equipped with a fixed valve body and a movable valve body that abut and slide on each other's sliding surfaces.
    A faucet valve in which at least one of the fixed valve body and the movable valve body is made of the wear-resistant member according to any one of claims 1 to 8.
  10.  互いの摺動面を当接し摺動させる固定弁体と可動弁体とを備え、
    前記固定弁体および前記可動弁体が請求項1~8のいずれかに記載の耐摩耗性部材からなり、前記固定弁体は前記可動弁体よりも上記値(C)が小さい、フォーセットバルブ。
    It is equipped with a fixed valve body and a movable valve body that abut and slide on each other's sliding surfaces.
    The fixed valve body and the movable valve body are made of the wear-resistant member according to any one of claims 1 to 8, and the fixed valve body has a smaller value (C) than the movable valve body. ..
  11.  ピストンリングが装着されたピストンと、前記ピストンリングの外周面と摺動する内周面を有するシリンダライナーが装着されたシリンダとを備え、
     前記シリンダライナーおよび前記ピストンリングの少なくとも一方が請求項1~8のいずれかに記載の耐摩耗性部材からなる、ピストン・シリンダユニット。
    It comprises a piston equipped with a piston ring and a cylinder equipped with a cylinder liner having an inner peripheral surface that slides on the outer peripheral surface of the piston ring.
    A piston / cylinder unit in which at least one of the cylinder liner and the piston ring is made of the wear-resistant member according to any one of claims 1 to 8.
  12.  ピストンリングが装着されたピストンと、前記ピストンリングの外周面と摺動する内周面を有するシリンダライナーが装着されたシリンダとを備え、
     前記シリンダライナーおよび前記ピストンリングが請求項1~8のいずれかに記載の耐摩耗性部材からなり、前記シリンダライナーは前記ピストンリングよりも上記値(C)が小さい、ピストン・シリンダユニット。
    It comprises a piston equipped with a piston ring and a cylinder equipped with a cylinder liner having an inner peripheral surface that slides on the outer peripheral surface of the piston ring.
    A piston / cylinder unit in which the cylinder liner and the piston ring are made of the wear-resistant member according to any one of claims 1 to 8, and the value (C) of the cylinder liner is smaller than that of the piston ring.
PCT/JP2021/020731 2020-06-02 2021-05-31 Wear-resistant member and faucet valve and piston/cylinder unit using same WO2021246377A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022528829A JPWO2021246377A1 (en) 2020-06-02 2021-05-31
CN202180032623.5A CN115485253B (en) 2020-06-02 2021-05-31 Wear-resistant member, and faucet valve, piston-cylinder unit using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-096197 2020-06-02
JP2020096197 2020-06-02

Publications (1)

Publication Number Publication Date
WO2021246377A1 true WO2021246377A1 (en) 2021-12-09

Family

ID=78830331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020731 WO2021246377A1 (en) 2020-06-02 2021-05-31 Wear-resistant member and faucet valve and piston/cylinder unit using same

Country Status (3)

Country Link
JP (1) JPWO2021246377A1 (en)
CN (1) CN115485253B (en)
WO (1) WO2021246377A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263778A (en) * 1989-04-05 1990-10-26 Isuzu Ceramics Kenkyusho:Kk Ceramic composite structural body and its production
JPH0733550A (en) * 1992-07-08 1995-02-03 Kennecott Mining Corp Silicon carbide with adjusted porosity
JP2009115137A (en) * 2007-11-02 2009-05-28 Toshiba Corp MECHANICAL SEAL DEVICE, SiC-BASED SINTERED BODY ROTATING RING FOR MECHANICAL SEAL DEVICE, AND MANUFACTURING METHOD OF SiC-BASED SINTERED BODY ROTATING RING FOR MECHANICAL SEAL DEVICE
JP2010006642A (en) * 2008-06-27 2010-01-14 Kyocera Corp Slide member, valve element, and faucet valve
JP2010189203A (en) * 2009-02-16 2010-09-02 Sumitomo Osaka Cement Co Ltd SiC-BASED ABRASION RESISTANT MATERIAL AND METHOD FOR MANUFACTURING THE SAME
JP2013500225A (en) * 2009-07-24 2013-01-07 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Dry and wet low friction silicon carbide seal
WO2016152437A1 (en) * 2015-03-20 2016-09-29 イーグル工業株式会社 Mechanical seal device and sliding ring thereof for use in aqueous environment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117897A1 (en) * 2005-04-27 2006-11-09 Kyocera Corporation Porous ceramic for sliding members, method for producing the same and mechanical seal ring
CN101842332B (en) * 2007-10-29 2014-05-21 京瓷株式会社 Abrasion resistant ceramic, sliding member, and pump
JP2017030988A (en) * 2015-07-29 2017-02-09 京セラ株式会社 Silicon nitride ceramic and impact wear resistant member using the same
JP2018070413A (en) * 2016-10-28 2018-05-10 京セラ株式会社 Slide component and faucet valve
WO2019188752A1 (en) * 2018-03-29 2019-10-03 京セラ株式会社 Ceramic structure
CN108745491B (en) * 2018-06-21 2021-02-19 湖北秦鸿新材料股份有限公司 High-wear-resistance roller sleeve of coal mill and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263778A (en) * 1989-04-05 1990-10-26 Isuzu Ceramics Kenkyusho:Kk Ceramic composite structural body and its production
JPH0733550A (en) * 1992-07-08 1995-02-03 Kennecott Mining Corp Silicon carbide with adjusted porosity
JP2009115137A (en) * 2007-11-02 2009-05-28 Toshiba Corp MECHANICAL SEAL DEVICE, SiC-BASED SINTERED BODY ROTATING RING FOR MECHANICAL SEAL DEVICE, AND MANUFACTURING METHOD OF SiC-BASED SINTERED BODY ROTATING RING FOR MECHANICAL SEAL DEVICE
JP2010006642A (en) * 2008-06-27 2010-01-14 Kyocera Corp Slide member, valve element, and faucet valve
JP2010189203A (en) * 2009-02-16 2010-09-02 Sumitomo Osaka Cement Co Ltd SiC-BASED ABRASION RESISTANT MATERIAL AND METHOD FOR MANUFACTURING THE SAME
JP2013500225A (en) * 2009-07-24 2013-01-07 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Dry and wet low friction silicon carbide seal
WO2016152437A1 (en) * 2015-03-20 2016-09-29 イーグル工業株式会社 Mechanical seal device and sliding ring thereof for use in aqueous environment

Also Published As

Publication number Publication date
JPWO2021246377A1 (en) 2021-12-09
CN115485253B (en) 2023-11-03
CN115485253A (en) 2022-12-16

Similar Documents

Publication Publication Date Title
CA2098363C (en) Silicon carbide with controlled porosity
US8207077B2 (en) Abrasion-resistant sintered body, sliding member, and pump
US5762895A (en) Bearing material of porous SIC having a trimodal pore composition
JP5597693B2 (en) Silicon carbide sintered body, sliding part using the same, and protective body for flying object
JP5289464B2 (en) SLIDING PARTS, MECHANICAL SEAL, FORSET VALVE AND ROLLING SUPPORT EQUIPPED WITH THE SAME
KR101217580B1 (en) Sliding member, mechanical seal ring, mechanical seal, and faucet valve
US2696413A (en) Bearing
JP5314425B2 (en) Sliding member and manufacturing method thereof
WO2021246377A1 (en) Wear-resistant member and faucet valve and piston/cylinder unit using same
Bertagnoli et al. Effect of processing conditions on the sliding-wear resistance of ZrC triboceramics fabricated by spark-plasma sintering
JP5404495B2 (en) Wear-resistant member and rolling support device using the same
AU2013254576B2 (en) Product made of dense silicon carbide
JP2007084368A (en) Ceramic sliding member, method for manufacturing the same, mechanical seal ring member using the same, and mechanical seal ring
JP2004352573A (en) Sliding device
JP5188225B2 (en) Free-cutting porcelain, sliding member and pump
WO2015099148A1 (en) Wear-resistant member and rolling support device provided with same, and shaft sealing device
JP2018070413A (en) Slide component and faucet valve
JP2007223890A (en) Silicon carbide sintered compact, sliding member and mechanical seal ring each using the same, and mechanical seal
JP5188226B2 (en) Wear-resistant porcelain, sliding member and pump
JP2008105091A (en) Die for hot extrusion molding
JP2007321797A (en) Sliding member and mechanical seal ring using the same
JP2019529320A (en) Ceramic component and method for forming the same
WO2015016269A1 (en) Silicon nitride-based sintered body, and corrosion-resistant member, sliding member and member for paper-making machine each manufactured using same
JP2016204221A (en) Silicon carbide sintered compact, sliding member using the same, and foreset valve
JPH09310765A (en) Sliding device made of ceramic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21816733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21816733

Country of ref document: EP

Kind code of ref document: A1