WO2021246130A1 - Gas leak location identification device, gas leak location identification system, gas leak location identification method, gas leak location estimation model generation device, gas leak location estimation model generation method, and program - Google Patents

Gas leak location identification device, gas leak location identification system, gas leak location identification method, gas leak location estimation model generation device, gas leak location estimation model generation method, and program Download PDF

Info

Publication number
WO2021246130A1
WO2021246130A1 PCT/JP2021/018310 JP2021018310W WO2021246130A1 WO 2021246130 A1 WO2021246130 A1 WO 2021246130A1 JP 2021018310 W JP2021018310 W JP 2021018310W WO 2021246130 A1 WO2021246130 A1 WO 2021246130A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
image
gas leak
leak position
region
Prior art date
Application number
PCT/JP2021/018310
Other languages
French (fr)
Japanese (ja)
Inventor
隆史 森本
基広 浅野
俊介 ▲高▼村
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2021246130A1 publication Critical patent/WO2021246130A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • This disclosure relates to a device, a system, a method, and a program for identifying the position of a leak source in a method of detecting a gas leaked into a space using an image.
  • Gas plants, petrochemical plants, thermal power plants, steel-related facilities, etc. handle a large amount of gas during operation. In such facilities, the danger of gas leaks is recognized due to aging deterioration of the facilities and operational mistakes, and gas detection devices are installed to minimize gas leaks before a major accident occurs.
  • gas detection devices that utilize the fact that the electrical characteristics of the probe change when gas molecules come into contact with the detection probe, in recent years, gas visualization imaging devices that utilize infrared absorption by gas have been introduced.
  • a gas visualization imager electromagnetic waves mainly in the infrared region called blackbody radiation emitted from a background object with an absolute temperature of 0 K or higher are absorbed by the gas, or blackbody radiation is generated from the gas itself.
  • the presence of gas is detected by capturing changes in the amount of electromagnetic waves.
  • the leak position is specified by dividing the image into blocks and determining whether or not each block is in the gas region over a plurality of frames. Further, for example, in the image processing apparatus for gas detection disclosed in Patent Document 2, from the first frequency component data showing the temperature change due to the leaked gas with respect to the infrared image obtained by capturing the monitored object at a plurality of times. However, the frequency is low, and the second frequency component data indicating the temperature change of the background to be monitored is removed from the image data indicating the infrared image.
  • Patent Document 1 when the leak position is specified by a determined rule (algorithm), it becomes difficult to accurately specify the leak position if the preconditions on which the rule is based are broken.
  • equipment such as piping is installed in a place to be monitored, and the shape and arrangement are often complicated.
  • there are many restrictions on the arrangement of the image pickup device so it is often difficult to keep all possible gas leak sources within the field of view without obstruction. Therefore, a part of the leak source or the gas cloud may be shielded and a part of the image of the gas cloud in the detection image may be lost, making it difficult to identify the position of the leak source.
  • the leak position is erroneously specified according to the determined rules.
  • an aspect of the present disclosure is to provide an identification device and an identification method for identifying a gas leak position indicating the position of a gas leak source regardless of the state of the gas leak.
  • the existence range of the gas leaked in the space is drawn as a gas region, and a gas distribution image in which a part of the gas region is shielded is used as an input.
  • the teacher is a combination of the receiving image input unit, the teacher gas distribution image in which a part of the gas region is shielded, and the gas leak position indicating the position of the gas leak source in the gas region shown in the teacher gas distribution image.
  • a machine-learned estimation model as data, it includes a gas leak position identification unit that identifies a gas leak position indicating the position of a leak source in the gas region of the gas distribution image received by the image input unit.
  • the gas leak position is identified based on a guessing model that can identify the gas leak position based on the characteristics of the gas distribution image. Therefore, by properly designing the teacher data, the gas leak position can be identified regardless of the gas leak state.
  • FIG. It is a functional block diagram of the gas detection system 100 which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the relationship between a monitoring object 300 and an image generation part 10. It is a schematic diagram which shows the outline of the logical structure of a machine learning model. It is a schematic diagram which shows an example of the monitoring object 300, the captured image, and the gas distribution image which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the operation of the gas detection apparatus 20 in a learning phase.
  • This is an example of a gas distribution image as teacher data.
  • FIG. It is a flowchart which shows the operation of the gas detection apparatus 20 in the operation phase. It is a schematic diagram which shows the positional relationship between a monitoring target 300 and a gas leak position. It is a functional block diagram of the gas detection system 101 which concerns on modification 1.
  • FIG. It is an example of the leakage position image which concerns on the modification 1.
  • FIG. It is a functional block diagram of the gas detection system 200 which concerns on Embodiment 2.
  • FIG. It is a schematic diagram which shows the positional relationship between a monitoring target 300 and a gas leak position. It is a schematic diagram which shows the positional relationship between a monitoring target 300 and a gas leak position.
  • Embodiment 1 the gas detection system 100 according to the first embodiment will be described with reference to the drawings.
  • FIG. 1 is a functional block diagram of the gas detection system 100 according to the first embodiment.
  • the gas detection system 100 includes an image generation unit 10 for capturing an image of a monitored object, a gas detection device 20 for detecting gas based on an image acquired by the image generation unit 10, and a display unit 24.
  • the image generation unit 10 and the display unit 24 are configured to be connectable to the gas detection device 20, respectively.
  • the image generation unit 10 is a device or system that captures an image of a monitored object and provides an image to the gas detection device 20.
  • the image generation unit 10 is a so-called infrared camera that detects and images infrared light having a wavelength of 3.2 to 3.4 ⁇ m, and is a hydrocarbon such as methane, ethane, ethylene, and propylene. It is possible to detect system gas.
  • the image generation unit 10 is not limited to this, and may be an image pickup device capable of detecting the gas to be monitored.
  • the monitoring target is a gas that can be detected by visible light such as white smoked water vapor, it is general. It may be a visible light camera.
  • the gas refers to a gas leaked from a closed space such as a pipe or a tank, and is not intentionally diffused into the atmosphere.
  • the image generation unit 10 is installed so that the monitoring target 300 is included in the field of view range 310 of the image generation unit 10.
  • the image generation unit 10 outputs the captured image as a video signal to the gas detection device 20.
  • the video signal is, for example, a signal for transmitting an image of 30 frames per second.
  • the gas detection device 20 is a device that acquires an image of a monitored object from the image generation unit 10, detects a gas region based on the image, and notifies the user of the gas detection through the display unit 24.
  • the gas detection device 20 is realized as, for example, a computer including a general CPU (Central Processing Unit), a RAM, and a program executed by these.
  • the gas detection device 20 may further include a GPU (Graphics Processing Unit) and a RAM as arithmetic units. As shown in FIG.
  • the gas detection device 20 includes an image acquisition unit 201, a gas region extraction unit 211, a gas region image acquisition unit 212, a leak position information acquisition unit 213, a machine learning unit 2141, and a learning model holding unit 2142.
  • the result output unit 215 is provided.
  • the gas region extraction unit 211 has the function of the image input unit of the present disclosure.
  • the machine learning unit 2141 and the learning model holding unit 2142 constitute a gas leak position identification unit 214.
  • the gas region extraction unit 211 and the gas leak position identification unit 214 constitute the gas leak position identification device 21.
  • the image acquisition unit 201 is a circuit that acquires an image of the monitored object from the image generation unit 10.
  • the image acquisition unit 201 acquires a video signal from the image generation unit 10, restores the video signal to an image, and outputs the video signal to the gas region extraction unit 211 as a moving image composed of a plurality of frames.
  • the image is an infrared photograph of the monitored object, and has the intensity of infrared rays as a pixel value.
  • the gas region extraction unit 211 is a circuit that performs gas detection processing on the moving image output by the image acquisition unit 201 to generate a gas distribution image including the gas region.
  • a known method can be used for the gas detection process. Specifically, for example, the method described in International Publication No. 2017/0743430 (Patent Document 2) can be used.
  • Patent Document 2 the method described in International Publication No. 2017/0743430 (Patent Document 2) can be used.
  • a gas distribution image as a moving image obtained by cutting out a region including a gas region from each frame of the moving image is generated.
  • the gas is as shown in the frame example of FIG. 4B.
  • the gas region 420 corresponding to is imaged.
  • the gas region extraction unit 211 may perform processing such as gain adjustment after cutting out a region including the gas region from each frame of the moving image, and the pixel value of the moving image output by the image acquisition unit 201 may be used. Instead, the difference in pixel values may be mapped to obtain a gas distribution image.
  • the number of pixels of the gas distribution image is 224 ⁇ 224 pixels, and the number of frames is 16.
  • the gas region image acquisition unit 212 is a circuit for acquiring a gas distribution image having the same format as the gas distribution image generated by the gas region extraction unit 211 and having a known gas leakage position.
  • the gas distribution image is an image of an image of a gas cloud leaking from one leakage source, and there is only one gas leakage position, which is the position of the leakage source, with respect to the gas distribution image. If the acquired image is not in the same format as the gas distribution image generated by the gas region extraction unit 211, the gas region image acquisition unit 212 cuts out, enlarges, or reduces the image so as to have the same format. May be done. Further, for example, when the acquired image is three-dimensional voxel data, it may be converted into a two-dimensional image of a viewpoint from one point.
  • the leak position information acquisition unit 213 is a circuit that acquires the gas leakage position corresponding to the gas distribution image acquired by the gas region image acquisition unit 212.
  • the gas leak position is designated as the coordinates in the gas distribution image acquired by the gas region image acquisition unit 212. If the acquired gas leak position is a coordinate in space, it is converted to the coordinate in the gas distribution image.
  • the machine learning unit 2141 executes machine learning based on the combination of the gas distribution image received by the gas region image acquisition unit 212 and the gas leakage position corresponding to the gas distribution image received by the leak position information acquisition unit 213. It is a circuit that generates a machine learning model.
  • the machine learning model predicts the gas leak position indicating the position of the gas leak source based on the combination of the feature amount of the gas distribution image, for example, the outer peripheral shape of the gas region, the gas shading distribution, and the time change of these. Formed to do.
  • a convolutional neural network (CNN) can be used, and known software such as PyTorch can be used.
  • FIG. 3 is a schematic diagram showing an outline of the logical configuration of the machine learning model.
  • the machine learning model includes an input layer 51, an intermediate layer 52-1, an intermediate layer 52-2, ..., An intermediate layer 52-n, and an output layer 53, and the interlayer filter is optimized by learning.
  • the input layer 51 accepts a 224 ⁇ 224 ⁇ 16 three-dimensional tensor in which the pixel value of the gas distribution image is input.
  • the intermediate layer 52-1 is, for example, a convolution layer, and receives a 224 ⁇ 224 ⁇ 16 three-dimensional tensor generated by a convolution operation from the data of the input layer 51.
  • the intermediate layer 52-2 is, for example, a pooling layer, and accepts a three-dimensional tensor obtained by resizing the data of the intermediate layer 52-1.
  • the intermediate layer 52-n is, for example, a fully connected layer, and the data of the intermediate layer 52- (n-1) is converted into a two-dimensional vector showing coordinate values.
  • the configuration of the intermediate layer is an example, and the number n of the intermediate layers is about 3 to 5, but the number n is not limited to this. Further, although the number of neurons in each layer is drawn as the same in FIG. 3, each layer may have an arbitrary number of neurons.
  • the machine learning unit 2141 receives a moving image as a gas distribution image as an input, performs learning with the gas leakage position as the correct answer, generates a machine learning model, and outputs it to the learning model holding unit 2142.
  • the machine learning unit 2141 may be realized by the GPU and software when the gas detection device 20 includes a GPU and a RAM as arithmetic units.
  • the learning model holding unit 2142 holds the machine learning model generated by the machine learning unit 2141 and outputs the gas leakage position corresponding to the gas distribution image generated by the gas region extraction unit 211 using the machine learning model. Is.
  • the gas leak position is specified and output as a coordinate value in the input gas distribution image.
  • the determination result output unit 215 is a circuit for generating an image for displaying on the display unit 24 by superimposing the gas leak position output by the learning model holding unit 2142 on the moving image acquired by the image acquisition unit 201. Further, the determination result output unit 215 may have a function of outputting information indicating a gas leak position.
  • the information indicating the gas leak position is, for example, numerical information indicating a position in an image or a position in space.
  • the display unit 24 is a display device such as a liquid crystal display or an organic EL display.
  • FIG. 5 is a flowchart showing the operation of the gas detection device 20 in the learning phase.
  • a combination of the gas distribution image and the gas leak position is created (step S110).
  • the gas distribution image an image in which the gas leak position is known can be used.
  • FIG. 6A is a schematic diagram of a gas distribution image in which the gas leak position is known
  • FIG. 6B is a combination of the gas distribution image and the coordinates of the gas leak position.
  • the training data for example, a part of the gas region in the gas distribution image or an image in which the gas leak position is hidden (shielded) behind the equipment may be used, and similarly, a part of the gas region or The gas leak position can be detected with high accuracy for the gas distribution image in which the gas leak position is hidden behind the equipment.
  • the teacher data is not limited to this, and a gas distribution image in which the gas region and the gas leak position are not shielded may be used, or the wind direction around the leak source is not constant (for example, a moving image after the gas leak occurs). It may be a gas distribution image (the wind direction has changed until the last frame acquisition of the image). With this configuration, it is possible to detect the gas leak position when the same phenomenon occurs in the moving image captured in the operation phase described later.
  • FIG. 6C is a schematic diagram of a gas distribution image in which a part of the gas region is shielded
  • FIG. 6D is a combination of the gas distribution image and the coordinates of the gas leak position.
  • FIG. 6 (e) is a schematic diagram of a gas distribution image in which the gas leak position and the surrounding gas region are shielded
  • FIG. 6 (f) shows the gas distribution image and the coordinates of the gas leak position. It is a combination of.
  • the partially shielded image as teacher data is not limited to the case of acquiring from the actual equipment, and may be formed by processing or simulating the gas distribution image.
  • FIG. 7 shows an example of generating a partially shielded image.
  • 7 (a) is a combination of the base gas distribution image and the gas leak position
  • FIGS. 7 (b) to 7 (f) are one of the gas regions in the gas distribution image of FIG. 7 (a). It is a combination of the gas distribution image that shields the part and the gas leak position.
  • the gas distribution image may be based on a simulation. For example, a gas leakage simulation is performed using a three-dimensional structural model of the equipment, and a viewpoint from a predetermined one point is obtained from the three-dimensional voxel data which is the simulation result. You may generate an image of. More specifically, for example, modeling is performed to lay out a structure in a three-dimensional space based on the three-dimensional voxel data of the equipment. Next, conditions such as the type of gas, flow rate, wind speed, wind direction, shape of gas leak source, diameter, and position are determined, and a three-dimensional fluid simulation is performed to calculate the gas distribution state.
  • FIG. 8 (a) is a schematic diagram showing the positional relationship between the voxel data 301 showing equipment and the voxel data 321 showing gas, which are formed by fluid simulation, respectively, and are shown in FIGS. 8 (b) and 8 (c), respectively. Shows a gas distribution image and a gas leak position obtained from the viewpoint 11 with the direction d1 as the central axis, and a gas distribution image and a gas leak position obtained from the viewpoint 12 with the direction d2 as the central axis.
  • step S120 the combination of the gas distribution image and the gas leak position is input to the gas detection device 20 (step S120).
  • the gas distribution image is input to the gas region image acquisition unit 212, and the corresponding gas leak position is input to the leak position information acquisition unit 213.
  • step S130 input data to the convolutional neural network and execute machine learning (step S130).
  • the parameters are optimized by trial and error by deep learning, and a machine-learned model is formed.
  • the formed machine-learned model is held in the learning model holding unit 2142.
  • FIG. 9 is a flowchart showing the operation of the gas detection device 20 in the learning phase.
  • the gas region is detected from each frame of the captured image, and the gas distribution image including the gas region and its surroundings is cut out (step S210).
  • the detection of the gas region is performed by a known method based on the time-series change of the brightness in the captured image, its frequency, and the like. Then, a part thereof is cut out from each frame of the captured image so as to include all the pixels in which gas is detected, and a gas distribution image is generated as a frame of the gas distribution image.
  • the gas leak position is identified from the gas distribution image using the trained model (step S220).
  • the machine-learned model formed by step S130 the coordinates of the gas leak position with respect to the gas distribution image are identified. Since the learning model holding unit 2142 outputs the gas leak position as a coordinate value with respect to the gas distribution image, the gas leak position identification unit 214 has a correspondence relationship between the coordinates of the initial captured image and the gas distribution image from the gas region extraction unit 211. Based on, the gas leak position is output as a coordinate value with respect to the initially captured image. As shown in the schematic diagram of FIG. 10A, the gas leak position 330 of the gas 320 is identified as the gas leak position 430 corresponding to the gas region 420 in the captured image, and is a linear (or conical) leak suspected region. Identified as being present within 330.
  • the identified gas leak position is superimposed on the initial captured image, and the gas leak position is displayed (step S230).
  • the leak position of the gas can be specified.
  • the range may be further limited by using this.
  • the gas leak location can be identified as being within the spatially linear (or conical) region 330.
  • a linear (or conical) leakage suspected region 330 is formed on the three-dimensional voxel data.
  • the equipment position is the gas leakage position.
  • gas is not detected at the position corresponding to the equipment in the gas distribution image, it is judged that there is a high possibility that the gas leakage position exists behind the position hidden by the equipment position. be able to.
  • the gas leak position can be identified.
  • the teacher data is used sufficiently and appropriately, an image of a part of the gas region and the gas leak position being shielded by a structure such as a pillar or a pipe, or a situation where the wind direction is not constant.
  • the leak position of the gas can be identified. Therefore, gas leaks do not depend on the imaging conditions, including cases where the camera, which is the image generator, cannot be installed so that the suspected leak location can be seen without a shield, or where it is easily affected by wind. The location can be identified.
  • the gas leak position corresponding to the gas distribution image is a coordinate value.
  • the gas leak position may be a probability distribution image showing the probability of being a gas leak position.
  • FIG. 11 is a functional block diagram of the gas detection system 101 including the gas detection device 26 according to the first modification.
  • the gas detection device 26 replaces the leak position information acquisition unit 213, the machine learning unit 2141, and the learning model holding unit 2142 with the leak position image acquisition unit 223, the machine learning unit 2241, and the learning model holding unit. 2242 is provided.
  • the machine learning unit 2241 and the learning model holding unit 2242 constitute a gas leak position identification unit 224, and the gas region extraction unit 211 and the gas leak position identification unit 224 constitute a gas leak position identification device 22.
  • the leak position image acquisition unit 223 is a circuit that acquires a gas leak position image corresponding to the gas distribution image acquired by the gas region image acquisition unit 212.
  • the gas leak position image is an image in which the probability of the gas leak position is mapped to each coordinate in the gas distribution image acquired by the gas region image acquisition unit 212. Is. For example, if the gas leak position can be specified in one pixel or a narrow range, the image is as shown in FIG. 12 (a), and if the gas leak position is limited to a certain range, the image is as shown in FIG. 12 (b). It becomes an image.
  • the probability p of the gas leak position is as follows with respect to the coordinates where the distance from the center coordinate of the region where the gas leak position can exist (hereinafter referred to as "gas leak region") is r. Calculate with the formula and map p.
  • ⁇ and ⁇ are values determined according to the accuracy of the gas leak position.
  • the machine learning unit 2241 executes machine learning based on the combination of the gas distribution image received from the gas region image acquisition unit 212 and the gas leak position image received from the leak position image acquisition unit 223, and generates a machine learning model. It is a circuit to do.
  • machine learning for example, a convolutional neural network (CNN) can be used.
  • the trained model generated by the machine learning unit 2241 is a model in which the output of the output layer is a gas leak position image. That is, for example, when the gas distribution image is a moving image of 224 ⁇ 224 pixels and 16 frames, the input layer accepts a 224 ⁇ 224 ⁇ 16 three-dimensional tensor, and the output layer receives the gas leak position for each pixel of the gas distribution image.
  • the gas leak position image is not limited to this case.
  • the leak position image acquisition unit 223 accepts a pair of the center coordinate of the gas leak region, the value of ⁇ , and the value of ⁇ and outputs the gas leak position image. May be good.
  • the machine learning unit 2241 receives a gas distribution image as an input, performs learning with the gas leak image as the correct answer, generates a machine learning model, and outputs it to the learning model holding unit 2242.
  • the learning model holding unit 2242 holds the machine learning model generated by the machine learning unit 2241, and outputs a gas leakage position image corresponding to the gas distribution image generated by the gas region extraction unit 211 using the machine learning model. It is a circuit.
  • the gas distribution image is input and the learning is performed with the gas leak position image as the correct answer to generate a machine learning model. Then, in the operation mode, the generated machine learning model is used to output a gas leak position image based on the gas distribution image.
  • the gas leak position is specified as the gas leak region 450 in the captured image, and exists in the cylindrical (or conical) leak suspected region 350 in the space. Identified as.
  • the gas leak region 450 is obtained as the gas leak regions 431, 432, and 433 having different probabilities of including the gas leak region, each corresponds to the leak suspected regions 351, 352, and 353 in the space. ing.
  • the range may be further limited by using this.
  • the three-dimensional voxel data of the equipment 300 exists, as shown in the schematic diagram of FIG. 14 (b), the cylindrical (or conical) leak suspected region 350 is superimposed on the three-dimensional voxel data.
  • the equipment position 355 is the gas leakage position.
  • gas is not detected at the position corresponding to the equipment in the gas distribution image, there is a high possibility that the gas leakage position exists behind the equipment hidden by the equipment position 355. You can judge.
  • the standard deviation of the difference between the pixel on the gas distribution image corresponding to the gas leak position and the identified gas leak position is as follows.
  • the standard deviation of the difference between the pixel on the gas distribution image corresponding to the gas leak position and the pixel having the highest probability value in the identified gas leak position image is as follows. Became.
  • one gas detection device is used to identify the gas leakage position in the operation mode using the machine learning model generated in the learning mode.
  • machine learning and gas leak location identification need not be performed on the same hardware and may be performed using different hardware.
  • FIG. 15 is a functional block diagram of the gas detection system 110 according to the second modification.
  • the gas detection system 110 includes an image generation unit 10 for capturing an image of a monitored object, a gas detection device 27 for detecting gas based on an image acquired by the image generation unit 10, and a learning data creation device. It has 30 and a display unit 24.
  • the image generation unit 10, the display unit 24, and the learning data creation device 30 are configured to be connectable to the gas detection device 27, respectively.
  • the gas detection device 27 is a device that acquires an image of the monitored object captured from the image generation unit 10, detects the gas region based on the image, and notifies the user of the gas detection through the display unit 24.
  • the gas detection device 27 is realized as, for example, a computer including a general CPU and RAM, and a program executed by these.
  • the gas detection device 27 includes an image acquisition unit 201, a gas region extraction unit 211, a learning model holding unit 2142, and a determination result output unit 215.
  • the learning model holding unit 2142 constitutes a gas leak position identification unit 234. Further, the gas region extraction unit 211 and the gas leak position identification unit 234 constitute the gas leak position identification device 23.
  • the learning data creation device 30 is realized as, for example, a computer including a general CPU, a GPU, a RAM, and a program executed by these.
  • the learning data creating device 30 includes a gas region image acquisition unit 212, a leak position information acquisition unit 213, and a machine learning unit 2141.
  • the gas detection device 27 carries out only the operation mode operation of the gas detection device 20 according to the first embodiment. Further, the learning data creating device 30 carries out only the learning mode operation of the gas detecting device 20 according to the first embodiment.
  • the gas detection device 27 and the learning data creation device 30 are connected by, for example, a LAN, and the learned model formed by the learning data creation device 30 is stored in the learning model holding unit 2142 of the gas detection device 272.
  • the storage of the trained model in the training model holding unit 2142 is not limited to duplication by the network, and may be performed using, for example, a removable medium, an optical disk, a ROM, or the like.
  • Embodiment 2 >> In the first embodiment and each modification, a case where the gas leak position is two-dimensionally identified by using one image generation unit has been described. However, the gas leak position may be identified three-dimensionally by using two image generation units having different viewpoints.
  • the gas detection system 200 according to the second embodiment is characterized in that the gas leak position is three-dimensionally specified by using two gas leak position identification devices.
  • FIG. 16 is a functional block diagram showing the configuration of the gas detection system 200 according to the second embodiment.
  • the gas detection system 200 includes a first image generation unit 10-1 for imaging a monitored object, a second image generation unit 10-2 for imaging a monitored object, and a gas. It has a leak position identification system 25 and a display unit 24.
  • the image generation units 10-1, 10-2, and the display unit 24 are configured to be connectable to the gas leak position identification system 25, respectively.
  • the gas leak position identification system 25 acquires an image of the monitored object captured from the image generation units 10-1 and 10-2, detects the gas region based on the image, and notifies the user of the gas detection through the display unit 24. It is a device to do.
  • the gas leak position identification system 25 includes image acquisition units 211-1 and 201-2, gas region extraction units 211-1 and 211-2, learning model holding units 2142-1 and 2142-2, and visual field information holding units 226.
  • the result output unit 227 is provided.
  • the gas leak position identification unit 234-1 including the gas region extraction unit 211-1 and the learning model holding unit 2142-1 constitutes the gas leak position identification device 23-1.
  • the gas leak position identification unit 234-2 including the gas region extraction unit 211-2 and the learning model holding unit 2142-2 constitutes the gas leak position identification device 23-2.
  • the gas detection system 200 includes the learning data creation device 30 as in the modified example 2, and the learning model holding units 2142-1 and 2142-2 are each provided. , Holds the trained model generated by the training data creation device 30.
  • the gas leak position identification system 25 is realized as, for example, a computer including a general CPU and RAM, and a program executed by these. Of the gas leak position identification system 25, each of the gas leak position identification device 23-1 and the gas leak position identification device 23-2 may be realized as a single computer independently of other configurations.
  • the image acquisition unit 211-1 and the gas leak position identification device 23-1 are realized by a single computer, and the image acquisition unit 201-2 and the gas leak position identification device 23-2 are realized by another computer. Then, the remaining field information holding unit 226 and the determination result output unit 227 may be realized by another computer.
  • the image acquisition unit 211-1, the gas region extraction unit 211-1, and the learning model holding unit 2142-1 are based on the image captured by the image generation unit 10-1 as in the first embodiment and the first modification.
  • the leak position is identified as the coordinate value of the image captured by the image generation unit 10-1.
  • the image acquisition unit 201-2, the gas region extraction unit 211-2, and the learning model holding unit 2142-2 determine the gas leak position based on the image captured by the image generation unit 10-2 in the image generation unit 10-. It is identified as the coordinate value of the image captured by 2.
  • the field of view information holding unit 226 holds the three-dimensional voxel data of the equipment to be monitored, and the installation position coordinates and the field of view orientation information of each of the image generation units 10-1 and 10-2. Further, the visual field information holding unit 226 may have three-dimensional voxel data of the equipment to be monitored.
  • the determination result output unit 227 is a learning model holding unit 2142-1 and a learning model based on the installation position coordinates and the viewing direction orientation information of each of the image generation units 10-1 and 10-2 held by the field information holding unit 226.
  • the gas leakage position identified by each of the holding units 2142-2 is calculated as a relative position from the installation position coordinates of the image generation units 10-1 and 10-2. Specifically, it will be described with reference to the schematic diagram of FIG. 17 (a). For example, if the learning model holding unit 2142-1 identifies the gas leak position 436 for the image acquired from the image generation unit 10-1, it can be estimated that the gas leak position exists in the suspected leak region 346.
  • the learning model holding unit 2142-2 identifies the gas leak position 437 for the image acquired by the image generation unit 10-2, it can be estimated that the gas leak position exists in the suspected leak region 347. Therefore, it can be estimated that the gas leak position exists in the region 330 included in both the region 346 and the region 347. As shown in the schematic diagram of FIG. 17B, when the region included in both the region 346 and the region 347 does not exist, it is presumed that the region 346 and the region 347 exist in the region 311 near the point where the region 346 and the region 347 are in close contact with each other. You may.
  • the range may be further limited by using this.
  • the 3D voxel data of the equipment 300 exists, by superimposing the two suspected leak areas on the 3D voxel data, the positional relationship between the equipment and the two suspected leak areas becomes clearer, and the estimated gas leakage occurs. The positional relationship between the position and the equipment becomes clearer.
  • which of the equipment and the leak position is closer to the image generation unit 10 can be determined by whether or not gas is detected at the gas leak position, so that the estimated gas leak position is used. If the gas leak position and the position of the equipment and the image generation unit are inconsistent, it can be determined that the accuracy of gas leak position identification by at least one gas leak position identification device is low.
  • each gas leak position identification device outputs the gas leak position as a coordinate value, but as in the first modification, each gas leak position identification device is at the gas leak position. A certain probability may be output.
  • FIG. 18A is a schematic diagram of the determination result output process.
  • the learning model holding unit 2142-1 identifies the gas leak position 438 with respect to the image acquired from the image generation unit 10-1, it can be estimated that the gas leak position exists in the suspected leak region 348.
  • the learning model holding unit 2142-2 identifies the gas leakage position 439 for the image acquired by the image generation unit 10-2, it can be estimated that the gas leakage position exists in the suspected leakage area 349. Therefore, it can be estimated that the gas leak position exists in the region 332 included in both the region 348 and the region 349.
  • the range may be further limited by using this.
  • the equipment and the two suspected leaks are suspected by superimposing the two suspected leak areas on the 3D voxel data.
  • the positional relationship with the area becomes clearer, and the positional relationship between the estimated gas leakage position and the equipment becomes clearer.
  • which of the equipment and the leak position is closer to the image generation unit 10 can be determined by whether or not gas is detected at the gas leak position, so that the estimated gas leak position is used. If the gas leak position and the position of the equipment and the image generation unit are inconsistent, it can be determined that the accuracy of gas leak position identification by at least one gas leak position identification device is low.
  • the gas leak position image as the teacher data is used, in which the probability of the gas leak position decreases as the distance from the reference coordinate 1 increases.
  • the gas leak position image is not limited to this, and any distribution may be used.
  • an image having the maximum probability at each coordinate corresponding to the leak source may be used.
  • the gas leak position identification device uses the trained model formed by the machine learning model generation device as in the second modification, but the first embodiment and the first modification 1 are used. Similarly, machine learning and operation may be performed using the same device. On the contrary, in the first modification, the machine learning and the operation may be performed by using individual devices as in the second modification.
  • the captured image is an infrared image having a wavelength of 3.2 to 3.4 ⁇ m, but the image is not limited to this, as long as the presence of gas to be detected can be confirmed. Any image such as an infrared image, a visible image, and an ultraviolet image in another wavelength range may be used. Further, the method for detecting the gas region is not limited to the above-mentioned one, and may be any processing capable of detecting the gas region.
  • the gas leakage position identification device may be a device using an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit) as a processor.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • a system LSI is a super-multifunctional LSI manufactured by integrating a plurality of components on one chip, and specifically, is a computer system including a microprocessor, ROM, RAM, and the like. .. These may be individually integrated into one chip, or may be integrated into one chip so as to include a part or all of them.
  • the LSI may be referred to as an IC, a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
  • a computer program that achieves the same operation as each of the above devices is stored in the RAM.
  • the system LSI achieves its function.
  • the present invention also includes a case where the accessibility method of the present invention is stored as an LSI program, and the LSI is inserted into a computer to execute a predetermined program.
  • the method of making an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. After manufacturing the LSI, an FPGA that can be programmed or a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
  • the division of functional blocks in the block diagram is an example, and multiple functional blocks can be realized as one functional block, one functional block can be divided into multiple, and some functions can be transferred to other functional blocks. You may. Further, the functions of a plurality of functional blocks having similar functions may be processed by a single hardware or software in parallel or in a time division manner.
  • the order in which the above steps are executed is for exemplifying in order to specifically explain the present invention, and may be an order other than the above. Further, a part of the above steps may be executed simultaneously with other steps (parallel).
  • the present invention also includes various modifications in which modifications within the range that can be conceived by those skilled in the art are made to the present embodiment.
  • the gas leak position identification device has an image input unit that accepts a gas distribution image in which an image of a gas region leaked in space is included in the image as an input, and a gas leaked into the air.
  • Machine-learned estimation using the combination of the teacher gas distribution image in which the image of is included in the image and the gas leak position indicating the position of the gas leak source in the gas region shown in the teacher gas distribution image as teacher data.
  • the gas leak position identification unit for identifying the gas leak position indicating the position of the leak source in the gas region of the gas distribution image received by the image input unit is provided.
  • an image of a gas region leaked into space is received as an input, and an image of a gas region leaked into air is included in the image.
  • an image of a gas region leaked into air is included in the image.
  • the gas leak position indicating the position of the leak source in the gas region of the received gas distribution image is identified.
  • the program according to one aspect of the present disclosure is a program for causing a computer to perform a gas leak position identification process, and the gas leak position identification process includes an image of a gas region leaked in space in an image.
  • a gas that accepts a gas distribution image as an input and shows the position of the gas leakage source in the gas region shown in the teacher gas distribution image in which the image of the gas leaked into the air is included in the image and the gas distribution image.
  • the gas leak position indicating the position of the leak source in the gas region of the received gas distribution image is identified.
  • the gas leak position is identified based on an estimation model that can identify the gas leak position based on the characteristics of the gas distribution image. Therefore, by properly designing the teacher data, the gas leak position can be identified regardless of the gas leak state.
  • the gas distribution image input to the image input unit includes a gas distribution image in which a part of the gas region is shielded, and the teacher gas.
  • the distribution image may include a gas distribution image in which a part of the gas region is shielded.
  • the gas distribution image received by the image input unit and the teacher gas distribution image included in the teacher data are both moving images including a plurality of frames. It is an image, and the estimation model is formed with a change in the gas region between frames of the gas distribution image as one of the feature quantities, and the gas leak position identification unit changes the gas region between the frames of the gas distribution image.
  • the gas leak position may be identified by using it as one of the feature quantities.
  • the time-series change of the feature amount in the gas region of the gas distribution image can be further used as the feature amount, so that the output of the guess model becomes more accurate.
  • the estimation model uses the coordinate values in the teacher gas distribution image as the gas leak position in the teacher data, and the gas leak position identification unit uses gas.
  • the coordinate value in the gas distribution image received by the image input unit may be output.
  • the estimation model uses a probability distribution in which each pixel of the teacher gas distribution image indicates a gas leak source as a gas leak position in the teacher data.
  • the gas leak position identification unit may output a probability distribution indicating the probability that each pixel of the gas distribution image received by the image input unit is a gas leak source as the gas leak position.
  • the deviation between the spatial position indicated by the gas leak position and the actual leak source can be reduced, and the influence of overfitting can be suppressed even when the teacher data is biased or insufficient.
  • the gas leak device identification system includes a first image acquisition unit that images a gas facility from a first viewpoint and generates a gas distribution image from the obtained image, and the first image acquisition unit.
  • a second image acquisition unit that images the gas equipment from a second viewpoint different from the viewpoint of the above and generates a gas distribution image from the obtained image, and a gas leak position identification device according to one aspect of the present disclosure.
  • a first gas leak position identification device and a second gas leak position identification device are provided, and the first image acquisition unit and the second image acquisition unit include a common spatial region in their respective imaging ranges. It may be arranged.
  • the position of the leak source can be identified from each of the different viewpoints.
  • the location of the leak source can be limited to a narrow spatial range.
  • the gas leak device identification system further includes a three-dimensional leak position identification unit, and the first gas leak position identification device acquires a gas distribution image from the first image acquisition unit.
  • the corresponding gas leakage position is identified
  • the second gas leakage position identification device acquires a gas distribution image from the second image acquisition unit to identify the corresponding gas leakage position, and the three-dimensional leakage position.
  • the identification unit identifies the first spatial region indicated by the gas leakage position identified by the first gas leakage position identification device based on the imaging range of the first image acquisition unit, and the identification unit of the second image acquisition unit.
  • the second spatial region indicated by the gas leak position identified by the second gas leak position identification device is specified based on the imaging range, and is included in both the first spatial region and the second spatial region.
  • the spatial region may be identified as the leak source.
  • the gas leak device identification system includes a first image acquisition unit that captures a space in which gas leaks from a first viewpoint and generates a gas distribution image from the obtained image.
  • a second image acquisition unit that captures the space from a second viewpoint different from the first viewpoint and generates a gas distribution image from the obtained image, and the gas distribution image from the first image acquisition unit.
  • a first gas leakage position identification unit that acquires and identifies the corresponding gas leakage position
  • a second gas leakage position identification that acquires the gas distribution image from the second image acquisition unit and identifies the corresponding gas leakage position.
  • the first spatial region indicated by the gas leakage position identified by the first gas leakage position identification device is specified, and the second image acquisition unit is imaged.
  • the second space region indicated by the gas leak position identified by the second gas leak position identification device is specified based on the range, and the space included in both the first space region and the second space region. It is provided with a three-dimensional leakage position identification unit that identifies the region as the leakage source of the gas.
  • the gas leak device identification system it is possible to monitor a common space area from two different viewpoints, and when a gas leak occurs in the common space area, each of the different viewpoints. Since the position of the leak source can be identified from, the position of the leak source can be limited to a narrow spatial range.
  • the gas leak device identification system maintains the relationship between the three-dimensional structural information of the equipment in the space, the three-dimensional structural information, the first viewpoint, and the second viewpoint.
  • the equipment information holding unit may be further provided, and the three-dimensional leakage position identification unit may further identify the relative positional relationship between the gas leakage position and the equipment.
  • the gas leak position estimation model generation device has an image input unit that accepts a gas distribution image in which an image of a gas region leaked in space is included in the image as an input, and the gas distribution image.
  • the gas leak position estimation model generation method accepts a gas distribution image in which an image of a gas region leaked in space is included in the image as an input, and the gas region shown in the gas distribution image. Accepts the gas leak position indicating the position of the gas leak source as input, machine-learns the combination of the gas distribution image and the gas leak position corresponding to the gas distribution image as teacher data, and inputs the gas distribution image. Generate an inference model that outputs the gas leak location indicating the leak source in the gas region.
  • the program according to one aspect of the present disclosure is a program for causing a computer to perform a gas leak position estimation model generation process, and in the gas leak position estimation model generation process, an image of a gas region leaked into the space is an image.
  • Accepts the gas distribution image contained in the gas as an input accepts the gas leak position indicating the position of the gas leak source in the gas region shown in the gas distribution image as an input, and corresponds to the gas distribution image and the gas distribution image.
  • Machine learning is performed using the combination with the gas leak position as teacher data, and a guess model that outputs the gas leak position indicating the leak source in the gas region is generated by inputting the gas distribution image.
  • an estimation model capable of identifying the gas leakage position based on the characteristics of the gas distribution image is formed. Therefore, by properly designing the teacher data, it is possible to generate a guess model that can identify the gas leak position regardless of the gas leak state.
  • the gas leak position identification device includes an image input unit that accepts a gas distribution image in which an image of a gas region leaked in space is included in the image as an input, and a gas leaked in space.
  • Machine learning is performed using the combination of the teacher gas distribution image in which the image of the region is included in the image and the gas leak position indicating the position of the gas leakage source in the gas region shown in the teacher gas distribution image as teacher data.
  • a machine learning unit that generates an estimation model that outputs a gas leakage position indicating the leakage source of the gas region by inputting a gas distribution image, and a gas of the gas distribution image received by the image input unit using the estimation model. It is provided with a gas leak position identification unit for identifying a gas leak position indicating the position of the leak source in the region.
  • an image of a gas region leaked in space is received as an input, and an image of a gas region leaked in space is an image.
  • Machine learning is performed using the combination of the teacher gas distribution image contained therein and the gas leak position indicating the position of the gas leak source in the gas region shown in the teacher gas distribution image as teacher data, and the gas distribution image is obtained.
  • a guess model that outputs the gas leak position indicating the leak source in the gas region is generated as an input, and the guess model is used to identify the gas leak position that indicates the position of the leak source in the gas region of the received gas distribution image. ..
  • the program according to one aspect of the present disclosure is a program for causing a computer to perform a gas leak position identification process, and the gas leak position identification process includes an image of a gas region leaked in space in an image.
  • the gas distribution image is accepted as an input, and the image of the gas region leaked in the space is included in the image, and the position of the gas leakage source in the gas region shown in the teacher gas distribution image is shown.
  • Machine learning is performed using the combination with the gas leakage position as teacher data, and an estimation model that outputs the gas leakage position indicating the leakage source in the gas region is generated by inputting the gas distribution image, and the estimation model is used to receive the above. Identify the gas leak location that indicates the location of the leak source in the gas region of the gas distribution image.
  • a guess model capable of identifying the gas leakage position based on the characteristics of the gas distribution image is formed. Identify the location of the gas leak. Therefore, by appropriately designing the teacher data, it is possible to generate a guess model that can identify the gas leak position regardless of the gas leak state and identify the gas leak position.
  • the gas leak position identification device, the gas leak position identification method, and the program according to the present disclosure can identify the gas leak position regardless of the state of the gas leak, and can safely investigate the site. It is useful.
  • Gas detection system 10 Image generation unit 20, 26, 27 Gas detection device 201 Image acquisition unit 21, 22, 23 Gas leak identification device 211 Gas region extraction unit 212 Gas region image acquisition unit 213 Leakage position information acquisition unit 214, 224, 234 Gas leak position identification unit 2141, 2241 Machine learning unit 2142, 2242 Learning model holding unit 215, 227 Judgment result output unit 24 Display unit 25 Gas leak position identification system 226 Field information holding unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Image Analysis (AREA)

Abstract

This gas leak location identification device comprises: an image input unit for receiving input of a gas distribution image including an image of a region of gas that has leaked into a space; and a gas leak location identification unit which, using an inference model that has performed machine learning using, as training data, a combination of a training gas distribution image including an image of a region of gas that has leaked into the air and a gas leak location indicating the location of the gas leak source in the gas region shown on the training gas distribution image, identifies a gas leak location indicating the location of the leak source in the gas region on the gas distribution image received by the image input unit.

Description

ガス漏洩位置同定装置、ガス漏洩位置同定システム、ガス漏洩位置同定方法、ガス漏洩位置推測モデル生成装置、ガス漏洩位置推測モデル生成方法、および、プログラムGas leak position identification device, gas leak position identification system, gas leak position identification method, gas leak position estimation model generation device, gas leakage position estimation model generation method, and program
 本開示は、画像を用いて空間中に漏洩したガスを検知する方法において、その漏洩源の位置を同定する装置、システム、方法、プログラムに関する。 This disclosure relates to a device, a system, a method, and a program for identifying the position of a leak source in a method of detecting a gas leaked into a space using an image.
 ガスプラント、石油化学プラントや火力発電所、製鉄関連施設等では、操業時に大量のガスを取り扱っている。このような施設においては、施設の経年劣化や運転ミスにより、ガス漏洩の危険性が認識されており、大事故に至る前にガス漏洩を最小限にとどめるためガス検知装置が備え付けられている。検知プローブにガス分子が接触することでプローブの電気的特性が変化することを利用したガス検知装置の他、近年では、ガスによる赤外線吸収を利用したガス可視化撮像装置が取り入れられつつある。 Gas plants, petrochemical plants, thermal power plants, steel-related facilities, etc. handle a large amount of gas during operation. In such facilities, the danger of gas leaks is recognized due to aging deterioration of the facilities and operational mistakes, and gas detection devices are installed to minimize gas leaks before a major accident occurs. In addition to gas detection devices that utilize the fact that the electrical characteristics of the probe change when gas molecules come into contact with the detection probe, in recent years, gas visualization imaging devices that utilize infrared absorption by gas have been introduced.
 ガス可視化撮像装置では、絶対温度0K以上の背景物体から放射される黒体放射と呼ばれる、主に赤外線領域の電磁波がガスによって吸収されたり、ガス自身から黒体放射が発生したりすることで生じる電磁波量の変化をとらえることでガスの存在を検知する。ガス可視化撮像装置で、監視対象空間を撮影することで、ガス漏洩を画像としてとらえることができるため、格子点状の場所の監視しかできない検知プローブ式に比較して、より早期にガス漏洩を検知し、ガスの存在箇所を正確にとらえることができる。 In a gas visualization imager, electromagnetic waves mainly in the infrared region called blackbody radiation emitted from a background object with an absolute temperature of 0 K or higher are absorbed by the gas, or blackbody radiation is generated from the gas itself. The presence of gas is detected by capturing changes in the amount of electromagnetic waves. By taking a picture of the monitored space with a gas visualization imager, gas leaks can be captured as images, so gas leaks can be detected earlier than with a detection probe type that can only monitor grid-like locations. However, the location of the gas can be accurately grasped.
 例えば、特許文献1に開示されているガス検知用画像処理装置では、画像をブロックに分割し、各ブロックを複数フレームにわたってガス領域か否かを判定することで、漏洩位置を特定している。また、例えば、特許文献2に開示されているガス検知用画像処理装置では、監視対象を複数の時刻で撮影した赤外画像に対し、漏れたガスによる温度変化を示す第1の周波数成分データよりも周波数が低く、監視対象の背景の温度変化を示す第2の周波数成分データを、赤外画像を示す画像データから除く処理を行っている。 For example, in the image processing apparatus for gas detection disclosed in Patent Document 1, the leak position is specified by dividing the image into blocks and determining whether or not each block is in the gas region over a plurality of frames. Further, for example, in the image processing apparatus for gas detection disclosed in Patent Document 2, from the first frequency component data showing the temperature change due to the leaked gas with respect to the infrared image obtained by capturing the monitored object at a plurality of times. However, the frequency is low, and the second frequency component data indicating the temperature change of the background to be monitored is removed from the image data indicating the infrared image.
国際公開第2016/143754号International Publication No. 2016/143754 国際公開第2017/073430号International Publication No. 2017/0743430
 しかしながら、特許文献1のように、決められたルール(アルゴリズム)で漏洩位置を特定する場合には、ルールの基となる前提条件が崩れた場合には正確に特定することが困難となる。一般に、監視対象となる箇所においては、配管等の機器設備が設置されており、形状や配置が複雑であることが多い。また、設備を常時監視する監視装置では、撮像装置の配置について制約が多いため、ガス漏洩源となり得る箇所全てを遮蔽物なく視野範囲内に収めることが困難であることが多い。したがって、漏洩源やガス雲の一部が遮蔽されて検知用画像におけるガス雲の像の一部が欠損し、漏洩源の位置を同定することが困難となる場合がある。また、漏洩源近くの背景温度とガス温度が近い場合は、漏洩源近辺ではガスによる赤外線信号の変化がほとんど検出されず、ガス雲の一部が遮蔽されている場合と実質的に同じであり、漏洩源の位置を同定することが困難になる。また、風向が変化する場合にも、決められたルールでは漏洩位置を誤って特定することが多くなる。 However, as in Patent Document 1, when the leak position is specified by a determined rule (algorithm), it becomes difficult to accurately specify the leak position if the preconditions on which the rule is based are broken. In general, equipment such as piping is installed in a place to be monitored, and the shape and arrangement are often complicated. In addition, in a monitoring device that constantly monitors equipment, there are many restrictions on the arrangement of the image pickup device, so it is often difficult to keep all possible gas leak sources within the field of view without obstruction. Therefore, a part of the leak source or the gas cloud may be shielded and a part of the image of the gas cloud in the detection image may be lost, making it difficult to identify the position of the leak source. Also, when the background temperature near the leak source and the gas temperature are close, the change in the infrared signal due to the gas is hardly detected near the leak source, which is substantially the same as when a part of the gas cloud is shielded. , It becomes difficult to identify the location of the leak source. In addition, even when the wind direction changes, it is often the case that the leak position is erroneously specified according to the determined rules.
 本開示の態様は、上記課題に鑑み、ガス漏洩の状態に関わらず、ガス漏洩源の位置を示すガス漏洩位置を同定する同定装置および同定方法を提供することを目的とする。 In view of the above problems, an aspect of the present disclosure is to provide an identification device and an identification method for identifying a gas leak position indicating the position of a gas leak source regardless of the state of the gas leak.
 本開示の一態様に係るガス漏洩位置同定装置は、空間中に漏洩したガスの存在範囲がガス領域として描画されており、かつ、前記ガス領域の一部が遮蔽されたガス分布画像を入力として受け付ける画像入力部と、ガス領域の一部が遮蔽された教師用ガス分布画像と、前記教師用ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置との組み合わせを教師データとして機械学習された推測モデルを用いて、前記画像入力部が受け付けた前記ガス分布画像のガス領域の漏洩源の位置を示すガス漏洩位置を同定するガス漏洩位置同定部とを備える。 In the gas leak position identification device according to one aspect of the present disclosure, the existence range of the gas leaked in the space is drawn as a gas region, and a gas distribution image in which a part of the gas region is shielded is used as an input. The teacher is a combination of the receiving image input unit, the teacher gas distribution image in which a part of the gas region is shielded, and the gas leak position indicating the position of the gas leak source in the gas region shown in the teacher gas distribution image. Using a machine-learned estimation model as data, it includes a gas leak position identification unit that identifies a gas leak position indicating the position of a leak source in the gas region of the gas distribution image received by the image input unit.
 上記態様によれば、ガス分布画像の特徴に基づいてガス漏洩位置を同定できる推測モデルに基づいてガス漏洩位置を同定する。したがって、教師データを適切に設計することにより、ガス漏洩の状態に関わらず、ガス漏洩位置を同定することができる。 According to the above aspect, the gas leak position is identified based on a guessing model that can identify the gas leak position based on the characteristics of the gas distribution image. Therefore, by properly designing the teacher data, the gas leak position can be identified regardless of the gas leak state.
実施の形態1に係るガス検知システム100の機能ブロック図である。It is a functional block diagram of the gas detection system 100 which concerns on Embodiment 1. FIG. 監視対象300と画像生成部10との関係を示す概略図である。It is a schematic diagram which shows the relationship between a monitoring object 300 and an image generation part 10. 機械学習モデルの論理構成の概要を示す模式図である。It is a schematic diagram which shows the outline of the logical structure of a machine learning model. 実施の形態1に係る監視対象300、撮像画像、ガス分布画像の一例を示す模式図である。It is a schematic diagram which shows an example of the monitoring object 300, the captured image, and the gas distribution image which concerns on Embodiment 1. FIG. 学習フェーズにおけるガス検知装置20の動作を示すフローチャートである。It is a flowchart which shows the operation of the gas detection apparatus 20 in a learning phase. 教師データとしてのガス分布画像の例である。This is an example of a gas distribution image as teacher data. 教師データとしてのガス分布画像の生成例である。This is an example of generating a gas distribution image as teacher data. 教師データとしてのガス分布画像の生成例である。This is an example of generating a gas distribution image as teacher data. 運用フェーズにおけるガス検知装置20の動作を示すフローチャートである。It is a flowchart which shows the operation of the gas detection apparatus 20 in the operation phase. 監視対象300とガス漏洩位置との位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship between a monitoring target 300 and a gas leak position. 変形例1に係るガス検知システム101の機能ブロック図である。It is a functional block diagram of the gas detection system 101 which concerns on modification 1. FIG. 変形例1に係る漏洩位置画像の例である。It is an example of the leakage position image which concerns on the modification 1. 変形例1に係る教師データの例である。It is an example of the teacher data which concerns on the modification 1. 監視対象300とガス漏洩位置との位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship between a monitoring target 300 and a gas leak position. 変形例2に係るガス検知システム110の機能ブロック図である。It is a functional block diagram of the gas detection system 110 which concerns on modification 2. FIG. 実施の形態2に係るガス検知システム200の機能ブロック図である。It is a functional block diagram of the gas detection system 200 which concerns on Embodiment 2. FIG. 監視対象300とガス漏洩位置との位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship between a monitoring target 300 and a gas leak position. 監視対象300とガス漏洩位置との位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship between a monitoring target 300 and a gas leak position.
 ≪実施の形態1≫
 以下、実施の形態1に係るガス検知システム100について、図面を参照しながら説明する。
<< Embodiment 1 >>
Hereinafter, the gas detection system 100 according to the first embodiment will be described with reference to the drawings.
 図1は、実施の形態1に係るガス検知システム100の機能ブロック図である。図1に示すように、ガス検知システム100は、監視対象を撮像するための画像生成部10と、画像生成部10が取得した画像に基づきガスを検知するガス検知装置20と、表示部24とを有する。画像生成部10、表示部24は、それぞれ、ガス検知装置20に接続可能に構成されている。 FIG. 1 is a functional block diagram of the gas detection system 100 according to the first embodiment. As shown in FIG. 1, the gas detection system 100 includes an image generation unit 10 for capturing an image of a monitored object, a gas detection device 20 for detecting gas based on an image acquired by the image generation unit 10, and a display unit 24. Have. The image generation unit 10 and the display unit 24 are configured to be connectable to the gas detection device 20, respectively.
 <画像生成部10>
 画像生成部10は、監視対象を撮像してガス検知装置20に画像を提供する装置またはシステムである。実施の形態1において、画像生成部10は、例えば、波長3.2~3.4μmの赤外光を検知して画像化する、いわゆる赤外線カメラであり、メタン、エタン、エチレン、プロピレンなど炭化水素系ガスを検知可能である。なお、画像生成部10はこれに限られず、監視対象のガスを検知可能な撮像装置であればよく、例えば、監視対象が白煙化した水蒸気など可視光で検知可能なガスであれば、一般的な可視光カメラであってもよい。なお、本明細書において、ガスとは、配管やタンク等の閉鎖空間から漏出した気体であって、意図的に大気中に拡散させたものではないものを指す。
<Image generation unit 10>
The image generation unit 10 is a device or system that captures an image of a monitored object and provides an image to the gas detection device 20. In the first embodiment, the image generation unit 10 is a so-called infrared camera that detects and images infrared light having a wavelength of 3.2 to 3.4 μm, and is a hydrocarbon such as methane, ethane, ethylene, and propylene. It is possible to detect system gas. The image generation unit 10 is not limited to this, and may be an image pickup device capable of detecting the gas to be monitored. For example, if the monitoring target is a gas that can be detected by visible light such as white smoked water vapor, it is general. It may be a visible light camera. In the present specification, the gas refers to a gas leaked from a closed space such as a pipe or a tank, and is not intentionally diffused into the atmosphere.
 画像生成部10は、図2の模式図に示すように、画像生成部10の視野範囲310に監視対象300が含まれるように設置される。画像生成部10は、撮像した画像を映像信号としてガス検知装置20に出力する。映像信号としては、例えば、秒間30フレームの画像を伝送するための信号である。 As shown in the schematic diagram of FIG. 2, the image generation unit 10 is installed so that the monitoring target 300 is included in the field of view range 310 of the image generation unit 10. The image generation unit 10 outputs the captured image as a video signal to the gas detection device 20. The video signal is, for example, a signal for transmitting an image of 30 frames per second.
 <ガス検知装置20の構成>
 ガス検知装置20は、画像生成部10から監視対象を撮像した画像を取得し、画像に基づいてガス領域の検出を行い、表示部24を通じてユーザにガス検知を通知する装置である。ガス検知装置20は、例えば、一般的なCPU(Central Processing Unit)とRAMと、これらで実行されるプログラムを備えるコンピュータとして実現される。なお、後述するように、ガス検知装置20は、演算装置としてのGPU(Graphics Processing Unit)とRAMをさらに備えてもよい。ガス検知装置20は、図1に示すように、画像取得部201、ガス領域抽出部211、ガス領域画像取得部212、漏洩位置情報取得部213、機械学習部2141、学習モデル保持部2142、判定結果出力部215を備える。ガス領域抽出部211は、本開示の画像入力部の機能を備える。また、機械学習部2141と学習モデル保持部2142とは、ガス漏洩位置同定部214を構成する。ガス領域抽出部211とガス漏洩位置同定部214は、ガス漏洩位置同定装置21を構成する。
<Structure of gas detection device 20>
The gas detection device 20 is a device that acquires an image of a monitored object from the image generation unit 10, detects a gas region based on the image, and notifies the user of the gas detection through the display unit 24. The gas detection device 20 is realized as, for example, a computer including a general CPU (Central Processing Unit), a RAM, and a program executed by these. As will be described later, the gas detection device 20 may further include a GPU (Graphics Processing Unit) and a RAM as arithmetic units. As shown in FIG. 1, the gas detection device 20 includes an image acquisition unit 201, a gas region extraction unit 211, a gas region image acquisition unit 212, a leak position information acquisition unit 213, a machine learning unit 2141, and a learning model holding unit 2142. The result output unit 215 is provided. The gas region extraction unit 211 has the function of the image input unit of the present disclosure. Further, the machine learning unit 2141 and the learning model holding unit 2142 constitute a gas leak position identification unit 214. The gas region extraction unit 211 and the gas leak position identification unit 214 constitute the gas leak position identification device 21.
 画像取得部201は、監視対象を撮像した画像を画像生成部10から取得する回路である。実施の形態では、画像取得部201は、画像生成部10から映像信号を取得し、映像信号を画像に復元して、複数のフレームからなる動画像としてガス領域抽出部211に出力する。画像は監視対象を撮像した赤外線写真であり、画素値として赤外線の強度を有する。 The image acquisition unit 201 is a circuit that acquires an image of the monitored object from the image generation unit 10. In the embodiment, the image acquisition unit 201 acquires a video signal from the image generation unit 10, restores the video signal to an image, and outputs the video signal to the gas region extraction unit 211 as a moving image composed of a plurality of frames. The image is an infrared photograph of the monitored object, and has the intensity of infrared rays as a pixel value.
 ガス領域抽出部211は、画像取得部201が出力した動画像に対してガス検知処理を行って、ガス領域を含むガス分布画像を生成する回路である。ガス検知処理は、公知の方法を用いることができる。具体的には、例えば、国際公開第2017/073430号公報(特許文献2)に記載の方法を用いることができる。そして、動画像の各フレームからガス領域を含む領域を切り出した動画像としてのガス分布画像が生成する。具体的には、図4(a)の模式俯瞰図に示すように、設備300から漏出したガス320を画像生成部10において撮像した場合、図4(b)のフレーム例に示すように、ガスに対応するガス領域420が撮像されている。ここで、ガス領域420の一部は、設備の像400に遮られて画像には映っていない。したがって、ガス分布画像としては、図4(c)の模式図のように、ガス領域の一部520を含む画像が生成される。なお、ガス領域抽出部211は、動画像の各フレームからガス領域を含む領域を切り出した後、ゲイン調整等の加工を行ってもよいし、画像取得部201が出力した動画像の画素値ではなく画素値の差分をマッピングしてガス分布画像としてもよい。 The gas region extraction unit 211 is a circuit that performs gas detection processing on the moving image output by the image acquisition unit 201 to generate a gas distribution image including the gas region. A known method can be used for the gas detection process. Specifically, for example, the method described in International Publication No. 2017/0743430 (Patent Document 2) can be used. Then, a gas distribution image as a moving image obtained by cutting out a region including a gas region from each frame of the moving image is generated. Specifically, as shown in the schematic bird's-eye view of FIG. 4A, when the gas 320 leaking from the equipment 300 is imaged by the image generation unit 10, the gas is as shown in the frame example of FIG. 4B. The gas region 420 corresponding to is imaged. Here, a part of the gas region 420 is obscured by the image 400 of the equipment and is not shown in the image. Therefore, as the gas distribution image, an image including a part 520 of the gas region is generated as shown in the schematic diagram of FIG. 4 (c). The gas region extraction unit 211 may perform processing such as gain adjustment after cutting out a region including the gas region from each frame of the moving image, and the pixel value of the moving image output by the image acquisition unit 201 may be used. Instead, the difference in pixel values may be mapped to obtain a gas distribution image.
 なお、ガス分布画像のサイズや動画としてのフレーム数が過大であると機械学習および機械学習に基づく判定の演算量が大きくなる。実施の形態1では、ガス分布画像の画素数は224×224ピクセルであり、フレーム数は16である。 If the size of the gas distribution image or the number of frames as a moving image is excessive, the amount of calculation for machine learning and judgment based on machine learning becomes large. In the first embodiment, the number of pixels of the gas distribution image is 224 × 224 pixels, and the number of frames is 16.
 ガス領域画像取得部212は、ガス領域抽出部211が生成するガス分布画像と同一のフォーマットからなるガス分布画像であって、ガス漏洩位置が既知である画像を取得する回路である。ここで、ガス分布画像は、1つの漏洩源から漏出したガス雲を撮像した画像であり、漏洩源の位置であるガス漏洩位置は、ガス分布画像に対して1つだけ存在する。なお、ガス領域画像取得部212は、取得した画像が、ガス領域抽出部211が生成するガス分布画像と同一のフォーマットでない場合には、同一のフォーマットとなるように切り出しや拡大、縮小等の加工を行ってもよい。また、例えば、取得した画像が3次元ボクセルデータである場合、1点からの視点の2次元画像に変換を行ってもよい。 The gas region image acquisition unit 212 is a circuit for acquiring a gas distribution image having the same format as the gas distribution image generated by the gas region extraction unit 211 and having a known gas leakage position. Here, the gas distribution image is an image of an image of a gas cloud leaking from one leakage source, and there is only one gas leakage position, which is the position of the leakage source, with respect to the gas distribution image. If the acquired image is not in the same format as the gas distribution image generated by the gas region extraction unit 211, the gas region image acquisition unit 212 cuts out, enlarges, or reduces the image so as to have the same format. May be done. Further, for example, when the acquired image is three-dimensional voxel data, it may be converted into a two-dimensional image of a viewpoint from one point.
 漏洩位置情報取得部213は、ガス領域画像取得部212が取得するガス分布画像に対応するガス漏洩位置を取得する回路である。ガス漏洩位置は、ガス領域画像取得部212が取得するガス分布画像内の座標として指定される。なお、取得したガス漏洩位置が空間上の座標である場合には、ガス分布画像内の座標に変換を行う。 The leak position information acquisition unit 213 is a circuit that acquires the gas leakage position corresponding to the gas distribution image acquired by the gas region image acquisition unit 212. The gas leak position is designated as the coordinates in the gas distribution image acquired by the gas region image acquisition unit 212. If the acquired gas leak position is a coordinate in space, it is converted to the coordinate in the gas distribution image.
 機械学習部2141は、ガス領域画像取得部212が受け付けたガス分布画像と、漏洩位置情報取得部213が受け付けたガス分布画像に対応するガス漏洩位置との組み合わせに基づいて機械学習を実行し、機械学習モデルを生成する回路である。機械学習モデルは、ガス分布画像が有する特徴量、例えば、ガス領域の外周形状、ガスの濃淡分布、および、これらの時間変化等の組み合わせに基づいてガス漏洩源の位置を示すガス漏洩位置を予測するように形成される。機械学習としては、例えば、畳み込みニューラルネットワーク(CNN;Convolutional Neural Network)を用いることができ、PyTorchなどの公知のソフトウェアを用いることができる。図3は、機械学習モデルの論理構成の概要を示す模式図である。機械学習モデルは、入力層51、中間層52-1、中間層52-2、…、中間層52-n、出力層53を備え、学習によって層間フィルタが最適化される。例えば、ガス分布画像の画素数が224×224ピクセルでありフレーム数が16である場合、入力層51は、ガス分布画像の画素値を入力した224×224×16の3次元テンソルを受け付ける。中間層52-1は例えば畳み込み層であり、入力層51のデータから畳み込み演算によって生成される224×224×16の3次元テンソルを受け付ける。中間層52-2は例えばプーリング層であり、中間層52-1のデータをリサイズした3次元テンソルを受け付ける。中間層52-nは例えば全結合層であり、中間層52-(n-1)のデータを、座標値を示す2次元ベクトルに変換する。なお、中間層の構成は一例であり、また、中間層の数nは3~5程度であるが、これに限られない。また、図3では各層のニューロン数は同一として描画しているが、各層は任意の数のニューロンを有してよい。機械学習部2141は、ガス分布画像としての動画像を入力とし、ガス漏洩位置を正解とする学習を行って機械学習モデルを生成し、学習モデル保持部2142に出力する。なお、機械学習部2141は、ガス検知装置20が演算装置としてのGPUとRAMを備える場合には、GPUとソフトウェアとによって実現されてもよい。 The machine learning unit 2141 executes machine learning based on the combination of the gas distribution image received by the gas region image acquisition unit 212 and the gas leakage position corresponding to the gas distribution image received by the leak position information acquisition unit 213. It is a circuit that generates a machine learning model. The machine learning model predicts the gas leak position indicating the position of the gas leak source based on the combination of the feature amount of the gas distribution image, for example, the outer peripheral shape of the gas region, the gas shading distribution, and the time change of these. Formed to do. As machine learning, for example, a convolutional neural network (CNN) can be used, and known software such as PyTorch can be used. FIG. 3 is a schematic diagram showing an outline of the logical configuration of the machine learning model. The machine learning model includes an input layer 51, an intermediate layer 52-1, an intermediate layer 52-2, ..., An intermediate layer 52-n, and an output layer 53, and the interlayer filter is optimized by learning. For example, when the number of pixels of the gas distribution image is 224 × 224 pixels and the number of frames is 16, the input layer 51 accepts a 224 × 224 × 16 three-dimensional tensor in which the pixel value of the gas distribution image is input. The intermediate layer 52-1 is, for example, a convolution layer, and receives a 224 × 224 × 16 three-dimensional tensor generated by a convolution operation from the data of the input layer 51. The intermediate layer 52-2 is, for example, a pooling layer, and accepts a three-dimensional tensor obtained by resizing the data of the intermediate layer 52-1. The intermediate layer 52-n is, for example, a fully connected layer, and the data of the intermediate layer 52- (n-1) is converted into a two-dimensional vector showing coordinate values. The configuration of the intermediate layer is an example, and the number n of the intermediate layers is about 3 to 5, but the number n is not limited to this. Further, although the number of neurons in each layer is drawn as the same in FIG. 3, each layer may have an arbitrary number of neurons. The machine learning unit 2141 receives a moving image as a gas distribution image as an input, performs learning with the gas leakage position as the correct answer, generates a machine learning model, and outputs it to the learning model holding unit 2142. The machine learning unit 2141 may be realized by the GPU and software when the gas detection device 20 includes a GPU and a RAM as arithmetic units.
 学習モデル保持部2142は、機械学習部2141によって生成された機械学習モデルを保持し、当該機械学習モデルを用いてガス領域抽出部211が生成したガス分布画像に対応するガス漏洩位置を出力する回路である。ガス漏洩位置は、入力されたガス分布画像内の座標値として特定され出力される。 The learning model holding unit 2142 holds the machine learning model generated by the machine learning unit 2141 and outputs the gas leakage position corresponding to the gas distribution image generated by the gas region extraction unit 211 using the machine learning model. Is. The gas leak position is specified and output as a coordinate value in the input gas distribution image.
 判定結果出力部215は、画像取得部201が取得した動画像上に、学習モデル保持部2142が出力したガス漏洩位置を重畳して表示部24に表示するための画像を生成する回路である。また、判定結果出力部215は、ガス漏洩位置を示す情報を出力する機能を備えてもよい。ガス漏洩位置を示す情報は、例えば、画像内の位置や空間内の位置を示す数値情報である。 The determination result output unit 215 is a circuit for generating an image for displaying on the display unit 24 by superimposing the gas leak position output by the learning model holding unit 2142 on the moving image acquired by the image acquisition unit 201. Further, the determination result output unit 215 may have a function of outputting information indicating a gas leak position. The information indicating the gas leak position is, for example, numerical information indicating a position in an image or a position in space.
 <その他の構成>
 表示部24は、例えば、液晶ディスプレイ、有機ELディスプレイなどの表示装置である。
<Other configurations>
The display unit 24 is a display device such as a liquid crystal display or an organic EL display.
 <動作>
 以下、図面を用いて、本実施の形態におけるガス検知装置20の動作について説明する。
<Operation>
Hereinafter, the operation of the gas detection device 20 in the present embodiment will be described with reference to the drawings.
 <学習フェーズ>
 図5は、学習フェーズにおけるガス検知装置20の動作を示すフローチャートである。
<Learning phase>
FIG. 5 is a flowchart showing the operation of the gas detection device 20 in the learning phase.
 まず、教師データとして、ガス分布画像と、ガス漏洩位置との組み合わせを作成する(ステップS110)。ガス分布画像としては、ガス漏洩位置が既知である画像を用いることができる。図6(a)は、ガス漏洩位置が既知であるガス分布画像の模式図であり、図6(b)は、ガス分布画像と、ガス漏洩位置の座標との組み合わせである。教師データとしては、例えば、ガス分布画像内のガス領域の一部やガス漏洩位置が設備の陰に隠れている(遮蔽されている)画像を用いてもよく、同様にガス領域の一部やガス漏洩位置が設備の陰に隠れているガス分布画像に対してガス漏洩位置を高い確度で検出可能となる。なお、教師データはこれに限られず、ガス領域やガス漏洩位置が遮蔽されていないガス分布画像を用いてもよいし、漏洩源周辺の風向きが一定でない(例えば、ガス漏洩が発生してから動画像の最後のフレーム取得時までの間に風向きが変化している)ガス分布画像であってもよい。本構成により、後述する運用フェーズにおいて撮像した動画像において同様の現象が起きている場合に、ガス漏洩位置を検出可能となる。図6(c)は、ガス領域の一部が遮蔽されているガス分布画像の模式図であり、図6(d)は、ガス分布画像と、ガス漏洩位置の座標との組み合わせである。また、図6(e)は、ガス漏洩位置とその周辺のガス領域が遮蔽されているガス分布画像の模式図であり、図6(f)は、ガス分布画像と、ガス漏洩位置の座標との組み合わせである。 First, as teacher data, a combination of the gas distribution image and the gas leak position is created (step S110). As the gas distribution image, an image in which the gas leak position is known can be used. FIG. 6A is a schematic diagram of a gas distribution image in which the gas leak position is known, and FIG. 6B is a combination of the gas distribution image and the coordinates of the gas leak position. As the training data, for example, a part of the gas region in the gas distribution image or an image in which the gas leak position is hidden (shielded) behind the equipment may be used, and similarly, a part of the gas region or The gas leak position can be detected with high accuracy for the gas distribution image in which the gas leak position is hidden behind the equipment. The teacher data is not limited to this, and a gas distribution image in which the gas region and the gas leak position are not shielded may be used, or the wind direction around the leak source is not constant (for example, a moving image after the gas leak occurs). It may be a gas distribution image (the wind direction has changed until the last frame acquisition of the image). With this configuration, it is possible to detect the gas leak position when the same phenomenon occurs in the moving image captured in the operation phase described later. FIG. 6C is a schematic diagram of a gas distribution image in which a part of the gas region is shielded, and FIG. 6D is a combination of the gas distribution image and the coordinates of the gas leak position. Further, FIG. 6 (e) is a schematic diagram of a gas distribution image in which the gas leak position and the surrounding gas region are shielded, and FIG. 6 (f) shows the gas distribution image and the coordinates of the gas leak position. It is a combination of.
 なお、教師データとしての部分遮蔽画像は、実際の設備から取得する場合に限らず、ガス分布画像の加工やシミュレーションによって形成してもよい。図7は、部分遮蔽画像の生成例を示している。図7(a)は、ベースとなるガス分布画像とガス漏洩位置との組み合わせであり、図7(b)~図7(f)は、図7(a)のガス分布画像におけるガス領域の一部を遮蔽したガス分布画像とガス漏洩位置との組み合わせである。遮蔽部分の形状や位置を異ならせたガス分布画像を教師データとして用いることにより、ガス漏洩位置と画像生成部10との間に柱や配管などの遮蔽物が存在する場合においても、正確にガス漏洩位置が検出可能な機械学習モデルを生成できる。また、ガス分布画像は、シミュレーションに基づくものであってもよく、例えば、設備の3次元構造モデルを用いてガス漏洩シミュレーションを行い、シミュレーション結果である3次元ボクセルデータから所定の1点からの視点の画像を生成してもよい。より具体的には、例えば、設備の3次元ボクセルデータに基づいて3次元空間に構造物をレイアウトするモデリングを行う。次に、ガスの種類、流量、風速、風向、ガス漏洩源の形状、口径、位置などの条件を定め、3次元流体シミュレーションを行い、ガスの分布状態を算出する。このようにして形成された3次元モデルに対して空間内に視点を設定し、当該視点からの2次元画像をガス分布画像として生成する。具体的には、ガス分布画像の1画素に対応する、空間内における視点を通過する1つの直線に対し、視点から設備の表面までの間に存在するガスについて、ガス濃度厚み積を算出することで画素ごとの光強度を算出し、画素値を算出する。図8(a)は、流体シミュレーションによって形成した、設備を示すボクセルデータ301とガスを示すボクセルデータ321との位置関係を示す模式図であり、図8(b)、図8(c)のそれぞれは、視点11から方向d1を中心軸として得たガス分布画像とガス漏洩位置、視点12から方向d2を中心軸として得たガス分布画像とガス漏洩位置を示している。 The partially shielded image as teacher data is not limited to the case of acquiring from the actual equipment, and may be formed by processing or simulating the gas distribution image. FIG. 7 shows an example of generating a partially shielded image. 7 (a) is a combination of the base gas distribution image and the gas leak position, and FIGS. 7 (b) to 7 (f) are one of the gas regions in the gas distribution image of FIG. 7 (a). It is a combination of the gas distribution image that shields the part and the gas leak position. By using gas distribution images with different shapes and positions of the shield portion as teacher data, even if there is a shield such as a pillar or pipe between the gas leak position and the image generation unit 10, the gas can be accurately measured. It is possible to generate a machine learning model in which the leakage position can be detected. Further, the gas distribution image may be based on a simulation. For example, a gas leakage simulation is performed using a three-dimensional structural model of the equipment, and a viewpoint from a predetermined one point is obtained from the three-dimensional voxel data which is the simulation result. You may generate an image of. More specifically, for example, modeling is performed to lay out a structure in a three-dimensional space based on the three-dimensional voxel data of the equipment. Next, conditions such as the type of gas, flow rate, wind speed, wind direction, shape of gas leak source, diameter, and position are determined, and a three-dimensional fluid simulation is performed to calculate the gas distribution state. A viewpoint is set in space for the three-dimensional model formed in this way, and a two-dimensional image from the viewpoint is generated as a gas distribution image. Specifically, for one straight line passing through the viewpoint in space corresponding to one pixel of the gas distribution image, the gas concentration thickness product is calculated for the gas existing from the viewpoint to the surface of the equipment. The light intensity for each pixel is calculated with, and the pixel value is calculated. FIG. 8 (a) is a schematic diagram showing the positional relationship between the voxel data 301 showing equipment and the voxel data 321 showing gas, which are formed by fluid simulation, respectively, and are shown in FIGS. 8 (b) and 8 (c), respectively. Shows a gas distribution image and a gas leak position obtained from the viewpoint 11 with the direction d1 as the central axis, and a gas distribution image and a gas leak position obtained from the viewpoint 12 with the direction d2 as the central axis.
 次に、ガス分布画像と、ガス漏洩位置との組み合わせをガス検知装置20に入力する(ステップS120)。ガス分布画像はガス領域画像取得部212に入力され、対応するガス漏洩位置は、漏洩位置情報取得部213に入力される。 Next, the combination of the gas distribution image and the gas leak position is input to the gas detection device 20 (step S120). The gas distribution image is input to the gas region image acquisition unit 212, and the corresponding gas leak position is input to the leak position information acquisition unit 213.
 次に、畳み込みニューラルネットワークにデータを入力して機械学習を実行する(ステップS130)。これにより、深層学習によってパラメータが試行錯誤によって最適化され、機械学習済みモデルが形成される。形成された機械学習済みモデルは、学習モデル保持部2142に保持される。 Next, input data to the convolutional neural network and execute machine learning (step S130). As a result, the parameters are optimized by trial and error by deep learning, and a machine-learned model is formed. The formed machine-learned model is held in the learning model holding unit 2142.
 以上の動作により、ガス分布画像に対してその特徴量に基づいてガス漏洩位置を出力する機械学習済みモデルが形成される。 By the above operation, a machine-learned model that outputs the gas leak position based on the feature amount of the gas distribution image is formed.
 <運用フェーズ>
 図9は、学習フェーズにおけるガス検知装置20の動作を示すフローチャートである。
<Operation phase>
FIG. 9 is a flowchart showing the operation of the gas detection device 20 in the learning phase.
 まず、撮像画像の各フレームからガス領域を検出し、ガス領域とその周辺を含むガス分布画像を切り出す(ステップS210)。ガス領域の検出は、撮像画像における輝度の時系列変化やその周波数等に基づいて、公知の方法により行われる。そして、ガスを検知した画素をすべて含むように撮像画像の各フレームからその一部を切り出し、ガス分布画像のフレームとしてガス分布画像を生成する。 First, the gas region is detected from each frame of the captured image, and the gas distribution image including the gas region and its surroundings is cut out (step S210). The detection of the gas region is performed by a known method based on the time-series change of the brightness in the captured image, its frequency, and the like. Then, a part thereof is cut out from each frame of the captured image so as to include all the pixels in which gas is detected, and a gas distribution image is generated as a frame of the gas distribution image.
 次に、学習済みモデルを用いてガス分布画像からガス漏洩位置を同定する(ステップS220)。ステップS130によって形成された機械学習済みモデルを用いることにより、ガス分布画像に対するガス漏洩位置の座標が同定される。学習モデル保持部2142は、ガス分布画像に対する座標値としてガス漏洩位置を出力するので、ガス漏洩位置同定部214は、ガス領域抽出部211から当初の撮像画像とガス分布画像との座標の対応関係に基づいて、当初の撮像画像に対する座標値としてガス漏洩位置を出力する。図10(a)の模式図に示すように、ガス320のガス漏洩位置330は、撮像画像におけるガス領域420に対応するガス漏洩位置430として特定され、直線状(または円錐状)の漏洩被疑領域330内に存在するとして同定される。 Next, the gas leak position is identified from the gas distribution image using the trained model (step S220). By using the machine-learned model formed by step S130, the coordinates of the gas leak position with respect to the gas distribution image are identified. Since the learning model holding unit 2142 outputs the gas leak position as a coordinate value with respect to the gas distribution image, the gas leak position identification unit 214 has a correspondence relationship between the coordinates of the initial captured image and the gas distribution image from the gas region extraction unit 211. Based on, the gas leak position is output as a coordinate value with respect to the initially captured image. As shown in the schematic diagram of FIG. 10A, the gas leak position 330 of the gas 320 is identified as the gas leak position 430 corresponding to the gas region 420 in the captured image, and is a linear (or conical) leak suspected region. Identified as being present within 330.
 次に、同定されたガス漏洩位置を当初の撮像画像に対して重畳し、ガスの漏洩位置を表示する(ステップS230)。当該処理により、ガスの漏洩位置が特定できる。 Next, the identified gas leak position is superimposed on the initial captured image, and the gas leak position is displayed (step S230). By this treatment, the leak position of the gas can be specified.
 なお、ガス漏洩位置の同定に際し、設備の構成を示す3次元ボクセルデータが存在する場合には、これを用いてさらに範囲を限定するとしてもよい。上述したように、ガス漏洩位置は、空間上は直線状(または円錐状)の領域330内に存在するとして同定できる。ここで、設備300の3次元ボクセルデータが存在する場合には、図10(b)の模式図に示すように、当該3次元ボクセルデータ上に直線状(または円錐状)の漏洩被疑領域330を重畳することにより、設備とガス漏洩位置との位置関係がより明確になる。さらに、漏洩被疑領域330内またはその近傍に設備が存在する場合には、ガス分布画像において設備に相当する位置にガスが検出されていれば当該設備位置がガス漏洩位置である可能性が高いと判断することができ、一方、ガス分布画像において設備に相当する位置にガスが検出されてない場合には当該設備位置によって隠蔽されている背後にガス漏洩位置が存在する可能性が高いと判断することができる。 When identifying the gas leak position, if there is 3D voxel data indicating the configuration of the equipment, the range may be further limited by using this. As mentioned above, the gas leak location can be identified as being within the spatially linear (or conical) region 330. Here, when the three-dimensional voxel data of the equipment 300 exists, as shown in the schematic diagram of FIG. 10B, a linear (or conical) leakage suspected region 330 is formed on the three-dimensional voxel data. By superimposing, the positional relationship between the equipment and the gas leakage position becomes clearer. Further, when the equipment is present in or near the suspected leakage area 330, if gas is detected at the position corresponding to the equipment in the gas distribution image, it is highly possible that the equipment position is the gas leakage position. On the other hand, if gas is not detected at the position corresponding to the equipment in the gas distribution image, it is judged that there is a high possibility that the gas leakage position exists behind the position hidden by the equipment position. be able to.
 <小括>
 以上の構成により、画像を用いてガス検知を行うガス検知装置において、ガス領域が撮像されていれば、ガスの漏洩位置を同定することができる。特に、教師データが十分かつ適切に用いられている場合には、ガス領域の一部やガス漏洩位置が柱や配管等の構造物によって遮蔽されている状態の画像や、風向きが一定でない状況下で撮像した画像など、単にガス領域の形状のみから漏洩源の位置同定が容易でない場合においても、ガスの漏洩位置を同定することができる。したがって、画像生成部たるカメラが漏洩被疑箇所を余すところなく遮蔽物なしに見渡せるように設置が行えない場合や、風の影響を受けやすい場合などを含め、撮像状況に依存することなく、ガス漏洩位置を同定することができる。
<Summary>
With the above configuration, in a gas detection device that detects gas using an image, if the gas region is imaged, the gas leak position can be identified. In particular, when the teacher data is used sufficiently and appropriately, an image of a part of the gas region and the gas leak position being shielded by a structure such as a pillar or a pipe, or a situation where the wind direction is not constant. Even when it is not easy to identify the position of the leak source only from the shape of the gas region, such as the image captured by the above, the leak position of the gas can be identified. Therefore, gas leaks do not depend on the imaging conditions, including cases where the camera, which is the image generator, cannot be installed so that the suspected leak location can be seen without a shield, or where it is easily affected by wind. The location can be identified.
 ≪変形例1≫
 実施の形態1では、ガス分布画像に対応するガス漏洩位置は座標値であるとした。しかしながら、ガス漏洩位置は、ガス漏洩位置である確率を示す確率分布画像であってもよい。
<< Modification 1 >>
In the first embodiment, the gas leak position corresponding to the gas distribution image is a coordinate value. However, the gas leak position may be a probability distribution image showing the probability of being a gas leak position.
 図11は、変形例1に係るガス検知装置26を含むガス検知システム101の機能ブロック図である。図11に示すように、ガス検知装置26は、漏洩位置情報取得部213、機械学習部2141、学習モデル保持部2142に替えて、漏洩位置画像取得部223、機械学習部2241、学習モデル保持部2242を備える。機械学習部2241と学習モデル保持部2242はガス漏洩位置同定部224を構成し、ガス領域抽出部211とガス漏洩位置同定部224はガス漏洩位置同定装置22を構成する。 FIG. 11 is a functional block diagram of the gas detection system 101 including the gas detection device 26 according to the first modification. As shown in FIG. 11, the gas detection device 26 replaces the leak position information acquisition unit 213, the machine learning unit 2141, and the learning model holding unit 2142 with the leak position image acquisition unit 223, the machine learning unit 2241, and the learning model holding unit. 2242 is provided. The machine learning unit 2241 and the learning model holding unit 2242 constitute a gas leak position identification unit 224, and the gas region extraction unit 211 and the gas leak position identification unit 224 constitute a gas leak position identification device 22.
 漏洩位置画像取得部223は、ガス領域画像取得部212が取得するガス分布画像に対応するガス漏洩位置画像を取得する回路である。ガス漏洩位置画像は、図12(a)や(b)に示すように、ガス領域画像取得部212が取得するガス分布画像内の各座標に対して、ガス漏洩位置である確率をマッピングした画像である。例えば、ガス漏洩位置が1画素または狭い範囲に特定できる場合は、図12(a)のような画像となり、ガス漏洩位置がある程度の範囲に限定される場合は、図12(b)のような画像となる。より具体的には、ガス漏洩位置が存在しうる領域(以下、「ガス漏洩領域」と呼ぶ)の中心座標からの距離がrである座標に対して、ガス漏洩位置である確率pを以下の式で算出し、pをマッピングする。 The leak position image acquisition unit 223 is a circuit that acquires a gas leak position image corresponding to the gas distribution image acquired by the gas region image acquisition unit 212. As shown in FIGS. 12A and 12B, the gas leak position image is an image in which the probability of the gas leak position is mapped to each coordinate in the gas distribution image acquired by the gas region image acquisition unit 212. Is. For example, if the gas leak position can be specified in one pixel or a narrow range, the image is as shown in FIG. 12 (a), and if the gas leak position is limited to a certain range, the image is as shown in FIG. 12 (b). It becomes an image. More specifically, the probability p of the gas leak position is as follows with respect to the coordinates where the distance from the center coordinate of the region where the gas leak position can exist (hereinafter referred to as "gas leak region") is r. Calculate with the formula and map p.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、αとσは、ガス漏洩位置である確度に応じて定まる値である。 Here, α and σ are values determined according to the accuracy of the gas leak position.
 なお、pの算出は上記式に限らず、以下の式を用いてもよい。 The calculation of p is not limited to the above formula, and the following formula may be used.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 したがって、例えば、図13(a)に示す、ガス漏洩位置が既知のガス分布画像が存在する場合、図13(b)に示すガス分布画像と、図13(c)に示すガス漏洩位置画像とのペアが、教師データとして入力される。 Therefore, for example, when there is a gas distribution image with a known gas leak position shown in FIG. 13 (a), the gas distribution image shown in FIG. 13 (b) and the gas leak position image shown in FIG. 13 (c) are used. Pairs are entered as teacher data.
 機械学習部2241は、ガス領域画像取得部212から受け付けたガス分布画像と、漏洩位置画像取得部223から受け付けたガス漏洩位置画像との組み合わせに基づいて機械学習を実行し、機械学習モデルを生成する回路である。機械学習としては、例えば、畳み込みニューラルネットワーク(CNN)を用いることができる。機械学習部2241が生成する学習済みモデルは、出力層の出力がガス漏洩位置画像であるモデルである。すなわち、例えば、ガス分布画像が224×224ピクセル、16フレームの動画像である場合、入力層は224×224×16の3次元テンソルを受け付け、出力層はガス分布画像の各画素についてガス漏洩位置である確率を格納した224×224の行列を出力する。なお、ガス漏洩位置画像はこの場合に限らず、例えば、漏洩位置画像取得部223は、ガス漏洩領域の中心座標、αの値、σの値のペアを受け付けてガス漏洩位置画像を出力してもよい。機械学習部2241は、ガス分布画像を入力とし、ガス漏洩画像を正解とする学習を行って機械学習モデルを生成し、学習モデル保持部2242に出力する。 The machine learning unit 2241 executes machine learning based on the combination of the gas distribution image received from the gas region image acquisition unit 212 and the gas leak position image received from the leak position image acquisition unit 223, and generates a machine learning model. It is a circuit to do. As machine learning, for example, a convolutional neural network (CNN) can be used. The trained model generated by the machine learning unit 2241 is a model in which the output of the output layer is a gas leak position image. That is, for example, when the gas distribution image is a moving image of 224 × 224 pixels and 16 frames, the input layer accepts a 224 × 224 × 16 three-dimensional tensor, and the output layer receives the gas leak position for each pixel of the gas distribution image. Outputs a 224 × 224 matrix storing the probabilities of. The gas leak position image is not limited to this case. For example, the leak position image acquisition unit 223 accepts a pair of the center coordinate of the gas leak region, the value of α, and the value of σ and outputs the gas leak position image. May be good. The machine learning unit 2241 receives a gas distribution image as an input, performs learning with the gas leak image as the correct answer, generates a machine learning model, and outputs it to the learning model holding unit 2242.
 学習モデル保持部2242は、機械学習部2241によって生成された機械学習モデルを保持し、当該機械学習モデルを用いてガス領域抽出部211が生成したガス分布画像に対応するガス漏洩位置画像を出力する回路である。 The learning model holding unit 2242 holds the machine learning model generated by the machine learning unit 2241, and outputs a gas leakage position image corresponding to the gas distribution image generated by the gas region extraction unit 211 using the machine learning model. It is a circuit.
 変形例1では、学習モードにおいて、ガス分布画像を入力とし、ガス漏洩位置画像を正解とする学習を行って機械学習モデルを生成する。そして、運用モードでは、生成した機械学習モデルを用いて、ガス分布画像に基づいてガス漏洩位置画像を出力する。 In the first modification, in the learning mode, the gas distribution image is input and the learning is performed with the gas leak position image as the correct answer to generate a machine learning model. Then, in the operation mode, the generated machine learning model is used to output a gas leak position image based on the gas distribution image.
 以上の構成により、学習済みモデルを用いてガス分布画像からガス漏洩位置を同定する際に、ガス分布画像の各座標についてガス漏洩位置である確率をマッピングした画像が得られる。したがって、図14(a)の模式図に示すように、ガス漏洩位置は、撮像画像におけるガス漏洩領域450として特定され、空間上における円筒状(または円錐状)の漏洩被疑領域350内に存在するとして同定される。ここでは、ガス漏洩領域450は、ガス漏洩領域を含む確率が異なるガス漏洩領域431、432、433として得られたとき、それぞれが空間上の漏洩被疑領域351、352、353に対応することを示している。 With the above configuration, when identifying the gas leak position from the gas distribution image using the trained model, an image that maps the probability of the gas leak position for each coordinate of the gas distribution image can be obtained. Therefore, as shown in the schematic diagram of FIG. 14 (a), the gas leak position is specified as the gas leak region 450 in the captured image, and exists in the cylindrical (or conical) leak suspected region 350 in the space. Identified as. Here, it is shown that when the gas leak region 450 is obtained as the gas leak regions 431, 432, and 433 having different probabilities of including the gas leak region, each corresponds to the leak suspected regions 351, 352, and 353 in the space. ing.
 なお、ガス漏洩位置の同定に際し、設備の構成を示す3次元ボクセルデータが存在する場合には、これを用いてさらに範囲を限定するとしてもよい。設備300の3次元ボクセルデータが存在する場合には、図14(b)の模式図に示すように、当該3次元ボクセルデータ上に円筒状(または円錐状)の漏洩被疑領域350を重畳することにより、設備とガス漏洩位置との位置関係がより明確になる。さらに、漏洩被疑領域350内またはその近傍に設備が存在する場合には、ガス分布画像において設備に相当する位置にガスが検出されていれば当該設備位置355がガス漏洩位置である可能性が高いと判断することができ、一方、ガス分布画像において設備に相当する位置にガスが検出されてない場合には当該設備位置355によって隠蔽されている背後にガス漏洩位置が存在する可能性が高いと判断することができる。 When identifying the gas leak position, if there is 3D voxel data indicating the configuration of the equipment, the range may be further limited by using this. When the three-dimensional voxel data of the equipment 300 exists, as shown in the schematic diagram of FIG. 14 (b), the cylindrical (or conical) leak suspected region 350 is superimposed on the three-dimensional voxel data. As a result, the positional relationship between the equipment and the gas leakage position becomes clearer. Further, when the equipment is present in or near the suspected leakage area 350, if gas is detected at the position corresponding to the equipment in the gas distribution image, it is highly possible that the equipment position 355 is the gas leakage position. On the other hand, if gas is not detected at the position corresponding to the equipment in the gas distribution image, there is a high possibility that the gas leakage position exists behind the equipment hidden by the equipment position 355. You can judge.
 <小括>
 以上の構成により、画像を用いてガス検知を行うガス検知装置において、ガス領域が撮像されていれば、ガスの漏洩位置の範囲及びその確率を同定することができる。また、ガスの漏洩位置がその存在範囲及び存在確率で示されるため、教師データの不足や偏りのある教師データに対する過学習による漏洩位置の同定精度の低下を抑止し、同定精度を容易に向上させることが可能となる。具体的には、実施の形態1に対して、ガス漏洩位置に対応するガス分布画像上の画素と、同定されたガス漏洩位置との差の標準偏差は、以下のようになった。
<Summary>
With the above configuration, in the gas detection device that detects gas using an image, if the gas region is imaged, the range of the gas leak position and its probability can be identified. In addition, since the gas leakage position is indicated by its existence range and existence probability, it is possible to prevent a decrease in the identification accuracy of the leakage position due to lack of teacher data or overfitting of biased teacher data, and easily improve the identification accuracy. Is possible. Specifically, with respect to the first embodiment, the standard deviation of the difference between the pixel on the gas distribution image corresponding to the gas leak position and the identified gas leak position is as follows.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 これに対し、変形例1に対して、ガス漏洩位置に対応するガス分布画像上の画素と、同定されたガス漏洩位置画像における最も確率値が高い画素との差の標準偏差は、以下のようになった。 On the other hand, with respect to the modified example 1, the standard deviation of the difference between the pixel on the gas distribution image corresponding to the gas leak position and the pixel having the highest probability value in the identified gas leak position image is as follows. Became.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 ≪変形例2≫
 実施の形態1および変形例1では、1台のガス検知装置を用いて、学習モードにより生成した機械学習モデルを用いて運用モードでガスの漏洩位置の同定を行うとした。しかしながら、機械学習とガス漏洩位置の同定は同一のハードウェアで行う必要はなく、異なるハードウェアを用いて実行してもよい。
<< Modification 2 >>
In the first embodiment and the first modification, one gas detection device is used to identify the gas leakage position in the operation mode using the machine learning model generated in the learning mode. However, machine learning and gas leak location identification need not be performed on the same hardware and may be performed using different hardware.
 図15は、変形例2に係るガス検知システム110の機能ブロック図である。図15に示すように、ガス検知システム110は、監視対象を撮像するための画像生成部10と、画像生成部10が取得した画像に基づきガスを検知するガス検知装置27と、学習データ作成装置30と、表示部24とを有する。画像生成部10、表示部24、学習データ作成装置30は、それぞれ、ガス検知装置27に接続可能に構成されている。 FIG. 15 is a functional block diagram of the gas detection system 110 according to the second modification. As shown in FIG. 15, the gas detection system 110 includes an image generation unit 10 for capturing an image of a monitored object, a gas detection device 27 for detecting gas based on an image acquired by the image generation unit 10, and a learning data creation device. It has 30 and a display unit 24. The image generation unit 10, the display unit 24, and the learning data creation device 30 are configured to be connectable to the gas detection device 27, respectively.
 ガス検知装置27は、画像生成部10から監視対象を撮像した画像を取得し、画像に基づいてガス領域の検出を行い、表示部24を通じてユーザにガス検知を通知する装置である。ガス検知装置27は、例えば、一般的なCPUとRAMと、これらで実行されるプログラムを備えるコンピュータとして実現される。ガス検知装置27は、画像取得部201、ガス領域抽出部211、学習モデル保持部2142、判定結果出力部215を備える。学習モデル保持部2142は、ガス漏洩位置同定部234を構成する。また、ガス領域抽出部211とガス漏洩位置同定部234は、ガス漏洩位置同定装置23を構成する。学習データ作成装置30は、例えば、一般的なCPUとGPUとRAMと、これらで実行されるプログラムを備えるコンピュータとして実現される。学習データ作成装置30は、ガス領域画像取得部212、漏洩位置情報取得部213、機械学習部2141を備える。 The gas detection device 27 is a device that acquires an image of the monitored object captured from the image generation unit 10, detects the gas region based on the image, and notifies the user of the gas detection through the display unit 24. The gas detection device 27 is realized as, for example, a computer including a general CPU and RAM, and a program executed by these. The gas detection device 27 includes an image acquisition unit 201, a gas region extraction unit 211, a learning model holding unit 2142, and a determination result output unit 215. The learning model holding unit 2142 constitutes a gas leak position identification unit 234. Further, the gas region extraction unit 211 and the gas leak position identification unit 234 constitute the gas leak position identification device 23. The learning data creation device 30 is realized as, for example, a computer including a general CPU, a GPU, a RAM, and a program executed by these. The learning data creating device 30 includes a gas region image acquisition unit 212, a leak position information acquisition unit 213, and a machine learning unit 2141.
 ガス検知装置27は、実施の形態1に係るガス検知装置20の運用モード動作のみを実施する。また、学習データ作成装置30は、実施の形態1に係るガス検知装置20の学習モード動作のみを実施する。ガス検知装置27と学習データ作成装置30は、例えば、LANで接続されており、学習データ作成装置30で形成された学習済みモデルは、ガス検知装置272の学習モデル保持部2142に格納される。なお、学習済みモデルの学習モデル保持部2142への格納はネットワークによる複製に限られず、例えば、リムーバブルメディアや光学ディスク、ROM等を用いて行われてもよい。 The gas detection device 27 carries out only the operation mode operation of the gas detection device 20 according to the first embodiment. Further, the learning data creating device 30 carries out only the learning mode operation of the gas detecting device 20 according to the first embodiment. The gas detection device 27 and the learning data creation device 30 are connected by, for example, a LAN, and the learned model formed by the learning data creation device 30 is stored in the learning model holding unit 2142 of the gas detection device 272. The storage of the trained model in the training model holding unit 2142 is not limited to duplication by the network, and may be performed using, for example, a removable medium, an optical disk, a ROM, or the like.
 <小括>
 以上の構成により、画像を用いてガス検知を行うガス検知装置において、ガス領域が撮像されていれば、ガスの漏洩位置を同定することができる。また、機械学習とガスの漏洩位置の同定を別のハードウェアで実施するため、ガス検知装置が機械学習のためのリソースを有している必要がない。したがって、ガス検知装置は学習済みモデルを運用するためのリソースを有していればよく、ノート型コンピュータやスマートフォン、タブレットなどの簡易デバイスを用いて実現することができる。また、1台の学習データ作成装置30を用いて機械学習で構築した学習済みモデルを複数台のガス検知装置27で運用することが可能であるため、容易にガス検知装置27を製造することが可能となる。
<Summary>
With the above configuration, in a gas detection device that detects gas using an image, if the gas region is imaged, the gas leak position can be identified. Also, since machine learning and gas leak location identification are performed on different hardware, the gas detector does not need to have resources for machine learning. Therefore, the gas detection device only needs to have the resources for operating the trained model, and can be realized by using a simple device such as a notebook computer, a smartphone, or a tablet. Further, since it is possible to operate the trained model constructed by machine learning using one learning data creation device 30 with a plurality of gas detection devices 27, it is possible to easily manufacture the gas detection device 27. It will be possible.
 ≪実施の形態2≫
 実施の形態1および各変形例では、1台の画像生成部を用いて2次元的にガス漏洩位置を同定する場合について説明した。しかしながら、視点の異なる2つの画像生成部を用い、3次元的にガス漏洩位置を同定するとしてもよい。
<< Embodiment 2 >>
In the first embodiment and each modification, a case where the gas leak position is two-dimensionally identified by using one image generation unit has been described. However, the gas leak position may be identified three-dimensionally by using two image generation units having different viewpoints.
 実施の形態2に係るガス検知システム200は、2つのガス漏洩位置同定装置を用いて3次元的にガス漏洩位置を特定することを特徴とする。 The gas detection system 200 according to the second embodiment is characterized in that the gas leak position is three-dimensionally specified by using two gas leak position identification devices.
 図16は、実施の形態2に係るガス検知システム200の構成を示す機能ブロック図である。図16に示すように、ガス検知システム200は、監視対象を撮像するための第1の画像生成部10-1と、監視対象を撮像するための第2の画像生成部10-2と、ガス漏洩位置同定システム25と、表示部24とを有する。画像生成部10-1、10-2、表示部24は、それぞれ、ガス漏洩位置同定システム25に接続可能に構成されている。 FIG. 16 is a functional block diagram showing the configuration of the gas detection system 200 according to the second embodiment. As shown in FIG. 16, the gas detection system 200 includes a first image generation unit 10-1 for imaging a monitored object, a second image generation unit 10-2 for imaging a monitored object, and a gas. It has a leak position identification system 25 and a display unit 24. The image generation units 10-1, 10-2, and the display unit 24 are configured to be connectable to the gas leak position identification system 25, respectively.
 ガス漏洩位置同定システム25は、画像生成部10-1、10-2から監視対象を撮像した画像を取得し、画像に基づいてガス領域の検出を行い、表示部24を通じてユーザにガス検知を通知する装置である。ガス漏洩位置同定システム25は、画像取得部201-1、201-2、ガス領域抽出部211-1、211-2、学習モデル保持部2142-1、2142-2、視野情報保持部226、判定結果出力部227を備える。ガス領域抽出部211-1、学習モデル保持部2142-1を含むガス漏洩位置同定部234-1はガス漏洩位置同定装置23-1を構成する。同様に、ガス領域抽出部211-2、学習モデル保持部2142-2を含むガス漏洩位置同定部234-2はガス漏洩位置同定装置23-2を構成する。なお、図12には記載していないが、実施の形態2では変形例2と同様にガス検知システム200は学習データ作成装置30を備え、学習モデル保持部2142-1、2142-2のそれぞれは、学習データ作成装置30によって生成された学習済みモデルを保持している。ガス漏洩位置同定システム25は、例えば、一般的なCPUとRAMと、これらで実行されるプログラムを備えるコンピュータとして実現される。なお、ガス漏洩位置同定システム25のうち、ガス漏洩位置同定装置23-1とガス漏洩位置同定装置23-2のそれぞれは、他の構成と独立して単一のコンピュータとして実現されてもよい。このとき、画像取得部201-1とガス漏洩位置同定装置23-1とを単一のコンピュータで実現し、画像取得部201-2とガス漏洩位置同定装置23-2とを他のコンピュータで実現し、残りの視野情報保持部226と判定結果出力部227をさらに他のコンピュータで実現してもよい。 The gas leak position identification system 25 acquires an image of the monitored object captured from the image generation units 10-1 and 10-2, detects the gas region based on the image, and notifies the user of the gas detection through the display unit 24. It is a device to do. The gas leak position identification system 25 includes image acquisition units 211-1 and 201-2, gas region extraction units 211-1 and 211-2, learning model holding units 2142-1 and 2142-2, and visual field information holding units 226. The result output unit 227 is provided. The gas leak position identification unit 234-1 including the gas region extraction unit 211-1 and the learning model holding unit 2142-1 constitutes the gas leak position identification device 23-1. Similarly, the gas leak position identification unit 234-2 including the gas region extraction unit 211-2 and the learning model holding unit 2142-2 constitutes the gas leak position identification device 23-2. Although not shown in FIG. 12, in the second embodiment, the gas detection system 200 includes the learning data creation device 30 as in the modified example 2, and the learning model holding units 2142-1 and 2142-2 are each provided. , Holds the trained model generated by the training data creation device 30. The gas leak position identification system 25 is realized as, for example, a computer including a general CPU and RAM, and a program executed by these. Of the gas leak position identification system 25, each of the gas leak position identification device 23-1 and the gas leak position identification device 23-2 may be realized as a single computer independently of other configurations. At this time, the image acquisition unit 211-1 and the gas leak position identification device 23-1 are realized by a single computer, and the image acquisition unit 201-2 and the gas leak position identification device 23-2 are realized by another computer. Then, the remaining field information holding unit 226 and the determination result output unit 227 may be realized by another computer.
 画像取得部201-1、ガス領域抽出部211-1、学習モデル保持部2142-1は、実施の形態1および変形例1と同様、画像生成部10-1が撮像した画像に基づいて、ガス漏洩位置を画像生成部10-1が撮像した画像の座標値として同定する。同様に、画像取得部201-2、ガス領域抽出部211-2、学習モデル保持部2142-2は、画像生成部10-2が撮像した画像に基づいて、ガス漏洩位置を画像生成部10-2が撮像した画像の座標値として同定する。 The image acquisition unit 211-1, the gas region extraction unit 211-1, and the learning model holding unit 2142-1 are based on the image captured by the image generation unit 10-1 as in the first embodiment and the first modification. The leak position is identified as the coordinate value of the image captured by the image generation unit 10-1. Similarly, the image acquisition unit 201-2, the gas region extraction unit 211-2, and the learning model holding unit 2142-2 determine the gas leak position based on the image captured by the image generation unit 10-2 in the image generation unit 10-. It is identified as the coordinate value of the image captured by 2.
 視野情報保持部226は、監視対象である設備の3次元ボクセルデータと、画像生成部10-1、10-2それぞれの設置位置座標および視野方位情報を保持している。なお、さらに、視野情報保持部226は、監視対象である設備の3次元ボクセルデータを有していてもよい。 The field of view information holding unit 226 holds the three-dimensional voxel data of the equipment to be monitored, and the installation position coordinates and the field of view orientation information of each of the image generation units 10-1 and 10-2. Further, the visual field information holding unit 226 may have three-dimensional voxel data of the equipment to be monitored.
 判定結果出力部227は、視野情報保持部226が保持している画像生成部10-1、10-2それぞれの設置位置座標および視野方位情報に基づいて、学習モデル保持部2142-1と学習モデル保持部2142-2のそれぞれが同定したガス漏洩位置を画像生成部10-1、10-2それぞれの設置位置座標からの相対位置として算出する。具体的には、図17(a)の模式図を用いて説明する。例えば、学習モデル保持部2142-1により、画像生成部10-1から取得した画像に対してガス漏洩位置436を同定したとすると、ガス漏洩位置は被疑漏洩領域346内に存在すると推定できる。同様に、学習モデル保持部2142-2により、画像生成部10-2が取得した画像に対してガス漏洩位置437を同定したとすると、ガス漏洩位置は被疑漏洩領域347内に存在すると推定できる。したがって、ガス漏洩位置は、領域346と領域347の双方に含まれる領域330に存在すると推定できる。なお、図17(b)の模式図に示すように、領域346と領域347の双方に含まれる領域が存在しない場合は、領域346と領域347とが最近接する点付近の領域311に存在すると推定してもよい。 The determination result output unit 227 is a learning model holding unit 2142-1 and a learning model based on the installation position coordinates and the viewing direction orientation information of each of the image generation units 10-1 and 10-2 held by the field information holding unit 226. The gas leakage position identified by each of the holding units 2142-2 is calculated as a relative position from the installation position coordinates of the image generation units 10-1 and 10-2. Specifically, it will be described with reference to the schematic diagram of FIG. 17 (a). For example, if the learning model holding unit 2142-1 identifies the gas leak position 436 for the image acquired from the image generation unit 10-1, it can be estimated that the gas leak position exists in the suspected leak region 346. Similarly, if the learning model holding unit 2142-2 identifies the gas leak position 437 for the image acquired by the image generation unit 10-2, it can be estimated that the gas leak position exists in the suspected leak region 347. Therefore, it can be estimated that the gas leak position exists in the region 330 included in both the region 346 and the region 347. As shown in the schematic diagram of FIG. 17B, when the region included in both the region 346 and the region 347 does not exist, it is presumed that the region 346 and the region 347 exist in the region 311 near the point where the region 346 and the region 347 are in close contact with each other. You may.
 なお、ガス漏洩位置の同定に際し、設備の構成を示す3次元ボクセルデータが存在する場合には、これを用いてさらに範囲を限定するとしてもよい。設備300の3次元ボクセルデータが存在する場合には3次元ボクセルデータ上に2つの漏洩被疑領域を重畳することにより、設備と2つの漏洩被疑領域との位置関係がより明確となり、推定したガス漏洩位置と設備との位置関係がより明確となる。さらに、実施の形態1で説明したように、設備と漏洩位置といずれが画像生成部10に近いかはガス漏洩位置においてガスが検知されているか否かで判定できるため、推定したガス漏洩位置と、ガス漏洩位置及び設備と画像生成部の位置とが矛盾する場合には、少なくとも一方のガス漏洩位置同定装置によるガス漏洩位置同定の正確性が低いと判断することができる。 When identifying the gas leak position, if there is 3D voxel data indicating the configuration of the equipment, the range may be further limited by using this. When the 3D voxel data of the equipment 300 exists, by superimposing the two suspected leak areas on the 3D voxel data, the positional relationship between the equipment and the two suspected leak areas becomes clearer, and the estimated gas leakage occurs. The positional relationship between the position and the equipment becomes clearer. Further, as described in the first embodiment, which of the equipment and the leak position is closer to the image generation unit 10 can be determined by whether or not gas is detected at the gas leak position, so that the estimated gas leak position is used. If the gas leak position and the position of the equipment and the image generation unit are inconsistent, it can be determined that the accuracy of gas leak position identification by at least one gas leak position identification device is low.
 <小括>
 以上の構成により、画像を用いてガス検知を行うガス検知システムにおいて、ガス領域が撮像されていれば、ガスの漏洩位置を同定することができる。また、2つの画像取得部において同時に1つのガス漏洩を撮像できる場合には、空間的にガス漏洩位置を特定することが可能になる。
<Summary>
With the above configuration, in a gas detection system that detects gas using an image, if the gas region is imaged, the gas leak position can be identified. Further, when one gas leak can be imaged at the same time by two image acquisition units, it is possible to spatially specify the gas leak position.
 ≪変形例3≫
 実施の形態2では、実施の形態1と同様に各ガス漏洩位置同定装置はガス漏洩位置を座標値として出力するとしたが、変形例1と同様に、各ガス漏洩位置同定装置はガス漏洩位置である確率を出力するとしてもよい。
<< Modification 3 >>
In the second embodiment, as in the first embodiment, each gas leak position identification device outputs the gas leak position as a coordinate value, but as in the first modification, each gas leak position identification device is at the gas leak position. A certain probability may be output.
 ガス漏洩位置同定装置の動作は変形例1と同様であるので、最終的な判定結果出力について、以下説明する。図18(a)は、判定結果出力処理の模式図である。例えば、学習モデル保持部2142-1により、画像生成部10-1から取得した画像に対してガス漏洩位置438を同定したとすると、ガス漏洩位置は被疑漏洩領域348内に存在すると推定できる。同様に、学習モデル保持部2142-2により、画像生成部10-2が取得した画像に対してガス漏洩位置439を同定したとすると、ガス漏洩位置は被疑漏洩領域349内に存在すると推定できる。したがって、ガス漏洩位置は、領域348と領域349の双方に含まれる領域332に存在すると推定できる。 Since the operation of the gas leak position identification device is the same as that of the modified example 1, the final judgment result output will be described below. FIG. 18A is a schematic diagram of the determination result output process. For example, if the learning model holding unit 2142-1 identifies the gas leak position 438 with respect to the image acquired from the image generation unit 10-1, it can be estimated that the gas leak position exists in the suspected leak region 348. Similarly, if the learning model holding unit 2142-2 identifies the gas leakage position 439 for the image acquired by the image generation unit 10-2, it can be estimated that the gas leakage position exists in the suspected leakage area 349. Therefore, it can be estimated that the gas leak position exists in the region 332 included in both the region 348 and the region 349.
 なお、ガス漏洩位置の同定に際し、設備の構成を示す3次元ボクセルデータが存在する場合には、これを用いてさらに範囲を限定するとしてもよい。設備300の3次元ボクセルデータが存在する場合には、図18(b)の模式図に示すように、3次元ボクセルデータ上に2つの漏洩被疑領域を重畳することにより、設備と2つの漏洩被疑領域との位置関係がより明確となり、推定したガス漏洩位置と設備との位置関係がより明確となる。さらに、実施の形態1で説明したように、設備と漏洩位置といずれが画像生成部10に近いかはガス漏洩位置においてガスが検知されているか否かで判定できるため、推定したガス漏洩位置と、ガス漏洩位置及び設備と画像生成部の位置とが矛盾する場合には、少なくとも一方のガス漏洩位置同定装置によるガス漏洩位置同定の正確性が低いと判断することができる。 When identifying the gas leak position, if there is 3D voxel data indicating the configuration of the equipment, the range may be further limited by using this. When the 3D voxel data of the equipment 300 exists, as shown in the schematic diagram of FIG. 18B, the equipment and the two suspected leaks are suspected by superimposing the two suspected leak areas on the 3D voxel data. The positional relationship with the area becomes clearer, and the positional relationship between the estimated gas leakage position and the equipment becomes clearer. Further, as described in the first embodiment, which of the equipment and the leak position is closer to the image generation unit 10 can be determined by whether or not gas is detected at the gas leak position, so that the estimated gas leak position is used. If the gas leak position and the position of the equipment and the image generation unit are inconsistent, it can be determined that the accuracy of gas leak position identification by at least one gas leak position identification device is low.
 <小括>
 以上の構成により、画像を用いてガス検知を行うガス検知システムにおいて、ガス領域が撮像されていれば、ガスの漏洩位置を同定することができる。また、2つの画像取得部において同時に1つのガス漏洩を撮像できる場合には、空間的にガス漏洩位置を特定することが可能になる。さらに、ガスの漏洩位置がその存在範囲及び存在確率で示されるため、教師データの不足や偏りのある教師データに対する過学習による漏洩位置の同定精度の低下を抑止し、同定精度を容易に向上させることが可能となる。
<Summary>
With the above configuration, in a gas detection system that detects gas using an image, if the gas region is imaged, the gas leak position can be identified. Further, when one gas leak can be imaged at the same time by two image acquisition units, it is possible to spatially specify the gas leak position. Furthermore, since the gas leakage position is indicated by its existence range and existence probability, it is possible to prevent a decrease in the identification accuracy of the leakage position due to lack of teacher data or overfitting of biased teacher data, and easily improve the identification accuracy. Is possible.
 ≪実施の形態に係るその他の変形例≫
 (1)変形例1および変形例3では、ガス漏洩位置を示す情報として、ガス分布画像内の各座標に対してガス漏洩位置である確率をマッピングしたガス漏洩位置画像を用いるとした。しかしながら、変形例1および3において、ガス漏洩位置を示す情報として、ガス分布画像内においてガス漏洩位置に対応する座標に対してのみデータを含む画像を用いることで、実質的に、ガス漏洩位置座標を用いてもよい。
<< Other variants of the embodiment >>
(1) In the modified example 1 and the modified example 3, the gas leak position image in which the probability of the gas leak position is mapped to each coordinate in the gas distribution image is used as the information indicating the gas leak position. However, in the first and third modifications, by using the image including the data only for the coordinates corresponding to the gas leak position in the gas distribution image as the information indicating the gas leak position, the gas leak position coordinates are substantially used. May be used.
 (2)変形例1および変形例3では、教師データとしてのガス漏洩位置画像として、基準となる1の座標から遠ざかるほどガス漏洩位置である確率が低くなるものを使用した。しかしながら、ガス漏洩位置画像としてはこれに限られず、任意の分布を用いてもよい。また、2以上の漏洩源から同時に漏洩したガスを示すガス分布画像に対し、漏洩源に対応する各座標において確率が最大となる画像を用いてもよい。このようにすることで、近接した複数の漏洩源から同時にガス漏洩が発生し1つのガス雲を形成している場合において、出力である確率分布に基づいて、漏洩源が2以上である可能性が存在することを示すことができる。 (2) In the modified example 1 and the modified example 3, the gas leak position image as the teacher data is used, in which the probability of the gas leak position decreases as the distance from the reference coordinate 1 increases. However, the gas leak position image is not limited to this, and any distribution may be used. Further, for a gas distribution image showing gas leaked from two or more leak sources at the same time, an image having the maximum probability at each coordinate corresponding to the leak source may be used. By doing so, when gas leaks from a plurality of adjacent leak sources at the same time to form one gas cloud, there is a possibility that the number of leak sources is 2 or more based on the probability distribution which is the output. Can be shown to exist.
 (3)実施の形態2および変形例3では、変形例2と同様に機械学習モデル生成装置で形成した学習済みモデルをガス漏洩位置同定装置が用いるとしたが、実施の形態1及び変形例1と同様に、機械学習と運用を同一の装置を用いて行ってもよい。また、逆に、変形例1において変形例2と同様に、機械学習と運用を個別の装置を用いて行ってもよい。 (3) In the second embodiment and the third modification, the gas leak position identification device uses the trained model formed by the machine learning model generation device as in the second modification, but the first embodiment and the first modification 1 are used. Similarly, machine learning and operation may be performed using the same device. On the contrary, in the first modification, the machine learning and the operation may be performed by using individual devices as in the second modification.
 (4)各実施の形態及び変形例では、撮像画像は波長3.2~3.4μmの赤外線画像であるとしたがこれに限られず、検知すべきガスの存在を確認可能なものであれば他の波長域の赤外画像、可視画像、紫外画像など任意の画像を用いてもよい。また、ガス領域の検知方法は上述のものに限られず、ガス領域を検知可能な任意の処理であってよい。 (4) In each embodiment and modification, the captured image is an infrared image having a wavelength of 3.2 to 3.4 μm, but the image is not limited to this, as long as the presence of gas to be detected can be confirmed. Any image such as an infrared image, a visible image, and an ultraviolet image in another wavelength range may be used. Further, the method for detecting the gas region is not limited to the above-mentioned one, and may be any processing capable of detecting the gas region.
 (5)なお、本発明を上記実施の形態に基づいて説明してきたが、本発明は、上記の実施の形態に限定されず、以下のような場合も本発明に含まれる。 (5) Although the present invention has been described based on the above embodiment, the present invention is not limited to the above embodiment, and the following cases are also included in the present invention.
 例えば、本発明において、ガス漏出位置同定装置は、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)をプロセッサとした装置であってもよい。 For example, in the present invention, the gas leakage position identification device may be a device using an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit) as a processor.
 また、上記の各装置を構成する構成要素の一部又は全部は、1つのシステムLSI(Large Scale Integration(大規模集積回路))から構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。なお、LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。上記RAMには、上記各装置と同様の動作を達成するコンピュータプログラムが記憶されている。上記マイクロプロセッサが、上記コンピュータプログラムにしたがって動作することにより、システムLSIは、その機能を達成する。例えば、本発明のユーザ補助方法がLSIのプログラムとして格納されており、このLSIがコンピュータ内に挿入され、所定のプログラムを実施する場合も本発明に含まれる。 Further, some or all of the components constituting each of the above devices may be composed of one system LSI (Large Scale Integration). A system LSI is a super-multifunctional LSI manufactured by integrating a plurality of components on one chip, and specifically, is a computer system including a microprocessor, ROM, RAM, and the like. .. These may be individually integrated into one chip, or may be integrated into one chip so as to include a part or all of them. The LSI may be referred to as an IC, a system LSI, a super LSI, or an ultra LSI depending on the degree of integration. A computer program that achieves the same operation as each of the above devices is stored in the RAM. When the microprocessor operates according to the computer program, the system LSI achieves its function. For example, the present invention also includes a case where the accessibility method of the present invention is stored as an LSI program, and the LSI is inserted into a computer to execute a predetermined program.
 なお、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGAや、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサー(Reconfigurable Processor)を利用してもよい。 The method of making an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. After manufacturing the LSI, an FPGA that can be programmed or a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。 Furthermore, if an integrated circuit technology that replaces an LSI appears due to advances in semiconductor technology or another technology derived from it, it is naturally possible to integrate functional blocks using that technology.
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。 In addition, the division of functional blocks in the block diagram is an example, and multiple functional blocks can be realized as one functional block, one functional block can be divided into multiple, and some functions can be transferred to other functional blocks. You may. Further, the functions of a plurality of functional blocks having similar functions may be processed by a single hardware or software in parallel or in a time division manner.
 また、上記のステップが実行される順序は、本発明を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。 Further, the order in which the above steps are executed is for exemplifying in order to specifically explain the present invention, and may be an order other than the above. Further, a part of the above steps may be executed simultaneously with other steps (parallel).
 また、各実施の形態に係るガス漏洩位置同定装置、及びその変形例の機能のうち少なくとも一部を組み合わせてもよい。更に上記で用いた数字は、全て本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。 Further, at least a part of the functions of the gas leak position identification device according to each embodiment and the modification thereof may be combined. Further, the numbers used above are all exemplified for the purpose of specifically explaining the present invention, and the present invention is not limited to the exemplified numbers.
 さらに、本実施の形態に対して当業者が思いつく範囲内の変更を施した各種変形例も本発明に含まれる。 Further, the present invention also includes various modifications in which modifications within the range that can be conceived by those skilled in the art are made to the present embodiment.
 ≪まとめ≫
 (1)本開示の一態様に係るガス漏洩位置同定装置は、空間中に漏洩したガス領域の像が画像内に含まれるガス分布画像を入力として受け付ける画像入力部と、空気中に漏洩したガスの像が画像内に含まれる教師用ガス分布画像と、前記教師用ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置との組み合わせを教師データとして機械学習された推測モデルを用いて、前記画像入力部が受け付けた前記ガス分布画像のガス領域の漏洩源の位置を示すガス漏洩位置を同定するガス漏洩位置同定部とを備える。
≪Summary≫
(1) The gas leak position identification device according to one aspect of the present disclosure has an image input unit that accepts a gas distribution image in which an image of a gas region leaked in space is included in the image as an input, and a gas leaked into the air. Machine-learned estimation using the combination of the teacher gas distribution image in which the image of is included in the image and the gas leak position indicating the position of the gas leak source in the gas region shown in the teacher gas distribution image as teacher data. Using a model, the gas leak position identification unit for identifying the gas leak position indicating the position of the leak source in the gas region of the gas distribution image received by the image input unit is provided.
 また、本開示の一態様に係るガス漏洩同定方法は、空間中に漏洩したガス領域の像が画像内に含まれるガス分布画像を入力として受け付け、空気中に漏洩したガス領域の像が画像内に含まれる教師用ガス分布画像と、前記教師用ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置との組み合わせを教師データとして機械学習された推測モデルを用いて、受け付けた前記ガス分布画像のガス領域の漏洩源の位置を示すガス漏洩位置を同定する。 Further, in the gas leak identification method according to one aspect of the present disclosure, an image of a gas region leaked into space is received as an input, and an image of a gas region leaked into air is included in the image. Using a machine-learned estimation model using the combination of the teacher gas distribution image included in the teacher gas distribution image and the gas leak position indicating the position of the gas leak source in the gas region shown in the teacher gas distribution image as teacher data, The gas leak position indicating the position of the leak source in the gas region of the received gas distribution image is identified.
 また、本開示の一態様に係るプログラムは、コンピュータにガス漏洩位置同定処理を行わせるプログラムであって、前記ガス漏洩位置同定処理は、空間中に漏洩したガス領域の像が画像内に含まれるガス分布画像を入力として受け付け、空気中に漏洩したガスの像が画像内に含まれる教師用ガス分布画像と、前記教師用ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置との組み合わせを教師データとして機械学習された推測モデルを用いて、受け付けた前記ガス分布画像のガス領域の漏洩源の位置を示すガス漏洩位置を同定する。 Further, the program according to one aspect of the present disclosure is a program for causing a computer to perform a gas leak position identification process, and the gas leak position identification process includes an image of a gas region leaked in space in an image. A gas that accepts a gas distribution image as an input and shows the position of the gas leakage source in the gas region shown in the teacher gas distribution image in which the image of the gas leaked into the air is included in the image and the gas distribution image. Using a machine-learned estimation model using the combination with the leak position as teacher data, the gas leak position indicating the position of the leak source in the gas region of the received gas distribution image is identified.
 本開示の一態様に係るガス漏洩位置同定装置、ガス漏洩位置同定方法、プログラムによれば、ガス分布画像の特徴に基づいてガス漏洩位置を同定できる推測モデルに基づいてガス漏洩位置を同定する。したがって、教師データを適切に設計することにより、ガス漏洩の状態に関わらず、ガス漏洩位置を同定することができる。 According to the gas leak position identification device, the gas leak position identification method, and the program according to one aspect of the present disclosure, the gas leak position is identified based on an estimation model that can identify the gas leak position based on the characteristics of the gas distribution image. Therefore, by properly designing the teacher data, the gas leak position can be identified regardless of the gas leak state.
 (2)本開示の一態様に係るガス漏洩装置同定装置は、前記画像入力部に入力される前記ガス分布画像は、ガス領域の一部が遮蔽されたガス分布画像を含み、前記教師用ガス分布画像は、ガス領域の一部が遮蔽されたガス分布画像を含む、としてもよい。 (2) In the gas leak device identification device according to one aspect of the present disclosure, the gas distribution image input to the image input unit includes a gas distribution image in which a part of the gas region is shielded, and the teacher gas. The distribution image may include a gas distribution image in which a part of the gas region is shielded.
 上記構成により、ガス領域の一部が障害物に遮蔽された状態のガス分布画像に対しても、ガス漏洩位置を同定することができる。 With the above configuration, it is possible to identify the gas leak position even for a gas distribution image in which a part of the gas region is shielded by an obstacle.
 (3)本開示の一態様に係るガス漏洩装置同定装置は、前記画像入力部が受け付けるガス分布画像と、前記教師データに含まれる教師用ガス分布画像とは、いずれも複数のフレームを含む動画像であり、前記推測モデルは、ガス分布画像のフレーム間のガス領域の変化を特徴量の1つとして形成され、前記ガス漏洩位置同定部は、ガス分布画像のフレーム間のガス領域の変化を特徴量の1つとして用いてガス漏洩位置を同定する、としてもよい。 (3) In the gas leak device identification device according to one aspect of the present disclosure, the gas distribution image received by the image input unit and the teacher gas distribution image included in the teacher data are both moving images including a plurality of frames. It is an image, and the estimation model is formed with a change in the gas region between frames of the gas distribution image as one of the feature quantities, and the gas leak position identification unit changes the gas region between the frames of the gas distribution image. The gas leak position may be identified by using it as one of the feature quantities.
 上記構成により、ガス分布画像のガス領域の特徴量の時系列変化をさらに特徴量として用いることができるため、推測モデルの出力がより精度の高いものとなる。 With the above configuration, the time-series change of the feature amount in the gas region of the gas distribution image can be further used as the feature amount, so that the output of the guess model becomes more accurate.
 (4)本開示の一態様に係るガス漏洩装置同定装置は、前記推測モデルは、教師データにおけるガス漏洩位置として教師用ガス分布画像内の座標値を用い、前記ガス漏洩位置同定部は、ガス漏洩位置として、前記画像入力部が受け付けたガス分布画像における座標値を出力する、としてもよい。 (4) In the gas leak device identification device according to one aspect of the present disclosure, the estimation model uses the coordinate values in the teacher gas distribution image as the gas leak position in the teacher data, and the gas leak position identification unit uses gas. As the leak position, the coordinate value in the gas distribution image received by the image input unit may be output.
 上記構成により、推測モデルの出力が座標値であるため演算量の削減を行うことができるとともに、ガス漏洩位置の出力処理が単純となる。 With the above configuration, since the output of the guess model is a coordinate value, the amount of calculation can be reduced and the output process of the gas leak position becomes simple.
 (5)本開示の一態様に係るガス漏洩装置同定装置は、前記推測モデルは、教師データにおけるガス漏洩位置として、教師用ガス分布画像の各画素がガスの漏洩源を示す確率分布を用い、前記ガス漏洩位置同定部は、ガス漏洩位置として、前記画像入力部が受け付けたガス分布画像の各画素がガスの漏洩源である確率を示す確率分布を出力する、としてもよい。 (5) In the gas leak device identification device according to one aspect of the present disclosure, the estimation model uses a probability distribution in which each pixel of the teacher gas distribution image indicates a gas leak source as a gas leak position in the teacher data. The gas leak position identification unit may output a probability distribution indicating the probability that each pixel of the gas distribution image received by the image input unit is a gas leak source as the gas leak position.
 上記構成により、ガス漏洩位置が示す空間位置と実際の漏洩源とのずれを小さくすることができるとともに、教師用データに偏りや不足がある場合にも過学習による影響を抑止することができる。 With the above configuration, the deviation between the spatial position indicated by the gas leak position and the actual leak source can be reduced, and the influence of overfitting can be suppressed even when the teacher data is biased or insufficient.
 (6)本開示の一態様に係るガス漏洩装置同定システムは、第1の視点からガス設備を撮像し、得られた画像からガス分布画像を生成する第1の画像取得部と、前記第1の視点と異なる第2の視点から前記ガス設備を撮像し、得られた画像からガス分布画像を生成する第2の画像取得部と、本開示の一態様に係るガス漏洩位置同定装置である、第1ガス漏洩位置同定装置と、第2ガス漏洩位置同定装置とを備え、前記第1の画像取得部と前記第2の画像取得部とは、共通の空間領域をそれぞれの撮像範囲に含むよう配置される、としてもよい。 (6) The gas leak device identification system according to one aspect of the present disclosure includes a first image acquisition unit that images a gas facility from a first viewpoint and generates a gas distribution image from the obtained image, and the first image acquisition unit. A second image acquisition unit that images the gas equipment from a second viewpoint different from the viewpoint of the above and generates a gas distribution image from the obtained image, and a gas leak position identification device according to one aspect of the present disclosure. A first gas leak position identification device and a second gas leak position identification device are provided, and the first image acquisition unit and the second image acquisition unit include a common spatial region in their respective imaging ranges. It may be arranged.
 上記構成により、2つの異なる視点から共通の空間領域を監視することができ、共通の空間領域内においてガス漏洩が発生した場合に、異なる視点のそれぞれから漏洩源の位置を同定することができるため、漏洩源の位置を空間的に狭い範囲内に限定することができる。 With the above configuration, it is possible to monitor a common spatial region from two different viewpoints, and when a gas leak occurs in the common spatial region, the position of the leak source can be identified from each of the different viewpoints. , The location of the leak source can be limited to a narrow spatial range.
 (7)本開示の一態様に係るガス漏洩装置同定システムは、3次元漏洩位置同定部をさらに備え、前記第1ガス漏洩位置同定装置は、前記第1の画像取得部からガス分布画像を取得して対応するガス漏洩位置を同定し、前記第2ガス漏洩位置同定装置は、前記第2の画像取得部からガス分布画像を取得して対応するガス漏洩位置を同定し、前記3次元漏洩位置同定部は、前記第1の画像取得部の撮像範囲に基づいて前記第1ガス漏洩位置同定装置が同定したガス漏洩位置が示す第1の空間領域を特定し、前記第2の画像取得部の撮像範囲に基づいて前記第2ガス漏洩位置同定装置が同定したガス漏洩位置が示す第2の空間領域を特定し、前記第1の空間領域と前記第2の空間領域とのいずれにも含まれる空間領域を漏洩源として同定する、としてもよい。 (7) The gas leak device identification system according to one aspect of the present disclosure further includes a three-dimensional leak position identification unit, and the first gas leak position identification device acquires a gas distribution image from the first image acquisition unit. The corresponding gas leakage position is identified, and the second gas leakage position identification device acquires a gas distribution image from the second image acquisition unit to identify the corresponding gas leakage position, and the three-dimensional leakage position. The identification unit identifies the first spatial region indicated by the gas leakage position identified by the first gas leakage position identification device based on the imaging range of the first image acquisition unit, and the identification unit of the second image acquisition unit. The second spatial region indicated by the gas leak position identified by the second gas leak position identification device is specified based on the imaging range, and is included in both the first spatial region and the second spatial region. The spatial region may be identified as the leak source.
 上記構成により、2つの異なる視点から共通の空間領域を監視することができ、共通の空間領域内においてガス漏洩が発生した場合に、3次元的に漏洩源の位置を同定することができる。 With the above configuration, it is possible to monitor a common space area from two different viewpoints, and when a gas leak occurs in the common space area, the position of the leak source can be identified three-dimensionally.
 (8)本開示の一態様に係るガス漏洩装置同定システムは、第1の視点からガスが漏洩する空間を撮像し、得られた画像からガス分布画像を生成する第1の画像取得部と、前記第1の視点と異なる第2の視点から前記空間を撮像し、得られた画像からガス分布画像を生成する第2の画像取得部と、前記第1の画像取得部から前記ガス分布画像を取得して対応するガス漏洩位置を同定する第1ガス漏洩位置同定部と、前記第2の画像取得部から前記ガス分布画像を取得して対応するガス漏洩位置を同定する第2ガス漏洩位置同定部と、前記第1の画像取得部の撮像範囲に基づいて前記第1ガス漏洩位置同定装置が同定したガス漏洩位置が示す第1の空間領域を特定し、前記第2の画像取得部の撮像範囲に基づいて前記第2ガス漏洩位置同定装置が同定したガス漏洩位置が示す第2の空間領域を特定し、前記第1の空間領域と前記第2の空間領域とのいずれにも含まれる空間領域を前記ガスの漏洩源として同定する3次元漏洩位置同定部とを備える。 (8) The gas leak device identification system according to one aspect of the present disclosure includes a first image acquisition unit that captures a space in which gas leaks from a first viewpoint and generates a gas distribution image from the obtained image. A second image acquisition unit that captures the space from a second viewpoint different from the first viewpoint and generates a gas distribution image from the obtained image, and the gas distribution image from the first image acquisition unit. A first gas leakage position identification unit that acquires and identifies the corresponding gas leakage position, and a second gas leakage position identification that acquires the gas distribution image from the second image acquisition unit and identifies the corresponding gas leakage position. Based on the imaging range of the unit and the first image acquisition unit, the first spatial region indicated by the gas leakage position identified by the first gas leakage position identification device is specified, and the second image acquisition unit is imaged. The second space region indicated by the gas leak position identified by the second gas leak position identification device is specified based on the range, and the space included in both the first space region and the second space region. It is provided with a three-dimensional leakage position identification unit that identifies the region as the leakage source of the gas.
 本開示の一態様に係るガス漏洩装置同定システムによれば、2つの異なる視点から共通の空間領域を監視することができ、共通の空間領域内においてガス漏洩が発生した場合に、異なる視点のそれぞれから漏洩源の位置を同定することができるため、漏洩源の位置を空間的に狭い範囲内に限定することができる。 According to the gas leak device identification system according to one aspect of the present disclosure, it is possible to monitor a common space area from two different viewpoints, and when a gas leak occurs in the common space area, each of the different viewpoints. Since the position of the leak source can be identified from, the position of the leak source can be limited to a narrow spatial range.
 (9)本開示の一態様に係るガス漏洩装置同定システムは、空間中の設備の3次元構造情報と、前記3次元構造情報と前記第1の視点および前記第2の視点との関係を保持する設備情報保持部をさらに備え、前記3次元漏洩位置同定部は、ガス漏洩位置と設備との相対位置関係をさらに同定する、としてもよい。 (9) The gas leak device identification system according to one aspect of the present disclosure maintains the relationship between the three-dimensional structural information of the equipment in the space, the three-dimensional structural information, the first viewpoint, and the second viewpoint. The equipment information holding unit may be further provided, and the three-dimensional leakage position identification unit may further identify the relative positional relationship between the gas leakage position and the equipment.
 上記構成により、どの設備がガスの漏洩源であるかを同定することができるため、速やかに設備に対する対処を行うことが可能となる。 With the above configuration, it is possible to identify which equipment is the source of the gas leak, so it is possible to promptly deal with the equipment.
 (10)本開示の一態様に係るガス漏洩位置推測モデル生成装置は、空間中に漏洩したガス領域の像が画像内に含まれるガス分布画像を入力として受け付ける画像入力部と、前記ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置を入力として受け付けるガス漏洩位置入力部と、前記ガス分布画像と、当該ガス分布画像に対応するガス漏洩位置との組み合わせを教師データとして機械学習し、ガス分布画像を入力としてガス領域の漏洩源を示すガス漏洩位置を出力する推測モデルを生成する機械学習部とを備える。 (10) The gas leak position estimation model generation device according to one aspect of the present disclosure has an image input unit that accepts a gas distribution image in which an image of a gas region leaked in space is included in the image as an input, and the gas distribution image. Teacher data on the combination of the gas leak position input unit that accepts the gas leak position indicating the position of the gas leak source in the gas region shown in 1 as an input, the gas distribution image, and the gas leak position corresponding to the gas distribution image. It is provided with a machine learning unit that performs machine learning as an input and generates an estimation model that outputs a gas leak position indicating a leak source in a gas region by inputting a gas distribution image.
 また、本開示の一態様に係るガス漏洩位置推測モデル生成方法は、空間中に漏洩したガス領域の像が画像内に含まれるガス分布画像を入力として受け付け、前記ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置を入力として受け付け、前記ガス分布画像と、当該ガス分布画像に対応するガス漏洩位置との組み合わせを教師データとして機械学習し、ガス分布画像を入力としてガス領域の漏洩源を示すガス漏洩位置を出力する推測モデルを生成する。 Further, the gas leak position estimation model generation method according to one aspect of the present disclosure accepts a gas distribution image in which an image of a gas region leaked in space is included in the image as an input, and the gas region shown in the gas distribution image. Accepts the gas leak position indicating the position of the gas leak source as input, machine-learns the combination of the gas distribution image and the gas leak position corresponding to the gas distribution image as teacher data, and inputs the gas distribution image. Generate an inference model that outputs the gas leak location indicating the leak source in the gas region.
 また、本開示の一態様に係るプログラムは、コンピュータにガス漏洩位置推測モデル生成処理を行わせるプログラムであって、前記ガス漏洩位置推測モデル生成処理は、空間中に漏洩したガス領域の像が画像内に含まれるガス分布画像を入力として受け付け、前記ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置を入力として受け付け、前記ガス分布画像と、当該ガス分布画像に対応するガス漏洩位置との組み合わせを教師データとして機械学習し、ガス分布画像を入力としてガス領域の漏洩源を示すガス漏洩位置を出力する推測モデルを生成する。 Further, the program according to one aspect of the present disclosure is a program for causing a computer to perform a gas leak position estimation model generation process, and in the gas leak position estimation model generation process, an image of a gas region leaked into the space is an image. Accepts the gas distribution image contained in the gas as an input, accepts the gas leak position indicating the position of the gas leak source in the gas region shown in the gas distribution image as an input, and corresponds to the gas distribution image and the gas distribution image. Machine learning is performed using the combination with the gas leak position as teacher data, and a guess model that outputs the gas leak position indicating the leak source in the gas region is generated by inputting the gas distribution image.
 本開示の一態様に係るガス漏洩位置推測モデル生成装置、ガス漏洩位置推測モデル生成方法、プログラムによれば、ガス分布画像の特徴に基づいてガス漏洩位置を同定できる推測モデルを形成する。したがって、教師データを適切に設計することにより、ガス漏洩の状態に関わらず、ガス漏洩位置を同定できる推測モデルを生成することができる。 According to the gas leak position estimation model generation device, the gas leakage position estimation model generation method, and the program according to one aspect of the present disclosure, an estimation model capable of identifying the gas leakage position based on the characteristics of the gas distribution image is formed. Therefore, by properly designing the teacher data, it is possible to generate a guess model that can identify the gas leak position regardless of the gas leak state.
 (11)本開示の一態様に係るガス漏洩位置同定装置は、空間中に漏洩したガス領域の像が画像内に含まれるガス分布画像を入力として受け付ける画像入力部と、空間中に漏洩したガス領域の像が画像内に含まれる教師用ガス分布画像と、前記教師用ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置との組み合わせを教師データとして機械学習を行い、ガス分布画像を入力としてガス領域の漏洩源を示すガス漏洩位置を出力する推測モデルを生成する機械学習部と、前記推測モデルを用いて、前記画像入力部が受け付けた前記ガス分布画像のガス領域の漏洩源の位置を示すガス漏洩位置を同定するガス漏洩位置同定部とを備える。 (11) The gas leak position identification device according to one aspect of the present disclosure includes an image input unit that accepts a gas distribution image in which an image of a gas region leaked in space is included in the image as an input, and a gas leaked in space. Machine learning is performed using the combination of the teacher gas distribution image in which the image of the region is included in the image and the gas leak position indicating the position of the gas leakage source in the gas region shown in the teacher gas distribution image as teacher data. , A machine learning unit that generates an estimation model that outputs a gas leakage position indicating the leakage source of the gas region by inputting a gas distribution image, and a gas of the gas distribution image received by the image input unit using the estimation model. It is provided with a gas leak position identification unit for identifying a gas leak position indicating the position of the leak source in the region.
 また、本開示の一態様に係るガス漏洩位置同定方法は、空間中に漏洩したガス領域の像が画像内に含まれるガス分布画像を入力として受け付け、空間中に漏洩したガス領域の像が画像内に含まれる教師用ガス分布画像と、前記教師用ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置との組み合わせを教師データとして機械学習を行い、ガス分布画像を入力としてガス領域の漏洩源を示すガス漏洩位置を出力する推測モデルを生成し、前記推測モデルを用いて、受け付けた前記ガス分布画像のガス領域の漏洩源の位置を示すガス漏洩位置を同定する。 Further, in the gas leak position identification method according to one aspect of the present disclosure, an image of a gas region leaked in space is received as an input, and an image of a gas region leaked in space is an image. Machine learning is performed using the combination of the teacher gas distribution image contained therein and the gas leak position indicating the position of the gas leak source in the gas region shown in the teacher gas distribution image as teacher data, and the gas distribution image is obtained. A guess model that outputs the gas leak position indicating the leak source in the gas region is generated as an input, and the guess model is used to identify the gas leak position that indicates the position of the leak source in the gas region of the received gas distribution image. ..
 また、本開示の一態様に係るプログラムは、コンピュータにガス漏洩位置同定処理を行わせるプログラムであって、前記ガス漏洩位置同定処理は、空間中に漏洩したガス領域の像が画像内に含まれるガス分布画像を入力として受け付け、空間中に漏洩したガス領域の像が画像内に含まれる教師用ガス分布画像と、前記教師用ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置との組み合わせを教師データとして機械学習を行い、ガス分布画像を入力としてガス領域の漏洩源を示すガス漏洩位置を出力する推測モデルを生成し、前記推測モデルを用いて、受け付けた前記ガス分布画像のガス領域の漏洩源の位置を示すガス漏洩位置を同定する。 Further, the program according to one aspect of the present disclosure is a program for causing a computer to perform a gas leak position identification process, and the gas leak position identification process includes an image of a gas region leaked in space in an image. The gas distribution image is accepted as an input, and the image of the gas region leaked in the space is included in the image, and the position of the gas leakage source in the gas region shown in the teacher gas distribution image is shown. Machine learning is performed using the combination with the gas leakage position as teacher data, and an estimation model that outputs the gas leakage position indicating the leakage source in the gas region is generated by inputting the gas distribution image, and the estimation model is used to receive the above. Identify the gas leak location that indicates the location of the leak source in the gas region of the gas distribution image.
 本開示の一態様に係るガス漏洩位置推測モデル生成装置、ガス漏洩位置推測モデル生成方法、プログラムによれば、ガス分布画像の特徴に基づいてガス漏洩位置を同定できる推測モデルを形成した上で、ガス漏洩位置を同定する。したがって、教師データを適切に設計することにより、ガス漏洩の状態に関わらず、ガス漏洩位置を同定できる推測モデルを生成し、ガス漏洩位置を同定することができる。 According to the gas leak position estimation model generation device, the gas leakage position estimation model generation method, and the program according to one aspect of the present disclosure, a guess model capable of identifying the gas leakage position based on the characteristics of the gas distribution image is formed. Identify the location of the gas leak. Therefore, by appropriately designing the teacher data, it is possible to generate a guess model that can identify the gas leak position regardless of the gas leak state and identify the gas leak position.
 本開示に係るガス漏洩位置同定装置、ガス漏洩位置同定方法、および、プログラムは、ガス漏洩の状態に関わらずガスの漏洩位置を同定することができ、安全に現地を調査することができるシステムとして有用である。 The gas leak position identification device, the gas leak position identification method, and the program according to the present disclosure can identify the gas leak position regardless of the state of the gas leak, and can safely investigate the site. It is useful.
  100、101、110 ガス検知システム
  10 画像生成部
  20、26、27 ガス検知装置
  201 画像取得部
  21、22、23 ガス漏洩同定装置
  211 ガス領域抽出部
  212 ガス領域画像取得部
  213 漏洩位置情報取得部
  214、224、234 ガス漏洩位置同定部
  2141、2241 機械学習部
  2142、2242 学習モデル保持部
   215、227 判定結果出力部
  24 表示部
  25 ガス漏洩位置同定システム
  226 視野情報保持部
100, 101, 110 Gas detection system 10 Image generation unit 20, 26, 27 Gas detection device 201 Image acquisition unit 21, 22, 23 Gas leak identification device 211 Gas region extraction unit 212 Gas region image acquisition unit 213 Leakage position information acquisition unit 214, 224, 234 Gas leak position identification unit 2141, 2241 Machine learning unit 2142, 2242 Learning model holding unit 215, 227 Judgment result output unit 24 Display unit 25 Gas leak position identification system 226 Field information holding unit

Claims (17)

  1.  空間中に漏洩したガス領域の像が画像内に含まれるガス分布画像を入力として受け付ける画像入力部と、
     空間中に漏洩したガス領域の像が画像内に含まれる教師用ガス分布画像と、前記教師用ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置との組み合わせを教師データとして機械学習された推測モデルを用いて、前記画像入力部が受け付けた前記ガス分布画像のガス領域の漏洩源の位置を示すガス漏洩位置を同定するガス漏洩位置同定部と
     を備えるガス漏洩位置同定装置。
    An image input unit that accepts a gas distribution image in which an image of a gas region leaked into space is included in the image as an input.
    A combination of a teacher gas distribution image in which an image of a gas region leaked in space is included in the image and a gas leak position indicating the position of a gas leak source in the gas region shown in the teacher gas distribution image is taught. A gas leak position including a gas leak position identification unit that identifies a gas leak position indicating the position of a leak source in the gas region of the gas distribution image received by the image input unit using a machine-learned estimation model as data. Identification device.
  2.  前記画像入力部に入力される前記ガス分布画像は、ガス領域の一部が遮蔽されたガス分布画像を含み、
     前記教師用ガス分布画像は、ガス領域の一部が遮蔽されたガス分布画像を含む、
     請求項1に記載のガス漏洩位置同定装置。
    The gas distribution image input to the image input unit includes a gas distribution image in which a part of the gas region is shielded.
    The teacher gas distribution image includes a gas distribution image in which a part of the gas region is shielded.
    The gas leak position identification device according to claim 1.
  3.  前記画像入力部が受け付けるガス分布画像と、前記教師データに含まれる教師用ガス分布画像とは、いずれも複数のフレームを含む動画像であり、
     前記推測モデルは、ガス分布画像のフレーム間のガス領域の変化を特徴量の1つとして形成され、
     前記ガス漏洩位置同定部は、ガス分布画像のフレーム間のガス領域の変化を特徴量の1つとして用いてガス漏洩位置を同定する
     請求項1または2に記載のガス漏洩位置同定装置。
    The gas distribution image received by the image input unit and the teacher gas distribution image included in the teacher data are both moving images including a plurality of frames.
    The guess model is formed by using the change in the gas region between frames of the gas distribution image as one of the features.
    The gas leak position identification device according to claim 1 or 2, wherein the gas leak position identification unit identifies a gas leak position by using a change in a gas region between frames of a gas distribution image as one of the feature quantities.
  4.  前記推測モデルは、教師データにおけるガス漏洩位置として教師用ガス分布画像内の座標値を用い、
     前記ガス漏洩位置同定部は、ガス漏洩位置として、前記画像入力部が受け付けたガス分布画像における座標値を出力する
     請求項1から3のいずれか1項に記載のガス漏洩位置同定装置。
    The guess model uses the coordinate values in the teacher gas distribution image as the gas leak position in the teacher data.
    The gas leak position identification device according to any one of claims 1 to 3, wherein the gas leak position identification unit outputs a coordinate value in a gas distribution image received by the image input unit as a gas leak position.
  5.  前記推測モデルは、教師データにおけるガス漏洩位置として、教師用ガス分布画像の各画素がガスの漏洩源を示す確率分布を用い、
     前記ガス漏洩位置同定部は、ガス漏洩位置として、前記画像入力部が受け付けたガス分布画像の各画素がガスの漏洩源である確率を示す確率分布を出力する
     請求項1から3のいずれか1項に記載のガス漏洩位置同定装置。
    The estimation model uses a probability distribution in which each pixel of the teacher gas distribution image indicates a gas leak source as a gas leak position in the teacher data.
    The gas leak position identification unit outputs a probability distribution indicating the probability that each pixel of the gas distribution image received by the image input unit is a gas leak source as a gas leak position. Any one of claims 1 to 3. The gas leak location identification device described in the section.
  6.  第1の視点からガス設備を撮像し、得られた画像からガス分布画像を生成する第1の画像取得部と、
     前記第1の視点と異なる第2の視点から前記ガス設備を撮像し、得られた画像からガス分布画像を生成する第2の画像取得部と、
     請求項1から5のいずれか1項に記載のガス漏洩位置同定装置である、第1ガス漏洩位置同定装置と、第2ガス漏洩位置同定装置と、を備え
     前記第1の画像取得部と前記第2の画像取得部とは、共通の空間領域をそれぞれの撮像範囲に含むよう配置される
     ガス漏洩位置同定システム。
    A first image acquisition unit that captures an image of gas equipment from a first viewpoint and generates a gas distribution image from the obtained image.
    A second image acquisition unit that images the gas equipment from a second viewpoint different from the first viewpoint and generates a gas distribution image from the obtained image.
    The first image acquisition unit and the said The second image acquisition unit is a gas leak position identification system arranged so as to include a common spatial area in each imaging range.
  7.  3次元漏洩位置同定部をさらに備え、
     前記第1ガス漏洩位置同定装置は、前記第1の画像取得部からガス分布画像を取得して対応するガス漏洩位置を同定し、
     前記第2ガス漏洩位置同定装置は、前記第2の画像取得部からガス分布画像を取得して
    対応するガス漏洩位置を同定し、
     前記3次元漏洩位置同定部は、前記第1の画像取得部の撮像範囲に基づいて前記第1ガス漏洩位置同定装置が同定したガス漏洩位置が示す第1の空間領域を特定し、前記第2の画像取得部の撮像範囲に基づいて前記第2ガス漏洩位置同定装置が同定したガス漏洩位置が示す第2の空間領域を特定し、前記第1の空間領域と前記第2の空間領域とのいずれにも含まれる空間領域を漏洩源として同定する
     請求項6に記載のガス漏洩位置同定システム。
    Further equipped with a 3D leak position identification unit,
    The first gas leak position identification device acquires a gas distribution image from the first image acquisition unit and identifies the corresponding gas leak position.
    The second gas leak position identification device acquires a gas distribution image from the second image acquisition unit and identifies the corresponding gas leak position.
    The three-dimensional leakage position identification unit identifies the first spatial region indicated by the gas leakage position identified by the first gas leakage position identification device based on the imaging range of the first image acquisition unit, and the second. The second spatial region indicated by the gas leak position identified by the second gas leak position identification device is specified based on the imaging range of the image acquisition unit, and the first spatial region and the second spatial region are defined. The gas leak position identification system according to claim 6, wherein a spatial region included in any of the above is identified as a leak source.
  8.  第1の視点からガスが漏洩する空間を撮像し、得られた画像からガス分布画像を生成する第1の画像取得部と、
     前記第1の視点と異なる第2の視点から前記空間を撮像し、得られた画像からガス分布画像を生成する第2の画像取得部と、
     前記第1の画像取得部から前記ガス分布画像を取得して対応するガス漏洩位置を同定する第1ガス漏洩位置同定部と、
     前記第2の画像取得部から前記ガス分布画像を取得して対応するガス漏洩位置を同定する第2ガス漏洩位置同定部と、
     前記第1の画像取得部の撮像範囲に基づいて前記第1ガス漏洩位置同定装置が同定したガス漏洩位置が示す第1の空間領域を特定し、前記第2の画像取得部の撮像範囲に基づいて前記第2ガス漏洩位置同定装置が同定したガス漏洩位置が示す第2の空間領域を特定し、前記第1の空間領域と前記第2の空間領域とのいずれにも含まれる空間領域を前記ガスの漏洩源として同定する3次元漏洩位置同定部と、
     を備えるガス漏洩位置同定システム。
    A first image acquisition unit that images the space where gas leaks from the first viewpoint and generates a gas distribution image from the obtained image.
    A second image acquisition unit that images the space from a second viewpoint different from the first viewpoint and generates a gas distribution image from the obtained image.
    A first gas leak position identification unit that acquires the gas distribution image from the first image acquisition unit and identifies a corresponding gas leak position, and a first gas leak position identification unit.
    A second gas leak position identification unit that acquires the gas distribution image from the second image acquisition unit and identifies the corresponding gas leak position, and a second gas leak position identification unit.
    The first spatial region indicated by the gas leak position identified by the first gas leak position identification device is specified based on the image pickup range of the first image acquisition unit, and is based on the image pickup range of the second image acquisition unit. The second space region indicated by the gas leak position identified by the second gas leak position identification device is specified, and the space region included in both the first space region and the second space region is defined as described above. A three-dimensional leak location identification unit that identifies as a gas leak source,
    A gas leak location identification system.
  9.  空間中の設備の3次元構造情報と、前記3次元構造情報と前記第1の視点および前記第2の視点との関係を保持する設備情報保持部をさらに備え、
     前記3次元漏洩位置同定部は、ガス漏洩位置と設備との相対位置関係をさらに同定する
     ことを特徴とする請求項7または8に記載のガス漏洩位置同定システム。
    Further provided with equipment information holding unit that holds the three-dimensional structure information of the equipment in the space and the relationship between the three-dimensional structure information and the first viewpoint and the second viewpoint.
    The gas leak position identification system according to claim 7 or 8, wherein the three-dimensional leak position identification unit further identifies the relative positional relationship between the gas leak position and the equipment.
  10.  空間中に漏洩したガス領域の像が画像内に含まれるガス分布画像を入力として受け付ける画像入力部と、
     前記ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置を入力として受け付けるガス漏洩位置入力部と、
     前記ガス分布画像と、当該ガス分布画像に対応するガス漏洩位置との組み合わせを教師データとして機械学習し、ガス分布画像を入力としてガス領域の漏洩源を示すガス漏洩位置を出力する推測モデルを生成する機械学習部と
     を備えるガス漏洩位置推測モデル生成装置。
    An image input unit that accepts a gas distribution image in which an image of a gas region leaked into space is included in the image as an input.
    A gas leak position input unit that accepts a gas leak position indicating the position of a gas leak source in the gas region shown in the gas distribution image as an input, and a gas leak position input unit.
    Machine learning is performed using the combination of the gas distribution image and the gas leak position corresponding to the gas distribution image as teacher data, and a guess model is generated that outputs the gas leak position indicating the leak source in the gas region by inputting the gas distribution image. A gas leak position estimation model generator equipped with a machine learning unit.
  11.  空間中に漏洩したガス領域の像が画像内に含まれるガス分布画像を入力として受け付ける画像入力部と、
     空間中に漏洩したガス領域の像が画像内に含まれる教師用ガス分布画像と、前記教師用ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置との組み合わせを教師データとして機械学習を行い、ガス分布画像を入力としてガス領域の漏洩源を示すガス漏洩位置を出力する推測モデルを生成する機械学習部と、
     前記推測モデルを用いて、前記画像入力部が受け付けた前記ガス分布画像のガス領域の漏洩源の位置を示すガス漏洩位置を同定するガス漏洩位置同定部と
     を備えるガス漏洩位置同定装置。
    An image input unit that accepts a gas distribution image in which an image of a gas region leaked into space is included in the image as an input.
    A combination of a teacher gas distribution image in which an image of a gas region leaked in space is included in the image and a gas leak position indicating the position of a gas leak source in the gas region shown in the teacher gas distribution image is taught. A machine learning unit that performs machine learning as data and generates an estimation model that outputs a gas leak position indicating the leak source in the gas region by inputting a gas distribution image.
    A gas leak position identification device including a gas leak position identification unit that identifies a gas leak position indicating the position of a leak source in a gas region of the gas distribution image received by the image input unit using the estimation model.
  12.  空間中に漏洩したガス領域の像が画像内に含まれるガス分布画像を入力として受け付け、
     空間中に漏洩したガス領域の像が画像内に含まれる教師用ガス分布画像と、前記教師用
    ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置との組み合わせを教師データとして機械学習された推測モデルを用いて、受け付けた前記ガス分布画像のガス領域の漏洩源の位置を示すガス漏洩位置を同定する
     ガス漏洩位置同定方法。
    The image of the gas region leaked into the space is included in the image. The gas distribution image is accepted as input.
    A combination of a teacher gas distribution image in which an image of a gas region leaked in space is included in the image and a gas leak position indicating the position of a gas leak source in the gas region shown in the teacher gas distribution image is taught. A gas leak position identification method for identifying a gas leak position indicating the position of a leak source in the gas region of the received gas distribution image using a machine-learned estimation model as data.
  13.  コンピュータにガス漏洩位置同定処理を行わせるプログラムであって、
     前記ガス漏洩位置同定処理は、
     空間中に漏洩したガス領域の像が画像内に含まれるガス分布画像を入力として受け付け、
     空間中に漏洩したガス領域の像が画像内に含まれる教師用ガス分布画像と、前記教師用ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置との組み合わせを教師データとして機械学習された推測モデルを用いて、受け付けた前記ガス分布画像のガス領域の漏洩源の位置を示すガス漏洩位置を同定する
     プログラム。
    A program that causes a computer to perform gas leak location identification processing.
    The gas leak position identification process is performed.
    The image of the gas region leaked into the space is included in the image. The gas distribution image is accepted as input.
    A combination of a teacher gas distribution image in which an image of a gas region leaked in space is included in the image and a gas leak position indicating the position of a gas leak source in the gas region shown in the teacher gas distribution image is taught. A program that identifies the location of a gas leak that indicates the location of the leak source in the gas region of the received gas distribution image using a machine-learned estimation model as data.
  14.  空間中に漏洩したガス領域の像が画像内に含まれるガス分布画像を入力として受け付け、
     前記ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置を入力として受け付け、
     前記ガス分布画像と、当該ガス分布画像に対応するガス漏洩位置との組み合わせを教師データとして機械学習し、ガス分布画像を入力としてガス領域の漏洩源を示すガス漏洩位置を出力する推測モデルを生成する
     ガス漏洩位置推測モデル生成方法。
    The image of the gas region leaked into the space is included in the image. The gas distribution image is accepted as input.
    The gas leak position indicating the position of the gas leak source in the gas region shown in the gas distribution image is accepted as an input.
    Machine learning is performed using the combination of the gas distribution image and the gas leak position corresponding to the gas distribution image as teacher data, and a guess model is generated that outputs the gas leak position indicating the leak source in the gas region by inputting the gas distribution image. How to generate a gas leak position estimation model.
  15.  コンピュータにガス漏洩位置推測モデル生成処理を行わせるプログラムであって、
     前記ガス漏洩位置推測モデル生成処理は、
     空間中に漏洩したガス領域の像が画像内に含まれるガス分布画像を入力として受け付け、
     前記ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置を入力として受け付け、
     前記ガス分布画像と、当該ガス分布画像に対応するガス漏洩位置との組み合わせを教師データとして機械学習し、ガス分布画像を入力としてガス領域の漏洩源を示すガス漏洩位置を出力する推測モデルを生成する
     プログラム。
    A program that causes a computer to generate a gas leak position estimation model.
    The gas leak position estimation model generation process is performed.
    The image of the gas region leaked into the space is included in the image. The gas distribution image is accepted as input.
    The gas leak position indicating the position of the gas leak source in the gas region shown in the gas distribution image is accepted as an input.
    Machine learning is performed using the combination of the gas distribution image and the gas leak position corresponding to the gas distribution image as teacher data, and a guess model is generated that outputs the gas leak position indicating the leak source in the gas region by inputting the gas distribution image. Program to do.
  16.  空間中に漏洩したガス領域の像が画像内に含まれるガス分布画像を入力として受け付け、
     空間中に漏洩したガス領域の像が画像内に含まれる教師用ガス分布画像と、前記教師用ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置との組み合わせを教師データとして機械学習を行い、ガス分布画像を入力としてガス領域の漏洩源を示すガス漏洩位置を出力する推測モデルを生成し、
     前記推測モデルを用いて、受け付けた前記ガス分布画像のガス領域の漏洩源の位置を示すガス漏洩位置を同定する
     ガス漏洩位置同定方法。
    The image of the gas region leaked into the space is included in the image. The gas distribution image is accepted as input.
    A combination of a teacher gas distribution image in which an image of a gas region leaked in space is included in the image and a gas leak position indicating the position of a gas leak source in the gas region shown in the teacher gas distribution image is taught. Machine learning is performed as data, and a guess model that outputs the gas leak position indicating the leak source in the gas region is generated by inputting the gas distribution image.
    A gas leak position identification method for identifying a gas leak position indicating the position of a leak source in a gas region of the received gas distribution image using the guess model.
  17.  コンピュータにガス漏洩位置同定処理を行わせるプログラムであって、
     前記ガス漏洩位置同定処理は、
     空間中に漏洩したガス領域の像が画像内に含まれるガス分布画像を入力として受け付け、
     空気中に漏洩したガス領域の像が画像内に含まれる教師用ガス分布画像と、前記教師用ガス分布画像に示されるガス領域のガスの漏洩源の位置を示すガス漏洩位置との組み合わせを教師データとして機械学習を行い、ガス分布画像を入力としてガス領域の漏洩源を示すガス漏洩位置を出力する推測モデルを生成し、
     前記推測モデルを用いて、受け付けた前記ガス分布画像のガス領域の漏洩源の位置を示すガス漏洩位置を同定する
     プログラム。
    A program that causes a computer to perform gas leak location identification processing.
    The gas leak position identification process is performed.
    The image of the gas region leaked into the space is included in the image. The gas distribution image is accepted as input.
    A combination of a teacher gas distribution image in which an image of a gas region leaked into the air is included in the image and a gas leak position indicating the position of a gas leak source in the gas region shown in the teacher gas distribution image is taught. Machine learning is performed as data, and a guess model that outputs the gas leak position indicating the leak source in the gas region is generated by inputting the gas distribution image.
    A program for identifying a gas leak position indicating the position of a leak source in the gas region of the received gas distribution image using the guess model.
PCT/JP2021/018310 2020-06-05 2021-05-14 Gas leak location identification device, gas leak location identification system, gas leak location identification method, gas leak location estimation model generation device, gas leak location estimation model generation method, and program WO2021246130A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020098116 2020-06-05
JP2020-098116 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021246130A1 true WO2021246130A1 (en) 2021-12-09

Family

ID=78830914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018310 WO2021246130A1 (en) 2020-06-05 2021-05-14 Gas leak location identification device, gas leak location identification system, gas leak location identification method, gas leak location estimation model generation device, gas leak location estimation model generation method, and program

Country Status (1)

Country Link
WO (1) WO2021246130A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055771A (en) * 1998-08-07 2000-02-25 Babcock Hitachi Kk Leaked position detection device
US20180292286A1 (en) * 2017-04-05 2018-10-11 International Business Machines Corporation Detecting gas leaks using unmanned aerial vehicles
JP2020016527A (en) * 2018-07-25 2020-01-30 コニカミノルタ株式会社 Method of investigating stationary gas detection device installation site
JP2020063955A (en) * 2018-10-16 2020-04-23 千代田化工建設株式会社 Fluid leakage detection system, fluid leakage detection device, and learning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055771A (en) * 1998-08-07 2000-02-25 Babcock Hitachi Kk Leaked position detection device
US20180292286A1 (en) * 2017-04-05 2018-10-11 International Business Machines Corporation Detecting gas leaks using unmanned aerial vehicles
JP2020016527A (en) * 2018-07-25 2020-01-30 コニカミノルタ株式会社 Method of investigating stationary gas detection device installation site
JP2020063955A (en) * 2018-10-16 2020-04-23 千代田化工建設株式会社 Fluid leakage detection system, fluid leakage detection device, and learning device

Similar Documents

Publication Publication Date Title
US20090129656A1 (en) Voting in mammography processing
TW201728897A (en) Single image detection
TW201602565A (en) Using high resolution full die image data for inspection
CN109642846A (en) The method for indicating the gas movement in scene
AU2018369622A1 (en) System and methods for extrinsic calibration of cameras and diffractive optical elements
US20220244194A1 (en) Automated inspection method for a manufactured article and system for performing same
US20220245809A1 (en) Computer aided diagnosis system for detecting tissue lesion on microscopy images based on multi-resolution feature fusion
CN114898044B (en) Imaging method, device, equipment and medium for detection object
CN112254902A (en) Method and device for generating three-dimensional laser point cloud picture based on laser and visible light scanning
WO2013021440A1 (en) Image processing apparatus, image displaying apparatus, image processing method and program
WO2021246130A1 (en) Gas leak location identification device, gas leak location identification system, gas leak location identification method, gas leak location estimation model generation device, gas leak location estimation model generation method, and program
TWI832931B (en) Semiconductor inspection system and method and related non-transitory computer-readable storage medium
JP7295568B2 (en) Inspection device and program
JP5333607B2 (en) Radiation image processing apparatus and radiation image processing program
Mutiargo et al. Defect detection using trainable segmentation
US10410331B2 (en) Computed tomography object inspection system
US20100202674A1 (en) Voting in mammography processing
WO2021205901A1 (en) Gas detection device, gas detection method, and gas detection program
WO2021246185A1 (en) Gas migration estimation device, gas migration estimation method, estimation model generation device, estimation model generation method, and program
WO2022004461A1 (en) Gas region determination device, gas region determination method, learning model generation device, learning model generation method, and program
KR20220111214A (en) Method, apparatus and computer program for inspection of product based on artificial intelligence
WO2021246210A1 (en) Machine learning data generation device, machine learning data generation method, program, and learning data set
JP6500016B2 (en) Method for determining a hazardous area between a test object and an X-ray inspection system
KR102585028B1 (en) Method, apparatus and system for non-constructive inspection of object based on three-dimensional process
US20230351568A1 (en) Reflection-component-reduced image generating device, reflection component reduction inference model generating device, reflection-component-reduced image generating method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21818867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP